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Abstract 

A high-resolution nested air quality model, the Weather Research and Forecasting (WRF) 

model coupled with Chemistry (WRF-Chem), was applied to simulate the ozone concentration 

in North China from 15 May 2017 to 22 June 2017 to investigate the appropriate emissions for 

the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-Beijing) 

programme campaign period and study an ozone pollution event at the end of May 2017. The 

model reproduced the meteorological parameters of temperature, relative humidity, wind speed 

and wind direction relatively well over the period. The key air pollutants of ozone, NOx, SO2, 

PM2.5 and PM10 are captured reasonable well compared with observations. Results suggest that 

the ozone simulation matches the observation and simulations of NO2 and SO2 are generally 

satisfactory with emissions scaled down based on previous studies about anthropogenic 

emissions changes in China. The model underestimated the peaks of ozone concentration, 

especially in heavily polluted days, which remains a challenge for modelling ozone and may 

be attributed to the model’s weakness of diurnal cycle of NO and different between 

concentration of simulated and observed VOC and isoprene. We carried out sensitivity studies 

investigating how NOx, VOC and isoprene emissions changes affects the simulation of ozone, 

and improved the ozone simulation of the peaks with 50% increased VOC emissions and 

doubled isoprene emission. We speculate that the underestimation of VOC emissions or the 

reactivities of VOC in the model could be the reasons of underestimation of the peaks of ozone 

concentration and further investigation is needed to improve the simulation of ozone 

concentration. We also note that increasing isoprene emission factor can increase the isoprene 

concentration then improve simulation of ozone concentration, but the simulation on isoprene 

still can be improved, which lead to the need for investigations on isoprene emission and the 

processes of model’s simulation on isoprene. This study discusses the simulation effects of 

different emissions, analyses the weakness of the model on simulating ozone and proposes the 

need for further research on VOC and isoprene simulations. 
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1. Introduction 

  As one of the largest environmental risks, air pollution has significant impact on human 

health and ecosystems. Since air pollution in megacities in the 20th century has attracted the 

attention of researchers, the studies on air pollution has led to huge progress in understanding 

the sources and pollution processes in megacities in western countries. However, due to the 

rapid industrialisation and growth in the number of vehicles, serious air pollution problems are 

gradually emerging in fast-developing cities and has become more complex than the past.  

  With the fast development and rapid industrialisation in China, air pollution in megacities in 

China has become a topic of major concern in recent years. It is suggested that the PM2.5 and 

ozone are the key air pollutants for megacities and its surrounding area in China, such as Beijing 

and North China. Although the emission restrictions have been taken to improve air quality and 

the concentration of PM2.5 has been decreasing (Cheng et al., 2019; Li et al. 2019a), results 

from air quality measurement program in China show that the concentration of ozone has been 

increasing (Shi et al., 2019). Li et al. (2019a) reported a 1-3 ppbv a-1 increasing trend of ozone 

concentration in megacity clusters of eastern China, and indicated that North China Plain (NCP, 

with Beijing located in the northeast) is the most ozone pollution area in China based on the 

observations, where summertime MDA8 ozone is the highest over the NCP and the highest 

ozone concentration can reach 150 ppbv in summer. They noted that their simulation using 

GEOS-Chem model indicate the decreasing PM2.5 in the NCP from 2013 to 2017 as a vital 

factor for ozone changes because it leads to the increase of hydroperoxy radicals (HO2). Apart 

from increasing the mean concentration of ozone, the number of ozone pollution events in 

summertime is growing in recent years. It is suggested that the occurrence of severe ozone 

pollution days (MDA8 greater than 110 ppbv) in summer is increasing from 2014 to 2017 (Ma 

et al., 2019). Lyu et al. (2019) also reported a continuous O3 pollution event during 4-11 August 

2017 in Jinan, a city located in the central of NCP, with the highest hourly O3 mixing ratio 

reaching 154.1 ppbv.  

  High concentrations of ozone can cause severe adverse impacts on human health and 

vegetation. Ozone is one of the risk factors for chronic obstructive pulmonary disease (COPD) 

(Soriano et al., 2017) and led to 254 000 (95% UI 97 000-422 000) deaths and 4.1 million (1.6 
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million to 6.8 million) disability-adjusted life-years (DALYs) globally in 2015 from COPD 

(Cohen et al., 2017). Besides, ozone pollution may lead to a yield loss of 5-20% for important 

crops in Asia, such as wheat, rice and Legumes (Emberson et al., 2009). Based on the market 

price for year 2000, an economic loss of $ 14-26 billion is estimated, translated by assumed 

yield loss in wheat, soybean, rice and maize due to surface ozone, and about 40% loss occurs 

in China and India (Van Dingenen et al., 2009). Therefore, it is vital to control the concentration 

of ozone and reduce ozone pollution. 

  Tropospheric ozone is closely related to meteorological conditions. Besides, tropospheric 

ozone is a secondary pollutant which concentration is highly related to the precursor 

pollutants such as volatile organic compounds (VOC) and nitrogen oxides (NOx, NOx = NO 

+ NO2) emissions, which are important for photochemical reactions and ozone formation in 

the presence of sunlight (Brasseur et al., 1999; Xing et al., 2011). The main source of ozone in 

the troposphere is photochemical formation. In the presence of a sufficiently high mixing 

ratios of NO (≥10 pptv), HO2 formed by the OH-initiated oxidation of VOC (e.g. 

hydrocarbons) converts NO to NO2 (Wallace et al., 2006; Lyu et al., 2019). Then O3 is 

produced followed by:  

RH + OH + O2 → RO2 + H2O,  

RO2 + NO → RO + NO2,  

NO2 + h
2O
   NO + O3 

  Besides, NO can catalyse the removal of ozone: 

𝑁𝑂 + 𝑂3 → 𝑁𝑂2 + 𝑂2 

  As NO can be involved in both the production of ozone and promote its removal when the 

NO + O3 reaction is competitive (e.g. when the NO concentration is high), the production of 

tropospheric O3 is mainly determined by reactions that compete with NO + O3 for NO, such 

as HO2, CH3O2, and other RO2. It should be mentioned that, when NO concentration is high 

enough, the excess NO will participate in the above ozone removal reaction, which means 

high NO concentration can titrate ozone .Among them, NO + HO2 and NO + CH3O2 (from 

methane oxidation) are the main sources of troposphere O3 (Jacob, 1999). Therefore, the 

concentration of ozone is generally limited by VOC or NOx or co-limited by both of them, 
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which depends on the chemical composition of the air, particularly the ratio between the 

reactivity of OH (the sum of the products of O3 precursor concentrations and the reaction rate 

constants between O3 precursors and OH) with VOCs and NOx (Wallace et al., 2006). 

  It is suggested that the anthropogenic NOx emissions decreased during 2013–2017, both in 

Beijing and its surrounding area (Cheng et al., 2019) and in China (Li et al., 2019a; Zheng et 

al., 2018). The changes of VOC emissions are less well understood than NOx because many 

species are included and the balance between them also changes with time, so that the in-

depth research on VOC emission changes in recent decade is more complex. For 

anthropogenic VOC emissions such as alkanes, aromatics, studies suggest that the total VOC 

emissions decreased in Beijing but changed little in surrounding area (Cheng et al., 2019). 

However, although the emissions reductions have been evaluated to be effective of China’s 

Clean Air Action since 2013, the concentration of ozone is still not well controlled, especially 

in summertime, and our understanding of sources of pollutants and atmospheric processing is 

still not completed (Shi et al., 2019.). These facts indicate a strong need for further research 

on ozone pollution in north China.  

  In order to improve the understanding of sources and formation processes of key air 

pollutants in China, the jointly organised China-UK Atmospheric Pollution and Human Health 

in a Chinese Megacity (APHH-Beijing) programme provided observations of air quality in 

Beijing (Shi et al., 2019). As a part of APHH-Beijing project, this research uses an air quality 

model to discuss sources and changes of ozone in China, aiming at analysing ozone pollution 

in China, mainly focusing on North China, through this modelling study.  

  In this study, we investigate the ozone problem by modelling summertime ozone over North 

China from 15 May to 22 June in 2017 using the Weather Research and Forecasting (WRF) 

model coupled with Chemistry (WRF-Chem). As the APHH-Beijing project offers 

continuously reliable hourly observations on both meteorology and air quality during this 

campaign period (Shi et al., 2019), we will compare the observations with the simulated 

meteorological parameters and concentrations of air pollutants obtained by running WRF-

Chem model. WRF-Chem has been successfully used to investigate the PM2.5 pollution in China 

(Zhang et al., 2013; Wang et al., 2014; Guo et al., 2016; Zhang et al., 2015) and the ozone 
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pollution in many other cities over the world (Tuccella et al., 2012; Safieddine et al., 2014; Bao 

et al., 2008; Tie et al., 2007, 2010; Geng et al., 2007; Tie et al., 2009, 2013). We evaluate the 

performance of the model in North China and investigate the performance of the model with 

different anthropogenic emissions on simulating ozone concentrations. Noting that the 

performance of the model can be improved especially during an ozone pollution event in late 

May 2017, we then carry out sensitivity studies on how to improve the emissions and improve 

the simulation of ozone during the ozone pollution period by adjusting the emissions, aiming 

to improve our understanding of ozone pollution and raise the possibilities on improving the 

existing emissions. 
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2. Model and Measurements 

2.1 Model description 

  To simulate the ozone concentration and analyse the relations between ozone concentration 

ozone in the troposphere and the emission changes, we apply the WRF-Chem model (version 

3.7.1) which is used for investigating regional-scale air quality (Grell et al., 2005; Fast et al., 

2006). The WRF-Chem model is a high-resolution nested air quality model which simulates 

the processes controlling pollutants (emissions, transport, mixing and chemical transformations, 

etc.) under the prevailing meteorological conditions. This modelling system can be applicated 

into simulating weather, climate and air quality. Previous studies have shown that WRF-Chem 

model can reproduce air quality in China (Tie et al., 2009; Zhang et al., 2013; Wang et al., 2014; 

Zhang et al., 2015; Guo et al., 2016; Ma et al., 2019). The simulation results of this model can 

match the observation level and the changes during the simulation period can be captured. Most 

of previous studies using WRF-Chem to investigate air pollution in China focus on PM2.5 

(Zhang et al., 2013; Wang et al., 2014; Zhang et al., 2015; Guo et al., 2016), with previous 

experiences on using WRF-Chem to investigate ozone issues in Europe (Tuccella et al., 2012; 

Safieddine et al., 2014;), America (Bao et al., 2008; Tie et al., 2007, 2010) and Southern China 

(Geng et al., 2007; Tie et al., 2009, 2013).  

 

Table 1. Model configuration used in this study. 

Horizontal resolutions 27km, 9km, 3km 

Vertical layers  31 layers, 50 hPa at top 

Aerosol scheme MOSAIC with eight bins 

Gas-phase chemistry CBMZ 

Meteorology FNL 

Chemical boundary conditions MOZART 

Anthropogenic emissions MEIC 2010 

Biogenic emissions MEGAN 

Fire emissions FINN 
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  Table 1 introduces the model configuration used in this study, which has been shown to 

perform well for simulating PM2.5 in a previous study (Ansari et al., 2019). The meteorological 

conditions we used are 6-hourly NCEP FNL Operational Global Analysis data with a resolution 

of 1° × 1°. We also use the Yonsei University PBL (YSU PBL) boundary layers to reproduce 

the meteorological conditions within the planetary boundary layer (Hong et al., 2006), the 

NOAH Land Surface Model (Chen and Dudhia., 2001), the Rapid Radiative Transfer Model 

for GCMs (RRTMG) longwave and shortwave scheme and Grell 3-D cumulus scheme. 

  Figure 1 shows the three domains of simulation used in this study. These three domains are 

set for modelling ozone over China, northern China and North China Plain on a Lambert map 

projection, which resolutions of three domains are 27km, 9km, 3km, respectively. Vertically, 

the model has 31 layers and top pressure at 50 hPa. To simulate atmospheric chemistry, the 

Carbon Bond Mechanism version Z (CBMZ) chemistry scheme and FAST-J photolysis scheme 

are used in this study. Chemical boundary conditions are from Model for Ozone and Related 

chemical Tracers (MOZART).   

 

  

a) b) 



7 

 

 

  

 

Figure 1. Maps of the domains used in this study: a) domain 1 with domain 2 and 3 marked on 

the picture; b) domain 3 with the locations of the Institute of Atmospheric Physics 

meteorological tower site in central Beijing (red point) and 12 sites of national monitoring 

networks (black points) and; c) the Beijing region with locations of IAP site (red point) and 12 

sites of national monitoring networks (black points).  

 

2.2 Emission inventories 

  The anthropogenic emissions we used are from the Multi-resolution Emission Inventory for 

China (MEIC) for the year 2010 and 2013 redistributed to 2017, which is a bottom up 

anthropogenic emissions inventories for air pollutants and greenhouse gases developed by 

Tsinghua University and have been used in previous modelling studies (Hu et al., 2016; Cheng 

et al., 2019; Ansari et al., 2019). MEIC provide emissions of 10 major atmospheric pollutants 

and greenhouse gases including SO2, NOx, CO, non-methane volatile organic compounds 

(NMVOC), PM2.5 and PM10 (Li et al., 2017). Emissions were provided at 27 km, 9 km and 3km, 

which are the same resolutions of each domain.  

 

 

 

c) 
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Table 2. Emission inventories used in this study.  

 Anthropogenic emission Biogenic emission Fire emission 

Run 1 MEIC 2010  

scaled to 2014 

MEGAN Turned off 

Run 2 MEIC 2010  

rescaled to 2017 

MEGAN FINN 

Run 3 MEIC 2013  

redistributed to 2017 

MEGAN FINN 

 

  In 2010, China has implemented the clean air policies to control the emissions of major air 

pollutants. Previous studies have indicated the emission changes in recent years caused by the 

clean air actions (Zheng et al., 2018; Cheng et al., 2019). In this study, we ran three full-period 

(from 15 May to 22 June 2017) simulations using different anthropogenic emissions in order to 

evaluate these anthropogenic emissions for modelling summertime ozone in 2017. The 

anthropogenic emissions we used in these three full-period runs are listed in Table 2. In the first 

run, we used the emissions for modelling air quality in 2014. In the second run, emissions over 

north China plain were rescaled to 2017 to represent the emission reductions. Based on the 

concentration difference of the chemicals between simulation results in the first run and the 

observed values combined with studies on emission changes in China, SO2 emissions were 

reduced by 55% over Northern China (domain 2) and 70% over North China Plain (domain 3). 

Emissions of NOx were reduced by 20% over Northern China (domain 2) and 35% over North 

China Plain (domain 3). PM2.5 emissions were reduced by 15% over Northern China (domain 

2) and 25% over North China Plain (domain 3). Emissions of VOC were reduced by 35% over 

North China Plain (domain 3) (Zheng et al., 2018; Cheng et al., 2019; Ansari et al., 2019). In 

addition, a MEIC emissions redistributed from MEIC 2013 offered by collaborators at the 

Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences in Beijing were 

also used in our runs and compare the results with observation and other runs with scaled 

emissions.  

  For biogenic emissions, the online calculation from Model of Emissions of Gases and 
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Aerosols from Nature version 2.1 (MEGAN) is used in this study. This is a total of emissions 

of 150 chemical species including isoprene emission factor. Isoprene emission factor (μg∙m-

2∙hr-1) is using for calculating isoprene emission which is important in ozone formation. Fire 

emissions ar from the Fire Emissions INventory from NCAR (FINN) based on satellite 

observations (Wiedinmyer et al., 2011), which is included in the second and third full-period 

run. 

2.3 Observation data 

  As meteorological conditions influence the processes controlling pollutants, and tropospheric 

ozone is also closely related to meteorological conditions and precursor pollutants such as nitrogen 

oxides NOx and volatile organic compounds (VOCs), evaluations are therefore needed to ensure 

that the model is reliable in simulation of weather conditions and atmospheric pollutants by 

comparing the modelling results with the observations. As the Atmospheric Pollution and Human 

Health in a Chinese Megacity (APHH-Beijing) programme, which is an international 

collaborative project between research groups from China and UK, focusing on understanding 

the sources, processes and health effects of air pollution in the Beijing megacity, can provide 

continuously reliable hourly observations on both meteorology and air quality from 15 May to 

22 June 2017 (Shi et al., 2019), we set the simulated time period starting from 15 May 2017 

and ending on 22 June 2017, which covers the observed campaign period from APHH-Beijing 

programme. 

  To evaluate the model, the observations from both the Institute of Atmospheric Physics (IAP) 

meteorological tower site in central Beijing and national monitoring networks run by the China 

National Environmental Monitoring Center (CNEMC) were used to compare with the 

meteorological modelling results. Figure 1c shows the locations of IAP tower (black point) and 

12 monitoring sites (red points) in Beijing. For meteorological variables, observations we used 

are from the 325-metre-tall tower for meteorological measurements located at the Institute of 

Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing (39°58ꞌ28ꞌꞌN, 116°22ꞌ16ꞌꞌE). 

The measurements we use are temperature, relative humidity, wind speed, and wind direction 

at 8 meters, 120 meters and 240 meters at this site. For atmospheric pollutants, measurements 

from IAP tower we used provides hourly concentration of ozone, SO2, NO, NO2, CO, aromatics 
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and isoprene at ground level. The observations from national monitoring networks run by the 

China National Environmental Monitoring Center (CNEMC) are also available, which includes 

concentrations of ozone, SO2, NO2, CO, PM2.5 and PM10 at 12 different locations in both urban 

and rural area in Beijing.  
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3. Results and discussion 

  To investigate the air quality in summer 2017 using WRF-Chem model, the simulations were 

set to start running from 13 May 2017. The first 2 days are set as spin-up time so the results for 

analysing are starting from 15 May 2017, ending on 22 June 2017, which is the same as the 

ending time of the observations. Observed meteorological data from three different heights of 

the Institute of Atmospheric Physics (IAP) meteorological tower site in central Beijing and air 

pollutants measurements from both IAP tower site and 12 sites of national monitoring networks 

are used for evaluating the performance of the model in the simulation period.  

3.1 Model evaluation 

  We evaluate the model performance on reproducing the meteorological variables by using 

the observed meteorological data from IAP. The comparison contains temperature, relative 

humidity, wind speed and wind direction at three different levels: 8m, 120m and 240m.  

  Table 3 presents a comparison of model performance and observations on each level. In table:  

  Sim. Avg. is the average of the model’s simulation results; 

  Obs. Avg. is the average of observation data; 

  Bias = Sim. Avg - Obs. Avg.  , reflecting the difference between the simulation results 

and observation data; 

  

2

1
( im. . )

RMSE = 
n

n

i ii
S Obs

=
−

 , n is the sample size. RMSE is used to measure the 

deviation between the simulated and observed value.;  

  1

. .

( . . .) ( . . .)
n

i ii

Sim Avg

Sim Sim Avg Obs Obs Avg
r

 
=

−  −
=




 , n is the sample size, im.S and 

vg.A

are the standard deviations of simulation and observation results. Correlation reflects the level 

of linear correlation between simulation and observation. 

  Table 3 suggests that the ground-level temperature is well reproduced by the model as the 

difference between mean value and the deviation are small (Bias = 0.21, RMSE = 2.00 at ground 

level). At 120m and 240m, the model begins to overestimate the temperature as the simulations 

of the average temperature are almost the same as the near-ground level while the observations 

decreased and the bias increased (Bias = 1.81 at 120m, =3.13 at 240m) , which is probably 
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because the levels in the model are too well mixed. As the model overestimated the temperature, 

the simulated average relative humidity is systematically underpredicted by about 15% at near-

ground level and about 10% at 120m and 240m, which matches the results of previous study 

(Ansari et al., 2019). We suggest that the underestimation of relative humidity may be a 

consequence of the overestimation of temperature due to the strong dependence of saturation 

vapour pressure and hence relative humidity. The humidity at the near-ground level is more 

underestimated than upper levels as the bias is greatest at the surface (Bias=-18.54 at ground 

level), which may be attributed to the inappropriate land surface and vegetation in central 

Beijing. The bias is expected as the model does not reproduce the urban canopy (the heating 

and friction at the surface). For simulations of the wind, the model performs better at upper 

levels than near-ground level. At ground level the model is not able to reproduce the 

measurements well, mainly because of the impact of surface constructions. At upper levels, the 

wind speed and direction can be captured in general, showing significant improvements on 

correlations of wind speed and wind direction because they are not affected by the buildings on 

the surface.  

 

Table 3. Comparison of hourly observed and simulated meteorological parameters at ground 

level, 120 meters and 240 meters during campaign period (15 May – 22 June 2017).  

 

  Obs. Avg. Sim. Avg. Bias RMSE r 

 

Temperature 

(℃) 

8m 26.91 27.12 0.21 2.00 0.94 

120m 25.29 27.10 1.81 2.78 0.94 

240m 24.19 27.32 3.13 3.83 0.94 

 

RH (%) 

8m 48.58 30.04 -18.54 21.48 0.84 

120m 43.58 32.25 -11.33 15.02 0.87 

240m 44.90 33.97 -10.93 14.75 0.87 

 

Wind Speed 

(m/s) 

8m 1.28 3.49 2.21 2.92 0.24 

120m 3.55 4.67 1.12 2.54 0.60 

240m 4.70 5.11 0.41 2.61 0.64 
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Wind Direction 

(°) 

8m 160.9 165.4 4.5 78.10 0.58 

120m 160.4 171.2 10.8 69.52 0.64 

240m 168.6 174.8 6.2 60.38 0.76 

 

 

 

 

Figure 2. Comparison of observed and simulated meteorological parameters hourly: a) 

Temperature, Relative Humidity, Wind Speed and Wind Direction timeseries at Ground 

Level; b) Temperature, Relative Humidity, Wind Speed and Wind Direction timeseries at 

120m, and c) Temperature, Relative Humidity, Wind Speed and Wind Direction timeseries at 

240m.  

 

  Figure 2 shows the timeseries of hourly observed and simulated meteorological variables at 

a) 

b) 

c) 

Wind speed 

Wind Direction 
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ground level, 120 metres and 240 metres at IAP tower in Beijing from 15th May to 22nd June 

2017. Generally, we note that there is a general warming over this period. A short cold period 

with high relative humidity occurred around 23 May 2017, and two short periods of relatively 

slow wind from relatively steady direction around 26 to 28 May 2017 and 15 to 18 June 2017. 

These two short periods of low wind speed and steady wind directions may explain the 

accumulation of pollutants in the air during these periods.  

  Comparing the simulations with the observations, we note that the model can capture the 

same daily variation as observations when simulating the temperature. The model begins to 

overestimate the peaks and the minima at 120m and 240m and the relative humidity is therefore 

underpredicted. But the model still can capture all the peaks and dips at the same timepoints as 

the observations in the campaign period. When simulating the wind, the model captures the 

variations of wind speed and changes of wind variation with a significant underestimation of 

peaks of wind speed and some variation of wind directions. Overall, the meteorological 

parameters can be reproduced relatively well. The model captures the mean level of 

meteorological parameters (Bias = 0.21 for temperature at ground level, 10%-15% for RH, = 

0.41 for wind speed and ≤10° for wind direction at upper level). The diurnal cycle of 

temperature is well reproduced (r = 0.94 at all three level), and variations of RH, wind speed 

and wind direction are captured (correlations at three levels are about 0.85 for RH, at upper 

levels are about 0.6 for wind speed and 0.6-0.7 for wind direction). 
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3.2 Air quality simulations 

3.2.1 Comparison over the full campaign period 

 

Table 4. Comparison of hourly observed and simulated concentration of chemicals in three 

runs at IAP and 12 sites in Beijing (domain 3).  

 

 Obs. 

Avg. 

Sim. Avg. Bias RMSE r 

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 

O3 (ppbv) 

IAP 55.74 37.91 45.54 66.78 -17.83 -10.19 11.03 32.99 28.74 30.32 0.65 0.68 0.66 

12 sites 53.82 44.86 50.73 65.89 -8.95 -3.07 12.07 23.91 21.86 26.59 0.72 0.74 0.69 

NO2 (ppbv) 

IAP 21.57 36.26 25.77 9.83 14.70 4.20 -11.73 23.51 16.83 17.81 0.26 0.28 0.30 

12 sites 18.32 27.08 18.91 8.59 8.76 0.58 -9.73 13.73 8.71 12.67 0.41 0.44 0.35 

NO (ppbv) 

IAP 4.60 10.42 4.53 0.54 5.82 -0.07 -4.05 19.02 11.80 11.12 0.22 0.21 0.25 

SO2 (ppbv) 

IAP 2.58 8.05 1.80 3.67 5.48 -0.77 1.10 7.06 2.78 3.63 0.07 0.08 -0.05 

12 sites 2.72 6.40 1.56 2.92 3.68 -1.15 0.19 4.76 2.45 2.38 0.19 0.22 0.12 

CO (ppbv) 

IAP 545.5 639.3 638.5 621.0 93.83 93.04 75.55 335.2 333.0 320.0 0.26 0.26 0.27 

12 sites 585.6 587.6 586.6 565.7 2.03 1.03 -19.86 268.0 267.4 259.4 0.29 0.29 0.31 

Aromatics (ppbv) 

IAP 0.48 - 6.42 11.87 - 5.94 11.40 - 7.11 13.85 - 0.07 0.08 

PM2.5 (µg/m3) 

12 sites 44.38 48.10 42.65 42.44 3.72 -1.73 -1.93 21.56 20.68 24.20 0.60 0.59 0.50 

PM10 (µg/m3) 

12 sites 87.82 53.40 48.02 47.87 -34.41 -39.79 -39.94 49.64 53.36 56.32 0.46 0.45 0.33 
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Figure 3. Mean spatial 24-hour ground level concentration of ozone from 15th May to 22nd June 

2017 over domain 1 (China) and domain 3 (North China Plain) in a) run1; b) run2; c) run3. 

(Units: ppbv) 

 

  Table 4 presents a comparison of hourly modelled pollutants for Beijing against observations 

at IAP and 12 sites from national monitoring networks (referred to as “12 sites” in the 

following). It is suggested that the bias at national monitoring sites are smaller than that at IAP 

in most cases, and the correlations are also improved. This suggests that the comparisons using 

the average of air pollutants of the 12 sites in Beijing are more regionally-representative over 

Beijing, while the deviations of air pollutants are greater when comparing between the model 

and the observations from the IAP site.  

  However, even though there are some differences of bias and correlations between IAP and 

the 12 sites, the comparisons of simulation results between these three full-period simulations 

from 15 May to 22 June using different anthropogenic emissions are the same at both IAP and 

the 12 sites. In the first run (R1), we used the anthropogenic emissions for modelling air quality 

in 2014, which is at the stage that emissions are just starting to decrease due to the efforts of 

clean air actions. Therefore, the NOx and SO2 concentrations are all overestimated by the model 

compared with observations. As simulated NOx is too high, it inhibits the photodissociation of 

NO2 and then the formation of ozone. Therefore, we applied the rescaled anthropogenic 

emissions based on studies of emissions changes in China (Zheng et al., 2018; Cheng et al., 

2019) in the second run (R2). Table 5 summarizes the percentage of emissions reductions of 

anthropogenic emissions used in the second run (R2). The reductions in domain 3 reflect the 

emission changes in Beijing and reductions in domain 2 reflect the emission changes in the area 

surrounding Beijing from 2014 to 2017. Results suggest that the simulation of ozone is 

improved and simulations of NO2 and SO2 are generally satisfactory, as the bias decreased (Bias 

= -17.83 in run1, =-10.19 in run2 at IAP, =-8.95 in run1, =-3.07 in run2 at 12-site), and 

correlations are improved (r = 0.65 in run1, =-0.68 in run2 at IAP, =-0.72 in run1, =-0.74 in 

run2 at 12-site). This confirms the reductions we made to emissions based on previous related 

studies are reasonable and effective. The comparation of Figure 3a and Figure 3b also suggest 

that, the average concentrations of ozone increase in run2 compared with run1. We can note 
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that especially on some spots where high NO concentration titrating ozone, which can suggest 

that the NO concentration in run2 is lower than run1 so that the removal of ozone is reduced 

and hence the ozone concentration increases. In addition, we note that SO2 simulation has 

significant improvement, which suggests that the use of coal has been reduced greatly during 

these years and provides strong support for the scaling applied in the second run (R2). These 

improvements of simulating concentration suggest that the second run with rescaled emissions 

is the most appropriate for modelling summertime ozone in 2017.  

 

Table 5. Emission reductions by percentage for MEIC emissions used in second run relative 

to the first run.  

 Northern China 

(Domain 2) 

Beijing  

(Domain 3) 

SO2 55% 70% 

NOx 20% 35% 

PM2.5 15% 25% 

VOC - 35% 

 

  In addition, we carried out a third run which uses the emissions redistributed from MEIC 

2013 provided by collaborators at the Institute of Atmospheric Physics (IAP) of the Chinese 

Academy of Sciences in Beijing. Figure 3b and 3c suggest that the simulated ozone 

concentrations over the domains are higher than run2. Compared with the observations, the 

ozone concentration is overestimated in run3 (Bias = 11.03 at IAP, =12.07 at 12-site). We note 

that the NOx appeared to be too low in run3. This may be attributed to the redistribution of 

source of emissions in this anthropogenic emission. As the concentration of NOx decreased, the 

removal of ozone with NOx as reactants at night-time is suppressed. Therefore, ozone 

concentration in night-time is overestimated, when ozone should reduce to nearly 0 as the NOx 

increased at night.  

  The correlations reflect whether the model can capture the variability of pollutant 

concentration well. Generally, we note that the variability is captured well for some species like 

ozone, for which the variability is driven by the diurnal cycle, but poorly for others. The 
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captured variability of NOx is poor, suggesting that the model cannot always capture the spikes. 

CO is particularly poor given that it is largely a primary pollutant, suggesting that there are 

spatial and temporal emissions spikes which are not represented adequately. Comparing these 

three full-period runs, results show that the correlations of ozone, NOx and SO2 improve from 

R1 to R2, and drop for the third run (R3), which illustrates that the performance of the model 

in R2 is the best on capturing the variability of pollutants.  

  Considering the above results, we chose the second run as the baseline of this study as the 

ozone, NOx and SO2 simulation match the observations the best. We suggest that the emissions 

rescaled to 2017 are more appropriate than the emissions redistributed to 2017. In the 

redistributed emissions, the redistribution only changes the location of the emission sources so 

that the total amount of the emissions remains unchanged compared with 2013 , while the 

emissions are proved to be reduced from 2013 to 2017. 

3.2.2 Analyses of baseline run  

  As we have found the best anthropogenic emissions for simulating summertime ozone in 

2017 and selected the baseline run, mean spatial ground level 24-hour concentration of ozone 

from 15th May to 22nd June 2017 is shown in Figure 3b, which introduce the general regional 

distribution of mean ozone concentration over the China domain (domain 1; left) and the North 

China Plain (domain 3; right). Over the China domain, the maximum mean concentration of 

ozone during the campaign period reached 66ppbv, which appears in northern China and in the 

north of Central China. We also note that high values also occur over Sichuan, with low values out 

to the West and in the coastal Southeast. Figure 3b shows the mean concentration of ozone over 

North China Plain. The mean concentration of 24-hour ozone in most parts of the NCP has 

reached 50 ppbv. The maximum appears in the south of NCP, and gradually decreased from 

south to north. This may be attributed to the fact that coastal regions are more affected by 

onshore flow, and air flow may push the polluted air against the mountains to the west of the 

NCP. Figure 3b also suggests that more of local scale features over the major cities are shown 

over the NCP domain. The average concentrations of ozone on some small spots located in 

major cities, such as Beijing, Tianjin, etc. where NO emissions are strongest, are significantly 

lower than the surrounding. It suggests the high NO emissions located at the spots thus titrating 
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the local ozone as high NO concentrations lead to direct ozone removal.  

 

  

 

 

    

 

 

Figure 4. Concentrations of O3, NO, NO2, SO2, CO, aromatics and isoprene timeseries at IAP, 
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Beijing. 

  To further evaluate the model, we analyse the hourly concentration timeseries of comparisons 

between simulations and observations. Figure 4 shows observed chemical variables and results 

of baseline run at IAP tower in Beijing from 15 May to 22 June 2017. We notice that the model 

can usually capture the daily variations for ozone and NO2, but underestimates the peaks of 

ozone concentration in daytime when ozone produces under sunlight and the concentration 

increase. Efforts can be taken on improving the simulations of the peaks for ozone, which are 

usually underestimated in the model. For VOC, we compared the total concentration of 

aromatics in the model with the sum of observed concentrations of benzene, toluene, C2-

benzenes and C3-benzenes (the observation did not include other aromatics). The results show 

that the model overestimated the concentration of aromatics. We suppose the simulated 

concentrations should be higher than the observations because not all the species of aromatics 

are included in the observations. The aromatics are lumped together in the model as 

representative species, but they are measured individually when observed. Results show that 

aldehydes are underestimated by the model comparing with observations of acetaldehyde, and 

ketones are also underestimated comparing with observations of methyl ethyl ketone and acetone. 

This suggests that some aromatics may be incorrectly simulated to other species of VOC by the 

model and cause the overestimation. For isoprene, the model underestimated its concentration. 

We suggest that it is because the land surface and vegetation may not be appropriate for central 

Beijing, as the emission of isoprene is highly related to vegetation. Also, Beijing has quite high tree 

coverage which contribute to the emission of isoprene, which have also been found underestimated 

in other studies (Naeem et al., 2018; Chen et al., 2018b; Zhao et al., 2019).  

 

3.2.3 Analyses of meteorology during high pollution period  

  Further analysing the changes in ozone concentration during the whole campaign period, 

we note that there is an ozone pollution build-up and then heavily polluted period from 22 

May to 29 May 2017, and the underestimation of ozone concentration in daytime is more 

significant during this period. In order to further improve the performance of the model in 

simulating ozone, we chose this period to carry out sensitivity studies. As meteorological 

conditions and emissions changes of NOx and VOC can both affect ozone concentration, we 
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therefore evaluate the model’s performance on meteorology and compare the meteorological 

parameters during this polluted period with the whole campaign period. Results are 

summarized and shown in Table 6. We suggest that the average of simulation during the 

polluted period is very close to the whole campaign period, with a variation of about 1% on 

RH, 0.1m/s on wind speed and 10 degree on wind direction. The temperature has a variation 

of 1.5-2° C, which is reasonable considering the seasonal changes in Beijing. Compared with 

Table 3, the performance of the model during the polluted period also shows no significant 

difference compared on temperature and RH with the whole campaign period. When 

simulating the wind speed and wind direction, the dispersion and correlation of the model 

simulation results have been reduced. Considering the smaller amount of data during the 

pollution period (216 hours for the pollution period, 930 hours for the whole campaign 

period, where the model simulates every hour), we think that the difference on RMSE and 

correlations are acceptable. Overall, we suggest that the model’s performance during the 

ozone pollution period it not significantly different from that over the whole campaign period. 

Therefore, we will focus on changing emissions to improve ozone simulation.  

  As ozone is a secondary pollutant, its concentration is closely related to emissions and 

concentrations of other atmospheric pollutants such as VOC and NOx. Considering that 

improvements still can be made in emissions we used in baseline run, we carried out sensitivity 

studies in which the relationship between ozone and VOC/NOx were further discussed. 
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Table 6. Comparison of hourly observed and simulated meteorological parameters at ground 

level, 120 meters and 240 meters during a heavy ozone pollution period (22-29 May 2017).   

  Obs. Avg. Sim. Avg. Bias RMSE r 

 

Temperature 

(℃) 

8m 25.36 25.11 -0.25 2.03 0.92 

120m 23.87 25.12 1.25 2.27 0.93 

240m 22.86 25.44 2.58 3.23 0.92 

 

RH (%) 

8m 49.86 31.53 -18.33 21.21 0.87 

120m 44.18 33.48 -10.70 14.43 0.89 

240m 44.03 34.85 -9.18 13.89 0.87 

 

Wind Speed 

(m/s) 

8m 1.34 3.55 2.21 2.82 0.20 

120m 3.54 4.85 1.31 2.57 0.50 

240m 4.67 5.39 0.72 2.81 0.56 

 

Wind Direction 

(°) 

8m 168.18 163.41 -4.77 92.80 0.44 

120m 162.35 157.80 -4.55 103.97 0.40 

240m 167.23 164.81 -2.42 114.10 0.34 
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4. Sensitivity studies for a pollution episode 

  To investigate the relationship between ozone concentration and VOC/NOx emissions and 

improve the model’s performance in simulating ozone, we carried out sensitivity studies by 

changing the emissions to reproduce an ozone pollution period to analyse the influence of 

emission changes. We chose 21 May to 29 May as the campaign period for sensitivity studies 

with the first day set aside as spin-up. Figure 4 suggests that, during this period, observation 

showed the development and recovery of an ozone pollution event. This heavily polluted period 

is particularly poorly modelled, and therefore it is particularly interesting to investigate. To 

discuss how VOC and NOx change affects ozone concentration, we rescaled the emissions of VOC 

and NOx independently by increasing and decreasing 50% over Northern China (domain 2). 

Also, we doubled the isoprene emission factors in MEGAN biogenic emissions to increase the 

isoprene emissions and keep other emissions same as baseline as the concentration of isoprene 

is proved to be too low in the baseline. The emission changes were applied to the baseline 

scenario (R2) for the sensitivity studies has been summarized in Table 7 (by percentage). 

 

4.1 Independent emission changes 

 

Table 7. Changes in emissions by percentage applied to the baseline scenario (R2) for the 

sensitivity studies. 

 

 Increased by Decreased by 

NOx +50% +50% 

VOC +50% -50% 

Isoprene +100% - 
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Table 8. Comparison of hourly observed and simulated air pollutants in baseline and 

sensitivity runs at IAP in Beijing during 22-29 May 2017.  

 

  Obs. Avg. Sim. Avg. Bias RMSE r 

 

 

Baseline run 

O3 48.22 37.20 -11.02 30.36 0.70 

NO 6.07 5.07 -1.00 15.56 0.15 

NO2 21.98 20.70 -1.28 16.06 0.14 

Aromatics 1.51 5.66 4.15 5.23 0.31 

ISO 0.52 0.22 -0.29 0.47 0.16 

 

NOx emission 

+50% 

O3 48.22 27.39 -20.83 37.49 0.61 

NO 6.07 11.07 4.99 24.22 0.15 

NO2 21.98 29.38 7.40 19.89 0.14 

Aromatics 1.51 5.82 4.30 5.39 0.32 

ISO 0.52 0.26 -0.26 0.45 0.16 

 

NOx emission 

-50% 

O3 48.22 45.48 -2.74 28.44 0.70 

NO 6.07 1.10 -4.97 13.68 0.11 

NO2 21.98 11.11 -10.87 17.38 0.12 

Aromatics 1.51 5.47 3.96 5.03 0.32 

ISO 0.52 0.20 -0.32 0.49 0.14 

 

 

VOC emission 

+50% 

O3 48.22 41.46 -6.76 27.89 0.72 

NO 6.07 4.54 -1.54 15.08 0.15 

NO2 21.98 20.60 -1.38 16.37 0.14 

Aromatics 1.51 8.36 6.85 8.29 0.31 

ISO 0.51 0.21 -0.31 0.48 0.15 

 

 

VOC emission 

-50% 

O3 48.22 32.84 -15.38 34.28 0.64 

NO 6.07 5.65 -0.43 16.13 0.14 

NO2 21.98 20.76 -1.23 15.76 0.14 

Aromatics 1.51 2.88 1.37 2.22 0.32 

ISO 0.51 0.25 -0.27 0.46 0.16 
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ISO emission 

factor +100% 

O3 48.22 38.16 -10.05 29.60 0.71 

NO 6.07 4.97 -1.10 15.51 0.15 

NO2 21.99 20.68 -1.31 16.14 0.14 

Aromatics 1.51 5.66 4.14 5.21 0.31 

ISO 0.51 0.32 -0.19 0.42 0.27 

 

  Table 8 shows the effect on the simulation results of changing NOx or VOC emissions and 

Isoprene emission factors. We found that when adjusting NOx emissions, the concentration of 

NOx and ozone change significantly. When the emission of NOx increases by 50%, the average 

concentration of NO during simulation period increases about 120%, and the model further 

underestimates the average ozone concentration (Bias=-11.02 in baseline run, =-20.83 when 

increasing NOx emission by 50%). This can be explained by the fact that, without significant 

changes in VOC and isoprene concentrations, high NO concentration makes it easier for NO to 

participate in the direct removal of O3. When NOx emission decreases by 50%, the bias of 

simulated and observed ozone concentration improved (Bias=-11.02 in baseline run, =-2.74 when 

increasing NOx emission by 50%), but the average of NO emission during simulation period 

decreases about 80%, which is far below the observation level. The simulation result of VOC 

concentration does not change significantly (less than 0.2 ppbv), and the concentration of 

isoprene is slightly changed (0.04 ppbv when NOx emission increases, and 0.02 ppbv when 

NOx emission decreases). Therefore, we focus on analysing the relationship between changes 

of ozone concentration and NOx emission. Correspondingly, the average concentration of 

aromatics during simulation period increase about 50%, and the performance of the model is 

better for ozone concentration (Bias=-11.02 in baseline run, =-6.76 when increasing VOC 

emission by 50%). When decreasing VOC by 50%, the average aromatics concentration 

decreases by 65%, and the bias in average ozone concentration becomes larger (Bias=-11.02 in 

baseline run, =-15.38 when decreasing VOC emission by 50%). The concentration of NO2 did 

not change significantly when VOC emissions were changed. The concentration of NO is 

slightly changed (approximately 0.6 ppbv increase when VOC emission increases, and 0.5 ppbv 

decrease when NOx emission decreases). When doubling isoprene emissions, the isoprene 
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concentration increases about 45% and the ozone simulation improves a little bit (Bias=-11.02 

in baseline run, =-10.05 when increasing isoprene emission factor by 100%), while simulated 

average concentrations of other chemicals show no significant difference.  
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Figure 5. Concentrations of Ozone and a) NOx timeseries at IAP, Beijing with NOx emissions 

increased and decreased by 50%; b) VOC timeseries at IAP, Beijing with VOC emissions 

increased and decreased by 50%; c) isoprene timeseries at IAP, Beijing with isoprene emissions 

factor in biogenic emissions doubled. 

 

  Figure 5a presents the timeseries of NOx and ozone concentration at IAP site when we 

changed the emissions of NOx. Results show that increasing emissions of NOx by 50% lowers 

the peak of daytime ozone concentration, and the simulated night-time ozone concentrations 

are also reduced to a fairly low level, which leads to further deviations compared with 

observations. This reflects that too much NOx inhibits the formation of ozone during daytime 

and enhances the consumption of ozone. When the emissions of NOx are decreased by 50%, 

the simulating concentrations of daytime ozone are slightly increased, while the simulated 

lowest concentrations of ozone at night-time are increased. The difference between the 
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maximum and minimum daily ozone concentrations decreases, indicating that the effect of 

reducing NOx on reducing night-time ozone removal is more significant than the effect of 

increasing ozone generation during the day. The results show that the effects of increasing or 

decreasing the emissions of NOx by 50% to ozone simulations are relatively small, and 

comparison for NOx concentration suggests that the emissions of NOx applied in the baseline run 

performs better on simulating NOx. Therefore, we suppose the emissions of NOx should be kept 

the same as baseline run.  

  Figure 5b shows the timeseries of aromatics and ozone concentration at IAP site when we 

changed the emissions of VOC. We note that both increasing and decreasing VOC emissions 

by 50% affect the model's simulation of daytime peaks, but it has little effect on night-time low 

ozone concentrations compared with changing NOx, suggesting the possible link between the 

simulation of aromatics and the significant underestimation of the peak of ozone concentration 

at daytime. The results show that the change of highest concentration level of ozone during the 

day is consistent with the emissions changes of VOC, even when the results show that model 

is still overestimates the concentration of aromatics. We note that, when the model 

overestimated the peaks of concentrations of aromatics, some species of aromatic which are not 

included in the observations may lead to the differences in total aromatic concentrations. In 

addition, there is also the possibility that other kinds of VOC which can affect the formation of 

ozone have been changed when changing the emissions of VOC, which may lead to the changes 

of ozone concentrations. For example, alkanes are very important for the formation of ozone, 

but we are unable to evaluate the model's simulation of alkanes due to the lack of corresponding 

observations. Considering only the effect of increasing or decreasing VOC emissions by 50% 

on the results, we suggest that increasing VOC by 50% is more helpful to improve ozone 

simulation. 

  Figure 5c presents the timeseries of isoprene and ozone concentration at IAP site when we 

doubled the emission factor of isoprene in biogenic emissions. Improvements in simulated 

isoprene concentration have been shown in the comparison between the run with doubled 

isoprene emission factor and the baseline. This may provide evidence confirming the conjecture 

that the land surface and vegetation may be not appropriate for central Beijing, underestimating 
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the existence and impact of vegetation there. However, changes in ozone concentration caused 

by isoprene is not significant, which may suggest that the model has difficulties in simulating 

the chemical process of ozone formation associated with isoprene. 

 

4.2 Best emissions scenario 

Previous sensitivity studies suggest that increased emissions of VOC by 50% can provide better 

ozone simulation results and increasing isoprene emission factors by 100% can improve 

isoprene simulation when ozone simulations have a little improvement, while increasing and 

decreasing NOx emissions do not improve the ozone simulation as both increase the bias 

between simulation and observation. Based on the previous sensitivity studies, we performed 

an additional run with the best estimate of emission changes, with 50% increased VOC 

emissions and doubled isoprene emission factors. Table 9 shows the comparisons of the 

simulation of ozone, NOx, VOC and isoprene between the observation, the baseline run and the 

run with the best emissions scenario. Results show that the model performance is better than in 

the baseline run (R2), which can be suggested by the bias between simulated and observed 

average ozone concentration (Bias=-11.02 in baseline run, =-5.89 with best emissions scenario) 

and the simulations of the ozone concentration peaks (Figure 6). This may be attributed to the 

increase of VOC emissions, where similar effects have been produced in the previous 

sensitivity study of increasing VOC emissions independently. When we only increase VOC by 

50%, the bias of average ozone concentration is -6.76. In sensitivity run with best emission 

scenario, the bias further improves to -5.89, suggesting that doubling isoprene factor at the same 

time can bring a positive impact on ozone simulation. We also suspect from other studies (Ren et 

al., 2017; Chen et al., 2018b) that the isoprene in Beijing may be low, which provides a further 

justification on increasing isoprene emission by doubling isoprene emission factor.  

  Though improvements have been made in simulating ozone concentration by adjusting 

emissions, we note that there are still substantial differences which reflect weaknesses in the 

model and in the emissions. The bias of simulated and observed average ozone concentration 

still exists (bias = -5.89) and the model still underestimates the peaks of ozone (Figure 6) even 

though the VOC concentrations become much higher than observations by increasing VOC 
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emission. We speculate that this is still because the baseline VOC emissions are too low, or that 

the model underestimated the reactivities of VOC. Further investigations can be conducted on 

the VOC emissions and the reactivities of VOC in chemical reactions of ozone formation. The 

diurnal cycle of NOx cannot be well captured, which may be attributed to the wrong timing of 

emissions and with the timing of boundary layer mixing processes. The rush hour NO emissions 

after the boundary layer has collapsed may happen too soon in the model because the urban 

heat island isn’t produced. And the night-time maximum in observed NOx may be due to diesel 

truck emissions which aren’t in the inventory we use in the simulations. . In addition, the 

isoprene concentration is improved by doubling the isoprene emission factors in the biogenic 

emissions. But the isoprene concentration level still appears to be too low and the diurnal cycle 

also cannot be captured, which suggests that further improvement can be made on the land 

surface and the vegetation in Beijing, and its contributions to ozone formation in the model still 

need to be further investigated.   

 

Table 9. Comparison of hourly observed and simulated air pollutants in best guess sensitivity 

run and baseline run at IAP in Beijing during 22-29 May 2017.  

 

  Obs. Avg. Sim. Avg. Bias RMSE r 

 

 

Baseline run 

O3 48.22 37.20 -11.02 30.36 0.70 

NO 6.07 5.07 -1.00 15.56 0.15 

NO2 21.98 20.70 -1.28 16.06 0.14 

Aromatics 1.51 5.66 4.15 5.23 0.31 

ISO 0.52 0.22 -0.29 0.47 0.16 

 

 

Best guess run 

 

 

O3 48.22 42.32 -5.89 27.42 0.73 

NO 6.07 4.45 -1.62 15.01 0.16 

NO2 21.98 20.57 -1.42 16.44 0.14 

Aromatics 1.51 8.34 6.83 8.25 0.32 

ISO 0.51 0.29 -0.22 0.43 0.28 
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Figure 6. Concentrations of ozone, NO2, NO, aromatics and isoprene timeseries at IAP, 

Beijing with VOC emissions increased by 50% and isoprene emissions factor in biogenic 

emissions doubled.  
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5. Conclusion 

In this study, we applied WRF-Chem, a high-resolution nested air quality model, to simulate 

the air quality in North China from 15 May 2017 to 22 June 2017 and investigate the ozone and 

an ozone pollution event during this period by changing the emissions. We reproduce the 

meteorological parameters by capturing both the mean level and the variations using the model. 

We compare the effects of three different anthropogenic emissions scenarios on simulated air 

quality during the campaign period. We set the second full-period run (R2) as the baseline run 

in this study, because the simulation results of air pollutants from this run match observations 

better than the other full-period runs with different anthropogenic emissions scenarios (Bias=-

10.19 at IAP, =-3.07 at 12-site, RMSE=28.74 at IAP, =21.86 at 12-site, smallest among three 

runs, r=0.68 at IAP, =0.74 at 12-site, biggest among three runs) , and it reproduces ozone 

concentration relatively well. We note that the NOx and SO2 are overestimated in the first run 

(R1) which uses the MEIC anthropogenic emissions for 2014, matching the results of emission 

changes studies (Zheng et al., 2018; Cheng et al., 2019) which indicate that emissions of NOx 

and SO2 decreased from 2014 to 2017, which inhibit the formation of ozone. Also, NOx and 

SO2 are underestimated in the third run (R3) which uses the MEIC anthropogenic emissions 

redistributed for 2017, leading to the suppressed consumption of ozone with NOx as reactants 

at night-time. Therefore, ozone concentration in night-time is overestimated. A correlation of 

r=0.68 (r=0.74 at 12 sites) of ozone concentration and the timeseries at IAP site in Beijing 

comparing with observations suggests that the ozone concentration which is driven by the 

diurnal cycle can be well captured. We also note that there is an underestimation of the highest 

daily ozone concentrations. This may be attributed to the model’s weakness in simulating VOC 

and isoprene. We speculate that some species of VOC may be incorrectly simulated and 

reproduced by the model. Isoprene concentration is underestimated in the model, which might 

because the land surface, vegetation and trees in Beijing are inappropriate.  

  We further performed sensitivity studies for a heavy ozone pollution period, investigating 

how emissions changes of NOx, VOC and isoprene affects the simulation of ozone. Results 

show that doubling isoprene emission factors in biogenic emissions can improve the simulation 

of isoprene, suggesting that the emissions from tree coverage and vegetation are underestimated 
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by the land surface scheme in the model. We propose that adjustments to the land surface are 

needed to improve isoprene simulation as the isoprene concentration is underestimated. 

Increasing VOC emissions by 50% can improve the model’s performance on simulating ozone, 

decreasing the underestimations of peaks of ozone concentrations in the polluted period though 

the comparison of simulated and observed aromatics show that the aromatics are overestimated. 

This may suggest that there may be important VOC emissions missing, or that the model 

underestimated the reactivities of VOC. After discussing sensitivity studies on emission 

changes of NOx, VOC and isoprene, we get the emissions scenario with best performance on 

modelling ozone by increasing VOC by 50% and doubling isoprene emission factors. By 

investigating the best emissions scenario, our study demonstrates that ozone simulation has 

been improved as the bias, RMSE and correlations of ozone concentration are all improved 

compared with the baseline run. However, we still note that an underestimations in peak ozone 

concentrations still exists, which illustrates that the model’s simulations of VOC still needed to 

be improved. We advise that further studies need to be done to resolve the ozone simulation 

problem by improving the VOC chemistry. Further research should focus on the emissions of 

more species of VOC and the balance between these species. Also, the reactivities of VOC in 

the process of ozone formation need to be analysed in more detail. The isoprene emission from 

biogenic sources needs to be improved by adjusting the land surface scheme, modifying the 

underestimation of tree coverage and vegetation in cities.  
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