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Abstract 20 

Geophysical methods, such as electromagnetic induction (EMI), can be effective for 21 

monitoring changes in soil moisture at the field scale, particularly in agricultural 22 

applications. The electrical conductivity (σ) inferred from EMI needs to be converted to soil 23 

moisture content (θ) using an appropriate relationship. Typically, a single global 24 

relationship is applied to an entire agricultural field, however, soil heterogeneity at the field 25 

scale may limit the effectiveness of such an approach. One application area that may 26 

suffer from such an effect is crop phenotyping. Selecting crop varieties based on their root 27 

traits is important for crop breeding and maximizing yield. Hence, high throughput tools for 28 

phenotyping the root system architecture and activity at the field-scale are needed. Water 29 

uptake is a major root activity and, under appropriate conditions, can be approximated by 30 

measuring changes in soil moisture from time-lapse geophysical surveys. We examine 31 

here the effect of heterogeneity in the θ-σ relationship using a crop phenotyping study for 32 

illustration. In this study, the θ-σ relationship was found to vary substantially across a field 33 

site. To account for this, we propose a range of local (plot specific) θ-σ models. We show 34 

that the large number of parameters required for these models can be estimated from 35 

baseline σ and θ measurements. Finally, we compare the use of global (field scale) and 36 

local (plot scale) models with respect to ranking varieties based on the estimated soil 37 

moisture content change.  38 
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1 Introduction 39 

Over the past two decades there has been a growth in the use of geophysical methods in 40 

agriculture (Allred et al., 2008). This has been driven, in part, by the need to assess 41 

variation in soil properties in a non-invasive manner over relatively large scales.  42 

Geophysical methods in such a context are a subset of proximal soil sensing approaches 43 

(Viscarra Rossel et al., 2011). Measurements of properties, such as electrical conductivity, 44 

are typically treated as a proxy for a soil property or state of interest, e.g. soil texture, bulk 45 

density or soil moisture content. Such methods may also be used in a time-lapse manner 46 

to examine changes in soil properties or states, e.g. changes in texture or soil density due 47 

to land management practices. Typically, maps of a geophysical property are presented in 48 

a qualitative manner. Whilst this can be effective in some cases, the ability to estimate 49 

quantitatively the property, or state, of interest offers greater scope for a wider range of 50 

agricultural applications. To achieve such quantification, the relationship between the 51 

geophysical proxy and the soil property or state is required. Such relationships may be 52 

spatially variable, particularly over field scales typical in agricultural studies. Here, we 53 

assess such heterogeneity in a wheat phenotyping study, and propose practical methods 54 

to account for such variability. 55 

1.1 Field-scale phenotyping bottleneck 56 

Wheat is one of the main staple crops in the world. It has been bred over centuries for 57 

specific traits, most of which are above-ground characteristics. Given uncertain future 58 

climatic conditions, there are demands for more resilient breeds. A key component of such 59 

resilience lies in the root system of the crop. Deeper root systems are correlated with 60 

higher yield and higher resistance to drought (Wasson et al., 2012). Usually the root 61 

system of a crop is assessed in the lab or in the greenhouse. However, field studies of the 62 
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root system are essential to understand more about how each variety adapts to its 63 

environment. The typical approach of assessing the root system of a crop in the field is by 64 

direct sampling (Wasson et al., 2014). Such methods are destructive, labour-intensive and 65 

expensive in a conventional breeding program with a large number of breeding lines. An 66 

alternative, less-invasive, and quicker approach is to consider the root activity rather than 67 

the quantity of roots. Such methods rely on observing changes in soil moisture to infer root 68 

activity (e.g. Michot et al., 2003; Srayeddin and Doussan, 2009; Garré et al., 2013; Beff et 69 

al., 2013). Different methods to measure efficiently this change in soil moisture were 70 

explored by Whalley et al. (2017) for different wheat genotypes. Among them, geophysical 71 

methods, such as electrical resistivity tomography (ERT) and electromagnetic induction 72 

(EMI) appear promising as a means of measuring a proxy to observe the dynamics of soil 73 

moisture of the subsurface (Binley et al., 2015). Shanahan et al. (2015) illustrate the use of 74 

EMI for differentiating soil drying from different wheat genotypes in a phenotyping context. 75 

In their study the relationship between the observed proxy (soil apparent electrical 76 

conductivity) and soil moisture content was assumed to be homogeneous across the study 77 

site. Huang et al. (2018) also use EMI as a proxy for plot-scale crop water of different 78 

chickpea genotypes. Other examples of the use of EMI in crop-related studies include 79 

Cassiani et al. (2012), von Hebel et al. (2014) and Moghadas et al. (2017). 80 

1.2 Electromagnetic induction 81 

The EMI method measures the soil apparent electrical conductivity (σa) in a non-82 

contact/invasive manner. A standard EMI device is composed of a transmitter (Tx) coil and 83 

at least one receiver (Rx) coil. The transmitter coil generates a transient electromagnetic 84 

field. This primary field induces eddy currents in the ground; the magnitude of eddy 85 

currents generated is a function of the soil electrical conductivity, σ. The eddy currents 86 
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then induce a secondary electromagnetic field. Both primary and secondary 87 

electromagnetic fields are measured by the receiver coils. The out-of-phase component of 88 

their complex ratio is used to compute the apparent electrical conductivity (σa) of the 89 

subsurface. EMI measurements can be made in vertical and horizontal coplanar 90 

orientations, with different depth-sensitivity functions. Several current instruments, such as 91 

the one used in this study (Mini-Explorer from GF-Instruments, Czech Republic), have 92 

multiple receiver coils. 93 

The relationship between depth-specific σ and measured σa, for a given coil orientation 94 

and the distance between the Tx and Rx, can be described using a simple function: the 95 

'cumulative sensitivity function' (McNeill, 1980). A more accurate, but more complex, 96 

method based on Maxwell's equations (von Hebel et al., 2014; Andrade et al., 2016) can 97 

also be used to describe such a relationship. Using measurements made on a multi-coil 98 

device, depth-specific σ can be determined from inverse modelling of the σ-σa relationship. 99 

The inversion process seeks the best distribution of depth-specific σ that is consistent with 100 

all observed σa values for different coil spacings and orientations. A prerequisite, 101 

considered by some authors, for inversion is that the apparent values given by the different 102 

EMI configurations need to be calibrated with results from an ERT survey (e.g., Lavoué et 103 

al., 2010). More details about EMI inversion can be found in von Hebel et al. (2014). 104 

EMI measurements have been extensively used to map field heterogeneities and produce 105 

detailed soil maps for the definition of management zones in precision agriculture (Corwin 106 

and Lesch, 2003; King et al., 2005; Brevik et al., 2006). More recently, multi-coil EMI 107 

instruments have provided greater depth-specific information in agricultural studies, 108 

allowing assessments of depth specific σ and their link to aboveground crop performance 109 

indicators (von Hebel et al., 2018; Brogi et al., 2019). 110 
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1.3 Soil moisture content – electrical conductivity 111 

relationships 112 

The soil electrical conductivity is controlled by a number of properties (soil texture, organic 113 

matter content) and states (soil temperature, pore water electrical conductivity, bulk 114 

density, soil moisture content). The soil structural state and its properties control σ through 115 

pore connectivity and porosity. Such properties are also inherently linked to soil moisture 116 

content (e.g. determining residual moisture content), which has a major effect on soil σ. 117 

Temperature effects can be accounted for given local vertical soil temperature profiles, 118 

which we assume to not vary spatially inside the same field, although effects of daily or 119 

seasonal variation in temperature may need to be accounted for. The electrical 120 

conductivity of the pore water also contributes to the soil σ. In temperate climates, the 121 

variation of the pore water electrical conductivity should be minimal in rain-fed settings. 122 

However, this has a greater impact in irrigated conditions as the irrigated water (e.g. 123 

groundwater sourced) is likely to have a different ionic composition and temperature than 124 

the pore water in the surface layers of soil. In semi-arid environments, pore water 125 

conductivity effects may be significant due to enhanced salinity arising from high 126 

evaporative fluxes (Corwin and Lesch, 2005). Note that even in rain-fed environment, 127 

increase in pore-water electrical conductivity can occur due to fertiliser application. 128 

Archie’s law (Archie et al., 1942), developed for oil reservoir investigations, is a commonly 129 

used empirically derived model that relates the soil condition to the bulk σ. Waxman and 130 

Smits (1968) extended Archie’s law by accounting for the effect of clay minerals (forming 131 

surface electrical conductivity). Several other approaches have been developed 132 

specifically for soils (e.g., Rhoades et al. 1976). Laloy et al. (2011) compared a range of 133 



7 

models for soil electrical conductivity, adopting the term “pedo-electrical” model to 134 

differentiate this from classical petrophysical approaches. 135 

Following Laloy et al. (2011), the relationship between σ and soil moisture content (θ) can 136 

be expressed as: 137 

𝜎 ൌ 𝑎𝜃௡ ൅ 𝑏,      [1] 138 

where a, b and n are empirical parameters that depend on soil properties. Following Garré 139 

et al. (2011), a is influenced by the pore water conductivity, soil texture and porosity; b by 140 

the soil surface conductivity; n is controlled by the soil texture. When the exponent n is 141 

close to 1, Eq.[1] can be approximated by a linear relationship. 142 

The parameters of Eq. [1] may be obtained from laboratory measurements on field 143 

samples (e.g., Shanahan et al. 2015) or directly in the field, for example using a trench and 144 

soil moisture sensors (Michot et al., 2003; Garré et al., 2013; Beff et al., 2013). Both 145 

methods provide information on a relatively small volume that might not be representative 146 

of the entire field. Indeed, from field-scale observations, the different soil textural 147 

properties also impact the θ-σ relationships, either when using σa (Stanley et al., 2014) or 148 

with depth-specific σ (Jayawickreme et al., 2010). Eq. [1] is usually appropriate when the 149 

soil moisture change is large and the soil heterogeneity is small. However, if significant soil 150 

heterogeneity exists, the variation in the parameters in Eq. [1] may need to be accounted 151 

for. This effect may be particularly important in phenotyping studies (the determination of 152 

specific traits of crop varieties) since the differences in soil moisture change between crop 153 

lines (varieties) may be smaller compared to other studies where different species are 154 

used. Whether depth-specific or apparent values (like in this study) are considered, 155 

estimates of small changes in soil moisture are likely to be affected by heterogeneity in the 156 

θ-σ relationship (Eq. [1]). 157 
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Furthermore, in a phenotyping context, a better prediction of the soil moisture or change in 158 

soil moisture from EMI is important as it can help to make the variety ranking similar to the 159 

one obtained with direct soil moisture observations. Of course, if direct soil moisture data 160 

are available, there is little value in additional geophysical proxy measurements. However, 161 

in this study, the direct measurements allow us to determine what the maximum 162 

achievable information on soil moisture content obtainable from EMI measurements might 163 

be. 164 

Thereforethis study aims to: (1) quantify the spatial heterogeneity of θ-σ relationships at 165 

the field-scale; (2) determine its impact on the phenotype ranking of wheat lines; (3) 166 

explore approaches to account for such effects using simplified but practical approaches. 167 

The investigation utilises a dataset of σ and θ measurements collected during a winter 168 

wheat field experiment. 169 

2 Material and methods 170 

2.1 Field layout 171 

Measurements were made during the 2016-2017 growing season at the Warren Field 172 

experimental farm (Woburn, UK 52°01'06.5"N 0°35'29.0"W) operated by Rothamsted 173 

Research. The soil at the site is classified as a sandy clay loam (Distric Cambisol with 54% 174 

sand, 20% silt and 26% clay, more details in Shanahan et al., 2015). The field was sown 175 

with winter wheat at the end of 2016 and harvested in August 2017 (Bai et al., 2019). In 176 

the experiment, 71 lines of wheat and one fallow treatment (all with 3 replicates) were 177 

randomly distributed in 3 blocks. An aerial photograph showing the field experiment and 178 

the 216 plots is shown in Figure 1. Out of the 216 plots (each 9 m by 1.8 m), 12 plots (4 179 

varieties) were equipped with a 24-electrode electrical resistivity tomography (ERT) array 180 
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(0.25 m spacing) placed along the middle of each plot. ERT data were used to calibrate 181 

EMI measurements following Lavoué et al. (2010). All plots were equipped with a 1.5 m 182 

long neutron probe access tube positioned 1 m from the edge of the plot. The ratio counts 183 

from the neutron probe were converted to soil moisture content using a field calibration (+/- 184 

0.01 cm3/cm3). In the field, temperature sensors recorded soil temperature at (0.1, 0.2, 0.3, 185 

0.4, 0.6, 1 m depths). They were used to correct the electrical conductivity from the ERT 186 

and EMI using the ratio model (Ma et al., 2011) with a 2% increase per degree Celsius. 187 

 188 

 

Figure 1: Aerial picture of the field showing the 216 plots (each 9 m x 1.8 m) sown with 

winter wheat in 2016. Plots marked in red are equipped with ERT arrays. 

 189 

2.2 Field measurements 190 

Three sets of EMI measurements were collected on each plot with a Mini-Explorer 191 

instrument (GF Instruments, Brno, Czech Republic) according to the guidelines provided in 192 
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Shanahan et al. (2015). They were then averaged to obtain a mean for each plot. Surveys 193 

were conducted on dates (expressed in ISO 8601 format): 2016-10-08, 2017-03-02, 2017-194 

03-16, 2017-04-03, 2017-04-27, 2017-05-16 and 2017-06-01. Data from some plots were 195 

discarded because of two high voltage cables buried under the field. The filtering used the 196 

standard deviation of the three sets of EMI data for each plot. 197 

The Mini-Explorer contains three receiver coils with separations 0.32 m, 0.71 m and 1.18 198 

m from the transmitter coil. Measurements in the two modes (horizontal coplanar mode 199 

(HCP) and vertical coplanar mode (VCP)) were obtained. Therefore, six measurements of 200 

apparent conductivity were made. The normalised sensitivity pattern (McNeill, 1980) of 201 

each configuration is shown in Figure 2a (note that in Figure 2a and hereafter the notation, 202 

for example, HCP0.32, is used to identify coil orientation and spacing: HCP with a 0.32 m 203 

coil spacing). Figure 2b shows example soil moisture data from the neutron probe taken at 204 

seven depths. For each depth, the grey lines denote the limits used to compute the local 205 

sensitivity weights used in the computation of the apparent soil moisture content (Section 206 

3.1). 207 
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Figure 2: (a) Normalised local sensitivity pattern for the six pairs of coil orientations / coil 

separations available on the Mini-Explorer instrument. The triangles show the depth 

above which there is 70% cumulative sensitivity (commonly referred to as the effective 

depth of investigation). (b) shows a measured soil moisture content profile by neutron 

probe. To build the apparent soil moisture content, each depth-specific θ measurement is 

multiplied by the integrated EMI sensitivity corresponding to its depths (between the grey 

lines) and then summed (see Section 3.1). 

 208 

ERT measurements were collected using a 48 Syscal Pro (Iris Instruments, Orléans, 209 

France) on similar dates to the EMI (2017-03-02, 2017-03-16, 2017-04-03, 2017-04-27, 210 

2017-05-16, 2017-06-01 and 2017-06-23). Neutron probe measurements were collected 211 
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on 2017-03-16, 2017-04-05, 2017-04-26, 2017-05-18, 2017-06-23. Nitrogen fertiliser 212 

(Nitram 37.5% N) was applied on 2017-04-10 and 2017-04-25 as pellets. Whenever 213 

possible ERT and EMI measurements were collected on the same day. Neutron probe 214 

datasets were collected as close as possible to the ERT/EMI dataset, either on the same 215 

day or before/after an interval of a few days, thus minimizing disturbance from any rainfall 216 

events. Note that the neutron probe dataset of mid-May was taken after a large overnight 217 

rainfall event. This had an impact on the shallow measurements (0.15 and 0.30 m depths) 218 

but did not influence the deeper measurements. Note also that nitrogen fertiliser was 219 

applied just before the measurement at the end of May. However, because of its 220 

application as dry pellets and the lack of large rainfall events, it is unlikely that it had fully 221 

dissolved into the soil at the time of the end of May survey. This could have caused a 222 

significant increase in the pore water electrical conductivity and hence in our EMI/ERT 223 

measurement, however, no sharp increase in observed electrical conductivity is apparent. 224 

At the end of the field campaign, four different datasets of ERT, EMI and neutron probe 225 

measurements were available to derive pedophysical relationship for each plot. Despite 226 

the limited number of time-lapse data collected on the same plot, the larger number of 227 

plots screened enables us to capture well the temporal and spatial variability across the 228 

field. 229 

3 Results 230 

3.1 Apparent soil moisture content 231 

To allow comparison with observed apparent conductivity measurements and to avoid any 232 

inversion artefacts that can arise from EMI inversion, an ‘apparent’ soil moisture was 233 

computed based on the weights of the EMI cumulative sensitivity function (Figure 2a) 234 

following the approach given by (Martini et al., 2017). The θ measurements of a given 235 
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profile (Figure 2b) were multiplied by their respective depth-specific normalised local 236 

sensitivity and then summed to obtain an apparent soil moisture content (θa). The shape of 237 

the normalised sensitivity function is determined by the same parameters as for the EMI: 238 

the coil orientation (HCP or VCP) and the coil spacing (0.32, 0.71 or 1.18 m). Thus, for 239 

each pair of coil orientation/coil spacing, a different θa was obtained, for comparison with 240 

the observed σa from EMI. The apparent soil moisture content θa is given by 241 

     𝜃௔ ൌ 𝛴௜
௡𝜃௜𝑠௜,      [2] 242 

where, θi is the measured soil moisture content of layer i and si is the sensitivity of the 243 

layer i derived by integrating the cumulative sensitivity function between the top and the 244 

bottom depths of the layer (Figure 2). Note that the sum of si for the profile is equal to 1. n 245 

is the number of layers. 246 

3.2 Evolution 247 

Figure 3a shows the different collection times as well as selected weather data during the 248 

experiment. Figures 3b, c and d show the evolution of the different observed and 249 

computed below-ground variables. Note the clear difference between the averages of the 250 

fallow and cropped plots, demonstrating a substantial effect of the crop in the soil moisture 251 

changes over time, i.e. crop water uptake accounts for a substantial change in soil 252 

moisture. Note that the σa from EMI shows a peak around 2017-03-01 and 2017-06-01. 253 

This can be explained by the large amount of rainfall on the previous day. Note that no soil 254 

moisture content data were collected on 2017-06-01, hence the series does not show a 255 

similar increase. The analysis uses the data from the four following dates for which EMI, 256 

ERT and neutron probe measurements were all available: 2017-03-16, 2017-04-05, 2017-257 

04-26, 2017-05-18. 258 
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Figure 3: (a) Rainfall and potential soil moisture deficit (PSMD) with markers 

corresponding to the collection date of the ERT, EMI and neutron probe (NP) dataset.(b) 

Evolution of σa from EMI. (c) Evolution of computed θa. (d) Evolution of the measured soil 

moisture content from neutron probe for selected depths. Error bars are standard error of 

the mean (sometimes too small to be visible on the graph). Dotted lines are averages of 

the fallow plots while solid lines are averages of the cropped plots. 

 259 

3.3 Time-lapse approach 260 

Time-lapse monitoring of σ allows the removal of stationary effects of the soil (soil organic 261 

matter, soil texture) on the θ-σ relationship (e.g., Robinson et al. 2012; Shanahan et al. 262 

2015). This approach relies on the measurements of a baseline (in this case, where no 263 
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crop effect is present), which is usually made at the beginning of the growth season when 264 

the field is at or near field-capacity. All subsequent surveys can be compared to this 265 

baseline, consequently revealing the main drying pattern mainly driven by root activity. For 266 

the experiment presented here the baseline data was measured on 2017-03-16. 267 

There are two ways to compute changes from the baseline conditions: (1) by computing 268 

the difference; (2) by computing the relative change. Assuming a linear relationship 269 

between θ and σ (n=1 in Eq. [1]) the following equations can be written. 270 

The difference is simply the difference between σ and σref: 271 

   𝛥𝜎 ൌ 𝜎 െ 𝜎௥௘௙ ൌ ሺ𝑎𝜃 ൅ 𝑏ሻ െ ൫𝑎𝜃௥௘௙ ൅ 𝑏൯ ൌ 𝑎𝛥𝜃,    [3] 272 

where σref and θref are the baseline σ and θ, respectively. 273 

The relative change is the difference between σ1 and σref  normalised by the baseline σref 274 

(Eq. [4]). It is given by: 275 

 
∆ఙ

ఙೝ೐೑
ൌ ௔∆ఏ

௔ఏೝ೐೑ା௕
.                 [4]  276 

Computing differences (Eq. [3]) removes the effect of ‘offset’ b but retains ‘slope’ a, which 277 

may vary across the site. In contrast, working with relative change (Eq. [4]) retains the 278 

effects of a and b, unless b is relatively small. In the latter case, Eq. [4] can clearly be 279 

simplified to link directly the relative change in σ with the relative change in θ as: 280 

     
௱ఙ

ఙೝ೐೑
ൌ ௱ఏ

ఏೝ೐೑
.                 [5] 281 

The expressions above were used to explore ways in which the variation of a and b within 282 

a site can be accounted for. 283 
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3.4 Observations 284 

Figure 4 shows the different relationships between σa and θa for three plots with the same 285 

variety in the field site. The variation between the three responses (expressed as absolute, 286 

difference or relative change) reveals the effect of spatial variability across the site, 287 

highlighting the limitation of adopting a single global relationship. 288 

 

Figure 4: θ-σ relationships between θa and σa collected in the field in three example plots 

with the same variety expressed as: (a) absolute, (b) difference and (c) relative change. 

Data for each plot are differentiated by a different colour symbol/line. 

 289 

Figure 4 shows the distribution of θa and σa in April 2017 and their respective difference 290 

with respect to the baseline in March 2017 (2017-03-16). From Figure 5, it can be seen 291 

that the patterns for both absolute and differences are different. This illustrates the effect of 292 

different θ-σ relationships observed in Figure 4. Both patterns in σa and θa values remain 293 

consistent for the different collection dates. 294 
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Figure 5: General schematic layout of the random block experiment (not to scale) on 

2017-04-17. One rectangle represents one 9 m by 1.8 m plot. Plots marked with a red line 

were equipped with an ERT array. The σa value for each plot is the average of three 

replicates. (a) Shows the distribution of σa (VCP0.71 with an effective depth of 0.5 m). (b) 

Shows the corresponding θa from neutron probe measurements. (c) and (d) show the 

difference in σa and θa, respectively, from the baseline measurement of 2017-03-16. 

Spatial heterogeneity exists in both variables and even in their differences. Blank plots in 

the EMI maps are plots affected by buried high-voltage cables. 

 295 

3.5 Development of local model 296 

Typically, a few samples from the field are collected to build a global unique relationship 297 

between θ and σ. We can express this relationship as: 298 
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     𝜎 ൌ 𝑎௚𝜃 ൅ 𝑏௚,     [6] 299 

     𝛥𝜎 ൌ 𝑎௚𝛥𝜃,      [7] 300 

where the global ag and bg parameters are identical for all the plots. 301 

However, for a heterogeneous field, using this global relationship may lead to substantial 302 

errors in the estimation of soil moisture content changes. In order to overcome this, we 303 

explored local models allowing the assignment of a unique θ-σ relationship for each plot. 304 

(M1) Linear local model: based on Eq. [1] assuming n=1. This model has two plot-specific 305 

parameters: i is the plot number, the slope is ai and the offset is bi 306 

     𝜎 ൌ 𝑎௜𝜃 ൅ 𝑏௜.      [8] 307 

Figure 6 illustrates, using all measurements, how well the linear global model and linear 308 

local model (M1) perform. There is a clear (and expected) improvement of the prediction of 309 

soil moisture content with the linear local model. Note that an exponential model (not 310 

shown here) following Eq. [1] was also fitted and has similar performance to the linear 311 

model (R2=0.37 for the global exponential model; R2=0.82 for the local exponential model). 312 

Consequently, the linear model is adopted hereafter. 313 
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Figure 6: Both graphs show the observed θa vs the predicted θa from (a) the global linear 

model (Eq. [6]) and (b) the local linear model (Eq. [8]). 

 314 

As seen in Figure 6, the local linear model outperforms the global linear model but 315 

increases the number of parameters needed. More importantly, a full set of monitored soil 316 

moisture content values is needed, making the geophysical proxy approach redundant. As 317 

a first step to reduce the number of local parameters, we introduce two new models. 318 

(M2) Multi-offsets model: a linear model where each plot has its own offset bi but share a 319 

common slope ag, 320 

     𝜎 ൌ 𝑎௚𝜃 ൅ 𝑏௜.      [9] 321 

(M3) Multi-slopes model: this model only applies to differences in values and is based on 322 

Eq. [3], each plot having its own slope ai. This model has one parameter per plot (slope), 323 

     𝛥𝜎 ൌ 𝑎௜𝛥𝜃.      [10] 324 

Mathematically, the multi-offsets model (M2) produces a set of parallel σ-θ relationships 325 

similar to Figure 4a while the multi-slopes model leads to a set of conical Δσ-Δθ 326 

relationships similar to Figure 4b. Both use fewer parameters than the local linear model 327 

(M1). The rationale for these simpler models is the need to reduce the number of 328 

parameters needed and increase our ability to predict them using a set of baseline 329 

measurements. 330 

3.6 Development of predicted local (plocal) models 331 

All local models (M1 to M3) require large amount of information for each plot and have 332 

limited practical use in a field phenotyping application. As stated above, if direct 333 
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measurements of soil water were available in a field experiment there would be no benefit 334 

or value in using alternative geophysical proxy measurements. However, they allow us to 335 

determine what the maximum achievable information on soil moisture content obtainable 336 

from EMI measurements might be. As a more practical solution we explore a range of 337 

alternative approaches where the local θ-σ relationship is known for a subset of plots and 338 

the geophysical data are used to predict those local relationships for the other plots 339 

(plocal). 340 

3.6.1 Predictors of the local parameters 341 

The first step in developing predicted local (plocal) models is to identify the best estimates 342 

of the local parameters among baseline measurements. Figure 7 shows the relationship 343 

between the different local parameters from each model (M1 to M3) and the baseline σa 344 

and θa. It can be observed for the linear local model (M1) that the local offsets (bi) are well 345 

related to baseline θa
ref and that the slopes (ai) are more related to σa

ref. The multi-offsets 346 

(M2) and multi-slopes (M3) models aim to amplify those trends by reducing the number of 347 

local parameters. Using multiple local offsets but a global slope (Eq. [9]), the multi-offsets 348 

model (M2) displays a stronger relationship with the baseline θa
ref (R2=0.86) than the linear 349 

model (R2=0.40). Using multiple local slopes and no offsets (Eq. [10]), the multi-slopes 350 

model (M3) displays a stronger relationship with the baseline σa
ref (R2=0.33) than the linear 351 

model (R2=0.27). 352 
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Figure 7: Relationships between the local parameters of the three local models (M1 to 

M3) and the two baseline measurements σa
ref and θa

ref for VCP0.71. The first two 

columns on the left shows the local offsets bi and the local slopes ai of the local linear 

model (M1) against the baseline measurements. The 3rd column shows the local offsets bi 

of multi-offsets model and the 4th column shows the local slopes ai of the multi-slopes 

model against the baseline measurements. The red line is the line of best fit with its 95% 

confidence interval (red shaded region). 

 353 

Figure 7 allows the identification of the best predictor for each local parameter. Given local 354 

parameters from a subset of plots, a linear relationship between them and their best 355 

predictor is derived and used to predict the value of the local parameters for the other 356 

plots. Those predicted local parameters are then used in one of the models (M1 to M3). 357 

This process and the results are shown below for the multi-offsets (M2) and the multi-358 

slopes (M3) models (M1 not shown). Hereafter, the subset of plots is composed of the 12 359 

plots equipped with an ERT array as they are randomly distributed in the field. The choice 360 
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of plots is somewhat arbitrary: another set of plots could have been selected but they 361 

should span the largest possible range of σ and θ observed in the field. 362 

3.6.2 Multi-offsets model 363 

The multi-offsets (M2) model incorporates a local offset, bi, but a global slope, ag (Eq. [9]). 364 

As an illustration, Figure 8a compares, for a subset of plots (black line and dots), the multi-365 

offsets model with its corresponding global model for VCP0.71. The global model 366 

compared here corresponds to Eq. [6] where both slope, ag and offset bg are uniform 367 

across the field. The multi-offsets model improves the accuracy of the predicted θa 368 

compared to the global model (R2=0.92 vs 0.37) due to the inclusion of the local 369 

parameters bi (Figure 8a). Both models are fitted on all the plots available. In order to 370 

decrease the amount of data needed to obtain these local offsets, a linear relationship 371 

between the local offsets bi and the baseline θa
ref is derived using the data from a subset of 372 

plots (Figure 8b). This bi – θa
ref relationship is then used to predict bi for all the plots. 373 

Finally, in Figure 8c, those predicted offsets are used in the plocal multi-offsets model to 374 

obtain θa. In this case, the R2 of the multi-offsets model with the predicted parameters 375 

(0.81) is better than for the global fit (0.37). 376 

 

Figure 8: Multi-offsets model fitted with apparent values (VCP0.71). The grey dots show 

all the data available on the 216 plots. They represent the maximum number of 
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information achievable if both σ and θ are monitored on all the plots. In a more practical 

situation, only a subset of plots (black dots) are monitored for both σ and θ. (a) Shows the 

relationship fitted with the multi-offsets model (local) as well as a global linear model, both 

fitted on the 216 plots. (b) Shows the local offsets bi vs the baseline θa
ref. The black line 

corresponds to a linear relationship fitted on the subset of plots. This relationship is used 

to predict the offsets for all the other plots. (c) Shows the multi-offsets model using the 

predicted offsets (plocal) from (b). In subplots (a) and (b) the black dots and dashed lines 

are used to illustrate the behaviour of some plots as plotting all lines will make the graph 

unreadable. 

 377 

The multi-offsets model focuses on the absolute values and not the differences. For the 378 

latter the multi-slopes model is adapted further. 379 

3.6.3 Multi-slopes model 380 

The multi-slopes model (M3) presented in Figure 9 tries to fit a local model Δσa and Δθa 381 

(Eq. [10]). Figure 9a shows a comparison of the multi-slopes model and its global 382 

equivalent. In this case the global model contains a unique slope for the whole field. 383 

Similar to Figure 8, the introduction of a local parameter (slope ai) improves the strength of 384 

the relationship from R2 0.71 to 0.86. In Figure 9b, a linear relationship is derived between 385 

the local slopes ai and the baseline σa
ref based on a subset of plots (R2 0.64). This ai-σa

ref 386 

relationship is then used to predict the values of ai for all the other plots. Finally, those 387 

predicted slopes are used in Figure 9c in the multi-slopes model to predict Δθa for all plots. 388 

The multi-slopes model with the predicted local parameters (plocal) has a higher R2 (0.68) 389 

than the global fit (0.71). 390 

 391 
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Figure 9: Multi-slopes model fitted with differences in apparent values (VCP0.71). The 

grey dots show all the data available on the 216 plots. They represent the maximum 

number of information achievable if both σ and θ are monitored on all the plots. In a more 

practical situation, only a subset of plots (black dots) are monitored for both σ and θ. (a) 

Shows the multi-slopes model as well as a global relationship with a unique slope for all 

216 plots (global). (b) Shows the local slopes according to the baseline σa
ref. The black 

line corresponds to a linear relationship fitted on a subset of plots. This relationship is 

used to predict the local slopes for all the other plots. (c) Shows the multi-slopes model 

using the predicted slopes from (b) (plocal). In subplots (a) and (b) the black dots and 

dashed lines are used to illustrate the behaviour of some plots as plotting all lines will 

make the graph unreadable. 

 392 

3.7 Quality of the predicted local models 393 

Figure 10 shows the quality of the prediction of M1, M2 and M3 using the predicted local 394 

parameters (plocal). The multi-offsets (M2) and multi-slopes (M3) models which only have 395 

one local parameter show better R2 (M1: 0.16, M2: 0.53, M3:0.60) and a lower root mean 396 

squared error (RMSE) (M1: 0.04, M2: 0.02, M3:0.02) than the plocal linear model (M1) 397 

which has two local parameters. That means that the predicted soil moisture content from 398 
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the multi-offsets (M2) or multi-slopes (M3) models is more accurate than from the linear 399 

model (M1). 400 

 

Figure 10: Quality of the predicted θa vs the observed θa from (a) linear, (b) multi-offsets 

and (c) multi-slopes models with predicted local parameters. The red line is the line of 

best fit with its 95% confidence interval (red shaded region). Both multi-offsets and multi-

slopes models have one local parameter while the linear model has two. 

 401 

3.8 Choice of the size of the subset of plots for plocal models 402 

The size of the subset of plots needed for the plocal models needs to be chosen carefully. 403 

Figure 11 shows the effect of the number of selected plots on the RMSE of the prediction 404 

for the multi-offsets (M2) and the multi-slopes (M3) models. In this case, the RMSE does 405 

not change much if more than 10 plots are included in the subset. 406 
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Figure 11: Effect of the size of the subset of plots on the predictions of the plocal multi-

offsets (a) and multi-slopes (b). After sorting the plots according to the baseline σa, a 

subset of a given number of plots is selected at regular interval on the whole range of 

baseline values. 

 407 

3.9 Effect on the variety ranking 408 

In a phenotyping context, we expect similarity in the  rank of varieties whether observed 409 

(from neutron probe) or predicted (from EMI) soil moisture values are used. To assess the 410 

ranking improvement the predicted values of the global, local and plocal models are 411 

averaged by variety. Then the Spearman's rank correlation is computed between the 412 

observed and the predicted θa (or Δθa). The Spearman’s rank correlation has the 413 

advantage to be directly related to the ranking of the variety which is a commonly used 414 

metric in crop breeding. A high value for this coefficient means, in our case, that higher 415 

predicted θa is associated with higher observed θa or that larger predicted θa differences 416 

are associated with larger observed θa differences, from examining absolute values or 417 

differences, respectively. 418 
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Figure 12a shows the Spearman's rank correlations for the multi-offsets (M2) model using 419 

the baseline θa
ref as predictor of the local offsets. Figure 12b shows the Spearman's rank 420 

correlations for the multi-slopes (M3) model using the baseline σa
ref as predictor of the 421 

local slopes. 422 

 

Figure 12: Improvement in variety ranking in terms of the Spearman's rank correlation 

coefficient for (a) the multi-offsets and (b) the multi-slopes models. Each row of the table 

corresponds to a coil configuration. The columns are grouped by dates and subdivided 

into global, local and plocal models. The global models use field-specific parameters, the 

local models use plot-specific parameters estimated using all the data available. The 

plocal model use the predicted plot-specific parameters estimated from baseline 

measurements (as in Figure 8b and Figure 9b). Bold numbers denote a significant 

correlation (p<0.05). 

 423 

Using the data in this study, the global models offer poor correlation compared to the local 424 

models, due to the heterogeneity of the σ-θ relationship. This is true for all coil 425 

configurations. The plocal models, i.e. the models using the predicted local parameters, 426 

show higher correlation compared to their global equivalent. For the multi-offsets model 427 

the improvement between global and the plocal is substantial (Figure 12a). When 428 



28 

considering changes in soil moisture content (Figure 12b), the correlation with the global 429 

model is sometimes negative. This is a concern as it means that an increase in σa can be 430 

associated with a decrease in θa following application of the global model. The local multi-431 

slopes models increases this correlation substantially, especially for later dates. However, 432 

the plocal multi-slopes model shows relatively poor correlation even if it can compensate 433 

for the negative correlation observed in the global model in some cases. 434 

4 Discussion 435 

4.1 Methodological limitations 436 

The approach presented in this manuscript relies on apparent and not depth-specific 437 

electrical conductivity measurements to avoid the uncertainty arising from EMI inversion. 438 

Hence, we converted soil moisture content to apparent values using the practical 439 

cumulative sensitivity function (McNeill, 1980). However, the latter can have limitations 440 

especially on heterogeneous conductive soils. To estimate the errors that can arise from 441 

using the cumulative sensitivity function, Maxwell’s equations can be used to reconstruct 442 

sensitivity functions based on a synthetic two layers profile comparable to what is 443 

observed in the field (Callegary et al., 2007). Both sensitivity functions are then used to 444 

compute the apparent soil moisture content. The maximum discrepancy between the two 445 

approaches is 0.01 cm3/cm3, which is similar to the neutron probe accuracy (0.01 446 

cm3/cm3). Given the magnitude of the errors, this probably has a more important impact on 447 

the changes in soil moisture content than on the absolute values. This might explain why 448 

the multi-slopes model works less well than the multi-offsets model in this study. 449 

The dynamics of the soil moisture is complex and isolating the effect of root activity is 450 

challenging. Whenever possible, measurements were collected at increasing potential soil 451 
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moisture deficit and away from significant rainfall events (Figure 3). The drying observed in 452 

cropped plots compared to fallow plots suggests a substantial effect of the root activity 453 

(Figure 3). However, the proposed approach does not aim at univocally measuring root 454 

water uptake but rather at comparing soil moisture variation mainly induced by root activity 455 

for the different varieties. 456 

The models described in the manuscript are simple linear models. More complex 457 

relationships can be used to relate soil moisture to electrical conductivity. For example,  an 458 

exponential model was initially tested and showed similar performance to the linear model 459 

(see section 3.5), hence the simplest model is chosen. In the linear models presented, the 460 

slope can be related to the soil surface conductivity while the offset is more a function of 461 

the pore water conductivity. Both are functions of the soil texture and porosity (Garré et al., 462 

2011). We do not have the information to investigate further the impact of these soil 463 

properties on the pedophysical parameters we derived for this field. 464 

This study assumes that the samples taken on each plot (EMI, NP) are representative of 465 

the entire plot and that no substantial heterogeneity exists within the plot itself. While we 466 

have no data to assess that this assumption is fulfilled for all the plots, the inverted ERT 467 

sections, which span 5.75 out of the 9 meters of the plot length, suggest that this is the 468 

case. 469 

One can question if the plot is the appropriate scale at which to investigate the variability of 470 

the θ-σ relationships. The use of variogram analysis can certainly help to determine the 471 

appropriate length-scale at which the heterogeneity occurs. However, this method was not 472 

explored in this study as our approach relies on the plot-scale for practical reasons and to 473 

be consistent with additional phenotyping measurements at the site. 474 
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Finally, it has been assumed that the root system of the crop itself did not significantly 475 

contribute to the soil bulk apparent conductivity. While there is evidence that suggests that 476 

coarser roots can effect the soil bulk electrical conductivity (Amato et al., 2008; Mary et al., 477 

2017), finer herbaceous roots have been found to have a signal in magnitude similar to the 478 

effect of grain size or soil moisture content (Amato et al., 2009). Nevertheless, recent 479 

studies were able to isolate the electrical signature of roots themselves (Tsukanov and 480 

Schwartz, 2020). This could have great potential for phenotyping applications. 481 

4.2 Ranking performance 482 

Fitting a global model with field-specific parameters to all the data can lead to a 483 

satisfactory prediction of the soil moisture content particularly if the differences expected 484 

between the treatments are large such as for different types of vegetation (Jayawickreme 485 

et al., 2010), between fallow and cropped plots or between different soil types. However, 486 

when comparing a large number of similar varieties this global model may be limited 487 

(Figure 12). In a phenotyping application, as here, using of such a relationship may lead to 488 

false ranking of variates when using geophysical data (Figure 12). As observed by 489 

Farahani et al. (2005) for non-saline soil, higher σa is not always associated with higher 490 

soil moisture. Taking into account differences, it can also be seen that a large reduction in 491 

σa is also not always associated with a large reduction in θa. The negative correlations 492 

sometimes observed are of concern as they lead to very different varieties ranking whether 493 

we consider σa or θa (Figure 12). The use of local parameters in the σ-θ relationship 494 

increases the Spearman’s rank correlation for later dates as the soil moisture differences 495 

from the baseline become larger. The large number of parameters needed to fit the local 496 

models (linear, multi-offsets or multi-slopes) can be reasonably reduced using a 497 

relationship between the local parameters and the baseline σa or θa fitted on a subset of 498 
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plots. The resulting plocal models that use those predicted parameters increase the 499 

accuracy of the prediction compared to global models (Figure 10). The coefficient of 500 

determination (R2) is often similar or higher to the ones of the corresponding global models 501 

but the ranking assessed (using the Spearman's rank correlation) is usually better (Figure 502 

12). Note that the R2 achieved are all below 0.6 which is relatively poor compared to what 503 

could potentially be achieved with a local relationship for all the plots (Figure 7b). Indeed, 504 

this improvement is mainly limited by the quality of the relationship between the local 505 

parameters and the predictors (Figure 8b and Figure 9b). Hence, the need to select plots 506 

which span a wide range of conductivities to be monitored for both σ and θ (see 4.4) in 507 

order to have a more robust fit that is representative of the entire field. 508 

4.3 Local models and parameters predictability 509 

As seen in Figure 7, the offsets of the linear or multi-offsets models are mainly related to 510 

the baseline θa. There is also a slight positive trend between the baseline σa and the 511 

offsets of the linear model but it is relatively weak compared to θa and it completely 512 

vanishes in the multi-offsets model. The simplification of the linear model to a multi-offsets 513 

model amplifies this dependence on the baseline θa. Wetter plots tend to stay wetter 514 

compared to other plots surveyed at the same time. This can be seen on Figure 4a where 515 

each plot follows its own increasing line. This strong offset effect also explains why the 516 

relative change approach described earlier does not work well in this case. Given Eq. [3], 517 

the offset is not negligible and so the equation cannot be simplified to Eq. [4]. That is why 518 

differences (Figure 4b) and relative changes (Figure 4c) are similar. If the offsets were 519 

negligible, Figure 4c would show a single line. 520 

The local slopes of the local linear model are well correlated with the baseline σa. 521 

Considering differences, the multi-slopes model also shows good correlation between the 522 
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local slopes and the baseline σa. The conical shape of the data shown in Figure 4b and 523 

Figure 9a for the differences illustrates how different plots have different slopes. Stanley et 524 

al. (2014) show how the slopes of the σ-θ relationships vary between two sites with 525 

contrasting textures: sites with higher clay content, for example, result in greater values 526 

than those from sandier locations. 527 

The multi-offsets and multi-slopes models have one contrasting assumption. The former 528 

assumes a unique slope for the entire field while the latter uses plot-specific slopes. 529 

Having both plot-specific offsets and slopes leads to the local linear model but its local 530 

parameters are difficult to predict using baseline measurement (Figure 7) and hence leads 531 

to poor estimates (Figure 10). As the relationship between σa-θa is largely offset 532 

dominated, we decided to fix the slope in the multi-offsets model to reduce the number of 533 

local parameters. For the differences, the effect of the offsets disappeared (Eq. [3]) and 534 

only the effect of the slopes has an impact on the relationship. This leads to the multi-535 

slopes model (Eq. [10]). 536 

As seen in Figure 13, the differences in observed σa are well correlated with the baseline 537 

readings. Larger reductions in σa are seen on plots with higher baseline σa (Figure 13a). 538 

Note that such a trend is not observed for θa (Figure 13b). The fact that the σa differences 539 

are still function of the baseline reveals that the baseline σa contains some information on 540 

how the σa is likely to change: larger reductions are expected in areas of higher baseline 541 

σa. This behaviour explains why the starting σa could be a good predictor of the slopes in 542 

the multi-slopes and linear models. Indeed, as the plots with higher baseline σa show a 543 

larger increase in σa with time for the same increase in θa, they need to have a smaller 544 

slope to compensate. Smaller slopes are then found for higher baseline σa (Figure 9b and 545 

Figure 7). We believe this is related to the heterogeneity of the soil texture of the field 546 

where some areas are richer in clay than others. 547 
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 548 

 

Figure 13: Differences in σa (a) and θa (b) for VCP0.71 plotted against their respective 

baseline measurements for the different survey dates (different colours). There is larger 

decrease in σa for higher σa
ref in (a) while such a downward trend cannot be seen for θ 

(b). 

 549 

Plots with higher baseline σa tend also to have smaller offsets as well (Figure 7). But this 550 

relationship is not strong enough to be used for parameter prediction and θa is preferred as 551 

the predictor (Figure 8b). Also, the prediction of the local parameters using the baseline 552 

readings is much better in the multi-offsets model (Figure 8b R2=0.82) than in the multi-553 

slope model (Figure 9b R2=0.64). This can explain why the multi-slopes model using 554 

predicted local parameters show only a slight improvement in variety ranking compared to 555 

the multi-offsets model (Figure 12). 556 

The multi-offsets and multi-slopes models are simplified ways to account for the variability 557 

due to the spatial heterogeneity of the θ-σ relationship. By reducing the number of local 558 

parameters compared to a local linear model, the local parameters are more correlated 559 

with baseline measurements and hence easier to predict based on a subset of plots. In 560 
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that way, they increase the ranking of the varieties and the accuracy of the predicted θa 561 

compared to global models. 562 

4.4 Improvement of the time-lapse approach 563 

A key bottleneck in using the local models (M1 to M3) is the predictability of the large 564 

number of local parameters they require. In this study an approach was chosen where 565 

both variables (θa and σa) are recorded on a subset of plots. In this case the same 12 plots 566 

that served for the ERT calibration of the EMI data were arbitrarily chosen as they are well 567 

distributed across the field and span the whole range of observed baseline values. In our 568 

case, a sample of 12 was a large enough number to reach the minimum RMSE achievable 569 

(Figure 11). Given the local parameters found on the selected plots, a relationship can be 570 

derived using the baseline σa or θa. This relationship can then be used to predict the 571 

values of the local parameters for the other plots. We believe that geostatistical tools can 572 

also be used to determine the number of sampling locations. However, we have not tested 573 

these in this paper. 574 

Considering the above, we propose an improvement to the time-lapse approach described 575 

earlier to monitor the changes in soil moisture for large crop breeding experiment. After the 576 

first baseline EMI survey, plots with contrasting σa are selected and equipped with soil 577 

moisture sensors (such as neutron probe access tube). The data collected on those plots 578 

will allow the estimation of the parameters for the multi-offsets and multi-slopes models. 579 

Those parameters can then be expanded to the other plots using the baseline 580 

measurements (Figure 8b and Figure 9b). 581 

The new approach is as follows. 582 

1. Baseline survey on all the plots to acquire σa
ref and θa

ref: 583 
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 - multi-slopes: EMI with all configurations (σa
ref); 584 

 - multi-offsets: soil moisture measurements for all depths available to build an 585 

apparent soil moisture content measurements (θa
ref) 586 

2. Selection of plots with contrasting σa to be equipped with θ sensors 587 

3. Time-lapse EMI on all the plots and time-lapse θ on the selected plots: collection of 588 

multiple σa-θa datasets 589 

4. Fit the multi-slopes (Eq. [10]) and multi-offsets (Eq. [9]) models on the selected plots to 590 

obtain the value of the local parameters: slope ai for multi-slopes and offset bi for multi-591 

offset 592 

5. Fit of linear relationship between those local parameters and the baseline value of the 593 

selected plots as in Figure 8b and Figure 9b: ai~σa
ref and bi~θa

ref 594 

6. Those linear relationships are then used to predict the local parameters ai and bi on the 595 

other plots using their respective baseline measurements σa
ref / θa

ref 596 

This new approach offers a trade-off between equipping all the plots with soil moisture 597 

sensors in order to fit a local models and using a unique global relationship for the entire 598 

field. Note that if a multi-offsets model is to be derived, baseline θ data are still needed as 599 

they are the best predictors of the local offsets. 600 

4.5 Analysis of the residuals 601 

An increase in residuals can arise due the large number of local parameters. However, as 602 

Figure 14 shows, there is no substantial increase in the distribution of those residuals for 603 

the predicted local models compared to the global and local models. We can also see from 604 

Figure 8b and Figure 9b that even if the relationship is not perfectly fitted, the predicted 605 

parameters tend to stay in a reasonable range, avoiding the generation of outliers. Note 606 
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that the residual for the multi-slopes model are smaller than the residuals for the multi-607 

offsets as the range of Δθa (0 to -0.07) is smaller than the range of θa (0.15 to 0.35). 608 

 

Figure 14: Kernel density estimate (KDE) of the residuals for the multi-offsets (a) and the 

multi-slopes (b) models for VCP0.71. For each the global model represent a global (field-

scale) linear relationship while the local models use plot-specific parameters. The plocal 

model is the local model with the plot-specific parameters predicted from baseline θa or 

σa. 

 609 

5 Conclusions 610 

High-throughput geophysical tools, in this case time-lapse EMI, offer great potential as a 611 

proxy measurement of soil moisture differences. When measurements are collected over 612 

increasing soil drying during crop growth, they may be linked to root activity in non-613 

irrigated crop breeding field trials. The usual time-lapse approach is useful for removing 614 

the static effects of soil electrical conductivity but can be limited for ranking a large number 615 
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of similar varieties in a heterogeneous environment. The spatial heterogeneity of the σ-θ 616 

relationship at the field scale has an impact on the ranking of the varieties and using a 617 

field-specific global relationship can lead to misleading interpretation. The proposed multi-618 

offsets and multi-slopes models try to account for this heterogeneity by using plot-specific 619 

parameters that can be estimated from the baseline measurements. This improves the 620 

variety ranking between EMI and neutron probe data. A practical approach is proposed for 621 

such studies in which a baseline EMI survey is used to target sites for soil moisture 622 

monitoring, thus enhancing the ability to formulate predictions of the local σ-θ 623 

relationships. Although all the processing presented here was done with apparent 624 

conductivity measurements, however, the same process can be applied to depth-specific 625 

(inverted) measurements. 626 
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