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Whole-cell voltage clamp recordings were performed at room temperature (20◦ C) using an 
Axopatch 200A (Molecular Devices, Inc.) amplifier. Whole cell currents were elicited by a series of 
step depolarizations (+95mV to -85mV in -15mV steps) from Vhold = -100mV. Representative 
examples of currents recorded under such conditions, mediated by wild type and mutant NaChBac 
channels, are shown on Figure S0 

Whole-cell rather than single-channel recordings are used in the interests of precision, based on 
the larger and more easily measurable currents. The amplitude of a single NaChBac channel is only 
about 2 pA in 140 mM Na solution, so if the permeability of a channel decreases two-fold or even 
more in solutions with other tested cations, it would be difficult to detect the currents and obtain 
reliable values for conductances. The whole cell peak currents of wild type NaChBac in 140 mM Na 
solution have amplitudes of 1-2 nA, which enables us to perform reliable recordings. Whole-cell 
currents are the product of the number of channels, the open probability and the single channel 
conductance. Because the number of expressed channels is constant for a given cell, and the open 
probability does not change with a change of the tested cation in solution, the difference in 
conductance observed is proportional to the change in single channel conductance. 

Patch-clamp pipettes were pulled from borosilicate glass (Kimax, Kimble Company, USA) to 
resistances between 2-3 MOhm. Pipette solution was either PS1 (120mM Cs-methanesulfonate, 
20mM Na-gluconate, 5mM CsCl, 10mM EGTA, and 20mM HEPES, pH7.4 adjusted with 1.8mM 
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CsOH) or Cs - f r ee  PS2 (15mM Na-gluconate, 5mM NaCl, 90mM NMDG, 10mM EGTA, and 
20mM HEPES, pH7.4 adjusted with 3mM HCl). Unless otherwise stated, GOhm seals were 
obtained in standard bath solution (SBSNa; 140mM Na-methanesulfonate, 5mM CsCl, 10mM 
HEPES and 10mM glucose, pH=7.4 adjusted with 4.8mM CsOH). For experiments with LDDWAS 
and LDEWAS, Cs-free SBSNa (SBSNax: 132mM Na-methanesulfonate, 5mM NaCl, 10mM HEPES 
and 10mM glucose, pH=7.4 adjusted with 3.6mM NaOH) was used; these channels are permeable to 
Cs and thus its removal from the test solutions was required to establish pseudo-bionic conditions (Fig. 
S1). Furthermore, the bath solutions (SBSNax and SBSNax in which 140 mM Na+ was replaced with 
the test monovalent cation) used for recording LDDWAS activity in the presence of extracellular 
monovalent cations also contained 10 mM EGTA (see below) to account for the high affinity Ca2+ 
blockade of the channel. 

Permeability to different test cations was determined by replacing 140mM NaCl with equimolar 
test monovalent cation or 100mM test divalent cation using Cl- salts. Permeability ratios (Px/PNa) 
were determined from whole cell current reversal potentials (Erev ) for monovalent/divalent cations 
according to [34, 35]. The effective activity coefficients were calculated using the Debye-Hűckel 
equation (Table S2). 

In experiments with varied Na/Ca mixtures, GOhm seals were first obtained in SBSNa (or SBSNax 
for experiments with LDDWAS and LDEWAS) containing 10 nM [Ca2+]free , and the bath solution 
replaced with solutions containing increasing concentrations of Ca2+. Different chelators were used 
to fix Ca2+ concentration as needed, for details see Table S3., and HEDTA to fix Ca2+ concentrations at 
10 µM, 100 µM and 1 mM. [Ca2+]free were calculated using Webmaxc (ttp://web.stanford.edu/cpatton/ 
webmaxcs.htm). Na+ and Ca2+ (for 10mM, 50mM and 100mM) activities were calculated using the 
Debye-Hickel equation (we consider [Ca2+]free = ion activity of Ca2+); for details see Table S2. 

Osmolarities of all solutions were measured using a Wescor vapor pressure osmometer (model 
5520) and adjusted to 280 lmOsmKg-1 using sorbitol. All solutions were filtered with a 0.22mm filter 
before use. Whole cell currents were recorded 3 minutes after obtaining whole cell configuration to 
ensure complete equili- bration of the pipette solution and cytosol. The bath solution was grounded 
using a 3 M KCl agar bridge; the liquid junction potential, determined experimentally [36], agreed 
with that calculated (using JPCalc program, Clampex, Axon Instruments, Inc.), were less than 
2.6mV, and were not accounted for. 

The recording chamber volume was approximately 200 µl and was continuously exchanged by a 
gravity-driven flow/suction arrangement at rate of ≈2ml/min; to ensure complete exchange of bath 
solution. Electrophysiological recordings were initiated after >4 minutes of continuous solution 
change. 

Results were analysed using Clampfit 10.1 software (Molecular Devices) and Origin 9.1 
(OriginLab). Data are presented as Mean (± SEM) (n), where n is the number of independent 
experiments. 
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Table S2. Concentrations and the effective activity coefficients of solutions used for 
permeability ratios determination. 

    
Na+ 

  
Li+ 

  
K+ 

  
Rb+ 

  
Cs+ 

  
Mg2+ 

  
Ca2+ 

  
Sr2+ 

  
Ba2+ 

Concentration  
(in mM) 

140 140 140 140 140 100 
  

100 
  

100 
  

100 
  

activity coefficients  
( Debye-Hückel equation) 

0.74 0.78 0.72 
  

0.71 0.71 0.34 0.29 0.25 0.25 

Free concentrations/ 
activities 

103.6  109.2 100.8 99.4 99.4 34 29 25 25 
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Table S3. Total and free concentrations, which correspond to ion activities, for the 
mixed Na+ and  Ca2+ solutions in our AMFE experiments (*only for LDDWAS and 
LDEWAS mutant channels). 

 

Solutions (total concentrations) Free 
concentrations/ 

ion activities 

Na+ Ca2+ Chelator Na+ Ca2+ 

140 
mM 

0.23mM 12 mM EGTA+ 10 mM 
BAPTA* 

110.6 mM 0.12nM* 

140 
mM 

0.23mM 12 mM EGTA 110.6 mM 1.5 nM 

140 
mM 

0.23mM 3mM EGTA 110.6 mM 6.4 nM 

140 
mM 

0.23mM 2 mM EGTA 110.6 mM 10 nM 

140 
mM 

0.85mM 2 mM EGTA 110.6 mM 100 nM 

140 
mM 

1.76mM 2 mM EGTA 110.6 mM 1 µM 

140 
mM 

0.69 
mM 

1 mM HEDTA 110.6 mM 10 µM 

140 
mM 

1.05 
mM 

1 mM HEDTA 110.6 mM 100 µM 

138 
mM 

2 mM 1 mM HEDTA 108.7 mM 1 mM 

130 
mM 

10 mM 
 

101.0 mM 4.13 mM 
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70 mM 50 mM 
 

52.2 mM 18.3 mM 

40 mM 100 mM 
 

28.4 mM 31.7 mM 
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Figure S0. Examples of raw experimental measurements of monovalent (A, B) and 
divalent (C, D) ionic currents mediated by wild type LESWAS (A, C) and mutant 
LEDWAS (B, D) NaChBac channels as functions of time following step 
depolarisations. The sodium currents, used for normalisation purposes, are shown in 
panel E. 
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S2. Experimental results of mutant studies of NaChBac 
 

Table S4. Reversal potentials (Erev), permeability ratios (PX/PNa) and the relative peak inward 
current (IX/INa) for the tested cations for the channels with Qf = -4 and Qf = -8. All values are 
means (± SEM) with the number of experiments in parenthesis. Erev is the mean reversal 
potential in millivolts measured for each cation; in cases where inward current was not 
detected, estimated values for Erev were determined as voltage at which outward current could 
be detected. Permeability ratios (PX/PNa) for each cation were calculated (see in Methods) from 
paired changes in Erev measured for a given cell perfused first with control Na+ solution and 
after replacement with the test cation solution according to the following equations (Hille, 
1972; Sun et al., 1997) for monovalent cations:  

PX/PNa= αNai/αXe [exp (ΔErev/(RT/F))], 

and divalent cations: 

PY/PNa= {αNai [exp (Erev F/RT)][exp (Erev F/RT)+1]}/4αYe,  

where ΔErev is the change in reversal potential on replacing Na+ with the tested cation, α is the 
activity coefficients for the ion (i, internal and e, external), R - the universal gas constant, T - 
absolute temperature, and F - the Faraday constant. The effective activity coefficients (αx) were 
calculated using the Debye-Hückel equation and are listed in Supplemental Table 2. IX/INa was 
measured as the ratio of maximum peak inward current observed for the test cation to that for 
observed Na+ in the same cell. 

 
 

LESWAS LDSWAS LEEWAS LDEWAS LEDWAS LDDWAS 

Li+ Erev  48.7±1.42 
mV 

(n=6) 

42.3±1.8 mV 

(n=6) 

47.9±0.4 mV 

(n=9) 

43.3±2.1 
mV 

(n=6) 

48.2±1.57mV 

(n=6) 

42.3±0.7 
mV 

(n=7) 

  PLi/PNa 0.8 0.6 0.7 0.6 0.8 0.6 

  I/INa 0.8 0.6 0.7 0.9 0.7 1 

Na+ Erev  51.0 ±1.26 
mV  

(n=17) 

49.0±1.0 mV 

(n=21) 

51.8±1.1 mV 

(n=16) 

47.8±1.4 
mV 

(n=10) 

50.2±0.81mV 

(n=14) 

46.4±1.0 
mV 

(n=14) 

  PNa/PNa 1 1 1 1 1 0.9 
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  I/INa 1 1 1 1 1 1 

K+ Erev  <-30 mV 

(n=8) 

42.5±2.4 mV 

(n=5) 

-15.9±3.8 
mV 

(n=7) 

43.4±3.1 
mV 

(n=7) 

9.7±2.31 mV 

(n=8) 

48.5±0.6 
mV 

(n=7) 

  PK/PNa <0.1 0.8 <0.1 0.8 0.2 1 

  I/INa <0.1 0.6 <0.1 0.8 0.1 1.2 

Rb+ Erev  <-30 mV 

 (n=5) 

-8.8±6.0 mV 

(n=5) 

-22.9±4.7 
mV  

(n=6) 

10.3±1.5 
mV 

(n=5) 

-7.9±1.57 mV 

(n=6) 

35.9±4.1 
mV 

(n=7) 

  PRb/PNa <0.1 0.1 <0.1 0.2 0.1 0.6 

  I/INa <0.1 <0.1 <0.1 0.1 <0.1 0.2 

Cs+ Erev  <-30 mV 

 (n=5) 

-29.0±5.0 
mV 

(n=5) 

-40.4±6.7 
mV 

(n=6) 

-3.9±3.1 
mV 

(n=5) 

-11.8±7.42 
mV 

(n=6) 

8.2±1.1 mV 

(n=7) 

  PCs/PNa <0.1 <0.1 <0.1 0.1 0.1 0.2 

  I/INa <0.1 <0.1 <0.1 0.1 <0.1 <0.1 

Mg2+ Erev  -
26.3±9.24mV 

(n=5) 

19.0±3.0 mV 

(n=6) 

-3.9±2.2 mV 

(n=6) 

15.9±7.4 
mV 

(n=5) 

49.5±1.78 mV 

(n=6) 

Block 

(n=15) 

  PMg/PNa 0.1 0.7 0.2 0.6 6.5 - 

  I/INa <0.1 <0.1 <0.1 0.1 0.2 - 

Ca2+ Erev  -5.1±2.63 mV 

(n=9) 

53.3±1.2 mV 

(n=7) 

58.7±1.8 mV 

(n=9) 

block 71.5±1.26 mV 

(n=11) 

Block 

(n=16) 

  PCa/PNa 0.2 10.2 14.1 - 41.1 - 

  I/INa <0.1 0.4 0.25 - 0.4 - 

Sr2+ Erev  <-30 mV 

(n=5) 

54.8±2.1 mV  

(n=6) 

45.0±3.8 mV 

(n=7) 

75.8±1.8 
mV 

59.2±4.34 mV 

(n=7) 

Block 

(n=15) 
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(n=7) 

  PSr/PNa <0.1 13.2 8.5 66.8 18.5 - 

  I/INa <0.1 0.4 0.2 0.3 0.3 - 

Ba2+ Erev  <-30 mV 

 (n=5) 

40.9±3.8 mV 

(n=6) 

13.4±0.8 mV 

(n=8) 

61.6±2.5 
mV 

(n=5) 

49.0±1.98 mV 

(n=9) 

Block 

(n=15) 

  PBa/PNa <0.1 4.7 0.7 22.2 8.5 - 

  I/INa <0.1 0.2 <0.1 0.1 0.1 - 
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Figure S1. Optimising the pipette solution. Plot of average peak current (Ipeak) density against test 
voltage from cells expressing LDSWAS (A;  - n =10; ○ - n = 15; note the scale); LEEWAS (B;  - n =16; 
○ - n = 7), LDDWAS (C;  - n =7; ○ - n = 14) and LDEWAS (D;  - n =10; ○ - n = 10) mutant channels 
recorded in SBS_Nax and PS1 () or PS2 (○) in response to test voltages ranging from +95 mV to -70 
mV (in -15 mV steps) from Vhold  -100 mV. Note that for LDDWAS (and, to a lesser extent, LDEWAS) 
the removal of Cs+ (○) from the pipette solution resulted in a shift in Erev and larger inward current 
consistent with Cs+ permeation. 

 

 

Figure S2. Original traces for LASWAS (A, B) and LEKWAS (C, D) mutant channels recorded in the bath 
solution (SBSNa)containing 140 mM NaCl  (A, C) or in 100 mM CaCl2 solution (B, D) and PS1 in 
response to test voltages ranging from +95 mV to -70 mV (in -15 mV steps) from Vhold  -100 mV. 
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Figure S3. Monovalent cation permeability. Mean peak current voltage relationships for wild 
type NaChBac LESWAS (a), LDSWAS (b), LEEWAS (c), DEWAS (d), LEDWAS (e) and 
LDDWAS (f) mutant channels for Na+, Li+, K+, Rb+ and Cs+ (as labelled) were determined by 
normalising peak current magnitudes recorded in Na+ bath solution from the same cell prior to 
replacement of extracellular Na+ for test cation. Averages (±SEM) are from at least 5 cells. 
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Figure S4. Divalent cation permeability. Mean peak current voltage relationships for wild type 
NaChBac LESWAS (a), LDSWAS (b), LEEWAS (c), LDEWAS (d), LEDWAS (e) and 
LDDWAS (f) mutant channels for Na+ (for comparison), Mg2+, Ca2+, Sr2+ and Ba2+ (as labelled) 
were determined by normalising peak current magnitudes recorded in Na+ bath solution from 
the same cell prior to replacement of extracellular Na+ for test cation. Averages (±SEM) are 
from at least 5 cells. 
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S3. Models and theories

Despite their small size, ion channels are complicated objects made up of thousands of atoms each of
which interacts with all of the others, with water, and with any ions that are within the channel’s pore
or nearby. In practice, before physics can usefully be applied, some simplification is needed, and there are
several different levels on which channels can be modelled. The features and mechanisms of the electro-
diffusive ionic motion have been the subject of numerous theoretical and simulation-based studies, performed
with very different scales, models and methods [1, 2], including (in order of decreasing model detail) all-atom
molecular dynamics (MD) simulations [3], mesoscopic Brownian dynamics (BD) simulations [2, 4], Monte-
Carlo simulations [5], and Poisson-Nernst-Planck (PNP) simulations [6]. The different models represent
different physical scales and provide complementary information. Here, we are mainly interested in the
BD level, but with some illumination from MD modelling. To set the context, we now consider briefly the
advantages and disadvantages of the latter two approaches.

Molecular dynamics modelling ignores electronic degrees of freedom but, in principle, considers all in-
teractions contributing to the net force on each component particle and takes explicit account of individual
water molecules. The atoms are usually treated as point particles, but with inclusion of hard-core repulsive
forces to model the atomic radii. Sometimes, particular groups of atoms far from the pore are assumed to
move together as single units in order to simplify and accelerate the computation. The main advantages
of MD modelling lie in its conceptual simplicity and its inclusivity of all the different interactions, and it
is often considered as the de facto standard for nanoscale research, quite generally, as well as for research
on ion channels. It can be used to confirm the atomic structure of the channel protein, as well as to model
the permeation process. Its main disadvantage is that the detailed character of the computations makes
them very demanding in terms of computational resources so that, even using supercomputers and massive
parallelism, it is currently seldom impossible to run the simulations for long enough to produce statistically
meaningful currents for comparison with experiment. An important consequence is that MD cannot identify
emergent phenomena at a higher level, for example ionic Coulomb blockade (ICB).

Unlike MD simulations [2], the BD model takes no account of the detailed atomic structure of the protein
or residues. Rather, it treats the water and protein as continuum dielectrics with their bulk dielectric
constants; unlike PNP theory, however, it takes explicit account of the charge/entity discreteness of the
ions. Simplified electrostatically-controlled self-consistent BD models of this kind have already shown their
utility for describing relatively wide calcium/sodium channels [4, 5, 7–9]. They can be applied to e.g. TRP
channels [10], to biomimetic nanotubes [11, 12], and to other artificial pores. The model is summarised
below in section S3.1. Further details together with a fuller discussion of its validity and limitations, have
been given elsewhere [9, 13, 14]. Its great advantage lies in computational speed, so that it is feasible not
only to determine the permeating current with good statistics, but to do so under a wide range of different
conditions, e.g. for different membrane potentials and ionic concentrations, as well as for different mutants.

As in the main paper, with SI units, ε0 is the permittivity of free space, e is the elementary charge,
z is the ion valence, kB is Boltzmann’s constant and T is the temperature. We use the conventional
shorthand symbols for amino acid residues: Alanine (A); Aspartate (D, with Q = −1|e|); Glutamate (E,
with Q = −1|e|); Leucine (L); Lysine (K, with Q = +1|e|); Serine (S); Threonine (T); Tryptophan (W);
and so on, where A, L, S, T, and W are all uncharged.

S3.1. Self-consistent electrostatic & Brownian dynamics model

The generic electrostatic/BD model describes the SFs of calcium/sodium ion channels. It treats the
channel’s SF as a water-filled, cylindrical, negatively-charged pore in the protein, radius Rc ≈ 0.3nm and
length L ≈ 1nm. Such simple models have been widely and successfully used in earlier research [4, 7, 15, 16]
to describe the permeation of small metallic cations. The model is shown schematically in Fig. S5(a). The x-
axis is coincident with the channel axis and x = 0 in the center of channel. The charged residues are modelled
as a symmetrically-placed, uniformly-charged, rigid ring RQ ≤ Rc of negative charge |Qf | = (0 − 8)e. We

13



Figure S 5: Electrostatic model of the selectivity filter (SF) of a Ca2+ or Na+ channel. (a) The model represents the SF
as a negatively-charged, axisymmetric, water-filled, cylindrical pore of radius Rc ≈ 0.3nm and length Lc ≈ 1.6nm through the
protein hub in the cellular membrane. The protein is pale-blue-shaded and the water is colourless. The fixed charge Qf is
modelled as a single charged ring of radius RQ, shaded in red; in the present manuscript we take no account of the possible
difference in radii of the channel and the charge ring, but assume that Rq = Rc. (b) Energetics of a moving Ca2+ ion for
a fixed charge Qf = −1e. The dielectric self-energy barrier USE

q (dashed blue line) is balanced by the site attraction UqQ

(dashed green line) resulting in an almost barrier-less energy profile Ub (red solid line). (Modified from [24])

take both the water and the protein to be homogeneous continua with dielectric constants εw = 80 and
εp = 2, respectively. Despite its simplicity, the model allows one to predict/explain some essential features
of conduction and selectivity and, in particular, valence selectivity [17] including ICB effects [7, 14, 18]; as
mentioned above, the model was recently extended to account for local binding [19].

Fig. S5(b) illustrates the phenomenon of resonant barrier-less conduction, which is typical of electrostatic
models. It arises when the energy of the ion-site attraction UqQ balances the dielectric self-energy (or more
generally, the dehydration) barrier USE

q . Resonant barrier-less conduction is key to the understanding of
selectivity in ion channels [9, 14, 20, 21]. Selectivity arises because different ion species exhibit different
barrier heights and site affinities, and have different dependences of these parameters on Qf and ionic radii.

The model supposes that ion transport through the SF is controlled by coupled Poisson electrostatic
and Langevin stochastic equations [2, 4] i.e. that we can implement self-consistent Brownian dynamics (BD)
simulations of ion transport. Single-file ionic motion is assumed for Ca2+ and Na+ channels. The BD
simulations are based on numerical solution of the 1D over-damped, time-discretised, Langevin equation for
the i-th ion. A parametric study [13] showed that the results are robust to small variations in the geometrical
parameters of the SF.

As in the case of other simplified models, we make use of effective values of many model parameters, such
as R, L, εw, εp and, particularlyQf . The concept of effective values allows one to use very generalised models
far outside their range of rigorous validity, e.g. for more complicated geometry of the SF. The effective charge
[9, 22, 23] Q∗

f was introduced as a fitting parameter to optimise agreement of the model with theoretical or
experimental data. The physical nature of Q∗

f depends on the particular model used, and on the channel
structure, and Q∗

f may differ from Qnm
f on account of e.g. the dipole moment of the molecule, screening, or

site protonation.
We will use the effective charge Q∗

f as opposed to the nominal charge Qnm
f and, as discussed in detail

below, we will hypothesise that the difference between them is due to protonation (see Sec. S3.5).
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S3.2. Ionic Coulomb blockade

For completeness, and for convenience of the reader, we now provide a brief description of the ICB model
[14, 19, 25] of permeation and selectivity in biological ion channels. We follow fairly closely the Wikipedia
article “Ionic Coulomb blockade”.

ICB is a fundamental electrostatic phenomenon that emerges in the electro-diffusive transport of ions
through narrow, low-capacitance channels, whether biological [14, 24, 26] or artificial [27, 28]. ICB predicts
Qf (or Q∗

F ) to be an important determinant of selectivity, and one that is manifested strongly for divalent
ions e.g. by giving rise to Ca2+ conduction bands [13]. ICB is closely analogous to its electronic (z = −1)
counterpart in quantum dots [29, 30] and nanostructures[28, 31]. Coulomb blockade can be also seen in
superconductors, where the charge carriers are Cooper pairs (z = −2e) [32].

The initial (basic) ICB model for the permeation and selectivity of ion channels [24] has recently been
enhanced [33, 34] by the introduction of shift/corrections to allow for the singular part of the ionic attraction
to the binding site (i.e. local site-binding), as well as for the effect of the ion’s excess chemical potential ∆µ.
The geometry-dependent shift of the ICB calcium resonant point resulting from these corrections leads to a
change in the divalent (calcium) blockade threshold IC50 [19].

The model is well-fitted to describing the voltage-gated bacterial sodium channels NaChBac, NavAb,
NavMs, and NvsBa. Because they are a family of relatively simple channels with discovered structures, they
are widely used in modelling the general features of conductivity and selectivity [35–43].

We consider the stochastic transport of fully-hydrated ions of valence z having charge q = ze (e.g. Ca2+

with z = 2). As indicated above, resonant barrier-less conduction arises when the energy of the ion-site
attraction UgQ is balanced by the dielectric self-energy barrier USE

q [14, 20, 21]. The ICB model allows us
to derive the channel/ion parameters satisfying the barrier-less permeation conditions, and to do so from
basic electrostatics taking account of charge discreteness.

The ICB balance equation can be derived using the ion’s chemical potential µ [24], together with the 1D
quadratic form of the SF Coulomb energy USF [7, 24, 27]:

USF =
Q2

SF

2Cs

; QSF =
∑

i

qi +Qf = zne+Qf , (S1)

where QSF is the net charge of the SF and Cs is its self-capacitance, and n is the number of identical
ions inside the SF. The sign of the charge qi of the moving ions is opposite to that of the fixed charge Qf .
Statistical mechanics [44, 45] tells us that, in thermal and particle equilibrium with the bulk reservoirs, the
entire system has a common µF (the Fermi level, in other contexts). An immediate consequence is the
existence of an oscillatory dependence of conduction on Qf , with two interlaced sets of singular points:
(i) Coulomb blockade points Qf = Zn, corresponding to neutralised states of the SF, with QSF = 0;
(ii) Resonant conduction points Qf = Mn, corresponding to barrier-less conduction states, with ∆Uq = 0

being the height of the energy barrier impeding passage of the ion through the channel.
The conditions for these singularities are

ZICB
n = −zne (Blockade points) (S2)

M ICB
n = −ze(n+ 1/2) (Barrierless points)

where {n} is the number of ions captured in the SF before the transition. Note the predicted independence
of channel structure and dimensions, validated in earlier BD simulations [13].

That is the main ICB result: for z > 1 the current vs. Qf exhibits Coulomb blockade oscillations between
zero-conduction blockade points Zn at one extreme, and resonant barrier-less Mn points at the other. The
oscillations in current I correspond to a Coulomb staircase in the channel/SF occupancy Pc.

Fig. S6 shows the BD-simulated I and Pc for Na+ in panels (a),(b) and for Ca2+ in (c),(d) as functions
of Qf for different ionic concentrations, thus confirming and illustrating the main ICB phenomena. Panel
(a) shows weak Na+ (z = 1) conduction oscillations between resonant maxima and partially-blockaded
reduced-conduction points. Panel (b) shows the corresponding smoothed-out Coulomb staircase of channel
occupancy. In contrast, panel (c) illustrates the strong conduction bands observed for Ca2+ (z = 2), i.e.
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Figure S 6: Brownian dynamics simulations of multi-ion conduction and occupancy for Na+ (left column) and Ca2+ (right
column) ions in the model of Fig. S5 as the fixed charge Qf is varied. In (a),(b) pure Na+ baths of different concentration were
used, at 10, 20, 40, 80 and 160mM as indicated; in (c),(d) pure Ca2+ solutions of the same concentrations were used. (a) Weak
conduction oscillations in the Na+ current I (permeation events per second) can be seen. (b) The Na+ occupancy P shows a
washed-out Coulomb staircase with clear evidence for concentration-related shifts. (c) The strong Coulomb blockade oscillations
in the Ca2+ current also exhibit concentration-related shifts. The conduction bands at Mn, and the blockade/neutralisation
points at Zn, are discussed in the text. (d) The Ca2+ occupancy P forms a well-defined Coulomb staircase, again with
concentration-related shifts. (Reworked from [19])

oscillations between resonant points Mn and blockaded points Zn. The corresponding occupancy plot (d)
for Ca2+ is a well-defined Coulomb staircase in occupancy Pc.

These phenomena provide for selectivity of the current. The peak conduction positions for different
ionic species are shifted relative to each other, thus defining the responses of particular channels (with given
Qf) to particular ions or conditions. And vice versa, ICB oscillations (conduction bands) along Q∗

f provide
a general and transparent explanation of the mutation-related transformations of selectivity [9, 13]. As
illustrated, such ICB effects are expected to manifest themselves weakly for monovalent ions (e.g. Na+),
strongly for divalent ions (e.g. Ca2+), and very strongly for trivalent ions (e.g. La3+).

The strong oscillations in the Ca2+ current can serve as a basis for mapping Q∗

f onto particular mutant

channels: we assume that Ca2+ stop bands Zn correspond to Na+-selective channels (non-conducting for
Ca2+), whereas Ca2+-selective channels operate at Ca2+ resonant points Mn ([9, 14]).

The shapes of ICB-based Coulomb staircases for Pc are described by a Fermi-Dirac (FD) function of Qf ,
of the charging energy ∆Uq, or of the logarithm of concentration [14, 24]:.

Pc =

(

1 + P−1
b exp

(

∆Uq

kBT

))

−1

(S3)

where the equivalent bulk occupancy Pb is related to the bulk concentration and the volume of the SF. This
prediction has been confirmed directly by divalent blockade/AMFE experiments [19].

The applicability of FD statistics Eq. (S3) to classical stochastic systems obeying an exclusion principle
was demonstrated rigorously by (author?) [46]. The same FD statistics will be applied below to site
protonation.

ICB (see Equation (S1) and Fig. S6) leads automatically to the strong claim that Qf is the main
determinant of selectivity in the calcium/sodium channels family. It also explains the famous and puzzling
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Figure S 7: Brownian dynamics simulations for Ca2+ ions in the model of Fig. S5 as the fixed charge Qf is varied, for 5 different
values of εp, as shown, while keeping all other parameters fixed.

transformations of Na+-selective channels to Ca2+-selective ones with increase of |Qnm
f | and vice versa

[36, 47, 48].
Addition of the partial excess chemical potentials ∆µ coming from different sources Y [2, 45, 49] to the

ICB barrier-less condition ∆µ = 0 shifts the ICB resonant points Mn, as described by a “shift equation”
[19, 33, 34] which, for n = 0, is

∆M0 = M0 −M ICB
0 = −

Cs

q

∑

Y

∆µY . (S4)

The more important of these shifts (excess potentials) are:

• A concentration-related shift ∆µTS = −kBT log(Pb) arising from the bulk entropy[45].

• A quantised dehydration-related shift ∆µDH which we describe in section S3.4.

S3.3. Parametric tests of the model

The model is applicable to long, narrow, water-filled, channels where there is a large dielectric mismatch
between the permittivities of the water and of the protein walls. Under these conditions, the electric field
in the channel can be approximated as one-dimensional [50] because the field lines hardly enter the protein.
The parameter range within which this approximation remains valid was explored earlier [13] in relation to
the geometry (length Lc and radius Rc) of the pore; we now consider the effect of variations in the protein
permittivity εp while holding the permittivity of the water εw fixed at its bulk value of 80.

Fig. S7 shows the results of Brownian dynamics simulations in which the permeating current is plotted
as a function of Qf for five different values of εp, while keeping all other parameters fixed, with Lc = 10.0Å,
Rc = 3.0Å, and concentration 160mM. We note that the results are relatively insensitive to large changes
in εp. In particular, despite small discrepancies attributable to field penetration into the protein for εp = 10
(i.e. following a change of a factor of 5×), the blockade points Zn barely move, thus validating the ICB
approximation.
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S3.4. Resonant quantised dehydration model

Dehydration, either full or partial, is thought to be the main source of selectivity between equally
charged ions, e.g. monovalent alkali metal ions [6, 8, 51, 52]. The basic ICB model takes account of hydra-
tion/dehydration only through the dielectric self-energy USE

q in a 1D Coulomb approximation [7, 8] which
is independent of the size of the ion, so additional effects need to be included in the model.

One such effect is the discreteness of the hydration shells, which strongly influences selectivity [8, 21,
53, 54]. Details of the ion-ligand interactions [54–56] and multi-ion knock-on mechanisms [3, 57] are also
important. A hydrated ion is assumed to be surrounded by spherical, discrete, single-molecule-thick water
shells of equal radial thickness hc. The first shell is immediately adjacent to the ion, so the hydrated ion
moves as an ion-water complex of radius

R∗

ion = Rion + hc. (S5)

The shell model of hydration has been well validated by experimental, analytical and numerical evidence.
So, consistent with the positions of the minima observed in experimental and MD-simulated radial density
functions [53, 58], we will take hc = 0.2 nm for monovalent ions and hc = 0.225nm for divalent ions.

During their passage through the SF, ions lose/rearrange their first hydration shells, with corresponding
energy penalties: while small rearrangements of the shell are relatively cheap energetically, a decrease in
the coordination number immediately leads to significant expense [54]. Generic (Qf -independent) shell-
based QD models provide a simple explanation for the difference in K+/Na+ selectivity between K+ and
Na+/Ca2+ channels [8, 53, 54]:

• Within narrow K+ channels, both Na+ and K+ ions are fully dehydrated. The first hydration shell is
more tightly-bound to the smaller Na+ ion, ∆µDH

K < ∆µDH
Na , and so the channel (counter-intuitively)

favours the larger ion. Recent study has emphasised the role of direct Coulomb knock-on in the high
K+/Na+ selectivity of K+ channels [59].

• In contrast, the moderately wide Na+ or Ca2+ channels accommodate both Na+ and K+ ions with
their first hydration shells intact. Hence, ∆µDH

K > ∆µDH
Na and the channel (more intuitively) favours

the smaller Na+ ion.
(author?) [53] have suggested a simple model of QD energetics based on consideration of hydration shells
as thin spherical layers, calculation of the hydration energies of Born shells, and summing over shells. The
energy of the first shell UDH

1 is found to be

UDH
1 ≈

q2

8πǫ0

(

1

εp
−

1

εw

)(

1

Rion

−
1

R∗

ion

)

(S6)

In this model, an energy barrier appears due to the stripping-off of a fraction fs of the first-shell’s spherical
surface R∗

ion remaining outside the pore of effective radius Rc:

∆DH = (1 − f)UDH
1 ; f = 1−

√

1− (Rc/R∗

ion)
2 (S7)

However, neither the generic model, nor Zwolak’s QD variant of it, consider the influence of Qf on the
selectivity sequences of a channel. To do so, we now combine the ideas of the QD models [8, 53, 54] with the
Eisenman-inspired model of barrier-less selectivity [20, 21, 60] and, in particular, with the enhanced ICB
model [14, 33, 34].

We consider an ion that retains its first shell almost untouched during its passage through the SF, so
that it remains partially hydrated. In the picture proposed, the difference in ∆µDH is not enough per se to
determine which species will be selected over the other as this choice could be changed or even inverted by
the value of Qf needed to provide barrier-less conduction, i.e. through the corresponding shift of the resonant
point Mn. Hence, if ∆µDH increases with Rion then |Mn| will also increase for Na+/Ca2+ channels, (though
vice versa it will decrease for the narrower K+ channels).

We assume that, for Na+/Ca2+ channels, the huge difference in dielectric constant between water and
protein (εw ≫ εp) means that the electrostatic field W of an ion inside the channel can be decomposed in
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Figure S 8: Quantised dehydration scheme for monovalent (a,b) and divalent (c,d) ions in the selectivity filter (SF) of the
NaChBac channel. The radius of the SF is taken as Rc = 0.3 nm, and the thickness of the first hydration shell as hc ≈ 0.2 nm.
(a,c) The dehydration part of excess chemical potential ∆µDH

q vs. Rion is shown by the blue solid line. The shaded areas
indicate the range of radii where ions can fit within the SF while still retaining their 1st hydration shells intact. (b,d) The
conduction current I vs. Rion for fixed charge Qf equal to the first resonance M0 for different ions, as indicated.

terms of a small parameter κ = εp/εw as:

W = W ICB +WDH = (1− κ)W ICB + κWSP (S8)

where W ICB is the main 1D (flat) Coulomb field localized inside the channel and the “leaking field” WDH

is the spherical Coulomb field WSP of the ion q attenuated by a factor of κ. The shell-based ionic free
energy of dehydration, i.e. the dehydration part of the excess chemical potential ∆µDH

X , is calculated using
the Zwolak approximation above for the energy of the first shell UDH

1 [8, 53]:

∆µDH
X = κUDH

1 fs ∝ κ
√

R∗

ion −Rc (S9)

where X = {K,Na,Ca...}. This result describes the dehydration-related shift in the selectivity of ion
channels via the shift equation Eq. S4.

Fig. S8 (a) and (b) illustrate the basis of the QD picture for monovalent ions in the SFs of NaChBac and
relevant mutants. The effective ionic radii Rion are taken from [61]. The dehydration energy ∆µDH

q (blue

solid line) is calculated to be proportional to
√

R∗

ion −Rc , according to [8, 53]. The shaded area indicates
the “fully hydrated” region where ions retain their 1st hydration shell untouched within the SF (R∗

ion ≤ Rc).
Plot (a) shows that Li+ and Na+ ions belong to the fully hydrated range of Rion, whereas K+, Rb+ and
Cs+ lie on a rapidly rising part of the dehydration energy curve. Hence they require significant shifts in
Qf for the site affinity to balance the dehydration penalty in order to provide for barrier-less conduction.
Plot (b) shows the current Iion vs. Rion plotted for values of Qf that show resonances for Na+ and K+,
respectively. Monovalent ions are described by relatively wide resonance curves, typical of weak ICB [9, 14].

Fig. S8 (c) and (d) show the corresponding plots for divalent ions. Plot (c) shows that the Mg2+ ion
belongs to the “fully hydrated” range of Rion, whereas Ca2+, Sr2+ and Ba2+ all require shifts in Qf to
provide for barrier-less conduction. Plot (d) shows current Iion vs. Rion curves for values of Qf , showing
resonances for Mg2+ and Ca2+, respectively. The results and predictions are rather similar to those for
monovalent ions but with the much narrower resonances typical of strong ICB [9, 14], corresponding to the
stronger dependence of conduction on ionic radius.

In summary, after inclusion of resonant QD effects, the resultant ICB/QD model predicts the following
dependences of a channel’s selectivity on Qf , channel radius Rc and ion size Rion:
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Figure S 9: Sketch of the putative protonation scheme for the D191 and E191 sites in NaChBac.

Narrow channels (Rc ≈ 0.2 nm e.g. KcsA channel) conduct fully dehydrated ions. These channels tend
to favour larger ions (K+) ([8, 54]). When Qf is varied, narrow channels follow the original Eisenman rule,
i.e. a highly charged (”high field strength”) SF tends to favour small ions [20] and vice-versa. The origin of
these shifts lies in the decrease in dehydration energy with growth of Rion.

Moderately-wide channels (Rc ≈ 0.3 − 0.4 nm, e.g. NaChBac, NavAb, or Ca) conduct ions that retain
significant parts of their first hydration shells. Low-charged mutants can then resonantly conduct small (Li+

and Na+) ions and the growth of |Qf | leads to an inverse shift of Eisenman sequence toward the larger ions,
i.e. Na+ → K+. This result arises from an increase in dehydration energy with growth of Rion, when more
water molecules have to change their positions/orientations (see Eq. S9).

(author?) [55] suggested an alternative (speculative) explanation of the influence of Qf on K+ vs. Na+

selectivity in terms of a “asymmetrical snug fit” the ion to the pore. That explanation does not, however,
provide an explicit dependence of the selectivity on Qf and nor can it be tested in experiment.

S3.5. Protonation of residues in EEEE/DDDD rings

Protonation is to be anticipated in the confined space within the SF; and possible protonation of the
EEEE locus has been under consideration for many years [6, 9, 62]

A titration curve that defines the ionisation of residues vs. pH can be derived from exactly the same
considerations as we used in our derivation of the Coulomb staircase. In the simplest case of non-interacting
residues Ri, the ionisation/protonation kinetics based on ionisation energy ∆Eion [63, 64] results in FD
statistics for the probability θ of ionisation (and charge Qf ), usually written as a Henderson- Hasselbalch
equation [63, 65]:

θ =
(

1 + 10(pKa−pH)
)

−1

; (S10)

Q∗

f = θQnm
f .

Taking account of the (repulsive) interaction energy ∆Eint between closely-spaced charges inside the charged
rings will lead to sequential increases of effective ionisation energy for the second, third and forth residues
in the ring and to a composite Coulomb staircase titration curve (i.e. the sum of elementary titration curves
with different pKa ) [65, 66], similar to the occupancy dependence for monovalent ions like Na+, and to a
shift ∆(pKa) in the iso-electric point of the protein.

Fig. S9 shows a sketch of the hypothesised ionisation/protonation scheme for the D191 and E191 sites,
compatible with the observed selectivity and AMFE results. Both the DDDD and EEEE rings show sig-
nificant interaction between charges, resulting in deviation of the titration curves from standard pKa≈4.0
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Figure S 10: Transformation of the Ca2+ conduction mechanism with increasing absolute value of effective fixed charge |Q∗

f
|,

showing the Coulomb blockade oscillations of multi-ion conduction/blockade states. The neutralized states Zn providing
blockade are interleaved with resonant conduction states Mn. The |Q∗

f
| value increases from top to bottom, as shown. Green

circles indicate Ca2+ ions, unfilled circles show vacancies (virtual empty states used during permeation). The right-hand
column indicates the preliminary identifications of particular channels/mutants corresponding to particular mechanisms. The
mutants studied here are shown in red. (Modified from [19])

values. Following (author?) [65] we approximate the titration curves for the D191 and E191 residues rings
as sums of four individual curves with different pKa, these putative decompositions are shown in plot (a) for
DDDD and plot (b) for EEEE. Glutamate residues in the EEEE ring are significantly protonated (pKa ≈ 7)
and hence the effective Qf at pH=7.4 is about −2e, whereas the DDDD ring has Qf = −3e (pKa ≈ 6).
In (c) the curves sketched are composite Coulomb staircases corresponding to sets pKa(i)={4.5, 6.5, 8.5,
10.5} for EEEE and pKa(i)={4.5, 5.7, 6.9, 8.0} for DDDD. This picture provides an explanation for all the
observations including, in particular, the results of divalent blockade experiments.

S4. Results

S4.1. Q∗

f -mapping table

Table S 5: Divalent blockade and Q∗

f
- mapping. The table presents the results of divalent blockade experiments with NaChBac

site-directed mutants of different nominal charge Qnm
f

, such as logarithmic blockade threshold log IC50; together with estimated

values of the effective charge Q∗

f
and the corresponding ICB points Mn, Zn.

Mutant Qnm
f /e lg (IC50) ,M Q∗

f/e ICB point

LASWAS 0 0 Z0

LESWAS -4 -1.7 -2 Z1

LDSWAS -4 -2.9 ≈-2.4
LEEWAS -8 -4.8 ≈-3.1 ≈ M1

LEDWAS -8 -5.3 ≈-3.3
LDEWAS -8 -7 -4 Z2

LDDWAS -8 -8 ≈-4.4

S4.2. ICB/Protonation-based conduction vs Q∗

f scheme for real channels/mutants

The protonation-related model presented above leads to a significant decrease in the effective values
|Q∗

f | in comparison with the nominal values |Qnm
f | of the fixed charge, and, hence to a modification of the

earlier identification scheme [19]. The current scheme is built around strong Ca2+ ICB oscillations (see Fig.
S6(c)). It is based on the Ca2+ Zn and Mn points and on the Q∗

f values obtained here with account taken
of protonation.
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Figure S10 presents in diagrammatic form the quasi-periodic sequence of multi-ion blockade/conduction
modes arising from growth of {n} as Q∗

f increases, together with putative identifications of particular modes
and of the NaChBac mutants used in this work. The diagram is based on the data shown in Table. S5 and
Fig. S6.

• The state Z0 with Q∗

f = 0 represents ICB for the empty selectivity filter, brought about by image
forces – as observed experimentally in LASWAS (see above) and also in artificial nanopores [28].

• The joint Ca2+/Na+ resonant point M0/M1 corresponds to single-ion (i.e. {n} = 1) barrier-less Ca2+

conduction, and can putatively be related to the OmpF porin [9, 67].
• The Ca2+ Z1 channel corresponds to WT LESWAS with single-ion block of the Ca2+ current. WT
NaChBac channel conducts sodium and does not conduct calcium.

• The Ca2+ M1 state corresponds to double-ion knock-on, and may be identified with the LEEWAS
mutant and (putatively) with L-type calcium channel having EEEE locus and additional charged D
residue in the neighbouring position [19, 68].

• The LEDWAS mutant (Q∗

f = −4e) can be identified with the Z2 Ca2+ blockade point, such an
identification being supported both by BD simulations and by patch-clamp studies.
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[63] Job, G. & Rüffler, R., Physical Chemistry from a Different Angle (Springer, 2016).
[64] Woodhull, A. M., Ionic blockage of sodium channels in nerve, J. Gen. Physiol. 61, 687–708 (1973).
[65] Onufriev, A., Case, D. A. & Ullmann, G. M., A novel view of pH titration in biomolecules, Biochem. 40, 3413–3419

(2001).
[66] Bezrukov, S. M. & Kasianowicz, J. J., Current noise reveals protonation kinetics and number of ionizable sites in an open

protein ion channel, Phys. Rev. Lett. 70, 2352 (1993).
[67] Miedema, H., Meter-Arkema, A., Wierenga, J., Tang, J., Eisenberg, B., Nonner, W., Hektor, H., Gillespie, D. & Meijberg,

W., Permeation properties of an engineered bacterial OmpF porin containing the EEEE-locus of Ca2+ channels, Biophys.
J. 87, 3137–3147 (2004).

[68] Kaufman, I. K., Luchinsky, D. G., Gibby, W. A. T., McClintock, P. V. E. & Eisenberg, R. S., Putative resolution of the
EEEE selectivity paradox in L-type Ca2+ and bacterial Na+ biological ion channels, J. Stat. Mech. 2016, 054027 (2016).

24


	Models and theories
	Self-consistent electrostatic & Brownian dynamics model 
	Ionic Coulomb blockade
	Parametric tests of the model
	Resonant quantised dehydration model
	Protonation of residues in EEEE/DDDD rings

	Results
	Qf*-mapping table
	ICB/Protonation-based conduction vs Qf* scheme for real channels/mutants

	SupportingMaterialBBAElectroPhysJan2020.pdf
	S1. Electrophysiology
	S2. Experimental results of mutant studies of NaChBac

	ICBSuppMattJan2020.pdf
	Models and theories
	Self-consistent electrostatic & Brownian dynamics model 
	Ionic Coulomb blockade
	Parametric tests of the model
	Resonant quantised dehydration model
	Protonation of residues in EEEE/DDDD rings

	Results
	Qf*-mapping table
	ICB/Protonation-based conduction vs Qf* scheme for real channels/mutants





