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Abstract  

MXenes are recently discovered two-dimensional materials which have shown great promise in 

electrochemical energy storage. However, the majority of research has been on lithium and sodium 

systems, with little work done on multivalent ion systems, which have an urgent need for new 

electrode materials. In particular, zinc-ion aqueous systems have significant promise due to the 

widespread use of zinc batteries and the abundance (24th most abundant element on earth), high 

specific capacity (> 800 mAh g-1) and low toxicity of zinc. Only a few materials are reported to act as 

reversible zinc-ion hosts, hindering developments of this technology. In this work, we demonstrate for 

the first time that Ti3C2, the most studied MXene to date, can act as a reversible zinc-ion host for a 

hybrid capacitor using an aqueous zinc sulphate electrolyte. In addition, we report a novel in-situ 

pillaring method where CTAB is used to increase the Zn-ion uptake, with capacities up to 189 mAh g-1. 

A detailed mechanistic study that encompasses diffraction, microscopy and spectroscopy techniques 

was conducted to shed light on the structure and kinetics of the system. This understanding was used 

to optimise the electrode performance, resulting in an outstanding cycling stability of over 96% over 

1,000 cycles. We believe this study will pave the pathway towards designing new pillared MXenes in 

low-cost Zn-ion aqueous systems. 

Introduction 

There has been growing interest in electrochemical energy storage in recent years, with lithium-ion 

batteries going from powering consumer electronics to electric vehicles and grid-level energy 

storage.1–3 However, lithium is a scarce and expensive element, which raises questions about its future 

sustainability, especially as demand continues to grow.4 In addition, there are wide-spread safety 

concerns about lithium-ion batteries, with worries about dendrite formation on the negative 

electrode (which can puncture the separator and cause a short circuit) and the flammability of the 

organic electrolyte used.5 These safety concerns are especially evident at high rates, which are needed 

to alleviate technological challenges associated with these applications. Consequently, there is an 

increasing focus on safer alternative metal-ion systems based on cations which are cheaper and more 

evenly distributed on earth. In particular, zinc systems are gaining significant interest.6,7 Zinc is 

relatively wide-spread in nature, has a large theoretical capacity (> 800 mAh g-1) and a low potential (-

0.76 vs. standard hydrogen electrode (SHE)).8,9 Importantly, this potential sits in the stable voltage 

window for water, making zinc metal compatible with aqueous electrolytes, unlike most elements 

under consideration for rechargeable energy storage systems.10 Aqueous electrolytes are of interest 

since they are inherently non-flammable, which gives them significant safety advantages over systems 

based on organic electrolytes. However, aqueous electrolytes have significantly reduced voltage 

windows compared to organic electrolytes, due to the hydrogen and oxygen evolution reactions.11,12 

This gives a thermodynamically stable window of 1.23 V, which limits considerably the energy density 

of aqueous systems and makes the need to find high energy density electrode materials an urgent 

priority for these systems.  
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Zinc is already widely used in primary (non-rechargeable) batteries, but commercial rechargeable 

systems have not yet been realised. This is in part because zinc metal forms dendrites when used with 

certain electrolytes, making the systems non-rechargeable in the long-term. However, it is now known 

that in some neutral and mildly acidic aqueous electrolytes (pH 4 to 6), such as 1M zinc sulphate 

(ZnSO4) in water, zinc can be reversibly cycled for long duration times without losing significant 

capacity.6  

The majority of electrode materials belong to the oxide family and are based on manganese (Mn4+/ 

Mn2+)13 and vanadium (e.g. V5+/V4+in V2O5)14 redox couples, which store charge based on intercalation 

mechanisms. However, despite having relatively high capacities, typically between 100-350 mAh g-1, 

manganese oxides tend to suffer from poor cycling stability due to manganese dissolution in the 

electrolyte.15–17 Vanadium oxides generally have better cycling stability, but lower voltages than 

manganese-based ones. The capacities are typically in the range of 170-300 mAh g-1.18–20 In addition, 

Prussian blue analogues have recently been studied as a new class of zinc-ion electrode, but have 

shown poor capacities (50-65 mAh g-1) despite reasonably high operating voltages.21–23 So far, none of 

these materials classes have been able to meet the demands of a commercial zinc-ion energy storage 

system.7 Therefore, there is an urgent need for widespread research into new Zn2+ hosts with stable 

and reversible electrochemical performance. One difficulty has been that the smaller Zn ion size (0.67 

Å) and 2+ charge give rise to poor diffusion kinetics, which has limited the range of available materials. 

In addition, the materials need to contain multivalent transition metals to allow them to be redox 

active with Zn. One group of materials which have received lots of attention in other ion systems have 

been two-dimensional (2D) materials such as graphene.24–27 These are considered promising electrode 

materials due to the potential for high surface areas, large open structures between nanosheets, and 

high electrical conductivity which can result in hybrid capacitor mechanisms giving a combination of 

high energy densities, high rates and long cycle life. However, there have only been limited reports on 

the use of 2D materials in zinc-ion systems so far, with the work at a very early stage.10,28,29  

Another group of 2D materials are the recently discovered MXenes.30 These are a family of 2D 

transition metal carbides and nitrides synthesised from parent MAX phases (a family of layered ternary 

carbides where M is an early transition metal, A  is an element from groups 13-16 and X is C or N) 

through the selective removal of the A layer (e.g. Al), as demonstrated in Figure 1a.31–33 While these 

have shown great early promise in a variety of different ion systems, including monovalent Li34–36 and 

Na,37–39 multivalent Mg40,41 and Al,42 and aqueous supercapacitors,43–45 there has been limited reports 

on their performance in zinc-ion systems.46 To our knowledge, the only report of MXenes in Zn-ion is 

a very recent report by Yang et al., in which Ti3C2 MXene is used as an anode current collector to 

support zinc nanosheets and as an active cathode material via the electrostatic adsorption of SO4
2- 

ions.46 Wang et al. have also recently reported use of Ti3C2 as a positive electrode using anion 

adsorption.47  However, neither study demonstrates reversible Zn-ion storage in an MXene. By far the 

most studied MXene is Ti3C2, which can be synthesised from commercially available MAX phases and 

has high electrical conductivity.48 Ti3C2-based electrodes have been shown to be stable in aqueous 

supercapacitors over 1,000’s of cycles, highlighting their compatibility with aqueous energy storage 

devices49,50, although Ti3C2 nanosheets can oxidise when stored in aqueous suspensions exposed to 

air51. Therefore, in this work, we have used Ti3C2 as a proof-of-concept system to study the 

electrochemical viability of MXenes as Zn-ion hosts. Here, we demonstrate for the first time that Ti3C2 

is active towards the insertion/removal of Zn ions, showing high reversible capacities and good 

capacity retention upon cycling. In addition, we present a simple, one-step in-situ pillaring approach 
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in which a surfactant pillar (CTAB) is dissolved in the electrolyte and intercalated into the MXene to 

allow for high capacities in Zn storage by enabling a stable interlayer spacing. To the best of the 

authors’ knowledge, this is the first time that this type of in-situ pillaring approach has successfully 

been used in MXenes. This work is expected to stimulate further research in this area by expanding 

the study to other MXene compositions as Zn2+ hosts and by seeking customised pillaring methods 

driven by structural and microstructural features of the MXene material and intercalation host.   

Experimental section 

Synthesis of Ti3C2Tx  

3 g of Ti3AlC2 (Y-Carbon Ltd., Ukraine, 95% purity) were sieved through a -400 mesh sieve (pore size of 

38 µm) and added to a 6 M HCl solution (37.5% wt. Sigma Aldrich) with pre-dissolved NaF (99% purity, 

Alfa Aesar, 7.5:1 (F:Al molar ratio)) over 10 min. The mixture was heated to 40 °C and left to etch for 

48 h under magnetic stirring.  The solution was then centrifuged and the supernatant discarded. The 

sediments were re-dispersed in DI water and centrifuged for five further washing cycles until pH = 6. 

The recovered Ti3C2 was then washed in 1 M HCl at room temperature for 3 h to remove any remaining 

salts. The MXene flakes were then dried overnight at 60 °C.   

CTAB ex-situ pillared Ti3C2 

For hexadecyltrimethylammonium bromide (CTAB, Sigma Aldrich, >99% purity) intercalation, 200 mg 

of Ti3C2 were dispersed in a solution of DI water (30 ml) and CTAB (100 mg). The dispersion was stirred 

for 24 h at 40 °C. The pillared MXene was then recovered by vacuum filtration and dried at 60 °C 

overnight.  

 

Characterisation  

Powder X-ray diffraction. The samples were characterised by powder X-ray diffraction (PXRD) using 

a Smartlab diffractometer (Rigaku Corporation, Tokyo, Japan) with a 9 kW Cu rotating anode 

operating in reflection mode with Bragg-Brentano geometry. Data were collected between 5 and 50˚ 

2θ at a scan rate of 1˚ min-1 (45 min). Prior to the PXRD characterisation, all samples were dried at 

80 °C for 18 h, and the powders were ground with mortar and pestle and pressed flat onto a glass 

sample holder.  

For ex-situ PXRD studies, the wet electrodes were taken immediately after disassembling the cell to 

the diffractometer, where they were placed flat on a metal support for data collection. This allowed 

for the interlayer spacing to be studied in a state close to that in the cell, whereas drying led to the 

removal of interlayer water, which is shown to play a key role in the structure of Ti3C2 during cycling.  

Data were collected between 5 and 50˚ 2θ at a scan rate of 0.7˚ min-1 (1 h). For samples stopped at 

the open circuit voltage (OCV), the cell had been constructed and left to equilibrate for 24 h prior to 

disassembly and characterisation.  

Raman spectroscopy. Raman spectroscopy was carried out on a Horiba Lab Raman Spectrometer 

(Horiba Ltd., Minamiku Kyoto, Japan) with an EM-cooled Synapse camera. For taking spectra, a 100x, 

0.90 NA microscope objective was used. The dried electrodes were placed with the MXene side up 

under the diode laser (532 nm, 200 μW) for measurements.  

Scanning electron microscopy. Scanning electron microscopy (SEM) was performed in a JEOL JSM-

7800F (JEOL Ltd., Tokyo, Japan), and energy-dispersive x-ray spectroscopy (EDS) was performed in an 

X-Max50 (Oxford Instruments plc, Abingdon, UK) using an accelerating voltage of 10 kV and a working 

distance of 10 mm to study sample morphology and elemental composition. For the SEM and EDS 
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studies, the dried powder samples were dry cast onto a carbon tape support, which was placed onto 

a copper stub for analysis. 

X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy (XPS) was performed on a 

Thermo Fisher Scientific NEXSA spectrometer.  Samples were analysed using a micro-focused 

monochromatic Al x-ray source (19.2 W) over an area of approximately 100 microns.  Data were 

recorded at pass energies of 150 eV for survey scans and 40 eV for high resolution scan with 1 eV and 

0.1 eV step sizes respectively.  Charge neutralisation of the sample was achieved using a combination 

of both low energy electrons and argon ions. To remove any surface contaminants, cluster cleaning 

was performed with 2 keV energy at 0.5 x 0.5 mm area for 60s. The electrodes were extracted from 

the cell at the desired state of charge, washed 5 times with DI water to remove surface salts, dried at 

room temperature under vacuum, and packed under argon before testing. 

 

Electrochemical characterisation. The electrochemical performance of the MXene materials in 

aqueous Zn-ion hybrid capacitors was tested in stainless steel CR2032 coin cells using zinc foil (Tob 

New Energy) disks as the counter and reference electrode, 0.1 M ZnSO4 (zinc sulphate heptahydrate, 

>99%, Sigma Aldrich) in DI water as the electrolyte and a Whatman micro glass fibre separator. For 

the in-situ pillaring experiments, 0.1 wt.% of CTAB was added to this electrolyte. The MXene electrode 

had an active material: carbon black (Super P, 99% purity, Alfa Aesar): PVDF (99.0% purity, Alfa Aesar) 

mass ratio of 75:15:10. N-Methyl-2-pyrrolidone (NMP, 99.5%, Alfa Aesar, 1.7 dm-3) was added to the 

mixture to make a slurry, which was then cast onto a titanium foil (Tob New Energy, 100 µm) current 

collector, from which electrodes with a diameter of 16 mm were punched. The active mass weighting 

was around 2.8 mg cm-2. Galvanostatic measurements were carried out on a Neware battery cycler 

(Neware Technology Ltd, China) at room temperature. All potentials are reported with respect to 

Zn2+/Zn. The charge/discharge tests were carried out at a current density of 20 mA g-1 in the voltage 

range of 0.01-1 V. For rate capability tests, the cells were cycled at a current density of 20 mA g-1 for 

1 cycle to stabilise the cell before 5 cycles at each current density of 20, 50, 200, 500 and 1,000 mA g-

1 were run before returning to 20 mA g-1. Cyclic voltammetry measurements were conducted using an 

Ivium potentiostat (Ivium Technologies BV, The Netherlands) with a scan rate of 0.1 mV s-1 for 2 cycles, 

followed by 2 further cycles each at 0.5, 2 and 5 mV s-1 sweep rates in the voltage range of 0.01-1V. 

 

Results and Discussion 

Structural Characterisation 

PXRD data shows that the MXene was successfully etched from the parent MAX phase (Figure 1c). This 

is indicated by the loss of typical Ti3AlC2 diffraction peaks30,44 and the shift of the (002) peak to lower 

angles (from 9.6 to 8.1° 2θ), which corresponds to the increased interlayer spacing after the removal 

of the Al layer. SEM data confirm that the layered structure of the MXene is retained after etching 

(Figure 1b), in agreement with previous reports.30,44 EDS results show negligible Al content in the 

etched MXene (0.2 wt.%), confirming the transformation from Ti3AlC2 to Ti3C2 (Figure S1). EDS results 

also show that the Ti3C2 contains the common terminal elements O (11 wt.%), F (6 wt.%) and Cl (2.5 

wt.%) which bind to the Ti layer during the etching process. The XRD data for the in-situ pillared sample 

is shown in blue (Figure 1c). We observed an increase in the interlayer spacing in the material through 

a further shift in the (002) diffraction peak from 8.1 to 5.9˚ 2θ, which confirms that successful pillaring 

took place. This corresponds to an increase in d-spacing from 1.1 nm in the as-etched MXene to 1.5 

nm in the in-situ pillared material. A single Ti3C2 layer has a reported thickness of 0.95 nm,52 therefore, 

we estimate that the pore space between the layers has experienced a 3.7-fold increase (i.e. from 0.15 
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nm to 0.55 nm) after using the reported pillaring method. For comparison, we used a traditional ex-

situ pillared approach in Ti3C2 (Figure S2), which is consistent with the interlayer spacing values 

obtained from the Ti3C2 material pillared using the in-situ method. Previous reports of pillaring with 

CTAB have used time-consuming and highly parameter sensitive methods which give a range of 

interlayer spacings demonstrating that these pre-pillaring techniques have several drawbacks.40,52 It is 

therefore significant that we can obtain the same pillaring effect with such a simple in-situ method, 

which hugely simplifies the manufacturing process for pillared MXenes. 

 
Figure 1. a) Schematic of the synthesis of Ti3C2 via selective etching of Al from the Ti3AlC2 MAX phase 

precursor. b) SEM image of as-synthesised Ti3C2 MXene flake showing the typical layered morphology 

of MXenes. c) XRD of the commercial Ti3AlC2 precursor MAX phase (black), as-etched Ti3C2 (red) and 

in-situ pillared (blue) after drying at 60 ˚C for 18 h. The (002) diffraction peak (labelled) relates directly 

to the interlayer spacing of these materials and shows substantial shifts both after etching and 

pillaring. The insets illustrate the change in the interlayer distance across these samples. 

Electrochemical characterisation 

Galvanostatic charge/discharge tests were carried out on the in-situ pillared MXene in the voltage 

window of 0.01-1 V using a current density of 20 mA g-1 (Figure 2). Figure 2a contains a schematic 

illustrating the in-situ pillaring process whereby CTA+ is intercalated between the Ti3C2 layers on the 

first discharge cycle inside the Zn-ion hybrid capacitor.  The material shows a significant reversible Zn-

ion uptake/removal behaviour and a sloping voltage profile, which is consistent with a capacitive-type 

charge storage mechanism with no major phase changes during cycling. This is in agreement with data 

reported for Ti3C2 in other metal-ion systems.34,37,53,54 Furthermore, ex-situ XRD results show no phase 

changes occur during cycling, as is described in a later section. An initial discharge capacity of 189 mAh 

g-1 was achieved followed by a second cycle discharge capacity of 92 mAh g-1. This initial irreversible 
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capacity loss is further investigated by ex-situ Raman spectroscopy in a later section. After the second 

cycle, a capacity retention of 70% was achieved over 20 cycles (Figure 2d). An initial low coulombic 

efficiency was observed in the first cycle (39%), which is analogous to that observed in organic Li and 

Na systems.37,53 This has been explained by the formation of a solid-electrolyte interphase (SEI) and 

trapping of the charge carrying cation by an irreversible reaction with some surface groups on the 

MXene. For comparison, we also tested the electrochemical behaviour (under the same conditions) 

of the as-made MXene and pre-pillared sample and observed lower initial discharge capacities (108 

and 105 mAh g-1), respectively, when compared to the in-situ pillared MXene (Figure S3). The as-

prepared and ex-situ pillared MXene showed larger initial coulombic efficiencies (52% and 69%, 

respectively) when compared to the in-situ pillared MXene (39%). We explain these differences with 

the greater exposure to the electrolyte of reactive sites in the in-situ pillared MXene, leading to greater 

SEI formation and Zn trapping.  

Figure 2. a) Schematic of the in-situ pillaring process. (b) Load curves in the voltage window of 0.01-1 

V at a current density of 20 mA g-1 of the in-situ pillared Ti3C2. (c) Rate capability tests for in-situ pillared 

Ti3C2 at rates of 20, 50, 200, 500 and 1,000 mA g-1; and (d) Discharge capacities and Coulombic 

efficiencies over 20 cycles at a rate of 20 mA g-1 across a voltage window of 0.01-1 V for in-situ pillared 

Ti3C2. 

 

Rate capability (Figure 2c) and stability (Figure 2d) tests were also carried out in the in-situ pillared 

MXene to further investigate the electrochemical behaviour of Ti3C2 in the Zn-ion system. The in-situ 

pillared MXene also performed well under rate capability testing when cycled at increasing rates of at 
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20, 50, 200, 500 and 1,000 mA g-1. The in-situ pillared material has the highest capacity at each rate, 

achieving average capacities of 86 mAh g-1, 59 mAh g-1, 52 mAh g-1, 38 mAh g-1 and 27 mAh g-1 at 20, 

50, 200, 500 and 1,000 mA g-1 respectively. After the high rate testing, the rate was switched back to 

20 mAh g-1 and the capacity recovered back to 67 mAh g-1. This shows that the in-situ pillared MXene 

responds well to high rate cycling and is not damaged by fast charging or discharging. The in-situ 

pillared MXene retained a discharge capacity of 62 mAh g-1 after 20 cycles (70% of the 2nd cycle 

capacity). This loss is likely to be due to the degradation of the electrode and/or irreversible reactions 

with the charge carrier but is still less than the loss observed for the non-pillared and ex-situ pillared 

materials (Figure 2d for the in-situ pillared Ti3C2 and Figure S3d for the non-pillared and ex-situ pillared 

MXene). In comparison, the as-made MXene only had a capacity of 54 mAh g-1 after 20 cycles and the 

CTAB ex-situ pillared material showed only 42 mAh g-1. In the rate capability tests, the as-made MXene 

only showed capacities of 61, 45, 40, 27 and 17 mAh g-1 at the respective rates. When the rate was 

returned to 20 mA g-1, the capacity recovered to 56 mAh g-1, again showing that the electrode is not 

damaged by high rates.  

 

Cyclic voltammetry (CV) studies were carried out on the in-situ pillared system to gain more insight 

into the Zn storage mechanism and the kinetics of the system (Figure 3). Cells were first cycled at a 

sweep rate of 0.1 mV s -1 for 2 cycles between 0.01 and 1 V before further cycling at sweep rates of 

0.5, 2 and 5 mV s-1. The material shows a quasi-rectangular CV plot, which suggests that there is a large 

capacitive contribution to the storage mechanism in this material. However, there are broad reversible 

redox peaks at 0.3 V (with a shoulder at 0.2 V) and at 0.7 V (vs. Zn2+/Zn) on the anodic sweep and at 

0.11 V and 0.5 V on the cathodic sweep. An irreversible peak at ca. 0.1 V on the cathodic sweep was 

observed on the first cycle, which could be due to SEI formation. This is in contrast to the reported CV 

plots of Ti3C2 in other sulphate electrolytes such as H2SO4, Li2SO4 and Na2SO4,43–45,55 where no sharp 

redox peaks are observed and the plots are much more rectangular in shape. This suggests that the 

MXene may behave differently in the aqueous ZnSO4-based electrolyte than it does in other sulphate-

based electrolytes based on monovalent cations. When the sweep rate is increased, the CV plots retain 

the quasi-rectangular shape and the broad cathodic peaks at 0.2 and 0.7 V are still noticeable at all 

rates but have shifted to higher voltages as the rate increases (to 0.4 and 0.95 V respectively by 5 mV 

s-1). Individual CV plots at different sweep rates are available in Figure S5. 
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Figure 3. Cyclic voltammograms for: a) in-situ pillared Ti3C2 at 0.1 mV s-1 in a voltage window of 0.01-

1 V for 2 cycles b) CV plots for in-situ pillared Ti3C2 at 0.1, 0.5, 2 and 5 mV s-1. (1st cycle at each sweep 

rate is shown) c) Plot of b-value vs. voltage for the in-situ pillared Ti3C2 for the anodic (red) and cathodic 

(blue) sweeps. 

There are 3 main charge storage mechanisms found in electrochemical energy storage devices: 

faradaic diffusion-limited redox reactions (e.g. intercalation reactions found in typical battery 

materials), faradaic surface-controlled redox reactions (i.e. pseudocapacitance) and non-faradaic 

electric double layer capacitance. It is known that the contribution of the diffusion-limited 

contribution and the capacitive contribution to the charge storage can be separated out using the CV 

profiles at different rates.56 The relationship between the current (i) and scan rate (v) is given in 

equation 1: 

 

i = avb     (1) 

 

where a and b are fitting parameters.57 Importantly, a b-value of 0.5 corresponds to a diffusion-limited 

process (i.e. battery-like charge storage) and a b-value of 1 indicates a surface-controlled process (i.e. 

capacitive charge storage). A plot of log(i) against log(v) gives a straight line with a slope of b.  In this 

work, b-values of 0.85 and 0.84 were obtained for the in-situ pillared MXene, showing a great 

contribution from capacitive processes. This is in agreement with previous studies reported in the 

literature for this material in different ion systems, where b-values of 0.8-1 are typical. When plotting 

the b-value obtained at different voltages during cathodic and anodic processes (Figure 3c), a 
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significant voltage dependence for the mechanism of charge storage was observed. During discharge, 

a predominant capacitive process occurs, given by the high values of b (which fall between 1 and 0.9), 

followed by a diffusion-limited process occurring (< 0.4 V). These results match well the CV plots, 

where there are distinctive peaks in the voltage region of 0.2-0.4 V (Figure 3a). Upon charge, the 

proportion of the capacitive contribution to the charge storage mechanisms rapidly increases, with b 

values of ca. 0.9 between 0.2 to 0.8 V, with an increase to b = 1 from 0.8 V. This suggests that the 

anodic peaks observed in the CV plots have a minimal contribution to redox processes. Overall, these 

data confirm the complexity of the Zn storage mechanism occurring in the MXene, which behaves as 

a hybrid capacitor electrode, where low states of charge will favour diffusion processes whilst high 

states of charge will induce capacitive processes. 

 

Structural changes during cycling 

To study the structural changes during cycling, ex-situ PXRD studies were carried out on the in-situ 

pillared (Figure 4) and non-pillared (Figure S6) MXene. Figure 4 shows that the interlayer distance at 

OCV for the in-situ pillared Ti3C2 is significantly enlarged compared to the pristine MXene, with a shift 

of the (002) diffraction peak from 8.1˚ 2θ in the pristine material to 5.9˚ 2θ at OCV. This is a larger 

interlayer spacing than that reported for Ti3C2 in organic electrolytes for Li and Na systems, which 

typically see the peak shift to around 7˚ 2θ, which is only visible in our data as a small peak at OCV 

(starred, inset Figure 4).37,53 The (002) diffraction peak relates directly to the interlayer distance and 

pore height in the electrode material and here corresponds to a pore height of around 0.55 nm 

(interlayer spacing of 1.5 nm), which is significantly larger than the ratio of a Zn2+ ion (0.074 nm).58 EDS 

(Table S1) confirms that Zn is detected in the MXene electrode after being soaked in the electrolyte, 

showing that it can spontaneously intercalate into Ti3C2. Given that Zn has a hydrated ionic radius of 

0.43 nm6 it is likely that this is intercalated in a solvated state ([Zn(H2O)6]2+).59 Large XRD shifts arising 

from the spontaneous intercalation of a variety of other cations into Ti3C2 has previously been 

reported.55  No significant difference is observed between the in-situ pillared and non-pillared MXene 

(Figure S6) at this stage.  
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Figure 4. a) Ex-situ XRD data of the in-situ pillared Ti3C2 material at different states of charge in the 

voltage window 0.01-1 V. a) Load curve highlighting the state of charge at which each electrode was 

stopped at and analysed; b) Corresponding X-ray diffraction data for each state of charge. The orange 

rectangle shows a zoom in the region of the (002) diffraction peak at OCV state and during the first 

discharge to 0.5 V, highlighting the loss of the shoulder (asterisk shows small shoulder peak at 7˚ 2θ) 

and sharpening of the peak as all layers appear to be intercalated. 

Upon discharging to 0.5 V, almost no change is detected in the XRD data compared to the material at 

OCV, apart from the evolution of two peaks at 18˚ and 30˚ 2θ, which are assigned as the (004) and 

(006) diffraction peaks of Ti3C2 which implies that the insertion of Zn ions in the MXene enhances the 

layer ordering within the MXene crystal structure. The (002) diffraction peak at 5.9˚ 2θ has sharpened 

slightly, suggesting a uniform increase of the interlayer distances. This implies that Zn has been 

intercalated into Ti3C2, which has expanded previously unfilled interlayers which made up the shoulder 

of the (002) diffraction peak including small starred peak and caused a slight shift to lower angles i.e. 

a larger interlayer distance (see the inset of Figure 4b). Over subsequent states-of-charge, no extra 

peaks from new phases are observed, confirming that the Zn storage occurs without a phase change, 

which fits well with the sloping profile of the load curve (Figure 2b). In addition, the (002) diffraction 

peak is at 5.9˚ 2θ at all states of charge showing that the pillared electrode sees negligible volume 

changes during cycling. There is negligible variation in the position of this peak, which is likely to be 

due to small differences in dehydration of the samples for each run, which can be due to sample 

preparation and measurement. That the interlayer spacing remains constant despite the 

deintercalation of Zn2+ (as shown by the EDS results in Table S1) is explained by the intercalation of 

the CTA+ pillars and/ or water molecules, which are not removed during the discharge sweeps, 

therefore allowing a stable interlayer distance during cycling. It has been previously reported that 

organic electrolyte solvent molecules can act as small pillars during cycling, where minimal decrease 

in the interlayer spacing upon deintercalation of Na+ was observed.60 Therefore, these results highlight 



   
 

11 
 

the successful use of CTA+ pillars to create an MXene electrode with negligible volume change during 

cycling.      

 

For the non-pillared MXene, a new peak at 8.4˚ 2θ is observed when the electrode is fully discharged 

to 0.01 V (Figure S6). This is assigned as a split of the (002) diffraction peak with a smaller interlayer 

distance than the 5.9˚ 2θ peak. No other change is observed, confirming that Zn storage occurs 

without a phase change. When the cell is charged to 1 V, the diffraction peak at 8.4˚ 2θ disappears, 

showing that all the MXene sheets are evenly spaced again. The same pattern is repeated on the 2nd 

cycle.  

 

In an ex-situ study of Ti3C2 in an organic lithium electrolyte, Cheng et al. also found that the (002) 

diffraction peak split and that the intensity of the high angle peak increased at low voltages 

(discharged state) and decreased in intensity when the voltage increased (charged state).53 They 

assigned this to a sequential intercalation mechanism where the Li intercalated into Ti3C2 with the 

large interlayer spaced sites preferentially (i.e. first) at the higher voltages. An alternative explanation 

could be that at low voltages (as the cell discharges and extra Zn intercalates), some solvent (water) 

molecules are expelled from the interlayer space, potentially allowing Zn2+ to pull the layers together 

through electrostatic attraction. This process of pulling the sheets together and expelling water or 

intercalation of Zn2+ into smaller sites would correspond to the faradaic process identified via the CV 

analysis at low voltages (Figure 3). 

 

By contrast, the peak split is not visible for the in-situ pillared material. Cheng et al. also noticed that 

when NH4
+ was pre-intercalated into Ti3C2, the interlayer spacing increased, removing the sites with 

small interlayer spacings.53 Here we observe the same effect with the in-situ pillaring method which 

suggests that CTA+ was successfully intercalated between the layers and it is indeed acting as an in-

situ pillar for the MXene. Furthermore, the pillar also increases the accessibly of the surface to the 

solvated Zn2+ ions, which improves the capacity, since more storage sites are available (Figures 2 and 

S3). The rate capability also improves due to reduced interaction between the Zn ions and the MXene 

surface before reaching a storage site (Figures 2c and S3c). This demonstrates a low diffusion barrier, 

explaining the high proportion of current derived via capacitive surface-controlled processes (Figure 

3). 

 

Raman spectroscopy has previously been demonstrated to be a useful tool in studying the nature of 

MXene surface groups since their Raman spectra are highly sensitive to changes in the surface 

chemistry.45,61 Consequently, it can give key insights into the role of MXene functional groups and the 

charge storage mechanism.52 Figure 5 shows the ex-situ Raman spectra of the in-situ pillared MXene 

in the first charge-discharge cycle (the corresponding data for the non-pillared Ti3C2 can be found in 

Figure S7). For comparison, the Raman spectrum for the pristine cast electrode is also included. There 

are common peaks in all spectra, which are consistent with those previously reported for Ti3C2.45,61 

The peaks at around 210 cm-1 and 740 cm-1 correspond to vibrations from Ti=O terminated MXene, 

whereas the broad peak at 270 cm-1 results from the presence of Ti-O-H groups (i.e. protonated oxygen 

terminations).  The large and very broad peaks located between 350 and 450 cm-1 and 550 and 700 

cm-1 correspond to vibrations from all the surface groups present in the MXene, which are known to 

have significant overlap in their vibrational frequencies.61  
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Figure 5. Ex-situ Raman spectroscopy data of the in-situ pillared Ti3C2 on the first cycle a) Load curve 

highlighting the state of charge each electrode was stopped at. b) Corresponding Raman spectra for 

each state of charge. The dashed rectangles highlight key Ti-O(H) vibrations for the Zn-intercalation 

mechanism. 

The Raman spectrum is unchanged between the pristine electrode and the electrode at OCV even 

though the ex-situ EDS (Table S1) and XRD (Figure S8) data showed significant uptake of Zn ions into 

the interlayer. This shows that although Zn can spontaneously intercalate into Ti3C2 when the MXene 

is soaked in ZnSO4, no changes in the surface bonding occur, and the Zn has no covalent interaction 

with the termination groups.  

 

In contrast, when current is drawn and cycling begins, there are several noticeable features in the 

voltage-dependent evolution of the peaks corresponding to the –O and –OH surface groups. During 

the first discharge cycle, the Ti=O vibration at 210 cm-1 broadens and loses intensity. In addition, a 

shoulder develops at higher wavenumbers on the right-hand side of this peak. At 0.01 V this shoulder 

merges with the 270 cm-1 Ti-O-H peak which also appears to broaden upon cycling. Both peaks are 

significantly flattened by the end of the first discharge and the Ti-O-H peak can no longer be 

distinguished. These changes then reverse on the first charging cycle, with the 210 cm-1 peak 

sharpening and seeing an increase in intensity and a reduction of the shoulder. By the end of the first 

charging cycle (1 V), the Ti-O-H peak at 270 cm-1 can be clearly distinguished from the 210 cm-1 

shoulder once more. However, it should be noted that the Raman spectrum at the end of the first 

charging cycle is not the same as the pre-cycled electrode at OCV (also around 1 V), suggesting that 

the changes in bonding are not fully reversible. In addition, EDS data showed significant amounts of 

Zn was retained in the material after charging to 1 V (Table S1). This explains the substantial 

irreversible capacity loss observed in the galvanostatic charge-discharge cycling (Figure 2); significant 
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amounts of Zn are still bonded to the Ti-O groups by the end of the first charge to 1 V. It is possible 

that further Zn could be extracted at higher voltages, however the CV analysis of the voltage window 

showed that the Ti3C2 caused significant water splitting above 1.2 V, which limits the charging voltage.  

 

These changes are consistent with Zn ions bonding and debonding to Ti=O terminations on the Ti3C2 

surface upon discharging and charging respectively. This is further supported by the broadening and 

sharpening of the Ti=O peak at 740 cm-1 upon cycling. The shoulder of the 210 cm-1 peak suggests the 

formation of a Ti-O-Zn type interaction, and occurs at lower wavenumbers than the Ti-O-H vibration 

due to the heavier mass of Zn compared to H. This shows that –O terminations are the active sites for 

Zn storage in the MXene, which has also been reported for H+ and Na+ ion systems.45 This gives 

important guidance for the further improvement of capacity for Ti3C2 electrodes in Zn systems, since 

the number of –O terminal groups can easily be increased, for example by exchanging –F groups for –

O ones.57 Importantly, this is the first time MXenes have been shown to undergo faradaic processes 

in aqueous multivalent energy storage systems. Finally, we note that the addition of CTAB seems to 

have no effect on the underlying charge storage mechanism since the Raman spectra with and without 

CTAB show identical trends. This suggests that the improvements from the addition of CTAB are due 

to changes in the interlayer spacings and subsequent diffusion barriers rather than fundamentally 

changing the mechanisms involved.  

 

These results strongly suggest that the dominant charge storage mechanism is from the intercalation 

of Zn between the Ti3C2 layers. We observe changes in intensity for the Ti-O peaks, showing that in 

ZnSO4 charge storage is predominantly through the reversible binding of Zn ions to the –O termination 

groups on the Ti3C2 surface. As was reported for H2SO4,45 this must be accompanied by a change in the 

Ti valence state, i.e., a pseudocapacitive intercalation reaction. It is also noteworthy that the changes 

we report are not consistent with H+ as the main charge carrier, since we do not observe the distinctive 

shift in the Ti=O peaks. In fact, when the cell is fully discharged, and the Ti-O-H groups would be at 

their most abundant if H+ was the charge carrier, the Ti-O-H peak at 270 cm-1 cannot be distinguished 

in our Raman spectra. In addition, 0.1 M ZnSO4 contains a low concentration of H+ (pH 4-6), which are 

insufficient to account for the capacities reported here.45 Finally, since no S is detected in our EDS 

results (Table S1) and there is no SO4
2- peak (980 cm-1) 44 in our Raman spectra (Figure 5), electric 

double layer capacitance via SO4
2- adsorption can also be ruled out as the charge storage mechanism. 

Therefore, the results are strongly consistent with the reversible storage of Zn2+ ions as the main 

charge carrier.  

 

Ex-situ XPS was then used on the in-situ pillared Ti3C2 to investigate the Ti oxidation state during 

cycling. The results are shown in Figure S9. There are four broad main peaks that can be observed in 

the Ti 2p spectra for the OCV sample (Figure S9, A). These centre on 455.9, 459.7, 462.0 and 465.2 eV. 

This is consistent with XPS spectra from previously reported studies, which show that Ti3C2 contains 

predominately Ti3+ and Ti2+.62,63 Ti4+ oxidation states correspond to surface oxides from the oxidation 

of the MXene, while the other states are all expected to be found in MXenes.  

Upon discharge, there is a clear shift in all peaks to lower binding energies, which corresponds to the 

presence of Ti species with lower oxidation states. For example, the peak at 455.9 eV (3/2 electrons) 

at OCV shifts to 455.4 eV at 0.01 V, implying reduction of Ti2+ to Ti0. A similar shift is observed for the 

462.0 eV peak (1/2 electrons), which occurs at 461.5 eV at 0.01 V, further supporting the MXene Ti 

reduction. At 0.5 V, the corresponding peaks sit between these two end points, at 455.6 eV for the 
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3/2 electrons and 461.4 eV for the 1/2 electrons, suggesting that the Ti is reduced throughout the 

voltage window. This implies that at voltages between 0.5 and 1 V the charge storage has significant 

contribution from pseudocapacitive mechanisms, not just EDL capacitance (this matches data from CV 

plots Figure 3). When the cell is charged, these changes reverse, showing that the change in valence 

state upon discharge is mostly reversible, revealing that the Zn storage is achieved via a Ti-based redox 

reaction. Interestingly, the electrode charged to 0.5 V shows very similar shifts to the electrode 

charged to 1 V (0.1 eV and 0.2 eV lower binding energies than at 1 V for the 3/2 and 1/2 electrons 

respectively). This implies that on charge most of the redox contribution has occurred by 0.5 V, which 

would match the distinctive redox peak observed on the CV (Figure 3). Reversible Ti redox is also 

shown by the peak deconvolution, where the concentration of Ti2+ increases upon discharge (from 

28% at OCV to 34% at 0.01 V) and decreases on the subsequent charge (to 30%), supporting the 

reversible reduction of Ti4+ and Ti3+ to Ti2+. This behaviour has previously been demonstrated for Ti3C2 

MXene using in-situ XANES experiments in aqueous H2SO4 and organic Li-ion systems.64,65 In both these 

cases the overall titanium oxidation state in the MXene was just over 2+, which would seem to match 

well with our results for Zn.  

Furthermore, XPS data show that the surface oxides (Ti4+) also change upon cycling. As well as a 

reversible shift on charge and discharge as seen for the MXene Ti, there is also a broadening on 

discharge (to the extent that the 1/2 Ti4+ component at 456.3 eV cannot be distinguished at 0.01 V 

and the 3/2 component at 459.5 eV is severely flattened). The concentration of Ti4+ in the spectra 

decreases from 22% to 15% between OCV and 0.01 V, further supporting the Ti4+ reduction. This is 

then reversed on charging to 0.5 V, with little difference between the 0.5 and 1 V electrodes. This 

suggests that the surface oxides also contribute to reversible Zn storage, and that the oxidation on 

charge occurs almost entirely between 0.01 and 0.5 V. However, it may be that these surface oxides 

are still not desirable for MXene performance, since a previous study on nanosized anatase TiO2 for 

Zn-ion batteries reported low capacities of 25 mAh g-1, much less than Ti3C2 reported here.66 Further 

work on the role of titanium-based oxides in Zn-ion systems is needed to fully determine their 

performance and contribution here. 

The mechanistic understanding yielded by our results allows for the optimisation and improvement 

of the MXene materials as Zn-ion hosts. This is demonstrated by the cycling results in Figure 6, which 

were carried out in an elevated voltage window of 0.2-1.2 V, thus removing the diffusion-limited 

processes that the CV analysis showed were below 0.2 V. In this voltage window, we were able to 

observe increased coulombic efficiency (99.5% compared to 39% in the 0.01-1.0 V window) signifying 

enhanced Zn storage reversibility resulting from the capacitive processes. This is much closer to levels 

required for practical applications, although this occurs at the expense of delivering lower initial 

specific capacities (73 mAh g-1 compared to 189 mAh g-1 in the 0.01-1.0 V window). Nevertheless, the 

impressive coulombic efficiency was maintained above 99% across 100 cycles at 20 mA g-1. This was 

coupled with outstanding cycling stability, with over 96% capacity retention between the 1st and 

100th cycles. This compared with 56% retention for the non-pillared MXene (which showed 

irreversible plateaus at voltages above 1.1 V, Figure S10) showing that the non-pillared material was 

less stable in this higher voltage window, further demonstrating the benefits of our unique in-situ 

pillaring method. Both the pillared and non-pillared materials show coulombic efficiencies slightly over 

100% in initial cycles. This is explained by the extraction of the spontaneously intercalated Zn which 

our ex-situ EDS (Table S1) and XRD results (Figure 4 and S6) revealed are present in the MXene at OCV, 

which are being deintercalated at these elevated voltages. Pre-intercalation of the charge carrying ion 

has been observed to lead to initial coulombic efficiencies over 100% in other systems, including 

aqueous Zn-ion systems.67–69 Alternatively, there could be side-reactions between the electrode and 

electrolyte in the high voltage region in these initial cycles.67,70,71 Importantly, our system rapidly 
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stabilises to coulombic efficiencies just under 100%, showing that the system quickly stabilises 

enabling efficient and long-term cycling. Even at high rates, the in-situ pillared MXene showed 

excellent capacity retention with over 96% of the initial capacity retained even after 1,000 cycles at 

the elevated rate of 0.2 A g-1 (Figure 6c), with coulombic efficiencies around 100%. These results 

demonstrate that pillared Ti3C2 MXene is a promising material for long-life aqueous Zn-ion systems.   

 

Figure 6. a) Load curves in the voltage window of 0.2-1.2 V vs. Zn2+/Zn at a current density of 20 mA g-

1 for the in-situ pillared Ti3C2. (b) Discharge capacities and Coulombic efficiencies over 100 cycles at a 

rate of 20 mA g-1 across a voltage window of 0.2-1.2 V for in-situ pillared (blue) and non-pillared (red) 

Ti3C2. c) Long-term cycling stability test of the in-situ pillared Ti3C2 at an elevated rate of 0.2 A g-1 in 

the voltage range of 0.2-1.2 V over 1,000 cycles.  

Conclusions 

 

In summary, in this work, we demonstrate the viability of Ti3C2 MXene as a zinc-ion host for future 

sustainable zinc-ion hybrid capacitors. Furthermore, we have presented a proof-of-concept 

structuring technique using surfactant additives to control the electrode architecture via a novel in-

situ pillaring method. The insights gained from kinetic, diffraction and spectroscopic studies reveal 

that the Zn2+ (de)intercalation occurs via pseudocapacitive and battery-like processes, with the –O 

functional groups playing a key role as the binding site for Zn ions. This is the first time MXenes have 

been shown to store charge via faradaic processes in aqueous multivalent energy storage systems.  

The in-situ pillaring both expands the MXene layers, which promote the pseudocapacitive properties 

of the material and evade volume changes during cycling. In particular, this resulted in outstanding 

cycling stability, with over 96% capacity retention achieved even after 1,000 cycles. This work opens 

new opportunities for using in-situ structural approaches to improve electrode performance, which in 
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turn, would significantly simplify the use of 2D materials as electrode materials, where complicated 

processes are often used to control the structure. The in-situ pillaring could be applied not just to 

other MXenes, but also to the wider group of 2D and layered materials. Finally, we note that MXenes 

are a growing family of over 20 members, and that work on MXenes in other ion systems has seen 

substantial improvements in performance via control of the flake size and surface groups combined 

with careful control of the electrode architecture, which demonstrates the large potential MXenes can 

be expected to have in zinc-ion systems.  
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