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Abstract 

The complexity and natural variability of ecosystems present a challenge for reliable detection of 
change due to anthropogenic influences. This issue is exacerbated by necessary trade-offs that 
reduce the quality and resolution of survey data for assessments at large-scales. The Peace-
Athabasca Delta (PAD) is a large inland wetland complex in northern Alberta, Canada. Despite its 
geographic isolation, the PAD is threatened by encroachment of oil sands mining in the 
Athabasca watershed, and hydroelectric dams in the Peace watershed. Methods capable of 
reliably detecting changes in ecosystem health are needed to evaluate and manage risks. 
Between 2011 and 2016, aquatic macroinvertebrates were sampled across a gradient of wetland 
flood frequency, applying both microscope-based morphological identification, and DNA 
metabarcoding. By using multi-species occupancy models, we demonstrate that DNA 
metabarcoding detected a much broader range of taxa and more taxa per sample compared to 
traditional morphological identification, and was essential to identifying significant responses to 
flood and thermal regimes. We show that family-level occupancy masks high variation among 
genera, and for the first time, quantify the bias of barcoding primers on the probability of detection 
in a natural community. Interestingly, patterns of community assembly were near random, 
suggesting a strong role of stochasticity in the dynamics of the metacommunity. This variability 
seriously compromises effective monitoring at local scales, but also reflects resilience to 
hydrological and thermal variability. Nevertheless, simulations showed the greater efficiency of 
metabarcoding, particularly at a finer taxonomic resolution, provided the statistical power needed 
to detect change at the landscape scale. 

Significance Statement 

Too often, ecological monitoring studies are designed without understanding whether they have 
sufficient statistical power to detect changes beyond natural variability. The Peace-Athabasca 
Delta is North America’s largest inland delta, within a World Heritage area, and is currently 
threatened by human development. By using multi-species occupancy models we show that the 
wetland macroinvertebrate community is highly diverse, and spatial and temporal turnover are so 
high that composition is nearly random, emphasising stochastic processes of assembly. Using 
DNA metabarcoding, our study detected more taxa, both overall and per sample, than traditional 
morphology-based sample processing; increasing our power to detect ecosystem change. 
Improving data quality and quantifying error are key to delivering effective monitoring and 
understanding the dynamic structure of the metacommunity. 
 
Main Text 
 
Introduction 
 
Tackling the global loss of biodiversity (1) is hindered by a lack of basic biological information 
needed to guide sustainable management strategies (2). Despite legal protections, freshwater 
ecosystems are increasingly degraded by multiple stressors (3). In addition, the quality and 
volume of data collected by monitoring programs often fails to support evidence-based 
management decisions (4-6). Here, we demonstrate how DNA metabarcoding can resolve 
challenges faced by traditional monitoring, alter our perspectives on ecosystem dynamics, and 
improve our understanding of natural variation and sampling error, supporting evidence-based 
decision making.  
 
DNA barcoding uses short genetic sequences to identify individual taxa. By contrast, DNA 
metabarcoding supports simultaneous identification of entire assemblages via high-throughput 
sequencing (7, 8). Using metabarcoding for ecosystem monitoring provides an opportunity to 
identify organisms in bulk samples at a high taxonomic resolution consistently and accurately 
(“Biomonitoring 2.0”; 9). The accuracy, consistency, and resolution of taxonomic identification 
remains a constraint for many biomonitoring programs that must trade-off data quality to make 
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assessment protocols rapid and cost-effective (10). Aquatic macroinvertebrates exemplify this 
challenge, as their diversity of forms and functions are sensitive to multiple drivers of ecosystem 
condition. Thus, ecosystem degradation can be identified based on changes in assemblage 
composition due to environmental filtering (5). Despite decades of development, the challenges 
associated with traditional methods of sample processing limit inference of biomonitoring 
programs to gross status classifications (e.g. 11). Metabarcoding presents an opportunity to 
describe community composition more accurately and consistently, supporting more effective and 
informative biomonitoring (12, 13). 
 
The Peace-Athabasca Delta (PAD) in northern Alberta, Canada (Figure 1; and 14). The PAD is 
North America’s largest inland delta (approximately 6,000 km2), and is located at the confluence 
of the Peace and Athabasca Rivers, consisting of hundreds of lakes and wetlands that become 
connected during flood events, particularly when spring snowmelt leads to ice-jams (15, 16). The 
PAD is a Ramsar wetland, protected within Wood Buffalo National Park, a UNESCO World 
Heritage site. Nonetheless, there have been concerns that the PAD could be affected by 
upstream developments, including current and proposed hydroelectric dams on the Peace River, 
continued expansion of oil sands mining on the Athabasca River to within 30km of the park 
boundary, and climate change (17). Assessing how such factors influence the integrity of a 
natural wilderness is made more challenging by the paucity of biological surveys that have been 
conducted, and the logistics of working in such a remote region. To gain a better understanding of 
the PAD’s ecology, rapid assessments of aquatic macroinvertebrates have been conducted in 
since 2011 to establish a baseline understanding of the ecosystem’s diversity and structure (14, 
18). Importantly, while surveys have followed established protocols from the Canadian Aquatic 
Biomonitoring Network (hereafter CABIN)(19), samples were processed using both traditional and 
DNA metabarcoding approaches, allowing us to test the power of each approach to support 
environmental management of the delta for the first time. 
 
Sampling error is a ubiquitous feature of any ecological survey, irrespective of the methodology, 
and of particular concern is the frequency of false absences (20). Depending on the covariance of 
species’ detectability with other environmental characteristics, models can be structurally biased 
and their confidence overestimated (21). Although imperfect detection is very common, and 
freshwater biomonitoring protocols have a long history of standardization to maintain 
comparability (5), there are few examples of research explicitly quantifying the nature of sampling 
error (e.g. 22). Instead, variability due to sampling error is usually combined with that from natural 
sources (i.e. as “noise”; 23). An alternative is to specify the likelihood of detection (the 
observation process model) and simultaneously correct our estimates of species occurrence (the 
ecological state model) within a single hierarchical framework (24). In this study, we employed 
multi-species occupancy models (MSOMs; 25, 26) to account for the effects of imperfect 
detection on estimates of macroinvertebrate diversity, drawing upon data from six years of 
macroinvertebrate surveys in the PAD. We quantify the efficiency with which the 
macroinvertebrate community can be surveyed using both traditional morphological identification 
and DNA metabarcoding, and demonstrate that these approaches make a qualitative difference 
to our view of the metacommunity is structured, to the efficiency of monitoring, and consequently 
our power to detect change (27). 
 
Results 
 
A key difference between our sampling approaches was that the standard CABIN wetland protocol 
(19) provided estimates of relative abundance based on counts from a subset of each sample, 
whereas sequences identified using DNA metabarcoding were converted to presence-absence 
data (13, 28). In addition, CABIN identified 74 families based on morphological features, but 
metabarcoding could identify 109 families, as well as 263 genera (see SI Appendix 1, Fig. S1.6). 
As a result, we trained four hierarchical MSOMs for each data type: 1) counts of macroinvertebrate 
families from CABIN (CABIN Fcount), 2) the presence-absence of macroinvertebrate families from 
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CABIN (CABIN Fpa), 3) the presence-absence of macroinvertebrate families from DNA data (DNA 
Fpa), and 4) the presence-absence of macroinvertebrate genera from DNA data (DNA Gpa). 
Although metabarcoding can discriminate among taxa at even finer resolution (i.e. species), given 
the prevalence was lower than the prevalence of genera and the available sample size, we did not 
feel the detectability and occupancy of those taxa could be estimated reliably.  
 
Occupancy and detectability 
The CABIN Fcount model predicted total abundance was dominated by four taxa (two 
Chironomidae subfamilies, Oligochaeta and Planorbidae), but also suggested that almost all taxa 
were present everywhere within the PAD (i.e. site occupancy ≈ 1), with no environmental covariates 
retained in the final model. This scenario is plausible, but if we apply the predicted probabilities of 
detection and same survey effort (number of individuals counted), and assume taxa are sampled 
at random from the pool of individuals, the CABIN Fcount model suggested we should have 
observed 38 taxa on average instead of 18. Non-random aggregation of individuals is typical of 
ecological communities (29), and may be why the model appeared to be misspecified. 
 
In contrast to the count-based model, the presence-absence models all suggested taxon site-
occupancy was below 1 (Fig. 2, SI Appendix 1, Fig. S1.10), although the “U-shaped” form of the 
hyper-parameters in Fig. 2a and 2c was an artefact of the bounded distribution (29). The CABIN 
Fpa model estimated the probability of detecting macroinvertebrate families was lower than the 
DNA Fpa model (Fig. 2b right-skewed relative to 2d,e; see also Figure 3). Models must balance 
the expected occupancy to fit with the detections, and probability of detection made in each survey, 
and the CABIN Fpa model therefore also predicted higher occupancy than the DNA Fpa model 
(Fig. 2a left-skewed relative to 2c). The differences in occupancy and detectability of specific 
families were not associated with prevalence, although many taxa were not recorded by both 
approaches, and therefore cannot be compared (red points in Fig. 3; see SI Appendix1 for detail). 
In addition, detectability using DNA metabarcoding is intrinsically linked to the genetic primer used 
(30), and the importance of primer bias is well known from mock laboratory samples (e.g. 31). Here 
we show biases in detectability can be quantified as part of the observation model, either at the 
community-level (Fig. 2d and 2e), or for individual taxa (SI Appendix 1, Fig. S1.11). Lastly, neither 
the CABIN Fcount or Fpa model retained environmental variables to explain changes in 
occurrence, whereas both DNA occupancy models did so consistently. The covariates retained 
were 1) the frequency of spring and summer floods (i.e. connections between the wetland and 
river), 2) time since the ice melt, and 3) maximum water temperature prior to each survey. 
Responses to environment at the community-level were almost neutral (SI Appendix 1, Fig. S1.13), 
and the posterior distribution of coefficients differed from zero for only a minority of taxa (SI 
Appendix 1, Fig. S1.14), but their inclusion in the model suggests the high inter-annual turnover (SI 
Appendix 1, Fig. S1.7) may be explained in part by deterministic factors. 
 
Alpha, beta and gamma diversity 
Recognizing that imperfect detection is commonplace in ecological surveys, it follows that regional 
(gamma diversity, SI Appendix 1, Fig. S1.8) and local (alpha diversity, SI Appendix 1, Fig. S1.9) 
diversity is routinely underestimated. As the CABIN Fcount model effectively assumed alpha and 
gamma diversity were equal, it estimated that only two families were likely to have gone undetected 
in the metacommunity. Conversely, the CABIN Fpa model estimated ~20 families were missed (i.e. 
γ = 95), a 28% increase on the observed total. Interestingly, this estimate was still short of the 
richness observed using metabarcoding (n=109), and based on the distribution of detection 
probabilities, the DNA Fpa and Gpa models estimated the metacommunity could potentially contain 
130 families and 360 genera, a 19% and 37% increase (SI Appendix 1, Fig. S1.8). 
 
Although imperfect detection always underestimates richness, its effect on the observed 
compositional dissimilarity between sites (beta diversity) is less predictable. The observed pairwise-
dissimilarity of samples consistently exceeded 40%, both within and between years, with no 
consistent increase over time (SI Appendix, 1 Fig. S1.7). Our analysis showed that compositional 



 

 

5 

 

turnover in the CABIN dataset was overestimated, whereas for the DNA models the corrected and 
observed dissimilarities were similar (SI Appendix, 1 Fig S1.15), although temporal turnover (i.e. 
inter-annual, within-site dissimilarity) was marginally overestimated by the DNA dataset. This 
implies that although metabarcoding underestimated alpha diversity at each site, the proportions 
of the taxa missed that were shared or unique to site-pairs were similar. Finally, one predictable 
aspect of turnover is that as the taxonomic resolution is increased, sub-taxa are on average less 
prevalent than their parental ranks (see SI Appendix, 1 Fig. S1.12a), typically harder to detect 
(presumably because they are also less abundant than parental ranks), and therefore dissimilarity 
among sites at the genus-level was 7% higher compared to the family-level. 
 
Power analysis 
The power to detect statistically significant changes depends on the strength of the ecological 
signal relative to other natural variability, as well as the efficiency with which we can accurately 
describe ecological state, factors directly related to taxonomic resolution, and detectability (27). We 
simulated the PAD metacommunity based on a fitted distribution of occupancy and estimated 
gamma diversity to represent its baseline condition, and then took subsamples that reflected the 
observed biases in each sampling approach. Note that the true state and behaviour of the system 
are unknown, and underlying processes were instead inferred by the MSOMs after quantifying 
observation biases. Human impacts that might affect the PAD system in the future were also 
unknown, and this analysis therefore aimed to identify our power to observe a generalized stressor 
effect. To keep the process model consistent, we based simulations on the most detailed DNA Gpa 
model, and then aggregated taxa to higher ranks to compare power among sampling approaches. 
A complete description of the simulation and power analysis is provided in SI Appendix2. 
 
A natural consequence of high, near-random, background variation in composition is that 
degradation of a wetland site would need to be severe to raise concerns. Instead, it is more effective 
to measure when there is a shift away from our expectation of the PAD metacommunity aggregated 
across sites (i.e. changes in occupancy of many taxa). Even so, based on the high natural variability 
of the PAD, the survey effort needed to confidently detect shifts in occupancy in any year would be 
prohibitive. As a result, we considered a monitoring system to be adequate if significant differences 
in composition were detected within 2 years (at least 50% of the time, SI Appendix 2, Fig. S2.4). 
Our results demonstrated that our power increased: 1) as the number of sites sampled increased 
(but the rate of increase declined beyond 8-10 sites per year); 2) with DNA metabarcoding 
compared to CABIN sampling, and with genus- compared to family-level data; and 3) if we sampled 
sites multiple times (but gains depended on the number of sites and sampling approach) (Fig. 4). 
Statistical power also varied by stressor type because metacommunity shifts were readily apparent 
if the stressor impacted prevalent taxa, whereas changes were challenging to observe if prevalent 
taxa were also tolerant. The relationship between taxon occupancy and their sensitivity to a stressor 
was therefore most influential when sample sizes, and hence our power to detect rare taxa, were 
low (SI Appendix 2, Fig. S2.6). 
 
Discussion  
 
The Peace-Athabasca Delta represents one of Canada's national biodiversity treasures. Yet 
multiple external pressures, including the development of oil sands, hydroelectric power, wildfires 
and climate change are potentially affecting biodiversity through modification of natural physical 
processes in the area and threaten its World Heritage listing (17). Our study demonstrates that 
the PAD is an immensely rich habitat, including over 25% and 20% of all aquatic 
macroinvertebrate families and genera recorded by the CABIN national biomonitoring program 
(32). This total may still underestimate the total diversity present, and we demonstrate the 
importance sampling errors can have for modelling this community. Communities exhibited near-
random patterns of spatial and temporal turnover, a property rarely observed in freshwater 
systems (33). As a result, impacts on the wetland macroinvertebrate community are difficult to 
establish at local scales because occurrence is weakly related to environmental factors and site 
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composition can fluctuate rapidly over time (SI Appendix 1, Fig. S1.7). Properties of the 
metacommunity must therefore be aggregated across sites, and directional shifts can only be 
inferred when dissimilarities are unlikely to be explained by stochastic differences in our null 
baseline model (34). Our analysis shows that detecting a decline in metacommunity condition 
would depend on both sample size and stressor type, and that further changes to sampling 
design may be required to detect change earlier or at specific locations of concern. 
 
The most significant finding of this study was the value added to biomonitoring data generated by 
DNA metabarcoding of bulk community samples. Our analysis supports previous studies that 
have shown the breadth and resolution of taxonomic information achievable with metabarcoding 
(e.g. 14, 35). Clear differences in occupancy and detectability profiles with metabarcoding (Fig. 3) 
influence our description of baseline reference conditions (36, 37). Further differences in 
estimates of occupancy with increasing taxonomic resolution (SI Appendix 1, Fig. S1.12) may 
also indicate differential environmental responses (38, 39). We did not find evidence to suggest 
the count data ('relative abundance') in CABIN samples were necessary to detect changes in 
ecological structure. In fact, only the presence-absence DNA metabarcoding models identified 
significant relationships with the major environmental covariates of this region (16). These effects 
could be estimated precisely because detectability, and thereby sampling efficiency, was higher 
for so many taxa using DNA metabarcoding (13). We also used the occupancy model framework 
to compare detectability of each taxon with different primers, a more robust measure of their 
complementarity than lists of taxa observed. Quantifying detectability is vital to making the results 
of this study comparable to others with varying protocols, and this approach could be used to 
refine and select complementary primers (28, 31). Crucially, DNA metabarcoding, particularly at 
genus-level, substantially improved our power to detect ecosystem-scale changes compared to 
traditional CABIN sampling (Fig. 4, SI Appendix 2). Extending this approach to the species-level 
could improve overall power further still, as long as a sufficient number of species have a similar 
probability of detection as their parent genera. 
 
A second significant outcome was the importance of explicitly considering imperfect detection. 
Practitioners are well aware of sampling differences (e.g. 40), but have typically focused on how 
those errors propagated to aggregated metrics, rather than explicitly quantifying the sources of 
uncertainty (23). Hierarchical occupancy models accommodate irregularly sampled data, estimate 
community properties (that extend inference to rare taxa), and allow straightforward biological 
interpretations of those parameter estimates (41). There have been few examples of hierarchical 
models accounting for detectability in freshwater ecology (e.g. 42, 43), despite studies showing it 
can bias our interpretation of taxonomic, functional, and phylogenetic diversity at the community-
level (e.g. 44). Given the high prevalence of false absences it is not surprising occupancy models 
are becoming commonplace for analysing eDNA data (45), although it appears multi-species 
models are still rare (46). Importantly, what these and other studies have shown is that the time 
and expense of adding replicate samples may be the most efficient way to improve the statistical 
power of a study (24, 47). Inferences about the number of taxa missed in the metacommunity 
naturally carry some uncertainty (48), but by acknowledging imperfect detection, risks can be 
quantified, and decision makers’ overall efficiency can be improved. This analysis minimises the 
likelihood of management agencies responding to a false signal of degradation (Type 1 error), 
and identifies how to optimize survey design to ensure we have the necessary power to detect a 
desired degree of change (Type 2 error) (27, 49).  
 
Although our analysis provided evidence of environmental filtering, the distribution of beta 
diversity was equivalent to that expected from random assembly, suggesting that the 
metacommunity was operating in a quasi-neutral manner at the scale of our analysis (50). Quasi-
neutral dynamics are expected to be commonly observed in taxon-rich communities, but given 
the high degree of landscape connectivity, we would expect mass effects, rather than dispersal 
limitation, to underlie the low habitat specificity of the community. Our dataset was insufficient to 
identify which mechanisms underlie metacommunity assembly, because the same patterns of 
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turnover may be the result of different assembly processes (51). While further studies could 
reduce this uncertainty, currently models of coexistence that combine stochasticity with niche 
theory may be the most suitable option to explain the structure and dynamics of aquatic 
invertebrate communities in the PAD, without relying on the fragile premise of ecological 
equivalence in neutral theory (50, 52). Although many ecologists have acknowledged stochastic 
processes are likely to have a role in understanding community composition (53, 54), we are 
unaware of any biomonitoring programs that incorporate, or even acknowledge community 
assembly mechanisms other than environmental filtering (e.g. 37). Our results firmly challenge 
that traditional perspective, and if we wish to understand the resilience of the PAD, we must 
adopt a metacommunity perspective (55). More broadly, a metacommunity perspective of the 
PAD could indicate which assembly processes are absent from more managed landscapes, 
therefore providing critical insights into the mitigation of biodiversity loss at the landscape scale.  
 
The isolation of wilderness areas like the Peace-Athabasca Delta implies a pristine nature, but 
that isolation has also hindered our appreciation of the sheer magnitude of diversity which occurs 
there, and has until now precluded a basic description of how community structure changes over 
space and time. Near-random patterns of assembly and substantial sampling error pose a 
challenge to detecting ecosystem change. Without evaluating data quality and statistical power at 
the start, many monitoring programmes are unable to confidently reject a false null hypothesis, 
undermining project goals and providing a misleading sense of achievement (27, 56). Despite the 
high turnover, we show the statistical power of data generated by DNA metabarcoding was 
superior to traditional biomonitoring approaches for the detection of large-scale ecosystem 
change. Although macroinvertebrate composition provides a wealth of information, the power to 
detect and draw inference from taxonomic changes will be improved by further refining the list of 
taxa that respond to particular threats (e.g. oil sands contaminants), particularly by linking 
metabarcoding to trait databases (57), and this remains a major focus of our ongoing research. 
 
 
Materials and Methods 
 
Field surveys 
Field survey methods followed the CABIN wetland macroinvertebrate protocol (14, 19). Briefly, 
aquatic invertebrates were sampled by sweeping submerged and emergent aquatic vegetation at 
wetland edges for 2 minutes. A sterile 400μm mesh net was steadily moved in a zig-zag pattern, 
from the surface of the sediment to the water surface, to capture disturbed organisms and 
minimise the amount of sediment collected. Excess vegetation was carefully rinsed and removed, 
and samples with excess sediment were sieved. Material was placed in sterile 1L polyethylene 
sample jars, filled no more than half full, and immediately preserved in 95% ethanol in the field. 
Samples were stored in a cooler with ice in the field and transferred to a freezer at the field 
station before shipment. Nets were disinfected between each new site, and field crews wore 
nitrile gloves to collect and handle samples, minimizing the risk of cross-site contamination.  
 
Sample Processing 
In total, 126 and 138 samples were collected from 72 separate site visits for the CABIN and DNA 
metabarcoding datasets, respectively (SI Appendix1, Table S1.2). Samples identified using 
morphological characteristics were processed and identified in accordance with the CABIN 
laboratory manual (19). Briefly, material from each 2-minute sweep was subsampled using a 100-
cell Marchant box. Successive cells were processed until at least 300 individuals were identified 
and a minimum of five cells were processed. Most taxa were identified to family level, although for 
some groups only class- or order-level identification was recovered, and given the importance 
and diversity of Chironomidae, we retained four sub-family divisions that could be reliably 
identified (SI Appendix 1). 
 



 

 

8 

 

The lab protocol for processing samples for DNA metabarcoding followed the same procedure as 
outlined in Gibson, et al. (14). This targeted the CO1 amplicon using two complementary primers, 
BE/BR5 and F230R (30, 58). All DNA samples were analysed using BE or BR5 that target the 
same COI region, and F230R was introduced in 2012. While field and lab protocols have 
remained consistent since the study began, there have been a number of advances made in 
bioinformatic tools, as well as expansion of the reference sequence libraries supporting the 
identification of taxa (59). The bioinformatic pipeline used to process all samples in this study, as 
well as the CO1 classifier that allocates sequences to the most likely taxa, is described in SI 
Appendix 1 and available on Github (60). The sequences generated have been deposited in the 
NCBI Sequence Read Archive (SRA), project PRJNA603969. 
 
Hierarchical MSOM 
Multi-species occupancy models (MSOMs) employ a flexible hierarchical framework that allows 
for imperfect detection to predict species’ occurrence (25). The hierarchy consists of an 
underlying state-model that describes the probability of species’ occurrence, and a second 
observation-model to describe the probability of detecting that species when it is present 
(informed by detection across replicates). The fitted state-model is thereby updated to account for 
the probability of false-negatives. MSOMs extend this single-species approach by assuming 
species’ coefficients are related, and can be treated as random effects, drawn from a common 
distribution (hyper-parameters). Data augmentation extends the community approach a step 
further by using the hyper-parameters for occupancy and detectability to estimate the possibility 
additional taxa may have been present, but by chance were never observed. Our analysis 
adapted the notation and code provided by (41) as the basis for this study (see SI Appendix 1 for 
model code): 

1. Data augmentation process:  𝑤𝑘  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(Ω)   

2. State process:    𝑧𝑖𝑘  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑤𝑘𝜓𝑘) 

3. Observation process:  𝑦𝑖𝑗𝑘|𝑧𝑖𝑘  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖𝑘𝑝𝑖𝑗𝑘) 

4. Models of taxon heterogeneity: 𝑙𝑜𝑔𝑖𝑡(𝜓𝑘) ~ 𝑙𝑝𝑠𝑖𝑘 +  𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖𝑘  × covariate𝑖 +  …  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑘) ~ 𝑙𝑝𝑘 +  𝑏𝑒𝑡𝑎𝑙𝑝𝑘  × covariate𝑖𝑗 + … 

Given: 𝑙𝑝𝑠𝑖𝑘~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑙𝑝𝑠𝑖 , 𝜎2
𝑙𝑝𝑠𝑖) 

𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖𝑘~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖 , 𝜎2
𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖) 

𝑙𝑝𝑘  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑙𝑝 , 𝜎2
𝑙𝑝) 

𝑏𝑒𝑡𝑎𝑙𝑝𝑘  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑏𝑒𝑡𝑎𝑙𝑝 , 𝜎2
𝑏𝑒𝑡𝑎𝑙𝑝)  

The observed data yijk describe the detection or non-detection of taxon k at site i in replicate 
sample j. Replicate observations, in our case simultaneous independent samples (21), allowed 
the model to discriminate between processes that determine the system’s state (occupancy) and 
the observation process (detectability). The occupancy of each taxon at each site zik is described 
by a Bernoulli trial with probability ψik, and the likelihood of detecting the respective taxa in each 
replicate sample is described by another set of Bernoulli processes with probability pijk. Seven 
water temperature and flood regime variables were tested as covariates within a multiple logistic 
regression for occupancy, and measures of sample processing effort were tested for detectability 
(sequencing depth and the number of individuals identified). Individual intercepts and slopes 
represented species-specific random-effects, governed by a common prior distribution whose 
mean and variance were estimated as a community-level hyperparameter.  
 
The statistical distributions of the parameters governing occupancy and detectability shared by 
the community were used to consider the possibility of other taxa in the metacommunity that were 
not recorded in any visit to any site, a process known as data augmentation (48, 61). Given a 
sufficiently large total pool of M potential taxa, a set of binary indicators wk, governed by the 
parameter Ω, represent the probability each taxon is part of the community. The total number of 
taxa in the metacommunity (γ-diversity) is therefore simply the sum of wk.  
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The occupancy model above was suitable for presence/absence observations of taxa, but CABIN 
samples also included information on the relative abundances of taxa. To utilize all information 
available, we constructed a community-level N-mixture model that estimates the latent 
abundance Nik of each taxon, rather than their occurrence (zik), and modelled counts as a function 
of a Poisson distribution.   

2. State process:    𝑁𝑖𝑘  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑤𝑘𝜆𝑘) 

3. Observation process:  𝑦𝑖𝑗𝑘|𝑁𝑖𝑘  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖𝑘 , 𝑝𝑖𝑗𝑘) 

4. Models of taxon heterogeneity: 𝑙𝑜𝑔(𝜓𝑘) ~ 𝑙𝑝𝑠𝑖𝑘 +  𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖𝑘  × covariate𝑖 + … 
 
Finally, model selection for covariates of taxon heterogeneity in both the occupancy and N-
mixture models was determined by a set of binary indicator variables Vx1-xn, one for each of the 
n predictor variables used (62). Using Vx ~ Bernoulli(0.5) as standard priors, variables had an 
equal likelihood of being included or excluded from likelihood estimates, and model selection was 
therefore based on which combination had the highest joint posterior probability p(Vx1-xn=1). 
Note convergence of the Vx indicators was very slow, particularly in the most complex models, 
and a “slab and spike” approach did not improve mixing (see 7.6.2 in 41). 
 
Analyses were conducted using the R package jagsUI (63). We assessed model convergence of 
all monitored parameters across chains by visual inspection of trace plots and by using the 
Gelman-Rubin statistic (64), with the diagnostic value <1.1. As over-dispersion cannot be 
estimated from the binary responses in occupancy models (41), plots of Dunn-Smyth residuals for 
fitted estimates of occupancy and detectability were used to evaluate the fit of separate taxa (65). 
Although plots suggest the models were well fit in most cases, the pattern of residuals suggested 
there may have been other covariates, or non-linear effects, missing from the models influencing 
the occupancy of some taxa. 
 
Simulation and power analysis 
The code and process used to simulate communities is described in detail in SI Appendix 2. In 
summary, a hypothetical presence-absence matrix of the metacommunity was derived from 
estimates of gamma diversity and occupancy in the DNA Gpa occupancy model from which we 
could manipulate sampling designs. Environmental covariates were varied according to the mean 
and standard deviation of values observed from the surveys available to us (SI Appendix 2, Fig. 
S2.1), but the simulation was not spatially explicit. Whilst occupancy covariates drove some 
temporal turnover (SI Appendix 2, Fig, S2.2, approximately 10-27%), this was insufficient to 
replicate the turnover observed (SI Appendix 2, Fig. S2.3), so permutation of the presence-
absence matrix was used to simulate further stochastic changes in composition (i.e. local 
extinction/colonization; 66). Replicating observed turnover required the complete redistribution of 
occurrences (i.e. random assembly patterns). Taxon occupancy (row sums) and site richness 
(column sums) were held constant during permutation. The metacommunity was modified by 
successively removing occurrences of taxa based on a hypothetical distribution of tolerances, 
which were themselves generated to covary with the distribution of occupancy. Sampling error 
was applied by a binomial function weighted by the taxon’s probability of detection, and the 
‘detected’ composition of reference and modified metacommunities were then compared using 
mvabund (67). Power of DNA Gpa was compared to DNA Fpa and CABIN Fpa approaches by 
aggregating genera to family-level, and subsequently applying the family-level detection 
probabilities. 
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Figures 
 

 
 
Figure 1. Figure 1: Location of sampling sites in the Peace-Athabasca Delta. The inset shows the 
full extent of Wood Buffalo National Park in Alberta (AB), and boundaries of neighbouring 
provinces: British Columbia (BC), Saskatoon (SK), and the Northwest Territories (NWT). Photo 
taken at Rocher River wetland (PAD 37). 
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Figure 2. Predicted occupancy (a,c) and detectability (b,d,e) of taxa based on the presence-
absence data collected using the CABIN protocol (a,b) and DNA metabarcoding (c-e) at the 
family-level. Detectability using metabarcoding is further split by primer pair (d,e). The shaded 
polygons describe the probability density of the community hyperparameters, and the grey bars 
indicate the underlying frequency of the values estimated for each taxon. See Figure S.10 for the 
CABIN Fcount and DNA Gpa model distributions.  
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Figure 3. Comparison of a) occupancy and b) detectability estimates in models trained by CABIN 
data and DNA metabarcode data at the family-level (n= 50). Red points indicate taxa not 
observed by the complementary method i.e. 18 and 59 families were unique to CABIN and 
metabarcoding respectively. See SI Appendix 1 for further information on the identities of unique 
taxa. 
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Figure 4. Minimum reduction to community occupancy that is detectable >50% of the time with 

95% confidence in response to number of sites surveyed annually. Lines show the average of 

100 simulations based on the CABIN Fpa (blue), DNA Fpa (red) and DNA Gpa (green) 

occupancy-detection models, with either single (open symbol) or triplicate (closed symbol) 

samples per site. Taxon tolerance was not correlated with occupancy. See SI Appendix 2 for 

further information. 

 

 


