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Abstract

This paper examines the fractional co-integration between downside (upside) components

of realized and implied variances. A positive association is found between the strength of

their co-fractional relation and the return predictability of their differences. That association

is established via the common long-memory component of the variances that are fractionally

co-integrated, which represents the volatility-of-volatility factor that determines the variance

premium. Our results indicate that market fears play a critical role not only in driving the

long-run equilibrium relationship between implied-realized variances but also in understanding

the return predictability. A simulation study further verifies these claims.

Keywords: Fractional co-integration; Variance risk premium; Return predictability.
JEL Classification: C51; C32; C14.

1 Introduction

Numerous empirical studies suggest that, unlike the variance, the variance risk premium (V RP )

carries non-trivial predictive power for aggregate stock market returns over quarterly to annual

horizons, where the degree of return predictability is greater than that afforded by more conventional

predictors, see, Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2010), Bollerslev

et al. (2014), and Bali and Zhou (2016), among others. Those studies also provide strong evidence

that much of the predictability implicit in the V RP may be attributed to its close relation with

macroeconomic uncertainty and aggregate risk aversion.
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The V RP is formally defined as the wedge between option-implied and realized variances. It

is measured as the difference between (the square of) the CBOE VIX index and the statistical

expectation of the future return variation. In Bollerslev, Tauchen, and Zhou (2009), Drechsler

and Yaron (2010) and Bollerslev, Sizova, and Tauchen (2012), the return predictability of the

V RP is investigated using a self-contained general equilibrium model. This is in the spirit of

the long-run risks (LRR) model pioneered by Bansal and Yaron (2004). Specifically, Bollerslev,

Tauchen, and Zhou (2009) and Bollerslev, Sizova, and Tauchen (2012) extend the LRR model by

allowing the time-varying volatility-of-volatility (vol-of-vol) within the economy to be generated

by its own stochastic process. They further show that the difference between the risk-neutral and

the objective expectations of return variation isolates the vol-of-vol factor, which then serves as

the sole source of the true V RP . The V RP therefore displays good predictive power for future

returns in cases where the vol-of-vol plays a more dominant role in determining variation in the

equity premium. A direct link between the V RP and the vol-of-vol is also demonstrated in a

purely probabilistic model introduced by Barndorff-Nielsen and Veraart (2013).

By incorporating jumps in the LRRmodel, Drechsler and Yaron (2010) disentangle the difference

in the drifts of conditional variance from the V RP . That drift difference is related to the vol-of-vol

associated with the level of uncertainty, leading to the covariation between the V RP and the

conditional equity premium that is partially dependent on the vol-of-vol factor. As indicated

by Bollerslev, Tauchen, and Zhou (2009), the vol-of-vol is inherently latent and may be variously

defined across different volatility models. Recent literature has achieved limited progress in seeking

an appropriate proxy of the vol-of-vol factor which is necessary to explain the return predictability

suggested by the V RP . A notable exception is the work of Conrad and Loch (2015) where the

vol-of-vol is represented by the long-term volatility component of the GARCH-MIDAS model.

Consistent with the generalized LRR model discussed above, results suggested by Bollerslev

et al. (2013) provide new evidence for return predictability of the V RP based on the idea of

fractional co-integration. Given the mounting empirical studies that favor fractional integration in
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implied and realized variances (see Bandi and Perron (2006) and Nielsen (2007) for instance), fast

mean reversion in the V RP , i.e. the difference between the two variances, points to the existence

of fractional co-integration. Compared to the use of the univariate variances as a proxy for risk,

Bollerslev et al. (2013) show that the less persistent V RP rebalances the risk-return regression

in terms of the order of fractional integration, and that this appears to be more informative for

future returns. In addition, the V RP is estimated as the co-integrating relation between the two

variances, which is highly linked to the vol-of-vol and aggregate economic uncertainty.

Another strand of the literature on the properties of the V RP focuses on the decomposition of

the V RP into its downside and upside components, so differentiating between investors’attitudes

toward uncertainty risks associated with the left and right tail of the return distribution. Feunou,

Jahan-Parvar, and Okou (2017) find that the downside V RP often dominates total V RP in

predicting future excess returns. They rationalize this result by showing (i) that the two components

exhibit opposite relationships to the equity premium and (ii) that the link between the upside V RP

and the equity premium is insignificant. In similar vein, Kilic and Shaliastovich (2018) adopt an

alternative decomposition of the V RP : they argue that both good and bad components contain

important information about future excess returns, which results in higher return predictability

than that inherent in the total V RP .

The difference between the components of the realized (implied) variance is also considered

in several studies where the main focus is on equity risk premium predictability. For instance,

by decomposing the realized jump volatility into negative jumps and positive jumps, Guo, Wang,

and Zhou (2019) construct the signed jump risk as the difference between the two jump risk

components. In addition, the signed jump risk is found to contain information about future market

returns that is independent of that captured by the V RP . With an alternative decomposition

approach, Bollerslev, Li, and Zhao (2017) derive the signed jump variation as the difference

between the good and bad realized volatility and show that this difference significantly predicts

the variation in future returns. Under the risk-neutral measure, Huang and Li (2019) identify
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a significant relationship between future stock returns and implied variance asymmetry defined

as the difference between the upside and downside semi-variances derived from out-of-the-money

(OTM) options.

Against this backdrop, the main contributions of this paper are threefold. First, by decomposing

the implied and realized variances into upside and downside components, we investigate the

presence of fractional co-integration in each pair of semi-variances and establish new evidence

for the long-run relationship between different variance components. Second, we show that

the common long-memory component in the fractionally co-integrated system, as part of the

conditional variance of market returns, is intimately associated with the vol-of-vol driving the

variance premium. Moreover, that common component plays a key role in connecting the strength

of the fractional co-integration between variances and the stock return predictability afforded by

the variance differences. The dominant predictive power of the downside V RP documented in

the literature can therefore be reasonably explained by the long-run equilibrium relation between

the downside implied and realized semi-variances. Third, to alleviate the impact on our empirical

findings of the limited availability of observed strikes in the construction of implied variances, we

employ a simulation study to verify the claims outlined above.

Following the procedures of Barndorff-Nielsen, Kinnebrock, and Shephard (2010) and Andersen,

Bondarenko, and Gonzalez-Perez (2015), we obtain upside and downside semi-variances of the

realized (RV ) and implied (IV ) variances, which we refer to as RV U , RV D, IV U and IV D. The

difference between IV U
(
IV D

)
and RV U

(
RV D

)
is defined as the upside (downside) variance risk

premium, henceforth V RPU
(
V RPD

)
. The signed jump (SJ) and implied variance asymmetry

(IV A) are respectively measured as the difference between RV U and RV D and the difference

between IV U and IV D. Using a semi-parametric approach, we demonstrate the existence of a

fractionally co-integrating relation in each pair of the semi-variances listed above. In addition, our

results reveal the role of IV D as a long-run upward biased forecast of future RV D. This evidence

is also consistent with the existing literature which documents that investors dislike fluctuations
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in variances induced by the extreme downside returns and are willing to pay a premium to insure

against increases in bad uncertainty.

To explain the association between fractional co-integration detected in pairs of variances

and the return predictability implicit in their differences, we extract the common long-memory

components in variances using the permanent-transitory decomposition proposed by Gonzalo and

Granger (1995). This procedure is implemented within a parametric fractionally co-integrated

VAR framework. We show that the common long-memory component represents the vol-of-vol

factor that constitutes the unique source of the variance premium. As emphasized by Bollerslev,

Tauchen, and Zhou (2009), the persistence of the vol-of-vol serves as a positive determinant of

the long-horizon return predictability. Given that finding, an increase in the persistence of the

common permanent component not only magnifies the co-fractional relation between variances but

also results in better return predictions implied by their differences. The superior performance of

the V RPD, in terms of predictive power for future returns, can thus be explained by the stronger

fractional co-integration between IV D and RV D. However, the linkage between the fractional

co-integration and return predictability does not hold for the SJ and IV A that affect variations

in equity premium through a channel other than the vol-of-vol. Given that the SJ and IV A

are found to be weakly associated with the long-run future excess returns, they are considered as

relatively short-lived return predictors.

Based on a wide range and fine partition of strikes, the results of our simulation study are

generally in line with the empirical findings of an association between the degree of co-fractional

relation found in pairs of variances and the return predictability of their differences. With a list

of option quotes for OTM calls and puts that are suffi ciently deep in the tails, the V RP and

its components clearly outperform the SJ and IV A in predicting future returns across various

horizons where the SJ is notably the worst predictor.

The rest of this paper is organized as follows. Section 2 defines the implied and realized

semi-variances together with the variance differences considered in the present study. The origin
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of our data is introduced in Section 3 and the empirical results are reported in Section 4. Section 5

provides the results of a simulation study designed to alleviate the adverse implementation issues

encountered in the empirical application. Section 6 concludes.

2 Measuring Variance Differences

This section introduces the methods of decomposing the implied and realized variances into their

upside and downside components. These form the basis for the construction of the V RPU , V RPD,

SJ and IV A.

2.1 Realized Variance Components

We adopt the realized variance estimator proposed by Barndorff-Nielsen and Shephard (2002),

which is equal to the sum of intraday squared returns

rvt =
M∑
j=1

r2
t,j (1)

where rt,j stands for intraday returns within each 5-minute interval. In addition, we include the

squared overnight return, computed as the squared close-to-open logarithmic price change, to the

rvt obtained over the trading day. We then follow Barndorff-Nielsen, Kinnebrock, and Shephard

(2010) in deriving upside and downside semi-variances, which separately identify the contributions

of positive and negative intraday price increments.

rvDt =
M∑
j=1

r2
t,j1(rt,j≤0) (2)

rvUt =

M∑
j=1

r2
t,j1(rt,j>0) (3)

Given that rvt = rvUt +rvDt , the upside and downside components provide a complete decomposition

of the realized variance. Using a jump-diffusion process for the stock price, Barndorff-Nielsen,
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Kinnebrock, and Shephard (2010) demonstrate that, as M → ∞, rvUt and rvDt each converge

separately to one-half of the integrated variance plus the sum of positive and negative quadratic

jumps.

2.2 Implied Variance Components

For the construction of the risk-neutral expectation of the one-month forward return variation,

we follow Bollerslev, Tauchen, and Zhou (2009) and Bollerslev et al. (2013) among others, by

employing the CBOE V IX index as a measure of the total implied volatility proxy for the US

S&P 500 contract.

Based on the idea of fair value of future volatility developed by Demeterfi et al. (1999), the

V IX index is given as

V IXCBOE
t =

√
2

τ

∑
i

∆Ki

K2
i

erτQ(τ ,Ki)−
1

τ
(
F0

K0

− 1)2 (4)

where τ = 30/365 is the option maturity measured in annual units, r is the annualized risk-free

interest rate, Ki is the strike price of the ith OTM option in the calculation1, K0 is the first strike

price below the forward price F0 at maturity τ (K0 ≤ F0), Q(τ , Ki) is the midpoint of the latest

available bid and ask prices of the OTM option at strike Ki, and ∆Ki stands for the strike price

interval given as ∆Ki = (Ki+1 −Ki−1)/2.

As shown by Jiang and Tian (2007), the V IX is conceptually equivalent to the model-free

implied volatility developed by Britten-Jones and Neuberger (2000) as follows

MFIVt =

√
2

τ
erτ
[∫ Ft

0

P (t, τ ;K)

K2
dK +

∫ ∞
Ft

C(t, τ ;K)

K2
dK

]
(5)

1At the boundaries of strike prices, ∆Ki is adjusted as the difference between the two highest (or lowest) strike
prices. In addition, at the strike price K0 the option price Qi(τ ,Ki) is modified to be the average of call and put
prices. The CBOE computes the V IX from an interpolation of two volatility indices with respect to two different
maturities: τ lt and τ

u
t . The V IX index is finally obtained by taking a weighted average of these two V IX measures

based on τ lt and τ
u
t .
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where P (t, τ ;K) and C(t, τ ;K) are the respective mid-quotes for European put and call options

with strike price K and maturity τ . By construction, only OTM options (call if K > Ft and put

otherwise) are taken into account.

Following the methodology of Andersen, Bondarenko, and Gonzalez-Perez (2015), we respectively

define the upside and downside implied volatilities by

ivUt =

√
2

τ
erτ
∫ ∞
Ft

C(t, τ ;K)

K2
dK (6)

ivDt =

√
2

τ
erτ
∫ Ft

0

P (t, τ ;K)

K2
dK (7)

Similar to the construction of the V IX index, all the risk-neutral measures are derived from

options across two nearest maturities (less than 30 days and greater than 30 days); and the 30-day

implied volatilities are computed by interpolating between the two separate maturities. We then

transform the annualized implied volatility measures into monthly variance units as follows

V IX2
t =

30

365

(
V IXCBOE

t

)2
(8)

IV U
t =

30

365

(
ivUt
)2

(9)

IV D
t =

30

365

(
ivDt
)2

(10)

2.3 Construction of Variance Differences

Given that the V IX2
t and its components in equations (8 to 10) are based on one-month maturity

option prices, we compute the RVt and its components over the remaining one month of the options

as follows

RVt =
1

τ

τ∑
i=1

rvt+i (11)

RV U
t =

1

τ

τ∑
i=1

rvUt+i (12)
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RV D
t =

1

τ

τ∑
i=1

rvDt+i (13)

where rvt, rvUt and rvDt are daily measures derived from intraday returns and τ denotes the

number of trading days during one month. To remove the impact of overlapping data on the

results of fractional co-integration, throughout the present paper we follow Kellard, Dunis, and

Sarantis (2010) by constructing a monthly dataset from the daily version. Specifically, we select

the data for the implied variances only from the trading day following the final day employed in

the computation of the previous realized variances.

Following Bollerslev, Tauchen, and Zhou (2009) and Bollerslev et al. (2014), among others, we

define the V RP and its components by

V RPt = V IX2
t −RVt−1 (14)

V RPU
t = IV U

t −RV U
t−1 (15)

V RPD
t = IV D

t −RV D
t−1 (16)

Such constructions have the advantages of being model-free and directly observable at time t.

The forward-looking V RP based on the statistical expectation of the RV (Et (RVt,t+1)) is also

considered in the literature, where Et (RVt,t+1) is approximated using various parametric modelling

methods designed to forecast theRV . As noted by Bollerslev, Tauchen, and Zhou (2009), under the

assumption that the RV follows a martingale difference or exhibits strong long-memory dynamics,

the two measures of the V RP are in line with each other.

The signed jump (SJ) proposed by Bollerslev, Li, and Zhao (2017) is computed as the

difference between the semi-variances RV U
t and RV D

t , which eliminates the variation caused by
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the continuous part but retains the variation arising from jumps2.

SJt = RV U
t−1 −RV D

t−1 (17)

Finally, we construct the implied variance asymmetry (IV A) introduced by Huang and Li (2019).

This is the difference between upside and downside implied semi-variances as given by

IV At = IV U
t − IV D

t (18)

3 Data

This section gives a description of our data and the standard summary statistics of the return

and variance series considered in the paper. To construct rvt and its components for the period

January 02, 2003 to December 30, 2016 with a total of 3526 observations, we use the five-minute

high-frequency data of the aggregate S&P 500 (SPX) composite index obtained from Tick Data

Inc.. Risk-neutral variance measures are derived from daily data of European put and call options

on the SPX, as collected from Optionmetrics via the WRDS system. To represent risk-free rates,

daily one-month and three-month Treasury-bill yields3 are extracted from the Federal Reserve

Bulletin.

To address the issue of bid-ask bounce, we compute the option price as the average of bid

and ask quotes. Options with a time to maturity of fewer than seven days are filtered out,

and those with Black—Scholes implied volatilities below zero or above 100% are also excluded.

As discussed in Section 2.3, we convert the daily dataset into a monthly version to circumvent

the problem of overlapping data. Thereby, the sample comprises 168 observations. Following

Andersen, Bondarenko, and Gonzalez-Perez (2015) and Yao and Izzeldin (2018), we consider a

2In deriving the SJt, we consider the RV Ut−1 and RV
D
t−1 as opposed to RV

U
t and RV Dt in order to make the SJt

directly observable at time t.
3Following Jiang and Tian (2007), the risk-free rate is linearly interpolated between these two yields. However,

when the maturity is shorter (longer) than one (three) month, the one-month (three-month) yield is adopted.
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replicated V IX index, RX, using the exact CBOE procedure every day. The RX provides an

equivalent of the V IX using SPX option prices from the Optionmetrics data set4.

Summary statistics for the excess return and variance series are reported in Table 1. The excess

return is derived by subtracting the monthly risk-free rate from the SPX log-return. In accord

with the existing literature, the implied and realized variances together with their components are

fairly persistent as suggested by the AR(1) parameters. As persistence is largely reduced when the

variance differences are considered, this is indicative of the presence of fractional co-integration

between the variances. In addition, the features of the V RP and its components are consistent

with those documented in the literature: i) the total, downside and upside variance premium are

on average positive; ii) compared with the V RP and V RPD, the V RPU exhibits a much lower

mean value and more negative skewness; iii) the V RPD serves as the main component of the

V RP .

4 Empirical Results

We begin this section by investigating the fractional co-integrating relations between the variances,

prior to seeking in the fractionally co-integrated system the components that determine the

variance premium. This is followed by an analysis of the risk-return relations across various

frequencies and the pattern of return predictability afforded by variance differences.

4.1 Fractional Co-integrating Relations

Two series yt and xt are said to be fractionally co-integrated if both are integrated of order dx and a

linear combination ut = yt−θxt is I(du) where du < dx. In contrast to conventional co-integration,

dx can be a fractional number rather than an integer. In the next subsection, we examine the

4The CBOE calculates the V IX index using option prices updated every five minutes. However, the
Optionmetrics database includes the last daily bid-ask quote only, which might not correspond to the data published
by CBOE for their final end-of-day computation. Constructed from the exact same dataset, all the risk-neutral
variance measures considered in this paper are directly comparable to each other.
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presence of fractional co-integration between the variances and provide information on the nature

of long-run relations that may exist.

We first estimate the order of fractional integration d by exploiting the exact local Whittle

estimator of Shimotsu and Phillips (2005) where the bandwidth parameter is set as m1 = T 0.5.

This is commonly adopted in the literature5, and for more details see Appendix A. The results,

which are outlined in the first column of Panel A in Table 2, indicate that all the variance series

are fractionally integrated. We then proceed to test for the equality of the fractional difference

parameters, which is a necessary condition for the existence of fractional co-integration. However,

as stressed by Robinson and Yajima (2002), the test for homogeneity of d̂ could deliver misleading

conclusions if the co-integration is not accounted for. Hence, we first estimate the co-integrating

rank for each pair of variances using the exact local Whittle rank test by Nielsen and Shimotsu

(2007) as introduced in Appendix B.

Panel A of Table 2 presents the results of the co-integration rank test, where the rank r̂ is

estimated by minimizing L(u) in equation (31) of Appendix B. Given that L(1) < L(0) for each

pair of variances, we obtain r̂ = 1 for all the scenarios considered. Moreover, a large value of the

test statistic T̂0 is evidence against the null hypothesis of the equality of d̂. In comparing the T̂0

reported in Panel A with the 95% critical value of the χ2(1) distribution (3.841), we accept the null

and conclude that there exists a fractional co-integrating relation for (RX2
t , RVt),

(
IV U

t , RV
U
t

)
,(

IV D
t , RV

D
t

)
,
(
RV U

t , RV
D
t

)
and

(
IV U

t , IV
D
t

)
. The average d̂ is taken as 1

2
(d̂yt + d̂xt) which we

denote by Ave.d̂.

To further evaluate the long-run relationship between the variances, we consider the regression

yt = c+ θxt + ut (19)

where yt and xt represent the pair of variances under analysis. Since the OLS fails to produce

5Other parameters m1 = T 0.6 and m1 = T 0.7 are also attempted, which leads to qualitatively similar results.
To conserve space, we only report the results based on m1 = T 0.5.
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consistent estimates of the co-integrating vector for equation (19), where both the regressors and

errors have long memory (Bandi and Perron (2006)), we adopt the fully modified narrow-band

least squares (FMNBLS) proposed by Nielsen and Frederiksen (2011). This approach uses the local

Whittle estimator to obtain the integration orders of yt and xt and then derives the estimator of

the co-integrating relation before the integration order of the residuals is estimated. Consistent

with the earlier discussion, we allow the bandwidth parameter to be m1 = T 0.5 and then follow

Nielsen and Frederiksen (2011) in setting values for the other parameters, m0, m2 and m3. As the

FMNBLS estimates of the fractional difference parameters d̂ are close to those presented in Panel

A of Table 2, they are not reported.

As noted by Bandi and Perron (2006) and Nielsen and Frederiksen (2011), a negative intercept

c might point to the presence of a long-run risk premium and long-run unbiasedness is supported if

θ = 1 irrespective of the existence of the intercept estimate. Results in Panel B of Table 2 support

the long-run unbiasedness hypothesis, θ = 1, for (RX2
t , RVt),

(
IV U

t , RV
U
t

)
and

(
IV U

t , IV
D
t

)
.

As suggested by the slope estimate for
(
IV D

t , RV
D
t

)
, which is significantly below unity, in the

long run the IV D
t tends to overestimate the RV D

t . Our results provide evidence that investors

dislike, and are willing to pay a premium to hedge against, downside (bad) variance risk, and

that they respond more to downside than to upside (good) uncertainty. The point estimate θ̂

for
(
RV U

t , RV
D
t

)
, which is slightly in excess of unity, indicates that under the physical measure,

upside returns may occur more frequently than downside returns.

Turning to the memory estimates of the residuals d̂u, Panel B of Table 2 supports the notion

of I(d) − I(0) co-integration for all the pairs of variances; i.e., d̂u is not significantly different

from zero. The degree of fractional co-integration is measured by
(
Ave.d̂− d̂u

)
as reported in

the last column of Panel B: this is the reduction in the integration order of ut as compared to yt

and xt. The strongest fractional co-integration is found for
(
IV D

t , RV
D
t

)
and the degree of that

long-run relation becomes lower for (RX2
t , RVt) and

(
IV U

t , RV
U
t

)
. The stronger co-movements

between IV D
t and RV D

t suggest that they are more closely tied together by a highly persistent
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common stochastic trend toward which they converge in the long run. Given that the IV D
t and

RV D
t are both associated with dramatic market declines, our observations indicate that the well

documented long-run equilibrium relationship between RX2
t and RVt may be non-trivially ascribed

to investors’fear of a market crash, which is described by the relation between IV D
t and RV D

t . In

addition, the two components of the implied variance co-move with each other with the degree of

fractional co-integration slightly lower than
(
IV D

t , RV
D
t

)
. The

(
RV U

t , RV
D
t

)
exhibits the weakest

co-integrating relation across the pairs of variances considered.

4.2 the Common Long-Memory Component

This subsection attempts to establish an intuitive argument for the linkage between the fractional

co-integration found in the pairs of variances and the return predictability suggested by the

variance differences. As indicated by Bollerslev, Tauchen, and Zhou (2009) and by Bollerslev,

Sizova, and Tauchen (2012), the vol-of-vol factor (the fundamental uncertainty) in the generalized

LRR model solely determines the temporal variation in V RP , imparting it with forecasting

power for returns in cases where the vol-of-vol serves as the driving force of the variation in

the equity premium. In an extended model presented by Feunou, Jahan-Parvar, and Okou (2017),

decompositions of the V RP are theoretically motivated and asymmetry in the upside and downside

vol-of-vol factors is shown to drive the dynamics in the components of V RP . In the work of Conrad

and Loch (2015), a long-term volatility component from the GARCH-MIDAS model is found to

represent the vol-of-vol factor, and the new V RP measure based on that component displays

higher predictive power for future market returns. In the light of these findings, we propose to

treat the common long-memory component of variances that are fractionally co-integrated as the

factor intimately associated with the vol-of-vol that determines the variance premium.

In what follows, we employ the permanent-transitory (PT) decomposition of Gonzalo and

Granger (1995) to identify the common permanent component of each pair of variances. To

facilitate the PT decomposition, we follow Dolatabadi et al. (2018) by constructing a fully specified
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framework which accommodates long-run and short-run effects in a system containing fractionally

co-integrated variables. Such a framework is afforded by the fractionally co-integrated vector

autoregressive (FCVAR) model of Johansen (2008) and Johansen and Nielsen (2012) as follows

∆d(Xt − µ) = αβ′∆d−bLb(Xt − µ) +
k∑
c=1

Γc∆
dLcb(Xt − µ) + εt (20)

where Xt denotes the pair of variances under analysis, ∆d and Lb respectively represent the

fractional difference operator and the fractional lag operator6. As noted by Johansen and Nielsen

(2015), the level parameter µ serves to reduce the effects of pre-sample observations. The error

correction term is expressed as β′∆d−bLbXt, where β is of order (2×1). The linear combination β′Xt

is integrated of order (d−b), suggesting that the co-integrating combination reduces the integration

order of Xt by b. The parameter b therefore measures the degree of fractional co-integration in

the FCVAR framework. The matrix α is of order (2 × 1) and contains parameters representing

the speed of adjustment towards long-run equilibrium. The short-run dynamics are measured by

the lag coeffi cients (Γ1, . . . ,Γk).

With the estimated parameters of the FCVAR, we then obtain the PT decomposition as follows

Xt = A1LMt + A2SMt (22)

where the common long-memory component of Xt is given by LMt = α
′
⊥Xt with α

′
⊥α = 0 and the

transitory component is constituted by SMt = β′Xt. Additional details relating to the construction

of A1 and A2 may be found in Gonzalo and Granger (1995). For a given value of the transitory

component, a high value of LMt increases the magnitude of the forecast of the conditional variance,

6Lb = 1−∆b and ∆d = (1− L)d where

(1− L)d =

∞∑
i=0

θi(d)Li, with θi(d) = (−1)i
(
d

i

)
=

Γ(−d+ i)

Γ(−d)Γ(i+ 1)
(21)

= 1− dL+
d(d− 1)

2!
L2 − d(d− 1)(d− 2)

3!
L3 + · · ·

15



which renders the LMt closely associated with the vol-of-vol discussed in Bollerslev, Tauchen, and

Zhou (2009).

Panel A of Table 3 presents parameter estimates of the FCVAR for different pairs of variances7.

Consistent with earlier findings given by the FMNBLS estimator, the results in Table 3 show that

(i)
(
IV D

t , RV
D
t

)
possesses the greatest magnitude of co-integration, having the highest value of

b̂ and (ii) that the long-run relation becomes weaker for (RX2
t , RVt) and

(
IV U

t , RV
U
t

)
. Notably,

the memory estimates d̂ within the FCVAR framework do not accord with those based on the

local Whittle estimator. This may be explained by the fact that the estimates d̂, b̂ and β̂ are

highly sensitive to the presence of short-run dynamics. Such dynamics are not parameterized in

the local Whittle estimator and the FMNBLS estimator. We then extract the common permanent

component of each pair of variances and examine whether that common component works to

represent the vol-of-vol factor that constitutes the source of the variance premium.

We follow Conrad and Loch (2015) by exploiting the model in Bollerslev, Sizova, and Tauchen

(2012) where the V RP is written as an affi ne function of the vol-of-vol factor as follows

IVt = c+RVt + b(LM)LMt (23)

alternatively, IVt −RVt = c+ b(LM)LMt

where b(LM) > 0. Given that we construct the V RP and its components under the assumption that

the RVt follows a martingale difference, we first regress IVt against a constant, RVt−1 and LMt,

and then regress the ex-post V RP measured by (IVt −RVt) against a constant, RVt−1 and LMt.

If the LMt can be thought of as the factor that determines the V RP , the two slope coeffi cients in

the first regression should be significant but where only LMt is significant in the second regression.

Panel B of Table 3 reports the results for the first regression where the (IVt, RVt) is replaced by

(RX2
t , RVt),

(
IV U

t , RV
U
t

)
and

(
IV D

t , RV
D
t

)
, and the corresponding common permanent component

7Lag k is selected based on the Bayesian information criterion (BIC) and the white noise test on the residuals.
For more details, see Nielsen and Shibaev (2018).
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is denoted by LMt, LMU
t and LM

D
t . For each scenario considered, we show that both the realized

measure of variance and the common long-memory component exert significantly positive effects

on the implied variance counterparts. In addition, results for the second regression presented in

Panel C suggest that only the permanent components play a significant role in driving the ex-post

V RP . Our results thus present strong evidence that the common long-memory component of the

total (upside/downside) implied-realized variances can be regarded as a factor closely associated

with the fundamental uncertainty, i.e. the total (upside/downside) vol-of-vol.

In the work of Bollerslev, Tauchen, and Zhou (2009), the degree of persistence in the vol-of-vol

factor plays a critical role in determining the return predictability over longer horizons. We

consider the common permanent component (LMt) of the fractionally co-integrated system as

a proxy of the vol-of-vol and infer the association between the LMt and return predictability

as follows. An increase in the persistence of the LMt would suggest a greater reduction in

the integration order of Xt via the co-integrating combination, and thus a higher magnitude

of fractional co-integrating relationship. By the same logic as in Bollerslev, Tauchen, and Zhou

(2009), a higher degree of that relationship then leads to a higher degree of long-horizon return

predictability.

Thus, the V RPD
t is expected to display higher predictive power for future returns with the

stronger co-fractional relation between
(
IV D

t , RV
D
t

)
. On the other hand, the weaker fractional

co-integration found for (RX2
t , RVt) and

(
IV U

t , RV
U
t

)
may adversely affect the return predictability

implied by their differences, i.e. V RPt and V RPU
t . Such hypotheses will be further examined in

the following subsection. Here, we do not seek the proxy of the vol-of-vol factor for the differences

between
(
RV U

t , RV
D
t

)
and

(
IV U

t , IV
D
t

)
, i.e. SJt and IV At, since the jump risk affects the equity

premium via the impact of conditional volatility rather than the vol-of-vol factor as documented

in Guo, Wang, and Zhou (2019).
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4.3 Return Predictability

Before evaluating the return predictability implied by the variance differences, we first investigate

the risk-return relations over different frequencies. We adopt the time-domain band-pass filtering

procedure considered in Bollerslev et al. (2013) to decompose each of the variables (i.e. variances

and future excess returns) into their long-run, intermediate, and short-run components. In

applying the local Whittle estimator in Section 4.1, we set the bandwidth parameter m1 = T 0.5,

which corresponds to a low frequency around ω≈ 0.4845, or periods around 12 months. Given

that the return predictability of the V RP achieves its maximum at the quarterly horizon in the

study of Bollerslev, Tauchen, and Zhou (2009), we isolate the high-frequency component with

periodicities of less than 3 months with ω ≈ 2.0933. Finally, we extract an intermediate-frequency

component located in the band ω < ω < ω for periods between 3 and 12 months.

Table 4 outlines correlations between the extracted components of the variance differences and

the corresponding components of excess returns. These show that the V RPt, V RPU
t and V RPD

t

all exhibit non-trivial association with excess returns over different frequency bands, where the

greatest correlations occur at the low frequencies. It is evident that V RPD
t dominates its rivals,

V RPt and V RPU
t , in demonstrating higher risk-return relations, so indicating better predictive

power for future returns. However, neither of SJt and IV At are significantly correlated with excess

returns at intermediate and low frequencies. The significantly negative risk-return relation for SJt

in the short run is in agreement with the results of Bollerslev, Li, and Zhao (2017). The long-run

correlations between variance differences and returns are also depicted in Figure 1, where V RPt,

V RPU
t and V RP

D
t generally display strong co-movements with returns. However, no clear pattern

of long-run co-movements is evident for SJt and IV At.

Our analysis of return predictability is based on linear regressions of SPX excess returns on a

18



set of lagged predictors as follows

1

h

h∑
j=1

rt+j = b0 + b1Vt + et+h,t (24)

where Vt denotes a number of variance differences including V RPt, V RPU
t , V RP

D
t , SJt and IV At

and the issue of overlapping return observations is accommodated using the heteroskedasticity

and serial correlation consistent standard errors. Values of the adjusted R2s are plotted in Figure

2. In line with the existing literature, we show a hump-shaped pattern as a function of the time

horizons for V RPt and V RPU
t , where the R

2 peaks at the quarterly horizon. Compared with the

V RPU
t , the V RPt yields higher adjusted R

2 values over various horizons. This echoes the higher

correlation between V RPt and excess returns across frequencies reported in Table 4. Moreover,

the superior predictive power for future returns is observed for V RPD
t which achieves a maximum

of return predictability at the six-month horizon.

The striking performance of the V RPD
t may be explained by the stronger co-fractional relation

between
(
IV D

t , RV
D
t

)
uncovered in Section 4.1. The higher degree of that relation accompanies

higher persistence in the common long-memory component of
(
IV D

t , RV
D
t

)
, which prolongs the

return predictability of V RPD
t . The ranking of the magnitude of co-fractional relation between

(RX2
t , RVt),

(
IV U

t , RV
U
t

)
and

(
IV D

t , RV
D
t

)
is identical to that obtained for the degree of return

predictability inherent in their differences. This confirms our hypothesis for the positive linkage

between the degree of fractional co-integration between variances and the magnitude of return

predictability afforded by their differences. Turning to the results of SJt and IV At, the values

of their R2 appear negligible compared with those implied by the V RP and its components.

In addition, their predictive power for future returns is initially fairly low, before climbing to a

maximum around h = 3 then dissipating quickly in expanding the forecasting horizon. This may

be attributable to the weak association of SJt and IV At with the future returns at frequencies in

excess of 3 months.
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5 Simulation

A common challenge in the derivation of implied variances is that only a limited range and coarse

partition of strikes are actually traded in the market. This violates the definition of the model-free

implied variance of Britten-Jones and Neuberger (2000) where an integral of option prices is

used over an infinite range of strikes. The approximation errors induced by the discrete set of

strikes may result in the mis-estimation of both V RP and its predictive power for future returns.

In practice, such implementation issues are fixed via the use of interpolation and extrapolation

scheme as in Jiang and Tian (2007), Andersen and Bondarenko (2007) and Kilic and Shaliastovich

(2018), among others. However, little consensus exist regarding the most appropriate extrapolation

method for the construction of unbiased estimates of implied variances. Against this background,

the following subsection undertakes a simulation study, which exploits a suffi ciently fine partition

and wide range of strikes to test the empirical findings discussed above.

Our simulations are based upon the jump-diffusion model employed in Duan and Yeh (2010).

The strike price increment is fixed as ∆K = 1 and the moneyness range K/Ft is set from 0.85

to 1.15. That level of moneyness is in line with the work of Kilic and Shaliastovich (2018) and is

considered suffi ciently deep in the tails to allow for the observed volatility smile or skew. Details

in terms of the model specification and the values of parameters are provided in Appendix C.

For simplicity, we assume no dividends and a zero interest rate. Sampling at a frequency of once

every 5 minutes is considered, which corresponds to 78 intraday return observations. We simulate

4500 daily observations and construct a monthly dataset as in Section 4, which results in 150

non-overlapping observations for each series of return and variances.

Table 5 summarizes the estimates of the orders of fractional integration and the results of the

co-integrating regressions for each pair of variances. Panel A presents clear Monte Carlo evidence

for the existence of fractional co-integration between variances with r̂ = 1. Panel B of the table

supports the long-run unbiasedness between (V IX2
t , RVt) and reveals an upward bias in the IV

D
t
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as a predictor of RV D
t . This in turn supports the empirical findings reported earlier. Unlike the

empirical study, the IV U
t underestimates RV U

t with the slope estimate significantly greater than

unity. This could be due to the high volatility setting considered in the simulation where investors

dislike downside variance risk and prefer variation in upside variance risk which improves the

likelihood of substantial gains. The results in Panel B suggest that extreme downside returns occur

more frequently than extreme upside returns, under both the risk-neutral and physical measures.

The conflict with empirical evidence for the long-run unbiasedness between
(
IV D

t , RV
D
t

)
may

well be explained by the inclusion of deep OTM put options in our simulation which are absent

in the market. As indicated by
(
Ave.d̂− d̂u

)
, the pairs of variances yield the same pattern as

the empirical study for the strength of fractional co-integration, where the highest magnitude is

observed for
(
IV D

t , RV
D
t

)
.

We finish this section by reporting in Table 6 the results for our Monte Carlo equivalent to

the return regression in equation (24). The superiority of V RPD
t in terms of return predictions

is clearly evident once h > 6. Although the V RPU
t outperforms V RPt in yielding higher values

of adjusted R2 for h < 12, its predictive power for future returns is exceeded by the V RPt as

the forecasting horizon grows. In addition, our simulation supports the empirical evidence of the

inferior performances of the SJt and IV At in predicting returns, especially for intermediate and

long horizons after h > 9. The nature of the SJt as a short-lived return predictor is discussed in

Bollerslev, Li, and Zhao (2017), who show that the SJt only predicts returns at weekly horizons

and raise concerns regarding the role of SJt as a priced risk factor.

Taken as a whole, the simulation study, that attenuates the approximation errors induced

by the limited availability of strikes, supports the empirical findings concerning the positive

relationship between the strength of fractional co-integration and the degree of long-horizon return

predictability. We therefore conclude that such linkage is not due to the implementation errors of

implied variances that are commonly encountered in the empirical study.
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6 Conclusion

Our study provides new evidence of the presence of fractional co-integration between the upside

(downside) components of the SPX implied and realized variances. The strength of such long-run

relationship is found to enhance the degree of return predictability suggested by the corresponding

variance differences. We explain such linkage by the common long-memory component of the

fractionally co-integrated system, which is intimately associated with the volatility-of-volatility

factor determining the variation in the variance premium. Specifically, an increase in the degree

of persistence of the common long-memory component results in higher fractional co-integration

between variances in magnitude, which leads to better return predictability over longer horizons

that are inherent in their variance differences. Hence, the better performance of the downside

variance premium as a return predictor is attributable to the stronger co-fractional relation between

the downside implied and realized variances.

Despite the presence of the non-trivial fractional co-integration between the upside and downside

components of the implied (realized) variances, their difference is only weakly associated with

future returns at low frequencies and the predictive power dissipates over longer horizons. To

circumvent the issue of measurement errors underlying the construction of implied variances, we

base a simulation study on a wide range and fine partition of strikes. Our simulation results

generally support the empirical findings illustrated above.
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Appendix

A Exact Local Whittle Estimator

To define the local Whittle estimator, we assume that a process Xt integrated of order d has the

spectral density f(λ) given by

f(λ) ∼ Gλ−2d, as λ→ 0+ (25)

where G ∈ (0,∞) is a finite and nonzero matrix with strictly positive diagonal elements. The

discrete Fourier transform (DFT), ωx(λj), and the periodogram, Ix(λj) of Xt, t = 1,· · · ,T at the

fundamental frequencies can be written as

ωx(λj) = (2πT )−1/2ΣT
t=1Xte

itλj , λj =
2πj

T
, j = 1, ...,m1 <

T

2
(26)

Ix(λj) = |ωx(λj)|2

Shimotsu and Phillips (2005) provide a procedure which can be applied in the stationary and

nonstationary regions to estimate (G, d) by minimizing the objective function

Qm1(G, d) =
1

m1

Σm1
j=1[log(Gλ−2d

j ) +
1

G
I∆dx(λj)] (27)
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where I∆dx(λj) is the periodogram of ∆dXt. Concentrating Qm1(G, d) with respect to G, we obtain

the exact local Whittle (ELW) estimator given by

d̃ = arg min
d∈[∆1,∆2]

R(d) (28)

with

R(d) = log Ĝ(d)− 2d
1

m1

Σm1
j=1 log λj (29)

Ĝ(d) =
1

m1

Σm1
j=1I∆dx(λj)

where ∆1 and ∆2 are the lower and upper bounds of the admissible values of d.

B Exact Local Whittle Rank Test

Assume there is a p-vector fractional process Xt where each element is fractionally integrated

of order d1, ..., dp. The work of Nielsen and Shimotsu (2007) builds on the assumption of equal

integration orders and thus d1, ..., dp are represented by d∗, where d̃∗ = 1
p

∑p
a=1 d̂a with each d̂a

given by equation (28). The consistent estimator of the spectral density at the origin is given by

Ĝ(d∗) =
1

m

m∑
j=1

Re[I∆(L;d∗,...,d∗)x(λj)] (30)

where λj = 2πj
T
and I∆(L;d∗,...,d∗)x(λj) is the periodogram of (∆d∗X1t,...,∆

d∗Xpt)
′. Let δ̂a be the ath

eigenvalues of Ĝ(d∗) and the co-integration rank r can be determined by adopting the procedure

of Robinson and Yajima (2002)

r̂ = arg min
u=0,...,p−1

L(u) (31)

L(u) = v(T )(p− u)−
p−u∑
a=1

δ̂a
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where v(T ) should be positive and should meet the assumption as follows

v(T ) +
1

m1/2v(T )
→ 0 (32)

Nielsen and Shimotsu (2007) show that a higher rank estimate is more likely to be selected when

a larger v(T ) is applied. In order to obtain a more conservative estimate of r, we choose to employ

a small v(T ) = m−0.4.

Once the presence of the co-fractional relation has been investigated by the rank estimation,

we can examine the equality of the orders of fractional integration by testing the null H0 : da = d∗,

a = 1, ...p. The test statistic is given by

T̂0 = m(Sd̂)′(S
1

4
D̂−1(Ĝ� Ĝ)D̂−1S ′ + h(T )2Ip−1)−1(Sd̂) (33)

where � represents the Hadamard product, S = [Ip−1,−ι]′, ι is the (p − 1)-vector of ones, and

D̂ = diag(Ĝ11, · · · Ĝpp). The memory estimates d̂ of variables in the vector are derived by the

univariate exact local Whittle estimator (Shimotsu and Phillips (2005)). When variables are not

fractionally co-integrated, T̂0 →d χ
2(p− 1), while T̂0 →p 0 when they are co-integrated.

C Simulation Design

We follow Duan and Yeh (2010) by employing a stochastic volatility model with jumps in simulating

the asset price and the latent stochastic volatility as follows

d lnSt = [r − q + δsVt −
Vt
2

]dt+
√
VtdWt + JtdNt − λµJdt (34)

dVt = κ(θ − Vt)dt+ υV γ
t dBt

where Wt and Bt are Wiener processes correlated with the coeffi cient ρ; Nt represents a Poisson

process with intensity λ; Jt is an independent random variable following N(µJ , σ
2
J). The price,

St, and volatility, Vt, processes are dependent through the correlated diffusive terms—Wt and Bt.

The other parameters, r, q and δs are the risk-free rate, the dividend yield and the asset risk
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premium, respectively. The option pricing is conducted using the corresponding model under the

risk-neutral probability measure given by

d lnSt = [r − q − Vt
2

+ λ∗(µ∗J + 1− eµ∗J+σ2J )]dt+
√
VtdW

∗
t (35)

+J∗t dN
∗
t − λ∗µ∗Jdt

dVt = (κθ − κ∗Vt)dt+ υV γ
t dB

∗
t

where κ∗ = κ+δV and B∗t = Bt+δV /υ
∫ t

0
V 1−γ
s ds with δV being the volatility risk premium. Other

notations with the superscript ∗ have similar features to their counterparts under the physical

measure in equation (34) and the standard deviation of J∗t remains unchanged as σJ . To compute

option prices, we adopt the empirical martingales simulation (EMS) method developed by Duan

and Simonato (1998) given that there is no closed-form option pricing formula for equation (35).

The initial stock price (S0) and latent stochastic volatility (V0) are set respectively as 1000 and

0.08. Values of the parameters are set similar to those considered in Duan and Yeh (2010).

κ θ λ µJ (%) σJ (%) υ ρ γ δs κ∗ φ∗(%) δV δJ (%)

2.500 0.080 55.000 0.300 0.500 1.400 -0.800 0.900 0.420 -13.000 0.035 -15.500 -0.059
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ĉ
b̂(
R
V
)
b̂(
L
M
)

ad
j.
R
2

ĉ
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