Return Predictability of Variance Differences:

a fractionally co-integrated approach

Abstract

This paper examines the fractional co-integration between downside (upside) components
of realized and implied variances. A positive association is found between the strength of
their co-fractional relation and the return predictability of their differences. That association
is established via the common long-memory component of the variances that are fractionally
co-integrated, which represents the volatility-of-volatility factor that determines the variance
premium. Our results indicate that market fears play a critical role not only in driving the
long-run equilibrium relationship between implied-realized variances but also in understanding
the return predictability. A simulation study further verifies these claims.
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1 Introduction

Numerous empirical studies suggest that, unlike the variance, the variance risk premium (V RP)
carries non-trivial predictive power for aggregate stock market returns over quarterly to annual
horizons, where the degree of return predictability is greater than that afforded by more conventional
predictors, see, Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2010), Bollerslev
et al. (2014), and Bali and Zhou (2016), among others. Those studies also provide strong evidence
that much of the predictability implicit in the V RP may be attributed to its close relation with

macroeconomic uncertainty and aggregate risk aversion.



The V RP is formally defined as the wedge between option-implied and realized variances. It
is measured as the difference between (the square of) the CBOE VIX index and the statistical
expectation of the future return variation. In Bollerslev, Tauchen, and Zhou (2009), Drechsler
and Yaron (2010) and Bollerslev, Sizova, and Tauchen (2012), the return predictability of the
V RP is investigated using a self-contained general equilibrium model. This is in the spirit of
the long-run risks (LRR) model pioneered by Bansal and Yaron (2004). Specifically, Bollerslev,
Tauchen, and Zhou (2009) and Bollerslev, Sizova, and Tauchen (2012) extend the LRR model by
allowing the time-varying volatility-of-volatility (vol-of-vol) within the economy to be generated
by its own stochastic process. They further show that the difference between the risk-neutral and
the objective expectations of return variation isolates the vol-of-vol factor, which then serves as
the sole source of the true VRP. The V RP therefore displays good predictive power for future
returns in cases where the vol-of-vol plays a more dominant role in determining variation in the
equity premium. A direct link between the VRP and the vol-of-vol is also demonstrated in a
purely probabilistic model introduced by Barndorff-Nielsen and Veraart (2013).

By incorporating jumps in the LRR model, Drechsler and Yaron (2010) disentangle the difference
in the drifts of conditional variance from the V RP. That drift difference is related to the vol-of-vol
associated with the level of uncertainty, leading to the covariation between the VRP and the
conditional equity premium that is partially dependent on the vol-of-vol factor. As indicated
by Bollerslev, Tauchen, and Zhou (2009), the vol-of-vol is inherently latent and may be variously
defined across different volatility models. Recent literature has achieved limited progress in seeking
an appropriate proxy of the vol-of-vol factor which is necessary to explain the return predictability
suggested by the VRP. A notable exception is the work of Conrad and Loch (2015) where the
vol-of-vol is represented by the long-term volatility component of the GARCH-MIDAS model.

Consistent with the generalized LRR model discussed above, results suggested by Bollerslev
et al. (2013) provide new evidence for return predictability of the V RP based on the idea of

fractional co-integration. Given the mounting empirical studies that favor fractional integration in



implied and realized variances (see Bandi and Perron (2006) and Nielsen (2007) for instance), fast
mean reversion in the V RP, i.e. the difference between the two variances, points to the existence
of fractional co-integration. Compared to the use of the univariate variances as a proxy for risk,
Bollerslev et al. (2013) show that the less persistent V RP rebalances the risk-return regression
in terms of the order of fractional integration, and that this appears to be more informative for
future returns. In addition, the V RP is estimated as the co-integrating relation between the two
variances, which is highly linked to the vol-of-vol and aggregate economic uncertainty.

Another strand of the literature on the properties of the V RP focuses on the decomposition of
the V RP into its downside and upside components, so differentiating between investors’ attitudes
toward uncertainty risks associated with the left and right tail of the return distribution. Feunou,
Jahan-Parvar, and Okou (2017) find that the downside VRP often dominates total VRP in
predicting future excess returns. They rationalize this result by showing (i) that the two components
exhibit opposite relationships to the equity premium and (ii) that the link between the upside V RP
and the equity premium is insignificant. In similar vein, Kilic and Shaliastovich (2018) adopt an
alternative decomposition of the V RP: they argue that both good and bad components contain
important information about future excess returns, which results in higher return predictability
than that inherent in the total V RP.

The difference between the components of the realized (implied) variance is also considered
in several studies where the main focus is on equity risk premium predictability. For instance,
by decomposing the realized jump volatility into negative jumps and positive jumps, Guo, Wang,
and Zhou (2019) construct the signed jump risk as the difference between the two jump risk
components. In addition, the signed jump risk is found to contain information about future market
returns that is independent of that captured by the VRP. With an alternative decomposition
approach, Bollerslev, Li, and Zhao (2017) derive the signed jump variation as the difference
between the good and bad realized volatility and show that this difference significantly predicts

the variation in future returns. Under the risk-neutral measure, Huang and Li (2019) identify



a significant relationship between future stock returns and implied variance asymmetry defined
as the difference between the upside and downside semi-variances derived from out-of-the-money
(OTM) options.

Against this backdrop, the main contributions of this paper are threefold. First, by decomposing
the implied and realized variances into upside and downside components, we investigate the
presence of fractional co-integration in each pair of semi-variances and establish new evidence
for the long-run relationship between different variance components. Second, we show that
the common long-memory component in the fractionally co-integrated system, as part of the
conditional variance of market returns, is intimately associated with the vol-of-vol driving the
variance premium. Moreover, that common component plays a key role in connecting the strength
of the fractional co-integration between variances and the stock return predictability afforded by
the variance differences. The dominant predictive power of the downside V RP documented in
the literature can therefore be reasonably explained by the long-run equilibrium relation between
the downside implied and realized semi-variances. Third, to alleviate the impact on our empirical
findings of the limited availability of observed strikes in the construction of implied variances, we
employ a simulation study to verify the claims outlined above.

Following the procedures of Barndorff-Nielsen, Kinnebrock, and Shephard (2010) and Andersen,
Bondarenko, and Gonzalez-Perez (2015), we obtain upside and downside semi-variances of the
realized (RV) and implied (IV) variances, which we refer to as RVY, RVP, IVV and IVP. The
difference between IVV (IVP) and RVY (RVP) is defined as the upside (downside) variance risk
premium, henceforth VRPY (VRPP). The signed jump (SJ) and implied variance asymmetry
(IVA) are respectively measured as the difference between RVY and RV and the difference
between VY and IVP. Using a semi-parametric approach, we demonstrate the existence of a
fractionally co-integrating relation in each pair of the semi-variances listed above. In addition, our
results reveal the role of IV as a long-run upward biased forecast of future RV”. This evidence

is also consistent with the existing literature which documents that investors dislike fluctuations



in variances induced by the extreme downside returns and are willing to pay a premium to insure
against increases in bad uncertainty.

To explain the association between fractional co-integration detected in pairs of variances
and the return predictability implicit in their differences, we extract the common long-memory
components in variances using the permanent-transitory decomposition proposed by Gonzalo and
Granger (1995). This procedure is implemented within a parametric fractionally co-integrated
VAR framework. We show that the common long-memory component represents the vol-of-vol
factor that constitutes the unique source of the variance premium. As emphasized by Bollerslev,
Tauchen, and Zhou (2009), the persistence of the vol-of-vol serves as a positive determinant of
the long-horizon return predictability. Given that finding, an increase in the persistence of the
common permanent component not only magnifies the co-fractional relation between variances but
also results in better return predictions implied by their differences. The superior performance of
the VRPP, in terms of predictive power for future returns, can thus be explained by the stronger
fractional co-integration between IVP and RVPY. However, the linkage between the fractional
co-integration and return predictability does not hold for the SJ and IV A that affect variations
in equity premium through a channel other than the vol-of-vol. Given that the SJ and IV A
are found to be weakly associated with the long-run future excess returns, they are considered as
relatively short-lived return predictors.

Based on a wide range and fine partition of strikes, the results of our simulation study are
generally in line with the empirical findings of an association between the degree of co-fractional
relation found in pairs of variances and the return predictability of their differences. With a list
of option quotes for OTM calls and puts that are sufficiently deep in the tails, the VRP and
its components clearly outperform the SJ and IV A in predicting future returns across various
horizons where the S.J is notably the worst predictor.

The rest of this paper is organized as follows. Section 2 defines the implied and realized

semi-variances together with the variance differences considered in the present study. The origin



of our data is introduced in Section 3 and the empirical results are reported in Section 4. Section 5
provides the results of a simulation study designed to alleviate the adverse implementation issues

encountered in the empirical application. Section 6 concludes.

2 Measuring Variance Differences

This section introduces the methods of decomposing the implied and realized variances into their
upside and downside components. These form the basis for the construction of the VRPY, V RPP,

SJ and IV A.

2.1 Realized Variance Components

We adopt the realized variance estimator proposed by Barndorff-Nielsen and Shephard (2002),

which is equal to the sum of intraday squared returns

M
U = Zrij (1)
j=1

where r; ; stands for intraday returns within each 5-minute interval. In addition, we include the
squared overnight return, computed as the squared close-to-open logarithmic price change, to the
rv; obtained over the trading day. We then follow Barndorff-Nielsen, Kinnebrock, and Shephard
(2010) in deriving upside and downside semi-variances, which separately identify the contributions

of positive and negative intraday price increments.

M

rop = er,jl(n,jso) (2)
=1
M

rol = Z rf’jl(n‘jw) (3)
=1

Given that rv; = ro +roP, the upside and downside components provide a complete decomposition

of the realized variance. Using a jump-diffusion process for the stock price, Barndorft-Nielsen,



Kinnebrock, and Shephard (2010) demonstrate that, as M — oo, rol and rvP each converge
separately to one-half of the integrated variance plus the sum of positive and negative quadratic

jumps.

2.2 Implied Variance Components

For the construction of the risk-neutral expectation of the one-month forward return variation,
we follow Bollerslev, Tauchen, and Zhou (2009) and Bollerslev et al. (2013) among others, by
employing the CBOE VIX index as a measure of the total implied volatility proxy for the US
S&P 500 contract.

Based on the idea of fair value of future volatility developed by Demeterfi et al. (1999), the

VIX index is given as
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where 7 = 30/365 is the option maturity measured in annual units, = is the annualized risk-free
interest rate, K; is the strike price of the ith OTM option in the calculation', K is the first strike
price below the forward price Fy at maturity 7 (Ko < Fp), Q(7, K;) is the midpoint of the latest
available bid and ask prices of the OTM option at strike K;, and AK; stands for the strike price
interval given as AK; = (K41 — K;_1)/2.

As shown by Jiang and Tian (2007), the VIX is conceptually equivalent to the model-free
implied volatility developed by Britten-Jones and Neuberger (2000) as follows
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L At the boundaries of strike prices, AK; is adjusted as the difference between the two highest (or lowest) strike
prices. In addition, at the strike price Ky the option price Q;(7, K;) is modified to be the average of call and put
prices. The CBOE computes the VIX from an interpolation of two volatility indices with respect to two different
maturities: 7. and 7%. The VIX index is finally obtained by taking a weighted average of these two VI X measures
based on 7. and 7.



where P(t,7; K) and C(t,7; K) are the respective mid-quotes for European put and call options
with strike price K and maturity 7. By construction, only OTM options (call if K > F; and put
otherwise) are taken into account.

Following the methodology of Andersen, Bondarenko, and Gonzalez-Perez (2015), we respectively

define the upside and downside implied volatilities by

K
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Similar to the construction of the VIX index, all the risk-neutral measures are derived from

~—

options across two nearest maturities (less than 30 days and greater than 30 days); and the 30-day
implied volatilities are computed by interpolating between the two separate maturities. We then

transform the annualized implied volatility measures into monthly variance units as follows
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2.3 Construction of Variance Differences

Given that the VI X? and its components in equations (8 to 10) are based on one-month maturity
option prices, we compute the RV, and its components over the remaining one month of the options

as follows
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where rvy, rof and rvP are daily measures derived from intraday returns and 7 denotes the
number of trading days during one month. To remove the impact of overlapping data on the
results of fractional co-integration, throughout the present paper we follow Kellard, Dunis, and
Sarantis (2010) by constructing a monthly dataset from the daily version. Specifically, we select
the data for the implied variances only from the trading day following the final day employed in
the computation of the previous realized variances.

Following Bollerslev, Tauchen, and Zhou (2009) and Bollerslev et al. (2014), among others, we

define the V RP and its components by

VRP, =VIX}? — RV, , (14)
VRPY =1vV — RVY, (15)
VRPP = IV;P — RV, (16)

Such constructions have the advantages of being model-free and directly observable at time t.
The forward-looking VRP based on the statistical expectation of the RV (E; (RV;:y1)) is also
considered in the literature, where E; (RV},11) is approximated using various parametric modelling
methods designed to forecast the RV. As noted by Bollerslev, Tauchen, and Zhou (2009), under the
assumption that the RV follows a martingale difference or exhibits strong long-memory dynamics,
the two measures of the V RP are in line with each other.

The signed jump (SJ) proposed by Bollerslev, Li, and Zhao (2017) is computed as the

difference between the semi-variances RV,Y and RV,”, which eliminates the variation caused by



the continuous part but retains the variation arising from jumps®.
SJ, = RVV, — RVP, (17)

Finally, we construct the implied variance asymmetry (/V A) introduced by Huang and Li (2019).

This is the difference between upside and downside implied semi-variances as given by

VA, =1VV —1vP (18)

3 Data

This section gives a description of our data and the standard summary statistics of the return
and variance series considered in the paper. To construct rv; and its components for the period
January 02, 2003 to December 30, 2016 with a total of 3526 observations, we use the five-minute
high-frequency data of the aggregate S&P 500 (SPX) composite index obtained from Tick Data
Inc.. Risk-neutral variance measures are derived from daily data of European put and call options
on the SPX, as collected from Optionmetrics via the WRDS system. To represent risk-free rates,
daily one-month and three-month Treasury-bill yields® are extracted from the Federal Reserve
Bulletin.

To address the issue of bid-ask bounce, we compute the option price as the average of bid
and ask quotes. Options with a time to maturity of fewer than seven days are filtered out,
and those with Black—Scholes implied volatilities below zero or above 100% are also excluded.
As discussed in Section 2.3, we convert the daily dataset into a monthly version to circumvent
the problem of overlapping data. Thereby, the sample comprises 168 observations. Following

Andersen, Bondarenko, and Gonzalez-Perez (2015) and Yao and Izzeldin (2018), we consider a

2In deriving the S.J;, we consider the RV,Y | and RV,”, as opposed to RV;U and RV,” in order to make the S.J;
directly observable at time ¢.

3Following Jiang and Tian (2007), the risk-free rate is linearly interpolated between these two yields. However,
when the maturity is shorter (longer) than one (three) month, the one-month (three-month) yield is adopted.
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replicated VIX index, RX, using the exact CBOE procedure every day. The RX provides an
equivalent of the VIX using SPX option prices from the Optionmetrics data set®.

Summary statistics for the excess return and variance series are reported in Table 1. The excess
return is derived by subtracting the monthly risk-free rate from the SPX log-return. In accord
with the existing literature, the implied and realized variances together with their components are
fairly persistent as suggested by the AR(1) parameters. As persistence is largely reduced when the
variance differences are considered, this is indicative of the presence of fractional co-integration
between the variances. In addition, the features of the V RP and its components are consistent
with those documented in the literature: i) the total, downside and upside variance premium are
on average positive; i) compared with the VRP and VRPP, the VRPY exhibits a much lower
mean value and more negative skewness; iii) the VRPP serves as the main component of the

VRP.

4 Empirical Results

We begin this section by investigating the fractional co-integrating relations between the variances,
prior to seeking in the fractionally co-integrated system the components that determine the
variance premium. This is followed by an analysis of the risk-return relations across various

frequencies and the pattern of return predictability afforded by variance differences.

4.1 Fractional Co-integrating Relations

Two series y; and x; are said to be fractionally co-integrated if both are integrated of order d, and a
linear combination w; = y; —0x; is 1(d,,) where d,, < d,. In contrast to conventional co-integration,

d, can be a fractional number rather than an integer. In the next subsection, we examine the

4“The CBOE calculates the VIX index using option prices updated every five minutes. However, the
Optionmetrics database includes the last daily bid-ask quote only, which might not correspond to the data published
by CBOE for their final end-of-day computation. Constructed from the exact same dataset, all the risk-neutral
variance measures considered in this paper are directly comparable to each other.
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presence of fractional co-integration between the variances and provide information on the nature
of long-run relations that may exist.

We first estimate the order of fractional integration d by exploiting the exact local Whittle
estimator of Shimotsu and Phillips (2005) where the bandwidth parameter is set as m; = T°5.
This is commonly adopted in the literature®, and for more details see Appendix A. The results,
which are outlined in the first column of Panel A in Table 2, indicate that all the variance series
are fractionally integrated. We then proceed to test for the equality of the fractional difference
parameters, which is a necessary condition for the existence of fractional co-integration. However,
as stressed by Robinson and Yajima (2002), the test for homogeneity of d could deliver misleading
conclusions if the co-integration is not accounted for. Hence, we first estimate the co-integrating
rank for each pair of variances using the exact local Whittle rank test by Nielsen and Shimotsu
(2007) as introduced in Appendix B.

Panel A of Table 2 presents the results of the co-integration rank test, where the rank 7 is
estimated by minimizing L(u) in equation (31) of Appendix B. Given that L(1) < L(0) for each
pair of variances, we obtain 77 = 1 for all the scenarios considered. Moreover, a large value of the
test statistic fo is evidence against the null hypothesis of the equality of d. In comparing the fg
reported in Panel A with the 95% critical value of the x?(1) distribution (3.841), we accept the null
and conclude that there exists a fractional co-integrating relation for (RX?, RV;), (I VvV, RVY ),
(IV;?, RV;P), (RV,V, RV,") and (IV,, IV;P). The average d is taken as 1(d,, + d,,) which we
denote by Ave.d.

To further evaluate the long-run relationship between the variances, we consider the regression
Yy =c+ 0z +uy (19)

where 1, and x; represent the pair of variances under analysis. Since the OLS fails to produce

®Other parameters m; = T°% and m; = T°7 are also attempted, which leads to qualitatively similar results.
To conserve space, we only report the results based on m; = 7°°.
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consistent estimates of the co-integrating vector for equation (19), where both the regressors and
errors have long memory (Bandi and Perron (2006)), we adopt the fully modified narrow-band
least squares (FMNBLS) proposed by Nielsen and Frederiksen (2011). This approach uses the local
Whittle estimator to obtain the integration orders of y; and x; and then derives the estimator of
the co-integrating relation before the integration order of the residuals is estimated. Consistent
with the earlier discussion, we allow the bandwidth parameter to be m; = T°® and then follow
Nielsen and Frederiksen (2011) in setting values for the other parameters, mg, ms and ms. As the
FMNBLS estimates of the fractional difference parameters d are close to those presented in Panel
A of Table 2, they are not reported.

As noted by Bandi and Perron (2006) and Nielsen and Frederiksen (2011), a negative intercept
¢ might point to the presence of a long-run risk premium and long-run unbiasedness is supported if
0 = 1 irrespective of the existence of the intercept estimate. Results in Panel B of Table 2 support
the long-run unbiasedness hypothesis, § = 1, for (RX}?, RV;), (IVV, RVY) and (IVV, IV]P).
As suggested by the slope estimate for (I VP, RV,P ), which is significantly below unity, in the
long run the I'V,” tends to overestimate the RV,”. Our results provide evidence that investors
dislike, and are willing to pay a premium to hedge against, downside (bad) variance risk, and
that they respond more to downside than to upside (good) uncertainty. The point estimate [
for (RV;U, RV ), which is slightly in excess of unity, indicates that under the physical measure,
upside returns may occur more frequently than downside returns.

Turning to the memory estimates of the residuals (fu, Panel B of Table 2 supports the notion
of I(d) — I(0) co-integration for all the pairs of variances; i.e., d,, is not significantly different
from zero. The degree of fractional co-integration is measured by (Ave.c? — c/l\u> as reported in
the last column of Panel B: this is the reduction in the integration order of u; as compared to y;
and z,. The strongest fractional co-integration is found for (IV,”, RV,”) and the degree of that
long-run relation becomes lower for (RX?, RV;) and ([ vy, RVtU). The stronger co-movements

between IV,” and RV,” suggest that they are more closely tied together by a highly persistent
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common stochastic trend toward which they converge in the long run. Given that the IV;” and
RV,P are both associated with dramatic market declines, our observations indicate that the well
documented long-run equilibrium relationship between RX? and RV; may be non-trivially ascribed
to investors’ fear of a market crash, which is described by the relation between IV,” and RV,P. In
addition, the two components of the implied variance co-move with each other with the degree of
fractional co-integration slightly lower than (1V;”, RV,”). The (RV;Y, RV,P) exhibits the weakest

co-integrating relation across the pairs of variances considered.

4.2 the Common Long-Memory Component

This subsection attempts to establish an intuitive argument for the linkage between the fractional
co-integration found in the pairs of variances and the return predictability suggested by the
variance differences. As indicated by Bollerslev, Tauchen, and Zhou (2009) and by Bollerslev,
Sizova, and Tauchen (2012), the vol-of-vol factor (the fundamental uncertainty) in the generalized
LRR model solely determines the temporal variation in V RP, imparting it with forecasting
power for returns in cases where the vol-of-vol serves as the driving force of the variation in
the equity premium. In an extended model presented by Feunou, Jahan-Parvar, and Okou (2017),
decompositions of the V RP are theoretically motivated and asymmetry in the upside and downside
vol-of-vol factors is shown to drive the dynamics in the components of V RP. In the work of Conrad
and Loch (2015), a long-term volatility component from the GARCH-MIDAS model is found to
represent the vol-of-vol factor, and the new VRP measure based on that component displays
higher predictive power for future market returns. In the light of these findings, we propose to
treat the common long-memory component of variances that are fractionally co-integrated as the
factor intimately associated with the vol-of-vol that determines the variance premium.

In what follows, we employ the permanent-transitory (PT) decomposition of Gonzalo and
Granger (1995) to identify the common permanent component of each pair of variances. To

facilitate the PT decomposition, we follow Dolatabadi et al. (2018) by constructing a fully specified
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framework which accommodates long-run and short-run effects in a system containing fractionally
co-integrated variables. Such a framework is afforded by the fractionally co-integrated vector

autoregressive (FCVAR) model of Johansen (2008) and Johansen and Nielsen (2012) as follows

k
AN Xy — p) = af ALy (X — p) + ) TALY(X, — p) + & (20)

=1
where X, denotes the pair of variances under analysis, A? and L, respectively represent the
fractional difference operator and the fractional lag operator’. As noted by Johansen and Nielsen
(2015), the level parameter p serves to reduce the effects of pre-sample observations. The error
correction term is expressed as 3’ A4 L, X;, where 3 is of order (2x1). The linear combination 3’ X;
is integrated of order (d—b), suggesting that the co-integrating combination reduces the integration
order of X; by b. The parameter b therefore measures the degree of fractional co-integration in
the FCVAR framework. The matrix « is of order (2 x 1) and contains parameters representing
the speed of adjustment towards long-run equilibrium. The short-run dynamics are measured by
the lag coefficients (I'y,...,I'x).

With the estimated parameters of the FCVAR, we then obtain the PT decomposition as follows
Xt == AlLMt -+ AQSMt (22)

where the common long-memory component of X, is given by LM,; = alXt with ozloz = 0 and the
transitory component is constituted by SM; = ' X;. Additional details relating to the construction
of A; and As; may be found in Gonzalo and Granger (1995). For a given value of the transitory

component, a high value of L M; increases the magnitude of the forecast of the conditional variance,

6Ly =1— A% and A? = (1 — L)? where

_ N - _ i(d\ _ _T(=d+i)
1-1)? = ;Hi(d)L, with 0;(d) = (~1) (Z> ey (21)
g Md=Y, dd-V(d=2) s
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which renders the LM, closely associated with the vol-of-vol discussed in Bollerslev, Tauchen, and
Zhou (2009).

Panel A of Table 3 presents parameter estimates of the FCVAR for different pairs of variances’.
Consistent with earlier findings given by the FMNBLS estimator, the results in Table 3 show that
(i) (] VP, RVP ) possesses the greatest magnitude of co-integration, having the highest value of
b and (i) that the long-run relation becomes weaker for (RX2, RV;) and (I1VY, RVY). Notably,
the memory estimates d within the FCVAR framework do not accord with those based on the
local Whittle estimator. This may be explained by the fact that the estimates c/l\, b and B are
highly sensitive to the presence of short-run dynamics. Such dynamics are not parameterized in
the local Whittle estimator and the FMNBLS estimator. We then extract the common permanent
component of each pair of variances and examine whether that common component works to
represent the vol-of-vol factor that constitutes the source of the variance premium.

We follow Conrad and Loch (2015) by exploiting the model in Bollerslev, Sizova, and Tauchen

(2012) where the V RP is written as an affine function of the vol-of-vol factor as follows

v, ¢+ RV, + VM L, (23)

alternatively, IV, — RV, = c+ b(LM)LMt

where M) > (. Given that we construct the V RP and its components under the assumption that
the RV, follows a martingale difference, we first regress I'V; against a constant, RV, ; and LM,
and then regress the ex-post V RP measured by (IV; — RV;) against a constant, RV, ; and LM,.
If the LM, can be thought of as the factor that determines the VV RP, the two slope coefficients in
the first regression should be significant but where only LM, is significant in the second regression.

Panel B of Table 3 reports the results for the first regression where the (IV;, RV;) is replaced by

(RX}, RV,), (IVV, RVV) and (IV,”, RV,”), and the corresponding common permanent component

"Lag k is selected based on the Bayesian information criterion (BIC) and the white noise test on the residuals.
For more details, see Nielsen and Shibaev (2018).
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is denoted by LM;, LMY and LMP. For each scenario considered, we show that both the realized
measure of variance and the common long-memory component exert significantly positive effects
on the implied variance counterparts. In addition, results for the second regression presented in
Panel C suggest that only the permanent components play a significant role in driving the ex-post
V RP. Our results thus present strong evidence that the common long-memory component of the
total (upside/downside) implied-realized variances can be regarded as a factor closely associated
with the fundamental uncertainty, i.e. the total (upside/downside) vol-of-vol.

In the work of Bollerslev, Tauchen, and Zhou (2009), the degree of persistence in the vol-of-vol
factor plays a critical role in determining the return predictability over longer horizons. We
consider the common permanent component (LM;) of the fractionally co-integrated system as
a proxy of the vol-of-vol and infer the association between the LM; and return predictability
as follows. An increase in the persistence of the LM,; would suggest a greater reduction in
the integration order of X; via the co-integrating combination, and thus a higher magnitude
of fractional co-integrating relationship. By the same logic as in Bollerslev, Tauchen, and Zhou
(2009), a higher degree of that relationship then leads to a higher degree of long-horizon return
predictability.

Thus, the VRPP is expected to display higher predictive power for future returns with the
stronger co-fractional relation between (IV,”, RV,”). On the other hand, the weaker fractional
co-integration found for (RX?, RV;) and (IV,V, RV,Y) may adversely affect the return predictability
implied by their differences, i.e. VRP; and VRPY. Such hypotheses will be further examined in
the following subsection. Here, we do not seek the proxy of the vol-of-vol factor for the differences
between (RV,Y, RV,”) and (IVV, IV[?), i.e. SJ; and IV Ay, since the jump risk affects the equity
premium via the impact of conditional volatility rather than the vol-of-vol factor as documented

in Guo, Wang, and Zhou (2019).
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4.3 Return Predictability

Before evaluating the return predictability implied by the variance differences, we first investigate
the risk-return relations over different frequencies. We adopt the time-domain band-pass filtering
procedure considered in Bollerslev et al. (2013) to decompose each of the variables (i.e. variances
and future excess returns) into their long-run, intermediate, and short-run components. In
applying the local Whittle estimator in Section 4.1, we set the bandwidth parameter m; = 705,
which corresponds to a low frequency around w~ 0.4845, or periods around 12 months. Given
that the return predictability of the V RP achieves its maximum at the quarterly horizon in the
study of Bollerslev, Tauchen, and Zhou (2009), we isolate the high-frequency component with
periodicities of less than 3 months with @ ~ 2.0933. Finally, we extract an intermediate-frequency
component located in the band w < w < w for periods between 3 and 12 months.

Table 4 outlines correlations between the extracted components of the variance differences and
the corresponding components of excess returns. These show that the VRP;, VRPY and VRPP
all exhibit non-trivial association with excess returns over different frequency bands, where the
greatest correlations occur at the low frequencies. It is evident that V RPP dominates its rivals,
VRP, and VRPY, in demonstrating higher risk-return relations, so indicating better predictive
power for future returns. However, neither of S.J; and I'V A; are significantly correlated with excess
returns at intermediate and low frequencies. The significantly negative risk-return relation for SJ;
in the short run is in agreement with the results of Bollerslev, Li, and Zhao (2017). The long-run
correlations between variance differences and returns are also depicted in Figure 1, where V RP;,
VRPV and V RPP generally display strong co-movements with returns. However, no clear pattern
of long-run co-movements is evident for S.J; and IV A;.

Our analysis of return predictability is based on linear regressions of SPX excess returns on a
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set of lagged predictors as follows
1
7 Z Tiyj = bo +01Vi + €ppny (24)
j=1

where V; denotes a number of variance differences including VRP;, VRPY, VRPP SJ; and IV A,
and the issue of overlapping return observations is accommodated using the heteroskedasticity
and serial correlation consistent standard errors. Values of the adjusted R2s are plotted in Figure
2. In line with the existing literature, we show a hump-shaped pattern as a function of the time
horizons for VRP; and VRPY, where the R? peaks at the quarterly horizon. Compared with the
VRPY, the V RP, yields higher adjusted R? values over various horizons. This echoes the higher
correlation between V RP, and excess returns across frequencies reported in Table 4. Moreover,
the superior predictive power for future returns is observed for V RPP which achieves a maximum
of return predictability at the six-month horizon.

The striking performance of the V RPP may be explained by the stronger co-fractional relation
between (I VP, RV, ) uncovered in Section 4.1. The higher degree of that relation accompanies
higher persistence in the common long-memory component of (I VP, RVP ), which prolongs the
return predictability of V RPP. The ranking of the magnitude of co-fractional relation between
(RXZ, RV;), (IV}V, RVY) and (IV,?, RV;P) is identical to that obtained for the degree of return
predictability inherent in their differences. This confirms our hypothesis for the positive linkage
between the degree of fractional co-integration between variances and the magnitude of return
predictability afforded by their differences. Turning to the results of SJ; and IV A;, the values
of their R? appear negligible compared with those implied by the VRP and its components.
In addition, their predictive power for future returns is initially fairly low, before climbing to a
maximum around h = 3 then dissipating quickly in expanding the forecasting horizon. This may
be attributable to the weak association of S.J; and IV A; with the future returns at frequencies in

excess of 3 months.
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5 Simulation

A common challenge in the derivation of implied variances is that only a limited range and coarse
partition of strikes are actually traded in the market. This violates the definition of the model-free
implied variance of Britten-Jones and Neuberger (2000) where an integral of option prices is
used over an infinite range of strikes. The approximation errors induced by the discrete set of
strikes may result in the mis-estimation of both VV RP and its predictive power for future returns.
In practice, such implementation issues are fixed via the use of interpolation and extrapolation
scheme as in Jiang and Tian (2007), Andersen and Bondarenko (2007) and Kilic and Shaliastovich
(2018), among others. However, little consensus exist regarding the most appropriate extrapolation
method for the construction of unbiased estimates of implied variances. Against this background,
the following subsection undertakes a simulation study, which exploits a sufficiently fine partition
and wide range of strikes to test the empirical findings discussed above.

Our simulations are based upon the jump-diffusion model employed in Duan and Yeh (2010).
The strike price increment is fixed as AK = 1 and the moneyness range K/F; is set from 0.85
to 1.15. That level of moneyness is in line with the work of Kilic and Shaliastovich (2018) and is
considered sufficiently deep in the tails to allow for the observed volatility smile or skew. Details
in terms of the model specification and the values of parameters are provided in Appendix C.
For simplicity, we assume no dividends and a zero interest rate. Sampling at a frequency of once
every 5 minutes is considered, which corresponds to 78 intraday return observations. We simulate
4500 daily observations and construct a monthly dataset as in Section 4, which results in 150
non-overlapping observations for each series of return and variances.

Table 5 summarizes the estimates of the orders of fractional integration and the results of the
co-integrating regressions for each pair of variances. Panel A presents clear Monte Carlo evidence
for the existence of fractional co-integration between variances with 7 = 1. Panel B of the table

supports the long-run unbiasedness between (VIX?, RV;) and reveals an upward bias in the IV,”
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as a predictor of RV,”. This in turn supports the empirical findings reported earlier. Unlike the
empirical study, the IV,¥ underestimates RV,Y with the slope estimate significantly greater than
unity. This could be due to the high volatility setting considered in the simulation where investors
dislike downside variance risk and prefer variation in upside variance risk which improves the
likelihood of substantial gains. The results in Panel B suggest that extreme downside returns occur
more frequently than extreme upside returns, under both the risk-neutral and physical measures.
The conflict with empirical evidence for the long-run unbiasedness between (I VP, RV,P ) may
well be explained by the inclusion of deep OTM put options in our simulation which are absent
in the market. As indicated by <Ave.c? — @), the pairs of variances yield the same pattern as
the empirical study for the strength of fractional co-integration, where the highest magnitude is
observed for (IV;”, RV,}").

We finish this section by reporting in Table 6 the results for our Monte Carlo equivalent to
the return regression in equation (24). The superiority of VRPP in terms of return predictions
is clearly evident once h > 6. Although the VRPV outperforms V RP; in yielding higher values
of adjusted R? for h < 12, its predictive power for future returns is exceeded by the VRP, as
the forecasting horizon grows. In addition, our simulation supports the empirical evidence of the
inferior performances of the S.J; and IV A, in predicting returns, especially for intermediate and
long horizons after A > 9. The nature of the SJ; as a short-lived return predictor is discussed in
Bollerslev, Li, and Zhao (2017), who show that the S.J; only predicts returns at weekly horizons
and raise concerns regarding the role of SJ; as a priced risk factor.

Taken as a whole, the simulation study, that attenuates the approximation errors induced
by the limited availability of strikes, supports the empirical findings concerning the positive
relationship between the strength of fractional co-integration and the degree of long-horizon return
predictability. We therefore conclude that such linkage is not due to the implementation errors of

implied variances that are commonly encountered in the empirical study.
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6 Conclusion

Our study provides new evidence of the presence of fractional co-integration between the upside
(downside) components of the SPX implied and realized variances. The strength of such long-run
relationship is found to enhance the degree of return predictability suggested by the corresponding
variance differences. We explain such linkage by the common long-memory component of the
fractionally co-integrated system, which is intimately associated with the volatility-of-volatility
factor determining the variation in the variance premium. Specifically, an increase in the degree
of persistence of the common long-memory component results in higher fractional co-integration
between variances in magnitude, which leads to better return predictability over longer horizons
that are inherent in their variance differences. Hence, the better performance of the downside
variance premium as a return predictor is attributable to the stronger co-fractional relation between
the downside implied and realized variances.

Despite the presence of the non-trivial fractional co-integration between the upside and downside
components of the implied (realized) variances, their difference is only weakly associated with
future returns at low frequencies and the predictive power dissipates over longer horizons. To
circumvent the issue of measurement errors underlying the construction of implied variances, we
base a simulation study on a wide range and fine partition of strikes. Our simulation results

generally support the empirical findings illustrated above.
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Appendix
A Exact Local Whittle Estimator

To define the local Whittle estimator, we assume that a process X; integrated of order d has the
spectral density f()\) given by
FO) ~GA2 ) as A — 0, (25)

where G € (0,00) is a finite and nonzero matrix with strictly positive diagonal elements. The
discrete Fourier transform (DFT), w,(};), and the periodogram, I, (\;) of Xy, t = 1,---,T at the

fundamental frequencies can be written as

| o T
waly) = @rT)VASL X, N = T =1 < S (26)

L) = |wa(\)

Shimotsu and Phillips (2005) provide a procedure which can be applied in the stationary and

nonstationary regions to estimate (G, d) by minimizing the objective function

Qs (G1d) = S Mog(GA*) + Tasa(V) (21)
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where Ipa,();) is the periodogram of A?X;. Concentrating @Q,,, (G, d) with respect to G, we obtain

the exact local Whittle (ELW) estimator given by

d = arg min R(d) (28)
de[A1,A2}
with
~ 1
R(d) = logG(d) — 2dﬁE;”:11 log \; (29)
1
1

G(d) - m_lzg'n:lllAdI()\j)
where A; and A, are the lower and upper bounds of the admissible values of d.

B Exact Local Whittle Rank Test

Assume there is a p-vector fractional process X; where each element is fractionally integrated
of order dy, ...,d,. The work of Nielsen and Shimotsu (2007) builds on the assumption of equal
integration orders and thus dj, ..., d, are represented by d., where (Zk = % - c?a with each c?a

given by equation (28). The consistent estimator of the spectral density at the origin is given by
~ 1

G(dy) = — Rella(r. (A 30

(d.) mz elIa(Ld.,.d)e ()] (30)

where \; = T and Ia(L.d,....d.)=(Aj) is the periodogram of (A% Xy, A%X ). Let ga be the ath

-----

eigenvalues of G (d.) and the co-integration rank r can be determined by adopting the procedure

of Robinson and Yajima (2002)

r o= argu:r?.ig_lL(u) (31)
Lw) = oT)(p—u) -3 3,
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where v(T") should be positive and should meet the assumption as follows

o(T) + m 0 (32)

Nielsen and Shimotsu (2007) show that a higher rank estimate is more likely to be selected when
a larger v(T) is applied. In order to obtain a more conservative estimate of r, we choose to employ
a small v(T) = m™04.

Once the presence of the co-fractional relation has been investigated by the rank estimation,

we can examine the equality of the orders of fractional integration by testing the null Hy : d, = d,

a =1, ...p. The test statistic is given by

. ~ 1 ~

Ty = m(Sd)’(SZﬁ‘l(@ ® G)D'S + h(T)*L,_,) " (Sd) (33)

where ® represents the Hadamard product, S = [I,_1, —t|', ¢ is the (p — 1)-vector of ones, and
D = diag(@ll, e @pp). The memory estimates d of variables in the vector are derived by the
univariate exact local Whittle estimator (Shimotsu and Phillips (2005)). When variables are not

fractionally co-integrated, T —q X2 (p— 1), while To —, 0 when they are co-integrated.

C Simulation Design

We follow Duan and Yeh (2010) by employing a stochastic volatility model with jumps in simulating

the asset price and the latent stochastic volatility as follows

dlnS, = [r—q+0,V,— %]dt + VVidW; + JdN; — A\t (34)

AV, = k(0 —V,)dt+ vV, dB,

where W; and B; are Wiener processes correlated with the coefficient p; N; represents a Poisson
process with intensity \; J; is an independent random variable following N(u;, 0%). The price,
S, and volatility, V;, processes are dependent through the correlated diffusive terms—W, and B;.

The other parameters, r, ¢ and §, are the risk-free rate, the dividend yield and the asset risk
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premium, respectively. The option pricing is conducted using the corresponding model under the

risk-neutral probability measure given by

V *
dinS, = [r—q= < +X(u5+1—e)]dt + /VdWy (35)
AN — Nt

dV, = (k0 — K*V))dt + 0V, dB;

where k* = k+dy and B} = B,+6y /v fot V.177ds with §y being the volatility risk premium. Other
notations with the superscript * have similar features to their counterparts under the physical
measure in equation (34) and the standard deviation of J; remains unchanged as ;. To compute
option prices, we adopt the empirical martingales simulation (EMS) method developed by Duan
and Simonato (1998) given that there is no closed-form option pricing formula for equation (35).

The initial stock price (Sp) and latent stochastic volatility (V4) are set respectively as 1000 and

0.08. Values of the parameters are set similar to those considered in Duan and Yeh (2010).

K 0 A wr (%) a5 (%) v P ¥ 8s K" #" (%) dv 35(%)

2.500  0.080  55.000 0.300 0.500 1.400 -0.800 0.900 0.420 -13.000 0.035 -15.500  -0.059
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