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Abstract 

 

This research project focused on the investigation of the palladium-catalysed decarboxylative 

asymmetric allylic alkylation (Pd-DAAA) reaction of α-anions of a 5-membered sulfone, 

sulfolane, bearing a range of ketone and ester anion stabilising substituents, in the presence 

of the (S,S)-ANDEN Phenyl Trost ligand. In the first instance, the synthesis of the prerequisite 

substrates for the Pd-DAAA reaction, namely a sulfone bearing allyl ester and phenyl ester 

substituents, and a sulfone bearing allyl ester and phenyl ketone substituents, was optimised.  

A mechanistic study followed, and it was discovered that substrates containing a 2-methyl 

substituted allyl ester were less reactive than their non-substituted counterparts, making these 

intermediates unsuitable for enolate crossover studies. Instead, 2H-labelling of the allylic ester 

was achieved in good yield with 93% deuterium incorporation at the terminal alkene position. 

Enolate crossover reactions of both ester and ketone deuterated and non-deuterated 

substrates showed significant crossover, suggesting that an outer-sphere alkylation 

mechanism operates for both ester and ketone substrates. 

Relative stereochemistry determination experiments were attempted to conclusively establish 

the mechanism of the Pd-DAAA of cyclic sulfones, using cis-5-phenyl-2-cyclohexen-1-ol as the 

allylic stereochemical label. Although benzyl ester and phenyl ketone precursors were 

successfully prepared, they were found to be unreactive in the Pd-DAAA process, even over 

an extended reaction time with temperatures up to 120 °C.  

Optimisation of the Pd-DAAA of cyclic sulfones was explored by testing the use of additives, 

in an effort to increase the observed enantioselectivity. Ultimately, no increase in 

enantioselectivity was observed as compared to previously optimised additive-free conditions. 

Using these conditions, the substrate scope of the Pd-DAAA reaction was substantially 

broadened for a range of not only 5- but also 6-membered cyclic sulfones with varying ester 

and ketone substituents, affording novel enantioenriched alkylated products with 10-94% ee. 
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Chapter 1: Literature Review  

1. Introduction 

 

Ring systems are the fundamental building blocks of the majority of small molecule drugs on 

the market currently.1 Rings provide rigidity to the drug molecule, and affect its 

pharmacokinetic and pharmacodynamics properties. Every year, on average 28% of newly 

developed drugs contain one novel ring system. However, in 2014, 40% of drugs did not 

contain sp3-hybridised carbon atoms in any ring system. This widespread use of aromatic 

systems (sp2-hybridised) could be attributed to the overuse of highly efficient cross-coupling 

methods for carbon-carbon bond formation.2 

It has been shown, however, that increasing the complexity of a drug molecule by introducing 

more sp3 and chiral centres correlates with success as the compound passes through 

development and clinical testing phases,3 and there is a decrease in the average number of 

aromatic rings per molecule in going from preclinical drug candidates to candidates that are 

successful in clinical trials.2 A potential reason for this phenomenon could be that a high 

‘aromatic proportion’ in a molecule can negatively affect aqueous solubility, a factor that must 

be carefully controlled in drug development.4 This suggests that limiting the number of aromatic 

rings per molecule could make the drug candidate statistically more developable. 

Conversely, increased saturation in a molecule is more likely to enhance its aqueous solubility 

whilst maximising the interrogation of three-dimensional chemical space.3 Since Lipinski 

developed the Rule of 5,5 a set of criteria that describe the physical properties of most oral 

small molecule drugs, the pharmaceutical industry is more conscious of the impact of the 

physical properties of a drug candidate prior to, and during, development.4 The increased 

complexity that saturated molecules offer may also enable the discovery of new binding sites 

by disrupting protein-protein interactions.6 

Additionally, toxicity is a leading cause of attrition during all phases of drug development, and 

is often due to off-target effects within the body.7 It has been shown that compounds with 

greater saturation possess lower toxicity, and it has been hypothesised that this is due to more 

complementary binding between a more three-dimensional molecule and the three-

dimensional binding sites in drug targets, limiting off-target effects.8 

The synthesis of novel saturated three-dimensional molecules is challenging, particularly those 

containing a chiral quaternary all-carbon centre. Indeed, the majority of drug molecules bearing 

this feature are derived from natural products comprising the quaternary centre, thus 

highlighting the lack of reliable synthetic methods for their construction.9 More efficient 
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assembly of quaternary stereogenic centres could significantly enhance the diversity of three-

dimensional building blocks, substantially expanding beyond the structures that natural 

products can offer. For example, most natural products have limited nitrogen incorporation, yet 

nitrogen is extremely common in medicinal chemistry, particularly for building heterocycles and 

fused compounds, as well as in cross-coupling reactions.10 

In a push towards unprecedented ring systems, spirocyclic compounds were popularised as 

novel building blocks for drug discovery in 2010 as alternatives to flat aromatic rings.11 Spiro 

rings are represented in numerous natural products,12 and they offer a high degree of three-

dimensionality, which enables more efficient use of chemical space in order to maximise 

hydrogen bonding, lipophilic, and π-stacking interactions, allowing for more complementary 

binding between the drug and its binding site.13 The rigidity of spirocycles also imposes well-

defined spatial orientation on exit vectors, leading to a larger set of vectors being accessible 

in three-dimensional space.14 It has also been found that molecules containing a small ring 

bearing a chiral quaternary centre are less subject to oxidative metabolism within the body 

than analogous molecules containing simple sp3-chains, potentially lowering toxicity.15 

Additionally, many emerging spiro building blocks for drug discovery are structurally novel, 

thus with potential for patent protection.12  

Because of the apparent benefits of incorporating spirocyclic building blocks into drug 

molecules, they are of increasing interest in the pharmaceutical industry, yet remain a rarity in 

fragment libraries.16 This is likely due to limitations in the current methods available for the 

synthesis of novel spirocyclic compounds, particularly in enantiopure form. Spirocycles 

necessarily contain a quaternary centre, and despite significant advances by Carreira et al. in 

this area,14 the stereoselective construction of chiral spirocycles remains an underdeveloped 

area.  
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1.2 A Comparison of Direct and Decarboxylative Allylic Alkylation 

 

Over the years, asymmetric allylic alkylation (AAA) and decarboxylative asymmetric allylic 

alkylation (DAAA) methodologies have been developed to allow for reliable formation of chiral 

quaternary centres by carbon-carbon bond formation. In particular, by using chiral ligands, 

these quaternary centres can be installed with high enantioselectivity. These reactions can 

proceed under mild reaction conditions, making this method attractive to industry.17 AAA and 

DAAA allow for the desired increased complexity in molecules as they can impart 

stereochemistry at quaternary centres. AAA and DAAA are unique in that they allow for a 

variety of bond types, both carbon-carbon and many carbon-heteroatom bonds, to form in the 

presence of a single catalyst.18  

Direct allylic alkylation occurs between an allylic electrophile and a nucleophile as two 

independent species. The catalytic cycle of direct allylic alkylation involves four elementary 

steps (Scheme 1). The first is complexation of a palladium catalyst to the alkene of allyl 

electrophile 1 to give palladium(0) complex 2. This is followed by the ionisation step, which 

involves an oxidative addition of palladium(0) to give π-allylpalladium(II) system 3. An incoming 

nucleophile then attacks this intermediate to form a new allylated product 4. The final step is 

decomplexation, where allylated product 5 dissociates from the palladium catalyst, which is 

then regenerated. 

 

 

 

 

 

 

 

Scheme 1 

A process similar to direct allylic alkylation is the decarboxylative allylic alkylation reaction in 

which the allylic electrophile and latent nucleophile are tethered via an ester or carbonate motif, 

such as in 6 (Scheme 2). The catalytic cycle of decarboxylative allylic alkylation begins with 

complexation of the palladium(0) catalyst to the alkene of allyl substrate 6, followed by an 

oxidative addition to give a π-allylpalladium(II) system, where the nucleophile and electrophile 
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exist as an ion pair 7, or as a covalently-bonded σ-allylpalladium(II) species 8. 7 or 8 can then 

undergo decarboxylation to give rise to enolate 9 as an ion pair, or covalently-bonded 10. The 

enolate nucleophile generated in situ then undergoes allylic alkylation to form allylated product 

11, after decomplexation.  

 

 

 

 

 

 

 

 

Scheme 2 

While direct and decarboxylative allylic alkylation reactions can afford the same products, they 

differ in a number of ways. Decarboxylative allylic alkylation reactions are unimolecular as the 

nucleophilic and electrophilic species form simultaneously in situ, and therefore high-energy 

intermediates are formed in catalytic concentrations, minimising unwanted side-reactions.19 

On the other hand, direct asymmetric allylic alkylation reactions are intermolecular processes, 

requiring stoichiometric nucleophile addition. 

A further benefit of decarboxylative allylic alkylation is the ability to regiospecifically alkylate 

non-symmetrical ketones, more specifically an enolate that is generated by decarboxylation is 

rapidly trapped by the allylic electrophile even in the presence of other enolisable positions 

without enolate scrambling.19 Conversely, direct allylic alkylation of non-symmetrical ketones 

typically requires the use of a strong base or specific enol equivalent to regioselectively form 

either the kinetic or thermodynamic enolate. This often limits the process to ketones with a 

single enolisable position, or ketones where the difference in pKa between possible enolisable 

positions is substantial. The use of mild, neutral conditions gives the decarboxylative process 

utility over a wider range of substrates.20 
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1.3 The Development of Palladium-Catalysed AAA 

 

The first allylic alkylation reaction was reported in 1965, in which the coupling of π-

allylpalladium(II) chloride and diethyl malonate (12) afforded ethyl allyl malonate (13) in 37% 

yield as well as ethyl diallylmalonate (14) in 39% yield, with metallic palladium(0) as the by-

product (Scheme 3).21  

 

 

 

 

 

Scheme 3 

The use of stoichiometric palladium would cause this first iteration of the allylic alkylation 

process to be very expensive and would prevent both the scale-up and the utility of the 

reaction. Therefore, attention turned to converting this reaction into a catalytic process.  In 

1970, two research groups reported the development of catalytic allylic alkylation reactions.22,23 

The scope of palladium catalysts that could be used for allylic alkylation was demonstrated, 

including palladium(0) complexes, such as tetrakis (triphenylphosphine)palladium(0), 

bis(triphenylphosphine)palladium(II) chloride in the presence of sodium phenoxide, and 

palladium(II) acetate in the presence of triphenylphosphine.22 

The utility of this process was demonstrated in the reaction of allylic alcohols, such as 15, with 

acetylacetone (16), using palladium(II) acetylacetonate in the presence of triphenylphosphine 

as the catalyst, to give allylated products 17 and 18 (Scheme 4).23 Subsequently, the scope of 

this method was extended to the alkylation of allylic esters and amines. 

 

 

 

 

 

Scheme 4 
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Interestingly, it was discovered that isomeric allylic alcohols 19 and 20 both yielded the same 

allylated product 21, suggesting that both reactions proceeded via a common intermediate 

(Scheme 5). 

 

 

 

 

Scheme 5 

In order to increase the utility of the allylic alkylation reaction, attention turned to the 

investigation of enantioselective variants of the allylic alkylation reaction using chiral ligands.  

Palladium-catalysed allylic alkylation reactions were originally unresponsive to asymmetric 

induction, until 1992, when a variety of bidentate ligands were synthesised, leading to the 

disclosure of the first enantioselective allylic alkylation reaction.24 Two factors in particular 

influenced the design of these ligands: first, the hypothesis that increasing the bite angle, θ, 

by altering the tether lengths in a bidentate ligand, could enhance asymmetric induction by 

pushing the chiral environment closer towards the allyl moiety; and second, the knowledge 

that the use of C2 symmetric ligands has been key for successfully inducing asymmetry in other 

reaction processes.25  

The two main groups of ligands used for allylic alkylation are Trost ligands, such as the (R,R)-

DACH phenyl Trost ligand (R,R)-L1 (Scheme 6), and phosphinooxazolines (PHOX) ligands, 

such as the (S)-t-Bu-PHOX ligand (S)-L2 (Scheme 7). An example of an allylic alkylation 

reaction using (R,R)-L1 was the AAA of a cyclohexanone derivative 22 and allyl acetate (23) 

with allylpalladium(II) chloride dimer as a source of palladium (Scheme 6), to afford 24, bearing 

an all-carbon quaternary centre, in 86% yield and 86% ee.26  

 

 

Scheme 6 
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An example of allylic alkylation using PHOX ligand (S)-L2 was the AAA reaction of acyclic 

fluorinated ketones (Scheme 7), such as 25, using allyl methyl carbonate (26) and 

allylpalladium(II) chloride dimer as the palladium source, to give α-quaternary ketone 27 in 

91% yield and 84% ee.27 

 

 

 

 

Scheme 7 

This research area has undergone substantial development since these original discoveries to 

the asymmetric allylic alkylation of a broad variety of functional groups.17  
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1.4 The Development of Palladium-Catalysed Decarboxylative AAA 

 

Two research groups reported the first decarboxylative palladium-catalysed allylic alkylation 

reaction in quick succession in 1980.28,29 The conversion of allylic cyclic β-ketoesters 28 to α-

allylic ketones 29 was reported to proceed in moderate to high yields by means of 

decarboxylative allylic alkylation (Scheme 8), using tetrakis (triphenylphosphine)palladium(0) 

in catalytic quantities.28  

 

 

 

 

Scheme 8 

While products 29 contain a quaternary all-carbon centre and therefore do not posses a second 

acidic α-proton, there were issues with dialkylation of simpler malonate systems (Scheme 9), 

such as 30, leading to lower yield of the desired monoalkylated product 31 for these reactions. 

 

 

 

 

 

Scheme 9 

Almost simultaneously, the decarboxylative allylic alkylation of allylic esters 33-35 to give ɣ,δ-

unsaturated methyl ketones 36-38 under mild conditions was reported in up to 100% yield 

(Scheme 10).29  
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Scheme 10 

Reaction A afforded the linear product 36 exclusively, with no observed branched product 

formation. The use of disubstituted allylic electrophile 34 successfully afforded 37, which 

presumably proceeded via a symmetrical π-allylpalladium(II) intermediate. Reactions A and B 

are analogous to the Carroll rearrangement but can take place at much lower temperatures, 

highlighting one of the benefits of decarboxylative allylic alkylation. Importantly, allylic 

alkylation reaction C provided a route to products 38 containing a quaternary all-carbon centre. 

Once again, there was formation of unwanted dialkylated products, such as 41, formed from 

simpler malonate systems, such as 39, leading to decreased yields of the desired 

monoalkylated product in some cases (Scheme 11). 

 

 

 

Scheme 11 

Although this reaction was successful in forming quaternary carbon centres under extremely 

mild conditions, the utility of the reaction was limited until enantioselective versions of the 

reaction emerged. 

The first enantioselective decarboxylative allylic alkylation processes were reported in 2004.30 

The use of decarboxylative asymmetric allylic alkylation of ketone enolates 42 to generate α-

chiral ketones 43 bearing quaternary all-carbon centres was demonstrated (Scheme 12), 
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giving good to excellent yields and high enantioselectivity. In this process, allyl enol carbonates 

were utilised which revealed the latent ketone enolate upon decarboxylation.  

 

 

 

 

 

 

Scheme 12 

DAAA reactions of a wide range of other functionalities have also been reported since then. In 

2011, the first decarboxylative asymmetric allylic alkylation of β-imidoester derived carbonate 

44 was disclosed (Scheme 13), with 44 undergoing DAAA in the presence of (R,R)-L3 and 

tris(dibenzylideneacetone)dipalladium(0) to form alkylated product 45 in moderate yield and 

good ee.31 

 

 

 

 

Scheme 13 

An important example of DAAA was the synthesis of a variety of α-quaternary-ẟ-lactams 47, 

in good to excellent yield and ee, from lactams 46 using tris(4,4’-methoxydibenzylidene 

acetone)dipalladium(0) and (R,R)-L4 (Scheme 14).32 The ability to construct a quaternary 

stereogenic centre in nitrogen-containing substrates was key for expanding reaction scope 

beyond the structures offered by natural products and entering chemical space relevant to 

medicinal chemistry.  
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Scheme 14 

The first DAAA reaction of aldehydes was not reported until 2015, despite aldehydes offering 

higher reactivity than ketones.33 Allyl enol carbonates 48 underwent decarboxylative allylic 

alkylation in the presence of tris(dibenzylideneacetone) dipalladium(0) and (R,R)-L4 to afford 

α-quaternary aldehydes 49 in excellent yields and moderate to good ee (Scheme 15). 

 

 

 

 

 

 

Scheme 15 

A further interesting example of DAAA was disclosed in 2017, using 4-thiopyranones 50 to 

form α-quaternary 4-thiopyranones 51 in moderate to high ee (Scheme 16).34 α-Quaternary 4-

thiopyranones were traditionally difficult to synthesise using standard enolate alkylation 

methods due to issues with ring-opening via β-sulfur elimination. The 4-thiopyranones formed 

in this reaction have potential as building blocks for drug discovery, however, the carbon-sulfur 

bond can also be reduced to form acyclic α-quaternary ketones which, again, have been 

difficult to access using traditional methods.  

 

 

 

 

 

Scheme 16 
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Having reviewed the discovery and development of enantioselective variants of palladium-

catalysed allylic alkylation reactions, methods for elucidating the mechanism of the reactions 

as well as the origins of enantioselectivity are discussed in the next two sections. 
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1.5 Elucidating the Mechanism of Allylic Alkylation Reactions 

 

There are two potential mechanisms that the palladium-catalysed allylic alkylation reaction can 

proceed by, which differ in the nucleophilic addition step (Scheme 17). The first is the inner-

sphere mechanism, whereby the nucleophile first binds to π-allylpalladium(II) complex 53 

catalyst to form 54, and the subsequent reductive elimination occurs within the metal 

coordination sphere to afford product 55. Alternatively, the reaction can proceed via an outer-

sphere mechanism, where the nucleophile attacks π-allyl system in 53 directly from the outside 

of the coordination sphere and substitutes the palladium complex to afford product 55. Whether 

the reaction mechanism is inner or outer-sphere is highly dependent on the pKaH of the 

nucleophile employed. Although there are exceptions, stabilised nucleophiles, with a pKaH of 

<25, typically undergo the reaction via the outer-sphere mechanism, whereas unstabilised 

nucleophiles, with a pKaH of >25, are typically alkylated via an inner-sphere mechanism.35 In 

addition, the mechanism can also be dependent on the chiral ligand used. 

 

 

 

 

 

 

Scheme 17 

There are a number of strategies that can be used to provide evidence for which mechanism 

is in operation. One such approach is to perform enolate crossover experiments. In 2005, 

crossover experiments using a 1:1 mixture of allyl and crotyl enol carbonates, 56 and 57, 

respectively, were conducted and minimal crossover was observed, with a 10:1 ratio of the 

expected allylated product 58 to the crossover allylated product 59, in addition to crotylated 

products (Scheme 18).36 The lack of crossover was attributed to the rate of alkylation 

surpassing the rate of diffusion of the enolate and π-allylpalladium(II) cation generated upon 

decarboxylation from the solvent cage, as 1,4-dioxane is better at forming solvent-caged ion 

pairs than tetrahydrofuran, for example.  
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Scheme 18 

In the same year, crossover experiments using a 1:1 mixture of deuterated allyl enol 

carbonates 60 and 61 using tetrahydrofuran, benzene and 1,4-dioxane as solvents were 

performed (Scheme 19).37 In addition to observing deuterium scrambling by NMR 

spectroscopy, high resolution mass spectrometry indicated the presence of all four potential 

crossover products in approximately equal amounts, which, in addition to observed deuterium 

scrambling by NMR spectroscopy, gave rise to a mixture of 6 isomers of 62. This experiment 

indicated that the π-allylpalladium(II) complex and the enolate readily dissociate from one 

another under the reaction conditions, strongly suggesting that alkylation proceeds via an 

outer-sphere mechanism.  

 

 

 

 

 

Scheme 19 

Both crossover experiments yielded contrasting results. On one hand, this could be due to the 

use of two different ligands and slight structural differences in substrate. On the other hand, it 

could suggest that further evidence to corroborate the observed results is required. 

Furthermore, the presence or lack of crossover gives insight into whether the π-

allylpalladium(II) complex and the enolate remain associated during the course of the reaction 

but cannot provide conclusive evidence of an inner- or outer-sphere alkylation. Species that 

readily dissociate, giving rise to crossover products, may strongly indicate towards an outer-

sphere alkylation; however, lack of crossover gives no indication of whether the π-
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allylpalladium(II) complex and the enolate are covalently-bound or exist as a tight ion pair, 

making the conclusion whether inner- or outer-sphere alkylation operates more tentative. 

A more conclusive approach to gaining mechanistic evidence for inner- and outer-sphere 

alkylation is to perform the DAAA of a chiral allylic substrate, such as 63 (Scheme 20), and 

then determine the relative stereochemistry of product 67, as was demonstrated in 2009.20 

Overall, inner- and outer-sphere mechanisms should lead to different stereochemical 

outcomes. The oxidative addition of the allylic electrophile in 63 to the palladium catalyst 

proceeds by inversion to afford symmetrical π-allylpalladium(II) unit 64 and enolate 65 after 

decarboxylation. Then, in the case of an outer-sphere mechanism, alkylation should take place 

by displacement of palladium with inversion, leading to a net retention of stereochemistry in 

67. In the inner-sphere mechanism, reductive elimination would lead to retention of 

stereochemistry in 68. Therefore, the inner-sphere process results in a net inversion of 

stereochemistry. It was determined by 1H NMR spectroscopy and X-ray crystallography that 

the product formed was 67, where the phenyl group and the nucleophile were cis, and therefore 

the mechanism was concluded to be outer-sphere. 

 

 

 

 

 

 

 

 

 

Scheme 20 

In addition, a nearly perfect kinetic resolution was observed, where one enantiomer of 63 did 

not react and was recovered in 37% yield (74% based on 50% theoretical yield), and >99% 

ee, and the other enantiomer of 63 afforded 67 as a single diastereoisomer in 39% yield (79% 

yield based on 50% theoretical yield) and 99% ee. 
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1.6 The Origin of Enantioselectivity 

 

In both direct and decarboxylative palladium-catalysed asymmetric allylic alkylation reaction 

processes, enantioselectivity can be imparted either on the nucleophilic centre, as in 70 
(Scheme 21), or on the electrophilic centre, as in 72, or potentially on both, depending on the 

structure of each.  

 

 

 

 

 

 

 

 

Scheme 21 

Inducing asymmetry at the prochiral nucleophile remains more challenging than at the prochiral 

electrophile. In particular, for systems that proceed via an outer-sphere mechanism, 

specifically if the reaction rate allows for diffusion outside of the coordination sphere, the chiral 

environment generated by the metal-ligand complex may not be efficiently relayed to the 

nucleophile, resulting in a lack of differentiation between the enantiotopic faces of the 

nucleophile.38 If the reaction proceeds via an inner-sphere mechanism, it could be argued that 

the chiral environment will have a greater effect on the prochiral nucleophile. Imparting 

asymmetry using prochiral nucleophiles and non-prochiral electrophiles can be extremely 

useful, as for example, it can allow for the formation of α-quaternary stereocentres of carbonyl 

compounds.39  

The origin of the enantioselectivity of allylic alkylation reactions has been a matter of debate. 

In 1999, Trost proposed a cartoon model used to describe the chiral pocket of the palladium-

ligand complex for Trost ligands, named the ‘Wall-and-Flap’ model (Figure 1).40  
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Figure 1 

The lowest energy conformation of the complex was determined, where two phenyl rings, 

which act as the ‘walls’, point approximately perpendicular to the allyl moiety, and two phenyl 

rings that are parallel to the allyl moiety and act as the ‘flaps’. 

 

 

 

 

 

Figure 2 

Both exo ionisation and nucleophilic attack are preferred over the endo processes due to 

stereoelectronic effects (Figure 2), and the ‘walls’ sterically block two quadrants. As such, path 

B (Figure 3), via the least hindered ‘exo’ quadrant, is favoured for both ionisation and 

nucleophilic addition, in order to minimise steric interactions with the ligand.41  

 

 

 

 

 

Figure 3 

The ‘Wall-and-Flap’ model has been shown to be broadly applicable to accurately rationalise 

the stereochemical outcome of most AAA reactions catalysed by palladium bearing Trost 
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ligands. As an example, the observed enantioselectivity of asymmetric allylic alkylation of 2-

methyl-1-tetralone (73) with allyl acetate (23), using an allylpalladium(II) chloride dimer with an 

(S,S)-DACH phenyl Trost ligand (S,S)-L1 as the catalyst (Scheme 22),41 can be described 

using the ‘Wall-and-Flap’ model. 

 

 

 

 

 

 

 

Scheme 22 

Three potential ‘Wall-and-Flap’ transition states for this reaction were proposed (Figure 4). The 

preferred transition state should minimise steric interactions with the ligand. For this reason, 

TS-3 was postulated to be the preferred transition state as the bulky aryl group is positioned 

under the flap, as opposed to under the allyl group, as in TS-1, or under the ligand wall, as in 

TS-2. A reaction via TS-3 would afford the (S)-enantiomer, as was observed experimentally 

(Scheme 22). 

 

 

 

 

 

 Figure 4: Possible transition states for AAA of 73 using an (S,S)-DACH phenyl Trost ligand 

However, in 2008, further DFT calculations provided evidence that a conformation where the 

phenyl rings of a Trost ligand are close enough to have a sufficient interaction with the allyl 

moiety and the incoming nucleophile would be very high in energy due to sterics, and therefore, 

steric interactions alone could not describe the observed stereoselectivity.42 It was postulated 

that other factors that affect the observed stereochemistry must be involved. 
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Scheme 23 

More specifically, the asymmetric allylic alkylation of dibenzyl malonate enolate 76 and π-

allylpalladium(II) complex 75, bearing Trost ligand (R,R)-L1, was performed, where the 

asymmetric centre is installed at the allylic position in 77 (Scheme 23). It was concluded that 

three interactions dictated the observed selectivity of the reaction. The first factor is 

nucleophilic attack, directed by hydrogen bonding of the nucleophile with the concave amide 

proton, promoting pro-S selectivity when using an (R,R)-ligand. The second factor is 

nucleophilic attack, directed by the metal escort ion of the enolate, M+, which coordinates to 

the concave amide carbonyl, and promotes pro-R selectivity. These interactions oppose one 

another, and therefore, the selectivity is highly dependent on the nature of both counterions, 

M+ and X-. The final interaction is a pro-R torquoselective bias, as described by the ‘Wall-and-

Flap’ model, where one of the phenyl rings interacts with the allyl moiety (Figure 5).  

 

 

 

 

 

 

 

Figure 5 

Indeed, it was found that the identity of the counterion, X-, and the escort metal ion, M+, had a 

large impact on the observed selectivity. More specifically, it was shown that the larger the 

escort metal ion, the higher the selectivity of alkylation. It was hypothesised that smaller 

cations, such as lithium, are able to strongly coordinate to the enolate nucleophile, preventing 

the nucleophile from efficiently hydrogen bonding to the concave amide proton by making the 
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lone pair less available. In addition, smaller cations coordinate more strongly to the concave 

amide carbonyl than larger cations. Overall, this leads to the erosion of enantioselectivity. In 

contrast, the greater the dissociation of the metal cation, M+, from the enolate nucleophile, as 

well as the greater the affinity of the metal cation, M+, for the counter anion, X-, the greater the 

pro-S selectivity and, therefore, the higher the observed enantioselectivity. The range of ees 

observed was vast, from near racemic with a lithium cation to 95% ee with the non-coordinating 

tetrabutylammonium cation.  

Another interesting counterion effect on the palladium-catalysed decarboxylative asymmetric 

allylic alkylation reaction of 1,3-dicarbonyl compounds 78 with allyl chloroformate (79) was 

discovered in 2011, where a carbonate is formed in situ and subsequently undergoes Pd-

DAAA to afford 80 (Table 1).31  

 

 

 

 

 

 

 

 

 

Table 1 

In certain solvents, a switch of enantioselectivity from R to S was observed, depending on the 

base used. When lithium bis(trimethylsilyl) amide was used in tetrahydrofuran, the S 

enantiomer of 80 was formed in 63% ee (Table 1, entry 1); however, when using 1,2-

dichloroethane as the solvent (entry 2), the R enantiomer was formed in 88% ee. Conversely, 

in both 1,2-dichloroethane and tetrahydrofuran, caesium carbonate gave the S enantiomer of 

80 in 66% and 75% ee, respectively (entries 3 and 4).  

In order to gain further insight into the switch in enantioselectivity, ‘lithium scavengers’ such as 

12-crown-4 were utilised. As such, the addition of three equivalents of 12-crown-4, when using 

lithium bis(trimethylsilyl)amide as the base, gave a significant decrease in enantiopurity, as 

well as a reversal of the sense of stereoinduction. The same experiment had no effect on the 

Entry Solvent Base Yield (%) ee (%) 

1 THF LiHMDS 93 63 (S) 

2 1,2-DCE LiHMDS 99 88 (R) 

3 THF Cs2CO3 90 75 (S) 

4 1,2-DCE Cs2CO3 36 66 (S) 
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enantioselectivity for the reactions utilising caesium carbonate as the base, suggesting the 

lithium cation was responsible for the reversal of enantioselectivity. It was reasoned that 

tetrahydrofuran, a strongly coordinating solvent, could act as a lithium scavenger, accounting 

for the apparent solvent dependency. 

 

 

 

 

 

Figure 6 

It was proposed that the aggregation states of the lithium cations employed affect which face 

of the prochiral nucleophile attacks the chiral π-allylpalladium(II) intermediate as when the 

amount of LiHMDS added was decreased from 1.6 equivalents to one equivalent, the 

enantioselectivity of 80 was found to be lower, suggesting that multiple lithium cations were 

aggregating (Figure 6). This caused a reverse in facial selectivity as the conformation where 

the bulky aggregates are underneath the ‘wall’ would be unfavourable due to steric interactions 

leading to the R enantiomer. Conversely, in the absence of aggregation, it is less favourable 

for the naphthyl group to interact with the ‘wall’, hence the S enantiomer is favoured (Table 1, 

entries 1, 3 and 4). 

In 2012, DFT calculations were used to further elucidate the mechanism of a decarboxylative 

asymmetric allylic alkylation of prochiral nucleophiles.39 The reaction investigated was the 

enantioselective DAAA of allyl enol carbonate 81 in the presence of 

tris(dibenzylideneacetone)dipalladium(0) and PHOX ligand (S)-L2 to give allylcyclohexanone 

82 in 96% yield and 88% ee (Scheme 24). 

 

 

 

 

 

Scheme 24 
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It was found that an inner-sphere alkylation pathway that proceeds via a 5-coordinate 

palladium(II) complex 83 could best account for the observed enantioselectivity of the reaction 

(Scheme 25). After ligand rearrangement, 4-coordinate complex 85 was formed via transition 

state 84. Notably, the calculations suggested that the ensuing reductive elimination step occurs 

via seven-membered transition state 86 to afford complex 87 which, after decomplexation, 

gives allylcyclohexanone 82. The internal rearrangement process that affords 85 was 

determined to be enantiodetermining, with the pathway leading to the formation of S-82, the 

major enantiomer formed, found to be lower energy than the pathway to form R-82. The 

transition state 84 for R-82 is higher energy due to increased steric interactions between the 

PHOX ligand and the methyl group on the enolate, whereas the transition state for S-82 avoids 

these interactions, hence the observed enantioselectivity.  

 

 

 

 

Scheme 25 

Since the reaction was determined to occur via an inner-sphere mechanism, it is an exception 

to the general rule that stabilised nucleophiles, with a pKaH of <25, typically undergo the 

reaction via the outer-sphere mechanism. However, the ketone enolate generated from 81 has 

a pKaH of approximately 20, evidencing that the mechanistic pathway for a particular substrate 

can be more nuanced, depending on other factors such as the chiral ligand used.  
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1.7 The Allylic Alkylation of α-Sulfonyl Anions 

 

Given our interest in constructing novel three-dimensional building blocks, we are keen to 

investigate the enantioselective allylic alkylation of α-sulfonyl anions, and gain insight into the 

mechanism of the reaction. As such, a brief discussion of allylic alkylation reactions of sulfones 

is warranted. 

Sulfones are versatile substrates due to the nature of their electronic and steric properties. α-

Sulfonyl carbon atoms can act as both a nucleophile and an electrophile, and sulfones can act 

as directing groups for reactions occurring at the adjacent carbon atom.43 Sulfones are 

commonly found as scaffolds in drug molecules,44 and the development of methodologies for 

the synthesis of α-chiral sulfones in an enantiomerically pure form is becoming increasingly 

important.43 

The first highly stereospecific palladium-catalysed decarboxylative allylic alkylation of allyl 

sulfonyl esters 88 to afford allyl phenyl sulfones 90, was reported in 2010 (Scheme 26).45 The 

reaction occurs under neutral conditions, which is an improvement over previous 

methodologies for the alkylation of sulfones, which typically require the use of basic 

organolithium reagents that are hazardous, particularly on large scale. Enantioenriched 

starting materials were utilised with 2 mol% tetrakis (triphenylphosphine)palladium(0) as the 

catalyst, varying the temperature between room temperature and 95 °C depending on the 

substrate. The scope of the reaction included both α-aryl and α,α-dialkyl sulfones, and all 

reactions occurred with high levels of conservation of enantioselectivity. Due to the higher pKaH 

of α-sulfonyl anions than ketone enolates, for example, allylic alkylation reactions of α-sulfonyl 

anions might be presumed to proceed via an inner-sphere mechanism. Surprisingly, 

stereochemical labelling studies conclusively corroborated an outer-sphere alkylation 

mechanism, where the α-sulfonyl anion reacts outside the coordination sphere of palladium, 

such as in 89. 

 

 

 

Scheme 26 
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The observed conservation of enantioselectivity was unexpected at elevated temperatures. It 

has been determined by X-ray crystallography that the most stable conformation of the sulfonyl 

carbanion has the lobe of the lone pair antiperiplanar with respect to the sulfur-bound phenyl 

group (Figure 7),46 and whilst it has been shown that α-sulfonyl anions are more stable than 

other carbanions, there have been previous reports of rapid racemisation of anion 91 even at 

-80 °C.47 

 

 

Figure 7 

To rationalise the lack of racemisation, DFT calculations were used to provide evidence that 

the highly electrophilic nature of the π-allylpalladium(II) complex, in conjunction with the 

reactivity of the α-sulfonyl anion, was causing the bond formation to occur faster than 

racemisation.45  

In 2012, the iridium-catalysed asymmetric allylic alkylation of sulfonylacetates 92 to afford 94 

as a mixture of diastereoisomers, was reported, using phosphoramidite ligands, such as L6 

(Scheme 27).48 The reaction of 92 with a wide range of aryl allylic substrates proved 

successful, due to the presence of the ester group alpha- to the sulfonyl moiety which stabilises 

the anion. Moderate to high ees of 95 were obtained, with controlled stereochemical induction 

taking place at the prochiral electrophile.  

 

 

 

 

 

 

 

 

 

 

 

Scheme 27 
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Thus far, the construction of α-sulfonyl chiral centres in high enantiomeric excess using metal-

catalysed allylic alkylation has proved successful, although the previous methods have either 

required the use of enantioenriched starting materials, or the chiral centre has been generated 

at the prochiral electrophile.  
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1.8 Previous Work in the Research Group 

 

In contrast to the previous work described in the preceding section, we are interested in the 

construction of a chiral tetrasubstituted centre at the prochiral nucleophile, the α-sulfonyl 

moiety, from racemic starting materials. Previous work, both within the research group and 

externally, has shown that decarboxylative allylic alkylation of sulfones presents additional 

challenges that arise from the instability of α-sulfonyl anions. Therefore, appending the sulfone 

with an electron-withdrawing carbonyl substituent should allow for more facile decarboxylation, 

due to the increased stability of the anion generated. 

Previous work in the research group has involved the optimisation of the reaction conditions 

for the palladium-catalysed decarboxylative asymmetric allylic alkylation reaction of sulfones 

96, focusing primarily on five-membered cyclic sulfones bearing ester and ketone substituents 

(Table 2). The conditions used were found to have a considerable effect on the observed 

enantioselectivity.  

 

 

 

 

 

 

 

 

 

Table 2: aIsolated yield, bDetermined by chiral HPLC 

Entry Ligand Yield (%)a ee (%)b 

1 (S,S)-L1 78 11 

2 (S)-L2 83 0 

3 (S,S)-L3 54 67 

4 (S,S)-L5 61 31 
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The optimisation began by performing a screening of chiral phosphine ligands: (S,S)-DACH 

phenyl Trost (S,S)-L1; (S)-t-Bu-PHOX (S)-L2; (S,S)-ANDEN phenyl Trost (S,S)-L3; and (S,S)-

DACH naphthyl Trost (S,S)-L5, used in conjunction with Pd2(dba)3 as the palladium(0) source. 

Whilst the highest yielding reaction utilised (S)-L2 as the ligand, this reaction was racemic, as 

determined by chiral HPLC. Ligands (S,S)-L1 and (S,S)-L5 gave good yields of 97, but 

enantioselectivity was low. (S,S)-L3 afforded the lowest yield, but also offered the highest 

enantioselectivity. It was decided that (S,S)-L3 would be used to continue optimisation as the 

lower yield was due to the formation of by-product 98 that had undergone decarboxylation but 

had failed to alkylate (Figure 8). Upon further optimisation, the formation of by-product 98 was 

suppressed and 1,4-dioxane was found to be the optimal solvent to give 97 in 91% yield and 

86% ee. 

 

 

Figure 8 

Most recently, attention was turned to assessing the substrate scope of the reaction. A range 

of sulfones appended with electron-withdrawing ester, 99, and ketone functionalities, 101, 

were investigated (Scheme 28).  

 

 

 

 

 

 

 

 

 

 

 

Scheme 28 
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The sulfones appended with an ester substituent 99 underwent the enantioselective 

decarboxylative allylic alkylation in moderate to high yields (59-90%) and high ee values (80-

92%). The sulfones appended with ketone substituents 101 gave similar yields (60-86%), 

however, enantioselectivity was significantly lower (26-64%). Additionally, the ester substrates 

required shorter reaction times and lower catalyst loading compared to the ketones. It was 

hypothesised that the marked difference in enantioselectivity between the ester and ketone 

substituents could potentially be caused by a switch in reaction mechanism between inner- or 

outer-sphere.  

 

 

 

Figure 9 

Finally, a crystal structure of 103 was obtained, indicating the absolute configuration to be the 

R enantiomer.  
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1.9 Conclusions 

 

The synthesis of saturated three-dimensional molecules remains challenging, particularly 

those bearing a chiral quaternary centre. This is a key obstacle to overcome in order to enrich 

fragment libraries with novel three-dimensional compounds. AAA and DAAA are reliable 

methods that enable the assembly of molecules with increased complexity through the 

construction of highly congested chiral quaternary centres with high enantioselectivity.  

There are benefits to utilising decarboxylative AAA rather than direct AAA. The decarboxylative 

process is more sustainable as it does not require stoichiometric addition of the nucleophile, 

making it more attractive to industry. Decarboxylative AAA can also be performed under 

neutral reaction conditions, meaning it has utility over a wider range of substrates than the 

direct process which often requires a strong base. Crucially, decarboxylative AAA can also 

form products that are inaccessible via direct AAA. 

The reaction mechanism that the palladium-catalysed allylic alkylation reaction proceeds by, 

either inner- or outer-sphere, can often be predicted as the mechanism is highly dependent on 

the pKaH of the nucleophile employed. However, there are exceptions, which suggest that the 

mechanism may also be dependent on other factors, including substrate structure and the 

chiral ligand used. 

Two main models have been developed to rationalise the observed enantioselectivity of AAA 

reactions. The first being the ‘Wall-and-Flap’ model, based on steric and stereoelectronic 

effects, which is simplistic but is broadly applicable to most AAA reactions. A modified model 

was developed involving three interactions with opposing selectivities that compete with one 

another based on the substrates and their counterions. Whilst the latter is more descriptive 

and therefore potentially more applicable for direct AAA processes, the ‘Wall-and-Flap’ model 

can be applied to decarboxylative AAA where the electrophile and nucleophile are generated 

in situ in the absence of counterions. A mechanism for inner-sphere processes based on DFT 

calculations has also been proposed, where other models rationalise outer sphere processes.  

Sulfones are often incorporated into drug molecules, and AAA and DAAA reactions have the 

potential to be used for the construction of enantioenriched sulfone products. Research into 

allylic alkylation of sulfones is limited, however, and previous reactions have required the use 

of enantiopure starting materials, or stereoinduction at the allylic centre. Work in our group, 

however, has shown that Pd-DAAA can successfully provide chiral quaternary α-sulfone 

products from racemic starting materials. 
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Chapter 2: Results and Discussion 

2.1 Aims and Objectives 

 

The aims for this project were to gain a deeper understanding of the mechanism of the Pd-

DAAA of cyclic sulfones bearing ester and ketone stabilising groups, which would allow for 

more targeted optimisation of the process, particularly given the large difference in 

enantioselectivity observed between substrates with ester and ketone substituents. The aims 

of this research were three-fold: a mechanistic study; reaction optimisation; and extension of 

substrate scope of 5- and 6-membered cyclic sulfones. 

The objective of the mechanistic investigation was to establish whether an inner- or outer-

sphere alkylation mechanism is in operation for both ester- and ketone-substituted sulfones 

and included crossover experiments and stereochemical labelling. Two ester-substituted 

precursors, 104 and 105, and two ketone-substituted precursors, 106 and 107, were to be 

synthesised (Scheme 29). Each pair of substrates was to be subjected to Pd-DAAA conditions 

to check whether crossover of enolates takes place, or whether palladium remains tightly 

bound. 

 

 

 

Scheme 29 

A substrate bearing a stereochemical label 108 was to be prepared (Scheme 30). Relative 

stereochemistry determination of the Pd-DAAA product should indicate whether an inner- or 

outer-sphere alkylation reaction operates based on whether retention or inversion in product 

109 is observed. 

 

 

 

Scheme 30: Pd-DAAA of a substrate bearing the stereochemical label 

 



39 

 

Once a deeper understanding of the mechanism has been established, the addition of a range 

of additives was to be tested in order to optimise reaction yield and enantioselectivity (Scheme 

31).  

 

 

Scheme 31 

Following the mechanistic study and reaction optimisation, extension of the substrate scope 

was to be investigated under the optimised reaction conditions (Figure 10). This was to include 

both 5-membered and 6-membered cyclic sulfones, with a range of ester and ketone aryl and 

alkyl substituents, as well as allyl substitution. 

 

 

 

 

Figure 10 

Once a range of enantioenriched cyclic sulfone products have been produced, they could then 

be transformed into novel spirocyclic three-dimensional building blocks.  
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2.2 Optimisation of Reaction Conditions for the Synthesis of Precursors 

 

To begin, sulfone 117, bearing an allyl ester, was prepared in up to 74% yield from sulfolane 

(116) using LiHMDS (2 equiv) as the base at –78 °C, followed by addition of the allyl 

chloroformate electrophile (1.1 equiv) (Scheme 32). 

 

 

 

 

Scheme 32 

Reaction conditions were then optimised for the incorporation of the phenyl ester substituent, 

where both the base and reaction temperature were varied (Table 3). Sulfone 117 was 

deprotonated using a base (1.1 equiv), and phenyl chloroformate (1.1 equiv) was then added. 

Using NaHMDS at room temperature gave the highest yield of 104, of 79% (0.25 mmol, Table 

3, entry 1). No reaction occurred when using NaHMDS at 80 °C (entry 2), nor when using 

LiHMDS or sodium hydride at room temperature (entries 3 and 4). Using caesium carbonate 

or DBU as the base (entries 5 and 6), with both reactions performed at reflux due to their lower 

basicity, led to low formation of 104. Therefore, the reaction using NaHMDS as the base was 

scaled up to 4.90 mmol and afforded 104 in 59% yield (entry 7). 

  

 

 

 

 

 

 

 

 

Table 3: aDetermined by 1H NMR spectroscopy of the crude mixture, bIsolated yield;                        

n.d. = not determined 

Entry Conditions 117:104a Yield (%)b 

1 NaHMDS, rt 1:2.5 79 
2 NaHMDS, 80 °C No reaction - 
3 LiHMDS, rt No reaction - 
4 NaH, rt No reaction - 
5 Cs2CO3, 80 °C 9.5:1 n.d. 
6 DBU, 80 °C 3.6:1 n.d. 
7 NaHMDS, rt 1:2.3 59 
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A phenyl ketone substituent was also incorporated into sulfone 117 using previously optimised 

conditions (Scheme 33). Specifically, sulfone 117 was deprotonated with NaHMDS (1.1 equiv), 

and benzoyl chloride (1.1 equiv) was added at 80 °C, to give product 106 in 75% yield. 

 

 

 

 

Scheme 33 

With practical quantities of substrates 104 and 106 in hand, a mechanistic study was to be 

performed. 
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2.3 Mechanistic Studies 

 

The primary aim of this research was to undertake a mechanistic study in order to gain a 

deeper understanding of the Pd-DAAA of cyclic sulfones. In this context, we set out to test 

whether the enolate, following decarboxylation, remains tightly bound to the π-allylpalladium(II) 

cation, and to perform stereochemical labelling to conclusively establish an whether inner- or 

outer-sphere alkylation mechanism operates. 

2.3.1 2-Methylallyl Ester Crossover Experiments 

Our study began with crossover experiments. The first substrates to be tested were the 2-

methylallyl ester and para-tolyl substituted sulfone 105, for crossover with the allyl ester and 

phenyl substituted sulfone 104 (Scheme 34). The proposed crossover reaction for the ester 

could in principle give four crossover products 118-121. If the reaction proceeds via an outer-

sphere alkylation mechanism, where the enolate and π-allylpalladium(II) complex are not 

closely associated with one another, then this would allow for either enolate to react with either 

allyllic electrophile, leading to a mixture of products 118-121. If no crossover is observed, then 

this could be attributed to either an inner-sphere mechanism or an outer-sphere alkylation 

mechanism where the rate of alkylation surpasses the rate of diffusion. In this scenario, only 

the formation of products 118 and 121 should be observed. 

 

 

 

 

 

Scheme 34 

By analogy, ketone substituted 106 and 107 were to be used in a crossover study (Scheme 

35), with potential to afford four crossover products 122-125. 
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Scheme 35 

First, the precursors to the potential crossover products that had not been previously prepared, 

were synthesised. 1,1'-Carbonyldiimidazole (1.5 equiv) was used at 0 °C in a THF:CH2Cl2 (3:1) 

solvent mixture to convert 2-methyl-2-propen-1-ol (126) into carbamate 127 in 95% yield 

(Scheme 36). 

 

 

 

 

Scheme 36 

Carbamate 127 was then added to sulfolane (116) in 80% yield using LiHMDS (2 equiv) as the 

base, followed by addition of electrophile 127 (Scheme 37). 

 

 

 

 

Scheme 37 

para-Tolyl chloroformate, para-toluoyl chloride, phenyl chloroformate and benzoyl chloride 

were all added to the sulfone appended with the substituted allyl ester 128, using previously 
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optimised conditions for addition of esters and ketones, to give 105, 107, 129 and 130 

respectively, in moderate to good yields (Scheme 38). 

 

 

 

 

 

Scheme 38 

Each of the precursors 105, 107, 129 and 130 were then individually subjected to both the 

racemic and enantioselective Pd-DAAA conditions to produce each of the eight potential 

crossover products, four for the ester-containing substrates, and four for the ketone-containing 

substrates, the results of which will be discussed as part of the substrate scope investigation 

(vide infra, Section 2.5.1, page 65). It was found that both ester and ketone substrates 

containing the methyl-substituted allylic ester reacted far too slowly compared with those 

containing the non-substituted allyl ester to be useful in a crossover experiment. Therefore, 

the synthesis of substrates that were closer in structure to the original non-substituted allyl 

ester substrates 104 and 106 was explored in the hope that their reactivity would be more 

comparable. 

2.3.2 2H-labelled Allyl Ester Crossover Experiments 

Due to the substantially lower reactivity of substituted allylic ester substrates than their non-

substituted counterparts, 2H-labelling of the allyl moiety was explored in order to achieve 

similar rates of reaction, which is essential for a meaningful enolate crossover investigation.  

In this context, two strategies were explored. The first approach was based on the synthesis 

of a deuterated propargylic ester 131 which could then be reduced to deuterated alkene 132 

under Lindlar conditions (Scheme 39, A). The second approach was to append a propargylic 

ester substituent to an ester- or ketone-substituted sulfone 134 using propargyl chloroformate 

(135) to afford 136, which could subsequently be deuterated and then reduced under Lindlar 

conditions (Scheme 39, B).   
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Scheme 39 

Beginning with route A, propargyl alcohol (138) was converted to carbamate 139 with CDI, in 

moderate yield (Scheme 40). The terminal alkyne position of 139 could then be 2H-labelled 

using potassium carbonate and deuterium oxide, leading to 94% deuterium incorporation in 

140. In this process, base-catalysed carbamate cleavage also occurred.  

 

 

 

Scheme 40 

Installation of the propargylic ester-side chain onto sulfolane (116) was then attempted, using 

the non-deuterated carbamate 139 in a test reaction. When using LiHMDS (2 equiv) as the 

base, carbamate 139 decomposed, and only starting sulfolane (116) was recovered (Table 4, 

entry 1). The same observation was made when propargyl chloroformate was used as the 

electrophile in place of carbamate 139 (entry 2). When sodium hydride (2 equiv) was used as 

the base and the reaction was heated to 80 °C (entry 3), the chloroformate did not decompose, 

but no reaction occurred, suggesting that sodium hydride did not remove the α-sulfonyl proton. 

Given that at least 2 equivalents of a base is essential for a successful reaction, the presence 

of an acidic terminal alkyne in the electrophile structure was likely to be responsible for high 

levels of decomposition and the lack of the desired reactivity. 
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Table 4: aDetermined by 1H NMR spectroscopy of the crude mixture 

In this context, strategy B was explored, where installation of the propargyl ester as a second 

substituent onto sulfone 142 was attempted (Scheme 41). In this process, only one equivalent 

of the base is necessary for a successful reaction. In light of the higher acidity of 142 than 

sulfolane (116), sodium hydride should be basic enough to generate an ester enolate 

intermediate for reaction with propargyl chloroformate. Thus, using sodium hydride (1.1 equiv), 

addition of propargyl chloroformate was attempted. Unfortunately, no reaction occurred with 

exclusive recovery of sulfone 142. It was concluded that the presence of an acetylenic proton 

was interfering with the reaction. 

 

 

 

 

Scheme 41 

In an attempt to avoid issues with deprotonation of the terminal alkyne proton, a route based 

on a protected alkyne was explored. The approach was based on the synthesis of TMS-

protected propargylic ester 145, followed by installation of a second ester or ketone substituent 

to give sulfone 146 (Scheme 42). Subsequently, TMS-deprotection of alkyne 146 would be 

attempted, affording 136, which could then be deuterated. Finally, alkyne 137 could be reduced 

under Lindlar conditions. 

Entry Conditions Observationsa 

 
1 

 

Only starting material observed 

2 
 

Only starting material observed 

3  

 

Starting material and                      
chloroformate observed 
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Scheme 42 

In this context, TMS-protected propargyl alcohol 147 was converted to carbamate 144 using 

CDI (1.5 equiv) in THF in 43% yield (Scheme 43).  

 

 

 

Scheme 43 

Sulfolane (116) was then deprotonated with LiHMDS, and carbamate 144 was added to give 

sulfone 145 in 47% yield (Scheme 44). We were pleased to discover that para-tolyl 

chloroformate and para-toluoyl chloride could each be successfully added to sulfone 145 to 

give disubstituted sulfones 148 and 149 in 61% and 75% yields, respectively.  

 

 

 

 

 

 

 

 

Scheme 44 
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Subsequently, deprotection of the alkyne was attempted for para-tolyl ester substituted sulfone 

148 (Table 5). Four methods for TMS deprotection were explored. First, potassium carbonate 

(1 equiv) was added to 148 in deuterated methanol (Table 5, entry 1). Under these conditions, 

both ester substituents were cleaved, with no formation of desired product 150. When 148 was 

treated with TBAF (1.1 equiv) in THF, the desired product 150 was not formed, with tolyl ester 

cleavage being a major side reaction (entry 2). A reaction of 148 with TBAF (1.1 equiv) under 

acidic conditions in THF and acetic acid (1.1 equiv) was performed, to minimise the amount of 

ester cleavage (entry 3). These conditions led to successful formation of the deprotected 

product 150 in 83% yield. However, when this reaction was repeated with TBAF (1.1 equiv) in 

a mixture of THF and deuterium oxide (3:1), the desired deuterated product 151 was isolated 

in 83% yield, with 96% deuterium incorporation at the terminal alkyne position (entry 4). In this 

way, a one-pot deprotection and deuteration could be successfully achieved. 

 

 

 

 

 

Table 5: aIsolated yield, bDetermined by 1H NMR spectroscopy 

 

Finally, reduction of alkyne 151 to alkene 152 was then explored using Lindlar’s catalyst (Table 

6). 151 was subjected to Pd/CaCO3 (5 mol%) in quinoline (1 drop) and EtOAc under a 

hydrogen atmosphere for 1.5 hours at room temperature. These conditions led to a mixture of 

cleaved product 153, resulting from hydrogenolysis of the propargyl ester and decarboxylation, 

and an over-reduced alkane ester product 154 (Table 6, entry 1). This reaction was repeated 

using 2 equivalents of quinoline with a reduced reaction time of 30 minutes (entry 2), which led 

to a mixture of alkynyl ester cleaved product 153, over-reduced alkane ester product 154, and 

Entry Conditions Observations Yield (%)a 
 

1 

 

K2CO3 (1 equiv) / d4-MeOH 

 

Cleavage of both ester substituents 

 

- 

2 TBAF (1.1 equiv) / THF Tolyl ester cleavage, no desired product 
formation 

- 

3 
TBAF (1.1 equiv), AcOH 

(1.1 equiv) / THF 
150 formation 83 

4 
TBAF (1.1 equiv) / 

THF:D2O 
151 formation (96% D)b 83 
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an 18% yield of the desired reduced product 152. When the reaction solvent was changed 

from EtOAc to MeOH, a mixture of 153 and 154 was observed with no formation of product 

152 (entry 3). When pyridine was used as the reaction solvent, and no quinoline was added, 

alkynyl ester cleaved product 153 was obtained exclusively in quantitative yield (entry 4). 

Finally, using the original reagents and solvents, the reaction temperature was lowered to 0 °C 

and the reaction was allowed to proceed for 20 minutes (entry 5). Under these reaction 

conditions, the desired product 152 was obtained in 82% yield.  

Whilst the Lindlar reduction of alkynes occurs via a concerted mechanism, and therefore 

observation of deuterium at the trans position relative to the vicinal proton would be expected, 

deuterium scrambling was observed. Deuterium incorporation of 76% and 17% at the cis and 

trans positions, respectively, was observed, giving a combined deuterium incorporation of 93% 

at the terminal alkene position in 152. 

 

 

 

 

 

 

 

 

Table 6: aDetermined by 1H NMR spectroscopy of the crude mixture, bIsolated yield of 152, cIsolated 

yield of 153 

Using the TMS-deprotection conditions optimised for the ester substrate 151, the ketone 

substrate 149 was also 2H-labelled (Scheme 45). Specifically, 149 was treated with TBAF (1.1 

Entry Conditions 153 : 154 : 152a Yield (%) 
 
1 

 
Quinoline (1 drop), EtOAc, rt, 1.5 h 

 
1.2   :   1.0   :   0 

 
- 

2 Quinoline (2 equiv), EtOAc, rt, 30 minutes   1.6   :   1.0   :  1.1 18b 

3 Quinoline (2 equiv), MeOH, rt, 30 minutes 1.6   :   1.0   :   0 - 

4 Pyridine, rt, 30 minutes 153 only quantc 

5 Quinoline (2 equiv), EtOAc, 0 °C, 20 minutes desired 152 only 82b 
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equiv) in a mixture of THF and deuterium oxide (3:1), and the desired product 155 was isolated 

in 81% yield, with 98% deuterium incorporation at the terminal alkyne position. 

 

 

 

 

 

Scheme 45 

2H-Labelled substrate 155 was then subjected to the optimised alkyne reduction conditions. 

155 was stirred with Pd/CaCO3 (5 mol%) in quinoline (2 equiv) and EtOAc, in a hydrogen 

atmosphere, at 0 °C for 20 minutes. However, under these conditions, no reaction occurred, 

with starting material 155 being recovered exclusively. The reaction was, therefore, repeated 

at room temperature (Scheme 46), and reduced product 156 was successfully isolated in 71% 

yield, with 93% 2H incorporation at the terminal alkene position, as determined by 1H NMR 

spectroscopy. It was not possible to determine the degree of deuteration at the cis and trans 

positions due to peak overlap in the 1H NMR spectrum of 156.  

 

 

 

 

Scheme 46 

With both 2H-labelled ester and ketone substrates 152 and 155 in hand, attention turned to the 
crossover experiments. Crossover of the para-tolyl substrates 157 and 160 with the analogous 

phenyl substrates 104 and 106 was desirable in order to keep the reactivity of each pair as 

similar as possible. One equivalent of both 2H-labelled ester substrate 157 and unlabelled 

phenyl ester substrate 104 were subjected to the Pd-DAAA conditions (Scheme 47). Although 

full conversion of starting materials 104 and 157 had taken place after 2 hours, the products 

of the reaction were found to be barely distinguishable from one another by 1H NMR 

spectroscopy due to peak overlaps, and were inseparable by column chromatography. 

Therefore, observation of potential crossover products by 1H NMR spectroscopy was not 

possible. Instead, the product mixture was analysed by mass spectrometry.  
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Scheme 47 

Mass spectrometric analysis of the resulting mixture showed significant amounts of all four 

crossover products, with a 2.4:1 ratio of 158 to 120, and a 2.2:1 ratio of 121 to 159. 

Interestingly, the ratio of tolyl products (120 and 158) observed to phenyl products (121 and 

159) was 2.5:1, presumably due to the tolyl ester products having higher ionisation efficiencies 

than those of the phenyl ester products. The observation of all four crossover products in 

significant amounts provides strong evidence towards the likelihood that an outer-sphere 

alkylation mechanism operates. 

Similarly, one equivalent of both 2H-labelled ketone substrate 160 and unlabelled phenyl 
ketone substrate 106 were subjected to the Pd-DAAA conditions (Scheme 48).  

 

 

 

 

 

 

 

Scheme 48 
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Mass spectrometric analysis of the resulting mixture showed significant amounts of all four 

crossover products, with a 1.2:1 ratio of 161 to 124, and a 1:1 ratio of 125 to 162. As was seen 

for the ester substrate crossover, the ratio of tolyl products (124 and 161) observed to phenyl 

products (125 and 162) was 2.7:1. Once again, the presence of all four crossover products 

indicates that an outer-sphere alkylation mechanism is highly likely. These results suggest that 

ester substrates and ketone substrates are likely to react via the same mechanism. Therefore, 

a difference in the mechanism is not the likely cause for the lower enantioselectivity observed 

for ketone substrates as compared to the ester substrates.  

The observation of crossover products, and the conclusion that an outer-sphere alkylation 

mechanism is likely in operation, is in accord with previous work on allylic alkylation reactions 

of α-sulfonyl anions where an outer-sphere alkylation mechanism was conclusively 

corroborated (vide supra, Section 1.7, page 31).45 

2.3.3 Malonate Crossover  

An additional crossover experiment was also performed in order to gain more evidence for an 

outer-sphere alkylation mechanism. Standard conditions for the palladium-catalysed 

decarboxylative asymmetric allylic alkylation reaction were used for phenyl ester substituted 

sulfone 104 and phenyl ketone substituted sulfone 106, in the presence of one equivalent of 

diethyl methyl malonate (Scheme 49). 

 

 

 

 

 

Scheme 49 

In theory, the intermediate enolate derived from 104 or 106 could deprotonate the malonate if 

the reaction proceeds via an outer-sphere mechanism where the enolate and π-

allylpalladium(II) complex are not closely associated with one another as was indicated by 
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substantial enolate crossover (vide supra, Section 2.3.2, page 51). Once the deprotonation of 

the malonate occurs, it could then be alkylated with the allylic fragment. Although observation 

of crossover products of the malonate was anticipated in light of the previous crossover 

studies, for the reactions of both ester substrate 104 and ketone substrate 106, the major 

malonate product remained non-alkylated. For phenyl ester substituted sulfone 104 the ratio 

of non-alkylated malonate A to alkylated malonate B was 35:1, and for phenyl ketone 

substituted sulfone 106 the ratio of A to B was 47:1. 

A lack of crossover would typically be indicative of either an inner-sphere mechanism, or an 

outer-sphere mechanism where the rate of alkylation surpasses the rate of diffusion. However, 

it is feasible that in this case, the malonate is simply not acidic enough to be deprotonated by 

the ester or ketone enolate. This experiment could be repeated with a more acidic 1,3-

dicarbonyl that will still form a stabilised anion, such as a 1,3-diketone. 

To establish whether the alkylation reaction proceeds via the inner- or outer-sphere 

mechanism more conclusively, additional mechanistic tools were explored next. 
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2.4 Relative Stereochemistry Determination 

 

We sought to explore the use of a stereochemical probe as another tool to provide further 

mechanistic evidence, and to unambiguously determine whether the palladium-catalysed 

decarboxylative asymmetric allylic alkylation reaction occurs by an inner- or outer-sphere 

mechanism. As such, our aim was to gain access to stereodefined allylic electrophile 163 and 

to test the stereochemical outcome of the Pd-DAAA reaction thereof (Scheme 50). 

Mechanistically, oxidative addition of allylic electrophile 163 to the palladium catalyst proceeds 

with inversion to afford π-allylpalladium(II) complex 165 and an enolate 164 after 

decarboxylation. Then, in the case of an outer-sphere alkylation mechanism, alkylation should 

take place by displacement of palladium with inversion, leading to a net retention of 

stereochemistry in 166. In the case of an inner-sphere alkylation mechanism, reductive 

elimination would lead to retention of stereochemistry, thus, resulting in a net inversion of 

stereochemistry in 167. 

 

 

 

 

 

 

 

 

 

Scheme 50: Expected stereochemical outcomes for an outer-sphere vs. an inner-sphere mechanism 

First, cis-5-phenyl-2-cyclohexen-1-ol (171) was produced from 5-phenyl-1,3-cyclohexanedione 

(168) over 3 steps by literature methods (Scheme 51).20 5-phenyl-1,3-cyclohexanedione (168) 

was converted to ethoxy-substituted enone 169, using p-toluenesulfonic acid and ethanol, in 

86% yield. 169 then underwent conjugate reduction using lithium aluminium hydride to afford 

enone 170 in 46% yield. Finally, a Luche reduction of 170 afforded cis-5-phenyl-2-cyclohexen-

1-ol (171), as a single diastereomer, in 86% yield. 
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Scheme 51 

Allylic alcohol 171 was then treated with CDI for 2 hours at room temperature to afford 

carbamate 172 in excellent yield (Scheme 52). 

 

 

 

 

Scheme 52 

Subsequently, sulfolane (116) was reacted with carbamate 172 to afford sulfone 173 in 39% 

yield (Scheme 53). Next, the addition of the second substituent was performed. Sulfone 173 

was deprotonated with NaHMDS and reacted with benzyl chloroformate or benzoyl chloride. 

The reaction of sulfone 173 with benzyl chloroformate was stirred at room temperature 

overnight to afford ester substrate 174 in 24% yield, and the reaction of 173 with benzoyl 

chloride was heated to 80 °C overnight to give ketone substrate 175 in 29% yield. 

 

 

 

 

 

 

 

 

Scheme 53 
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Precursors 174 and 175 were then subjected to the palladium-catalysed decarboxylative allylic 

alkylation conditions (Scheme 54). Unfortunately, no reaction occurred at either room 

temperature, 40 °C or even 120 °C, with starting materials 174 and 175 being recovered 

exclusively. As was exhibited by the slow reaction times and poor yields for the Pd-DAAA 

reactions of the methyl-substituted allylic ester substrates 105, 107, 129 and 130 (vide supra, 

Section 2.3.1, page 44), this reaction does not appear to be particularly tolerant to substitution 

on the allylic moiety, and these compounds may unfortunately be too bulky to react. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 54 
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2.4 Additive Screen for Optimisation of the Pd-DAAA Reaction 

 

Whilst the malonate crossover experiment and the relative stereochemistry determination 

experiments could not be used to confirm the results of the initial crossover results (vide supra, 

Section 2.3.2), there was strong evidence that indicated an outer-sphere alkylation mechanism 

was in operation. An additive screen was, therefore, carried out, wherein various salts and 

acids were added to the Pd-DAAA reactions of both ester and ketone substrates to test 

whether they have any effect on enantioselectivity.  

The counterions could affect the enantioselectivity of an outer-sphere alkylation mechanism 

by the model proposed by Lloyd-Jones and coworkers,42 in which the coordinating strength of 

the counterions affects the strength of electrostatic interactions of the enolate to the chiral 

ligand (Figure 11). It was proposed that three interactions were responsible for dictating the 

observed selectivity of the reaction, two of which are dependent on the coordinating strength 

of the counterions: nucleophilic attack, directed by hydrogen bonding of the enolate with the 

concave amide proton, promoting pro-S selectivity for an (R,R)-ligand; and nucleophilic attack, 

directed by the metal counterion bound to the enolate, coordinating to the concave amide 

carbonyl, promoting pro-R selectivity.  

 

 

 

 

 

 

 

Figure 11. The counterion-dependent factors governing enantioselectivity when using an (R,R)-Trost 
ligand42 

It was hypothesised that smaller cations are able to strongly coordinate to the enolate, 

preventing efficient hydrogen bonding to the amide proton, and are able to coordinate strongly 

to the amide carbonyl leading to decreased enantioselectivity, and vice versa for larger cations.  
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Table 7: aIsolated yield, bDetermined by chiral HPLC 

In light of these observations, salts with varying cation sizes were tested (Table 7). Without an 

additive, the Pd-DAAA reaction for the benzyl ester substituted sulfone 96 proceeded in 90% 

yield, giving the alkylated product (R)-97 with 86% ee (Table 7, entry 1). When comparing 

chloride salt additives (entries 2-6), a lithium cation led to no reaction occurring, larger group 

1 cations; namely potassium, rubidium and caesium, caused a decrease in enantioselectivity 

from 86% to between 58-66% ee, and the large non-coordinating tetrabutylammonium cation 

gave the lowest ee of 54%. These results contrast those found by Lloyd-Jones and coworkers 

on a different system. In our hands, the large, non-coordinating tetrabutylammonium cation led 

to the greatest erosion of enantioselectivity. In addition, the increase in cation size of 

potassium, rubidium, and caesium, did not afford large differences in the observed 

enantioselectivity.  

Entry Additive Yield (%)a ee (R)-97 (%)b 

1 None 90 86 
2 LiCl - - 
3 KCl 78 58 
4 RbCl 62 64 
5 CsCl 63 66 
6 TBACl 74 54 
7 LiBF4 - - 
8 LiOAc 88 86 
9 LiF 15 84 
10 TBAF 76 32 
11 TBAOAc 94 52 
12 AgBF4 - - 
13 AgOTf - - 
14 Zn(OTf)2 - - 
15 ZnCl2 40 52 
16 CSA - - 
17 TFA - - 
18 PhCO2H 23 80 
19 AcOH Non-alkylated product 98 (87%) - 



59 

 

With the exception of lithium acetate (entry 8), which had no effect on either yield or 

enantioselectivity, all lithium salts added (entries 2, 7 and 9) performed poorly, appearing to 

affect the reactivity of the system with either no reaction, or very poor yields of (R)-97 being 

obtained. With other tetrabutylammonium salts (entries 10 and 11), similarly poor 

enantioselectivities were observed, as was the case for TBACl (entry 6). 

Silver(I) cations (entries 12 and 13) did not allow for oxidative addition to occur, with exclusive 

recovery of starting material. It is possible that the silver cation binds the alkene moiety in 

preference to palladium, preventing oxidative addition to palladium. Similarly, zinc(II) cations 

(entries 14 and 15) led to either no oxidative addition or incomplete conversion.  

The addition of strong Brønsted acids, CSA (pKa = 1.249) and TFA (pKa = 0.250) (entries 16 and 

17), resulted in no reaction occurring. With benzoic acid (entry 18), a weaker acid in 

comparison (pKa = 4.251), a poor yield of (R)-97 was obtained and slightly decreased 

enantioselectivity was observed (80% ee). It appears that stronger acids do not allow for 

oxidative addition to occur, or, in the case of benzoic acid, only allows for a small amount of 

oxidative addition. Finally, addition of acetic acid (pKa = 4.7550) (entry 19), which is only slightly 

weaker than benzoic acid, protonated the intermediate enolate fully, affording the non-

alkylated product 98 exclusively. To conclude, no increase in enantioselectivity was observed 

as compared to previously optimised additive-free conditions for the Pd-DAAA of ester 

substituted sulfones. 

The same optimisation was performed for the palladium-catalysed decarboxylative asymmetric 

allylic alkylation reaction for the phenyl ketone substituted sulfone 106, which, without an 

additive, proceeded in 96% yield, giving the alkyated product (R)-103 with 72% ee (Table 8, 

entry 1). For chloride salt additives (entries 2-6), both a small lithium cation and a large 

tetrabutylammonium cation led to poor enantioselectivity. In contrast, other group 1 cations 

(potassium, rubidium and caesium) had no effect on the enantioselectivity of the reaction. 

Again, there is a disparity between these results and those found by Lloyd-Jones and 

coworkers. Addition of other lithium salts (entries 7-9) had no effect on the enantioselectivity, 

with the exception of lithium tetrafluoroborate (entry 7) where a low ee of (R)-103 was obtained. 

Additionally, when other tetrabutylammonium salts were tested (entries 10 and 11), poor 

enantioselectivities were observed, that were similar to TBACl (entry 6). 

As was the case in the phenyl ester substituted sulfone additive screen, silver(I) cations 

(entries 12 and 13) did not allow for oxidative addition to occur, with only starting material 106 

being recovered, whereas zinc(II) cations (entries 14 and 15) led to lower yields and low 

enantioselectivities.  
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In contrast to the additive screen of the phenyl ester substrate, addition of Brønsted acid, CSA 

(entry 16), led to (R)-103 formation in comparable yield, however, low enantioselectivity was 

observed. TFA (entry 17), the strongest acid tested, allowed for small amounts of product (R)-

103 formation, but again with poor ee. Benzoic acid (entry 18) appeared to have no effect on 

either reactivity or enantioselectivity. Finally, as was seen in the additive screen of the phenyl 

ester substrate, addition of acetic acid (entry 19) protonated the intermediate enolate fully, 

giving the non-alkylated product 178 exclusively. 

Ultimately, as was observed for the additive screen for the phenyl ester substrate, the 

previously optimised additive-free conditions gave the best results for the Pd-DAAA of the 

ketone substituted sulfone.  

 

 

 

 

Table 8: aIsolated yield, bDetermined by chiral HPLC 

Entry Additive Yield (%)a ee (R)-103 (%)b 

1 None 96 72 
2 LiCl 84 34 
3 KCl 96 72 
4 RbCl 83 74 
5 CsCl 88 72 
6 TBACl 94 24 
7 LiBF4 89 46 
8 LiOAc 81 72 
9 LiF 84 74 
10 TBAF 94 26 
11 TBAOAc 91 28 
12 AgBF4 - - 
13 AgOTf - - 
14 Zn(OTf)2 38 54 
15 ZnCl2 73 40 
16 CSA 88 52 
17 TFA 23 44 
18 PhCO2H 93 72 
19 AcOH Non-alkylated product 178 (89%) - 
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The inclusion of some additives led to a decrease in enantioselectivity, whereas with others, 

there was no change. It is, therefore, possible that an outer-sphere alkylation mechanism 

operates and the success of the reaction in terms of yield and enantioselectivity can be altered 

with the inclusion of additives. The counter-cation effect does not follow the trend observed by 

Lloyd-Jones and coworkers. In addition, the counter-anion is clearly having an effect on 

enantioselectivity, although there is no apparent trend. 

Ultimately, the efficiency and enantioselectivity of the Pd-DAAA reactions of substrates 96 and 

106 could not be improved through the use of additives. Therefore, the subsequent substrate 

scope investigation was performed using the original optimised conditions without an additive. 
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2.5 Substrate Scope Investigation 

2.5.1 5-Membered Cyclic Sulfones 

In addition to the substituted allylic ester substrates 105, 107, 129 and 130 synthesised as part 

of the mechanistic investigation (vide supra, Section 2.3.1, page 44), a number of other 5-

membered cyclic sulfones were produced (Table 9). These substrates were selected based 

on their differing steric and electronic properties. The precursors for Pd-DAAA were all 

synthesised under the optimised reaction conditions in moderate to good yields.  

 

 

 

 

 

Table 9: Isolated yields for 5-membered precursors for Pd-DAAA reactions 

 

    
79% 70% 34% 55% 

 

   
33% 75% 50% 

    
 

   

 

 42% 50% 60%  
     

    
50% 65% 83% 55% 
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Ester-containing substrates 96, 104, 182 and 183 were synthesised by deprotonation of 117 

using NaHMDS (1.1 equiv) in THF at room temperature, followed by addition of the appropriate 

chloroformate (1.1 equiv) at room temperature with stirring overnight, with the exception of 

182, where Boc anhydride (1.1 equiv) was used as the electrophile. Ketone-containing 

substrates 106 and 184-188 were synthesised by deprotonation of 117 using NaHMDS (1.1 

equiv) in THF at room temperature, followed by addition of the appropriate acid chloride (1.1 

equiv) and heating to 80 °C overnight. 

The precursors were then subjected to both racemic and enantioselective palladium-catalysed 

decarboxylative allylic alkylation conditions (Table 10). The alkylated products were produced 

using Pd(PPh3)4 (10 mol%) in 1,4-dioxane in >90% yield in most cases. Ester-containing 

substrates 96, 104, 182 and 183 underwent Pd-DAAA using Pd2(dba)3 (2.5 mol%) and (S,S)-

ANDEN phenyl Trost ligand (6.5 mol%), whereas ketone-containing substrates 106 and 184-

188, which had been found to be less reactive, required the use of Pd2(dba)3 (5 mol%) and 

(S,S)-ANDEN phenyl Trost ligand (13 mol%). Reactions under both racemic and 

enantioselective conditions were typically complete after 2 hours at room temperature; 

however, substrates containing the methyl-substituted allyl ester, 105, 107, 129 and 130, were 

complete after 4 hours at room temperature under racemic conditions. Pd-DAAA reactions of 

these substrates did not reach completion after 7 days at either room temperature or 40 °C 

under enantioselective conditions, which is reflected in the poorer yields in comparison to their 

non-substituted counterparts. 

Although we have not been able to obtain suitable crystals for the determination of the absolute 

stereochemical configuration of the major enantiomer of the Pd-DAAA reaction products, it 

was assumed that the sense of stereoinduction for all Pd-DAAA reaction products synthesised 

in this research project was the same as that for substrate 103, where the absolute 

configuration was found to be the R enantiomer (vide supra, Section 1.8, figure 9).  

For the ester-containing substrates, substrates with phenyl substituent 121 and benzyl 

substituent 97 gave good ees of 94% and 86%, respectively. The bulky tert-butyl substituent 

in 190 gave a poor ee of 38%, and the small methyl substituent in 191 gave a higher 70% ee, 

which could suggest that steric bulk can cause erosion of enantioselectivity. However, since 

the aromatic substituents offered higher ee than both alkyl substituents, it is likely that 

electronic effects also play a key role in determining enantioselectivity. For the ketone 

substrates, aromatic substituents, 103 and 124, afforded moderate ees of 72% and 62%, 

respectively. The enantioselectivity decreased considerably to 10% ee with an electron-

donating para-methoxyphenyl substituent on sulfone 192. When a bulkier aromatic ortho-tolyl 

substituent 193 was appended to the sulfone, likely to be twisted out of plane, the 
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enantioselectivity also decreased significantly to 10% ee. However, the opposite was found for 

alkyl substituents, with the small methyl substituent 194 giving a poor ee of 20%, whereas a 

bulkier isopropyl substituent afforded 195 with 88% ee.  

 
  

 

    

Aa 93% 91% 98% 94% 
Ba,b 90%, 94% ee 90%, 86% ee 94%, 38% ee 92%, 70% ee 
  

 

   
Aa 92% 90% 87% 
Ba,b 98%, 72% ee 89%, 62% ee 92%, 10% ee 
  

 

   
Aa 95% 92% 96% 
Ba,b 95%, 10% ee 90%, 20% ee 97%, 88% ee 
     

 

    
Aa 92% 91% 89% 88% 
Ba,b 62%, 82% ee 60%, 86% ee 65%, 14% ee 59%, 10% ee 
     

 

Table 10: aIsolated yield, bee determined by chiral HPLC 
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The enantioselectivity of the para-tolyl ester substrate containing the substituted allyl group 

118 was unaffected compared the non-substituted para-tolyl ester substrate, which was 

previously synthesised in the research group.52 The enantioselectivity of the phenyl ester 

substrate 119 decreased from 94% (in 121) to 82% when the allyl ester is substituted. 

Substitution of the allyl group had a greater effect on enantioselectivity for the ketone 

substrates than the ester substrates. For the para-toluoyl ketone substrate 122, the 

enantioselectivity decreased from 62% ee for the non-substituted allyl ester substrate 124, to 

10% ee. Similarly, for the substituted phenyl ketone substrate 123 the enantioselectivity 

decreased from 72% ee in non-substituted substrate 103, to 14% ee. 

The difference in reactivity and the significant decrease in enantioselectivity, particularly for 

the ketone substrates, when the allyl ester was substituted with a methyl group was surprising, 

as the methyl substituent will be planar, and should, in theory, not have a significant impact on 

the facial selectivity. 

2.5.2 6-Membered Cyclic Sulfones 

To extend the substrate scope, 6-membered cyclic sulfones were also investigated, in order 

to compare the enantioselectivity to the 5-membered cyclic sulfones. To begin, 

tetrahydrothiopyran (196) was oxidised to sulfone 197 in 99% yield using potassium 

permanganate (2 equiv) in a 3:1 mixture of water to CH2Cl2 (Scheme 55). Subsequently, 

sulfone 197 was deprotonated using LiHMDS (2 equiv) in THF at –78 °C, which was followed 

by addition of allyl chloroformate (1.1 equiv) at –78 °C, and the mixture was allowed to reach 

room temperature overnight, to afford sulfone 198 appended with an allylic ester side chain in 

70% yield. 

 

 

 

 

Scheme 55 

Sulfone 198 was deprotonated with NaHMDS (1.1 equiv) at room temperature, and then, to 

append an ester substituent, the appropriate chloroformate (1.1 equiv) was added and the 

reaction stirred at room temperature overnight to give ester-containing substrates 200 and 201 

in moderate yields (Table 11). To append a ketone substituent, the appropriate acid chloride 

was added, and the reaction was heated to 80 °C overnight to afford ketone-containing 

substrates 202 and 203 in moderate yields. 
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Table 11: aIsolated yield, bDetermined by 1H NMR spectroscopy of the mixture 

Precursors 200-203 were then subjected to both racemic and enantioselective palladium-

catalysed decarboxylative allylic alkylation conditions (Table 12). The alkylated products 205, 

207 and 208 were produced in 91-95% yields using Pd(PPh3)4 (10 mol%) in 1,4-dioxane. 

Unfortunately, ester-containing substrate 201 did not decarboxylate to give 206, with starting 

material 201 being recovered exclusively. 

Based on the lower reactivity of ketone substrates compared to ester substrates found for the 

5-membered cyclic sulfones, the same catalyst loadings were used for the 6-membered 

sulfones. Ester-containing substrates underwent Pd-DAAA using Pd2(dba)3 (2.5 mol%) and 

(S,S)-ANDEN phenyl Trost ligand (6.5 mol%), whereas ketone-containing substrates required 

Pd2(dba)3 (5 mol%) and (S,S)-ANDEN phenyl Trost ligand (13 mol%).  
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Table 12: aIsolated yield, bee determined by chiral HPLC 

For ester-appended substrates, only the phenyl ester substituted sulfone 200 underwent the 

Pd-DAAA process, affording alkylated sulfone 205 in good yield, with a moderate ee of 64%. 

Substrate 201 did not decarboxylate under either racemic or enantioselective conditions, even 

with double catalyst-loading.  

For the ketone substrates, when the steric bulk of the substituent was greater, as in isopropyl 

ketone substituted sulfone 207, a good ee of 88% was observed. The enantioselectivity was 

decreased considerably to 32% ee when a small methyl ketone substituent 208 was appended 

to the sulfone. These results suggest steric bulk could be an important factor in determining 

the enantioselectivity for this system.  
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2.6 Future Work 

2.6.1 Mechanistic Work 

To gain additional mechanistic evidence for this process, future work will build on this research 

to include repeat experiments for the malonate crossover (vide supra, Section 2.3.3) using 

more acidic 1,3-dicarbonyls, such as 1,3-diketone 209 (Figure 12), which may lead to 

observation of crossover. Indeed, the intermediate enolate can be protonated with a strong 

acid, as was evidenced by the non-alkylated product formation when acetic acid was used as 

an additive in the reaction (vide supra, Section 2.4). 

  
Figure 12: Structure of 3-methyl-2,4-pentanedione 

2.6.2 Substrate Scope Extension 

Future work will include further extension of the substrate scope. Of particular interest will be 

bulky alkyl ketone substituents on both the 5- and 6-membered sulfones due to the high 

enantioselectivity observed with substrates bearing an isopropyl ketone substituent, 195 and 

207, relative to smaller substituents. Substrates to test will include tert-butyl and adamantyl 

ketone substituents (210-213) appended to a cyclic sulfone (Figure 13). 

 

Figure 13 

A thorough investigation of 6-membered aryl ketone substrates is also warranted, and 

substrates to test will include sulfones bearing phenyl (214), para-tolyl (215), para-methoxy 

(216) and para-fluoro (217) substituents (Figure 14). 
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Once highly enantioenriched products have been produced, the cyclic sulfone substrates will 

be transformed into spirocyclic amine compounds using the electron withdrawing ester or 

ketone handle and the allylic chain in a ring-closing process (Scheme 56). Since the 

enantioselectivity will already be imparted on the substrates, these routes will enable access 

to enantioenriched spirocycles. Functionalisation of esters will give rise to unsubstituted 

spirocyclic complexes 219, whereas substrates bearing a ketone substituent are of particular 

interest as the spirocyclic complex 221 produced will comprise two contiguous stereocentres, 

maximising the interrogation of three-dimensional chemical space.  

  

Scheme 56: General scheme to transform 218 and 220 into spirocyclic amine complexes 219 and 221 
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2.7 Conclusions 

 

The aims of this project were to perform a mechanistic study of the Pd-DAAA of cyclic sulfones 

bearing ester and ketone substituents, optimise the reaction conditions; and extend the 

substrate scope of this process. 

The mechanistic study was performed to establish whether an inner- or outer-sphere alkylation 

mechanism operates for both ester and ketone substituted sulfones. In particular, we sought 

to determine whether the Pd-DAAA of sulfones bearing an ester substituent occurs via a 

different mechanism to that of sulfones bearing a ketone substituent in light of the marked 

difference in enantioselectivity between the two processes. The mechanistic investigation 

encompassed both crossover experiments and relative stereochemistry determination.  

Enolate crossover studies indicated that sulfone substrates containing 2-methyl substituted 

allylic esters were considerably less reactive than their non-substituted counterparts, and so 

were deemed unsuitable for a crossover experiment. Instead, 2H-labelling of the allylic ester 

with 93% deuterium incorporation was achieved, and enolate crossover experiments were 

successfully performed. These experiments provided evidence that an outer-sphere alkylation 

mechanism was in operation for both ester and ketone substrates due to the observation of 

significant crossover, which concurred with previous work on allylic alkylation reactions of 

unstabilised α-sulfonyl anions. 

Furthermore, relative stereochemistry determination experiments were attempted to 

conclusively confirm the mechanism of the Pd-DAAA of cyclic sulfones. Although 

stereochemical probes of both ester and ketone substrates were successfully made, Pd-DAAA 

reactions for these two substrates were unsuccessful, with no reaction occurring over a period 

of 7 days with temperatures of up to 120 °C, presumably due to the sterically hindered nature 

of the allylic electrophile. 

An additive screen was performed in order to optimise the Pd-DAAA reaction of cyclic sulfones 

in terms of enantioselectivity. Various salt and acid additives were used in the reaction, with 

no increase in enantioselectivity compared to the additive-free conditions.  

Since the reaction could not be further optimised using additives, previously optimised 

conditions were used to broaden the substrate scope of this reaction. The substrate scope for 

5-membered sulfones bearing ester and ketone substituents has been substantially 

broadened. Generally, high ees can be obtained, however, the reaction is sensitive to both 

steric and electronic factors.  
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A range of 6-membered cyclic sulfones were also synthesised for comparison with the 5-

membered cyclic sulfones. Only one alkylated ester substituted sulfone was produced, bearing 

a phenyl ester substituent, and affording a moderate ee of 64%. For the ketone substrates, 

enantioselectivity appeared to correlate to steric bulk, with a bulky tert-butyl ester substituted 

sulfone giving a good ee of 88%.  

To conclude, whilst the result could not be confirmed by means of stereochemical labelling, 

the crossover reaction provided strong evidence for the operation of an outer-sphere alkylation 

mechanism for this process. Additionally, a number of novel 5- and 6-membered alkylated 

products have been successfully synthesised, and future work has been proposed for the 

transformation of enantioenriched alkylated products into spirocyclic building blocks for drug 

discovery. 
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Chapter 3: Experimental 

3.1 General Procedures 

 

Oven-dried glassware was used for all reactions under an argon atmosphere. Dry solvents 

were obtained from commercial sources or obtained from an Innovative Technologies 

PureSolv solvent drying system. All reagents and solvents were used as supplied. Petrol refers 

to the fraction of petroleum that boils between 40 °C and 60 °C. Aqueous solutions were 

saturated unless otherwise stated. Removal of solvents in vacuo refers to the use of a rotary 

evaporator at 40 °C, with further drying on a high vacuum line.  

VWR Chemicals silica gel (40–63 μm particle size) was used for flash column chromatography. 

Thin layer chromatography (TLC) was carried out using Merck KgaA silica gel 60 F254 

aluminium-backed plates. Ultraviolet irradiation (254 nm) and staining with potassium 

permanganate solutions as appropriate were used to visualise TLC plates.  

1H NMR spectra were obtained using either a Bruker AVANCE III 400 spectrometer or a Bruker 

FOURIER 300 spectrometer, in CDCl3. 13C NMR spectra were recorded on the same 

spectrometers at 100 MHz or 75 MHz, respectively. For 1H NMR spectra recorded in CDCl3, 

the residual protic solvent CHCl3 (δH = 7.26 ppm) was used as the internal reference. For 13C 

NMR spectra, the central resonance of CDCl3 (δC = 77.0 ppm) was used as the internal 

reference. NMR data are reported as follows: chemical shift, δH (in parts per million, ppm), 

(number of protons, multiplicity, coupling constant, J in Hertz, and assignment). Couplings are 

expressed as one, or a combination of: s, singlet; br s, broad singlet; d, doublet; t, triplet; q, 

quartet; quint, quintet; sextet; septet and m, multiplet. When coincidental couplings constants 

were observed in the NMR spectra, the apparent multiplicity of the proton resonance in these 

cases was reported. Various NMR experiments (DEPT-135, COSY, HSQC, HMBC) were used 

in order to assign the 1H and 13C NMR spectra. The atoms of the products reported below are 

numbered for clarity in NMR assignments, however, the numbering does not correspond to 

IUPAC nomenclature.   

High resolution mass spectra (HRMS) were recorded using a Shimadzu LCMS-IT-TOF 

instrument using ESI or APCI conditions. Infra-red spectra were recorded on an Agilent 

Technologies Cary 630 FTIR spectrometer. Melting points were measured on a Sanyo 

Gallenkamp capillary melting point apparatus. Enantiomeric excesses were determined by 

chiral HPLC on a Shimadzu NEXERA X2 UHPLC instrument equipped with a UV detector, 

using either a CHIRALCEL OD-H or CHIRALPAK AD-H column. Optical rotations were 

measured in CHCl3 using an AA-65 Automatic Polarimeter. 
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3.2 Synthetic Procedures 

3.2.1 Synthesis of Precursors for Reaction Optimisation 

 
Allyl tetrahydrothiophene-2-carboxylate 1,1-dioxide 117  

 

 

 

Sulfolane (3.00 g, 25 mmol) was dissolved in THF (200 mL) and the solution was cooled to      

–78 °C. LiHMDS (1 M in THF, 50 mL, 50 mmol) was added dropwise at –78 °C. The solution 

was stirred at –78 °C for 1 hour. Allyl chloroformate (2.97 mL, 28 mmol) was added dropwise 

at –78 °C. The solution was allowed to reach room temperature and was stirred overnight. The 

solution was quenched with aq. HCl (1 N, 50 mL), and the mixture was extracted with EtOAc 

(3 x 20 mL). The combined organic phase was washed with brine (20 mL), dried (MgSO4), and 

concentrated under reduced pressure. Purification by flash column chromatography 

[hexane:EtOAc 2:1] gave 117 (2.43 g, 74%) as a yellow oil. Rf = 0.21 [petrol:EtOAc 2:1]. 

1H NMR: (400 MHz, CDCl3) δ 5.97 (1H, ddt, J = 17.2, 10.5, 5.9 Hz, H7), 5.42 (1H, dq, J = 17.2, 

1.4 Hz, H8a), 5.32 (1H, dq, J = 10.4, 1.2 Hz, H8b), 4.76 (2H, m, H6), 3.97 (1H, t, J = 7.6 Hz, 

H4), 3.18-3.04 (2H, m, H1), 2.59-2.49 (1H, m, H3a), 2.43-2.30 (2H, m, H3b and H2a), 2.21-

2.09 (1H, m, H2b). 

13C NMR: (100 MHz, CDCl3) δ 165.3 (C5), 131.2 (C7), 119.3 (C8), 67.1 (C6), 64.7 (C4), 51.6 

(C1), 26.0 (C3), 20.4 (C2). 

HRMS (m/z): (APCI) calcd for C8H12O4S [M–H]– 203.0384, found 203.0381. 

IR: νmax (neat): 2969 (C–H), 1737 (C=O) cm–1. 

 

2-Allyl 2-phenyl dihydrothiophene-2,2(3H)-dicarboxylate 1,1-dioxide 104 
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117 (50 mg, 0.25 mmol) was dissolved in THF (2 mL). NaHMDS (1 M in THF, 0.28 mL, 0.28 

mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Phenyl chloroformate (35 μL, 0.28 mmol) was added dropwise, and the solution was stirred 

overnight. The solution was quenched with aq. HCl (1 N, 2 mL). The mixture was extracted 

with EtOAc (3 x 2 mL), washed with brine (2 mL), dried (MgSO4), and concentrated under 

reduced pressure. Purification by flash column chromatography [hexane:EtOAc 9:1–4:1] gave 

104 (63.4 mg, 79%) as a colourless solid. Rf = 0.19 [petrol:EtOAc 4:1]. m.p.: 58–60 °C. 

1H NMR: (300 MHz, CDCl3) δ 7.43-7.36 (2H, m, H12), 7.30-7.25 (1H, m, H13), 7.20-7.14 (2H, 

m, H11), 5.96 (1H, dddd, J = 16.2, 10.4, 6.7, 5.9 Hz, H7), 5.45 (1H, dq, J = 17.2, 1.5 Hz, H8a), 

5.32 (1H, dq, J = 10.4, 1.2 Hz, H8b), 4.84 (2H, m, H6), 3.50-3.34 (2H, m, H1), 2.92 (1H, quint, 

J = 7.8 Hz, H3a), 2.79 (1H, quint, J = 7.5 Hz, H3b), 2.33 (2H, quint, J = 8.4 Hz, H2). 

13C NMR: (75 MHz, CDCl3) δ 164.2 (C5), 162.9 (C9), 150.2 (C10), 130.5 (C7), 128.9 (C12), 

126.9 (C13), 121.3 (C11), 120.0 (C8), 75.2 (C4), 68.0 (C6), 50.6 (C1), 30.3 (C3), 17.4 (C2). 

HRMS (m/z): (ESI) calcd for C15H16O6S [M+Na]+ 347.0560, found 347.0553. 

IR: νmax (neat): 3017 (C–H), 2967 (C–H), 1765 (C=O), 1735 (C=O) cm–1. 

 

Allyl 2-benzoyltetrahydrothiophene-2-carboxylate 1,1-dioxide 106 

 

 

 

 

117 (1.00 g, 4.90 mmol) was dissolved in THF (50 mL) and NaHMDS (1 M in THF, 5.39 mL, 

5.39 mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Benzoyl chloride (0.63 mL, 5.39 mmol) was added dropwise, and the solution was heated to 

80 °C overnight. The solution was allowed to cool to room temperature and was quenched with 

aq. HCl (1 N, 40 mL). The mixture was extracted with EtOAc (3 x 40 mL), washed with brine 

(40 mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 9:1–4:1] gave 106 (1.13 g, 75%) as a colourless solid. 

Rf = 0.18 [petrol:EtOAc 4:1]. m.p.: 81–83 °C. 

1H NMR: (300 MHz, CDCl3) δ 7.96-7.92 (2H, m, H11), 7.58 (1H, tt, J = 6.5, 1.3 Hz, H13), 7.49-

7.43 (2H, m, H12), 5.63 (1H, dddd, J = 15.9, 10.3, 7.4, 5.5 Hz, H7), 5.19-5.11 (2H, m, H8), 
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4.62 (2H, dt, J = 5.9, 1.4 Hz, H6), 3.49-3.22 (2H, m, H1), 3.14 (1H, quint, J = 6.9 Hz, H3a), 

2.72 (1H, quint, J = 6.6 Hz, H3b), 2.40-2.17 (2H, m, H2). 

13C NMR: (75 MHz, CDCl3) δ 188.5 (C9), 166.3 (C5), 135.4 (C10), 133.8 (C13), 130.2 (C7), 

129.0 (C11), 128.7 (C12), 120.0 (C8), 77.8 (C4), 67.3 (C6), 51.9 (C1), 31.9 (C3), 17.6 (C2).     

HRMS (m/z): (ESI) calcd for C15H16O5S [M+Na]+ 331.0611, found 331.0597. 

IR: νmax (neat): 3066 (C–H), 2954 (C–H), 1735 (C=O), 1685 (C=O) cm–1. 

 

3.2.2 Synthesis of 2-Methyl Allyl Ester Crossover Experiment Precursors 

 
2-Methylallyl imidazole-1-carboxylate 12720 

 
 

 

 

 

1,1'-Carbonyldiimidazole (1.46 g, 9.00 mmol) was dissolved in THF (65 mL) and the solution 

was cooled to 0 °C. A solution of 2-methyl-2-propen-1-ol (0.50 mL, 5.94 mmol) in CH2Cl2 (22 

mL) was added dropwise at 0 °C. The solution was stirred at 0 °C for 2 hours. The reaction 

mixture was concentrated under reduced pressure. Purification by flash column 

chromatography [hexane:EtOAc 4:1] gave 127 (937 mg, 95%) as a colourless solid. Rf = 0.32 

[petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3) δ 8.17 (1H, br s, H1), 7.45 (1H, br s, H2), 7.09 (1H, br s, H3), 5.09 

(1H, s, H7a), 5.06 (1H, s, H7b), 4.82 (2H, s, H5), 1.82 (3H, s, H8). 

13C NMR: (100 MHz, CDCl3) δ 148.8 (C4), 138.5 (C1), 137.2 (C6), 130.7 (C3), 117.2 (C2), 

115.0 (C7), 71.4 (C5), 19.4 (C8).  

HRMS (m/z): (ESI) calcd for C8H10N2O2 [M+H]+ 167.00815, found 167.0810. 

Analytical data matches literature values.20 
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(2-Methylallyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 128 

 

 

 

Sulfolane (334 mg, 2.78 mmol) was dissolved in THF (25 mL) and the solution was cooled to    

–78 °C. LiHMDS (1 M in THF, 5.57 mL, 5.57 mmol) was added dropwise at –78 °C. The 

solution was stirred at –78 °C for 1 hour. A solution of 127 (500 mg, 3.00 mmol) in THF (5 mL) 

was added dropwise at –78 °C. The solution was allowed to reach room temperature and was 

stirred overnight. The solution was quenched with aq. HCl (1 N, 8 mL), and the mixture was 

extracted with EtOAc (3 x 8 mL). The combined organic phase was washed with brine (8 mL), 

dried (MgSO4), and concentrated under reduced pressure. Purification by flash column 

chromatography [hexane:EtOAc 2:1] gave 128 (485 mg, 80%) as a colourless oil. Rf = 0.32 

[petrol:EtOAc 2:1]. 

1H NMR: (400 MHz, CDCl3) δ 5.05 (1H, t, J = 1.2 Hz, H8a), 4.97 (1H, quint, J = 0.8 Hz, H8b), 

4.71 (1H, d, J = 12.8 Hz, H6a), 4.64 (1H, d, J = 12.8 Hz, H6b), 3.95 (1H, t, J = 7.5 Hz, H4), 

3.18-3.07 (2H, m, H1), 2.62-2.52 (1H, m, H3a), 2.45-2.32 (2H, m, H2a and H3b), 2.23-2.12 

(1H, m, H2b), 1.80 (3H, s, H9). 

13C NMR: (100 MHz, CDCl3) δ 165.4 (C5), 139.1 (C7), 114.4 (C8), 70.0 (C6), 64.9 (C4), 51.4 

(C1), 25.9 (C3), 20.3 (C2), 19.6 (C9).     

HRMS (m/z): (APCI) calcd for C9H14O4S [M+H]+ 219.0686, found 219.0676. 

IR: νmax (neat): 3084 (C–H), 2952 (C–H), 1735 (C=O) cm–1. 

 

2-(2-Methylallyl) 2-(p-tolyl) dihydrothiophene-2,2(3H)-dicarboxylate 1,1-dioxide 105 

 

 

 

 

 

128 (240 mg, 1.10 mmol) was dissolved in THF (10 mL) at room temperature. NaHMDS (1 M 

in THF, 1.35 mL, 1.35 mmol) was added dropwise. The solution was stirred at room 
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temperature for 30 minutes. p-Tolyl chloroformate (200 μL, 1.35 mmol) was added dropwise, 

and the solution was stirred overnight. The solution was quenched with aq. HCl (1 N, 10 mL). 

The mixture was extracted with EtOAc (3 x 10 mL), washed with brine (10 mL), dried (MgSO4), 

and concentrated under reduced pressure. Purification by flash column chromatography 

[hexane:EtOAc 9:1–4:1] gave 105 (213 mg, 55%) as a yellow solid. Rf = 0.30 [petrol:EtOAc 

4:1]. m.p.: 70–71 °C. 

1H NMR: (400 MHz, CDCl3) δ 7.18 (2H, d, J = 8.5 Hz, H13), 7.05 (2H, dt, J = 9.0, 2.4 Hz, H12), 

5.10 (1H, t, J = 1.1 Hz, H8a), 5.00 (1H, quint, J = 0.8 Hz, H8b), 4.80 (1H, d, J = 12.9 Hz, H6a), 

4.75 (1H, d, J = 12.8 Hz, H6b), 3.48-3.36 (2H, m, H1), 2.91 (1H, quint, J = 7.5 Hz, H3a), 2.79 

(1H, quint, J = 7.4 Hz, H3b), 2.38-2.28 (5H, m, H2 and H15), 1.79 (3H, s, H9). 

13C NMR: (100 MHz, CDCl3) δ 164.4 (C5), 163.2 (C10), 148.1 (C11), 138.6 (C7), 136.5 (C14), 

130.1 (C13), 120.9 (C12), 114.8 (C8), 75.1 (C4), 70.6 (C6), 50.6 (C1), 30.3 (C3), 20.9 (C15), 

19.4 (C9), 17.3 (C2).     

HRMS (m/z): (APCI) calcd for C17H20O6S [M+H]+ 353.1053, found 353.1052. 

IR: νmax (neat): 3017 (C–H), 2970 (C–H), 2920 (C–H), 1765 (C=O), 1730 (C=O) cm–1. 

 

(2-Methylallyl) 2-(p-toluoyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 107 

 

 

 

 

128 (240 mg, 1.10 mmol) was dissolved in THF (10 mL) and NaHMDS (1 M in THF, 1.35 mL, 

1.35 mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

p-Toluoyl chloride (180 μL, 1.35 mmol) was added dropwise, and the solution was heated to 

80 °C overnight. The solution was allowed to cool to room temperature and was quenched with 

aq. HCl (1 N, 10 mL). The mixture was extracted with EtOAc (3 x 10 mL), washed with brine 

(10 mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 9:1–4:1] gave 107 (306 mg, 83%) as a yellow oil. Rf 

= 0.30 [petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3) δ 7.85 (2H, d, J = 8.6 Hz, H13), 7.25 (2H, d, J = 8.6 Hz, H12), 4.86 

(1H, s, H8a), 4.86 (1H, s, H8b), 4.53 (2H, s, H6), 3.49-3.34 (2H, m, H1), 3.13 (1H, quint, J = 
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7.6 Hz, H3a), 2.69 (1H, quint, J = 7.2 Hz, H3b), 2.39 (3H, s, H15), 2.35-2.19 (2H, m, H2), 1.46 

(3H, s, H9). 

13C NMR: (100 MHz, CDCl3) δ 187.5 (C10), 166.3 (C5), 144.9 (C14), 138.2 (C7), 132.9 (C11), 

129.6 (C12), 129.2 (C13), 115.1 (C8), 77.8 (C4), 70.4 (C6), 51.9 (C1), 32.0 (C3), 21.7 (C15), 

19.3 (C9), 17.6 (C2).     

HRMS (m/z): (APCI) calcd for C17H20O5S [M+H]+ 337.1104, found 337.1096. 

IR: νmax (neat): 3062 (C–H), 2952 (C–H), 1733 (C=O), 1682 (C=O) cm–1. 

 

2-(2-Methylallyl) 2-phenyl dihydrothiophene-2,2(3H)-dicarboxylate 1,1-dioxide 129 

 

 

 

 

128 (100 mg, 0.46 mmol) was dissolved in THF (6 mL). NaHMDS (1 M in THF, 0.51 mL, 0.51 

mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Phenyl chloroformate (64 μL, 0.51 mmol) was added dropwise, and the solution was stirred 

overnight. The solution was quenched with aq. HCl (1 N, 6 mL). The mixture was extracted 

with EtOAc (3 x 6 mL), washed with brine (6 mL), dried (MgSO4), and concentrated under 

reduced pressure. Purification by flash column chromatography [hexane:EtOAc 4:1] gave 129 

(77 mg, 50%) as a colourless oil. Rf = 0.21 [petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3) δ 7.41-7.37 (2H, m, H12), 7.29-7.25 (1H, m, H14), 7.19-7.16 (2H, 

m, H13), 5.10 (1H, s, H8a), 5.00 (1H, s, H8b), 4.79 (1H, d, J = 12.6 Hz, H6a), 4.74 (1H, d, J = 

12.8 Hz, H6b), 3.45-3.32 (2H, m, H1), 2.91 (1H, quint, J = 8.4 Hz, H3a), 2.78 (1H, quint, J = 

7.6 Hz, H3b), 2.31 (2H, quint, J = 8.0 Hz, H2), 1.80 (3H, s, H9). 

13C NMR: (100 MHz, CDCl3) δ 164.3 (C5), 162.3 (C10), 150.3 (C11), 138.5 (C7), 129.6 (C12), 

126.7 (C14), 121.2 (C13), 114.7 (C8), 75.2 (C4), 70.6 (C6), 50.6 (C1), 30.3 (C3), 19.5 (C9), 

17.5 (C2).     

HRMS (m/z): (APCI) calcd for C16H18O6S [M+H]+ 339.0897, found 339.0895. 

IR: νmax (neat): 3073 (C–H), 2956 (C–H), 1735 (C=O) cm–1. 
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(2-Methylallyl) 2-benzoyltetrahydrothiophene-2-carboxylate 1,1-dioxide 130 

 

 

 

 

128 (100 mg, 0.46 mmol) was dissolved in THF (6 mL) and NaHMDS (1 M in THF, 0.51 mL, 

0.51 mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Benzoyl chloride (59 μL, 0.51 mmol) was added dropwise, and the solution was heated to 80 

°C overnight. The solution was allowed to cool to room temperature and was quenched with 

aq. HCl (1 N, 6 mL). The mixture was extracted with EtOAc (3 x 6 mL), washed with brine (6 

mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash column 

chromatography [hexane:EtOAc 4:1] gave 130 (100 mg, 65%) as a colourless oil. Rf = 0.22 

[petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3) δ 7.93 (2H, d, J = 8.3 Hz, H12), 7.54 (1H, t, J = 7.2 Hz, H14), 7.42 

(2H, t, J = 7.7 Hz, H13), 4.78 (2H, s, H8), 4.49 (2H, t, J = 14.0 Hz, H6), 3.47-3.33 (2H, m, H1), 

3.10 (1H, quint, J = 6.8 Hz, H3a), 2.69 (1H, quint, J = 6.8 Hz, H3b), 2.34-2.15 (2H, m, H2), 

1.40 (3H, s, H9). 

13C NMR: (100 MHz, CDCl3) δ 188.2 (C10), 166.2 (C5), 138.2 (C7), 135.4 (C11), 133.9 (C14), 

129.0 (C12), 128.8 (C13), 115.1 (C8), 77.7 (C4), 70.3 (C6), 51.8 (C1), 32.0 (C3), 19.2 (C9), 

17.7 (C2).     

HRMS (m/z): (APCI) calcd for C16H18O5S [M+H]+ 323.0948, found 323.0955. 

IR: νmax (neat): 3062 (C–H), 2950 (C–H), 1733 (C=O), 1685 (C=O) cm–1. 
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3.2.3 Synthesis of 2H Labelled Allyl Ester Crossover Experiment Precursors 

 

Prop-2-ynyl imidazole-1-carboxylate 13953 

 

 

 

 

1,1'-Carbonyldiimidazole (2.51 g, 15.5 mmol) was dissolved in CH2Cl2 (20 mL). Propargyl 

alcohol (0.5 mL, 8.59 mmol) was added dropwise. The mixture was stirred at room temperature 

for 1 hour. The reaction mixture was concentrated under reduced pressure. Purification by 

flash column chromatography [Petrol:EtOAc 2:1] gave 139 (607 mg, 47%) as an off-white solid. 

Rf = 0.26 [petrol:EtOAc 2:1]. 

1H NMR: (400 MHz, CDCl3) δ 8.16 (1H, s, H1), 7.44 (1H, s, H2), 7.08 (1H, s, H3), 4.99 (2H, d, 

J = 2.4 Hz, H5), 2.62 (1H, t, J = 2.5 Hz, H7).  

13C NMR: (100 MHz, CDCl3) δ 148.0 (C4), 137.1 (C1), 130.9 (C2), 117.2 (C3), 76.9 (C6), 75.8 

(C7), 55.5 (C5).  

IR: νmax (neat): 3010 (C–H), 2911 (C–H), 2827 (C–H), 2130 (C≡C), 1752 (C=O) cm–1. 

Analytical data matches literature values.53 

 
Phenyl tetrahydrothiophene-2-carboxylate 1,1-dioxide 142 

 

 

 

Sulfolane (120 mg, 1.00 mmol) was dissolved in THF (10 mL) and the solution was cooled to    

–78 °C. LiHMDS (1 M in THF, 2 mL, 2.00 mmol) was added dropwise at –78 °C. The solution 

was stirred at –78 °C for 1 hour. Phenyl chloroformate (140 μL, 1.10 mmol) was added 

dropwise at –78 °C. The solution was allowed to reach room temperature and was stirred 

overnight. The solution was quenched with aq. HCl (1 N, 10 mL). The mixture was extracted 

with EtOAc (3 x 10 mL), washed with brine (10 mL), dried (MgSO4), and concentrated under 

reduced pressure. Purification by flash column chromatography [hexane:EtOAc 9:1–4:1] gave 

142 (77 mg, 32%) as a yellow oil. Rf = 0.25 [petrol:EtOAc 4:1]. 
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1H NMR: (300 MHz, CDCl3) δ 7.39 (2H, t, J = 5.6 Hz, H7), 7.26 (1H, tt, J = 5.3, 1.0 Hz, H9), 

7.19-7.16 (2H, m, H8), 4.17 (1H, t, J = 5.6 Hz, H4), 3.24-3.12 (2H, m, H1), 2.69-2.60 (1H, m, 

H3a), 2.52-2.34 (2H, m, H2a and H3b), 2.26-2.15 (1H, m, H2b). 

13C NMR: (75 MHz, CDCl3) δ 164.8 (C5), 150.5 (C6), 129.5 (C7), 126.4 (C9), 121.5 (C8), 64.7 

(C4), 52.0 (C1), 26.0 (C3), 20.5 (C2). 

HRMS (m/z): (APCI) calcd for C11H12O4S [M+H]+ 241.0529, found 241.0531. 

IR: νmax (neat): 3021 (C–H), 2960 (C–H), 2887 (C–H), 1754 (C=O) cm–1. 

 

3-Trimethylsilylprop-2-ynyl imidazole-1-carboxylate 144 
 

 

 

 

A solution of 1,1'-carbonyldiimidazole (8.51 g, 52.5 mmol) in THF (200 mL) was cooled to            

0 °C. (3-Trimethylsilyl)propargyl alcohol (5.18 mL, 35 mmol) was added dropwise at 0 °C. The 

reaction mixture was stirred at 0 °C for 2 hours. The reaction mixture was concentrated under 

reduced pressure. Purification by flash column chromatography [Petrol:EtOAc 9:1–4:1] gave 

144 (3.35 g, 43%) as a colourless oil. Rf = 0.32 [petrol:EtOAc 2:1]. 

1H NMR: (400 MHz, CDCl3) δ 8.21 (1H, br s, H1), 7.48 (1H, t, J = 1.4 Hz, H2), 7.11 (1H, dd, J 

= 1.65, 0.80 Hz, H3), 5.01 (2H, s, H5), 0.22 (9H, s, H8). 

13C NMR: (100 MHz, CDCl3) δ 148.1 (C4), 137.3 (C1), 130.7 (C2), 117.2 (C3), 96.7 (C6), 94.7 

(C7), 56.2 (C5), –0.42 (C8). 

HRMS (m/z): (APCI) calcd for C10H14N2O2Si [M+H]+ 223.0897, found 223.0890. 

IR: νmax (neat): 2961 (C–H), 2902 (C–H), 2186 (C≡C), 1763 (C=O) cm–1. 

 

 

3-Trimethylsilylprop-2-ynyl 1,1-dioxothiolane-2-carboxylate 145 
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Sulfolane (600 mg, 5 mmol) was dissolved in THF (40 mL) and the solution was cooled to         

–78 °C. LiHMDS (1 M in THF, 10.5 mL, 10.5 mmol) was added dropwise at –78 °C. The 

solution was stirred at –78 °C for 1 hour. The solution was allowed to reach room temperature, 

and a solution of 144 (1.22 g, 5.5 mmol) in THF (10 mL) was added dropwise. The mixture 

was stirred at room temperature for 1 hour. The reaction was quenched with aq. HCl (1 N, 30 

mL), and the mixture was extracted with EtOAc (3 x 30 mL). The combined organic phase was 

washed with brine (30 mL), dried (MgSO4), and concentrated under reduced pressure. 

Purification by flash column chromatography [hexane:EtOAc 9:1–4:1] gave 145 (645 mg, 47%) 

as a colourless solid. Rf = 0.29 [petrol:EtOAc 2:1]. m.p.: 105–106 °C. 

1H NMR: (400 MHz, CDCl3) δ 4.92 (1H, d, J = 15.5 Hz, H6a), 4.70 (1H, d, J = 15.8 Hz, H6b), 

3.96 (1H, t, J = 7.0 Hz, H4), 3.18-3.06 (2H, m, H1), 2.60-2.51 (1H, m, H3a), 2.45-2.32 (2H, m, 

H2a and H3b), 2.22-2.11 (1H, m, H2b), 0.17 (9H, s, H9). 

13C NMR: (100 MHz, CDCl3) δ 165.2 (C5), 97.7 (C7), 93.2 (C8), 64.6 (C4), 54.6 (C6), 51.6 

(C1), 26.2 (C3), 20.5 (C2), –0.37 (C9). 

HRMS (m/z): (APCI) calcd for C11H18O4SiS [M+H]+ 275.0768, found 275.0767. 

IR: νmax (neat): 2965 (C–H), 2902 (C–H), 2190 (C≡C), 1739 (C=O) cm–1. 

 

2-(3-Trimethylsilylprop-2-ynyl) 2-tolyl dihydrothiophene-2,2(3H)-dicarboxylate 1,1-
dioxide 148 

 
 

 

 

 

145 (588 mg, 2.15 mmol) was dissolved in THF (25 mL). NaHMDS (1 M in THF, 2.37 mL, 2.37 

mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. p-

Tolyl chloroformate (0.34 mL, 2.37 mmol) was added dropwise, and the solution was stirred at 

room temperature for 5 hours. The reaction was quenched with aq. HCl (1 N, 20 mL). The 

mixture was extracted with EtOAc (3 x 20 mL), washed with brine (20 mL), dried (MgSO4), and 

concentrated under reduced pressure. Purification by flash column chromatography 

[hexane:EtOAc 9:1–6:1] gave 148 (538 mg, 61%) as a colourless oil. Rf = 0.61 [petrol:EtOAc 

2:1]. 
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1H NMR: (400 MHz, CDCl3) δ 7.18 (2H, d, J = 8.5 Hz, H13), 7.08 (2H, d, J = 9.0 Hz, H12), 4.91 

(2H, d, J = 2.1 Hz, H6), 3.50-3.32 (2H, m, H1), 2.94 (1H, quint, J = 7.5 Hz, H3a), 2.75 (1H, 

quint, J = 6.9 Hz, H3b), 2.37-2.27 (5H, m, H2 and H15), 0.16 (9H, s, H9). 

13C NMR: (100 MHz, CDCl3) δ 164.0 (C5), 162.8 (C10), 148.1 (C11), 136.4 (C14), 130.0 (C13), 

121.0 (C12), 97.1 (C7), 93.9 (C8), 74.8 (C4), 55.3 (C6), 50.6 (C1), 30.3 (C3), 20.9 (C15), 17.3 

(C2), –0.43 (C9). 

HRMS (m/z): (APCI) calcd for C19H24O6SiS [M+H]+ 409.1136, found 409.1126. 

IR: νmax (neat): 3034 (C–H), 2960 (C–H), 2193 (C≡C), 1746 (C=O) cm–1. 

 

2-(Prop-2-ynyl) 2-tolyl dihydrothiophene-2,2(3H)-dicarboxylate 1,1-dioxide 150 
 

 

 

 

 

148 (20.4 mg, 0.05 mmol) was dissolved in THF (2 mL). Acetic acid (3.2 μL, 0.055 mmol) and 

tetrabutylammonium fluoride (1 M in THF, 55 μL, 0.055 mmol) were added, and the reaction 

mixture was stirred at room temperature for 2 hours. The solution was quenched with aq. 

NaHCO3 (10 mL). The mixture was extracted with EtOAc (3 x 10 mL), washed with brine (10 

mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash column 

chromatography [hexane:EtOAc 4:1] gave 150 (14 mg, 83%) as a pale brown solid. Rf = 0.32 

[petrol:EtOAc 2:1]. m.p.: 96–97 °C. 

1H NMR: (400 MHz, CDCl3) δ 7.19 (2H, d, J = 8.4 Hz, H12), 7.07 (2H, d, J = 8.5 Hz, H11), 4.92 

(2H, qd, J = 15.4, 2.4 Hz, H6), 3.47-3.35 (2H, m, H1), 2.93 (1H, quint, J = 7.4 Hz, H3a), 2.79 

(1H, quint, J = 7.7 Hz, H3b), 2.55 (1H, t, J = 2.5 Hz, H8), 2.37-2.30 (5H, m, H2 and H14). 

13C NMR: (100 MHz, CDCl3) δ 163.9 (C5), 162.8 (C9), 148.1 (C10), 136.5 (C13), 130.1 (C12), 

120.8 (C11), 76.4 (C8), 76.0 (C7), 74.9 (C4), 54.5 (C6), 50.6 (C1), 30.2 (C3), 20.9 (C14), 17.4 

(C2). 

HRMS (m/z): (APCI) calcd for C16H16O6S [M+H]+ 337.0740, found 337.0734. 

IR: νmax (neat): 3012 (C–H), 2965 (C–H), 2918 (C–H), 2850 (C–H), 2126 (C≡C), 1769 (C=O), 

1743 (C=O) cm–1. 
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2-(3-2H-Prop-2-ynyl) 2-tolyl dihydrothiophene-2,2(3H)-dicarboxylate 1,1-dioxide 151 
 

 

 

 

 

148 (414 mg, 1.01 mmol) was dissolved in THF (15 mL). Deuterium oxide (5 mL) was added, 

followed by tetrabutylammonium fluoride (1 M in THF, 1.12 mL, 1.12 mmol), and the reaction 

mixture was stirred at room temperature for 2 hours. The solution was diluted with water. The 

mixture was extracted with EtOAc (3 x 15 mL), washed with brine (15 mL), dried (MgSO4), and 

concentrated under reduced pressure. Purification by flash column chromatography 

[hexane:EtOAc 6:1–4:1] gave 151 (304 mg, 89%, 96% D) as a pale yellow solid. Rf = 0.32 

[petrol:EtOAc 2:1]. m.p.: 97–98 °C. 

1H NMR: (400 MHz, CDCl3) δ 7.19 (2H, d, J = 8.4 Hz, H12), 7.07 (2H, d, J = 8.5 Hz, H11), 4.92 

(2H, qd, J = 15.4, 2.4 Hz, H6), 3.47-3.35 (2H, m, H1), 2.93 (1H, quint, J = 7.4 Hz, H3a), 2.79 

(1H, quint, J = 7.7 Hz, H3b), 2.55 (0.04H, t, J = 2.4 Hz, H8), 2.37-2.30 (5H, m, H2 and H14). 

13C NMR: (100 MHz, CDCl3) δ 163.9 (C5), 162.8 (C9), 148.1 (C10), 136.5 (C13), 130.1 (C12), 

120.8 (C11), 74.9 (C4), 54.5 (C6), 50.6 (C1), 30.2 (C3), 20.9 (C14), 17.4 (C2),                               

C7 and C8 signals not observed. 

HRMS (m/z): (APCI) calcd for C16H15DO6S [M+H]+ 338.0803, found 338.0794. 

IR: νmax (neat): 3017 (C–H), 2965 (C–H), 2918 (C–H), 2850 (C–H), 2579 (C–D), 1984 (C≡C), 

1767 (C=O), 1743 (C=O) cm–1. 

 

 
2-(3-2H-Allyl) 2-tolyl dihydrothiophene-2,2(3H)-dicarboxylate 1,1-dioxide 152 

 

 

 

 

A suspension of 151 (194 mg, 0.58 mmol), Pd/CaCO3 (19.4 mg) and quinoline (136 μL, 1.15 
mmol) in EtOAc (11.5 mL) was degassed with argon. The mixture was cooled to 0 °C, and 
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then stirred at 0 °C under a hydrogen atmosphere for 20 minutes. The suspension was filtered 

though a pad of celite, washed with aq. HCl (1 N, 15 mL) and brine (15 mL), dried (MgSO4), 

and concentrated under reduced pressure. Purification by flash column chromatography 

[hexane:EtOAc 9:1] gave 152 (160 mg, 82%, 93%D) as a colourless solid. Rf = 0.32 

[petrol:EtOAc 2:1]. m.p.: 60–61 °C. 

1H NMR: (400 MHz, CDCl3) δ 7.18 (2H, d, J = 8.2 Hz, H12), 7.05 (2H, d, J = 9.2 Hz, H11), 

6.00-5.91 (1H, ddt, J = 17.2, 10.5, 5.8 Hz, H7), 5.47 (0.24H, dq, J = 17.2, 1.3 Hz, H8a), 5.34 

(0.83H, dq, J = 10.5, 1.1 Hz, H8b), 4.86 (2H, dq, J = 5.7, 1.3 Hz, H6), 3.49-3.35 (2H, m H1), 

2.94 (1H, quint, J = 7.8 Hz, H3a), 2.82 (1H, quint, J = 7.8 Hz, H3b), 2.39-2.31 (5H, m, H2 and 
H14).  

13C NMR: (100 MHz, CDCl3) δ 164.2 (C5), 163.2 (C9), 148.1 (C10), 136.5 (C13), 130.5 (C7), 

130.1 (C12), 120.8 (C11), 119.5 (t, J = 93.6 Hz, C8), 75.0 (C4), 67.7 (C6), 50.5 (C1), 30.2 (C3), 

21.0 (C14), 17.3 (C2). 

HRMS (m/z): (APCI) calcd for C16H17DO6S [M+H]+ 340.0960, found 340.0947. 

IR: νmax (neat): 3034 (C–H), 2954 (C–H), 1735 (C=O) cm–1. 

 

2-(3-2H-Propyl) 2-tolyl dihydrothiophene-2,2(3H)-dicarboxylate 1,1-dioxide 154 
 

 

 

 

A suspension of 151 (16.9 mg, 0.05 mmol), Pd/CaCO3 (2 mg) and quinoline (12 μL, 0.1 mmol) 

in EtOAc (1 mL) was degassed with argon, and then stirred at room temperature under a 

hydrogen atmosphere for 30 minutes. The suspension was filtered though a pad of celite, 

washed with aq. HCl (1 N, 10 mL) and brine (10 mL), dried (MgSO4), and concentrated under 

reduced pressure. Purification by flash column chromatography [hexane:EtOAc 9:1–3:1] gave 

154 (1 mg, 6%, >99% D) as a colourless solid. Rf = 0.36 [petrol:EtOAc 2:1]. m.p.: 66–67 °C. 

1H NMR: (400 MHz, CDCl3) δ 7.19 (2H, d, J = 8.7 Hz, H12), 7.05 (2H, d, J = 8.5 Hz, H11), 4.31 

(2H, ddt, J = 19.3, 10.7, 6.6 Hz, H6), 3.48-3.37 (2H, m, H1), 2.90 (1H, quint, J = 7.6 Hz, H3a), 

2.77 (1H, quint, J = 7.3 Hz, H3b), 2.36-2.29 (5H, m, H2 and H14), 1.76 (2H, quint, J = 7.0 Hz, 

H7), 1.04-0.98 (2H, m, H8). 
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13C NMR: (100 MHz, CDCl3) δ 164.5 (C5), 163.4 (C9), 148.0 (C10), 136.6 (C13), 130.1 (C12), 

120.9 (C11), 75.1 (C4), 69.1 (C6), 50.5 (C1), 30.2 (C3), 21.8 (C7), 20.9 (C14), 17.3 (C2), 10.0 

(t, J = 76.8 Hz, C8). 

HRMS (m/z): (APCI) calcd for C16H19DO6S [M+H]+ 342.1116, found 342.1104. 

IR: νmax (neat): 3017 (C–H), 2969 (C–H), 1767 (C=O), 1733 (C=O) cm–1. 

 
 

p-Tolyl 1,1-dioxothiolane-2-carboxylate 153 
 

 

 

 

A suspension of 151 (16.9 mg, 0.05 mmol) and Pd/CaCO3 (2 mg) in pyridine (1 mL) was 

degassed with argon, and then stirred at room temperature under a hydrogen atmosphere for 

30 minutes. The suspension was filtered though a pad of celite, diluted with EtOAc (10 mL), 

washed with water (10 mL) and brine (10 mL), dried (MgSO4), and concentrated under reduced 

pressure to afford 153 (13 mg, quant.) as a pale yellow solid. Rf = 0.20 [petrol:EtOAc 2:1]. 

m.p.: 137–138 °C. 

1H NMR: (400 MHz, CDCl3) δ 7.18 (2H, d, J = 8.3 Hz, H8), 7.05 (2H, d, J = 8.5 Hz, H7), 4.16 

(1H, t, J = 7.5 Hz, H4), 3.24-3.12 (2H, m H1), 2.70-2.60 (1H, m, H3a), 2.52-2.34 (5H, m, H2a, 
H3b and H10), 2.27-2.16 (1H, m, H2b). 

13C NMR: (100 MHz, CDCl3) δ 164.8 (C5), 148.3 (C6), 136.2 (C9), 130.1 (C8), 121.0 (C7), 

64.7 (C4), 51.8 (C1), 26.0 (C3), 20.9 (C10), 20.5 (C2). 

HRMS (m/z): (APCI) calcd for C12H14O4S [M+H]+ 255.0686, found 255.0676. 

IR: νmax (neat): 3032 (C–H), 2952 (C–H), 2924 (C–H), 2853 (C–H), 1754 (C=O) cm–1. 

 

3-Trimethylsilylprop-2-ynyl 2-(4-methylbenzoyl)-1,1-dioxo-thiolane-2-carboxylate 149 
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145 (533 mg, 1.95 mmol) was dissolved in THF (20 mL) and NaHMDS (1 M in THF, 2.14 mL, 

2.14 mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

p-Toluoyl chloride (283 μL, 2.14 mmol) was added dropwise, and the mixture was heated to 

80 °C overnight. The solution was allowed to cool to room temperature and was quenched with 

aq. HCl (1 N, 20 mL). The mixture was extracted with EtOAc (3 x 20 mL), washed with brine 

(20 mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 9:1–4:1] gave 149 (577 mg, 75%) as a colourless oil. 

Rf = 0.52 [petrol:EtOAc 2:1].  

1H NMR: (400 MHz, CDCl3) δ 7.88 (2H, d, J = 8.3 Hz, H12), 7.26 (2H, d, J = 8.1 Hz, H13), 4.74 

(2H, q, J = 15.6 Hz, H6), 3.47 (1H, ddd, J = 12.9, 9.0, 6.4 Hz, H1a), 3.35 (1H, ddd, J = 13.4, 

8.7, 6.1 Hz, H1b), 3.20 (1H, dt, J = 14.4, 7.1 Hz, H3a), 2.65 (1H, quint, J = 6.6 Hz, H3b), 2.40 

(3H, s, H15), 2.33-2.22 (2H, m, H2), 0.12 (9H, s, H9). 

13C NMR: (100 MHz, CDCl3) δ 186.5 (C10), 165.9 (C5), 145.1 (C14), 132.6 (C11), 129.5 and 

129.4 (C12 and C13), 97.0 (C7), 93.5 (C8), 77.4 (C4), 54.7 (C6), 51.9 (C1), 32.0 (C3), 21.8 

(C15), 17.6 (C2), –0.42 (C9).     

HRMS (m/z): (APCI) calcd for C19H24O5SiS [M+H]+ 393.1186, found 393.1170. 

IR: νmax (neat): 2957 (C–H), 2917 (C–H), 2849 (C–H), 2186 (C≡C), 1740 (C=O), 1683 (C=O) 
cm–1. 

(3-2H-Prop-2-ynyl) 2-(4-methylbenzoyl)-1,1-dioxo-thiolane-2-carboxylate 155 
 

 

 

 

 

149 (517 mg, 1.32 mmol) was dissolved in THF (15 mL). Deuterium oxide (5 mL) was added, 

followed by tetrabutylammonium fluoride (1 M in THF, 1.98 mL, 1.98 mmol), and the reaction 

mixture was stirred at room temperature for 6 hours. The solution was diluted with water (15 

mL). The mixture was extracted with EtOAc (3 x 15 mL), washed with brine (15 mL), dried 

(MgSO4), and concentrated under reduced pressure. Purification by flash column 

chromatography [hexane:EtOAc 6:1] gave 155 (343 mg, 81%, 98% D) as a colourless solid. 

Rf = 0.24 [petrol:EtOAc 2:1]. m.p.: 143–144 °C. 

1H NMR: (400 MHz, CDCl3) δ 7.86 (2H, d, J = 8.2 Hz, H12), 7.26 (2H, d, J = 8.3 Hz, H11), 4.78 

(1H, d, J = 15.2 Hz, H6a), 4.68 (1H, d, J = 15.4 Hz, H6b), 3.52-3.36 (2H, m, H1), 3.18 (1H, dt, 
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J = 14.7, 7.4 Hz, H3a), 2.69 (1H, quint, J = 6.8 Hz, H3b), 2.56 (0.02H, s, H8), 2.40 (3H, s, 

H14), 2.36-2.22 (2H, m, H2). 

13C NMR: (100 MHz, CDCl3) δ 186.8 (C9), 165.9 (C5), 145.3 (C13), 132.7 (C10), 129.5 and 

129.4 (C11 and C12), 77.4 (C4), 53.9 (C6), 51.9 (C1), 32.0 (C3), 21.8 (C14), 17.7 (C2),                               

C7 and C8 signals not observed. 

HRMS (m/z): (APCI) calcd for C16H15DO5S [M+H]+ 322.0854, found 322.0838. 

IR: νmax (neat): 3013 (C–H), 2958 (C–H), 2920 (C–H), 2578 (C–D), 1981 (C≡C), 1744 (C=O), 

1677 (C=O) cm–1. 

 

(3-2H-Allyl) 2-(4-methylbenzoyl)-1,1-dioxo-thiolane-2-carboxylate 156 
 

 

 

 

A suspension of 155 (212 mg, 0.66 mmol), Pd/CaCO3 (21.2 mg) and quinoline (156 μL, 1.32 

mmol) in EtOAc (13 mL) was degassed with argon, and then stirred under a hydrogen 

atmosphere at room temperature for 15 minutes. The suspension was filtered though a pad of 

celite, washed with aq. HCl (1 N, 15 mL) and brine (15 mL), dried (MgSO4), and concentrated 

under reduced pressure. Purification by flash column chromatography [hexane:EtOAc 9:1–6:1] 

gave 156 (152 mg, 71%, 93% D) as a colourless solid. Rf = 0.34 [petrol:EtOAc 2:1]. m.p.: 68–

69 °C. 

1H NMR: (300 MHz, CDCl3) δ 7.83 (2H, d, J = 8.4 Hz, H12), 7.24 (2H, d, J = 8.0 Hz, H11), 5.65 

(1H, dddd, J = 16.7, 10.7, 6.2, 6.0 Hz, H7), 5.19-5.11 (1.07H, m, H8), 4.61 (2H, dd, J = 7.8, 1.2 

Hz, H6), 3.47-3.31 (2H, m, H1), 3.11 (1H, quint, J = 6.9 Hz, H3a), 2.68 (1H, quint, J = 7.3 Hz, 

H3b), 2.38 (3H, s, H14), 2.33-2.16 (2H, m, H2). 

13C NMR: (75 MHz, CDCl3) δ 187.7 (C9), 166.5 (C5), 145.1 (C13), 133.1 (C10), 130.2 (C7), 

129.4 (C11), 129.2 (C12), 119.9 (t, J = 92.4 Hz, C8), 77.7 (C4), 67.3 (C6), 51.8 (C1), 31.9 (C3), 

21.7 (C14), 17.6 (C2). 

HRMS (m/z): (APCI) calcd for C16H17DO5S [M+H]+ 324.1010, found 324.0997. 

IR: νmax (neat): 3050 (C–H), 3017 (C–H), 2999 (C–H), 2953 (C–H), 1733 (C=O), 1675 (C=O) 
cm–1. 
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3.2.4 Enolate Crossover High Resolution Mass Spectrometry Data 

Crossover Experiment for Ester Substrates 

 

 

 

 

 

 

 

Crossover Experiment for Ketone Substrates 
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p-Tolyl 2-(3-2H-allyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 158 

 

 

 

 

 

 

 

Formula Predictor Report - EPB-161-2-191108-005.lcd Page 1 of 1

Data File: C:\LabSolutions\Data\Chemistry\Franckevicius\EPB-161-2-191108-005.lcd

ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax Use AdductUse AdductUse AdductUse Adduct
H 1 15 18 Na 1 0 0 Cr 2 0 0 Ru 2 0 0 H

2H 1 0 2 Si 4 0 0 Fe 2 0 0 Ag 1 0 0 Na
C 4 14 15 P 3 0 0 Co 2 0 0 I 3 0 0 K
N 3 0 0 S 2 1 1 Ni 2 0 0 Re 2 0 0 NH4
O 2 4 4 Cl 1 0 0 Cu 2 0 0 Ir 3 0 0
F 1 0 0 V 2 0 0 Br 1 0 0 Pt 2 0 0

Error Margin (ppm): 25 DBE Range: -2.0 - 1000.0 Electron Ions: both
HC Ratio: unlimited Apply N Rule: no Use MSn Info: yes

Max Isotopes: all Isotope RI (%): 1.00 Isotope Res: 4000
MSn Iso RI (%): 75.00 MSn Logic Mode: AND Max Results: 500

Event#: 1 MS(C+)   Ret. Time : 0.222 - 0.475 -> 0.998   Scan# : 29 - 61 -> 127
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1.400e6

1.200e6

1.000e6

8.000e5

6.000e5

4.000e5

2.000e5

0
340.0330.0320.0310.0300.0290.0280.0270.0260.0250.0

296.1048

313.1300

284.2923

295.0985
281.0815 298.1095

312.1231

256.2627 342.1078
313.2759

299.1120

318.0875
341.3056285.2906

338.3421
312.3214

Measured region for 296.1048 m/z

100.0

50.0

0
298.5298.0297.5297.0296.5296.0

296.1048

298.1095

297.1059

C15 H17 2H O4 S [M+H]+ : Predicted region for 296.1061 m/z
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50.0

0
298.5298.0297.5297.0296.5296.0

296.1061

297.1093

298.1052

RankRankRankRank ScoreScoreScoreScore Formula (M)Formula (M)Formula (M)Formula (M) IonIonIonIon Meas. m/zMeas. m/zMeas. m/zMeas. m/z Pred. m/zPred. m/zPred. m/zPred. m/z Df. (mDa)Df. (mDa)Df. (mDa)Df. (mDa) Df. (ppm)Df. (ppm)Df. (ppm)Df. (ppm) IsoIsoIsoIso DBEDBEDBEDBE
3 45.76 C15 H17 2H O4 S [M+H]+ 296.1048 296.1061 -1.3 -4.39 50.00 7.0
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Phenyl 2-(3-2H-allyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 159 

 

 

 

 

 

 

Formula Predictor Report - EPB-161-2-191112-001.lcd Page 1 of 1

Data File: C:\LabSolutions\Data\KB_29Oct18\EPB-161-2-191112-001.lcd

ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax Use AdductUse AdductUse AdductUse Adduct
H 1 15 18 Na 1 0 0 Cr 2 0 0 Ru 2 0 0 H

2H 1 0 1 Si 4 0 0 Fe 2 0 0 Ag 1 0 0 Na
C 4 14 15 P 3 0 0 Co 2 0 0 I 3 0 0 K
N 3 0 0 S 2 1 1 Ni 2 0 0 Re 2 0 0 NH4
O 2 4 4 Cl 1 0 0 Cu 2 0 0 Ir 3 0 0
F 1 0 0 V 2 0 0 Br 1 0 0 Pt 2 0 0

Error Margin (ppm): 25 DBE Range: -2.0 - 1000.0 Electron Ions: both
HC Ratio: unlimited Apply N Rule: no Use MSn Info: yes

Max Isotopes: all Isotope RI (%): 1.00 Isotope Res: 4000
MSn Iso RI (%): 75.00 MSn Logic Mode: AND Max Results: 500

Event#: 1 MS(C+)   Ret. Time : 0.206 - 0.016 -> 0.998   Scan# : 27 - 3 -> 127
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1.000e6
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0
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291.1955

285.2898

268.2853
280.2635257.2633

Measured region for 281.0820 m/z

100.0

50.0

0
283.0282.5282.0281.5281.0280.5

282.2767

281.0820
283.2834

282.0854

C14 H15 2H O4 S M+ : Predicted region for 281.0827 m/z
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50.0

0
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282.0859

283.0815

RankRankRankRank ScoreScoreScoreScore Formula (M)Formula (M)Formula (M)Formula (M) IonIonIonIon Meas. m/zMeas. m/zMeas. m/zMeas. m/z Pred. m/zPred. m/zPred. m/zPred. m/z Df. (mDa)Df. (mDa)Df. (mDa)Df. (mDa) Df. (ppm)Df. (ppm)Df. (ppm)Df. (ppm) IsoIsoIsoIso DBEDBEDBEDBE
1 14.05 C14 H15 2H O4 S M+ 281.0820 281.0827 -0.7 -2.49 14.59 7.0



92 

 

p-Tolyl 2-(allyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 120 

 

 

 

 

 

 

Formula Predictor Report - EPB-161-2-191108-005.lcd Page 1 of 1

Data File: C:\LabSolutions\Data\Chemistry\Franckevicius\EPB-161-2-191108-005.lcd

ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax Use AdductUse AdductUse AdductUse Adduct
H 1 15 18 Na 1 0 0 Cr 2 0 0 Ru 2 0 0 H

2H 1 0 2 Si 4 0 0 Fe 2 0 0 Ag 1 0 0 Na
C 4 14 15 P 3 0 0 Co 2 0 0 I 3 0 0 K
N 3 0 0 S 2 1 1 Ni 2 0 0 Re 2 0 0 NH4
O 2 4 4 Cl 1 0 0 Cu 2 0 0 Ir 3 0 0
F 1 0 0 V 2 0 0 Br 1 0 0 Pt 2 0 0

Error Margin (ppm): 25 DBE Range: -2.0 - 1000.0 Electron Ions: both
HC Ratio: unlimited Apply N Rule: no Use MSn Info: yes

Max Isotopes: all Isotope RI (%): 1.00 Isotope Res: 4000
MSn Iso RI (%): 75.00 MSn Logic Mode: AND Max Results: 500

Event#: 1 MS(C+)   Ret. Time : 0.222 - 0.475 -> 0.998   Scan# : 29 - 61 -> 127
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Measured region for 295.0985 m/z
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297.1059

C15 H18 O4 S [M+H]+ : Predicted region for 295.0999 m/z
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RankRankRankRank ScoreScoreScoreScore Formula (M)Formula (M)Formula (M)Formula (M) IonIonIonIon Meas. m/zMeas. m/zMeas. m/zMeas. m/z Pred. m/zPred. m/zPred. m/zPred. m/z Df. (mDa)Df. (mDa)Df. (mDa)Df. (mDa) Df. (ppm)Df. (ppm)Df. (ppm)Df. (ppm) IsoIsoIsoIso DBEDBEDBEDBE
1 43.23 C15 H18 O4 S [M+H]+ 295.0985 295.0999 -1.4 -4.74 47.69 7.0
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Phenyl 2-(allyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 121 

 

 

 

 

 

 

Formula Predictor Report - EPB-161-2-191108-004.lcd Page 1 of 1

Data File: C:\LabSolutions\Data\Chemistry\Franckevicius\EPB-161-2-191108-004.lcd

ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax Use AdductUse AdductUse AdductUse Adduct
H 1 15 18 Na 1 0 0 Cr 2 0 0 Ru 2 0 0 H

2H 1 0 2 Si 4 0 0 Fe 2 0 0 Ag 1 0 0 Na
C 4 14 15 P 3 0 0 Co 2 0 0 I 3 0 0 K
N 3 0 0 S 2 1 1 Ni 2 0 0 Re 2 0 0 NH4
O 2 4 4 Cl 1 0 0 Cu 2 0 0 Ir 3 0 0
F 1 0 0 V 2 0 0 Br 1 0 0 Pt 2 0 0

Error Margin (ppm): 25 DBE Range: -2.0 - 1000.0 Electron Ions: both
HC Ratio: unlimited Apply N Rule: no Use MSn Info: yes

Max Isotopes: all Isotope RI (%): 1.00 Isotope Res: 4000
MSn Iso RI (%): 75.00 MSn Logic Mode: AND Max Results: 500

Event#: 1 MS(C+)   Ret. Time : 0.127 -> 0.317 - 0.095 -> 0.965   Scan# : 17 -> 41 - 13 -> 123
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Measured region for 281.0831 m/z
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0
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281.2615

C14 H16 O4 S [M+H]+ : Predicted region for 281.0842 m/z
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RankRankRankRank ScoreScoreScoreScore Formula (M)Formula (M)Formula (M)Formula (M) IonIonIonIon Meas. m/zMeas. m/zMeas. m/zMeas. m/z Pred. m/zPred. m/zPred. m/zPred. m/z Df. (mDa)Df. (mDa)Df. (mDa)Df. (mDa) Df. (ppm)Df. (ppm)Df. (ppm)Df. (ppm) IsoIsoIsoIso DBEDBEDBEDBE
2 46.36 C14 H16 O4 S [M+H]+ 281.0831 281.0842 -1.1 -3.91 50.00 7.0
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(2-(3-2H-Allyl)-1,1-dioxidotetrahydrothiophen-2-yl)(p-tolyl)methanone 161 

 

 

 

 

 

 

 

Formula Predictor Report - EPB-163-2-191107-011.lcd Page 1 of 1

Data File: C:\LabSolutions\Data\Chemistry\Franckevicius\EPB-163-2-191107-011.lcd

ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax Use AdductUse AdductUse AdductUse Adduct
H 1 15 18 Na 1 0 0 Cr 2 0 0 Ru 2 0 0 H

2H 1 0 1 Si 4 0 0 Fe 2 0 0 Ag 1 0 0 Na
C 4 14 15 P 3 0 0 Co 2 0 0 I 3 0 0 K
N 3 0 0 S 2 1 1 Ni 2 0 0 Re 2 0 0 NH4
O 2 3 3 Cl 1 0 0 Cu 2 0 0 Ir 3 0 0
F 1 0 0 V 2 0 0 Br 1 0 0 Pt 2 0 0

Error Margin (ppm): 25 DBE Range: -2.0 - 1000.0 Electron Ions: both
HC Ratio: unlimited Apply N Rule: no Use MSn Info: yes

Max Isotopes: all Isotope RI (%): 1.00 Isotope Res: 4000
MSn Iso RI (%): 75.00 MSn Logic Mode: AND Max Results: 500

Event#: 1 MS(C+)   Ret. Time : 0.253 - 0.143   Scan# : 33 - 19
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Measured region for 280.1119 m/z
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282.5282.0281.5281.0280.5280.0

280.1119
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C15 H17 2H O3 S [M+H]+ : Predicted region for 280.1112 m/z
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RankRankRankRank ScoreScoreScoreScore Formula (M)Formula (M)Formula (M)Formula (M) IonIonIonIon Meas. m/zMeas. m/zMeas. m/zMeas. m/z Pred. m/zPred. m/zPred. m/zPred. m/z Df. (mDa)Df. (mDa)Df. (mDa)Df. (mDa) Df. (ppm)Df. (ppm)Df. (ppm)Df. (ppm) IsoIsoIsoIso DBEDBEDBEDBE
1 36.59 C15 H17 2H O3 S [M+H]+ 280.1119 280.1112 0.7 2.50 38.01 7.0
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(2-(3-2H-Allyl)-1,1-dioxidotetrahydrothiophen-2-yl)(phenyl)methanone 162 

 

 

 

 

 

 

Formula Predictor Report - EPB-163-2-191107-011.lcd Page 1 of 1

Data File: C:\LabSolutions\Data\Chemistry\Franckevicius\EPB-163-2-191107-011.lcd

ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax Use AdductUse AdductUse AdductUse Adduct
H 1 15 18 Na 1 0 0 Cr 2 0 0 Ru 2 0 0 H

2H 1 0 2 Si 4 0 0 Fe 2 0 0 Ag 1 0 0 Na
C 4 14 15 P 3 0 0 Co 2 0 0 I 3 0 0 K
N 3 0 0 S 2 1 1 Ni 2 0 0 Re 2 0 0 NH4
O 2 3 3 Cl 1 0 0 Cu 2 0 0 Ir 3 0 0
F 1 0 0 V 2 0 0 Br 1 0 0 Pt 2 0 0

Error Margin (ppm): 25 DBE Range: -2.0 - 1000.0 Electron Ions: both
HC Ratio: unlimited Apply N Rule: no Use MSn Info: yes

Max Isotopes: all Isotope RI (%): 1.00 Isotope Res: 4000
MSn Iso RI (%): 75.00 MSn Logic Mode: AND Max Results: 500

Event#: 1 MS(C+)   Ret. Time : 0.253 - 0.063 -> 0.191   Scan# : 33 - 9 -> 25
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Measured region for 266.0946 m/z
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C14 H15 2H O3 S [M+H]+ : Predicted region for 266.0956 m/z
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RankRankRankRank ScoreScoreScoreScore Formula (M)Formula (M)Formula (M)Formula (M) IonIonIonIon Meas. m/zMeas. m/zMeas. m/zMeas. m/z Pred. m/zPred. m/zPred. m/zPred. m/z Df. (mDa)Df. (mDa)Df. (mDa)Df. (mDa) Df. (ppm)Df. (ppm)Df. (ppm)Df. (ppm) IsoIsoIsoIso DBEDBEDBEDBE
1 66.98 C14 H15 2H O3 S [M+H]+ 266.0946 266.0956 -1.0 -3.76 71.95 7.0
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(2-(Allyl)-1,1-dioxidotetrahydrothiophen-2-yl)(p-tolyl)methanone 124 

 

 

 

 

 

 

Formula Predictor Report - EPB-163-2-191107-011.lcd Page 1 of 1

Data File: C:\LabSolutions\Data\Chemistry\Franckevicius\EPB-163-2-191107-011.lcd

ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax Use AdductUse AdductUse AdductUse Adduct
H 1 15 18 Na 1 0 0 Cr 2 0 0 Ru 2 0 0 H

2H 1 0 2 Si 4 0 0 Fe 2 0 0 Ag 1 0 0 Na
C 4 14 15 P 3 0 0 Co 2 0 0 I 3 0 0 K
N 3 0 0 S 2 1 1 Ni 2 0 0 Re 2 0 0 NH4
O 2 3 3 Cl 1 0 0 Cu 2 0 0 Ir 3 0 0
F 1 0 0 V 2 0 0 Br 1 0 0 Pt 2 0 0

Error Margin (ppm): 25 DBE Range: -2.0 - 1000.0 Electron Ions: both
HC Ratio: unlimited Apply N Rule: no Use MSn Info: yes

Max Isotopes: all Isotope RI (%): 1.00 Isotope Res: 4000
MSn Iso RI (%): 75.00 MSn Logic Mode: AND Max Results: 500

Event#: 1 MS(C+)   Ret. Time : 0.253 - 0.063 -> 0.191   Scan# : 33 - 9 -> 25
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Measured region for 279.1046 m/z
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C15 H18 O3 S [M+H]+ : Predicted region for 279.1049 m/z
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RankRankRankRank ScoreScoreScoreScore Formula (M)Formula (M)Formula (M)Formula (M) IonIonIonIon Meas. m/zMeas. m/zMeas. m/zMeas. m/z Pred. m/zPred. m/zPred. m/zPred. m/z Df. (mDa)Df. (mDa)Df. (mDa)Df. (mDa) Df. (ppm)Df. (ppm)Df. (ppm)Df. (ppm) IsoIsoIsoIso DBEDBEDBEDBE
1 36.81 C15 H18 O3 S [M+H]+ 279.1046 279.1049 -0.3 -1.07 36.88 7.0
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(2-(Allyl)-1,1-dioxidotetrahydrothiophen-2-yl)(phenyl)methanone 125 

 

 

 

 

 

 

Formula Predictor Report - EPB-163-2-191107-011.lcd Page 1 of 1

Data File: C:\LabSolutions\Data\Chemistry\Franckevicius\EPB-163-2-191107-011.lcd

ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax ElmtElmtElmtElmt Val.Val.Val.Val. MinMinMinMin MaxMaxMaxMax Use AdductUse AdductUse AdductUse Adduct
H 1 15 18 Na 1 0 0 Cr 2 0 0 Ru 2 0 0 H

2H 1 0 2 Si 4 0 0 Fe 2 0 0 Ag 1 0 0 Na
C 4 14 15 P 3 0 0 Co 2 0 0 I 3 0 0 K
N 3 0 0 S 2 1 1 Ni 2 0 0 Re 2 0 0 NH4
O 2 3 3 Cl 1 0 0 Cu 2 0 0 Ir 3 0 0
F 1 0 0 V 2 0 0 Br 1 0 0 Pt 2 0 0

Error Margin (ppm): 25 DBE Range: -2.0 - 1000.0 Electron Ions: both
HC Ratio: unlimited Apply N Rule: no Use MSn Info: yes

Max Isotopes: all Isotope RI (%): 1.00 Isotope Res: 4000
MSn Iso RI (%): 75.00 MSn Logic Mode: AND Max Results: 500

Event#: 1 MS(C+)   Ret. Time : 0.253 - 0.016 -> 0.979   Scan# : 33 - 3 -> 125
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Measured region for 265.0884 m/z
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C14 H16 O3 S [M+H]+ : Predicted region for 265.0893 m/z
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265.0893

266.0925

267.0880

RankRankRankRank ScoreScoreScoreScore Formula (M)Formula (M)Formula (M)Formula (M) IonIonIonIon Meas. m/zMeas. m/zMeas. m/zMeas. m/z Pred. m/zPred. m/zPred. m/zPred. m/z Df. (mDa)Df. (mDa)Df. (mDa)Df. (mDa) Df. (ppm)Df. (ppm)Df. (ppm)Df. (ppm) IsoIsoIsoIso DBEDBEDBEDBE
1 29.80 C14 H16 O3 S [M+H]+ 265.0884 265.0893 -0.9 -3.40 31.71 7.0
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3.2.5 Synthesis of Precursors for Relative Stereochemistry Determination 

3-Ethoxy-5-phenyl-cyclohex-2-en-1-one 16954 

 

 

 

 

5-Phenyl-1,3-cyclohexanedione (1.85 g, 9.83 mmol) and p-toluenesulfonic acid monohydrate 

(25.8 mg, 0.14 mmol) were dissolved in a mixture of ethanol (23 mL) and toluene (45 mL), and 

the mixture was heated to 120 °C with a Dean-Stark trap for 3 hours. The reaction was cooled 

to room temperature, then concentrated under reduced pressure. The residue was dissolved 

in Et2O (30 mL), and the solution was washed with NaOH (2 N, 3 x 25 mL) and brine (30 mL), 

dried (MgSO4), and concentrated under reduced pressure to afford 169 (1.87 g, 88%) as a 

colourless solid. Rf = 0.24 [petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3) δ 7.37-7.32 (2H, m, H10), 7.28-7.23 (3H, m, H11 and H12), 5.44 

(1H, d, J = 1.0 Hz, H2), 4.00-3.88 (2H, m, H7), 3.40-3.32 (1H, m, H5), 2.72-2.52 (4H, m, H4 
and H6), 1.38 (3H, t, J = 7.0 Hz, H8).  

13C NMR: (100 MHz, CDCl3) δ 199.2 (C3), 177.2 (C1), 142.9 (C9), 128.8 (C10), 127.0 (C12), 

126.7 (C11), 102.6 (C2), 64.6 (C7), 43.8 (C4 or C6), 39.5 (C5), 36.6 (C4 or C6), 14.1 (C8).  

HRMS (m/z): (APCI) calcd for C14H16O2 [M+H]+ 217.1223, found 217.1219. 

Analytical data matches literature values.54 

 

5-phenylcyclohex-2-en-1-one 17054 
 

 

 

 

A solution of 169 (500 mg, 2.30 mmol) in Et2O (15 mL) was cooled to 0 °C. Lithium aluminium 

hydride (68.5 mg, 1.80 mmol) was added in small portions at 0 °C. The mixture was stirred at 

0 °C for 30 minutes, then allowed to warm to room temperature and the mixture was stirred for 

30 minutes. The reaction was quenched with aq. HCl (1 N, 10 mL). The mixture was extracted 

with EtOAc (3 x 10 mL), washed with brine (10 mL), dried (MgSO4), and concentrated under 



99 

 

reduced pressure. Purification by flash column chromatography [hexane:EtOAc 4:1] gave 170 

(181 mg, 46%) as a colourless oil. Rf = 0.40 [petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3) δ 7.38-7.24 (5H, m, H8, H9 and H10), 7.05 (1H, ddd, J = 10.0, 5.7, 

2.5 Hz, H1), 6.17-6.14 (1H, m, H2), 3.36 (1H, dddd, J = 12.6, 10.2, 5.3, 4.8 Hz, H5), 2.75-2.61 

(3H, m, H4a and H6), 2.54 (1H, ddt, J = 18.6, 10.7, 2.6 Hz, H4b).  

13C NMR: (100 MHz, CDCl3) δ 199.2 (C3), 149.4 (C1), 143.3 (C7), 129.8 (C2), 128.8 (C9), 

127.0 (C10), 126.7 (C8), 44.9 (C4), 41.0 (C5), 33.7 (C6).  

HRMS (m/z): (APCI) calcd for C12H12O [M+H]+ 173.0961, found 173.0965. 

Analytical data matches literature values.54 

 

cis-5-Phenyl-2-cyclohexen-1-ol 17154 
 

 

 

 

 

A solution of 170 (565 mg, 3.28 mmol) and cerium(III) chloride heptahydrate (1.14 g, 3.05 

mmol) in MeOH (30 mL) was cooled to 0 °C. Sodium borohydride (115 mg, 3.05 mmol) was 

added in small portions at 0 °C. The mixture was stirred at 0 °C for 5 minutes. The reaction 

mixture was concentrated under reduced pressure. Purification by flash column 

chromatography [Petrol:EtOAc 3:1] gave 171 (490 mg, 86%) as a colourless solid. Rf = 0.40 

[petrol:EtOAc 3:1]. 

1H NMR: (400 MHz, CDCl3) δ 7.35-7.30 (2H, m, H9), 7.25-7.20 (3H, m, H8 and H10), 5.85 (1H, 

ddt, J = 10.0, 4.4, 1.9 Hz, H1), 5.78-5.74 (1H, m, H2), 4.48 (1H, dddd, J = 11.5, 7.8, 4.0, 2.1 

Hz, H3), 2.92 (1H, dddd, J = 13.3, 11.1, 5.2, 2.5 Hz, H5), 2.34-2.25 (2H, m, H4a and H6a), 

2.19-2.10 (1H, m, H6b), 1.74 (1H, ddd, J = 12.7, 12.1, 9.9 Hz, H4b).  

13C NMR: (100 MHz, CDCl3) δ 145.5 (C7), 131.0 (C2), 128.7 (C1), 128.6 (C9), 126.8 (C8), 

126.4 (C10), 68.6 (C3), 39.6 (C4), 39.3 (C5), 33.8 (C6).  

IR: νmax (neat): 3275 (O–H, broad), 3080 (C–H), 3062 (C–H), 3023 (C–H), 2931 (C–H), 2917 

(C–H), 2892 (C–H), 2838 (C–H). 

Analytical data matches literature values.54 



100 

 

(cis-5-Phenylcyclohex-2-en-1-yl) imidazole-1-carboxylate 172 
 

 

 

 

171 (45 mg, 0.26 mmol) was dissolved in CH2Cl2 (5 mL) at room temperature. 1,1'-

Carbonyldiimidazole (105 mg, 0.65 mmol) was added in portions at room temperature. The 

suspension was stirred at room temperature for 2 hours. The reaction mixture was 

concentrated under reduced pressure. Purification by flash column chromatography 

[Petrol:EtOAc 3:1] gave 172 (63 mg, 90%) as a colourless solid. Rf = 0.24 [petrol:EtOAc 3:1]. 

m.p.: 105–107 °C. 

1H NMR: (400 MHz, CDCl3) δ 8.09 (1H, br s, H1), 7.39 (1H, br s, H2), 7.35-7.31 (2H, m, H12), 

7.26-7.22 (3H, m, H13 and H14), 7.06 (1H, br s, H3), 6.07 (1H, ddt, J = 9.7, 4.6, 2.2 Hz, H7), 

5.84-5.80 (1H, m, H6), 5.75 (1H, dddd, J = 11.3, 7.5, 4.2, 2.2 Hz, H5), 3.05 (1H, dddd, J = 12.9, 

10.4, 5.1, 2.6 Hz, H9), 2.51-2.36 (2H, m, H8a and H10a), 2.32-2.23 (1H, m, H8b), 2.05 (1H, 

td, J = 12.6, 9.8 Hz, H10b).  

13C NMR: (100 MHz, CDCl3) δ 148.4 (C4), 144.4 (C11), 137.2 (C1), 132.2 (C7), 130.6 (C3), 

128.7 (C12), 126.8 (C13), 126.7 (C14), 125.3 (C6), 117.1 (C2), 75.5 (C5), 38.7 (C9), 35.0 

(C10), 33.2 (C8).  

HRMS (m/z): Molecular ion not observed. 

IR: νmax (neat): 3157 (C–H), 3152 (C–H), 3034 (C–H), 2950 (C–H), 2931 (C–H), 2891 (C–H),  

1741 (C=O) cm–1. 

 

(cis-5-Phenylcyclohex-2-en-1-yl) 1,1-dioxothiolane-2-carboxylate 173 
 

 

 

 

 

Sulfolane (123 mg, 1.02 mmol) was dissolved in THF (10 mL) and the solution was cooled to    

–78 °C. LiHMDS (1 M in THF, 2.1 mL, 2.10 mmol) was added dropwise at –78 °C. The solution 

was stirred at –78 °C for 1 hour. A solution of 172 (300 mg, 1.12 mmol) in THF (5 mL) was 
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added dropwise at –78 °C. The mixture was allowed to reach room temperature and was stirred 

overnight. The reaction was quenched with aq. HCl (1 N, 10 mL). The mixture was extracted 

with EtOAc (3 x 10 mL), washed with brine (10 mL), dried (MgSO4), and concentrated under 

reduced pressure. Purification by flash column chromatography [hexane:EtOAc 4:1] gave 173 
(125 mg, 38%) as a 1:1 mixture of diastereoisomers as a colourless oil. Rf = 0.21 [petrol:EtOAc 

4:1]. 

1H NMR: (400 MHz, CDCl3, mixture of diastereoisomers) δ 7.35-7.30 (2H, m, H13), 7.26-7.22 

(3H, m, H14 and H15), 5.99 (1H, dddd, J = 7.7, 6.2, 5.2, 3.1 Hz, H7), 5.80 (d, J = 10.2 Hz) and 

5.73-5.66 (m) (2H, H6 and H8), 3.92 (1H, q, J = 7.4 Hz, H4), 3.18-3.06 (2H, m, H1), 3.02-2.94 

(1H, m, H10), 2.55 (1H, sextet, J = 8.0 Hz, H3a), 2.44-2.32 (4H, m, H2a, H3b, H9a and H11a), 

2.26-2.10 (2H, m, H2b and H9b), 2.02-1.92 (1H, m, H11b).  

13C NMR: (100 MHz, CDCl3, mixture of diastereoisomers) δ 165.4 and 165.3 (C5), 144.9 and 

144.8 (C12), 131.3 and 130.8 (C7), 128.7 and 128.6 (C13), 126.8 and 126.8 (C14), 126.6 and 

126.5 (C15), 126.4 and 126.2 (C8), 73.7 and 73.5 (C6), 64.9 (C4), 51.7 (C1), 39.0 and 38.9 

(C10), 34.9 and 34.7 (C11), 33.3 and 33.3 (C9), 26.0 and 25.9 (C3), 20.4 (C2).  

HRMS (m/z): Molecular ion not observed. 

IR: νmax (neat): 3157 (C–H), 3142 (C–H), 3034 (C–H), 2950 (C–H), 2931 (C–H), 2891 (C–H), 

1741 (C=O) cm–1. 

 

2-Benzyl 2-(cis-5-phenylcyclohex-2-en-1-yl) 1,1-dioxothiolane-2,2-dicarboxylate 174 
 

 

 

 

 

173 (58 mg, 0.18 mmol) was dissolved in THF (2 mL) and NaHMDS (1 M in THF, 0.2 mL, 0.20 

mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Benzyl chloroformate (27 μL, 0.20 mmol) was added dropwise, and the solution was stirred at 

room temperature overnight. The reaction was quenched with aq. HCl (1 N, 5 mL). The mixture 

was extracted with EtOAc (3 x 10 mL), washed with brine (10 mL), dried (MgSO4), and 

concentrated under reduced pressure. Purification by flash column chromatography 
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[hexane:EtOAc 9:1–4:1] gave 174 (20 mg, 25%) as a 1:1 mixture of diastereoisomers as a 

colourless oil. Rf = 0.25 [petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3, mixture of diastereoisomers) δ 7.41-7.15 (10H, m, H13, H14, H15, 
H19, H20 and H21), 5.93 (1H, tdd, J = 10.5, 4.4, 1.9 Hz, H7), 5.69-5.65 (m) and 5.58-5.54 (m) 

(2H, H6 and H8), 5.35-5.29 (2H, m, H17), 3.37-3.32 (2H, m, H1), 2.94 (1H, tdd, J = 12.9, 5.1, 

3.0 Hz, H10), 2.77-2.73 (2H, m, H3), 2.30-2.13 (4H, m, H2 and H9 or H11), 1.84-1.64 (2H, m, 

H9 or H11).  

13C NMR: (100 MHz, CDCl3, mixture of diastereoisomers) δ 164.4 and 164.3 (C16), 164.0 and 

163.9 (C5), 144.7 and 144.6 (C-Ar), 134.5 and 134.4 (C-Ar), 131.2 and 131.1 (C7), 128.7 (C-
Ar), 128.6 (C-Ar), 128.5 and 128.4 (C-Ar), 126.8 and 126.8 (C-Ar), 126.6 (C-Ar), 125.8 (C-
Ar), 125.6 (C8), 75.0 (C4), 74.4 and 74.3 (C6), 68.7 (C17), 50.3 (C1), 38.9 and 38.8 (C10), 

34.4, 34.3 and 33.1 (C9 and C11), 30.0 (C3), 17.1 (C2).  

HRMS (m/z): (APCI) calcd for C25H26O6S [M+Na]+ 447.1342, found 447.1350. 

IR: νmax (neat): 3062 (C–H), 3032 (C–H), 2954 (C–H), 2837 (C–H), 1729 (C=O) cm–1. 

 

(cis-5-Phenylcyclohex-2-en-1-yl) 2-benzoyl-1,1-dioxo-thiolane-2-carboxylate 175  
 

 

 

 

 

173 (58 mg, 0.18 mmol) was dissolved in THF (2 mL) and NaHMDS (1 M in THF, 0.2 mL, 0.20 

mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Benzoyl chloride (23 μL, 0.20 mmol) was added dropwise, and the solution was heated to 80 

°C overnight. The solution was allowed to cool to room temperature and was quenched with 

aq. HCl (1 N, 5 mL). The mixture was extracted with EtOAc (3 x 10 mL), washed with brine (10 

mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash column 

chromatography [hexane:EtOAc 9:1–4:1] gave 175 (22 mg, 29%) as a 1:1 mixture of 

diastereoisomers as a colourless oil. Rf = 0.23 [petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3, mixture of diastereoisomers) δ 7.99-7.96 (2H, m, H18), 7.66-7.55 

(1H, m, H20), 7.48 (2H, td, J = 8.0, 1.8 Hz, H19), 7.33-7.20 (3H, m, H14 and H15), 7.14-7.11 

(2H, m, H13), 5.85 (1H, dddd, J = 9.8, 5.2, 4.6, 2.2 Hz, H7), 5.63 (1H, ddddd, J = 8.1, 5.9, 4.0, 
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3.9, 2.2 Hz, H6), 5.36 (1H, tt, J = 10.9, 2.3 Hz, H8), 3.49-3.34 (2H, m, H1), 3.12 (1H, ddt, J = 

14.5, 8.4, 7.2 Hz, H3a), 2.94-2.82 (1H, m, H10), 2.75 (1H, quint, J = 7.0 Hz, H3b), 2.37-2.20 

(3H, m, H2 and H9a), 2.15-2.02 (2H, m, H9b and H11a), 1.57 (1H, dddd, J = 13.2, 12.2, 10.0, 

3.3 Hz, H11b).  

13C NMR: (100 MHz, CDCl3, mixture of diastereoisomers) δ 188.7 and 188.6 (C16), 166.0 and 

166.0 (C5), 144.6 and 144.5 (C12), 135.6 (C17), 133.7 (C20), 131.6 and 131.4 (C7), 130.2 

(C18), 129.0 and 128.9 (C19), 128.6 and 128.5 (C14), 126.7 (C13), 126.5 (C15), 125.2 and 

125.1 (C8), 77.9 and 77.9 (C4), 74.1 and 74.0 (C6), 51.8 (C1), 38.8 (C10), 34.1 and 34.0 (C11), 

33.2 and 33.2 (C9), 31.9 and 31.8 (C3), 17.7 (C2).  

HRMS (m/z): (APCI) calcd for C24H24O5S [M+Na]+ 447.1237, found 447.1230. 

IR: νmax (neat): 3062 (C–H), 3029 (C–H), 2954 (C–H), 1728 (C=O), 1687 (C=O) cm–1. 

 

3.2.6 Additive Screen for Optimisation of the Pd-DAAA Reaction 

 

2-Allyl 2-benzyl dihydrothiophene-2,2(3H)-dicarboxylate 1,1-dioxide 96 

 

 

 

 

117 (1.00 g, 4.90 mmol) was dissolved in THF (50 mL). NaHMDS (1 M in THF, 5.39 mL, 5.39 

mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Benzyl chloroformate (0.77 mL, 5.39 mmol) was added dropwise, and the solution was stirred 

overnight. The reaction was quenched with aq. HCl (1 N, 40 mL). The mixture was extracted 

with EtOAc (3 x 40 mL), washed with brine (40 mL), dried (MgSO4), and concentrated under 

reduced pressure. Purification by flash column chromatography [hexane:EtOAc 19:1–4:1] 

gave 96 (1.16 g, 70%) as a colourless oil. Rf = 0.28 [petrol:EtOAc 4:1]. 

1H NMR: (400 MHz, CDCl3) δ 7.39-7.33 (5H, m, H12, H13 and H14), 5.79 (1H, dddd, J = 16.4, 

10.4, 6.6, 5.8 Hz, H7), 5.35-5.29 (1H, m, H8a), 5.21 (1H, dq, J = 10.6, 1.3 Hz, H8b), 4.70 (2H, 

dt, J = 5.9, 1.4 Hz, H6), 3.33 (2H, t, J = 6.4 Hz, H1), 2.75-2.72 (2H, m, H3), 2.28-2.21 (2H, m, 

H2). 
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13C NMR: (100 MHz, CDCl3) δ 164.2 (C9), 163.9 (C5), 134.4 (C11), 130.5 (C7), 128.6 and 

128.3 (C12 and C13), 119.5 (C8), 75.1 (C4), 68.9 (C10), 67.7 (C6), 50.3 (C1), 30.1 (C3), 17.2 

(C2). 

HRMS (m/z): (ESI) calcd for C16H18O6S [M+Na]+ 361.0716, found 361.0701. 

IR: νmax (neat): 3034 (C–H), 3017 (C–H), 2961 (C–H), 1754 (C=O), 1724 (C=O) cm–1. 

 

(R)-Benzyl 2-allyltetrahydrothiophene-2-carboxylate 1,1-dioxide 97 

 

 

 

96 (50.7 mg, 0.15 mmol), Pd2(dba)3 (3.5 mg, 0.00375 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (7.9 mg, 0.00975 mmol) were stirred in 1,4-dioxane (1.5 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 97 (39.7 mg, 90%) as a yellow oil. Rf = 0.20 

[petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3) δ 7.39-7.33 (5H, m, H11, H12 and H13), 5.54 (1H, dddd, J = 17.2, 

10.0, 7.9, 6.2 Hz, H6), 5.29 (1H, d, J = 12.9 Hz, H9a), 5.19 (1H, d, J = 12.0 Hz, H9b), 5.14-

5.09 (2H, m, H7), 3.20 (1H, quint, J = 5.8 Hz, H1a), 3.14-3.05 (2H, m, H1b and H5a), 2.80-

2.72 (1H, m, H3a), 2.14 (1H, dd, J = 14.4, 8.2 Hz, H5b), 2.30-2.18 (1H, m, H2a), 2.13-2.01 

(2H, m, H2b and H3b).  

13C NMR: (100 MHz, CDCl3) δ 167.4 (C8), 134.9 (C10), 131.0 (C6), 128.6 (C11 or C12), 128.5 

(C13), 128.4 (C11 or C12), 120.6 (C7), 70.4 (C4), 68.4 (C9), 51.4 (C1), 37.2 (C5), 30.9 (C3), 

18.4 (C2).     

HRMS (m/z): (APCI) calcd for C15H18O4S [M+H]+ 295.0999, found 295.0986. 

IR: νmax (neat): 3066 (C–H), 3034 (C–H), 2954 (C–H), 1733 (C=O) cm–1. 

Chiral HPLC: CHIRALPAK AD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (major) = 20.4 

min, tB (minor) = 22.4 min. 86% ee. 

[𝛼]𝟐𝟎𝑫 : –55.1 (c 0.118, CHCl3). 
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Benzyl tetrahydrothiophene-2-carboxylate 1,1-dioxide 98 

 

 

 

96 (50.7 mg, 0.15 mmol), Pd2(dba)3 (3.5 mg, 0.00375 mmol), (S,S)-ANDEN Phenyl Trost ligand 

(7.9 mg, 0.00975 mmol) and acetic acid (0.86 μL, 0.015 mmol) were stirred in 1,4-dioxane (1.5 

mL) at room temperature for 2 hours. The reaction mixture was concentrated under reduced 

pressure. Purification by flash column chromatography [hexane:EtOAc 4:1] gave 98 (33.0 mg, 

87%) as a yellow oil. Rf = 0.17 [petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 7.42-7.33 (5H, m, H8, H9 and H10), 5.26 (2H, q, J = 12.5 Hz, 

H6), 3.95 (1H, t, J = 8.0 Hz, H4), 3.16-3.07 (2H, m, H1), 2.63-2.50 (1H, m, H3a), 2.45-2.31 

(2H, m, H2a and H3b), 2.23-2.09 (1H, m, H2b).  

13C NMR: (75 MHz, CDCl3) δ 165.5 (C5), 134.8 (C7), 128.6 (C8 or C9), 128.5 (C10), 128.4 

(C8 or C9), 68.4 (C6), 64.7 (C4), 51.6 (C1), 26.0 (C3), 20.4 (C2).     

HRMS (m/z): (APCI) calcd for C12H14O4S [M+Na]+ 277.0505, found 277.0499. 

IR: νmax (neat): 3066 (C–H), 3034 (C–H), 2954 (C–H), 1735 (C=O) cm–1. 

 

(R)-(2-Allyl-1,1-dioxidotetrahydrothiophen-2-yl)(phenyl)methanone 103 

 

 

 

106 (48.7 mg, 0.15 mmol), Pd2(dba)3 (6.9 mg, 0.0075 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (15.9 mg, 0.0195 mmol) were stirred in 1,4-dioxane (1.5 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 103 (30.8 mg, 86%) as a colourless oil. Rf 

= 0.27 [petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 8.02-7.98 (2H, m, H10), 7.55 (1H, tt, J = 6.1, 1.4 Hz, H12), 7.49-

7.43 (2H, m, H11), 5.32 (1H, dddd, J = 16.9, 10.1, 7.8, 6.6 Hz, H6), 5.02-4.98 (1H, m, H7a), 

4.87 (1H, dq, J = 16.7, 1.4 Hz, H7b), 3.34-3.05 (4H, m, H1, H3a and H5a), 2.63 (1H, dd, J = 

14.7, 8.1 Hz, H5b), 2.33-2.02 (3H, m, H2 and H3b).  
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13C NMR: (75 MHz, CDCl3) δ 194.0 (C8), 136.2 (C9), 132.9 (C12), 130.3 (C6), 129.5 (C10), 

128.6 (C11), 120.9 (C7), 73.9 (C4), 53.8 (C1), 39.3 (C5), 32.6 (C3), 18.8 (C2).     

HRMS (m/z): (APCI) calcd for C14H16O3S [M+H]+ 265.0893, found 265.0885. 

IR: νmax (neat): 3066 (C–H), 2950 (C–H), 1675 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 90:10 hexane:i-PrOH, 30.0 °C, tA (minor) = 13.4 

min, tB (major) = 18.0 min. 72% ee. 

[𝛼]𝟐𝟎𝑫 :  –44.9 (c 0.345, CHCl3). 

 

(1,1-Dioxidotetrahydrothiophen-2-yl)(phenyl)methanone 178 

 

 

 

106 (48.7 mg, 0.15 mmol), Pd2(dba)3 (6.9 mg, 0.0075 mmol), (S,S)-ANDEN Phenyl Trost ligand 

(15.9 mg, 0.0195 mmol) and acetic acid (0.86 μL, 0.015 mmol) were stirred in 1,4-dioxane (1.5 

mL) at room temperature for 2 hours. The reaction mixture was concentrated under reduced 

pressure. Purification by flash column chromatography [hexane:EtOAc 4:1] gave 178 (30.0 

mg, 89%) as a yellow oil. Rf = 0.12 [petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 8.09-8.05 (2H, m, H7), 7.66-7.60 (1H, m, H9), 7.55-7.49 (2H, m, 

H8), 4.88 (1H, t, J = 7.7 Hz, H4), 3.25-3.07 (2H, m, H1), 2.92-2.79 (1H, m, H3a), 2.46-2.15 

(3H, m, H2 and H3b).  

13C NMR: (75 MHz, CDCl3) δ 189.9 (C5), 136.3 (C6), 134.3 (C9), 129.1 and 129.0 (C7 and 
C8), 65.4 (C4), 52.7 (C1), 26.1 (C3), 20.7 (C2).     

HRMS (m/z): (APCI) calcd for C11H12O3S [M+H]+ 225.0580, found 225.0570. 

IR: νmax (neat): 3066 (C–H), 2974 (C–H), 2950 (C–H), 1679 (C=O) cm–1. 
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3.2.7 Synthesis of 5-Membered Cyclic Sulfone Precursors 

 

2-Allyl 2-(t-butyl) dihydrothiophene-2,2(3H)-dicarboxylate 1,1-dioxide 182 

 

 

 

 

117 (200 mg, 0.98 mmol) was dissolved in THF (15 mL). NaHMDS (1 M in THF, 1.08 mL, 1.08 

mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. Boc 

anhydride (250 μL, 1.08 mmol) was added dropwise, and the mixture was stirred overnight. 

The reaction was quenched with aq. HCl (1 N, 15 mL). The mixture was extracted with EtOAc 

(3 x 15 mL), washed with brine (15 mL), dried (MgSO4), and concentrated under reduced 

pressure. Purification by flash column chromatography [hexane:EtOAc 4:1] gave 182 (101 mg, 

34%) as a colourless oil. Rf = 0.29 [petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 5.99-5.86 (1H, m, H7), 5.40 (1H, dq, J = 17.3, 1.4 Hz, H8a), 5.27 

(1H, dq, J = 10.7, 1.4 Hz, H8b), 4.76-4.72 (2H, m, H6), 3.29 (2H, t, J = 7.6 Hz, H1), 2.66 (2H, 

td, J = 7.3, 2.7 Hz, H3), 2.20 (2H, quint, J = 7.6 Hz, H2), 1.48 (9H, s, H11). 

13C NMR: (75 MHz, CDCl3) δ 164.5 (C5), 163.0 (C9), 130.8 (C7), 119.4 (C8), 84.9 (C10), 75.5 

(C4), 67.3 (C6), 50.2 (C1), 29.9 (C3), 27.7 (C11), 16.9 (C2).     

HRMS (m/z): (APCI) calcd for C13H20O6S [M+H]+ 305.1053, found 305.1039. 

IR: νmax (neat): 2980 (C–H), 1730 (C=O) cm–1. 

 

2-Allyl 2-methyl dihydrothiophene-2,2(3H)-dicarboxylate 1,1-dioxide 183 

 

 

 

117 (200 mg, 0.98 mmol) was dissolved in THF (15 mL). NaHMDS (1 M in THF, 1.08 mL, 1.08 

mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Methyl chloroformate (83 μL, 1.08 mmol) was added dropwise, and the mixture was stirred 
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overnight. The reaction was quenched with aq. HCl (1 N, 15 mL). The mixture was extracted 

with EtOAc (3 x 15 mL), washed with brine (15 mL), dried (MgSO4), and concentrated under 

reduced pressure. Purification by flash column chromatography [hexane:EtOAc 4:1] gave 183 

(141 mg, 55%) as a yellow oil. Rf = 0.18 [petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 5.92 (1H, ddt, J = 16.1, 10.5, 5.8 Hz, H7), 5.39 (1H, dq, J = 17.2, 

1.5 Hz, H8a), 5.29 (1H, dq, J = 10.4, 1.2 Hz, H8b), 4.77 (2H, dt, J = 5.7, 1.3 Hz, H6), 3.88 (3H, 

s, H10), 3.34 (2H, t, J = 7.2 Hz, H1), 2.73 (2H, td, J = 7.2, 2.3 Hz, H3), 2.26 (2H, quint, J = 7.2 

Hz, H2).  

13C NMR: (75 MHz, CDCl3) δ 164.9 (C9), 164.1 (C5), 130.7 (C7), 119.5 (C8), 75.0 (C4), 67.5 

(C6), 53.9 (C10), 50.2 (C1), 30.1 (C3), 17.1 (C2). 

HRMS (m/z): (APCI) calcd for C10H14O6S [M+H]+ 263.0584, found 263.0577. 

IR: νmax (neat): 2957 (C–H), 1733 (C=O) cm–1. 

 

Allyl 2-(4-methoxybenzoyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 184 

 

 

 

 

117 (200 mg, 0.98 mmol) was dissolved in THF (15 mL), and NaHMDS (1 M in THF, 1.08 mL, 

1.08 mmol) was added dropwise. The mixture was stirred at room temperature for 30 minutes. 

4-Methoxybenzoyl chloride (150 μL, 1.08 mmol) was added dropwise, and the mixture was 

heated to 80 °C overnight. The solution was allowed to cool to room temperature and was 

quenched with aq. HCl (1 N, 15 mL). The mixture was extracted with EtOAc (3 x 15 mL), 

washed with brine (15 mL), dried (MgSO4), and concentrated under reduced pressure. 

Purification by flash column chromatography [hexane:EtOAc 9:1–4:1] gave 184 (109 mg, 33%) 

as a yellow oil. Rf = 0.14 [petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 7.96 (2H, dt, J = 9.7, 2.8 Hz, H11), 6.98-6.92 (2H, m, H12), 5.77-

5.64 (1H, m, H7), 5.23-5.14 (2H, m, H8), 4.64 (2H, dt, J = 5.9, 1.2 Hz, H6), 3.87 (3H, s, H14), 

3.50-3.32 (2H, m Hz, H1), 3.17 (1H, quint, J = 8.1 Hz, H3a), 2.68 (1H, quint, J = 6.9 Hz, H3b), 

2.37-2.19 (2H, m, H2). 
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13C NMR: (75 MHz, CDCl3) δ 185.9 (C9), 166.3 (C5), 164.0 (C13), 131.7 (C11), 130.3 (C7), 

128.2 (C10), 119.9 (C8), 113.9 (C12), 77.7 (C4), 67.2 (C6), 55.5 (C14), 51.9 (C1), 31.9 (C3), 

17.6 (C2).     

HRMS (m/z): (APCI) calcd for C16H18O6S [M+H]+ 339.0897, found 339.0889. 

IR: νmax (neat): 3065 (C–H), 2956 (C–H), 1733 (C=O), 1675 (C=O) cm–1. 

 

Allyl 2-(p-toluoyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 185 

 

 

 

 

117 (100 mg, 0.49 mmol) was dissolved in THF (6 mL) and NaHMDS (1 M in THF, 0.54 mL, 

0.54 mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Benzoyl chloride (71 μL, 0.54 mmol) was added dropwise, and the solution was heated to 80 

°C overnight. The mixture was allowed to cool to room temperature and was quenched with 

aq. HCl (1 N, 6 mL). The mixture was extracted with EtOAc (3 x 6 mL), washed with brine (6 

mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash column 

chromatography [hexane:EtOAc 4:1] gave 185 (79 mg, 50%) as a colourless solid. Rf = 0.14 

[petrol:EtOAc 4:1]. m.p.: 64–66 °C. 

1H NMR: (400 MHz, CDCl3) δ 7.83 (2H, d, J = 8.4 Hz, H12), 7.24 (2H, d, J = 8.0 Hz, H11), 5.65 

(1H, dddd, J = 16.7, 10.7, 6.2, 6.0 Hz, H7), 5.19-5.11 (2H, m, H8), 4.61 (2H, dt, J = 5.9, 1.2 

Hz, H6), 3.46-3.31 (2H, m, H1), 3.11 (1H, quint, J = 6.9 Hz, H3a), 2.68 (1H, quint, J = 7.3 Hz, 

H3b), 2.38 (3H, s, H14), 2.33-2.16 (2H, m, H2). 

13C NMR: (100 MHz, CDCl3) δ 187.7 (C9), 166.5 (C5), 145.1 (C13), 133.1 (C10), 130.2 (C7), 

129.4 (C11), 129.2 (C12), 119.9 (C8), 77.7 (C4), 67.3 (C6), 51.8 (C1), 31.9 (C3), 21.7 (C14), 

17.6 (C2).     

HRMS (m/z): (APCI) calcd for C16H18O5S [M+H]+ 323.0948, found 323.0944. 

IR: νmax (neat): 3076 (C–H), 3022 (C–H), 2993 (C–H), 1739 (C=O), 1679 (C=O) cm–1. 
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Allyl 2-(o-toluoyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 186 

 

 

 

 

117 (200 mg, 0.98 mmol) was dissolved in THF (15 mL) and NaHMDS (1 M in THF, 1.08 mL, 

1.08 mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

o-Toluoyl chloride (140 μL, 1.08 mmol) was added dropwise, and the solution was heated to 

80 °C overnight. The reaction was allowed to cool to room temperature and was quenched 

with aq. HCl (1 N, 15 mL). The mixture was extracted with EtOAc (3 x 15 mL), washed with 

brine (15 mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 9:1–4:1] gave 186 (133 mg, 42%) as a colourless 

solid. Rf = 0.20 [petrol:EtOAc 4:1]. m.p.: 74–75 °C. 

1H NMR: (300 MHz, CDCl3) δ 7.37-7.31 (2H, m, H12 and H13), 7.25-7.15 (2H, m, H11 and 
H14), 5.45 (1H, ddt, J = 16.4, 10.4, 6.1 Hz, H7), 5.15-5.04 (2H, m, H8), 4.56-4.40 (2H, m, H6), 

3.53-3.43 (1H, m, H1a), 3.34 (1H, quint, J = 6.3 Hz, H1b), 3.01 (1H, quint, J = 7.5 Hz, H3a), 

2.82-2.72 (1H, m, H3b), 2.43 (3H, s, H16), 2.34-2.24 (2H, m, H2). 

13C NMR: (75 MHz, CDCl3) δ 195.3 (C9), 165.0 (C5), 138.2 (C15), 136.9 (C10), 131.8 (C14), 

131.5 (C12), 130.2 (C7), 126.0 (C13), 125.3 (C11), 119.6 (C8), 79.9 (C4), 67.4 (C6), 51.2 (C1), 

31.9 (C3), 20.4 (C16), 17.6 (C2).    

HRMS (m/z): (APCI) calcd for C16H18O5S [M+Na]+ 345.0767, found 345.0759. 

IR: νmax (neat): 3071 (C–H), 3022 (C–H), 2956 (C–H), 1744 (C=O), 1694 (C=O) cm–1. 

 

Allyl 2-acetyltetrahydrothiophene-2-carboxylate 1,1-dioxide 187 

 

 

 

117 (200 mg, 0.98 mmol) was dissolved in THF (15 mL) and NaHMDS (1 M in THF, 1.08 mL, 

1.08 mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Acetyl chloride (77 μL, 1.08 mmol) was added dropwise, and the solution was heated to 80 °C 
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overnight. The reaction was allowed to cool to room temperature and was quenched with aq. 

HCl (1 N, 15 mL). The mixture was extracted with EtOAc (3 x 15 mL), washed with brine (15 

mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash column 

chromatography [hexane:EtOAc 9:1–4:1] gave 187 (121 mg, 50%) as a yellow oil. Rf = 0.26 

[petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 5.93 (1H, ddt, J = 16.7, 9.9, 5.8 Hz, H7), 5.39 (1H, dq, J = 17.4, 

1.4 Hz, H8a), 5.32 (1H, dq, J = 10.4, 1.1 Hz, H8b), 4.76 (2H, dq, J = 5.6, 0.9 Hz, H6), 3.38-

3.17 (2H, m, H1), 2.83 (1H, ddd, J = 14.4, 8.2, 6.5 Hz, H3a), 2.58-2.48 (4H, m, H3b and H10), 

2.33-2.08 (2H, m, H2). 

13C NMR: (75 MHz, CDCl3) δ 195.5 (C9), 164.9 (C5), 130.4 (C7), 120.3 (C8), 79.9 (C4), 67.7 

(C6), 51.2 (C1), 29.4 (C10), 28.7 (C3), 17.4 (C2).     

HRMS (m/z): (APCI) calcd for C10H14O5S [M+H]+ 247.0635, found 247.0625. 

IR: νmax (neat): 2956 (C–H), 1718 (C=O) cm–1. 

 

Allyl 2-(2-methylpropanoyl)-1,1-dioxo-thiolane-2-carboxylate 188 

 

 

 

117 (250 mg, 1.12 mmol) was dissolved in THF (20 mL) and NaHMDS (1 M in THF, 1.35 mL, 

1.35 mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Isobutyryl chloride (140 μL, 1.35 mmol) was added dropwise, and the mixture was heated to 

80 °C overnight. The reaction was allowed to cool to room temperature and was quenched 

with aq. HCl (1 N, 15 mL). The mixture was extracted with EtOAc (3 x 15 mL), washed with 

brine (15 mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 188 (184 mg, 60%) as a yellow oil. Rf = 0.33 

[petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 5.96 (1H, ddt, J = 16.6, 10.5, 6.1 Hz, H7), 5.42 (1H, dd, J = 17.3, 

1.2 Hz, H8a), 5.32 (1H, d, J = 10.5 Hz, H8b), 4.77 (2H, d, J = 5.9 Hz, H6), 3.35-3.16 (3H, m, 

H1 and H10), 2.76 (1H, quint, J = 7.7 Hz, H3a), 2.60 (1H, quint, J = 7.4 Hz, H3b), 2.19 (2H, 

quint, J = 7.1 Hz, H2), 1.18 (3H, d, J = 6.5 Hz) and 1.10 (3H, d, J = 6.9 Hz) (H11 and H12). 
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13C NMR: (75 MHz, CDCl3) δ 203.6 (C9), 164.7 (C5), 130.4 (C7), 120.6 (C8), 80.2 (C4), 67.7 

(C6), 50.7 (C1), 39.7 (C10), 29.0 (C3), 20.5 and 19.5 (C11 and C12), 17.0 (C2).     

HRMS (m/z): (APCI) calcd for C12H18O5S [M+H]+ 275.0948, found 275.0943. 

IR: νmax (neat): 2978 (C–H), 2877 (C–H), 1735 (C=O), 1718 (C=O) cm–1. 

 

3.2.8 5-Membered Sulfone Pd-DAAA Reaction Products 

 

(R)-Phenyl 2-allyltetrahydrothiophene-2-carboxylate 1,1-dioxide 121 

 

 

 

 

104 (48.7 mg, 0.15 mmol), Pd2(dba)3 (3.5 mg, 0.00375 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (7.9 mg, 0.00975 mmol) were stirred in 1,4-dioxane (1.5 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 121 (38.5 mg, 90%) as a yellow oil. Rf = 

0.20 [petrol:EtOAc 4:1]. 

1H NMR: (300 MHz, CDCl3) δ 7.42-7.36 (2H, m, H11), 7.25 (1H, tt, J = 7.2, 1.3 Hz, H12), 7.15 

(2H, d, J = 9.1 Hz, H10), 5.79 (1H, dddd, J = 17.1, 10.2, 7.3, 6.7 Hz, H6), 5.37-5.26 (2H, m, 

H7), 3.33-3.24 (2H, m, H1a and H5a), 3.19-3.10 (1H, m, H1b), 2.93-2.82 (1H, m, H3a), 2.54 

(1H, dd, J = 14.0, 7.7 Hz, H5b), 2.39-2.25 (1H, m, H2a), 2.21-2.08 (2H, m, H2b and H3b). 

13C NMR: (75 MHz, CDCl3) δ 166.6 (C8), 150.7 (C9), 130.8 (C6), 129.7 (C11), 126.3 (C12), 

121.4 (C10), 120.9 (C7), 70.2 (C4), 51.6 (C1), 37.4 (C5), 31.2 (C3), 18.5 (C2).     

HRMS (m/z): (APCI) calcd for C14H16O4S [M+H]+ 281.0842, found 281.0832. 

IR: νmax (neat): 3079 (C–H), 2952 (C–H), 1750 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 90:10 hexane:i-PrOH, 30.0 °C, tA (major) = 14.5 

min, tB (minor) = 17.2 min. 94% ee. 

[𝛼]𝟐𝟎𝑫 : –68.5 (c 0.073, CHCl3). 
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(R)-t-Butyl 2-allyl tetrahydrothiophene-2-carboxylate 1,1-dioxide 190 

 

 

 

182 (43 mg, 0.14 mmol), Pd2(dba)3 (3.2 mg, 0.0035 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (7.4 mg, 0.0091 mmol) were stirred in 1,4-dioxane (1 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 190 (34 mg, 94%) as a colourless oil. Rf = 

0.32 [petrol:EtOAc 4:1]. 

1H NMR: (400 MHz, CDCl3) δ 5.63 (1H, dddd, J = 17.1, 10.0, 7.8, 6.5 Hz, H6), 5.23-5.16 (2H, 

m, H7), 3.21-3.14 (1H, m, H1a), 3.09-3.02 (2H, m, H1b and H5a), 2.73-2.68 (1H, m, H3a), 2.37 

(1H, dd, J = 14.4, 8.3 Hz, H5b), 2.27-2.17 (1H, m, H2a), 2.10-1.96 (2H, m, H2b and H3b), 1.50 

(9H, s, H10).  

13C NMR: (100 MHz, CDCl3) δ 166.6 (C8), 132.0 (C6), 120.2 (C7), 84.6 (C9), 71.4 (C4), 52.1 

(C1), 38.2 (C5), 31.5 (C3), 28.5 (C10), 19.1 (C2).     

HRMS (m/z): (APCI) calcd for C12H20O4S [M+Na]+ 283.0975, found 283.0970. 

IR: νmax (neat): 3081 (C–H), 2978 (C–H), 1728 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (minor) = 7.89 

min, tB (major) = 8.83 min. 38% ee. 

[𝛼]𝟐𝟎𝑫 : –75.0 (c 0.10, CHCl3). 

 

(R)-Methyl 2-allyl tetrahydrothiophene-2-carboxylate 1,1-dioxide 191 

 

 

 

183 (77 mg, 0.29 mmol), Pd2(dba)3 (6.7 mg, 0.0073 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (15.3 mg, 0.091 mmol) were stirred in 1,4-dioxane (2 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 191 (58 mg, 92%) as a colourless oil. Rf = 

0.32 [petrol:EtOAc 4:1]. 
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1H NMR: (400 MHz, CDCl3) δ 5.61 (1H, dddd, J = 17.3, 9.9, 7.9, 6.3 Hz, H6), 5.24-5.16 (2H, 

m, H7), 3.84 (3H, s, H9), 3.25-3.18 (1H, m, H1a), 3.13-3.05 (2H, m, H1b and H5a), 2.80-2.73 

(1H, m, H3a), 2.42 (1H, dd, J = 14.1, 7.9 Hz, H5b), 2.31-2.20 (1H, m, H2a), 2.14-2.02 (2H, m, 

H2b and H3b).  

13C NMR: (100 MHz, CDCl3) δ 168.0 (C8), 131.2 (C6), 120.7 (C7), 70.3 (C4), 53.5 (C9), 51.4 

(C1), 37.1 (C5), 30.8 (C3), 18.5 (C2).     

HRMS (m/z): (APCI) calcd for C9H14O4S [M+H]+ 219.0686, found 219.0680. 

IR: νmax (neat): 3081 (C–H), 3006 (C–H), 2954 (C–H), 1735 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (minor) = 17.3 

min, tB (major) = 19.0 min. 70% ee. 

[𝛼]𝟐𝟎𝑫 : –56.7 (c 0.30, CHCl3). 

 

(R)-(2-Allyl-1,1-dioxidotetrahydrothiophen-2-yl)(4-methoxyphenyl)methanone 192 

 

 

 

184 (77 mg, 0.23 mmol), Pd2(dba)3 (10.0 mg, 0.011 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (24.3 mg, 0.030 mmol) were stirred in 1,4-dioxane (2 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 192 (62 mg, 92%) as a colourless oil. Rf = 

0.19 [petrol:EtOAc 4:1]. 

1H NMR: (400 MHz, CDCl3) δ 8.05 (2H, d, J = 9.9 Hz, H10), 6.95 (2H, d, J = 9.7 Hz, H11), 

5.39-5.29 (1H, m, H6), 5.02 (1H, d, J = 9.8 Hz, H7a), 4.92 (1H, dd, J = 16.7, 1.4 Hz, H7b), 3.90 

(3H, s, H13), 3.34-3.18 (3H, m, H1 and H5a), 3.10 (1H, ddd, J = 14.2, 7.7, 5.4 Hz, H3a), 2.64 

(1H, dd, J = 14.2, 7.7 Hz, H5b), 2.29-2.04 (3H, m, H2 and H3b).  

13C NMR: (100 MHz, CDCl3) δ 191.8 (C8), 163.7 (C12), 132.1 (C10), 130.4 (C6), 128.8 (C9), 

120.6 (C7), 113.7 (C11), 74.0 (C4), 55.5 (C13), 53.9 (C1), 39.7 (C5), 32.5 (C3), 18.6 (C2).     

HRMS (m/z): (APCI) calcd for C15H18O3S [M+H]+ 295.0999, found 295.0986. 

IR: νmax (neat): 3079 (C–H), 3006 (C–H), 2950(C–H), 2842 (C–H), 1668 (C=O) cm–1. 
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Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 90:10 hexane:i-PrOH, 30.0 °C, tA (minor) = 23.0 

min, tB (major) = 33.5 min. 10% ee. 

[𝛼]𝟐𝟎𝑫 : –7.4 (c 0.336, CHCl3). 

 

(R)-(2-Allyl-1,1-dioxidotetrahydrothiophen-2-yl)(p-tolyl)methanone 124 

 

 

 

185 (30 mg, 0.093 mmol), Pd2(dba)3 (4.6 mg, 0.005 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (9.8 mg, 0.012 mmol) were stirred in 1,4-dioxane (1 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 124 (23 mg, 89%) as a colourless solid. Rf 

= 0.22 [petrol:EtOAc 4:1]. m.p.: 81–82 °C. 

1H NMR: (300 MHz, CDCl3) δ 7.93 (2H, d, J = 8.6 Hz, H11), 7.26 (2H, d, J = 7.9 Hz, H10), 

5.41-5.27 (1H, m, H6), 5.00 (1H, dt, J = 10.1, 0.9 Hz, H7a), 4.90 (1H, dq, J = 16.8, 1.4 Hz, 

H7b), 3.36-3.05 (4H, m, H1, H3a and H5a), 2.63 (1H, dd, J = 14.6, 7.9 Hz, H5b), 2.40 (3H, s, 

H13), 2.32-2.01 (3H, m, H2 and H3b).  

13C NMR: (75 MHz, CDCl3) δ 193.0 (C8), 143.9 (C12), 133.4 (C9), 130.3 (C6), 129.7 (C11), 

129.2 (C10), 120.7 (C7), 73.9 (C4), 53.9 (C1), 39.6 (C5), 32.5 (C3), 21.7 (C13), 18.8 (C2).     

HRMS (m/z): (APCI) calcd for C15H18O3S [M+H]+ 279.1049, found 279.1041. 

IR: νmax (neat): 3066 (C–H), 2954 (C–H), 2926 (C–H), 2854 (C–H), 1675 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (minor) = 21.2 

min, tB (major) = 33.4 min. 62% ee. 

[𝛼]𝟐𝟎𝑫 : –68.8 (c 0.109, CHCl3). 
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(R)-(2-Allyl-1,1-dioxidotetrahydrothiophen-2-yl)(o-tolyl)methanone 193 

 

 

 

186 (77 mg, 0.24 mmol), Pd2(dba)3 (11.0 mg, 0.012 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (25.4 mg, 0.031 mmol) were stirred in 1,4-dioxane (2 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 193 (63 mg, 95%) as a colourless oil. Rf = 

0.23 [petrol:EtOAc 4:1]. 

1H NMR: (400 MHz, CDCl3) δ 7.75 (1H, d, J = 8.4 Hz, H10), 7.34 (1H, t, J = 8.1 Hz, H11), 7.30-

7.25 (2H, m, H12 and H13), 5.41 (1H, ddt, J = 17.1, 10.1, 7.4 Hz, H6), 5.04 (1H, dd, J = 9.7, 

0.8 Hz, H7a), 4.86 (1H, dd, J = 19.9, 4.2 Hz, H7b), 3.30-3.22 (1H, m, H1a), 3.19-3.11 (2H, m, 

H1b and H5a), 2.96-2.87 (1H, m, H3a), 2.55 (1H, ddd, J = 14.4, 7.7, 0.9 Hz, H5b), 2.35-2.25 

(4H, m, H2a and H15), 2.16-2.08 (2H, m, H2b and H3b).  

13C NMR: (100 MHz, CDCl3) δ 198.4 (C8), 138.1 (C14), 136.7 (C9), 131.8 (C13), 130.9 (C11), 

130.3 (C6), 127.0 (C10), 125.2 (C12), 120.9 (C7), 74.4 (C4), 52.4 (C1), 38.5 (C5), 32.6 (C3), 

20.7 (C15), 18.8 (C2).     

HRMS (m/z): (APCI) calcd for C15H18O3S [M+H]+ 279.1049, found 279.1044. 

IR: νmax (neat): 3062 (C–H), 2954 (C–H), 2928 (C–H), 1685 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (minor) = 16.7 

min, tB (major) = 22.8 min. 10% ee. 

[𝛼]𝟐𝟎𝑫 : –2.0 (c 0.510, CHCl3). 
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(R)-(2-Allyl-1,1-dioxidotetrahydrothiophen-2-yl)(methyl)methanone 194 

 

 

 

187 (55 mg, 0.22 mmol), Pd2(dba)3 (10.0 mg, 0.011 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (23.2 mg, 0.029 mmol) were stirred in 1,4-dioxane (1.5 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 194 (40 mg, 90%) as a yellow oil. Rf = 0.21 

[petrol:EtOAc 4:1]. 

1H NMR: (400 MHz, CDCl3) δ 5.56-5.45 (1H, m, H6), 5.23-5.16 (2H, m, H7), 3.17-3.00 (3H, m, 

H1 and H5a), 2.79 (1H, quint, J = 6.2 Hz, H3a), 2.57 (1H, dd, J = 15.4, 7.7 Hz, H5b), 2.34 (3H, 

s, H9), 2.19-1.99 (2H, m, H2), 1.90 (1H, quint, J = 7.3 Hz, H3b).  

13C NMR: (100 MHz, CDCl3) δ 200.8 (C8), 130.8 (C6), 120.9 (C7), 74.2 (C4), 51.6 (C1), 36.9 

(C5), 29.3 (C3), 28.0 (C9), 17.9 (C2).     

HRMS (m/z): (APCI) calcd for C9H14O3S [M+H]+ 203.0736, found 203.0737. 

IR: νmax (neat): 3082 (C–H), 2954 (C–H), 1713 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (minor) = 15.5 

min, tB (major) = 16.9 min. 20% ee. 

[𝛼]𝟐𝟎𝑫 : –23.2 (c 0.345, CHCl3). 

 

(R)-1-(2-Allyl-1,1-dioxo-thiolan-2-yl)-2-methyl-propan-1-one 195 
 

 

 

 

188 (50 mg, 0.18 mmol), Pd2(dba)3 (8.2 mg, 0.0091 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (19 mg, 0.023 mmol) were stirred in 1,4-dioxane (2 mL) at room temperature for 2 hours. 

The reaction mixture was concentrated under reduced pressure. Purification by flash column 

chromatography [hexane:EtOAc 4:1] gave 195 (40 mg, 97%) as a yellow oil. Rf = 0.29 

[petrol:EtOAc 4:1]. 
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1H NMR: (300 MHz, CDCl3) δ 5.49 (1H, dddd, J = 17.2, 9.7, 8.4, 5.4 Hz, H6), 5.24-5.16 (2H, 

m, H7), 3.24-3.04 (4H, m, H1, H5a and H9), 2.79-2.70 (1H, m, H3a), 2.63 (1H, dd, J = 15.3, 

8.6 Hz, H5b), 2.20-1.95 (3H, m, H2 and H3b), 1.18 (3H, d, J = 6.6 Hz) and 1.15 (3H, d, J = 6.8 

Hz) (H10 and H11).  

13C NMR: (75 MHz, CDCl3) δ 208.0 (C8), 130.8 (C6), 120.8 (C7), 75.0 (C4), 51.6 (C1), 38.2 

(C9), 36.3 (C5), 28.6 (C3), 20.5 and 19.8 (C10 and H11), 17.6 (C2).     

HRMS (m/z): (APCI) calcd for C11H18O3S [M+H]+ 231.1049, found 231.1042. 

IR: νmax (neat): 3083 (C–H), 2976 (C–H), 2939 (C–H), 2876 (C–H), 1709 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (minor) = 10.5 

min, tB (major) = 12.6 min. 88% ee. 

[𝛼]𝟐𝟎𝑫 : –173.1 (c 0.182, CHCl3). 

 

(R)-Phenyl 2-(2-methylallyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 119 

 

 

 

129 (30 mg, 0.089 mmol), Pd2(dba)3 (2.1 mg, 0.0025 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (4.7 mg, 0.0058 mmol) were stirred in 1,4-dioxane (1 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 19:1–4:1] gave 119 (16 mg, 62%) as a colourless oil. 

Rf = 0.21 [petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 7.42-7.35 (2H, m, H12), 7.28-7.22 (1H, m, H13), 7.18-7.13 (2H, 

m, H11), 4.99 (1H, s, H7a), 4.86 (1H, s, H7b), 3.36-3.23 (2H, m, H1a and H5a), 3.18-3.09 (1H, 

m, H1b), 2.99-2.89 (1H, m, H3a), 2.55 (1H, d, J = 14.7 Hz, H5b), 2.38-2.07 (3H, m, H2 and 

H3b), 1.82 (3H, s, H8).  

13C NMR: (75 MHz, CDCl3) δ 167.1 (C9), 150.7 (C10), 139.7 (C6), 129.5 (C12), 126.4 (C13), 

121.4 (C11), 115.4 (C7), 70.1 (C4), 51.5 (C1), 40.4 (C5), 31.1 (C3), 23.4 (C8), 18.7 (C2).     

HRMS (m/z): (APCI) calcd for C15H18O4S [M+H]+ 295.0999, found 295.0999. 

IR: νmax (neat): 3075 (C–H), 2948 (C–H), 1752 (C=O) cm–1. 
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Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (major) = 18.9 

min, tB (minor) = 20.9 min. 82% ee. 

[𝛼]𝟐𝟎𝑫 : –217.4 (c 0.046, CHCl3). 

 

(R)-(p-Tolyl) 2-(2-methylallyl)tetrahydrothiophene-2-carboxylate 1,1-dioxide 118 

 

 

 

 

105 (30 mg, 0.085 mmol), Pd2(dba)3 (2.1 mg, 0.0021 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (4.5 mg, 0.0055 mmol) were stirred in 1,4-dioxane (1 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 19:1–4:1] gave 118 (16 mg, 60%) as a colourless oil. 

Rf = 0.25 [petrol:EtOAc 4:1]. 

1H NMR: (300 MHz, CDCl3) δ 7.16 (2H, d, J = 9.0 Hz, H12), 7.02 (2H, t, J = 8.8 Hz, H11), 4.98 

(1H, s, H7a), 4.85 (1H, s, H7b), 3.35-3.22 (2H, m, H1a and H5a), 3.18-3.08 (1H, m, H1b), 

2.97-2.88 (1H, m, H3a), 2.54 (1H, dd, J = 15.0, 0.7 Hz, H5b), 2.34 (3H, s, H14), 2.32-2.07 (3H, 

m, H2 and H3b), 1.81 (3H, s, H8).  

13C NMR: (75 MHz, CDCl3) δ 167.0 (C9), 148.5 (C10), 139.7 (C6), 136.3 (C13), 130.2 (C12), 

121.2 (C11), 115.3 (C7), 70.0 (C4), 51.4 (C1), 40.4 (C5), 31.1 (C3), 23.3 (C8), 20.9 (C14), 18.6 

(C2).     

HRMS (m/z): (APCI) calcd for C16H20O4S [M+H]+ 309.1155, found 309.1145. 

IR: νmax (neat): 3075 (C–H), 3032 (C–H), 2948 (C–H), 1750 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (major) = 18.6 

min, tB (minor) = 21.6 min. 86% ee. 

[𝛼]𝟐𝟎𝑫 : –100.0 (c 0.10, CHCl3). 
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(R)-(2-(2-Methylallyl)-1,1-dioxidotetrahydrothiophen-2-yl)(phenyl)methanone 123 

 

 

 

130 (30 mg, 0.093 mmol), Pd2(dba)3 (4.6 mg, 0.005 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (9.8 mg, 0.012 mmol) were stirred in 1,4-dioxane (1 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 19:1–4:1] gave 123 (17 mg, 65%) as a colourless oil. 

Rf = 0.27 [petrol:EtOAc 4:1]. 

1H NMR: (300 MHz, CDCl3) δ 8.01-7.99 (2H, m, H12), 7.54 (1H, tt, J = 6.2, 1.4 Hz, H13), 7.48-

7.43 (2H, m, H11), 4.77 (1H, s, H7a), 4.58 (1H, s, H7b), 3.37 (1H, d, J = 15.0 Hz, H5a), 3.32-

3.13 (3H, m, H1 and H3a), 2.73 (1H, d, J = 15.6 Hz, H5b), 2.35-2.09 (3H, m, H2 and H3b), 

1.41 (3H, s, H8).  

13C NMR: (75 MHz, CDCl3) δ 194.9 (C9), 139.2 (C6), 136.1 (C10), 132.8 (C13), 129.6 (C12), 

128.4 (C11), 115.9 (C7), 73.9 (C4), 53.4 (C1), 42.5 (C5), 32.6 (C3), 23.2 (C8), 19.0 (C2).     

HRMS (m/z): (APCI) calcd for C15H18O3S [M+H]+ 279.1049, found 279.1043. 

IR: νmax (neat): 3067 (C–H), 2950 (C–H), 1675 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (minor) = 18.3 

min, tB (major) = 26.6 min. 14% ee. 

[𝛼]𝟐𝟎𝑫 : –83.3 (c 0.054, CHCl3). 

 

 (R)-(2-(2-methylallyl)-1,1-dioxidotetrahydrothiophen-2-yl)(p-tolyl)methanone 122 

 

 

 

107 (30 mg, 0.089 mmol), Pd2(dba)3 (4.1 mg, 0.005 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (9.8 mg, 0.012 mmol) were stirred in 1,4-dioxane (1 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 19:1–4:1] gave 122 (15 mg, 59%) as a colourless oil. 

Rf = 0.27 [petrol:EtOAc 4:1]. 
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1H NMR: (300 MHz, CDCl3) δ 7.93 (2H, d, J = 8.5 Hz, H12), 7.25 (2H, d, J = 8.0 Hz, H11), 4.77 

(1H, s, H7a), 4.59 (1H, s, H7b), 3.38 (1H, d, J = 15.1 Hz, H5a), 3.31-3.10 (3H, m, H1 and 3a), 

2.73 (1H, dd, J = 15.1, 0.9 Hz, H5b), 2.39 (3H, s, H14), 2.30-2.08 (3H, m, H2 and H3b), 1.42 

(3H, s, H8).  

13C NMR: (75 MHz, CDCl3) δ 194.3 (C9), 143.7 (C13), 139.5 (C6), 133.6 (C10), 130.0 (C12), 

129.0 (C11), 116.1 (C7), 73.8 (C4), 53.4 (C1), 42.6 (C5), 32.5 (C3), 23.1 (C8), 21.7 (C14), 18.9 

(C2).     

HRMS (m/z): (APCI) calcd for C16H20O3S [M+H]+ 293.1206, found 293.1202. 

IR: νmax (neat): 3067 (C–H), 2950 (C–H), 2924 (C–H), 2854 (C–H), 1664 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (minor) = 19.3 

min, tB (major) = 32.1 min. 10% ee. 

[𝛼]𝟐𝟎𝑫 : –66.4 (c 0.10, CHCl3). 

 

3.2.9 Synthesis of 6-Membered Cyclic Sulfone Precursors 

 

Thiane 1,1-dioxide 19755 
 

 

 

Tetrahydrothiopyran (2.02 mL, 19.6 mmol) and potassium permanganate (6.18 g, 39.1 mmol) 

were added to a 3:1 mixture of H2O:CH2Cl2 (200 mL). The reaction mixture was stirred 

vigorously at room temperature overnight. The mixture was filtered under reduced pressure 

and the aqueous layer was extracted with CH2Cl2 (3 x 50 mL). The combined organic phase 

was washed with aq. Na2S2O3 (10 %, 30 mL), dried (MgSO4) and concentrated under reduced 

pressure to afford 197 (2.604 g, 99%) as a colourless solid.  

1H NMR: (300 MHz, CDCl3) δ 2.98 (4H, t, J = 6.0 Hz, H1), 2.13-2.05 (4H, m, H2), 1.67-1.59 

(2H, m, H3). 

13C NMR: (75 MHz, CDCl3) δ 52.2 (C1), 24.3 (C2), 23.9 (C3). 

HRMS (m/z): (APCI) calcd for C5H10O2S [M+H]+ 135.0474, found 135.0468. 

Analytical data matches literature values.55 
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Allyl 1,1-dioxothiane-2-carboxylate 198 
 

 

 

197 (2.00 g, 14.9 mmol) was dissolved in THF (120 mL) and the solution was cooled to –78 

°C. LiHMDS (1 M in THF, 29.8 mL, 29.8 mmol) was added dropwise at –78 °C. The solution 

was stirred at –78 °C for 1 hour. Allyl chloroformate (1.75 mL, 16.4 mmol) was added dropwise 

at –78 °C. The mixture was allowed to reach room temperature and was stirred overnight. The 

reaction was quenched with aq. HCl (1 N, 40 mL), and the mixture was extracted with EtOAc 

(3 x 40 mL). The combined organic phase was washed with brine (40 mL), dried (MgSO4), and 

concentrated under reduced pressure. Purification by flash column chromatography 

[Petrol:EtOAc 4:1] gave 198 (2.27 g, 70%) as a yellow oil. Rf = 0.17 [petrol:EtOAc 4:1]. 

1H NMR: (300 MHz, CDCl3) δ 5.92 (1H, ddt, J = 17.2, 10.3, 5.7 Hz, H8), 5.38 (1H, dq, J = 17.1, 

1.4 Hz, H9a), 5.29 (1H, dq, J = 10.4, 1.1 Hz, H9b), 4.71 (2H, d, J = 5.7 Hz, H7), 3.88 (1H, ddd, 

J = 6.5, 4.7, 1.9 Hz, H5), 3.48-3.39 (1H, m, H1a), 3.03-2.94 (1H, m, H1b), 2.41-2.25 (2H, m, 

H4), 2.15-2.07 (2H, m, H2), 1.98-1.84 (1H, m, H3a), 1.66-1.55 (1H, m, H3b). 

13C NMR: (75 MHz, CDCl3) δ 165.6 (C6), 131.0 (C8), 119.5 (C9), 66.8 (C7), 65.0 (C5), 51.0 

(C1), 28.0 (C4), 24.2 (C2), 20.7 (C3). 

HRMS (m/z): (APCI) calcd for C9H14O4S [M+H]+ 219.0686, found 219.0677. 

IR: νmax (neat): 2939 (C–H), 2870 (C–H),1731 (C=O) cm–1. 

 

2-Allyl 2-phenyl 1,1-dioxothiane-2,2-dicarboxylate 200 

 

 

 

 

198 (300 mg, 1.37 mmol) was dissolved in THF (20 mL). NaHMDS (1 M in THF, 1.51 mL, 1.51 

mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Phenyl chloroformate (190 μL, 1.51 mmol) was added dropwise, and the mixture was stirred 

overnight. The reaction was quenched with aq. HCl (1 N, 15 mL). The mixture was extracted 

with EtOAc (3 x 15 mL), washed with brine (15 mL), dried (MgSO4), and concentrated under 
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reduced pressure. Purification by flash column chromatography [hexane:EtOAc 4:1] gave 200 

(195 mg, 43%) as a yellow oil. Rf = 0.22 [petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3) δ 7.41 (2H, t, J = 7.7 Hz, H13), 7.28 (1H, t, J = 7.4 Hz, H14), 7.14 

(2H, d, J = 7.9 Hz, H12), 5.94 (1H, ddt, J = 22.8, 13.8, 7.5 Hz, H8), 5.40 (1H, dq, J = 23.0, 2.0 

Hz, H9a), 5.31 (1H, dq, J = 13.9, 1.5 Hz, H9b), 4.73 (2H, d, J = 7.7 Hz, H7), 3.60-3.54 (1H, m, 

H1a), 3.46-3.40 (1H, m, H1b), 2.67 (2H, q, J = 6.4 Hz, H4), 2.13 (2H, quint, J = 5.5 Hz, H2), 

1.78 (2H, quint, J = 5.5 Hz, H3).  

13C NMR: (100 MHz, CDCl3) δ 163.6 (C6), 162.8 (C10), 150.1 (C11), 130.5 (C8), 129.6 (C13), 

126.7 (C14), 121.2 (C12), 120.0 (C9), 76.5 (C5), 67.7 (C7), 52.1 (C1), 32.5 (C4), 24.1 (C2), 

20.0 (C3). 

HRMS (m/z): (APCI) calcd for C16H18O6S [M+H]+ 339.0897, found 339.0884. 

IR: νmax (neat): 3017 (C–H), 2985 (C–H), 2946 (C–H), 2872 (C–H), 1767 (C=O), 1737 (C=O) 

cm–1. 

 

2-Allyl 2-methyl 1,1-dioxothiane-2,2-dicarboxylate 201   

 

 

 

198 (300 mg, 1.37 mmol) was dissolved in THF (20 mL). NaHMDS (1 M in THF, 1.51 mL, 1.51 

mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Methyl chloroformate (120 μL, 1.51 mmol) was added dropwise, and the mixture was stirred 

overnight. The reaction was quenched with aq. HCl (1 N, 15 mL). The mixture was extracted 

with EtOAc (3 x 15 mL), washed with brine (15 mL), dried (MgSO4), and concentrated under 

reduced pressure. Purification by flash column chromatography [hexane:EtOAc 4:1] gave 227 

mg of a 1:1 mixture of 201 and 198, corresponding to 155 mg, 41% of 201 as a yellow oil. Rf 

= 0.20 [petrol:EtOAc 4:1].  

1H NMR: (400 MHz, CDCl3) δ 5.97-5.86 (1H, m, H8), 5.39 (1H, dq, J = 17.2, 1.5 Hz, H9a), 5.30 

(1H, dd, J = 10.5, 1.1 Hz, H9b), 4.76 (2H, dt, J = 5.6, 1.3 Hz, H7), 3.88 (3H, s, H11), 3.48-3.39 

(2H, m, H1), 2.55 (2H, t, J = 5.8 Hz, H4), 2.14-2.06 (2H, m, H2), 1.73-1.69 (2H, m, H3).  

13C NMR: (100 MHz, CDCl3) δ 164.4 (C10), 163.8 (C6), 130.6 (C8), 119.5 (C9), 76.4 (C5), 

67.4 (C7), 53.9 (C11), 51.9 (C1), 32.5 (C4), 24.0 (C2), 19.9 (C3). 
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HRMS (m/z): (APCI) calcd for C11H16O6S [M+H]+ 277.0740, found 277.0735. 

IR: νmax (neat): 2939 (C–H), 2870 (C–H), 1733 (C=O) cm–1. 

 

Allyl 2-(2-methylpropanoyl)-1,1-dioxo-thiane-2-carboxylate 202 

 

 

 

198 (300 mg, 1.37 mmol) was dissolved in THF (20 mL) and NaHMDS (1 M in THF, 1.51 mL, 

1.51 mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Isobutyryl chloride (150 μL, 1.51 mmol) was added dropwise, and the mixture was heated to 

80 °C overnight. The reaction was allowed to cool to room temperature and was quenched 

with aq. HCl (1 N, 15 mL). The mixture was extracted with EtOAc (3 x 15 mL), washed with 

brine (15 mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 9:1–4:1] gave 202 (191 mg, 48%) as a yellow oil. Rf 

= 0.32 [petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 5.92 (1H, ddt, J = 16.5, 10.4, 6.1 Hz, H8), 5.40 (1H, dq, J = 17.3, 

1.4 Hz, H9a), 5.32 (1H, dd, J = 10.3, 1.2 Hz, H9b), 4.75 (2H, tt, J = 6.8, 1.2 Hz, H7), 3.66-3.59 

(1H, m, H1a), 3.22 (1H, dt, J = 14.2, 4.8 Hz, H1b), 3.08 (1H, septet, J = 6.8 Hz, H11), 2.50 

(1H, ddd, J = 15.1, 11.3, 3.3 Hz, H4a), 2.39 (1H, ddd, J = 15.4, 6.3, 3.3 Hz, H4b), 2.09-2.02 

(2H, m, H2), 1.77-1.68 (1H, m, H3a), 1.59-1.50 (1H, m, H3b), 1.18 (3H, d, J = 6.5 Hz) and 1.14 

(3H, d, J = 6.7 Hz) (H12 and H13). 

13C NMR: (100 MHz, CDCl3) δ 202.4 (C10), 165.2 (C6), 130.5 (C8), 120.8 (C9), 81.3 (C4), 

67.5 (C7), 52.4 (C1), 40.6 (C11), 31.3 (C4), 24.0 (C2), 20.7, 19.9 and 19.9 (C3, C11 and C12).     

HRMS (m/z): (APCI) calcd for C13H20O5S [M+H]+ 289.1104, found 289.1097. 

IR: νmax (neat): 2976 (C–H), 2939 (C–H), 2876 (C–H), 1744 (C=O), 1716 (C=O) cm–1. 
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Allyl 2-acetyl-1,1-dioxo-thiane-2-carboxylate 203 

 

 

 

198 (300 mg, 1.37 mmol) was dissolved in THF (20 mL) and NaHMDS (1 M in THF, 1.51 mL, 

1.51 mmol) was added dropwise. The solution was stirred at room temperature for 30 minutes. 

Acetyl chloride (110 μL, 1.51 mmol) was added dropwise, and the mixture was heated to 80 

°C overnight. The reaction was allowed to cool to room temperature and was quenched with 

aq. HCl (1 N, 15 mL). The mixture was extracted with EtOAc (3 x 15 mL), washed with brine 

(15 mL), dried (MgSO4), and concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 9:1–4:1] gave 203 (132 mg, 37%) as a yellow oil. Rf 

= 0.33 [petrol:EtOAc 4:1].  

1H NMR: (300 MHz, CDCl3) δ 5.95-5.84 (1H, m, H8), 5.39 (1H, dq, J = 17.0, 1.4 Hz, H9a), 5.33 

(1H, dq, J = 10.4, 1.1 Hz, H9b), 4.76 (2H, dq, J = 5.7, 1.5 Hz, H7), 3.69-3.60 (1H, m, H1a), 

3.18 (1H, dt, J = 13.7, 4.3 Hz, H1b), 2.53-2.33 (5H, m, H4 and H11), 2.13-2.01 (2H, m, H2), 

1.83-1.73 (1H, m, H3a), 1.69-1.54 (1H, m, H3b). 

13C NMR: (75 MHz, CDCl3) δ 194.2 (C10), 165.2 (C6), 130.2 (C8), 120.4 (C9), 80.6 (C5), 67.5 

(C7), 52.2 (C1), 31.2 (C4), 29.7 (C11), 23.9 (C2), 19.8 (C3).     

HRMS (m/z): (APCI) calcd for C11H16O5S [M+H]+ 261.0791, found 261.0786. 

IR: νmax (neat): 2939 (C–H), 2870 (C–H), 1718 (C=O) cm–1. 

 

3.2.10 6-Membered Sulfone Pd-DAAA Reaction Products 

 

(R)-phenyl 2-allyl-1,1-dioxo-thiane-2-carboxylate 205 

 

 

 

 

200 (40 mg, 0.12 mmol), Pd2(dba)3 (2.7 mg, 0.003 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (6.3 mg, 0.0078 mmol) were stirred in 1,4-dioxane (1 mL) at room temperature for 2 
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hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 205 (34 mg, 96%) as a yellow oil. Rf = 0.21 

[petrol:EtOAc 4:1]. 

1H NMR: (400 MHz, CDCl3) δ 7.45-7.39 (2H, m, H11), 7.29 (1H, tt, J = 6.9, 1.1 Hz, H13), 7.15-

7.12 (2H, m, H12), 5.97 (1H, dddd, J = 16.8, 10.2, 8.6, 6.2 Hz, H7), 5.36-5.28 (2H, m, H8), 

3.51-3.40 (1H, m, H1a), 3.33 (1H, ddt, J = 14.1, 6.0, 1.4 Hz, H6a), 3.14 (1H, dt, J = 14.1, 5.1 

Hz, H1b), 2.77 (1H, dd, J = 14.4, 8.4 Hz, H6b), 2.47 (1H, ddd, J = 14.8, 6.4, 3.5 Hz, H4a), 

2.22-2.11 (3H, m, H2 and H4b), 1.95-1.85 (1H, m, H3a), 1.82-1.73 (1H, m, H3b).  

13C NMR: (100 MHz, CDCl3) δ 167.1 (C9), 150.3 (C10), 130.8 (C7), 129.6 (C11), 126.6 (C13), 

121.4 (C12), 120.8 (C8), 71.0 (C5), 50.4 (C1), 35.6 (C6), 33.1 (C4), 24.0 (C2), 20.4 (C3).     

HRMS (m/z): (APCI) calcd for C15H18O4S [M+H]+ 295.0999, found 295.0985. 

IR: νmax (neat): 3079 (C–H), 2935 (C–H), 2856 (C–H), 1750 (C=O) cm–1. 

Chiral HPLC: CHIRALPAK AD-H, 1 mL/min, 90:10 hexane:i-PrOH, 30.0 °C, tA (major) = 11.8 

min, tB (minor) = 14.5 min. 64% ee. 

[𝛼]𝟐𝟎𝑫 : –55.1 (c 0.245, CHCl3). 

 

(R)-1-(2-allyl-1,1-dioxo-thian-2-yl)-2-methyl-propan-1-one 207 

 

 

 

202 (40 mg, 0.14 mmol), Pd2(dba)3 (6.4 mg, 0.007 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (14.8 mg, 0.018 mmol) were stirred in 1,4-dioxane (1 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 207 (32 mg, 94%) as a yellow oil. Rf = 0.22 

[petrol:EtOAc 4:1]. 

1H NMR: (300 MHz, CDCl3) δ 5.49 (1H, dddd, J = 16.7, 10.0, 8.5, 5.6 Hz, H7), 5.24-5.16 (2H, 

m, H8), 3.48 (1H, septet, J = 6.9 Hz, H10), 3.27-3.00 (3H, m, H1 and H6a), 2.74 (1H, dd, J = 

15.2, 8.5 Hz, H6b), 2.28 (1H, ddd, J = 14.8, 10.2, 3.8 Hz, H4a), 2.11-2.00 (3H, m, H2 and 

H4b), 1.78-1.66 (1H, m, H3a), 1.63-1.50 (1H, m, H3b), 1.16 (3H, d, J = 6.6 Hz) and 1.13 (3H, 

d, J = 6.6 Hz) (H11 and H12).  
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13C NMR: (75 MHz, CDCl3) δ 209.4 (C9), 130.3 (C7), 120.5 (C8), 75.7 (C5), 50.9 (C1), 37.3 

(C10), 34.6 (C6), 29.6 (C4), 24.1 (C2), 30.4 and 20.2 (C11 and C12), 19.7 (C3).     

HRMS (m/z): (APCI) calcd for C12H20O3S [M+H]+ 245.1206, found 245.1208. 

IR: νmax (neat): 2973 (C–H), 2937 (C–H), 2874 (C–H), 1709 (C=O) cm–1. 

Chiral HPLC: CHIRALPAK AD-H, 1 mL/min, 90:10 hexane:i-PrOH, 30.0 °C, tA (minor) = 7.3 

min, tB (major) = 7.8 min. 88% ee. 

[𝛼]𝟐𝟎𝑫 : –167.5 (c 0.20, CHCl3). 

(R)-1-(2-Allyl-1,1-dioxo-thian-2-yl)ethanone 208 

 

 

 

203 (40 mg, 0.15 mmol), Pd2(dba)3 (6.9 mg, 0.010 mmol) and (S,S)-ANDEN Phenyl Trost 

ligand (15.8 mg, 0.020 mmol) were stirred in 1,4-dioxane (1 mL) at room temperature for 2 

hours. The reaction mixture was concentrated under reduced pressure. Purification by flash 

column chromatography [hexane:EtOAc 4:1] gave 208 (30 mg, 93%) as a yellow oil. Rf = 0.20 

[petrol:EtOAc 4:1]. 

1H NMR: (300 MHz, CDCl3) δ 5.62-5.49 (1H, m, H7), 5.24-5.17 (2H, m, H8), 3.22-2.99 (3H, m, 

H1 and H6a), 2.69 (1H, dd, J = 14.4, 7.7 Hz, H6b), 2.43 (3H, s, H10), 2.32 (1H, ddd, J = 14.7, 

9.3, 3.5 Hz, H4a), 2.10-1.98 (3H, m, H2 and H4b), 1.85-1.72 (1H, m, H3a), 1.66-1.54 (1H, m, 

H3b).  

13C NMR: (75 MHz, CDCl3) δ 201.7 (C9), 129.8 (C7), 120.7 (C8), 75.2 (C5), 50.6 (C1), 35.0 

(C6), 30.1 (C4), 28.9 (C2), 20.0 (C3).     

HRMS (m/z): (APCI) calcd for C10H16O3S [M+H]+ 217.0893, found 217.0884. 

IR: νmax (neat): 2941 (C–H), 2868 (C–H), 1709 (C=O) cm–1. 

Chiral HPLC: CHIRALCEL OD-H, 1 mL/min, 95:5 hexane:i-PrOH, 30.0 °C, tA (major) = 16.3 

min, tB (minor) = 17.9 min. 32% ee. 

[𝛼]𝟐𝟎𝑫 : –55.1 (c 0.336, CHCl3). 
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3.2.11 Chiral HPLC Traces 
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