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Abstract

Mark Theodore Noble, MPhys (Hons)

New Methods of Measurements in Superfluid Helium

Doctor of Philosophy, September 2019.

In this thesis we use quartz tuning fork resonators to probe properties of normal
and superfluid 4He and 3He. Our main goal is to study both quantum turbulence
and acoustic emission of tuning forks in liquid helium.

By employing a multi-frequency lock-in amplifier we contrast single and multi-
frequency methods of measuring tuning forks in the linear regime. In the non-linear
response of tuning forks during turbulence we create multi-frequency excitations
called intermodulation products which are used to find the non-linear forces that
created them. We apply this technique to quantum turbulence in superfluid 4He-II
and find that the retarding in-phase force on the fork increases at a critical velocity
for turbulence nucleation. We also observe that the out-of-phase non-linear force
increases, which we attribute to energy loss via vortex ring emission by the fork.

Superfluid 3He is a fermionic condensate of Cooper pairs of 3He atoms. At
ultra-low temperatures of 120 µK thermally excited unpaired quasiparticles travel
ballistically through the condensate. We beam quasiparticles from a black body source
towards a 5× 5-pixel camera and observe that the excitations follow photonic-like
trajectories. We apply the source-camera configuration to non-invasively detect and
even image quantum vortices, that are topological defects in the superfluid.

Lastly, we explore the frequency dependent damping of quartz tuning forks in
liquid 3He. We find that at high frequencies the fork damping is governed by acoustic
emission. Furthermore, we show that existing models developed for sound emission
in 4He can be used to predict observed acoustic damping in 3He. The results also
suggest that devices for 3He experiments should be placed in cavities or designed to
operate at low frequencies.
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Chapter 1

Introduction

A superfluid is a fluid that flows with no viscosity, such that a ball moving through
the fluid would feel nothing. First discovered in 4He in 1938[1, 2] this is an ideal
example of a macroscopic quantum mechanical effect that you can see with your
own eyes. For example if a beaker of superfluid 4He is lifted out from the main
bath, the superfluid in the beaker will crawl up and out of the beaker and return
to the bath. It flows through the thin film of liquid helium attached to the walls by
intermolecular forces. Despite this though some similarities remain between these
fluids and classical fluids.

Imagine spinning a bucket of superfluid - naively we would think the bucket
would have no effect on the superfluid and the superfluid surface would be flat.
Alternatively if we spun a bucket of water, a normal fluid, a meniscus would form
with a characteristic dip. Experiments show, however, that superfluid 4He forms a
meniscus[3], just like water. This implies the existence of vortices in the superfluid,
although these will be quite different objects to a classical vortex. Returning to our
water bucket we find one vortex in the middle with a circulation that is dependent
on how fast the water is moving. In the superfluid helium bucket we see multiple
quantum vortices, with a fixed circulation and size[4]. The large scale motion recreates
the same meniscus shape as for the water, but on the microscopic scale there is a
group of string-like vortices going through the superfluid. This example shows the
possibility of comparisons between the quantum mechanical world of superfluids
and the classical world we are familiar with, despite underlying differences.

In everyday life, creating vorticity is associated with turbulent motion in the fluid:
airplanes, ships, cars, etc lose energy into the creation of large vortices that decay into
smaller and smaller vortices until they are lost to viscous heating in unpredictable
chaotic motion. This flow of energy down from large to small scales is known as the
Kolmogorov spectrum[5]. Superfluids also experience turbulence. This quantum
turbulence is made up of a tangle of string-like vortex filaments which offers a much
more conceptually intuitive system to the chaotic dance of classical turbulence. As
with the spinning bucket, we have opportunities for comparison between the classical
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and quantum worlds. Like classical turbulence the quantum system is believed to
follow an energy cascade similar to the Kolmogorov spectrum[6]. The intrinsically
chaotic nature of classical turbulence leaves no easy solution and it is largely regarded
as the last great problem of classical physics. Further study of quantum turbulence in
superfluid helium offers the chance that we may be able to make more comparisons
between the quantum and classical world.

Physicists and engineers typically use a wind tunnel with smoke, or a water stream
with ink to see turbulence in air and water respectively. These experiments however
cannot reach extremely high turbulent flows found in nature, being limited by the
viscosity of air and water and the characteristic size of the test object. Helium, even the
non-superfluid phase, has much lower viscosity and offers much potential to access
turbulent flows not accessible with conventional efforts. Unfortunately however
the visualisation of the flow is not possible with smoke or inks in superfluids and
alternatives have to be found. The great challenge therefore is to design an experiment
capable of picturing or visualising quantum turbulence at these extremely turbulent
states. Recent progress has been made with the picturing of tracer molecules in 4He
using a laser[7–9]. Quantum vortices trap the tracer molecules and then the laser can
track the movement of the tracers and hence the vortices themselves.

In this work we will be using mechanical oscillatory resonators to investigate
and image turbulence in helium. These devices create an oscillatory superflow that
we can use to create and detect turbulence via the interactions between the flow
and oscillator. Their ease of use allows the user to easily measure the driving force
and peak velocity in helium at all currently achievable temperatures. Typically to
see turbulence on a resonator one increases the driving force on the oscillator and
measures the resultant velocity. By plotting the relationship between the force and
velocity one can distinctly see turbulence through a characteristic decrease in the
gradient between the two variables from an initial linear relationship. These methods
have been extensively applied to turbulence studies in superfluid 4He[6, 10–14] and
3He[15–17].

The method used to study turbulence detects the turbulent damping force on
the oscillator from the changes in driving force’s velocity relationship. However
it is possible to directly see the effects of non-linear forces (such as turbulence)
on an oscillator using multi-frequency driving forces. These methods developed
by the atomic force microscopy community increase the available force data from
resonators[18, 19]. It seems fairly natural to wonder if the same can be done for
resonators probing liquids instead. By verifying that multifrequency methods can
be used on our resonators[20] we can pursue the advanced techniques that allow
non-linear force extraction[21]. Multi-frequency excitations on a non-linear system
create extra frequency excitations from the non-linear forces. By carefully measuring
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these excitations we can then derive and separate the non-linear damping force from
turbulence into the in-phase and out-of-phase components acting on a fork.

We will also pursue a method to directly image turbulence via a elegant solution
using thermal quasiparticles in superfluid 3He-B. Liquid 3He is a Fermi liquid system
which becomes a superfluid at about 1 mK by forming Cooper pairs of 3He atoms[4].
The remaining thermal energy leaves unpaired particles that continue to travel as
thermal quasiparticles. Lowering the temperature naturally reduces the population
of thermal excitations and at ultra low temperatures the population becomes so low
that the mean free path for the quasiparticles is far larger then any experimental cell.
For our purposes any excitation moves with a ballistic trajectory through the fluid.
We can create thermal excitations by breaking Cooper pairs with a heater. If we then
place a heater in a box we locally confine the particles inside the box which then
thermalise with each other and the walls of the box. A small hole on one side allows
the quasiparticles to escape from the box into the bulk fluid as a beam[22].

In front of the beam of quasiparticles we have a vibrating wire that creates a
turbulent tangle of quantum vortices. The flow field about the vortices lifts the energy
gap of quasipaticles, and some quasiparticles no longer have sufficient energy to carry
on into the flow field[23]. The quasiparticles with insufficient energy are Andreev
reflected becoming their anti-partner (quasiparticle to a hole and vice versa) while
the quasiparticles with higher energies can travel onward through the vortex flow
field. Therefore behind the vortex there is a decrease in the flux of quasiparticles. By
measuring the flux with a camera we can then image quantum turbulence by the flux
shadow it leaves behind[24].

We use 25 quartz tuning fork resonators in a 5 by 5 grid surrounded by a copper
matrix to form the quasiparticle camera[24]. Quasiparticles incident on a fork ex-
change their momentum with the fork causing the fork’s resonance width to increase.
By measuring the resonance width of the forks simultaneously we can take a image
of the quasiparticle flux on the camera. By comparing an image of the beam and the
turbulent pictures we can deduce the shadow of the vortex tangle. This shadowgram
allows us to image turbulence in a unique manner without significantly disturbing the
fluid. The momentum exchange between the quasiparticles and quantum vortexes is
tiny. Furthermore the quasiparticles are integral to the fluid, unlike tracer molecules
so the chance of a disturbance is reduced.

The measurement of the quasiparticle flux is highly dependent on the sensitivity
of the resonators chosen. The quartz tuning forks we use are highly sensitive to
small changes in the surrounding fluid. However it is known that in 4He that at
higher frequencies the sensitivity of forks and other devices drops off due to sound
emission[12, 25]. There has been no detailed study into sound emission by these
structures in 3He. It is important that we understand the damping effects of the fluid



4 Chapter 1. Introduction

which may affect the sensitivity of our devices, to avoid a significant loss of effort.
This is important because the next generation of quasiparticle camera may include
forks with a high range of frequencies or nanoelectromechanical devices (NEMS)[26,
27] which have an much larger frequency range.

We will present the first systematic type study of acoustic damping in 3He. We will
be using the 25 forks of the quasiparticle camera to study the frequency dependent
damping in normal and superfluid 3He. It is likely that the current model for 4He can
describe sound emission in 3He, but 3He has collective modes not found in 4He which
may affect the forks: namely zero sound and spin waves. The experiments described
here will test the established 4He model against the results in 3He. Knowledge on
how the sound emission affects the sensitivity of higher frequency devices can help
inform the design next generation of nano-scaled resonators for 3He experiments.

1.1 Layout

Chapter 2 is an introduction to the physics of both 4He and 3He. It will cover the
basics of the condensation into a superfluid in both liquids and introduces excitations
and vortices in the fluids.

Chapter 3 will discuss the mechanical oscillators used as tools to study helium.
The chapter starts with the basics of an oscillator, then discusses the damping effects
of helium fluids, and shows the use of oscillators as thermometers in 3He.

In chapter 4 the refrigeration techniques used in this work are considered: both the
fridge used to cool 4He to a superfluid, and the fridge used to achieve the ultra-low
temperatures that superfluid 3He-B exists in.

Chapter 5 will present multi-frequency measurements using a multi-frequency
lock-in amplifier. We show that single and multi-frequency techniques get the same
results for tuning fork oscillators at low excitations. Non-linear multi-frequency mix-
ing effect of intermodulation products are then used to measure quantum turbulence
on tuning forks at higher excitations.

In chapter 6 we present the results of measurements of a quasiparticle camera in
superfluid 3He-B at ultra-low temperatures.

Chapter 7 uses the tuning forks from the quasiparticle camera to measure the
acoustic damping felt by the forks in normal and superfluid 3He-B. We will compare
these results with measurements taken in 4He and theoretical models developed to
explain acoustic damping in 4He.

Lastly chapter 8 will summarise the results of this work.
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Chapter 2

Helium Superfluids

In 1868 the astronomers Jules Janssen and Norman Lockyer discovered anomalous
absorption lines in the solar spectrum of the sun[28]. Lockyer proposed that these
lines were caused by an unknown element. He subsequently, along with Edward
Frankland, named the new element after the Sun using its greek name, Helios; and so
Helium joined the periodic table of elements.

It took until 1895 to discover terrestrial helium in uranium ore[29]. The reason for
its apparent scarcity, despite being the second most common element in the universe,
is that helium in the atmosphere is so light that it will be lost to space. Any terrestrial
occurrence of the heavier stable isotope 4He comes from the natural radioactive
decay of elements in the Earth’s crust. Helium-4 then accumulates in oil fields and
ores and is today largely produced as by-product of the oil industry. Back in the
1890-1900s these sources were underdeveloped and it took considerable time and
effort to accumulate enough helium to start attempts into condensing the gas into a
liquid.

2.1 Helium-4

Helium-4 was first liquefied by Heike Kamerlingh Onnes in 1908 in experiments
cooling it down to 1.5 K[30]. Unfortunately, he did not notice the phase transition
between the two liquid phases of 4He. That discovery was made later by a student of
his, Keesom, who along with Clusius in 1932 measured the specific heat capacity of
4He. They discovered the tell tale discontinuity of a transition at 2.17 K, a point called
the λ-point for the unusual shape of the specific heat curve about the transition[31].
Helium-4 above the transition was called He-I while 4He below was called He-II (see
fig. 2.1).

Keesom also looked at viscosity in He-II and discovered a similar figure to He-
I. However experiments in 1938 by Kapitsa[1] and, independently, by Allen and
Meisener[2], discovered that in certain conditions He-II had no measurable viscosity,
or as Kapitsa expressed it: He-II was a ‘superfluid.’
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FIGURE 2.1: Phase diagram of 4He.

Theorists rapidly worked to try and explain the apparently contradictory experi-
mental findings. Fritz London in 1939 suggested that the phenomena was related to
Bose-Einstein Condensates (BECs)[32], a state where a macroscopic number of bosons
occupy the ground state of the system. The bosons themselves, in BEC theory, are
assumed to be a gas with no intermolecular forces. While 4He is bosonic it is also a
liquid with strong intermolecular forces breaking some of the assumptions behind
BECs, however the theory goes a long way to explaining the fundamental physics of
what happens below the lambda point of 4He.

Subsequently Tisza suggested a simple phenomenological model to explain what
Keeson and Kapitsa had seen[33]. He-II was made up of two fluids: a normal fluid
with temperature, viscosity and entropy as measured by Keeson; and a superfluid
with zero temperature, viscosity and entropy as measured by Kapitsa. The two fluids
interpenetrate each other, and in the absence of excitations they are non-interacting.

The normal and superfluid components, further to having their own temperatures
and viscosity, also carry independent densities and velocities: ρn, vn, ρs and vs

respectively. The sum of the densities is the density of the He-II ρ as a whole,

ρ = ρn + ρs. (2.1)
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FIGURE 2.2: The fractional relative density as a function of temper-
ature of the normal (orange) and superfluid (blue) components of

He-II.

The temperature dependence of ρn and ρs is plotted in fig. 2.2. Above the λ-point
there is 100% normal fluid, which rapidly drops with temperature until around 1 K
where there is so little normal fluid fraction left that it is insignificant.

2.1.1 Landau’s Two Fluid Model

Landau independently also suggested a two fluid model in much more detail than
Tisza[34]. Landau’s model considered how excitations would behave in a superfluid
and it was a great success in explaining all previous work. Here we will discuss some
of its main results.

Landau’s key insight was the existence of an energy gap in the superfluid between
the ground state and any excitations. If there were no gap any flow could dissipate
energy in excitations and the superfluid would not be able to flow with zero viscosity,
so there must exist an energy gap.

Consider a large mass M moving through a stationary superfluid at a constant
velocity u that creates an excitation. If an excitation of energy E and momentum
p is created, the velocity of the mass must change to v to satisfy conservation of
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momentum:

p + Mv = Mu, (2.2)

p = M(u− v), (2.3)

and also energy,

1
2

M|v|2 + E =
1
2

M|u|2, (2.4)

E =
1
2

M(|u|2 − |v|2). (2.5)

Which tells us the energy of the excitation. We can rearrange this into:

E =
1
2

M(u · u− v · v), (2.6)

E =
1
2

M(u− v) · (u + v), (2.7)

substituting eq. (2.3) into eq. (2.7) and we find that:

E =
1
2

p · (u + v), (2.8)

E =
1
2

p · (2u− [u− v]). (2.9)

The excitation’s mass will be much less then the mass of the large mass, this in turn
implies that the velocity before and after will be approximately the same so that
|u− v| ≈ 0. In this limit we can then approximate eq. (2.5) to:

E ≈ p · u. (2.10)

The dot product can only be less then the multiplication of the magnitudes of p and
u so we have the condition that E ≤ pu. Or alternatively the minimum velocity vL to
create an excitation is

vL =
E
p

, (2.11)

where vL is Landau’s velocity.
In normal fluids we assume a free particle dispersion curve E = p2/2m shown in

fig. 2.3a. Figure 2.3a shows no energy gap to create excited states so any movement
can create drag and therefore vL = 0. In the case of superfluid He-II the dispersion
curve shown in fig. 2.3b does have a energy gap to reach an excited state and it follows
that Landau’s velocity is non zero. In He-II Landau’s velocity has been measured
by ion spectra to be about 50 m s−1[35] which is far above what any macroscopic
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experiments are capable of probing.
Macroscopic objects however still feel damping from the superfluid. Resonators

can create phonons by acoustic emission and this takes energy away from the res-
onator[12]. Furthermore at higher velocities that are far below Landau’s velocity
these objects can feel increased drag. This drag comes from the creation of vortex
rings by the object creating turbulence in the superfluid. But to fully explain this we
will first discuss quantum vortices.

2.1.2 Circulation Quanta and Quantum vortices

To appreciate quantum vortices first consider that superfluid helium is made up a
condensate of atoms all in lowest energy state and hence they share the same coherent
wave-function Ψ[36]:

Ψ(r) = ψ0eiθ(r) (2.12)

that is a function of the position r. ψ0 is an function of the relative superfluid density
such that ψ0 =

√
ρs/ρ. Using the momentum operator p on eq. (2.12) we can find the

momentum[4] as:
pΨ = −ih̄∇Ψ (2.13)

and because ψ0 is constant it follows that:

p = h̄∇θ (2.14)

where h̄ is the reduced Planck constant. We can then rearrange for the velocity using
p = mv and find:

vs =
h̄
m
∇θ (2.15)

where vs is the velocity of the superfluid and m the mass of a 4He particle.
Looking at the definition of vorticity ω = ∇× v we can see that in a superfluid,

ω =
h̄
m
∇× (∇θ) = 0, (2.16)

since the curl of the gradient of a scalar field is zero. The identity ∇× vs = 0 directly
implies that any superfluid is irrotational. This would seemingly forbid the presence
of vortices in a superfluid or any rotational motion. Despite this experiments showed
that spinning superfluid 4He still showed a meniscus macroscopically close to that of
a classical fluid[3], indicating rotational motion is present in the superfluid.

Looking at the wavefunction Onsager[37] and later Feynman realised[38] that a
circulation was not forbidden, and for a superfluid can be found from the circulation
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FIGURE 2.3: The dispersion curves and Landau velocities of a gas of
free particles E = p2/2m (a) and of He-II (b) (not to scale). Note that
the free particle gas has no gap and hence zero Landau velocity, while
He-II shows a superfluid gap and hence a nonzero Landau velocity

(found by the slope of the dashed line.)
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FIGURE 2.4: A illustration of a quantum vortex line and a graph of
the superflow velocity about a quantum vortex as function of radius
using eq. (2.19). At Landau’s velocity vL the superfluid phase function

collapses defining the vortex core radius a.

definition Γ =
∮

v · dl as:

Γ =
h̄
m

∮
∇θ · dl (2.17)

where Γ is the circulation and the integration path is any arbitrary closed loop in the
fluid. The integral is closed so the phase can only vary by a factor of 2π about the
loop. Therefore

Γ =
nh
m

(2.18)

where n is any positive non-zero integer. Equation (2.18) shows us that the circulation
of a superfluid is quantised with a quantum of κ = h/m. This suggests a vortex is
allowed in a superfluid, although its size will be fixed by the circulation quantum, a
quantum vortex.

The quantum of circulation was experimentally confirmed in 1958 by Vinen[39].
Vinen placed a straight oscillatory wire in a rotating He-II cryostat. Vorticity on
the wire causes a frequency shift in which he saw distinct steps, confirming that
a quantum of circulation exists. The earlier measurements of the meniscus can be
explained as large groups of quantum vortices recreating the same effect as classical
large scale motion.

This leaves a paradox: we know quantum vortices exist, but the superflow must
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be irrotational. The solution is to consider the flow of superfluid about the vortex.
Looking at eqs. (2.17) and (2.18) the velocity field about a vortex varies as function of
radius r as:

v(r) =
Γ

2πr
. (2.19)

As we approach the vortex core we can assume that the superfluid velocity will
eventually exceed Landau’s velocity. At this point we know from Landau’s two fluid
model that the superfluid breaks down. The wave function collapses, decreasing the
density of the superfluid leaving normal fluid in the core, and a topological defect in
the wavefunction. This gives a neat result that the core region can carry vorticity in
the core’s normal fluid while the superflow outside the core remains irrotational.

The energy of a vortex can be found from the kinetic energy of the fluid flowing
around it:

E =
∫

V

1
2

ρv2dV (2.20)

where dV is the infinitesimal volume element. Assuming a vortex of length L in the
cylindrical reference frame centered on the vortex we get the energy per unit length:

E
L
=
∫ R

a
πρrv2dr. (2.21)

We assume the volume inside the core radius a can be neglected and R is the radius
of interest. Solving eq. (2.21) using eqs. (2.18) and (2.19), and the circulation quantum
κ = h/m, finds the energy of a vortex:

E =
ρLn2κ2

4π
ln
(

R
a

)
. (2.22)

We can see from eq. (2.22) that the energy is proportional to n2. An n = 2 vortex
will have double the energy of two single quantized vortices. Physically this makes
single quantum vortices more energetically favourable. A higher order (n > 1)
quantum vortex would decay into single quantum vortices.

Using the knowledge that n = 1 we can derive the size of a vortex core in the
superfluid. Using eq. (2.19) with Landau’s velocity in He-II the core has a size of
around 0.3 nm which is of order of the coherence length of the superfluid. This small
size also justifies the assumption used to derive the vortex energy in eq. (2.21).

2.1.3 Quantum Turbulence

If vortices exists in the fluid it naturally follows that there can also be turbulence.
Turbulence in its classical form is an everyday effect that occurs in all fluids. It
is created when a fast moving object creates vortices in a fluid that the object is
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traveling through. The vortices spread out and interact with each other, getting
smaller and smaller until they dissipate through viscose damping at the Kolmogorov
length scale[40, 41]. In such a way energy is moved from the moving object and into
the fluid, increasing the damping on the object and slowing it down. The process is
inherently chaotic and it is impossible to predict how the vortices develop. This makes
it hard for engineers to reduce the drag on airplanes, ships etc and so turbulence is
often referred to as one of the last great problems of classical physics.

Typically to describe turbulence in viscous fluids the dimensionless Reynolds
number Re is used[42]:

Re =
ρvL

η
(2.23)

where L is the characteristic size of the system under consideration and η the dynamic
viscosity of the fluid. For low Reynolds numbers Re � 1 the flow is laminar and
smooth with no vorticity. For large Reynolds numbers Re� 1 the flow is chaotic and
turbulent.

In superfluids, quantum vortices produce quantum turbulence. Every vortex
is fixed in size and so the turbulence is a tangle of vortex lines that are constantly
reconnecting with each other. The large scale motion of the superfluid replicates that
of classical turbulence. In this thesis we will perform experiments in two regimes of
quantum turbulence.

The first regime is semi-classical quantum turbulence found in He-II roughly
above 1 K[10, 43, 44]. Thermal excitations can interact with the quantum vortex
cores creating a mutual friction force between the superfluid and normal fluid. This
force couples the superfluid and normal fluid velocities, so that turbulence in the
superfluid creates turbulence in the normal fluid as well[45].

The second regime is pure quantum turbulence at the lowest temperatures[17, 43,
44]. The absence of any appreciable normal fluid allows for a quantum vortex tangle
with only the superfluid in motion. This can offer physicists a conceptually simpler
system to study compared to classically turbulent systems. The energy cascade here is
mediated by Kelvin waves that are helical displacements of the vortex line[46]. As the
vorticies move they are incident on other vorticies and they reconnect with each other
creating Kelvin waves along their length[47]. These waves interact with one another
and create high frequency Kelvin waves that eventually decay into phonons[48, 49].

2.2 Helium 3

Helium-3 is the much rarer stable isotope of helium. Helium-4 occurs naturally in oil
fields from the radioactive decay of elements in the Earth’s crust, but this leaves only
trace amounts of 3He. Helium-3 in use today has been synthesised as a by-product of
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FIGURE 2.5: Fermi Dirac distribution for a gas of fermions at T = 0
(blue line) and T > 0 (orange line) from eq. (2.24).

nuclear weapons and some nuclear reactors. Despite this it is widely used in dilution
refrigerators around the world to achieve milli-kelvin temperatures. Like 4He it also
becomes a superfluid at very low temperatures.

2.2.1 Fermi Liquids

Unlike 4He, which is a boson, 3He is a fermion with half integer spin. It explicitly
cannot undergo Bose-Einstein condensation because Fermi’s exclusion principle
forbids any two fermions existing in the same state. Particles in a Fermi gas at
absolute zero will instead fill out every state from the ground state to the Fermi-
energy EF[4]. Any thermal energy will lift some particles above the Fermi energy
leaving holes below. The distribution for any temperature and energy is described by
the Fermi-Dirac distribution[4]:

f (E, T) =
1

e(E−EF)/kbT + 1
. (2.24)

Figure 2.5 shows graphically eq. (2.24) at absolute zero and a finite temperature.
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We should note that eq. (2.24) describes a non-interacting gas of fermions, not a
liquid. Liquid 3He has strong inter-particle forces that attract the atoms towards each
other. A moving atom feels the pull of other atoms around itself, increasing the force
required to move it. As Landau first described, this can be effectively modelled as an
increase of mass. Taking the atom as a quasiparticle with an effective mass higher
then the atomic mass, we can then neglect the forces of other atoms vastly simplifying
the problem.

Taking all excitations as quasiparticles, we can model them as a weakly interacting
Fermi gas[4]. The interaction force is described fully in Landau’s Fermi liquid theory
by an infinite set of Landau parameters, of which only the first few are needed for
acceptable accuracy. They can be found from experimentally measurable values of
3He (heat capacity, speed of sound, etc).

Landau’s Fermi liquid theory preserves the dependencies of properties from
Fermi gas to a Fermi Liquid. In a Fermi gas, for example, we see that viscosity is
dependent on the mean collision time of the particles[4]:

η =
1
3

ρτv2
F (2.25)

where τ is the mean collision time. This itself is proportional to the inverse square of
the temperature[4]. So we know the viscosity of the Fermi liquid will be proportional
to T−2 which has been confirmed by experimental observations of 3He[50].

Properties of the fluid then differ from that for an ideal Fermi gas by a modification
provided in Landau’s theory. For example the speed of first sound c in a Fermi gas is
given by[4]:

c2 =
v2

F
3

(2.26)

While in a Fermi liquid it is modified by the addition of a second term[4]:

c2 =
v2

F
3

1 + F0

1 + 1
3 F1

(2.27)

where F0 and F1 are the first two Landau parameters.

2.2.2 Collective Modes

Due to the fermionic nature of 3He it can support modes that have no analogue in
bosonic 4He. Firstly the half-integer spin causes spin interactions between atoms
and their neighbours. In a magnetic field the spins of 3He atoms will preferentially
line up with the field. A disturbance, such as a short magnetic pulse, can cause spin
waves to propagate as the precessions of particles effect their neighbours, causing a
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precession of spins along the atoms. The spin wave’s precession frequency is known
as the Larmor frequency fL found from:

fL =
γB
2π

(2.28)

where γ is the gyromagnetic ratio of 3He, which is the ratio between the magnetic
moment and angular momentum of the atomic nucleus, and B the external field.
Usually spin waves do not have a energy gap in 3He, but the presence of a magnetic
field creates an energy gap in certain modes.

Like all liquids 3He can propagate sound waves. However, typically, as the
collision time increases (as we lower the temperature) compared to the sound wave
oscillation period, the propagation of sound becomes harder. Consider for example
a high temperature liquid compared to a dilute gas at a similar temperature; sound
in the gas cannot propagate as the particles in the gas do not collide often enough,
and the opposite is the case in the liquid. Uniquely for Fermi liquids even as the
temperature falls and the collision time increases sound still propagates, as predicted
by Landau[51]. We call this sound mode zeroth sound. Interactions with the full
surroundings and Fermi-sphere provide the necessary restoring force for sound
density fluctuations allowing the sound wave to propagate despite a lack of collisions.
The crossover from normal first sound comes when the quasiparticle collision time is
equal to the sound wave period T[4], i.e. when:

ωτ = 1, (2.29)

where ω = 2π/T.

2.2.3 Superfluid Helium-3

Despite its fermionic nature 3He was expected to have superfluid properties at low
temperatures in a analogous mechanism to superconductivity of electrons in certain
metals[52, 53]. In the Bardeen, Cooper, and Schrieffer (BCS) theory of supercon-
ductivity conduction electrons can pair up to form a boson-like superconducting
Cooper pair[54]; the newly formed quasibosons can then become a BEC explaining
the superconducting properties of the metal. Likewise in 3He two atoms can pair
together to form a Cooper pair, with a coherence length of about 65 nm at a pressure
of 1 bar[4], to form a superfluid. This process is only energetically favourable below
the transition temperature.

While superfluid 3He was predicted, the transition temperature from Fermi-
liquid into a superfluid was not known. It was found in 1971 by Lee, Osheroff and
Richardson who discovered two phase transitions along the solid liquid curve of
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FIGURE 2.6: The phase diagram of bulk 3He at low temperatures and
at zero magnetic field.

helium[55]. They were looking for solid transitions so initially these were mislabelled
as solid transitions, but nuclear magnetic resonance experiments later affirmed that
these were phase changes in the liquid[56]. Two transitions were discovered and
hence two superfluid phases, the A and B phases, had been discovered.

Multiple superfluid phases arise because pairing 3He atoms is a more complicated
process than for electrons. Atoms are not point-like particles and cannot occupy the
same space as paired electrons do. Furthermore the magnetic exchange interactions
prefer a parallel alignment of spins in the paired quasiparticles. The ground state of
the wavefunction therefore has a spin S = 1 and orbital angular momentum L = 1.
Each quantum number has 3 projections on the z axis (1, 0,−1) and combining them
all shows there is a 3× 3 matrix that describes Cooper pairs[4]. Physically speaking
this means there are multiple allowed combinations of Cooper pairs.

Having multiple combinations of Cooper pairs means superfluid 3He has mul-
tiple allowed phases as shown in the phase diagram in fig. 2.6. Lee, Osheroff and
Richardson discovered two: the A and B phases, which correspond to Cooper pair
spin projections sz = ±1 and sz = ±1, 0 respectively with each projection having an
equal population. Adding a magnetic field, as one would intuitively expect, changes
the population levels to prefer certain spin projections. The A-B phase boundary
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FIGURE 2.7: The phase diagram of bulk 3He at low temperatures with
a small finite field.
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Polar Phase 

FIGURE 2.8: A sketch of the phase diagram of bulk 3He at low temper-
atures under strong confinement from aerogel[57].
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shifts to lower temperatures and a third A1 (spin projection sz = 1) phase appears at
phase boundary from A to Fermi-liquid.

Similarly to adding a magnetic field we can alter the population levels of Cooper
pairs via the orbital angular momentum by the presence of walls. As a simplistic
picture we can see that a Cooper pair with angular momentum parallel to a wall
should be suppressed as the pair would be incident on the wall. While a Cooper pair
with angular momentum perpendicular to the wall would not be suppressed. Walls
therefore have the effect of fixing the direction of L, in an effect known as a texture.
Extreme conditions are found in parallel strands of aerogel (known as nafen) placed
tens of nm apart which leads to extreme confinement in the x-y plane and a fourth
phase known as the polar phase[57] as we see in fig. 2.8. Further phases are expected
to be found as the level of confinement increases.

2.2.4 Quasiparticle Excitations

We know that the Cooper pairs in the fluid must have a lower binding energy than
the energy of two single particles, else the condensate would never form. This leads
to an energy gap ∆ between the Cooper pairs and single quasiparticle states. The gap
is a function of temperature and in 3He-B it is quasi-isotropic. As the temperature
approaches absolute zero the gap tends to the the following limit[58]:

∆(T → 0) = 1.76TckB (2.30)

where Tc is the critical temperature to form the superfluid. To then break a Cooper pair
we require 2∆(T) that can split the Cooper pair into a quasiparticle and a quasihole.

Thermally excited quasiparticles in the superfluid can initially be considered as
a gas because there is sufficient population that collisions are frequent. Eventually
below about 0.3Tc, where the mean free path of the quasiparticles becomes longer
than the dimensions of the experimental cell, (towards T = 100 µK the mean free
path is measurable in kilometers)[22], quasiparticle-quasiparticle scattering events
become exceedingly rare and we have to neglect the gas model and enter the ballistic
regime. All of the measurements in 3He-B described later were performed in the
ballistic regime.

The energy gap changes the dispersion curve for these quasiparticles compared
to normal fluid 3He. The energy gap is above and below the Fermi energy and causes
an increase in the density of states about the gap. This raises the excitation curve
minima compared to a Fermi gas resulting in the dispersion curve shown in fig. 2.9.
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2.2.5 Quantum Vortices and Quantum Turbulence

Vortices in superfluid 3He-B arise in a similar manner to vortices described in 4He.
However the large size of the vortices and the wavefunction allows multiple different
types of vortex, of which in 3He-B there are two. At higher pressures and temperatures
these are axisymmetric and are fairly similar to 4He vortices. At low temperatures
and pressures vortices are non-axisymmetric with 2 cores. Each core carries a half
quantum circulation and the phase change of π. An extra π rotation is required
to satisfy earlier arguments and it is found in the spin direction which also rotates
by π about the core. The second core then completes the rotations with a further
rotation of π about both spin and phase. Half quantum vortices have recently been
experimentally confirmed to exist in the polar phase[59] and the A and B phases
under strong confinement[60].

The Landau velocity of 3He is much lower than 4He so that we can see it macro-
scopically with oscillatory devices. Experiments with oscillatory vibrating wire have
show that Landau’s velocity is about 27 mm s−1 above which Cooper pairs are broken
in the fluid[61, 62].
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Using eq. (2.18) we can find the quantum of circulation about the whole vortex
structure is given by:

κ =
h

2m3
(2.31)

where 2m3 is the mass of a Cooper pair. Using Landau’s velocity and eq. (2.19) the size
of the vortex can be predicted to be about 390 nm. Again this large size is expected
due to increased size of the Cooper pairs compared to 4He atoms.

Similarly to 4He superfluid 3He-B supports quantum turbulence[15], which at
the ultra low temperatures we use forms the so called pure quantum turbulence
discussed in section 2.1.3.
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Chapter 3

Mechanical Oscillators

In this work we will use vibrating wire and quartz tuning fork mechanical oscillators
as tools to explore helium physics. The small mass of wires makes them highly
sensitive to changes in the viscosity in helium and so they are ideal temperature
probes[63, 64]. Forks are more massive but typically have a high quality factor and
are sensitive devices in their own right. Both wires and forks have been used as
probes of viscosity[65, 66], temperature[66] and quantum turbulence in helium[10–15,
67, 68].

The devices we use to probe helium have characteristic length scales from about
75 µm to 0.9 µm. More recent developments have moved towards shrinking the char-
acteristic size of the oscillator to make micro and nano-electromechanical (MEMS
and NEMS) oscillators, which are able to probe helium liquids on novel scales ap-
proaching the size of a quantum vortex core and the superfluid coherence length[26,
69–72].

In this chapter we shall discuss the basics of oscillator mechanics and consider
the details relevant for vibrating wire loops and quartz tuning forks used in this
thesis. Lastly we shall explore the effects of hydrodynamic and ballistic damping on
oscillators in helium liquids.

3.1 Oscillator Basics

The dynamics of any linear oscillator can by described by the equations for simple
harmonic oscillation derived from Hooke’s law[73]. A oscillatory driving force Feiωt

at a frequency ω accelerates an object, opposed by a restoring force and a damping
force proportional to the velocity.

meff
d2x
dt2 + γmeff

dx
dt

+ kx = Feiωt (3.1)

where meff is the effective mass of the oscillator, γ the damping constant, and k the
spring constant.
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The effective mass of the oscillator is the mass of the object in vacuum plus any
contributions from fluids viscously clamped to the oscillator’s surface (discussed in
section 3.3.1). The damping constant γ has real and imaginary components γ2 and γ1

respectively that describe dissipative forces and drag from fluid backflow around the
oscillator respectively. The spring constant k can be decomposed to:

k = meffω
2
0, (3.2)

where the constant ω0 is the natural resonant frequency of the oscillator in the absence
of damping from the fluid.

When solving eq. (3.1) for the velocity amplitude v it is found that:

v(ω) =
F

meff

γ2ω2 + iω(ω2
0 −ω2 − γ1ω)

(ω2
0 −ω2 − γ1ω)2 + γ2

2ω2
. (3.3)

The equation describes a Lorentzian resonance peak with in phase and out of phase
(or quadrature) components in the real and imaginary components of the equation
respectively and is drawn in fig. 3.1.

At resonance, the in-phase component is at a maximum and the peak velocity of
the oscillator vmax is given by:

vmax =
F

meffγ2
. (3.4)

The central frequency of the resonance peak can then be found by solving:

ω2
0 −ω2 − γ1ω = 0 (3.5)

to give a resonant frequency of ω = ω′0. The physical meaning is that the damping felt
by the wire shifts the resonant frequency of the wire to ω′0. Provided the damping is
small compared to the resonant frequency, which is generally true for our oscillators,
the shift is given by:

∆ω1 = ω′0 −ω0 = −γ1

2
. (3.6)

The out of phase component has its maximal or minimal value at half the height of
the resonant peak at a frequency ω1/2. Looking at eq. (3.3) this will be found where:

ω2
0 −ω2

1/2 − γ1ω1/2 = ω2
1/2γ2

2 (3.7)

We need to additionally assume that γ2 � ω′0, which is generally true in this work,
and observe that:

ω0 −ω1/2 '
γ1 ± γ2

2
(3.8)
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FIGURE 3.1: The in phase (blue) and out of phase (orange) compo-
nents of an oscillator’s resonance. The width of the resonance is the
frequency difference between the maximal and minimal values of the

out-of-phase (or quadrature) component.
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The difference between the two solutions then allows us to find the full width at half
maximum, also known as the width, of the resonance:

∆ω2 = γ2. (3.9)

Therefore the width is directly related to the damping experienced by the oscillator.
It is worth mentioning here the height times width over drive (HWD) value which

we can see by rearranging eq. (3.4) and using eq. (3.9):

1
meff

=
vmax∆ω2

F
. (3.10)

We can see that the value is related to the effective mass alone. Since the mass of an
oscillator is a constant this means the HWD is similarly a constant that can be found
directly from fitting a Lorentizain to the oscillator’s frequency response. As we will
see below this usefully allows us to find one value of the constituent parts from the
other two (drive from the height and width for example).

3.1.1 Vibrating Wire Loop

Vibrating wire loops have long been used by researchers to make measurements in
helium liquids. They consist of a loop of superconducting NbTi wire or tantalum wire
with two legs glued to a stycast paper base. Superconducting wire is used to prevent
any Ohmic heating during low temperature measurements. A former is used to shape
the wire to the desired shape, here we will discuss the commonly used semicircular
wires which are used in this thesis, but rectangular ‘goalpost’ wires have been used
elsewhere[74, 75]. A dedicated solenoid or the demagnetisation field itself provides
the magnetic field necessary to drive the wire.

Vibrating wire loops are very sensitive when finely calibrated and are used for
thermometry in normal fluid 3He[63], 3He/4He mixtures[64] and superfluid 3He-
B[64]. A wire was used in the initial discovery of the quantisation of circulation in
superfluid 4He[39] and they have been used to investigate turbulence in both 4He
and 3He[15, 67, 68].

Figure 3.2 shows a pictorial schematic of a vibrating wire. In a magnetic field B
the wire loop feels a Lorentz force F if a current I passes through the wire. For a wire
with a leg spacing of diameter l:

F = IBl. (3.11)

The force on the wire creates motion and for an oscillatory current the wire’s velocity
v is also oscillatory. The motion causes a changing magnetic flux φB = B · A in
the magnetic field where A is vector area bounded by the wire. This creates an
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FIGURE 3.2: A schematic of a vibrating wire used in this thesis. An ac
signal causes periodic motion in the wire with a magnetic field that

creates detectable emf (see text).

electromotive-force V due to Faraday’s law:

V = −dφB

dt
. (3.12)

The area with respect to the magnetic field changes as the wire’s position changes.
The instantaneous change in the flux (assuming a constant field) is then proportional
to the change in the cross-sectional area.

V = −B
dA
dt

(3.13)

The area is given by the leg spacing multiplied by the wire’s displacement x:

A = clx, (3.14)

where c is a geometric factor for the wire. The change in the area comes from the
change in the position, that is naturally given by the velocity v. For a semi-circular
wire the maximum voltage V0 is proportional to the velocity, that must also be at a
maximum v0 :

V0 =
π

4
Blv0. (3.15)

Where π/4 is the aforementioned geometric factor.
The characteristic size of the wire is given by the diameter of the wire used to
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FIGURE 3.3: A photographic schematic of a quartz tuning fork array
and the measurement setup. The fork’s length L, width W, tine separa-
tion D and thickness T are also highlighted. An Agilent 33521A signal
generator was used to excite the forks while a SR830 or SR844 lock-in
amplifier was used to measure the response at the fundamental or

overtone resonances respectively.

make the vibrating loop d and is what mainly controls the sensitivity of the wire.
We use several different wire sizes of diameters ranging from 0.9 µm to 120 µm, the
thinnest being the most sensitive. The leg spacing also varies from 2.5 mm to 3.2 mm.

3.1.2 Tuning Forks

Piezoelectric quartz tuning forks have been used for decades as the timepieces in
digital watches, chosen for their high intrinsic quality factor, low cost and ease of
mounting; these properties also made them of interest to researchers. They were first
used for atomic force microscopy measurements[76–78] and then for quantum fluids
research, originally used as viscometers[65, 66] and thermometers[66] and later were
used to study quantum turbulence[10–14].

Figure 3.3 shows a picture of some the forks used in this thesis, and fig. 3.4 shows
a scanning electron microscope close-up image of a single fork. They were all custom
manufactured on a wafer as either single forks or arrays of 5 forks of different lengths
but the same thickness1. This allows a wide range of carefully selected resonant
frequencies to avoid cross-talk between forks. After separation from the wafer two
thin copper wires were soldered to the two contact pads for the array or single fork.
A small amount of araldite glue was then used to strengthen the join between the

1Manufactured by the Statek Corporation, 512 N. Main Street, Orange, CA 92868, USA
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FIGURE 3.4: Scanning electron microscope images of one of the forks.
Note dirt attached to the fork that can be cleaned off with acetone.

wire and tuning fork. From here the forks were then mounted in the experimental
cell.

A potential difference applied on one of the wires creates an electric field from the
electrodes along one of the prongs. The field polarizes atoms in the quartz crystal and
causes lattice deformation and the prongs are displaced. An ac signal causes periodic
motion in the prongs; the changing deformation creates a piezoelectric current that
can then be measured. This current I is proportional to the velocity v of the prong:

I = av (3.16)

where a is the fork constant unique to each fork. Likewise the force F felt by the prong
due to an applied voltage V is:

F =
1
2

aV. (3.17)

Each prong has a length L, width W, thickness T and is separated from the other
prong by a separation D and are shown schematically in fig. 3.3. A fork has an
effective mass meff equal to[25]:

meff =
1
4

ρqWTL (3.18)

where ρq is the fork material (quartz) density equal to 2659 kg m−3. Recalling equation
3.4 and substituting equations 3.16 and 3.17 allows us then find the fork constant a:

a =

√
4πmeff∆ f2 Imax

V
(3.19)
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FIGURE 3.5: Schematic of the circuit used to measure the vibrating
wires. An Agilent 33220A or 33521A signal generator was used to
excite the wire while a SR830 lock-in amplifier was used to measure

the response.

where Imax is the current response at resonance. Since I and V are experimentally
known, or measurable, all one needs to know to find the fork constant is the fork
dimension and material, giving the velocity and force on the fork. Optical measure-
ments have found that using the fork constant a to derive the velocity agrees with the
actual prong tip velocity to within about 10%[79].

As well as the fundamental mode it is possible to excite forks at the first overtone
mode. The frequency of this mode can be found via Euler-Bernoulli beam theory to
be at a frequency approximately 6.3 times the fundamental resonance frequency[25].
The mode has its own fork constant that allows the velocity to be calculated from the
same equations above. Higher modes also exist but in the measurements here they
were not measured.

3.2 Operation and Measurement

The basic measurement of any oscillator uses a signal generator paired with a lock-
in amplifier. The signal generator provides an ac signal at a specified amplitude
and frequency and a reference signal to the lock-in amplifier. The lock-in amplifier
can then measure the in-phase and out-of-phase response of its input signal at the
signal generator’s frequency and at a constant phase. Both sets of measurements are
typically performed at the root mean square amplitude and must be converted in
analysis to find the true peak velocity of the oscillator.

Figure 3.5 shows the measurement circuit used to perform the four point mea-
surement of the vibrating wire. The drive box is custom-made in house and contains
a switch to select one of a series of resistors to vary the current and a step down
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transformer (6:1) which further reduces the signal. The transformer has the additional
advantage of breaking ground loops, reducing heating. The signal then goes to the
wire and the response is stepped up by another transformer (typically 30:1, 100:1 or
1:1). A lock-in amplifier can then measure the wire’s response compared to a reference
frequency from the signal generator.

Figure 3.3 shows the setup for measuring a quartz tuning fork. Forks can be
driven directly by the signal generator, but the input signal is usually attenuated to
avoid over-driving the fork. The fork’s response is tiny (of order 1 nA) so a custom-
made voltage current converter (or trans-impedance amplifier) amplifies the signal
by 100 kV/A or 1 MV/A[80]. The signal can then be measured by a lock-in amplifier.

3.2.1 Frequency Sweep

Frequency sweeps provide the greatest amount of information about an oscillator.
The response of the oscillator at a single frequency is measured; this process is then
repeated 60 to 300 times at successive frequencies. The responses trace out the
Lorentzian curve described by eq. (3.3) as long as the resonance is within the range of
the sweep.

A slight modification to eq. (3.3) is needed to account for the background signal.
Stray capacitance and inductive couplings in the wiring and the device itself shift the
in-phase and out-of-phase components away from each other. This necessitates mea-
surement of the separate in-phase and out-of-phase components (not the modulus and
phase commonly used elsewhere) and also the adding of a polynomial background
term to the fitting Lorentzian to account for the effect. In this work, the polynomial
was linear or a constant in both the in-phase and out-of-phase components.

The time taken to measure each point should be longer then the response time τ

of the oscillator to avoid ringing effects:

τ =
2

∆ω2
. (3.20)

Successive measurements are preferably taken after 2τ where ringing effects have
largely subsided. When the device is heavily damped we usually take 1 s to measure
a point but at lower damping the measurement time should be increased to prevent
ringing. If the device has only minimal damping, frequency sweeps, if done properly,
can take hours, so other techniques can be pursued or compromises taken with
ringing.
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3.2.2 Amplitude Sweep

While staying on the resonant frequency of the oscillator, the drive is increased and
the response recorded. We can stay on resonance by minimising the ratio of the
in-phase component to the out-of-phase component to within a certain tolerance
value (<1%). If the ratio exceeds 1% the tolerance value is not passed and the program
shifts the frequency and then retakes the measurement, and possibly repeats the step
until the resonance is found.

In order to track the resonance, the aforementioned background signal must be
known for each successive drive or the ratio will be incorrect. This is found by
performing an amplitude sweep at fixed frequencies above and below resonance and
far from it (at least 10 times the width away from the central resonance). Combining
the two sweeps and taking the average allows us to find the background polynomial
as function of drive at the resonance.

Each successive point should again allow a sufficient time for measurement to
allow ringing effects to subside. An advantage of taking the down sweep is that it will
have substantially different values to the up sweep if an insufficient measurement
time is chosen. The sweep can then be retaken with a larger measurement time per
point.

3.2.3 Resonance Tracking

When the properties of the fluid change quickly, frequency sweeps can be too slow to
see any changes. We then use resonance tracking to measure the parameters of the
oscillator at a rate of around one measurement per second, though this can be changed
if even faster tracking is required. In a similar manner to the amplitude sweep, we
track the resonance of the oscillator and measure the height of the resonance. By
using the previously determined HWD, the width of the oscillator can be inferred
from the height measurement and applied drive. Typically the drive will be adjusted
to keep the height constant. Similarly to amplitude sweeps accurate knowledge of
the background signal is needed and is found by the same method.

The fast nature of the tracking means the ringing effects for near instantaneous
events do affect the resonator, especially at ultra low temperatures where resonator
widths are typically <1 Hz. This manifests itself in the data by the width curving
exponentially to the final value.

3.3 Damping in Helium Liquids

In a vacuum the only damping effects on an oscillator are the intrinsic effects of
the material that it is made of. In a fluid the damping will increase as the oscillator



3.3. Damping in Helium Liquids 33

displaces fluid and feels the viscous drag of the fluid about it when moving[81]. In
this section the effects of fluid damping will be discussed in reference to both normal
and superfluid 4He and 3He. In the ultra low temperature regime fluid effects become
insignificant and the effects of ballistic quasi-particles will dominate the damping.

3.3.1 Hydrodynamic Regime

A normal fluid has a non-zero viscosity that clamps a layer of fluid to any surface in
the fluid. This layer will be dragged along a moving surface such as a mechanical
oscillator in the fluid. This effectively adds an extra mass to the oscillator from the
fluid dragged along. We can describe the layer thickness with the viscous penetration
depth δ in terms of the fluid viscosity η, normal fluid density ρnf and oscillation
frequency f :

δ =

√
η

π f ρnf
. (3.21)

Using the normal fluid density and the oscillator surface area S and a geometrical
factor B for the oscillator’s shape, the added mass from viscous clamping will be
BρnfSδ.

Fluid backflow around the oscillator will also add a contribution to the effective
mass of the oscillator, which is described by the fluid mass displaced by the oscillator
volume V and the whole fluid density ρH as βρHV; note an extra geometric factor β

that describes the shape of the oscillator.
The enhanced mass m of the oscillator in the liquid is sum of the vacuum effective

mass mvac and hydrodynamic contributions m̃:

m = mvac + m̃ = mvac + βρHV + BρnfSδ (3.22)

The change in mass of the oscillator will cause the oscillator’s resonant frequency to
change, the spring constant will remain unchanged so using eq. (3.2) we see the new
resonant frequency ω0:

ω2
0 = ω2

0vac
mvac

m
(3.23)

in terms of the undamped vacuum resonance ω0vac. From here using eq. (3.22) we
can find the new resonance frequency and width[66]:(

f0vac

f0

)2

= 1 + β
ρH

ρm
+ B

S
Vρm

√
ηρnf

π f0
(3.24)

∆ f2 =
1
2

√
ρnfη f0

π
CS

( f0/ f0vac)2

mvac
(3.25)
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where ρm is the mass density of the oscillator and C is another geometrical factor. β,
B and C are naturally different for different types of oscillator, but also account for
imperfections from idealised characteristics so they are treated as fitting parameters.

Equation (3.25) also represents the limit of Stokes theory where the viscous pene-
tration depth is much less then characteristic size l, i.e. l � δ[50]. For small devices
or high viscosity situations such as in low temperature 3He this assumption can be
broken. In such a case a full Stokes theory calculation can find the precise frequency
shift and damping width of a cylinder with reference to the characteristic size of the
device and a prefactor that represents the imperfections of the device.

3.3.2 Ballistic Regime

As the temperature of superfluid helium decreases the normal fluid will eventually
become essentially non-existent. The remaining thermal excitations form a quasi-
particle gas in the liquid interacting with the surroundings. After further cooling in
3He below 0.3Tc the mean free path of the excitations exceeds the dimensions of the
experimental cell and the path of the quasiparticles excitations becomes ballistic.

To explore the effects of the quasiparticles on an oscillator let us consider a flat
paddle in isotropic superfluid helium. The paddle has an area A and a number
density of n quasiparticles in the liquid are moving with an average velocity equal
to the mean quasiparticle group velocity vg and a momentum equal to the Fermi
momentum pF. At rest an equal amount of quasiparticles hit the paddle on both sides.
A quasiparticle hitting on its front side exchanges 2pF momentum as it is reflected
back into the bulk by the paddle. Roughly half of the quasiparticles (and holes) will
hit the front side and so the force on the side is:

Ffront = Anvg pF (3.26)

which is exactly the same magnitude as the force on the back side.
If the paddle moves towards the front with velocity v this will change the force

on the front to An(vg + v)pF and the back to An(vg − v)pF, so the balance of forces is
no longer zero and the paddle will feel a retarding force:

F = 2AnvpF. (3.27)

In 4He these simple arguments work quite well[82]. But in 3He-B the observed force
is three orders of magnitude greater then the prediction.
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FIGURE 3.6: Andreev’s reflection of a quasiparticle in 3He-B. A quasi-
particle (red) and hole (orange) approach a velocity field causing a
Galilean transformation in the dispersion curve. The quasiparticle
at 1 penetrates the velocity field up until 2 where it no longer has
an allowed state to travel into, so it is retro-reflected into a hole that
travels back to 3. Meanwhile the hole from 1 can travel though the

field unimpeded from 1 to 2 to 3.

Andreev Reflection

In 3He-B the superflow of the liquid about the paddle as it moves interacts with
quasiparticles in addition to the paddle. To appreciate this we will look at the
quasiparticle dispersion curve of 3He-B at rest and in motion.

Figure 3.6 shows quasiparticles moving into a superflow. The quasiparticle’s
relative velocity to the superfluid will increase or decrease shifting its position on
the dispersion curve[83]. In the laboratory rest frame we see this as a slant in the
dispersion curve. Depending on the quasiparticle’s energy there may no longer be an
allowed state for the quasiparticle. At which point in order to satisfy conservation
of energy and momentum it is retro-reflected as a quasi-hole, in a process known
as Andreev reflection. A quasiparticle approaching on the other side of the curve
still has allowed states and is thus unimpeded. The process works vice-versa for
quasi-hole excitations.

This means that as the paddle’s velocity increases holes can hit the paddle increas-
ingly only from the rear while quasiparticles can hit the paddle increasingly from the
front only. Both the holes and qausiparticles exchange −2pFv energy with the paddle.
Quasiparticles and holes moving with the opposite momentum are retro-reflected
before hitting the paddle and hence the paddle will increasingly feel only a retarding
force compared to its motion. This explains the increased damping seen in oscillators
compared to 4He.
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Modifying our arguments given before, firstly lets consider the unimpeded quasi-
particles and holes able to reach the paddle. Their force will be:

F = 2ApF
〈
nvg
〉

, (3.28)

where
〈
nvg
〉

is the quasiparticle flux. Which can be found by integrating over the
allowed quasiparticle states:

〈
nvg
〉
=
∫ ∞

∆
vg(E)g(E) f (E)dE, (3.29)

where f (E) is Fermi distribution and g(E) is the density of states.
Considering that a fraction of quasiparticles and holes are Andreev reflected,

before reaching the paddle, we can not simply use the quasiparticle flux but must
integrate over the allowed states. That is the particles with an energy above ∆ + pFv:

F = −2ApF

∫ ∞

∆+pFv
vg(E)g(E) f (E)dE, (3.30)

the Fermi distribution f (E) in the ballistic regime can be approximated by a Boltz-
mann distribution, and the density of states g(E) in energy space can be combined
with the group velocity into the density of states in momentum space g(p). Most
quasiparticles and holes will be near one of the minima of the dispersion curve so we
can estimate their momentum p as pF. With these approximations eq. (3.30) becomes:

F = −2ApF
〈
nvg
〉

exp
(
−pFv
kBT

)
. (3.31)

The total force on the paddle per unit area is then:

F
A

= 2pF
〈
nvg
〉 [

1− exp
(
−pFv
kBT

)]
. (3.32)

Note this force has both velocity and temperature components. A real world subtlety
particularly for cylindrical wires is that they do not have a perfectly straight smooth
face as assumed above. Quasiparticles hitting this surface will be scattered from
surface roughness. In addition the superfluid velocity field about the oscillator is
altered by the shape of the device itself. We introduce two dimensionless geometric
fitting constants γ and λ to characterise these subtleties:

F = 2AγpF
〈
nvg
〉 1

λ

[
1− exp

(
−λpFv

kBT

)]
(3.33)
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where A is now the surface area of the device. Recalling eq. (3.4) allows us to find the
damping effect of ballistic quasiparticles in 3He on an oscillator in terms of the width.

3.4 Helium-3 Thermometry

Equation (3.33) allows the use of oscillatory devices, such as forks[11] and wires[64],
as secondary thermometers in superfluid 3He in the ballistic regime. This use has the
advantages that the temperature of the device does not matter (so there is no need for
thermalisation) and that it is directly probing the fluid.

A thermometer is typically never strongly driven, this avoids pair breaking and
also the effects of increased Andreev reflection from increased velocity. This allows
us to simplify eq. (3.33) by taking a Taylor expansion of the exponential and with
eq. (3.4) we find the thermal width ∆ f T

2 [67]:

∆ f T
2 =

dγ′

πml

p2
F

kBT
〈
nvg
〉

, (3.34)

where ml is the mass per unit length and γ′ has absorbed other geometric factors into
one constant. Using eqs. (3.30) and (3.34) and we find that:

T =
∆

kB ln
(

dγ′p2
F g(pF)

πml∆ f T
2

) . (3.35)

The value of γ′ is difficult to determine experimentally, because small variation in
temperature cause large uncertainties in γ′. However bolometric experiments allow
the value of γ′ to be inferred to an acceptable accuracy[84]; for a 4.5 µm diameter wire
it was found that γ′ is 0.28. From here it is possible to then calibrate other devices
against a device with a known value of γ′ such as has been done with 32 kHz tuning
forks[11].

The sensitivity of calibrated devices makes them ideal for use as thermometers in
superfluid 3He. They are limited though by the intrinsic width of the device, as the
total measured width is:

∆ f2 = ∆ f T
2 + ∆ f i

2. (3.36)

As the thermal damping falls the intrinsic damping of the oscillator itself will eventu-
ally dominate and the device will lose sensitivity. For wires the intrinsic width can be
quite small (about 0.03 Hz) which means even a small thermal width will dominate
allowing for thermometry above about 100 µK.
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Chapter 4

Refrigeration

In this chapter the methods of cooling the experiments described in this thesis are
discussed. This is not a comprehensive review of the methods used but is intended as
a introductory discussion of the physics of the methods involved. A full discussion
of the actual designs and trade-offs can be found elsewhere[4, 85, 86].

The work in this thesis was performed on two refrigerators. The first was a 4He
immersion cryostat used for measurements in 4He in chapter 5 and chapter 7. The
3He-4He dilution refrigerator with a adiabatic demagnetisation stage was used for
measurements in 3He in chapters 6 and 7.

4.1 4He Cryostat

The cryostat was made out of two dewars. The outer dewar holds an insulating
layer of liquid nitrogen at 77 K. While the inner dewar holds the liquid 4He bath
separated from the liquid nitrogen by the dewar’s vacuum layer. The nitrogen layer
at temperature T significantly reduces the heat radiation E from radiation from area
A by Stefan-Boltzmann’s law:

E = εσAT4, (4.1)

where ε describes the emissivity of the area and σ is a constant. By having an
insulating layer at 77 K as opposed to room temperature (∼300 K) the heat flux is
significantly reduced. Furthermore a reflective silvered surface has a low emissivity
(ε ' 0.01) and is used to decrease the radiative heat flow.

Inside the last dewar is the final vacuum and then the main helium bath. The
experiment is held by a cryogenic insert directly connected to a room temperature
plate. The insert is made of a steel tube (wall thickness about 0.1 mm) which restricts
heat conduction. The steel is made of iron with impurities that scatter heat conducting
phonons making thermal conduction slower. Along the tube a series of baffles are
placed to reflect back radiation incoming from the room temperature plate.
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The experiment has a number of measurement wires connected to instruments
outside the cryostat. The wires are made of relatively pure copper that has little
resistance to phonons. However the wires are so thin (about 50 µm) that any heat
conduction is insignificant compared to other sources. Electrical ohmic heating is also
low due to copper’s low resistance. Where superconducting wires are used there is
no ohmic heating.

For tuning fork measurements coaxial cables were used which have a larger heat
flow. This is a acceptable trade-off since the experiment could still last about 6 hours
which was sufficient for measurements.

To cool the experiment evaporative cooling of 4He is used by pumping on the
main bath. By decreasing the pressure of the helium its temperature decreases as it
follows the liquid-vapour line shown on the phase diagram in fig. 2.1. The achievable
temperature is dependent on how powerful the pump is and total heat leak. In this
thesis we found that a rotary pump cooled the 4He down to about 1.4 K at saturated
vapour pressure while a Roots pump can cool further to about 1.2 K at saturated
vapour pressure.

4.2 Dilution Refrigeration

Dilution refrigerators were first realised by Das et al. in 1965[87] and have since
become the workhorse of modern low temperature physics. No other system has
been found that can reliably obtain stable milli-kelvin scale temperatures for long
periods of time and commercial variants are used in physics labs all over the world
to cool down experiments. The work in this thesis was performed on a custom built
Lancaster Advanced Dilution Refrigerator[86], and in this section we shall discuss
the principles of its operation.

A dilution refrigerator achieves its cooling power by exploiting the phenomenon
of phase separation in 3He and 4He mixtures[85]. We can see from fig. 4.1 that cooling
a mixture of the two isotopes will cause the spontaneous separation of the mixture
into two phases, a 3He concentrated phase and a 3He dilute phase[85]. This arises due
to the inter-atomic attractive force between 4He atoms being stronger than between
3He and 4He atoms.

Figure 4.2 shows a picture of the dilution refrigerator used. We manipulate
the system when the two phases are in contact and in equilibrium in the mixing
chamber. By removing 3He atoms from the dilute phase in the still, the system
recovers equilibrium by pulling 3He across the phase boundary from the concentrated
phase into the dilute phase. Pulling atoms across incurs an energy penalty and the
system cools down, thus providing the cooling power of the refrigerator. The cooling
power is proportional to the rate of 3He flow through the phase boundary, assuming
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FIGURE 4.1: The phase diagram of a liquid 3He-4He mixture showing
the temperature vs the relative 3He concentration at the saturated
vapour pressure. The λ line shows a transition from normal fluid to
Fermi liquid 3He in superfluid 4He. From 0.87 K to 0 K the mixture

phase separates into a 3He rich and 3He dilute phase (see text).
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FIGURE 4.2: A photo of the dilution refrigerator and demagnetisation
stage of the cryostat. Condensed 3He is cooled as it flows through
the tubular and discrete heat exchangers[86] into the mixing cham-
ber. After crossing the phase boundary it flows back up through the
heat exchangers and is evaporated in the still to repeat the cycle. An
aluminium heat switch connects the mixing chamber to the demag-

netisation stage and experimental cell.
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both the dilute and concentrated phase have the same temperature the cooling power
Q̇ can be derived as[85]:

Q̇ = 84ṅ3T2. (4.2)

where ṅ3 is the molar flow rate of 3He. Heat leaking into the refrigerator raises the
base temperature and decreases the available cooling power for experiments.

To make the process continuous 3He gas is returned and cooled and condensed
into a liquid by heat exchangers with the already cooled 3He rising from the mixing
chamber. The cooled 3He then enters the mixing chamber into the 3He concentrated
phase. Here the 3He is pulled across into the dilute phase, cooling the mixing
chamber down. After the 3He is pulled across into the dilute phase it rises through
heat exchangers into the still and is evaporated. The 3He is actively pulled around
the system by external pumps that make the process continuous.

The overall cryostat has a liquid nitrogen bath and a liquid 4He bath at 4.2 K
separated from the surroundings and each other by vacuum spaces. Inside the
helium bath there is the inner vacuum chamber that holds the dilution unit and
later stages. A ‘1 K pot’ in the inner vacuum contains superfluid 4He pumped down
to about 1 K that starts the cooling of 3He gas entering the refrigerator, the pot is
continuously filled from the main 4He bath.

With the experimental cell attached the lowest temperature achievable is about
4 mK to 5 mK. It takes the dilution refrigerator about 2 weeks to cool the experiment
to this temperature. We require still lower temperatures for superfluid 3He-B so a
nuclear demagnetisation stage is staged below the mixing chamber to provide further
cooling.

4.3 Adiabatic Nuclear Demagnetisation Refrigeration

At the bottom of the vacuum chamber in fig. 4.2 connected via an aluminium su-
perconducting heat switch[85] to the mixing chamber is the experimental cell and
coolant material. Adiabatic demagnetisation of a magnetic material can cause cooling
in the material and systems in thermal contact with it. Here we discuss the use of this
process to cool 3He.

The coolant material used is copper which has the advantages of being readily
available and having a low internal magnetic field, which if too high would limit
the achievable temperature. Copper has a spin 3/2 nucleus and as fig. 4.3 shows,
in the presence of a magnetic field, the nuclear energy levels split into four levels
via Zeeman splitting[85]. At high temperatures the energy levels will be equally
populated. As we decrease the temperature however, as fig. 4.3 illustrates, the lowest
energy level will be energetically favourable and hold a high population of atoms.
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FIGURE 4.3: A simplified schematic of the nuclear energy levels of
copper without a magnetic field, with a high field at high temperature
and with a high field at a temperature close to absolute zero and a low
field at a temperature close to absolute zero. The open circles represent

the relative population levels of the levels in each circumstance.

The atomic spin of these atoms preferentially line up with the field in the same
direction.

The magnetic field is ramped up to 6.6 T, which releases the heat of magnetisation
corresponding to the energy difference between the ground energy at low field and
the final field. Figure 4.4 shows the temperature of the cell from after the magnet’s
full magnetisation to the end of the cooling process. First the dilution refrigerator
removes the excess heat over the course of a week or two and returns the cell to base
temperature (compare the two middle most parts of fig. 4.3). The field is then reduced
to about 50 mT over several hours raising the energy of the copper nuclei, and as a
consequence cooling the nuclear temperature. If we have removed all the current
in the magnet the final field is limited by the internal field of the copper. We chose
a final field of about 50 mT, because that balances the need to run vibrating wires
without using high driving voltages that could heat the experiment.

Figure 4.5 shows the entropy temperature curves of copper at the initial and final
fields of 50 mT and 6.6 T respectively. After the precool from (A) to (B) the entropy
and temperature is decreased. The demagnetisation from (B) to (C) raises the energy
of the cooper nuclei, while staying at constant entropy. As a consequence they have
to cooldown as shown in fig. 4.5. The copper nuclei reach a final temperature in the
micro-Kelvin regime[85].

The conduction electrons in the metal lattice provide the necessary thermal link
to 3He via lattice phonons and the atomic nuclei. The electrons conduct heat to the
atomic nuclei by exchanging spins with the nucleus. This process, the Korringa
mechanism, has a relatively long relaxation time. Which means the conduction
electron temperature is separated from the nuclear temperature[85]. The lattice
and conduction electrons are relatively well thermally linked and have the same
temperature.
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B=6.6T

Cell and mixing chamber 

disconnected via heat 

switch.

B→50mT

FIGURE 4.4: Semi-log plot of the measured 3He temperature in the
inner cell during the precool period of a typical demagnetisation run.
On the left we see a higher temperature due to the magnetisation of the
cell to high field. Over a two week period the dilution refrigerator cools
the cell down to 4.6 mK. The cell was then demagnetised, indicted by

the sharp turn down, cooling the cell further to about 150 µK.
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(A)

(B)(C)

Demagnetisation

Warm Up

Precool

FIGURE 4.5: The entropy of copper as a function of temperature at a
initial field Bi of 8 T and final field B f of 0.05 T. After magnetisation at
(A) the dilution refrigerator cools the system down to (B). At (B) the

field is then reduced which cools the system to (C).
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To cool liquid 3He the lattice exchange phonons with the liquid. However the
large sound velocity difference between the two systems leads to large Kapitza
resistance which limits the cooling of the 3He liquid. In practice we overcome the
Kapitza resistance by plating the copper with silver sinter[85], which increases the
thermal contact area. The final temperature of the 3He liquid, balanced between the
cooling power and a heat leak of about 2 nW, is around 100 µK to 150 µK and can be
held for about 3 to 4 days depending on the heat generated by experiments.

4.4 Noise and Heat Leak Reduction

In the ultra low temperature regime many possible sources of noise and heating can
interact with the cryostat and cause heating in the cell. Here we discuss some of these
sources and the methods used to mitigate or decrease them.

Vibrations in the cryostat are an immediate source of noise that have to be miti-
gated since they cause eddy current heating from the magnetic fields used in oper-
ation[85]. Vibration can come from the nearby pumps necessary for operation and
also nearby vehicle traffic on roads close to the building. To mitigate this pipes have
high and low frequency noise breaks, and furthermore the whole cryostat assembly is
raised on air-springs. Integral concrete blocks and lead provide the necessary mass to
decrease the resonant frequency of the system to much below 1 Hz, again decreasing
any vibrations.

Electromagnetic radiation can also cause heating on the cell. This is mostly
reduced by having the whole cryostat placed in a shielded room acting as a Faraday
cage. With this we stop mobile phone radio signals and the like disturbing the
measurements. Radio frequency emissions from instruments inside the shielded
room however can still affect the cell via pick-up by the measurement lines. Early
measurements discovered that the new light emitting diode lights switching power
supply caused excessive heating when the cell was demagnetised and it was necessary
to turn these off. Investigation showed that the lights emitted high frequency radio
noise that can could be picked by the experimental wiring. After this discovery
unnecessary instrumentation and leads were turned off and unplugged to further
decrease the noise level and cell temperature.

Other sources of heat leaks include ionizing radiation from multiple sources.
The likelihood of events was decreased by avoiding radioactive materials during
construction. Likewise the concrete blocks and lead around the cryostat protect the
cell by shielding it. However, it is of course impossible to completely block all sources
of ionizing radiation and thermometry readings from the cell bolometer at ultra low
temperatures regularly shows heating spikes like that in fig. 4.6 from the presumed
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FIGURE 4.6: The temperature measurement of one of the thermometer
wires during a heating spike from the presumed passage of radiation
through the cell bolometer. Such events are a fairly regular occurrence

during the course of measurements.
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passage of radiation. In the bulk cell these events were not seen but will certainly
cause background heating of the refrigerant.
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Chapter 5

Multi-Frequency Measurements
and Techniques

The standard setup to measure a resonance of an oscillatory device is to use a single
frequency to sweep step by step through the response of the device with a signal
generator and a lock-in amplifier. This method is well established and in addition to
studying linear oscillators, it can be used to characterise strongly non-linear Duffing-
like systems[88]. Recently researchers in the atomic force microscopy (AFM) commu-
nity have found that using multi-frequency techniques can yield the phase-separated
amplitude dependence of the non-linear forces on a resonator[19, 89, 90].

In AFM the resonance of a cantilever is used to detect the tip-surface force of a
sample. Changes to the resonance characteristics (the height and phase) at a single
frequency are used to detect non-linear atomic forces from the sample surface. To find
more information about the properties of the sample material, researchers looked into
exploiting the non-linear nature of the atomic force with multi-frequency methods[18].
These methods are specifically designed to measure non-linearity and improve the
sensitivity of the device[18].

First of all it is possible to measure the device response at higher harmonics of
the drive frequency[91]. However these harmonics do not usually coincide with
the cantilever modes of the AFM tip, limiting the response. The cantilever can be
engineered to have coincident modes or two driving tones at the first two harmonics
of the resonator can be used in Bi-modal AFM[92]. Abandoning two-frequency
excitations it is possible to synthesize a frequency band excitation and explore the
Fourier transform of the response[93]. However this method is difficult to control
and data heavy[18].

It is a well known effect that when two tones drive a non-linear resonator, extra
frequency responses known as intermodulation or mixing products are produced.
The measurement of these products characterises the signal distortion of a system.
Recent research showed that these intermodulation products can then be used to find
the non-linear forces that produced them[19].
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To better find the non-linear forces Intermodulation Products AB custom-built an
instrument to measure intermodulation products[94]. The instrument known as a
Multifrequency Lock-in Amplifier (MLA) can produce excitation signals, or tones,
at a number of frequencies simultaneously and then measure the response from a
circuit. It achieves this by using an internal base tone fb that is integer n multiplied
to the measurement frequencies fm, so that fm = n fb. Since the intermodulation
products are produced at a fixed frequency separation this is an advantageous design
for their measurement, since the measurement frequencies are separated by the fixed
frequency fb.

Quantum turbulence is also a non-linear force, so in principle a multi-frequency
excitation in such a system would also generate intermodulation products. We will
use the same techniques that have improved AFM sensitivity. These will hopefully
elicit further information about the non-linear force of quantum turbulence.

This chapter will discuss measurements made with the MLA in liquid helium. In
section 5.1 we will learn how to use it by taking measurements of a tuning fork in
the linear regime of liquid 4He. In section 5.2 we will pursue and discuss the MLA’s
primary purpose by using it to measure the non-linear forces of quantum turbulence
in 4He.

5.1 Multi-frequency effects in the Linear Regime

The response to a multi-frequency excitation spectrum for a purely linear device will
be exactly the same as for the single frequency cases. The multi-frequency response is
the superposition of all the single frequency responses at the frequencies of excitation.
Here we will show that a tuning fork is a linear device and show the validity of using
a multi-frequency technique in liquid helium to measure tuning fork resonators.

5.1.1 Multi-frequency Measurements of a Tuning fork

Quartz tuning forks as previously mentioned in chapter 3 intrinsically have a high
quality factor. For the forks used in this work the intrinsic quality factor at low
temperatures exceeds 100000. A further benefit is that they are strongly linear devices
that have negligible intrinsic non-linear forces. We can expect, in the absence of any
other source of non-linearity (such as turbulence), that multi-frequency measurements
on a tuning fork will have the same results as for a single measurement. Figure 5.1
illustrates the differences between the two techniques. The MLA can measure the
entire resonance curve simultaneously in a frequency comb. A Stanford Research
Systems SR830 lock-in amplifier can only measure one frequency at a time however
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FIGURE 5.1: A comparison between the two measurement schemes
been tested here. On top we see the MLA can measure the entire
resonances curve simultaneously. On the bottom we see the single
frequency method must map out the resonance by sweeping along the

resonance curve.

so must sweep the measurement frequency across the resonance, recording data as it
goes.

In order to test the MLA a quartz tuning fork was mounted and placed in a
4He immersion cryostat[26]. The fork was then alternately connected to an Agilent
Technologies signal generator and SR830 lock-in amplifier combination measuring at
a single frequency, and then to the MLA that can generate and measure at up to 42
frequencies. This way the fork could be measured in a single frequency mode or a
multi-frequency mode.

The tuning fork itself had a length of 2600 µm, a prong width 25 µm, a prong
thickness 90 µm and an inter-prong distance 25 µm; giving a corresponding resonance
frequency of about 12 kHz. The input signal was attenuated by 20 dB, and a 1 MV A−1

current voltage converter (transimpedance amplifier) stepped up the fork’s output to
the lock-in amplifier. The helium bath was cooled down to a temperature of 1.45 K
from 4.2 K, making the 4He-II about 90% superfluid (see fig. 2.2).
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FIGURE 5.2: Single and multi-frequency measurements of a quartz
tuning fork taken by a SR830 and the MLA respectively. The measure-

ments agree with each other closely indicating linear behavior[20].
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Figure 5.2 shows frequency sweeps of the fork taken by both by the single fre-
quency SR830 in blue circles and the multifrequency MLA in orange squares. We
normalise the results between the two instrument sets by dividing the measured cur-
rent by the drive excitation. We can see both sets of measurements closely follow the
Lorentzian fits shown by the green line for the in-phase and quadrature components.

The results shown in fig. 5.2 confirm that using the MLA in a multi-frequency
mode in the linear regime is a valid method of measurement. If the system was
non-linear we could expect to see the response of the MLA tones to be less than
the single frequency measurements as energy goes into creating intermodulation
products. Likewise the Lorentzian fit closely fits the data, further indicating a linear
system.

5.1.2 Multi-frequency Measurements of a Fork Cooling in 4He

We took further measurements while cooling down the tuning fork from He-I at 4.2 K
to He-II at 1.45 K[26]. This allowed further comparison of the Lorentzian fits between
the two instrument sets in similar conditions. Additionally this allowed us to test the
25 µm wide tuning fork against the existing hydrodynamic models.

The fork was measured by the single frequency method during a cooldown.
The instrumentation was then swapped around and on the next cooldown the
multi-frequency MLA was used. Unfortunately it was found that between the two
cooldowns the resonances changed, most notably the width would always increase.
Measurements of the frequency output of both the Agilent and the MLA showed
negligible difference at a set frequency but not enough to explain what we observed.
Furthermore, swapping both sets of instruments at 4.2 K found the same resonance.

A breakthrough came when we cleaned the fork with acetone and isopropanol
(commonly known as IPA). We found that the fork’s resonance was reset back to
the width that it had before we started the liquid helium experiments. It is possible
that the immersion fridge had oil and other dirt in it that attached to the fork (see
fig. 3.4 for an example of this) and, considering the fork’s exceptionally small size,
strongly affected the resonance. Another cause of our observations could be bubbles
from helium boil off, which could certainly explain measurement scatter in He-I;
but the high thermal conductivity of He-II means bubbles can only be formed by
cavitation which occurs at much higher velocities then were used here[95, 96]. Since
the difference was also observed with He-II it is more likely that dirt was the issue.

After cleaning the forks we used both instruments to record the fork during a
cooldown. The cooling process was paused during the measurements and instrumen-
tation swapped so dirt could not effect the comparison.
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FIGURE 5.3: The changes of the resonant square of the frequency
ratio (bottom) and width (top) for the 12 kHz fork in liquid 4He as
a function of temperature[20]. A fit to the hydrodynamic drag in
eqs. (3.24) and (3.25) (green lines) is also shown. The data has been
taken by both the SR830 (blue crosses) and the MLA (oranges dots).

Figure 5.3 shows the data taken during the cooldown comparing the two instru-
ments, at each measurement temperature we would measure the resonance curve of
the fork with each instrumentation set. We plot both the damping width and square of
the frequency ratio against the helium temperature. We show both single-frequency
measurements with blue crosses and multi-frequency as orange circles. We compare
these together with a green line that is a least squares fit to the hydrodynamic drag
using eqs. (3.24) and (3.25).

In fig. 5.3 we can see that measurements with both instruments show a similar
trend. Above the superfluid transition temperature there is some scatter in the results
which is probably due to bubbles in the helium effecting the fork. Immediately upon
entering the superfluid the bubbles and the scatter disappear. The least squares fit to
eqs. (3.24) and (3.25) found β = 0.103, B = 0.236 and C = 0.411[20].

A better hydrodynamic fit can be obtained using the vacuum frequency as a fitting
parameter to the least squares fit. The possible reason for the change of vacuum
frequency is that dirt in the helium affected the resonance characteristic of the fork in
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the initial immersion adding the additional mass. This further emphasises the effects
of dirty helium on sensitive small devices such as these forks. A dedicated cell with a
filter could prevent this being a problem in the future.

The agreement between the MLA and single frequency technique shows that
multi-frequency measurements in the linear regime of helium are completely valid
and agree with single frequency techniques.

5.2 Multi-frequency effects in the Non-Linear Regime

The success of the multi-frequency measurements in 4He lead to the logical next
step of measuring other effects in helium with the technique. Turbulence is a well
known phenomena in helium and the use of quartz tuning forks to study it is also
well documented[10–14]. However, turbulence is a non-linear effect and non-linear
effects on multi-frequency excitations cause notable differences to the linear case.

Non-linear behavior in oscillators can be seen in the deviation from the idealised
oscillator discussed in chapter 3 and section 5.1. A frequency sweep of the oscillator
will no longer show an Lorentzian curve and changing the direction of the sweep
may show hysteresis in the measured responses. Often a Duffing oscillator, which
introduces a cubic dependence in addition to the standard Hooke’s law, is used to
model the behaviour of a device in these circumstances, but this can not explain
all circumstances. In this section we derive how to extract information from the
generation of intermodulation products as set out by Haviland et al.[21, 90]. We then
apply these methods to new measurements taken for this thesis.

5.2.1 Intermodulation Products

A non-linear oscillator will not have a simple superposition of single frequency
responses as a linear device. Instead some of the input energy goes into the creation
of extra responses at additional frequencies, commonly known as intermodulation
products.

Intermodulation products have been known about in another form for centuries.
In music they are know as Tartini notes (or combination tones) after Giuseppe Tartini,
who described them[97]. If two notes are played with frequencies f1 and f2 and they
have sufficient intensity a third note at frequency f3 will be heard at the difference of
the two notes:

f3 = | f2 − f1|. (5.1)
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FIGURE 5.4: In a nonlinear system the two driving frequencies (orange
lines) generate intermodulation products (dashed blue lines) around
the driving tones at integer combinations of the two driving tones.

Responses at high frequencies about 2 f1 and above are not shown.

In addition to this note a careful listener would also pick up other notes whose
frequencies are at integer combinations of the two original notes:

fi = m f2 ± n f1, (5.2)

where m and n are any non zero integers, (see fig. 5.4). This curious effect has its
roots in the non-linear workings of the inner ear, as well as psychoacoustic effects.
A (linear) receiver recording in the same room as the listener would not be able to
detect the intermodulated notes.

Inherently non-linear devices and linear devices introduced to a non-linear force
will produce intermodulation products in multi-frequency excitations. We are inter-
ested in the case where a linear device is measuring a damping non-linear force fnl(ẋ)
as a function of velocity from quantum turbulence. To extract information about the
non-linear force, and hence quantum turbulence, we start with the equation for a
driven simple harmonic oscillator and add the non-linear damping force:

mẍ + γẋ + mω2x = F + fnl(ẋ), (5.3)
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where the dot notation indicates differential order with respect to the time t.
Considering the purely linear case we can take the the Fourier transform of eq. (3.1)

and find:
x̂ = ĜF̂ (5.4)

where Ĝ is the linear transfer function of the oscillator; the hat on x̂, etc indicates it is
now a function of frequency, bold indicates a vector or matrix variable. The linear
transfer function transforms the drive spectrum into the oscillator’s response and the
components of the matrix Ĝkl can be found as (see eq. (3.3)):

Ĝkl =


1

m(ω2
0−ω2+iγω)

for k = l

0 for k 6= l
. (5.5)

We can perform a Fourier transform on eq. (5.3), and using eq. (5.4) we can find
that:

x̂ = x̂(free) + Ĝf̂nl (5.6)

where x̂(free) is the response for the purely linear system from eq. (5.4) and x̂ is the
response of the system in the presence of non-linear forces. This assumes that the non-
linear force does not affect the driving spectrum, which in our case is true because
the fork is driven electro-mechanically and has a high effective mass.

We know that the non-linear force will create intermodulation products in the
response spectrum of x̂ at extra frequencies to that of the drive spectrum. Measuring
these can now reveal the non-linear force through eq. (5.6):

f̂nl = Ĝ
−1
(x̂− x̂(free)) (5.7)

The non-linear response will have intermodulation products due to the non-linear
forces on the fork. Equation (5.7) gives the Fourier components of the non-linear force
on the fork.

Figure 5.5 shows a visual example of eq. (5.7). In blue at the top we have mea-
sured the linear response spectrum x̂(free) on the left, and calculated the corresponding
Fourier transform to find x(t) on the right. In the middle, in orange, we show the
measured non-linear response x̂ in a similar manner-showing a couple of intermodu-
lation products. At the bottom in green we find the difference of the above to get the
non-linear force spectrum f̂nl.

The next step is to downshift the frequency of the inverse Fourier transform of
eq. (5.7) by a carrier frequency ω (typically chosen to be in the middle of the spectrum);
which will reveal an envelope function of the oscillations of the non-linear force fnl

the slowly moving amplitude of the beat pattern. Taking the real and imaginary
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FIGURE 5.5: (Not to scale). A graph showing an example of the process
in eq. (5.7). The left hand side shows the measured or derived spec-
trums while the right shows the corresponding Fourier transform (see
text for details). The linear response, non-linear response and derived

non-linear force are shown in blue, orange and green respectively.
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components of fnl will find the in-phase FI and quadrature FQ components of the non-
linear force, which we compare to the envelope functions of the velocity amplitude
to find the non-linear force as a function of the velocity amplitude A(t)[98].

FI(A) =
1
T

∫ T

0
fnl cos(ωt)dt (5.8)

FQ(A) =
1
T

∫ T

0
fnl sin(ωt)dt, (5.9)

where T is the carrier oscillation period T = 2π/ω.
The physical interpretation of FI and FQ is that they are the conservative and

non-conservative non-linear forces respectively. The in-phase force FI is related to the
frequency shift of the oscillator[21]. A negative FI would correspond to a retarding
force on the fork’s velocity, while positive would correspond to a force increasing the
fork’s speed. Negative FQ corresponds to a to energy been lost by the fork to the force
interaction and to energy storage if positive[21].

To easily compare the intermodulation amplitude sweeps to single frequency
sweeps we will need to find the peak beat velocity. This can be calculated by summing
the out of phase vQ and in phase vI measured components for each tone in quadrature:

v =
n

∑
√

v2
In + v2

Qn. (5.10)

The total force is calculated by summing the force at each tone:

F =
n

∑ F0 cos
[

arctan
(

vQn

vIn

)]
, (5.11)

where F0 is the driving force amplitude.

5.2.2 Non-Linear Forces of Quantum Turbulence in 4He

We demonstrated in section 5.1 that the tuning fork’s response was linear at low
velocities, but we did not show this at higher velocities. A key assumption of the
intermodulation technique is that the device we use is linear in the range we observe
intermodulation in. So in order to confirm that there are no intrinsic nonlinear effects
in the range of velocities we used the fork for in turbulence, we placed the fork in
a vacuum probe and immersed the probe in liquid 4He at 4.2 K. The fork had a
width of 50 µm, prong separation 90 µm, thickness 90 µm and prong length 1750 µm.
After placing the fork in 4He immersion fridge at 1.3 K we applied intermodulation
techniques to the fork as well as a single frequency amplitude sweep.
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FIGURE 5.6: (Left) A log-log plot of the force velocity curve of the fork
in He-II at 1.3 K. (Right) Velocity against frequency of the tuning fork
from the same single frequency measurements as the left hand plot.
Orange crosses show the single frequency excitation amplitude sweep,
blue x’s show the calculated force-velocity from the intermodulation
sweep and the green tri-markers show the vacuum single frequency
sweep. The red dots and letters show those sweeps that are analysed

in detail later (see text).
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The left plot of fig. 5.6 shows the force velocity curve for the fork in He-II at 1.3 K
and in vacuum at 4.2 K, it shows the distinct transition from linear laminar damping
to increased turbulent damping at about 40 cm s−1. Both the intermodulation and
single frequency sweeps are shown in the blue crosses and orange pluses respectively.
Each intermodulation data point in fig. 5.6 was measured for 60 s by the MLA to
reduce Fourier leakage. There is a slight difference in the two measurements that we
ascribe to small change in temperature between the two measurements. The vacuum
data in green show no significant intrinsic effects affecting the fork at these velocities.

The right hand side of fig. 5.6 shows the resonant frequencies of the fork as a
function of the fork’s velocity. The points were measured by the single frequency
amplitude sweep on the left plot of fig. 5.6. Initially the data are fairly vertical before
curving to the left where turbulence is generated by the fork. It was found in analysis
that the raw data had a high degree of hysteresis and moved to high frequencies at
high velocities, which is counter-intuitive to the expected behaviour. This maybe is
the fault of the measurement program tracking the frequency with Vy/Vx within 1%.
The program could be following one edge of the peak and then the other side on the
reverse sweep. To correct the raw data a correction factor was used:

∆ f1 = 2∆ f2φ (5.12)

where ∆ f1 is the frequency correction and φ the phase.
Here we present the main difference between single frequency methods and the

MLA’s measurements. While with single frequency sweeps we only use an average,
the MLA allows nonlinear force extraction from a single measured point, provided
the linear response of the device is known. Below we shall analyse in detail data
points from fig. 5.6 showing the first evidence of turbulence (A), moderate turbulence
(B) and a fully turbulent point (C). For ease we have marked these points in fig. 5.6
with red circles and letter respectively.

The method relies on been able to compare the linear and non-linear responses
of the resonator at the same drive. In AFM this is easily achieved by exciting the
resonator away from the sample’s surface. In our experiments however we cannot
remove turbulence to compare the linear and turbulent responses of the fork in
helium. In order to find the linear response at turbulent velocities we extrapolate the
linear regime data at lower velocities to higher drives. In practice we chose the first
20 sweeps from fig. 5.6 for this purpose. Because we know that the fork is linear in
the range of velocities explored, this extrapolation should be a valid assumption.
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FIGURE 5.7: Measured and derived spectrums; and their inverse
Fourier transforms at the critical velocity of 43.9 cm s−1. The non-
turbulent spectrum in blue was extrapolated from data taken before
turbulence set in. The turbulent spectrum in orange was directly
measured. The force spectrum in green was derived by comparing the

other two (for the details see text).
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FIGURE 5.8: Semi-log graph of the non-linear force as a function of
velocity amplitude at the critical velocity.

(A) Emergence of Turbulence

Figure 5.7 shows intermodulation analysis performing Fourier transforms on the
data. The top row plots a linear extrapolated spectrum and beat pattern in blue
extrapolated from the first 20 points in fig. 5.6. The middle row contains the actual
measured spectrum and corresponding Fourier transform in orange. The bottom
row has the calculated non-linear force spectrum in green found from eq. (5.7). The
measured peak fork velocity was 43.9 cm s−1 with a corresponding peak force of
76.0 nN.

For the measurements shown in fig. 5.7 we chose to put measurement tones inbe-
tween the drive tones and the tones expected to measure intermodulation products.
This was so we could easily see the effects of noise on the measurements. We can see
from both the extrapolated and measured data in fig. 5.7 noise in those inbetween
background tones, in that they do not show a flat spectrum but rise towards the
resonance. The force graphs in fig. 5.7 however do not see the effects of this noise
because the extrapolation closely follows the measured data. This implies that the
noise is linear in the drive. Fortunately the intermodulation products are larger than
the noise so it seems reasonable to carry on the analysis.
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In fig. 5.8 we show the calculated non-linear force curves as a function of the beat
amplitude of the fork. The top and bottom graphs shows the in and out of phase
force (FI and FQ) respectively. The top graph shows mostly noise between −1 nN and
1 nN until a velocity amplitude of 30 cm s−1 where it curves downwards beyond the
noise. The bottom graph we describe completely as scatter.

The curve downwards of FI indicates an conservative retarding force on the fork’s
motion. There is no evidence of any dissipative force in FQ. It could be that remnant
vortices attached to the fork are expanding outwards from the fork, increasing the
drag the fork feels. Presumably these vortices do not bud off vortex rings in a
significant manner and little energy is lost to the fluid so we do not see any evidence
of dissipation above the noise.

(B) Just Above the Critical Velocity

The next sweep shown here in fig. 5.9 is at a peak velocity of 57.0 cm s−1 and peak
force of 109 nN. We can still see the noise inbetween tones as discussed before. In
the force spectrum we can see the appearance of four intermodulation products
which gives a more developed non-linear force with a clear beat. The force looks
symmetrical and is strongly dependent on the velocity: it peaks with the velocity and
there is no force (apart from noise) if the velocity is too low.

Figure 5.10 shows the analysed non-linear force curves. The curve downwards
in FI is now more clearly developed with a deeper minimum. A slight hysteresis is
observed with the ramp down of the beat so that the force stays higher for longer as
compared to the velocity amplitude. FQ has an upwards curve at a velocity amplitude
of 45 cm s−1. The spikes down in the curve seem unlikely to be physical in nature
and are likely to be noise related. Again there seems to be hysteresis but here it falls
to zero while staying at a high velocity amplitude.

The development of a positive out of phase force in fig. 5.10 would naively suggest
that energy is being stored by the fork. However it is more likely that energy is going
into the production of vorticity. This energy is then lost to the fluid as vortex rings
bud off the remnant vorticies attached to the fork in the so called vortex mill[99].

(C) Far Above the Critical Velocity

Figure 5.11 shows a sweep far into the turbulent regime. The fork’s peak velocity in
this sweep was 1.09 m s−1 and the force was 473 nN. We can see that at this stage the
beat pattern for the measured data is asymmetrical and turbulence strongly limits
the maximal velocity of the fork. The non-linear force beat rapidly increases with a
longer tail which matches the slow decay of the velocity beat. The spectrums of the
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FIGURE 5.9: Measured and derived spectrums; and their inverse
Fourier transforms just above the critical velocity. The non-turbulent
spectrum in blue was extrapolated from data taken before turbulence
set in. The turbulent spectrum in orange was directly measured. Lastly
the force spectrum in green was derived by comparing the other two
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FIGURE 5.10: Semi-log graph of the non-linear force as a function
of the velocity amplitude just above the critical velocity. The arrows

indicate the direction of hysteresis.
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FIGURE 5.11: Measured and derived spectrums; and their inverse
Fourier transforms far above the critical velocity. The non-turbulent
spectrum in blue was extrapolated from data taken before turbulence
set in. The turbulent spectrum in orange was directly measured. Lastly
the force spectrum in green was derived by comparing the other two

(see text).

measured velocity and the calculated force show well developed intermodulation
products.

The non-linear force curves are plotted in fig. 5.12 where we see further develop-
ment of the trends started in the last sweep. Unsurprisingly, given that the non-linear
force beat is non-symmetric in fig. 5.11, both the curves show clear hysteresis. FI

again shows a slower decay in the velocity amplitude. FQ shows stronger hysteresis
but decays quickly in the velocity amplitude compared to the ramp up.

5.2.3 Discussion

Figure 5.13 shows a plot of data from figs. 5.8, 5.10 and 5.12 as well as sweeps not
shown previously, allowing us to see the evolution of turbulence more easily. In FI

we can see that all three plots mostly follow the same dependence. While the biggest
changes are seen in FQ, which when fully pushed shows a degree of hysteresis.
Though note that the velocity dependence on the rise is similar for both.
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FIGURE 5.12: Semi-log graph of the non-linear force as a function of
velocity amplitude far above the critical velocity. The arrows indicate

the direction of hysteresis.
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FIGURE 5.13: The non-linear force as a function of velocity ampli-
tude with the data from figs. 5.8, 5.10 and 5.12 in blue circles, orange
triangles and green squares respectively. Further sweeps have also
been included at the indicated peak velocities. The arrows indicate the

direction of hysteresis.



72 Chapter 5. Multi-Frequency Measurements and Techniques

The in-phase non-linear force FI we attribute to the damping effect of the boundary
layer of vorticity[100] about the tuning fork. Mutual friction with the normal fluid
adds to the effect of the layer. Naturally higher speeds will cause the vortex density
to rise[100] causing a rise in FI .

How do we physically interpret FQ? In AFM a positive FQ is seen as energy
storage by the oscillator, which in this system seems non-physical. A far more likely
interpretation is that we are seeing energy dissipation instead. This would come from
the loss of nucleated vortex rings into the bulk, the energy loss from re-connections
into phonons and mutual frictional interactions between the two fluids. Elsewhere
evidence of two critical velocities of quantum turbulence on quartz tuning forks has
been seen in the turbulent drag force[101–103]. The suggestion in the literature, that
this work supports, is that the first critical velocity corresponds to the expansion of
remnant vorticies on the fork and second is where vortex ring are budded off into the
bulk[102–105].

Comparing the forces we see that FI is around four times more than FQ at the
maximum. This suggests that the boundary layer around the fork has a larger effect
then the loss of vorticity into the bulk. Looking deeper we see that FQ is rising faster
then FI which could suggests a fully developed boundary layer steadily losing more
and more vortex rings from the vortex mill to bulk as the velocity rises[100].

5.3 Summary

In this chapter we compared a multi-frequency measurement technique to a single
frequency measurement technique and obtained the same results from both. We then
further developed the multi-frequency technique to look at the non-linear forces in
quantum turbulence.

In the linear regime we found that the MLA and SR830 lock-in amplifiers find the
same results for a fork at low excitation velocities in 4He. We also did a comparison of
frequency sweeps as we cooled 4He down from 4.2 K to 1.5 K and the results showed
that single frequency sweeps and multi-frequency methods obtain the same results.
We can conclude that single and multi-frequency methods obtain the same results
in helium which opens up multi-frequency methods to fork measurement and also
possibly multiplexing sweeps across multiple devices.

To further exploit the MLA we applied intermodulation AFM techniques to
study quantum turbulence in He-II. Using low velocity measures to extrapolate a
linear frequency spectrum we found we could successfully measure intermodulation
products produced by quantum turbulence and find the non-linear force spectrum.
Further analysis allowed us to find the in and out of phase components of the non-
linear force as a function of the velocity amplitude of the beat.
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To find the linear response of the fork in helium at turbulent velocities we extrap-
olated data from the linear regime at lower velocities. It would be far better to be
able to confirm the non-turbulent response with the turbulent response directly. With
careful cell design this might be possible by avoiding the creation of remnant vortices
during the transition to He-II from He-I, such has been done for wires[106].

The ability to resolve the in and out of phase force should allow us explore the
nature of the effects of turbulence on the fork. The method is ideal for intrinsically
linear devices such as tuning forks. Future work can look into how the nature of
of the non-linear forces change in 3He turbulence and pure quantum turbulence at
lower temperatures.
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Chapter 6

A Quasiparticle Camera in 3He-B

The visualisation of quantum turbulence is an active research topic. In classical
systems there is a wealth of information about velocity flows, boundary layers etc. By
designing and operating experiments for quantum turbulence we should find equally
valuable information for comparison with classical turbulence. In 4He researchers
have used tracer molecules (typically helium excimers[107] and solid hydrogen[108])
to trace vortex lines[7].Oscillatory devices are naturally able to feel the effects of
turbulence. However so far it is not possible to image the tangle about the device
with itself. In essence we can think of the devices more like a switch, as soon as they
detect turbulence they create turbulence. However the ultra-low temperature group
at Lancaster has developed a new visualisation method in superfluid 3He-B to exploit
these switches[24, 109, 110].

Quasiparticles in 3He are inherent to the fluid and at ultra low temperatures have
ballistic trajectories. By creating a beam of these particles and directing them at a
vortex tangle created by a wire, rotating the cryostat or neutron capture we should be
able to detect changes in the flux from interactions with the turbulence. The ability
to switch excess excitations on and off will allow us to compare images to find the
effects of turbulence.

This chapter is split into two sections. Firstly, in section 6.1 we will explain how
we create a quasiparticle beam in 3He-B, and then how we use a camera to detect it.
We will use theoretical models and simulations to discuss the properties and physics
of the beam made by the camera. In section 6.2 we will then use the camera and
quasiparticle beam to image quantum turbulence generated by a vibrating wire.

6.1 Imaging a Quasiparticle Beam

6.1.1 Generating Light - The Quasiparticle Source

The principles of any camera is fairly simple, a source of light illuminates an object
so that a camera can then image the object. The camera can detect the object by
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FIGURE 6.1: A picture of the experimental cell. The quasiparticle
camera is on the upper centre with the blackbody radiator in front of
it. A source wire is used to create turbulence for experiments and a

heater wire to heat the box. Other wires are used for thermometry.

recording the light reflected from the object, or by observing the shadow of light from
the object. In 3He-B the process of getting a ‘light’ source and recording the picture is
more complicated but the basic principle remains the same.

The actual ‘light’ source in superfluid 3He-B is a black box radiator (BBR) that
can emit a stream of quasiparticles[22, 111, 112]. The box, shown in fig. 6.1, is made
of stycast impregnated paper. At 150 µK the walls hardly produce excitations into
3He-B and can be considered as a thermal vacuum. Inside the box there are two
vibrating wires that operate as a heater and thermometer respectively. The heater
wire is excited so that it moves at a sufficient speed to break Cooper pairs and creates
quasiparticles in the fluid. These are reflected around the box and thermalise before
eventually reaching a small orifice of diameter 0.3 mm and escaping the box as a
beam towards the camera located 2 mm away.
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The power of the beam exiting the box can be deduced from[22]:

Q̇B = 2(
〈
nvg
〉

/4)ẼA (6.1)

where the factor of two accounts for the hole and quasiparticle branches,
〈
nvg
〉

is the
quasiparticle flux from section 3.3.2, A is the area of the orifice and Ẽ = kBT + ∆ is
the average energy of the quasiparticles. In the steady state the power exiting the
box is equal to the sum of the powers entering from the heater wire Q̇hw, through the
orifice and the heat leak from the walls. In practice we assume that the heat entering
through the orifice is negligible. The damping width of the thermometery wire can
be found from eq. (3.34) which we can combine with eq. (6.1) to find:

∆ f2TẼ = γ′
2dp2

F
πmAkB

Q̇B (6.2)

If we then subtract the measured value of ∆ f2TẼ at zero heating from ∆ f2TẼ with
heating, we find the width parameter W that has no contribution from ambient heat
leaks. Thus the width parameter for the box is:

WB = (∆ f2TẼ)− (∆ f2TẼ)0 (6.3)

= γ′
2dp2

F
πmAkB

Q̇hw (6.4)

which shows that W is linear with the power; so that we can write:

Q̇B = cBWB (6.5)

where cB is the constant of proportionality for the box which is a combination of the
above constants. The value of cB can be found for the BBR by measuring the applied
power against the measured width parameter WB.

6.1.2 A Quasiparticle Camera

Figure 6.1 shows the camera in front of the box, with the source wire capable of gener-
ating turbulence and quasiparticles between them (discussed below). A photograph
of the camera is shown in fig. 6.2. It is made up from a square copper block with five
tuning fork arrays (A to E) of five tuning forks (1 to 5) each which make up 25 pixels.
Each fork in a array has dimensions D = 90 µm, W = 50 µm and T = 90 µm and
length L. The lengths of each fork in the arrays (picture shown in fig. 3.3) are slightly
different along the array, chosen so that the resonances of the forks are well separated.
Likewise the arrays are identical except for the fork lengths so that all 25 forks have
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FIGURE 6.2: A picture of the camera before being mounted in the cell,
with indicated rows and columns.

distinct resonances to prevent cross-talk between the forks and experimental wiring.
The fundamental resonances of the forks range from 20 kHz to 40 kHz.

The fork centres are separated along the arrays by a distance of 1.1 mm. They
are placed in a 5.7 mm by 5.7 mm by 4.0 mm copper block. The block has 25 drilled
through cylindrical cavities of 1.0 mm diameter. Inside each cavity there is a fork
from one of the arrays.

Unfortunately arrays B and C are shorted at low temperatures so can only be
operated one at a time. A total of 20 SR830 lock-in amplifiers and 20 Agilent signal
generators excite and measure the forks in the manner shown in fig. 6.3. Groups of
five signal generators have their signals added together by a summation amplifier
with active attenuation (typically 60 dB or 80 dB) before exciting one of the arrays.
The signal of the array can then be picked up by a bank of 5 lock-in amplifiers after
a 1 MV A−1 current voltage converter steps up the response. A NI PXIe-1073 data
acquisition instrument (DAQ) is used to measure the demodulated in-phase and
quadrature components from the lock-in amplifiers for real time measurements.

While cooling down the fridge the forks were first swept in vacuum at 4.2 K to
find the vacuum frequency and intrinsic widths at low temperature. After condensing
3He into the experimental cell the forks were frequency swept at each successive
temperature step. This checked that the forks were not broken during the cooldown
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FIGURE 6.3: A picture of one of the two equipment racks used to
measure the fork arrays. On the right an electronic schematic shows
the complete setup for one fork array. Five signal generators emit
signals which are combined by the summation amplifier with active
attenuation of 60 dB or 80 dB. The signals then drive all 5 forks along
the array. The responses are then amplified by an I/V converter and
then measured by 5 lock-in amplifiers. The lock-in amplifiers output
the demodulated signal into in-phase I and quadrature Q components
into a data acquisition instrument (DAQ) for real time measurements.
Note the reference signals are not shown, for further details read

section 3.1.2.
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and provided data for other experiments.
As discussed in section 3.3.2 the velocity field about the forks causes Andreev

reflection of quasiparticles. The force of the quasiparticle flux on the fork can be
described by eq. (3.33). The forks can be operated at high and low velocity modes.
At low velocities we have already seen from eq. (3.34) that the damping from the
quasiparticle flux is linear. At higher velocities the damping becomes non-linear
as more quasiparticles are shielded by the flow field. In this regime the forks are
highly sensitive to small changes in the quasiparticle flux, increasing their effective
sensitivity. Typically in measurements we used high velocities to exploit the enhanced
sensitivity of the non-linear damping regime.

In superfluid 3He-B we can derive the power received at a pixel in a similar
manner for the black box radiator power distribution. Each pixel works as a BBR in
its own right. By using the width of the pixel’s tuning fork we obtain:

Q̇p = cpWp (6.6)

where Q̇p is the received power at the pixel, cp the pixel’s constant of proportionality
and Wp the width parameter for the pixel measured by the tuning fork. Note that
with no independent heater and thermometer it is impossible to independently
measure the inputted power and width parameter of the pixel, so there is no direct
measurement of cp. We however expect that cp is a constant and so it can be deduced
from the ratio of Q̇p to Q̇B using the width parameters.

6.1.3 Theoretical Prediction of the Black Box Radiator Beam

For an ideal box a theoretical predication for the power of the beam carried to the
pixels can be found by considering the cosine law for a light emitting disk. For a
central pixel the flux ratio of the power received to the emitted beam power is:

Q̇p

Q̇B
=

1
π

∫ 2π

0

∫ arcsin( a
R )

0
cos φ sin φ dφ dθ =

( a
R

)2
(6.7)

where R is the distance from the BBR to the camera and a the pixel radius shown
schematically in fig. 6.4.

At a non-central pixel the quasiparticle fraction becomes:

Q̇p

Q̇B
=

cpWp

cBWB
=

(
a
rp

)2

cos2 φp =
( a

R

)2
cos4 φp (6.8)

where rp is distance from the pixel’s face centre to the black box orifice centre, φp

the angle subtended by the centre of the pixel’s face to the centre of the orifice’s face.
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FIGURE 6.4: A schematic of the camera and BBR (not to scale). Impor-
tant dimensions are highlighted.

Figure 6.5 shows the prediction of eq. (6.8) for our camera.
Of course only a small fraction of the emitted quasiparticles will be incident

on a fork. Some hit the cooper matrix inbetween the holes and are effectively lost
when reflected off. At a central pixel eq. (6.7) it is estimated that 6.2% of emitted
quasiparticles are incident. A fraction of these will be able to travel through the tube
geometry and will not be detected by the fork. Furthermore some will hit the fork
behind the sensitive tip and also will not contribute to the damping. We can conclude
that the central pixels will under estimate the incident flux.

At outer pixels the situation is simpler. Even if the incident quasiparticles do
not hit the fork immediately the incident angle is such that they can be expected to
contribute to the fork’s damping from the reflection(s) off the pixel’s walls. So eq. (6.8)
should give a better estimation of the beam’s power than at the central pixels.

6.1.4 Simulations of the Quasiparticle Beam

In the theoretical prediction of the quasiparticle beam we assume that the BBR emis-
sion can be approximated as a disk source of light. In order to further test this
hypothesis against the measurements we simulated the behaviour of 106 quasiparti-
cles placed in the cylindrical geometry of the orifice. They were evenly distributed
across the inlet of the orifice as independent point-sources. The simulation included
the scattering of the quasiparticles off the orifice walls. We then assumed that if the
quasiparticles scattered off a pixel wall within a certain distance from the front face
of the camera they would be detected by that pixel’s tuning fork.
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FIGURE 6.5: Analytical prediction of the beam’s quasiparticle flux
profile on the camera from eq. (6.8).
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The scattering mechanism could be changed to simulate completely specular,
diffuse or inbetween scenarios. The post-scatter trajectory was modelled by randomly
deciding the direction within a solid angle (centred along the specular reflection angle)
determined by a specularity coefficient. A coefficient of 1 would give completely
specular reflections while 0 gave the diffuse case. Values inbetween would control
the size of the scattering solid angle. No attempt was made to model the surface
roughness and this may affect the scattering. Figure 6.9 shows the results of the
simulation, and the results are compared against measurements in section 6.1.6.

6.1.5 Measurement Scheme

For actual measurements a resonance tracker program would monitor the resonances
of the forks and thermometry wires simultaneously. The program would then record
the resonant frequency, width and height of the resonators for later analysis. Since
arrays B and C could not be simultaneously operated measurements would be
repeated twice after swapping B to C or vice versa.

While the resonance tracker was running, experiments could be performed on
the source wire or the BBR heater wire as described below. This would be either an
amplitude sweep as described in section 3.2.2 or a pulsed sweep.

Pulsed sweeps are similar to amplitude sweeps except that at each drive the
resonator would be held at the specific excitation for a longer time, such as 50 s, while
amplitude sweeps stay at a single drive for a few seconds. After each pulse the drive
was dropped down to 0 V and the cell would be allowed to relax for a while (100 s
or so) to return to base temperature before the next pulse is applied. The pulsed
sweeps allowed measurements to be averaged to decrease the scatter compared to
an amplitude sweep. Furthermore pulsed measurements offer a distinct advantage
in that they allow direct comparison with the beam on and off one after another.
This meant that esoteric heating, an example of which is shown in fig. 4.6, to the cell
during a sweep could be effectively accounted for by averaging or discarding heating
spikes from radiation.

Data Corrections and Calibrations

To accurately measure the flux at each pixel the damping width of the pixel’s tuning
fork resonance must be known accurately. The tracking program uses a measured
HWD value to find the width from the measured height of the fork. In analysis we can
remove the intrinsic width of the fork to find the thermal width and hence the power
received at that pixel. High velocity data requires a non-linear correction to account
for the reduction of damping due to Andreev reflection (see section section 3.3.2) to
find the true thermal width.
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We can deduce the value of γ for the fork using the known value for a wire γ. If
we find the ratio of the thermal width for the fork ∆ f F

2 and wire ∆ f W
2 we see that:

∆ f F
2 =

W
d

mW

mF

γF

γW
∆ f W

2 (6.9)

where mW and mF is the mass of the wire and fork respectively and W here is the fork’s
tine width; γW and γF is the value of γ constant for the wire and fork respectively. A
plot of thermal widths of the fork against the wire then allows us to find the ratio of
γW to γF and then calibrate γF.

After the experimental run during data analysis we noticed that localised over-
heating of the forks caused the thermal widths of the forks to be wrongly calculated.
We corrected this by looking at eq. (3.34), from which we see that high velocities
shield the fork from thermal quasiparticles, causing a fall in the measured width (for
a velocity below Landau’s velocity) despite the temperature of the fluid remaining
constant throughout. We can recover the true temperature with the correct values of
λ and the intrinsic width. The constant λ has been pre-calibrated for the forks from
previous work by fitting force velocity curves for the fork[23]. This then allows us
to fit the intrinsic width of the fork by comparing the calculated temperature of the
forks against velocity. For the ideal calibration the temperature remains constant for
all measured velocities of the fork.

6.1.6 Measurements of the Quasiparticle Beam

To perform the measurements of the profile of quasiparticle beam as a function of the
emitted power the heater wire in the BBR was swept, first with an amplitude sweep
and then a pulsed sweep. In analysis, the width parameters for each pixel and the
BBR thermometer were calculated, and the flux found via the ratio of Wp/WB for
each pixel.

Figure 6.6 shows the results for the quasiparticle beam plotting the ratio of width
parameters for pixels and the BBR from eqs. (6.5) and (6.6) against the power de-
posited into the box by the heater wire (Q̇B = Fv). We can see that the flux ratios
hold constant against the BBR power over a few orders of magnitude until a power
of 80 pW is reached. Below 10 pW value the signal level becomes comparable to
experimental noise and the ratios appear to be no longer constant.

Figure 6.7 shows similar measurements to fig. 6.6 but the heater wire was pulsed
instead. Likewise we can see that the width parameter ratio holds constant over few
orders of magnitude verifying the method. The improved averaging of the pulsed
sweep however allows us to see that the flux ratios hold constant for a further order
of magnitude until about 2 pW as compared to the amplitude sweep data in fig. 6.6.
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FIGURE 6.6: A semi-log plot of the ratio of the pixel and BBR width
parameters against the BBR power. In this data the heater wire in
the BBR was amplitude swept. Different colours represent different

camera rows while different symbols represent different columns.
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FIGURE 6.7: A semi-log plot of the ratio of the pixel and BBR width
parameters against the BBR power. A pulse sweep was used to drive

the BBR heater wire
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FIGURE 6.8: An image of the quasiparticle beam using the data in
fig. 6.7.

The essentially constant relationship between the received and emitted ratios
means that the beam source can be largely treated like a black-body radiator, in that
the beam’s power and direction are independent of each other. It is likely that this
relationship would continue to lower powers but we are hitting the experimental
limits of noise due to the comparatively low fraction of beam power received at each
pixel. Longer averaging times for the pulsed sweeps would decrease the experimental
scatter in the data.

Using the data in fig. 6.7 we can image the quasiparticle BBR beam in fig. 6.8 as a
heat graph and plot by column in fig. 6.9. We can see using both of these plots that the
beam is symmetrical and offset from the center of the camera, being aligned slightly
to the left by 0.47 mm, and down by 0.23 mm, as we look at the data. Figure 6.9 also
shows analytical prediction from eq. (6.8) and simulated prediction of the beam for
comparison.

From the analytical model in section 6.1.3 we see that rows A and E are in rea-
sonable agreement with the prediction with cp/cB = 0.23. With cp/cB = 0.23 we
expect 1.4% of the quasiparticles to be detected by the central pixels down from 6.2%
incident. The measured flux is about a factor of two lower then the expected ratio
which we ascribe to quasiparticles travelling straight through the pixels undetected
as we discussed.

The simulation gives a better agreement to both the outer and central pixels. It
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FIGURE 6.9: The quasiparticle flux by column for the different rows of
the camera from the data in fig. 6.7. The solid lines show the results
of a simulation of the quasiparticle flux with cp/cB = 0.19 while
the dashed lines show an analytical predication using eq. (6.8) and

cp/cB = 0.23.
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is worth noting that both fully diffuse and specular simulations were tested against
the data. It was found that the specular simulation was similar to the analytical
model and described the outer pixels well but not the central pixels. Conversely
the diffuse scattering model described the central pixels well but was low on the
periphery. Hence in fig. 6.9 we plot the simulation with scattering in between the
two extremes with specularity coefficient of 0.77 and cp/cB = 0.19. This simulation
describes both the central and outer pixels fairly well. This suggests that the measured
data supports that quasiparticle scattering at walls in 3He-B is neither fully diffuse
or specular. Also worth considering is that the walls will be coated with a 3 atomic
layer thick film of 3He, that will likely effect the scattering properties of the wall. A
future experiment could investigate this property by using 4He to plate the walls and
change the scattering properties.

6.2 Imaging Quantum Turbulence with Quasiparticles

6.2.1 Detecting and Creating Vortices

Though the camera can take a picture of the light source and it is instructive and
necessary to do so, the source wire can provide something to picture. Firstly moving
a wire through 3He-B will break Cooper pairs and create quasiparticles. It will also
create vortices in the superfluid that create a vortex tangle of quantum turbulence[15].

Figure 6.10 shows a typical force velocity curve for the source wire. At low
velocities we see a linear relationship between the force and velocity. From a velocity
of about 1 mm s−1 the behaviour becomes noticeably non-linear and a step in the
force elicits a larger increase in velocity. This is due to the superflow about the wire
causing the Andreev reflection of thermal quasiparticles, effectively shielding the
wire, decreasing the damping (see section 3.3.2). After this feature at a velocity of
about 7 mm s−1 we see that the line rapidly flattens off due to massively increased
damping from the creation of quantum vorticity and pair breaking.

The wire’s velocity for pair breaking is quite different from Landau’s velocity in
3He, which is 27 mm s−1. This is because potential flow about a cylinder causes a
factor of 2 flow enhancement at the two lines that are perpendicular to the motion[62].
The wire causes pair breaking into the normally bound states about the wire and
as long as there is an available energy state in the bulk these are emitted. In the
wire’s frame these excitations have an energy 2pFv and are emitted at an angle θ

compared to the velocity. The minimum energy of the bulk states are then given by
∆− pFv cos θ[22]. The minimum energy then occurs where cos θ = 1, and by setting



6.2. Imaging Quantum Turbulence with Quasiparticles 89

Linear

Screening of 

quasiparticles 

by Andreev 

reflection.

Pair breaking and 

turbulence production.

FIGURE 6.10: A log-log plot of a force velocity curve for the source
wire at a base temperature of 150 µK. At the lowest velocity the curve
is linear and then gently curves upwards due the shielding of quasi-
particles by Andreev’s reflection. Finally at about 7 mm s−1 the curve’s
gradient massively decreases due to damping from quantum turbu-

lence and pair breaking.



90 Chapter 6. A Quasiparticle Camera in 3He-B

vs

Hole

Quasiparticle

FIGURE 6.11: (Left) An illustration of how incoming quasiparticles
(holes in orange open circles and quasiparticles in red circles) are
Andreev reflected by the superflow about a vortex. (Right) Transmitted
fraction of quasiparticles by a quantum vortex from eq. (6.14) relative
to the center of the vortex. On the top half of the vortex holes are retro-
reflected into quasiparticles while quasiparticle can travel unimpeded,
and vice versa on the bottom half of the vortex. Behind the vortex

there is a ‘shadow’ of quasiparticles.

the excitation energy equal to the minimum bulk energy we find[22]:

vc =
∆

3pF
=

vL

3
(6.10)

where vc is the critical velocity to create an excitation.
The vortices created by the wire are topological defects in the wavefunction of the

fluid. It is currently poorly understood how or if the quasiparticles interact with a
vortex core. We do know that a quasiparticle can interact with a velocity field, such
as the superflow around a vortex. Using eq. (2.19) we can find the velocity about a
vortex as:

vs(r) =
h̄

2m3r
. (6.11)

As discussed in section 3.3.2 a superfluid velocity field shifts the dispersion curve of
3He-B. Shifting the dispersion curve causes the retro-reflection of quasiparticles and
holes by Andreev reflection about the vortex as illustrated by fig. 6.11. Quasiparticles
travelling anti-parallel to the flow are unimpeded while holes can be reflected if
they have insufficient energy to travel through. On the other side of the vortex the
process works vice-versa with holes being unimpeded and quasiparticles getting
retro-reflected.
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Figure 6.11 also shows the flux shadow of quasiparticles behind the vortex. We
can work out the fraction of quasiparticles that passes through, by considering similar
arguments to chapter 2. We need to integrate over the total allowed states with energy
above ∆ + pFvs[113]. Therefore the transmitted flux of particles is:

〈nvg〉t =
1
2
〈nvg〉i

∫ ∞

∆+pFvs

f (E)g(E)vg(E)dE (6.12)

〈nvg〉t = g(pF)kBT exp
(
−∆ + pFvs

kBT

)
(6.13)

The fraction of quasiparticles that are transmitted can be found from the incident flux
as:

f = 1−
〈nvg〉t
〈nvg〉i

= 1− exp
(
− h̄pF

2m3rkBT

)
. (6.14)

and is plotted on right hand side of fig. 6.11. Reflected quasiparticles will then retrace
their path back to the BBR[114].

The right hand side of fig. 6.11 shows that there is still an appreciable drop of
about 5% in the flux about 50 µm away from the core. Quantum turbulence is made
up of a tangle of vortex lines. The larger the vortex line density the more likely
that a quasiparticle will be reflected, further reducing the flux of particles. By then
comparing the images with and without turbulence the shadow of turbulence can be
identified and we can image quantum turbulence.

6.2.2 Measurements of the Source Wire Beam

The next measurement was the beam of quasiparticles created by the source wire
itself. The BBR heater was left off and the source wire was swept with amplitude
sweeps and the new pulsed sweep methods. This measurement is necessary so that
we can account for the beam during later turbulence measurements with the BBR
and source wire switched on.

Figure 6.12 shows the width parameter of the pixels plotted against the measured
velocity of the source wire during an amplitude sweep. We can see that all the pixels
are flat until a velocity about 6 mm s−1 where the central pixels notice an appreciable
flux. Initially the beam is fairly narrow with pixels around the periphery remaining
mostly unmoved until about 11 mm s−1 where they too start to increase. We note a
large amount of noise due to the low tuning fork velocity used decreasing the relative
sensitivity of the forks to the quasiparticle flux.

We did measure the B array to include in the data, unfortunately the B array
data was not comparable to the C array data. With the measurements between the
other arrays (A, D and E) showing different heights, albeit with the same trends. We
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FIGURE 6.12: Dependence of the measured width parameter of camera
pixels against the velocity of the source wire while the BBR beam was
off. In these measurements an amplitude sweep was used to drive the

source wire.
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FIGURE 6.13: The dependence of the measured width parameter of
the camera pixels against the velocity of the source wire while the BBR
beam was off. In these measurements a pulsed sweep was used to
drive the source wire. The grey dashed lines indicate the velocities
used to for the creation of colour map graph based images of the beam

in fig. 6.14.

suspect this was due to localised overheating during this measurement from a yet
unidentified source. This did not affect other measurements involving the B array.
It is also pertinent to note that connecting the B array to the lock-in amplifiers and
signal generators causes the temperature to rise on all cell thermometers.

Figure 6.13 again shows the width parameter versus the source wire velocity
but for a pulsed sweep. The main features are essentially similar to fig. 6.12 but we
can note some differences due to the pulsed sweep at a high tuning fork velocity
vastly increasing the sensitivity of the device. The peripheral pixels see a noticeably
increased quasiparticle flux at a velocity of 8 mm s−1, much lower than is seen in
fig. 6.12. This is probably due to significantly decreased noise in the measurements
allowing finer details to be visible.

We can see a plateau region on C3 where the the width parameter stops rising and
holds steady from 7.7 mm s−1 to 8.3 mm s−1 before continuing with the trend. One
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FIGURE 6.14: Heat graph based camera pictures on a log scale of the
measured pixel width parameters of the source wire beam while the
BBR beam was off at selected velocities. The data was taken from the
pulsed sweep shown in fig. 6.13 at the grey dashed lines. Note that B

array and E1 where not measured (see text).

might not expect such behaviour, and would instead expect a steady increase in the
emitted beam power as the source wire velocity increases. Before the plateau we also
note that the gradient is increased compared with the regular trend of the data. It is
unknown what effect might cause this, although it could be related to vortex ring
production on the source wire[115] where a vibrating wire can jump between two
velocities.

Figure 6.14 shows colour map graph based plots of the source wire beam at
selected velocities of the pulsed sweep data from fig. 6.13. We can now clearly see
that the two central pixels receive the vast majority of the quasiparticle flux at all
velocities. The beam is initially narrow on the two central pixels but broadens out at
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FIGURE 6.15: Fractional shielding of quasiparticles against the velocity
of the source wire. The source wire was driven by an amplitude sweep.

higher velocities to the periphery which agrees with previous measurements[22].

6.2.3 Measurements of Quantum Turbulence

Here both the heater wire in the black box and the turbulent source wire were used.
The beam of quasiparticle would then be incident on the vortex tangle and then
the camera. In measurements the BBR heater was left on at a constant excitation to
provide a constant beam. In the beam the source wire was swept by amplitude and
pulsed sweeps again.

Figure 6.15 shows the fractional shielding of the pixels against the source wire
velocity during an amplitude sweep of the wire. The pixels are flat until a source
wire velocity of about 7 mm s−1 is reached. At which point the central pixels start
to show a quasiparticle shadow developing. Shortly after 9 mm s−1 most pixels in
the A and C arrays shows evidence of screening. The forks D2 however does not
show screening. At about 12 mm s−1 peripheral pixels outside the wire loop in arrays
D and E begin to as well. The pixels within the loop however show no evidence of
screening until they also rise at a velocity of about 15 mm s−1.

Figure 6.16 shows similar behaviour to fig. 6.15. The data however are improved
by the averaging and better comparison of the data by the pulsed sweep.

Figure 6.17 shows colour map graph images of the fractional screening of the
pixels by quantum turbulence at selected source wire velocities. We can now clearly
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FIGURE 6.16: Fractional shielding of quasiparticles against the velocity
of the source wire. The source wire was driven by a pulsed sweep.
The grey dashed lines indicate the velocities used to for the creation of

colour map graph based images of the beam in fig. 6.17
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FIGURE 6.17: A series of heat map like images of the fractional screen-
ing of the quasiparticle flux by quantum turbulence. The data was
taken from the pulsed sweep shown in fig. 6.16 at the grey dashed

lines.
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see the behaviour just discussed, in that the turbulence initially forms above the wire
and does not appear below the wire until much higher velocities (>15 mm s−1) are
reached.

The reason that turbulence appears above the wire as seen in fig. 6.17 is not
forthcoming. One would expect that turbulence would be homogeneous about the
wire since the whole wire moves at the same velocity. It could be that the vortex mill
production sites are mainly situated on top of the wire, although one would expect
the roughness to be approximately constant all about the wire.

6.3 Conclusions

We have demonstrated the successful imaging of a quantum vortices in superfluid
3He by using ballistic quasiparticles inherent to the fluid. Furthermore we have
shown we can picture images of the quasiparticle beam from a BBR and the source
wire. This shows that in the ballistic regime of superfluid 3He quasiparticles travel
with photon like trajectories.

The use of a pulsed sweep measurements has decreased the effects of noise on the
data. This allows reliable measurements to be taken at lower powers than possible
with amplitude sweeps. Pulsed sweeps will be a useful tool for future measurements
where comparisons between the base temperature of the cell and excited state are
vital.

The images have shown that the quantum vortex tangle produced by a vibrating
wire appears above the wire. This shows that quantum turbulence is not homoge-
neous about the wire as we would have expected. We currently do not understand
why this is the case and it provides an interesting avenue for further investigation.
This could be the effects of surface roughness of the wire on the nucleation of turbu-
lence into the fluid.

We have demonstrated the ability to picture quantum vorticity and this offers up
a whole world of further investigation of phenomena in 3He superfluids. Vortices are
not the only topological defects that can imaged in superfluid 3He. For example, a
future device might be designed to image the phase boundary between the A and B
phases.

Of course 25 (or fewer in practice) pixels does not offer high resolution. With
careful design it would be possible to scale up the number of forks in the camera and
place them closer together. However the amount of wiring would have to increase
proportionally, causing further heat leaks into the cell. NEMS offer a potential step up
improvement in almost all areas[20, 27, 71], they can be placed closer together and, as
long as multiplexing of the devices is achievable, to keep the amount of wiring limited.
With finer resolution a future camera could image a single vortex, perhaps even the
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double core structure. Furthermore simulations of quantum turbulence in 4He-II
at low temperature show the formation of a boundary layer of quantum vorticity
forming at the wire’s surface[100]. Study of this layer with a higher resolution camera
would allow comparisons with the turbulent layer found in classical turbulence.
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Chapter 7

Acoustic Damping of Quartz
Tuning Forks in 3He

Acoustic emission is a mode of damping observed on tuning forks in 4He[12, 25, 116]
and 3He-4He mixtures[65, 117, 118]. Sound emission of the forks is strongly frequency
dependent and typically becomes significant at about 80 kHz to 100 kHz[25], although
this is size dependent; with bigger forks this figure would change[12]. Acoustic
emission can also affect lower frequency devices when standing waves are present[12,
103, 119]. In this chapter we will first discuss the model of acoustic emission in helium
liquids and then present new experimental results in normal and superfluid 3He.

7.1 Overall Damping Model

A fork resonating in liquid helium will feel the effects of a number of damping
sources. We have already discussed hydrodynamic damping accompanying viscosity
in section 3.3.1 and ballistic damping from quasiparticles in section 3.3.2. If the
fork has sufficient velocity, turbulence and pair breaking can also contribute to the
damping. The total damping on the fork ∆ f2 will then be the sum of contributions
from all damping sources:

∆ f2 = ∆ f i
2 + ∆ f H

2 (T) + ∆ f A
2 ( f ) + ∆ f v

2 (v), (7.1)

the intrinsic damping ∆ f i
2 of the fork, the hydrodynamic damping ∆ f H

2 discussed
previously in section 3.3.1, acoustic damping ∆ f A

2 and velocity dependent damping
∆ f v

2 . Intrinsic damping corresponds to the low temperature vacuum damping and
we assume it to be a constant. It will typically vary, however, for different forks of
different masses.

At low temperatures, the normal fluid component of the two fluid model becomes
negligible at about 950 mK in 4He and 250 µK in 3He. Instead of hydrodynamic
factors, the damping becomes dominated by the scattering of thermal excitations in
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the regime known as ballistic damping. It has no frequency dependence in 3He[11]
or 4He[82]; and the transition from hydrodynamic drag can be noted by a lack
of frequency dependence[70, 120]. Since here we are considering the damping as
function of frequency, we will therefore neglect ballistic drag as it can approximated
by a constant value.

Turbulence, as previously discussed, has a critical velocity of creation at which a
resonator will feel increased damping from the creation of vorticity in both normal
fluids and superfluids. In superfluid 3He-B at ultra-low temperatures it has a critical
velocity of about 7 mm s−1[15] while in 4He it is typically higher.

Landau’s velocity is the critical velocity needed to create excitations in a superfluid
(see section 2.1.1). In 4He it is so high (>50 m s−1) as to be unobtainable by our
resonators, because the fork’s tips would touch each other at about 2 m s−1. Landau’s
velocity in 3He is much lower at 27 mm s−1 since the fermionic condensate has a
smaller energy gap. However due to flow enhancement of the velocity field about a
fork it is seen at 9 mm s−1. All the measurements described below avoid any critical
velocity by using a tuning fork velocity below 1 mm s−1.

7.1.1 Acoustic Damping

There are two approaches developed by the Prague group[12] for modelling the
acoustic emission of a fork and hence the damping. The first model considers the
two prongs as infinite cylinders emitting cylindrical acoustic waves. This reduces
the dimension of the problem, giving the model’s name as the “2D model”. An
alternative approach considers that the fork’s prongs have the highest velocity at the
tips and naturally this will be the point of maximum emittance. The rest of the prong
is disregarded and only the tips are considered as emitters of sound waves. This
solution is fully 3 dimensional so is called the “3D model”. Both these models were
compared by the Lancaster group in 4He at 4.2 K and 1.5 K[25]. The results showed
that the 3D model gave the best approximation to the damping measured on the fork
and so we will discuss and use this model for 3He acoustic damping.

The 3D model starts with the velocity potential Φ for a point source monopole
emitting spherical acoustic waves:

Φ =
1

4π

B
r

ei(kr−ωt) (7.2)

where k is the wave number of the acoustic wave, ω is the angular frequency of
sound, r is the distance from the monopole, B is the source strength that is equal to
the emitting area times the velocity amplitude v, B = WLev; where Le is the effective
emission length. The effective emission length is related to the length L of the fork
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FIGURE 7.1: The positions of acoustic monopoles shown as circles in
the 3D model. The tips of the fork prongs are shown along with the
monopole nodes (black circles) and anti-nodes (open circles); with fork

dimensions thickness T, width W and tine (or tip) separation D.

and takes into account the velocity profile of the fork along the prong and at the
fundamental resonance is Le = 0.3915L[25].

To model the fork tips’ sound emission the 3D model places four acoustic monopoles
along a straight line as shown in fig. 7.1. The two outermost poles move sinusoidally
in anti-phase with the two innermost poles. Hence the two outermost poles have
equal strength B and the inner poles have strength −B. From here it is possible to
find the velocity profile of the whole system:

Φ3D =
iBkeiωt

2π

∞

∑
m=0
even

(2m + 1)Pm(cos(θ))hm(kr)
[

jm

(
k(D + 2T)

2

)
− jm

(
kD
2

)]
(7.3)

where Pm are Legendre polynomials, hm are spherical Hankel functions and jm are
spherical Bessel functions of the first kind. We can derive the emission power of the
quadrupole as:

P3D =
ρωW2L2

e v2

2
√

2π(D/2)(D/2 + T)

∞

∑
m=0
even

(2m + 1)
[

jm

(
k(D + 2T)

2

)
− jm

(
kD
2

)]2

. (7.4)

For the fork we can use the following definition[25] to find the damping on the
fork in terms of the power dissipation Q̇ = P3D = Fv and eq. (3.4):

∆ f2 =
Q̇

2πmeffv2 . (7.5)
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Using equation 7.4 and recalling k = 2πω/c where c is the speed of sound we can
find the fork damping due to acoustic emission as:

∆ f2 = C3D
ρ

c
W2L2

e f 2
H

meff

(
fH

f0

)2 ∞

∑
m=0
even

(2m + 1)
[

jm

(
π fH (2T + D)

c

)
− jm

(
π fHD

c

)]2

,

(7.6)
where C3D is a constant that we will treat as a fitting parameter.

In the long wavelength limit where the wavelength of emitted sound is more
than the relevant fork dimension it is possible to simplify eq. (7.6) by using a Taylor
expansion of the Bessel functions giving[25]:

∆ f2 = C3D′
64π40.39152

5
(T + D)2

ρ2
q

ρ

c5

(
fH

f0

)2

meff f 6
H, (7.7)

where ρq is the density of quartz. The fork’s mass meff is proportional to the prong
length L which itself varies with the resonant frequency as f−0.5. The ratio of the
resonant frequencies in helium and vacuum is close to unity. We can now see acoustic
damping rises in the frequency as a power law of f 5.5.

In general the model makes a few assumptions. Firstly that there is an axial
symmetry about the line of the quadrupole, this is naturally not the case for an
actual fork. The material of the fork will absorb or reflect some of the waves and the
quadrupole is already a simplification of a much richer system. Secondly we assume
that the sound energy is completely lost. In the confines of an actual experimental cell
standing waves can be set up between the fork and its surroundings. Standing waves
are much more effective at dissipating power from the fork and result in a massive
increase in the fork’s width or even double resonances[12]. Standing waves and all
other sound emission can be suppressed by placing the fork in a container with a
characteristic size less then the wavelength of sound. Lastly an implied assumption is
that the wavelength of sound is much less than the characteristic sizes of the fork i.e.
L, W � λ. It actually turns out that the wavelength of sound in helium is of the order
of the fork dimensions[12]. This will mean the power is underestimated by the model.
However this discrepancy, as well as other imperfections, should be compensated for
by the fitting parameter C3D.

7.2 Acoustic Damping Measurements in 4He

Figure 7.2 shows measurements of the damping width of the mechanical resonance
as a function of frequency for forks with a width of 75 µm. The measurements at
4.2 K and 1.5 K were taken at saturated vapour pressure in a immersion fridge, and
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have been previously reported[25]. Further measurements taken at a temperature of
450 mK and pressure of 22 bar are also shown. These measurements were performed
in a dilution refrigerator unit to achieve temperatures below 1 K[14].

Fits to the hydrodynamic damping in eq. (3.25) are also shown in fig. 7.2. In the
hydrodynamic regime at 4.2 K and 1.5 K the hydrodynamic model well describes the
fork damping up to 100 kHz as a slow rise in the damping as the frequency increases.
We use the fitting parameters previously found for the hydrodynamic model of
β = 0.2603, B = 0.28 and C = 0.542[25]. At 450 mK there is negligible normal
fluid and the damping regime is ballistic so we see no hydrodynamic damping and
therefore there is no frequency dependence in the damping.

Finally fig. 7.2 shows the full damping model from eq. (7.1). Above about 80 kHz
to 100 kHz there is a sharp rise in the frequency dependence due to sound emission
becoming the dominant damping factor on the forks at all three temperatures. The
values of the first sound velocity at saturated vapour pressure are well known and
can be looked up from reference tables[121] to be 190 m s−1 at 4.2 K and 235 m s−1 at
1.5 K. The sound velocity is sensitive to the pressure of helium and the sound velocity
value for the higher pressure data was estimated using reference [122] to be 355 m s−1.
For the acoustic parameter C3D we again used the previously determined value of
C3D = 2.17[25] at all temperatures.

At higher temperatures the models well describe the damping on the forks and
there is little scatter. At lower temperatures there is a notable scatter that we attribute
to variations in the intrinsic damping in the forks. Nevertheless despite changes in
pressure, experiment setup and temperature between the results the fitting parameters
hold and successfully describe the variations in the three discussed regimes. This is
thanks to the custom manufacturing of the forks that controls the surface roughness
to a finer degree and allows for this type of systematic study. The forks here have
a surface roughness of about 1 µm compared to 5 µm of commercially available
forks[10]. Thus we can conclude that the model is a successful description of the
damping forces on quartz tuning forks in 4He liquids.

Sound in a superfluid has a number of extra modes not normally encountered
in everyday nature. He-II has 4 modes: first sound that is the normal pressure-
density wave of everyday life and that we have observed; second sound that is an
entropy-temperature wave1; third sound that is superfluid ripples on thin films[4, 123];
and lastly fourth sound that is temperature-density waves in superleaks and narrow
channels[4, 123]. The experiments here are performed in bulk helium and so third
and fourth sound are not supported. Second sound is a bulk mode but it is believed to

1In the two fluid model one can equally treat second sound as a wave in the superfluid and normal-
fluid densities.
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couple poorly to tuning forks[12] and furthermore is frozen out at low temperatures
in the ballistic regime.

Lastly an implicit assumption in the data analysis is that the effective emission
length Le is unchanged from the fundamental to the first overtone mode. There is
no particular reason why this should be the case. However fig. 7.2 shows that data
points on the fundamental and overtone modes have a similar dependence in the
acoustic regime, validating the assumption.

7.3 Measurements in 3He

Figure 7.2 shows measurements of tuning fork damping against resonant frequency
in 3He, the forks had a width of W = 50 µm and are part of the quasiparticle camera
described in chapter 6. The camera allowed measurements on 25 tuning forks at their
fundamental and overtone modes in 3He at a range of temperatures achieved during
the course of cooling and running the fridge.

The first measurements were taken in vacuum when the cryostat was cooled
to 4.2 K. The forks themselves are cooled by the heat conduction of the electrical
leads. It is entirely possible that the forks are at a higher temperature than the
surrounding cryostat during these measurements which could explain some of the
scatter in the vacuum data of fig. 7.2. In addition flexual modes of the array body
could contribute to the damping. Measurements in normal fluid 3He were taken at
temperatures of 1.5 K, 115 mK and 10 mK. After the necessary precooling period the
cell was demagnetised and measurement temperature of 150 µK in 3He-B was used
for measurements.

The top graph of fig. 7.2 shows no initial frequency dependence that we would
expect from the ballistic regime. The data then appears to rise far more steeply than
the expected power law dependence. Furthermore in contrast to the 4He data the rise
gives the impression of starting later.

The normal fluid data in the bottom graph of fig. 7.2 shows that there is weak
frequency dependence initially in the fundamental resonances. In the 10 mK data
this weak dependence continues to the overtone data at higher frequencies. The
115 mK and 1.50 K data shows a frequency dependence which like the superfluid
data appears to start at a higher frequency then the 4He data.

Fits to the hydrodynamic model are shown in fig. 7.2. In 3He the viscosity of the
Fermi liquid increases as T2 at low temperatures[50] and at 10 mK the viscosity is
comparable to oil. The mean free path has the same dependence and this means that
the approximations used for the hydrodynamic model in eq. (3.25) break down. In
particular the fork’s small size and the high viscosity of low temperature Fermi fluid
3He violates the W � δ assumption of the earlier model (see section 3.3.1). In order to
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model the hydrodynamic damping we therefore used a full Stokes theory calculation
to find the damping on the fork[124]. We multiplied the characteristic size, or fork
width W, by 3/2 in the Stokes theory calculations of the damping, which was found
during the calibration of the 10 mK data against vibrating wire thermometers.

In fig. 7.2 we also fit the full damping model from equation eq. (7.1) (suitably
modified to include Stokes theory for the hydrodynamic contribution). The sound
velocity was found to be 169 m s−1 at 1.5 K increasing to 184 m s−1 at 115 mK and
10 mK[125]. In the superfluid the sound mode has crossed over to zero sound and the
velocity increases slightly to 190 m s−1[4]. The fitting constants used are discussed in
detail in below sub-sections.

Figure 7.3 shows frequency sweeps at the fundamental resonance of one of the
forks at all the measured temperatures. The overtone resonances is about 6.3 times
higher than the fundamental resonance and are not shown in fig. 7.3. These sweeps
were used to find each fork’s damping and resonant frequency at both the fundamen-
tal and first overtone modes of the fork. We can see how the resonance changes as the
temperature of the fork’s decreases. In the vacuum the fork’s resonance is narrowest
which then naturally increases with the addition of 3He. As the helium cools down
the resonant damping increases as 3He’s viscosity increases. In the superfluid there is
practically no normal fluid component and the width is narrow again.

Fundamental mode measurements were measured using a SR830 lock-in ampli-
fier and signal generator combination as for the quasi-particle camera. Overtone
measurements which are not shown used a SR844 high frequency lock-in amplifier
and signal generator combination which could operate in the range of frequencies the
fork overtones lie in. Where possible the fits for multiple sweeps on the forks were
used to find a mean for the resonant frequency and width of the forks. By taking the
average for the sweep the standard error in the mean could be used to provide an
uncertainty value. The uncertainties were found to be relatively small as compared
to the width and are not shown in the figures.

For the normal fluid thermometry we used the forks themselves as thermometers,
which is possible up to about 1.6 K[50]. In order to do so we calibrated the forks
against vibrating wire thermometers at 10 mK. This then allowed us to find the
temperature of the forks at the other measurement temperatures in 3He by comparing
the measured damping against the expected damping as a function of viscosity.
The validity of this method is supported by the 1.5 K measurements, with which
the temperature agrees closely with the estimated temperature of the 1 K pot (from
saturated vapour pressure recordings) the only cooling mechanism in operation at
the time.

Helium-3 (normal and superfluid) introduces a further mode, in addition to
those already mentioned, that is known as zeroth (collision-less) sound discussed
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in section 2.2.2. It has a similar dispersion curve to first sound[4] so the crossover
should not significantly effect the sound emission of the forks, despite a small velocity
difference[4].

7.3.1 Initial Fitting Attempts

In fig. 7.2 we initially fitted to the bottom edge of the data, in the belief that the data
points higher than this were affected by acoustic standing waves causing higher
damping. The superfluid data’s gradient was much steeper than the damping model
in eq. (7.1) and it was then very hard to fit the data with the acoustic model without
changing the values the values of C3D. Specifically in fig. 7.2 we used C3D = 0.3
at temperatures of 1.5 K and 150 µK; and C3D = 1.0 at 115 mK and 10 mK. For the
4He across different forks, temperatures and pressures the acoustic constant C3D was
constant, so it seemed unlikely that it changed in 3He. Also we see that the transition
to higher damping apparently occurred at a higher frequency than in 4He.

The acoustic model’s fits as discussed were unsatisfactory, which lead to the
fitting of other types of dependence to the data. In particular we concentrated on
the superfluid data which showed the most clear dependence. A polynomial order
of around 14 successfully described the data, however such a high order is clearly
un-physical because it fits no known model or excitation. Another fit shown in fig. 7.2
as dotted lines was found by using an exponential to model the data:

∆ f2( f ) = a exp
(
−b

f

)
+ ∆ f H

2 ( f ) + ∆ f i
2 (7.8)

where a and b are fitting constants. The fit closely follows the data points and it was
found that for all temperatures a = 50 MHz and b = 2.8 MHz.

This leaves open the question of the physical nature of the exponential. Such
dependencies imply an energy gap or barrier in the creation of the excitation carrying
the energy packet. Because we do not see such a dependence in 4He the excitation
needed to be unique to 3He and exist in both the normal and superfluid states where
the dependence is seen. This excludes the aforementioned zero sound that has no
energy gap and is known to have a similar dispersion curve to first sound. Unique
gaped superfluid 3He modes such as clapping and squashing are also rejected[4].

The first candidate is spin waves carried by magnons discussed in section 2.2.2.
It has recently been found that forks resonating at the Larmor frequency can feel an
extra damping force[126] in certain conditions in 3He-B. Possibly the constants a and
b could relate to the Larmor frequency. However, the different temperature data sets
were taken at vastly different fields from 0.03 T to 6.2 T. So a relation between a and



7.3. Measurements in 3He 111

45 50 55 60 65 70 75 80 85
Magnetic Field, B (mT)

0.8

0.9

1.0

1.1

1.2

1.3

Co
  e

ct
ed

 D
am

pi
ng

, Δ
f 2

−
Δf

T 2
−

Δf
in

t
2

 (Δ
z)

FIGURE 7.4: The temperature corrected damping as a function of the
magnetic field strength for the overtone resonance of one of the forks

in superfluid 3He-B.

b, which both stay constant at all measured fields and temperatures, with the Larmor
frequency is non-existent.

It is known however that surfaces in that are immersed in liquid 3He typically
have a solid layer of 3He clamped to the surface that is three atoms thick and the
magnetisation increases strongly at low temperatures[127]. Moving the magnetisation
vector will apply a damping force to the fork as has been observed[126]. In our
geometry however, assuming the magnetisation vector lines up with the external
field, there would be no change in the magnetisation direction. We have only taken
measurements at a few fields and have not done a systematic study.

Figure 7.4 summarises the available data on one of the forks and shows the
temperature independent damping as a function of the magnetic field in 3He-B. No
clear magnetic field dependence is seen in fig. 7.4 despite a doubling in the field
strength over the values measured at temperatures where the solid magnetisation of
3He is strong[127]. Higher fields in 3He-B are hard to achieve since the magnetic field
is used for cooling and as the field increases the B phase becomes distorted.

An absence of a magnetic field dependence could be explained by the presence
of a surface magnetic field created by the chrome electrical contacts on the forks.
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Speculating we could say this chrome would interact with the bulk field and affect
the magnetisation in the solid layer of 3He attached to the fork. However the Larmor
frequency at the lowest measured fields is 1.46 MHz, far above any measured reso-
nances of the tuning forks. All in all, we do not see any magnetic dependent damping
on the tuning forks here.

Lastly we note that the effect seen in ref [126] was only seen with one fork out
of two, and on a fork with a rougher surface suggesting the surface roughness has
a strong effect. The forks used in this work are likely to be considerably smoother
thanks to the custom manufacturing process. This suggests that the effect might not
be seen on our forks, but this remains an open question.

7.3.2 The Effects of Fork Confinement

Having exhausted known 3He excitations, next we looked at the effects of the camera
itself on the forks. It is well known that cavities suppress acoustic emission and
despite the open pipe nature of the camera there could still be an effect on the
forks[116]. Here we use a practice camera in 4He to find the confinement effects of
the camera on the forks and compare with the 3He results. The 4He camera has an
identical geometry to the camera in 3He but only one fork array.

Figure 7.5 shows the measured damping against the resonant frequency of the
forks in the practice camera at temperatures of 4.2 K, 1.5 K and 1.2 K at saturated
vapour pressure in 4He. Fits to hydrodynamic and full damping models in eqs. (3.25)
and (7.1) as dashed and dotted lines respectively are also shown. All fits use the same
fitting parameters found previously for 4He in section 7.2.

The low temperature data from fig. 7.5 shows that fork sound emission is sup-
pressed by the practice camera in 4He, while the 4.2 K data shows only suppression
of the first three forks overtone resonances. The two highest frequency forks do emit
sound and have corresponding damping increase to show for it. Clearly we can
conclude the camera does have an effect on sound emission by blocking sound waves
that have a wavelength above the cavity size of the camera. Variations in the sound
velocity in helium mean the effect is not clear due to the resultant frequency varia-
tions. Therefore we plot the wavelength of emitted sound to compare the 4He and
3He camera measurements from figs. 7.2 and 7.5 in fig. 7.6 by plotting the measured
damping as a function of wavelength.

Figure 7.6 shows that wavelengths higher then about 1 mm are suppressed in
both 3He and 4He. A fork placed in a cavity like we have here would only be able
to excite waves with wavelengths up to the size of the cavity. Neatly fig. 7.6 shows
that the cutoff wavelength for acoustic suppression and the camera cavity size of
1 mm agree with each other. Full suppression to the hydrodynamic damping fit line
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does not appear to occur however, which is presumably due to the open nature of
the cavity, allowing some sound waves of higher wavelengths out. We note that the
almost complete suppression however probably shows that the main direction of
tuning fork sound emission is in the camera face plane not towards the openings of
the pipe.

7.3.3 Present Understanding

We can now fit the acoustic damping for the forks in 3He, with the knowledge that
some forks have their acoustic damping suppressed[128]. As in 4He we used the
same acoustic fitting parameters for all temperatures measured in 3He. Furthermore
we assume that the acoustic emission strength is the same in both isotopes.

Figure 7.7 shows damping against frequency for the same measured points and
hydrodynamic fits as fig. 7.2 but with a different acoustic strengths in the full damping
model (the same fit is also shown in fig. 7.6). The acoustic fit uses fitting parameter
C3D = 2.17, the same as used in 4He.

The data in fig. 7.7 is not quite as clear as it was in 4He camera measurements
due to large scatter in both the superfluid and 1.5 K normal fluid data. This could
be due to an off center camera cavity alignment for the forks which can be seen in
fig. 6.2; two arrays in particularly are noticeably off-center and it is conceivable that
this would have an effect on the fork’s emission profile[116], and hence the damping.
Furthermore there is noticeable noise still in the overtone data that could be due to
temperature fluctuations during measurements or perhaps standing acoustics waves.
The intrinsic damping is much to small to be able to explain the observed scatter of
results. Despite this though the data points still seem to follow the trend suggested by
the full damping model in eq. (7.1) suggesting that we are seeing acoustic emission in
3He.

7.4 Conclusions

We investigated the frequency dependent damping of tuning forks in 3He and 4He
and found that the damping increases significantly above about 100 kHz. This rise
can be explained by the 3D model of acoustic damping along with hydrodynamic
damping or ballistic damping depending on the temperature of helium. We found
that despite changes in pressure, cell and helium isotope the 3D model of acoustic
damping successfully describes the acoustic damping felt by quartz tuning forks.

Any further experimental study of sound emission work should use forks in bulk
fluid to avoid cavity effects seen here in a custom made cell. Furthermore a wider
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spread of frequencies should be used so that the gap in between the overtone and
fundamental modes can be closed and higher frequencies investigated.

The nature of magnetic damping in 3He is still an open question, with fork
roughness apparently an important factor. A systematic study with the forks here
would seem ideal to help answer these questions. To investigate any magnetic
field effects it would be prudent to increase the fork’s sensitivity to such effects by
suppressing acoustic emission with a cavity.

In recent years researchers have developed NEMS devices of sizes approaching
the coherence length of the superfluid particles themselves. Recent experiments with
such devices have been performed in 4He[26, 27, 71, 72] and the next logical step is
to immerse these devices in 3He to open up a new regime of study. High frequency
devices placed in 3He could experience acoustic damping as for the forks described
above. However the use of cavities, be they cameras or tubes, can suppress acoustic
damping as illustrated in the experiments above.





119

Chapter 8

Summary

This thesis presented work on: using multi-frequency methods to measure the non-
linear forces of quantum turbulence in 4He-II; using a quasiparticle camera in 3He-B
to image a quasiparticle beam and quantum turbulence; and measuring acoustic
damping in normal and superfluid 3He and 4He.

We found that multi-frequency methods can be successfully used to measure the
resonance of a tuning fork in the linear regime. We directly compared multi-frequency
and single frequency measurements finding that both agreed well with each other
during the cooldown of the fork in 4He. The results suggest the MLA can be used for
fast and efficient measurements of other linear devices. In more elaborate setups it
could be used to multiplex measurements across multiple devices.

In further multi-frequency measurements we exploited existing non-linearities
in the system: while the fork was generating quantum turbulence we used a two
frequency excitation to create intermodulation products in the response of the fork.
The measurement of these intermodulation products allowed us to probe information
about the non-linear forces of quantum turbulence. These measurements found that
the in-phase component of non-linear force negatively increases after a critical velocity
showing a increased retarding force on the fork. At a slightly higher critical velocity
the quadrature component of the non-linear force increases, which we interpret as
energy loss due to vortex ring emission by the fork.

To more fully make comparisons between quantum turbulence and classical
turbulence we need to be able to see its spread about devices as well as its effects
on devices. So in superfluid 3He-B, we used a quasiparticle camera comprised of
a five by five array of quartz tuning forks to measure a beam of ballistic thermal
excitations. The quasiparticle beam was created by breaking Cooper pairs inside
a box (BBR), which escape the box via an orifice pointed toward the camera. The
increased resonance width of the forks when the BBR was heated allowed us to
find the fraction power deposited at each camera pixel. We compared the measured
quasiparticle flux to a theoretical model where quasiparticles originate on a diffuse
light emitting disk (the BBR orifice) and a simulation of quasiparticle behaviour. A
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FIGURE 8.1: A heat map image of quantum turbulence while the
source wire was moving at a speed of 15.6 mm s−1.

comparison of the measurements and simulations showed that the quasiparticles as
expected travel in the medium with light like trajectories. Our simulation accounted
for the actual thickness of the BBR orifice and showed that quasiparticles in 3He-B
experience both diffuse and specular scattering in reflections off the orifice walls.

We created turbulence in between the BBR and the camera. A fraction of quasipar-
ticles from the beam were blocked from reaching the camera by Andreev reflection
from the flow field surrounding quantum vorticies. By comparing the quasiparti-
cle flux images of the heated and unheated BBR we found the fractional screening
of quasiparticles by quantum turbulence, as shown in fig. 8.1. The measurements
showed that quantum turbulence develops above the wire initially. The cause of this
non-homogeneity is currently unknown, but is perhaps due to an excess of pinning
sites on top of the wire.

The demonstration of operating a quasiparticle camera opens up further avenues
of research in superfluid 3He-B. Images could be produced of other topological
phenomena in other experiments, such as the collapse of A-B phase interfaces. Future
cameras could increase the number of pixels and decrease the pixel size to allow for
higher resolution images of turbulence. NEMS in particular have the potential to
improve the camera in both regards.

To be able to plan experiments with NEMS effectively we need to understand the
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dissipation mechanisms of helium. To this end we measured the effect of acoustic
emission on quartz tuning forks in both 4He and 3He. In 4He we observed that
the accepted hydrodynamic and acoustic models describe the tuning fork data at
different pressures, temperatures and in different experimental cells well. In 3He we
used the forks in the quasiparticle camera to explore the acoustic damping present.
The measurements show clear evidence of acoustic emission at the temperatures
of 1.5 K, 115 mK, 10 mK and 150 µK. Interestingly the camera cavities suppressed
acoustic emission for sound wavelengths bigger then the camera cavity size of 1 mm,
making the interpretation of the data challenging. We confirmed the suppression of
sound emission with an identical camera in 4He, illustrating that acoustic emission is
responsible for the large observed fork damping at higher frequencies.

The work shows that acoustic emission in 3He can be described by the models
developed and tested in 4He. Interestingly, using the same geometric constant for
acoustic emission strength can be used in both isotopes despite the more complex
nature of fermionic 3He. It is even more remarkable due to the cross over from normal
to zero sound in 3He. This shows that the custom made forks are ideal for systematic
measurements in helium liquids. Also we see little evidence of any of any unique
Fermi-liquid excitations affecting the forks in the regions measured. Finally our work
shows that existing models can be used to predict the acoustic behaviour of devices
in 3He after measurements in 4He providing the operating frequency does not exceed
the superfluid gap.

Future work with resonating devices, such as NEMS, in 3He and 4He should be
designed to account for the affects of acoustic emission on the quality factor using
acoustic models. Designing cavities surrounding the resonator may offer partial
suppression of acoustic damping. Better still devices could be designed to operate
at frequencies below the threshold for a significant increase in the damping, and so
avoid the problem entirely. This way the sensitivity of the resonating device can be
upheld for future experiments such as NEMS based quasiparticle cameras.
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and L. Skrbek, “Multiple critical velocities in oscillatory flow of superfluid 4He
due to quartz tuning forks”, Physical Review B 94, 214503 (2016).

103D. Garg, V. B. Efimov, M. Giltrow, P. V. E. McClintock, L. Skrbek, and W. F. Vinen,
“Behavior of quartz forks oscillating in isotopically pure 4He in the T → 0 limit”,
Physical Review B 85, 144518 (2012).

104F. V. Kusmartsev, “Fluctuative Mechanism of Vortex Nucleation in the Flow of
4He”, Physical Review Letters 76, 1880 (1996).

105H. A. Nichol, L. Skrbek, P. C. Hendry, and P. V. E. McClintock, “Experimental
investigation of the macroscopic flow of He-II due to an oscillating grid in the zero
temperature limit”, Physical Review E 70, 056307 (2004).

106R. Goto, S. Fujiyama, H. Yano, Y. Nago, N. Hashimoto, K. Obara, O. Ishikawa, M.
Tsubota, and T. Hata, “Turbulence in Boundary Flow of Superfluid 4He Triggered
by Free Vortex Rings”, Physical Review Letters 100, 045301 (2008).

107D. E. Zmeev, F. Pakpour, P. M. Walmsley, A. I. Golov, W. Guo, D. N. McKinsey,
G. G. Ihas, P. V. E. McClintock, S. N. Fisher, and W. F. Vinen, “Excimers He∗2 as
Tracers of Quantum Turbulence in 4He in the T = 0 Limit”, Physical Review Letters
110, 175303 (2013).

108M. S. Paoletti, M. E. Fisher, K. R. Sreenivasan, and D. P. Lathrop, “Velocity Statistics
Distinguish Quantum Turbulence from Classical Turbulence”, Physical Review
Letters 101, 154501 (2008).

109E. A. Guise, “Developing a Quasiparticle Detector for Quantum Turbulence Imag-
ing Studies in Superfluid 3He-B”, PhD thesis (Lancaster University, 2014).

110A. J. Woods, “Visualisation of Quantum Turbulence in Superfluid 3He-B Using a
Novel 2D Quasiparticle Detector”, PhD thesis (Lancaster University, 2015).

111S. N. Fisher, A. M. Guénault, C. J. Kennedy, and G. R. Pickett, “Beyond the Two-
Fluid Model: Transition from Linear Behavior to a Velocity-Independent Force on
a Moving Object in 3He-B”, Physical Review Letters 63, 2566 (1989).

112C. J. Lambert, “Theory of pair breaking by vibrating macroscopic objects in super-
fluid 3He”, Physica B: Condensed Matter 178, 294–303 (1992).

113V. Tsepelin, A. W. Baggaley, Y. A. Sergeev, C. F. Barenghi, S. N. Fisher, G. R.
Pickett, M. J. Jackson, and N. Suramlishvili, “Visualization of quantum turbulence
in superfluid 3He-B: Combined numerical and experimental study of Andreev
reflection”, Physical Review B 96, 054510 (2017).

114C. F. Barenghi, Y. A. Sergeev, and N. Suramlishvili, “Ballistic propagation of thermal
excitations near a vortex in superfluid 3He-B”, Physical Review B 77, 104512 (2008).

https://doi.org/10.1103/PhysRevB.94.214503
https://doi.org/10.1103/PhysRevB.85.144518
https://doi.org/10.1103/PhysRevLett.76.1880
https://doi.org/10.1103/PhysRevE.70.056307
https://doi.org/10.1103/PhysRevLett.100.045301
https://doi.org/10.1103/PhysRevLett.110.175303
https://doi.org/10.1103/PhysRevLett.110.175303
https://doi.org/10.1103/PhysRevLett.101.154501
https://doi.org/10.1103/PhysRevLett.101.154501
https://doi.org/10.1103/PhysRevLett.63.2566
https://doi.org/10.1016/0921-4526(92)90208-A
https://doi.org/10.1103/PhysRevB.96.054510
https://doi.org/10.1103/PhysRevB.77.104512


132 Bibliography

115D. I. Bradley, “Repetitive Single Vortex-Loop Creation by a Vibrating Wire in
Superfluid 3He-B”, Physical Review Letters 84, 1252 (2000).

116J. Rysti and J. Touriniemi, “Quartz Tuning Forks and Acoustic Phenomena: Appli-
cation to Superfluid Helium”, Journal of Low Temperature Physics 177, 133–150
(2014).

117E. Pentti, J. Rysti, A. Salmela, A. Sebedash, and J. Tuoriniemi, “Studies on Helium
Liquids by Vibrating Wires and Quartz Tuning Forks”, Journal of Low Temperature
Physics 165, 132 (2011).

118V. A. Bakhvalova, I. A. Gritsenko, E. Rudavskii, V. K. Chagovets, and G. A. Sheshin,
“Studies of kinetic processes in a concentrated 3He-4He solution using an oscillating
tuning fork”, Low Temperature Physics 41, 502 (2015).

119A. Salmela, J. Tuoriniemi, and J. Rysti, “Acoustic Resonances in Helium Liquids
Excited by Quartz Tuning Forks”, Journal of Low Temperature Physics 162, 678–
685 (2011).

120T. S. Riekki, J. Rysti, J. T. Mäkinnen, A. P. Sebedash, V. B. Eltsov, and J. T. Tuoriniemi,
“Effects of 4He Film on Quartz Tuning Forks in 3He at Ultra-low Temperatures”,
Journal of Low Temperature Physics 196, 73–81 (2019).

121R. J. Donnelly and C. F. Barenghi, “The Observed Properties of Liquid Helium at
the Saturated Vapor Pressure”, Journal of Physical and Chemical Reference Data
27, 1217 (1998).

122B. M. Abraham, Y. Eckstein, J. B. Ketterson, M. Kuchnir, and P. R. Roach, “Velocity
of sound, Density and Grüneisen Constant in Liquid 4He”, Physical Review A 1,
250 (1970).

123K. R. Atkins, “Third and Fourth Sound in Helium II”, Physical Review 113, 962
(1959).

124G. G. Stokes, “On the effect of the internal friction of fluids on the motion of
pendulums”, Transactions of the Cambridge Philosophical Society 9, 8 (1852).

125H. L. Larquer, S. G. Sydoriak, and T. R. Roberts, “Sound Velocity and Adiabatic
Compressibility of Liquid Helium Three”, Physical Review 113, 417 (1959).
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