

1 **Search for Electron Antineutrino Appearance in a Long-baseline Muon Antineutrino
2 Beam**

3 K. Abe,⁵⁵ R. Akutsu,⁵⁶ A. Ali,³² C. Alt,¹¹ C. Andreopoulos,^{53, 34} L. Anthony,³⁴ M. Antonova,¹⁹ S. Aoki,³¹ A. Ariga,²
4 Y. Asada,⁶⁸ Y. Ashida,³² E.T. Atkin,²¹ Y. Awataguchi,⁵⁸ S. Ban,³² M. Barbi,⁴⁵ G.J. Barker,⁶⁵ G. Barr,⁴² D. Barrow,⁴²
5 C. Barry,³⁴ M. Batkiewicz-Kwasniak,¹⁵ A. Beloshapkin,²⁶ F. Bench,³⁴ V. Berardi,²² S. Berkman,^{4, 61} L. Berns,⁵⁷
6 S. Bhadra,⁶⁹ S. Bienstock,⁵² A. Blondel,^{52, 13} S. Bolognesi,⁶ B. Bourguille,¹⁸ S.B. Boyd,⁶⁵ D. Braillsford,³³ A. Bravar,¹³
7 D. Bravo Berguño,¹ C. Bronner,⁵⁵ A. Bubak,⁵⁰ M. Buizza Avanzini,¹⁰ J. Calcutt,³⁶ T. Campbell,⁷ S. Cao,¹⁶
8 S.L. Cartwright,⁴⁹ M.G. Catanesi,²² A. Cervera,¹⁹ A. Chappell,⁶⁵ C. Checchia,²⁴ D. Cherdack,¹⁷ N. Chikuma,⁵⁴
9 G. Christodoulou,¹² J. Coleman,³⁴ G. Collazuol,²⁴ L. Cook,^{42, 28} D. Coplowe,⁴² A. Cudd,³⁶ A. Dabrowska,¹⁵
10 G. De Rosa,²³ T. Dealtry,³³ P.F. Denner,⁶⁵ S.R. Dennis,³⁴ C. Densham,⁵³ F. Di Lodovico,³⁰ N. Dokania,³⁹
11 S. Dolan,¹² T.A. Doyle,³³ O. Drapier,¹⁰ J. Dumarchez,⁵² P. Dunne,²¹ L. Eklund,¹⁴ S. Emery-Schrenk,⁶ A. Ereditato,²
12 P. Fernandez,¹⁹ T. Feusels,^{4, 61} A.J. Finch,³³ G.A. Fiorentini,⁶⁹ G. Fiorillo,²³ C. Francois,² M. Friend,^{16, *} Y. Fujii,^{16, *}
13 R. Fujita,⁵⁴ D. Fukuda,⁴⁰ R. Fukuda,⁵⁹ Y. Fukuda,³⁷ K. Fusshoeller,¹¹ K. Gameil,^{4, 61} C. Giganti,⁵² T. Golan,⁶⁷
14 M. Gonin,¹⁰ A. Gorin,²⁶ M. Guigue,⁵² D.R. Hadley,⁶⁵ J.T. Haigh,⁶⁵ P. Hamacher-Baumann,⁴⁸ M. Hartz,^{61, 28}
15 T. Hasegawa,^{16, *} N.C. Hastings,¹⁶ T. Hayashino,³² Y. Hayato,^{55, 28} A. Hiramoto,³² M. Hogan,⁸ J. Holeczek,⁵⁰
16 N.T. Hong Van,^{20, 27} F. Iacob,²⁴ A.K. Ichikawa,³² M. Ikeda,⁵⁵ T. Ishida,^{16, *} T. Ishii,^{16, *} M. Ishitsuka,⁵⁹ K. Iwamoto,⁵⁴
17 A. Izmaylov,^{19, 26} M. Jakkapu,¹⁶ B. Jamieson,⁶⁶ S.J. Jenkins,⁴⁹ C. Jesús-Valls,¹⁸ M. Jiang,³² S. Johnson,⁷ P. Jonsson,²¹
18 C.K. Jung,^{39, †} M. Kabirnezhad,⁴² A.C. Kaboth,^{47, 53} T. Kajita,^{56, †} H. Kakuno,⁵⁸ J. Kameda,⁵⁵ D. Karlen,^{62, 61}
19 S.P. Kasetti,³⁵ Y. Kataoka,⁵⁵ T. Katori,³⁰ Y. Kato,⁵⁵ E. Kearns,^{3, 28, †} M. Khabibullin,²⁶ A. Khotjantsev,²⁶
20 T. Kikawa,³² H. Kim,⁴¹ J. Kim,^{4, 61} S. King,⁴⁴ J. Kisiel,⁵⁰ A. Knight,⁶⁵ A. Knox,³³ T. Kobayashi,^{16, *} L. Koch,⁴²
21 T. Koga,⁵⁴ A. Konaka,⁶¹ L.L. Kormos,³³ Y. Koshio,^{40, †} A. Kostin,²⁶ K. Kowalik,³⁸ H. Kubo,³² Y. Kudenko,^{26, †}
22 N. Kukita,⁴¹ S. Kuribayashi,³² R. Kurjata,⁶⁴ T. Kutter,³⁵ M. Kuze,⁵⁷ L. Labarga,¹ J. Lagoda,³⁸ M. Lamoureux,²⁴
23 M. Laveder,²⁴ M. Lawe,³³ M. Licciardi,¹⁰ T. Lindner,⁶¹ R.P. Litchfield,¹⁴ S.L. Liu,³⁹ X. Li,³⁹ A. Longhin,²⁴
24 L. Ludovici,²⁵ X. Lu,⁴² T. Lux,¹⁸ L.N. Machado,²³ L. Magaletti,²² K. Mahn,³⁶ M. Malek,⁴⁹ S. Manly,⁴⁶ L. Maret,¹³
25 A.D. Marino,⁷ L. Marti-Magro,^{55, 28} J.F. Martin,⁶⁰ T. Maruyama,^{16, *} T. Matsubara,¹⁶ K. Matsushita,⁵⁴
26 V. Matveev,²⁶ K. Mavrokorditis,³⁴ E. Mazzucato,⁶ M. McCarthy,⁶⁹ N. McCauley,³⁴ K.S. McFarland,⁴⁶ C. McGrew,³⁹
27 A. Mefodiev,²⁶ C. Metelko,³⁴ M. Mezzetto,²⁴ A. Minamino,⁶⁸ O. Mineev,²⁶ S. Mine,⁵ M. Miura,^{55, †} L. Molina
28 Bueno,¹¹ S. Moriyama,^{55, †} J. Morrison,³⁶ Th.A. Mueller,¹⁰ L. Munteanu,⁶ S. Murphy,¹¹ Y. Nagai,⁷ T. Nakadaira,^{16, *}
29 M. Nakahata,^{55, 28} Y. Nakajima,⁵⁵ A. Nakamura,⁴⁰ K.G. Nakamura,³² K. Nakamura,^{28, 16, *} S. Nakayama,^{55, 28}
30 T. Nakaya,^{32, 28} K. Nakayoshi,^{16, *} C. Nantais,⁶⁰ T.V. Ngoc,^{20, §} K. Niewczas,⁶⁷ K. Nishikawa,^{16, ¶} Y. Nishimura,²⁹
31 T.S. Nonnenmacher,²¹ F. Nova,⁵³ P. Novella,¹⁹ J. Nowak,³³ J.C. Nugent,¹⁴ H.M. O'Keeffe,³³ L. O'Sullivan,⁴⁹
32 T. Odagawa,³² K. Okumura,^{56, 28} T. Okusawa,⁴¹ S.M. Oser,^{4, 61} R.A. Owen,⁴⁴ Y. Oyama,^{16, *} V. Palladino,²³
33 J.L. Palomino,³⁹ V. Paolone,⁴³ W.C. Parker,⁴⁷ J. Pasternak,²¹ P. Paudyal,³⁴ M. Pavin,⁶¹ D. Payne,³⁴ G.C. Penn,³⁴
34 L. Pickering,³⁶ C. Pidcott,⁴⁹ G. Pintaudi,⁶⁸ E.S. Pinzon Guerra,⁶⁹ C. Pistillo,² B. Popov,^{52, **} K. Porwit,⁵⁰
35 M. Posiadala-Zezula,⁶³ A. Pritchard,³⁴ B. Quilain,²⁸ T. Radermacher,⁴⁸ E. Radicioni,²² B. Radics,¹¹ P.N. Ratoff,³³
36 E. Reinherz-Aronis,⁸ C. Riccio,²³ E. Rondio,³⁸ S. Roth,⁴⁸ A. Rubbia,¹¹ A.C. Ruggeri,²³ C.A. Ruggles,¹⁴
37 A. Rychter,⁶⁴ K. Sakashita,^{16, *} F. Sánchez,¹³ C.M. Schloesser,¹¹ K. Scholberg,^{9, †} J. Schwehr,⁸ M. Scott,²¹
38 Y. Seiya,^{41, ††} T. Sekiguchi,^{16, *} H. Sekiya,^{55, 28, †} D. Sgalaberna,¹² R. Shah,^{53, 42} A. Shaikhiev,²⁶ F. Shaker,⁶⁶
39 A. Shaykina,²⁶ M. Shiozawa,^{55, 28} W. Shorrock,²¹ A. Shvartsman,²⁶ A. Smirnov,²⁶ M. Smy,⁵ J.T. Sobczyk,⁶⁷
40 H. Sobel,^{5, 28} F.J.P. Soler,¹⁴ Y. Sonoda,⁵⁵ J. Steinmann,⁴⁸ S. Suvorov,^{26, 6} A. Suzuki,³¹ S.Y. Suzuki,^{16, *} Y. Suzuki,²⁸
41 A.A. Sztuc,²¹ M. Tada,^{16, *} M. Tajima,³² A. Takeda,⁵⁵ Y. Takeuchi,^{31, 28} H.K. Tanaka,^{55, †} H.A. Tanaka,^{51, 60}
42 S. Tanaka,⁴¹ L.F. Thompson,⁴⁹ W. Toki,⁸ C. Touramanis,³⁴ T. Towstego,⁶⁰ K.M. Tsui,³⁴ T. Tsukamoto,^{16, *}
43 M. Tzanov,³⁵ Y. Uchida,²¹ W. Uno,³² M. Vagins,^{28, 5} S. Valder,⁶⁵ Z. Vallari,³⁹ D. Vargas,¹⁸ G. Vasseur,⁶ C. Vilela,³⁹
44 W.G.S. Vinning,⁶⁵ T. Vladislavljevic,^{42, 28} V.V. Volkov,²⁶ T. Wachala,¹⁵ J. Walker,⁶⁶ J.G. Walsh,³³ Y. Wang,³⁹
45 D. Wark,^{53, 42} M.O. Wascko,²¹ A. Weber,^{53, 42} R. Wendell,^{32, †} M.J. Wilking,³⁹ C. Wilkinson,² J.R. Wilson,³⁰
46 R.J. Wilson,⁸ K. Wood,³⁹ C. Wret,⁴⁶ Y. Yamada,^{16, ¶} K. Yamamoto,^{41, ††} C. Yanagisawa,^{39, ‡‡} G. Yang,³⁹ T. Yano,⁵⁵
47 K. Yasutome,³² S. Yen,⁶¹ N. Yershov,²⁶ M. Yokoyama,^{54, †} T. Yoshida,⁵⁷ M. Yu,⁶⁹ A. Zalewska,¹⁵ J. Zalipska,³⁸
48 K. Zaremba,⁶⁴ G. Zarnecki,³⁸ M. Ziembicki,⁶⁴ E.D. Zimmerman,⁷ M. Zito,⁵² S. Zsoldos,⁴⁴ and A. Zyкова²⁶

49 (The T2K Collaboration)

50 ¹ University Autonoma Madrid, Department of Theoretical Physics, 28049 Madrid, Spain

51 ² University of Bern, Albert Einstein Center for Fundamental Physics,
52 Laboratory for High Energy Physics (LHEP), Bern, Switzerland

53 ³ Boston University, Department of Physics, Boston, Massachusetts, U.S.A.

⁴ University of British Columbia, Department of Physics and Astronomy, Vancouver, British Columbia, Canada
⁵ University of California, Irvine, Department of Physics and Astronomy, Irvine, California, U.S.A.
⁶ IRFU, CEA Saclay, Gif-sur-Yvette, France
⁷ University of Colorado at Boulder, Department of Physics, Boulder, Colorado, U.S.A.
⁸ Colorado State University, Department of Physics, Fort Collins, Colorado, U.S.A.
⁹ Duke University, Department of Physics, Durham, North Carolina, U.S.A.
¹⁰ Ecole Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet, Palaiseau, France
¹¹ ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland
¹² CERN European Organization for Nuclear Research, CH-1211 Genve 23, Switzerland
¹³ University of Geneva, Section de Physique, DPNC, Geneva, Switzerland
¹⁴ University of Glasgow, School of Physics and Astronomy, Glasgow, United Kingdom
¹⁵ H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
¹⁶ High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
¹⁷ University of Houston, Department of Physics, Houston, Texas, U.S.A.
¹⁸ Institut de Fisica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra (Barcelona) Spain
¹⁹ IFIC (CSIC & University of Valencia), Valencia, Spain
²⁰ Institute For Interdisciplinary Research in Science and Education (IFIRSE), ICISE, Quy Nhon, Vietnam
²¹ Imperial College London, Department of Physics, London, United Kingdom
²² INFN Sezione di Bari and Università e Politecnico di Bari, Dipartimento Interuniversitario di Fisica, Bari, Italy
²³ INFN Sezione di Napoli and Università di Napoli, Dipartimento di Fisica, Napoli, Italy
²⁴ INFN Sezione di Padova and Università di Padova, Dipartimento di Fisica, Padova, Italy
²⁵ INFN Sezione di Roma and Università di Roma "La Sapienza", Roma, Italy
²⁶ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
²⁷ International Centre of Physics, Institute of Physics (IOP), Vietnam Academy of Science and Technology (VAST), 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
²⁸ Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba, Japan
²⁹ Keio University, Department of Physics, Kanagawa, Japan
³⁰ King's College London, Department of Physics, Strand, London WC2R 2LS, United Kingdom
³¹ Kobe University, Kobe, Japan
³² Kyoto University, Department of Physics, Kyoto, Japan
³³ Lancaster University, Physics Department, Lancaster, United Kingdom
³⁴ University of Liverpool, Department of Physics, Liverpool, United Kingdom
³⁵ Louisiana State University, Department of Physics and Astronomy, Baton Rouge, Louisiana, U.S.A.
³⁶ Michigan State University, Department of Physics and Astronomy, East Lansing, Michigan, U.S.A.
³⁷ Miyagi University of Education, Department of Physics, Sendai, Japan
³⁸ National Centre for Nuclear Research, Warsaw, Poland
³⁹ State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, New York, U.S.A.
⁴⁰ Okayama University, Department of Physics, Okayama, Japan
⁴¹ Osaka City University, Department of Physics, Osaka, Japan
⁴² Oxford University, Department of Physics, Oxford, United Kingdom
⁴³ University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh, Pennsylvania, U.S.A.
⁴⁴ Queen Mary University of London, School of Physics and Astronomy, London, United Kingdom
⁴⁵ University of Regina, Department of Physics, Regina, Saskatchewan, Canada
⁴⁶ University of Rochester, Department of Physics and Astronomy, Rochester, New York, U.S.A.
⁴⁷ Royal Holloway University of London, Department of Physics, Egham, Surrey, United Kingdom
⁴⁸ RWTH Aachen University, III. Physikalischs Institut, Aachen, Germany
⁴⁹ University of Sheffield, Department of Physics and Astronomy, Sheffield, United Kingdom
⁵⁰ University of Silesia, Institute of Physics, Katowice, Poland
⁵¹ SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
⁵² Sorbonne Université, Université Paris Diderot, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Paris, France
⁵³ STFC, Rutherford Appleton Laboratory, Harwell Oxford, and Daresbury Laboratory, Warrington, United Kingdom
⁵⁴ University of Tokyo, Department of Physics, Tokyo, Japan
⁵⁵ University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan
⁵⁶ University of Tokyo, Institute for Cosmic Ray Research, Research Center for Cosmic Neutrinos, Kashiwa, Japan
⁵⁷ Tokyo Institute of Technology, Department of Physics, Tokyo, Japan
⁵⁸ Tokyo Metropolitan University, Department of Physics, Tokyo, Japan
⁵⁹ Tokyo University of Science, Faculty of Science and Technology, Department of Physics, Noda, Chiba, Japan
⁶⁰ University of Toronto, Department of Physics, Toronto, Ontario, Canada
⁶¹ TRIUMF, Vancouver, British Columbia, Canada
⁶² University of Victoria, Department of Physics and Astronomy, Victoria, British Columbia, Canada
⁶³ University of Warsaw, Faculty of Physics, Warsaw, Poland

118 ⁶⁴ Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, Warsaw, Poland
 119 ⁶⁵ University of Warwick, Department of Physics, Coventry, United Kingdom
 120 ⁶⁶ University of Winnipeg, Department of Physics, Winnipeg, Manitoba, Canada
 121 ⁶⁷ Wroclaw University, Faculty of Physics and Astronomy, Wroclaw, Poland
 122 ⁶⁸ Yokohama National University, Faculty of Engineering, Yokohama, Japan
 123 ⁶⁹ York University, Department of Physics and Astronomy, Toronto, Ontario, Canada
 124 (Dated: January 31, 2020)

Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the PMNS mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and antineutrino appearance also finds no discrepancy between data and PMNS predictions.

125 *Introduction*—The observation of neutrino oscillations 153 has established that each neutrino flavor state (e, μ, τ) 154 is a superposition of at least three mass eigenstates ($m_1, 155 m_2, m_3$) [1–4]. The phenomenon of oscillation is 156 mod- 157 eled by a three-generation flavor-mass mixing matrix, 158 called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) 159 matrix [5, 6]. With the discovery of non-zero θ_{13} and 160 the explicit observation of ν_μ to ν_e appearance oscilla- 161 tion [7], it is now crucial to test the PMNS framework 162 and establish if it is sufficient to explain all neutrino and 163 antineutrino oscillation observations. One such test is to 164 search for the CP -reversed appearance oscillation of $\bar{\nu}_\mu$ 165 to $\bar{\nu}_e$. A search for this process in the Tokai-to-Kamioka 166 (T2K) experiment was reported in reference [8], and re- 167 cent results from the NOvA experiment show a signifi- 168 cance of 4.4σ [9]. In this Letter, we report a search for 169 electron antineutrino appearance at the T2K experiment 170 with an improved event selecton and a dataset more than 171 a factor of two larger than previous T2K results.

144 *The T2K Experiment*—The T2K experiment [10] begins 145 with a 30 GeV proton beam from the J-PARC 146 main ring striking a graphite target, producing pions and 147 kaons. These charged hadrons are focused by a system 148 of three magnetic horns to decay in a 96 m decay 149 volume. Positively charged hadrons are focused to produce 150 a beam of predominantly neutrinos (“neutrino mode”); 151 negatively charged hadrons are focused for a beam of 152 predominantly antineutrinos (“antineutrino mode”).

An unmagnetized on-axis near detector (INGRID) and 153 a magnetized off-axis (2.5°) near detector (ND280) sample 154 the unoscillated neutrino beam 280 m downstream 155 from the target station and monitor the beam direction, 156 composition, and intensity and constrain neutrino inter- 157 action properties. The unmagnetized Super-Kamiokande 158 (SK) 50 kt water-Cherenkov detector is the T2K far de- 159 tector, and samples the oscillated neutrino beam 2.5° off 160 axis and 295 km from the production point.

The analysis presented here uses data collected from 161 January 2010 to June 2018. The data set has an exposure 162 at SK of 1.63×10^{21} protons on target (POT) in antineu- 163 trino mode, with an additional data set of 1.49×10^{21} 164 POT in neutrino mode used to constrain PMNS oscil- 165 lation parameters acting as systematic uncertainties in 166 the analysis. The ND280 detector uses an exposure of 167 0.58×10^{21} POT in neutrino mode and 0.39×10^{21} POT 168 in antineutrino mode.

Analysis Strategy—The significance of $\bar{\nu}_e$ appearance 171 is evaluated by introducing the parameter β , which multi- 172plies the PMNS oscillation probability $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$:

$$P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) = \beta \times P_{\text{PMNS}}(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) \quad (1)$$

The analysis is performed allowing both $\beta = 0$ and 173 $\beta = 1$ to be the null hypothesis, where both hypoth- 174 eses fully account for uncertainties in the values of the 175 oscillation and systematic parameters. Two analyses are 176 performed on each hypothesis to obtain corresponding p- 177 values: one uses only the number of events (rate-only); 178 while the other also uses information from the kinematic 179 variables of events (rate+shape).

The total number of candidate $\bar{\nu}_e$ events in the an- 180 tineutrino beam mode is used as the test statistic to cal- 181 culate the rate-only p -value. The test statistic

$$\Delta\chi^2 = \chi^2(\beta = 0) - \chi^2(\beta = 1) \quad (2)$$

182 is used to calculate the rate+shape p -value, where the χ^2 183 values are calculated by marginalizing over all systematic 184 and oscillation parameters, including the mass ordering. 185 In both analyses, other data samples— ν_μ -like and ν_e -like 186 in neutrino beam mode and $\bar{\nu}_\mu$ -like in antineutrino beam 187 188 189

* also at J-PARC, Tokai, Japan

† affiliated member at Kavli IPMU (WPI), the University of Tokyo, Japan

‡ also at National Research Nuclear University "MEPhI" and Moscow Institute of Physics and Technology, Moscow, Russia

§ also at the Graduate University of Science and Technology, Vietnam Academy of Science and Technology

¶ deceased

** also at JINR, Dubna, Russia

†† also at Nambu Yoichiro Institute of Theoretical and Experimental Physics (NITEP)

‡‡ also at BMCC/CUNY, Science Department, New York, New York, U.S.A.

190 mode—are used to constrain other PMNS oscillation pa-
191 rameters, as in other T2K analyses [11].

192 A complementary analysis allows β to be a contin-
193 uous free parameter with limits between 0 and infin-
194 ity. In this analysis only, in addition to β multi-
195 plying $P_{\text{PMNS}}(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ as in Eq. 1, the probability
196 $P_{\text{PMNS}}(\nu_\mu \rightarrow \nu_e)$ is multiplied by a factor $1/\beta$. This
197 formulation—slightly different from above—was chosen
198 for its property of anti-correlation in shifting probability
199 between neutrinos and antineutrinos. The extra degree
200 of freedom allows the fit to explore areas away from the
201 PMNS constraint to more accurately reflect the informa-
202 tion given by the data. Credible interval contours in the
203 $P(\nu_\mu \rightarrow \nu_e)$ and $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ parameter space, the main
204 result of the analysis, are then compared against T2K
205 data fit with β fixed to 1 to test the compatibility be-
206 tween the T2K data and the PMNS model constraining
207 the standard fit.

208 *Neutrino Beam Flux*—The primary signal data sets
209 were taken in antineutrino mode. The flux was pre-
210 dicted by a Monte Carlo (MC) simulation incorporating
211 the FLUKA2011 interaction model [12] tuned to the re-
212 sults of recent external hadron production experiments
213 including the NA61/SHINE experiment at CERN [13–
214 15]. The INGRID detector is used to monitor the beam
215 axis direction and total flux stability.

216 The resultant flux model [16–18] estimates unoscillated
217 neutrino and antineutrino fluxes at all detectors as well as
218 their uncertainties and correlations. The flux at ND280
219 and SK peaks at 600 MeV, where 96.2% of the beam is
220 composed of $\bar{\nu}_\mu$ and 0.46% $\bar{\nu}_e$. The remainder of the beam
221 is almost entirely ν_μ . This wrong sign contamination is
222 greater in antineutrino mode than neutrino mode.

223 *Neutrino Interaction Model*—The NEUT (v5.3.3) neu-
224 trino interaction generator [19] is used to generate sim-
225 ulated neutrino events. The model used is described in
226 references [8] and [11]. The most relevant contributions
227 for this analysis are highlighted here.

228 The dominant neutrino-nucleus interaction topology
229 near 600 MeV, charged current quasielastic (CCQE)-like,
230 is defined as an interaction with one charged lepton and
231 zero pions in the final state. The nucleus is modeled with
232 a relativistic Fermi gas (RFG) modified by a random
233 phase approximation (RPA) to account for long-range
234 correlations [20]. A multinucleon component is included
235 with the Nieves 2p-2h model [21, 22], which contains both
236 meson exchange current (Δ -like) and correlated nucleon
237 pair (non- Δ -like) contributions. Parameters representing
238 systematic uncertainties for the CCQE-like mode include
239 the nucleon axial mass, M_A^{QE} ; the Fermi momentum for
240 ^{12}C and ^{16}O ; the 2p-2h normalization term for ν and $\bar{\nu}$
241 separately; four parameters controlling the RPA shape
242 as a function of Q^2 ; and the relative contributions of the
243 Δ -like and non- Δ -like contributions to 2p-2h in ^{12}C and
244 ^{16}O . The RPA parameters have Gaussian priors to cover
245 the theoretical shape uncertainty given in [23, 24], and
246 the 2p-2h shape contribution has a 30% correlation be-
247 tween ^{12}C and ^{16}O ; all other priors are uniform. Other

248 neutrino-nucleus processes are subdominant, and their
249 rates are constrained via appropriate uncertainties.

250 Differences between muon- and electron-neutrino inter-
251 actions are largest at low energies and occur because of
252 final-state lepton mass and radiative corrections. A 2%
253 uncorrelated uncertainty is added for each of the electron
254 neutrino and antineutrino cross sections relative to those
255 of muons and another 2% uncertainty anticorrelated be-
256 tween the two ratios [25].

257 Some systematic uncertainties are not easily included
258 by varying model parameters. These are the subjects
259 of “simulated data” studies, where simulated data gen-
260 erated from a variant model are analyzed under the as-
261 sumptions of the default model. The model variations
262 that produce the largest changes in the $\bar{\nu}_e$ far detector
263 spectra are an alternate single resonant pion model [26],
264 and ad-hoc models driven by observed discrepancies in
265 the near detector kinematic spectra, where the discrep-
266 ency is modeled as having either 1p-1h, 2p-2h- Δ -like, and
267 2p-2h-non- Δ -like kinematics. None of the variant mod-
268 els studied showed differences in the sensitivity values at
269 greater than the 0.1σ level.

270 *Near Detector Data Constraints*—The ND280 detec-
271 tor is used to fit unoscillated samples of charged current
272 (CC) muon neutrino interaction events to constrain flux
273 and cross section systematic uncertainties for the signal
274 and background models of SK events. The samples—
275 unchanged from reference [11]—are selected from events
276 that begin in one of two fine-grained detectors (FGDs)
277 and produce tracks that enter the time-projection cham-
278 bers (TPCs), which are interleaved with the FGDs. Both
279 FGDs are composed of layers of bars of plastic scintil-
280 lator, and the more downstream FGD additionally has
281 panels of water interleaved between layers of scintillator.

282 In neutrino beam mode, in each FGD, the CC events
283 (defined as containing negatively charged muon-like
284 track) are split into three subsamples: a CC0 π sample,
285 with zero pions in the final state, enhanced in CCQE-
286 like interactions; a CC1 π^+ sample, with one π^+ in the
287 final state, enhanced in resonant pion interactions; and
288 a CC Other sample, containing all other CC events. In
289 antineutrino beam mode, in each FGD, there are selected
290 interactions with positively charged muons ($\bar{\nu}$ -like) and
291 negatively charged muons (ν -like). The latter constrains
292 the wrong-sign contamination, which is largerer in an-
293 tineutrino beam mode. Each of these selections is di-
294 vided into two topologies: containing a single track and
295 containing multiple tracks.

296 All samples are fit simultaneously and are binned in
297 lepton momentum, p_μ , and lepton angle, $\cos\theta_\mu$ relative
298 to the average beam neutrino direction. A binned like-
299 lihood fit to the data is performed assuming a Poisson-
300 distributed number of events in each bin with an expec-
301 tation computed from the flux, cross section, and ND280
302 detector models. The fit returns central values and corre-
303 lated uncertainties for systematic uncertainty parameters
304 that are constrained by the near detector, marginalizing
305 over near detector flux and detector systematic param-

306 ters. Some uncertainties on neutral current and ν_e events
 307 cannot be constrained by these ND280 samples and those
 308 parameters are passed to the appearance analysis with
 309 their original prior.

310 The MC prediction before fitting underestimates the
 311 data by 10-15%, consistent with previous T2K analyses.
 312 The agreement between the MC prediction after fitting
 313 and data is good, with a p -value of 0.473. The fit to the
 314 ND280 data reduces the flux and the ND280-constrained
 315 interaction model uncertainties on the predicted electron
 316 antineutrino sample event rate at the far detector from
 317 14.6% to 7.6%.

318 $\bar{\nu}_e$ SK selection—Unlike in the previous analysis, SK
 319 events are reconstructed and selected using the new re-
 320 construction algorithm described in reference [27]. A
 321 $\bar{\nu}_e$ event candidate in SK must meet the following cri-
 322 teria: 1) it is within the beam time window as deter-
 323 mined from a GPS time stamp, and its Cherenkov light
 324 is fully contained in the SK inner detector, with mini-
 325 mal outer-detector activity; 2) the reconstructed vertex
 326 is at least 80 cm from the inner-detector wall; 3) only
 327 one Cherenkov ring candidate is found in the reconstruc-
 328 tion and the ring is identified as electron-like; 4) the dis-
 329 tance from the vertex to the detector wall is greater than
 330 170 cm along the track direction; 5) the visible energy
 331 in the event is greater than 100 MeV; 6) there is no evi-
 332 dence of delayed activity consistent with a stopped muon
 333 decay; 7) the reconstructed energy under a quasielastic
 334 scattering hypothesis is less than 1250 MeV; 8) the ring
 335 is inconsistent with a π^0 decay hypothesis.

336 These reconstruction cuts have an efficiency of 71.5%
 337 for $\bar{\nu}_e$ events that satisfy the fully-contained and fidu-
 338 cial requirements. The new event selection increases the
 339 yield of $\bar{\nu}_e$ signal by approximately 20% compared to
 340 the previous analysis, primarily due to the new fiducial
 341 cuts, with no loss of purity. Assuming oscillation pa-
 342 rameter values near the best fit of previous T2K anal-
 343 yses of $\sin^2 \theta_{23} = 0.528$, $\sin^2 \theta_{13} = 0.0212$, $\sin^2 \theta_{12} =$
 344 0.304 , $\Delta m_{32}^2 = 2.509 \times 10^{-3} \text{ eV}^2/\text{c}^4$, $\Delta m_{21}^2 = 7.53 \times$
 345 $10^{-5} \text{ eV}^2/\text{c}^4$, $\delta_{CP} = -1.601$, normal ordering and $\beta = 1$,
 346 the total expected background is 9.3 events including 3.0
 347 ν_e interactions resulting from oscillations of ν_μ in the
 348 beam. The remaining major sources of background are
 349 intrinsic ν_e and $\bar{\nu}_e$ in the beam (4.2 events) and neutral-
 350 current interactions (2.1 events). With the oscillation pa-
 351 rameters above, a signal yield of 7.4 events is expected,
 352 for a total prediction of 16.8 events.

353 Fig. 1 shows the fifteen observed data events superim-
 354 posed on a prediction generated using the above oscilla-
 355 tion parameter values.

356 $\bar{\nu}_e$ Appearance—The $\bar{\nu}_e$ appearance p -values are cal-
 357 culated by considering the rate-only and rate+shape test
 358 statistics of an ensemble of 2×10^4 pseudo-experiments.
 359 Each pseudo-experiment is generated by randomizing
 360 systematic parameters—including oscillation parameters—
 361 and applying statistical fluctuations. Four control sam-
 362 ples, ν mode single-ring e-like and ν_e CC1 π -like (single-
 363 ring e-like accompanied by electron decay) and both

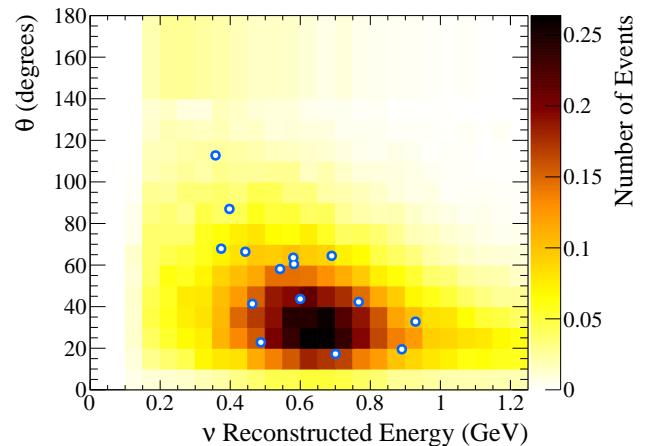


FIG. 1. Predicted $\bar{\nu}$ mode single-ring e-like spectrum (coloured histogram) compared against T2K data (white/blue points). The distribution is a function of both the reconstructed neutrino energy and the reconstructed angle between the outgoing lepton and the neutrino direction.

364 ν and $\bar{\nu}$ mode single-ring μ -like, are used to constrain
 365 the distribution of oscillation parameters of the pseudo-
 366 experiments. The four control samples of many pseudo-
 367 experiments are compared to data, and rejection sam-
 368 pling is used to select 2×10^4 that are most probable,
 369 according to data. The systematic parameters are then
 370 marginalized over using a numeric integration technique
 371 (with 2×10^5 samples of the systematic parameter space)
 372 when calculating the rate+shape test statistic. Both the
 373 number of pseudo-experiments and the number of points
 374 used for the numerical integration were studied and se-
 375 lected to ensure p -value stability.

376 When producing the pseudo-experiments and
 377 marginalizing over systematic uncertainties, Gaus-
 378 sian prior probabilities on the following oscillation
 379 parameters are used: $\sin^2 2\theta_{12}$ (0.846 ± 0.021);
 380 Δm_{21}^2 ($(7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2/\text{c}^4$); and $\sin^2 2\theta_{13}$
 381 (0.0830 ± 0.0031)[28]. The mass ordering is randomized
 382 with a probability of 0.5 for NO, 0.5 for IO. The
 383 other PMNS parameters are randomized using uniform
 384 prior probabilities with limits set based on previous
 385 experiments. Systematic parameters are randomized
 386 according to the constraints set by the near detector fit.

387 When predicted distributions are compared to data,
 388 a binned Poisson likelihood is used for all five SK data
 389 samples. The e-like samples use a 2D distribution in
 390 the reconstructed neutrino energy, E_{rec} , and the recon-
 391 structed neutrino angle with respect to the average beam
 392 direction, θ . The μ -like samples use a 1D distribution in
 393 the reconstructed neutrino energy.

394 For the rate+shape analysis, the likelihood for a
 395 pseudo-experiment is defined as the product of the like-
 396 lihoods of the $\bar{\nu}$ mode single-ring e-like sample, $\lambda_{\bar{\nu}_e}$, and
 397 the control samples, λ_c . The test statistic is then calcu-
 398 lated as in equation (3), by averaging this likelihood over

399 samples of the systematic parameter space, a_i . When the
400 generated distribution of the test statistic is calculated,
401 $\lambda_{\bar{\nu}_e}$ is compared to the pseudo-experiment data, E , and
402 λ_c is compared to data, D ; when the test statistic for the
403 real data is calculated, both likelihoods are compared to
404 data.

$$\chi^2(\beta) = -2 \ln \left[\frac{1}{N} \sum_{i=1}^N \lambda_{\bar{\nu}_e}(\beta, \mathbf{a}_i; E) \cdot \lambda_c(\beta, \mathbf{a}_i; D) \right] \quad (3)$$

405 An independent, complementary analysis uses the
406 kinematic variable of outgoing lepton momentum, p_l in-
407 stead of reconstructed neutrino energy, and additionally
408 uses weighting of pseudo-experiments instead of rejection
409 sampling. Both analyses were found to give consistent
410 test statistic distributions and therefore p -values.

411 The distributions of the rate-only and rate+shape test
412 statistics for the $\beta = 0$ and $\beta = 1$ hypotheses are shown
413 in Fig. 2. These distributions are integrated from the
414 data test statistic to obtain right(left)-tailed p -values for
415 the $\beta = 0(1)$ hypothesis. The observed number of events
416 in the $\bar{\nu}$ mode single-ring e-like sample in SK was 15,
417 compared to a prediction of 16.8. The observed data
418 $\Delta\chi^2$ value in the rate+shape analysis was 3.811 and the
419 prediction was 6.3. The resulting p -values are shown in
420 Tab. I. Both the rate-only and rate+shape analyses
421 disfavor the no- $\bar{\nu}_e$ -appearance hypothesis ($\beta = 0$) more
422 than the PMNS $\bar{\nu}_e$ appearance hypothesis ($\beta = 1$). Com-
423 pared to the prediction, a slightly weaker exclusion of the
424 no $\bar{\nu}_e$ appearance hypothesis ($\beta = 0$) is observed due to
425 observing fewer events than expected. The rate+shape
426 analysis gives a stronger observed exclusion of both hy-
427 potheses than the rate-only analysis, due to the extra
428 shape information used to discredit each hypothesis.

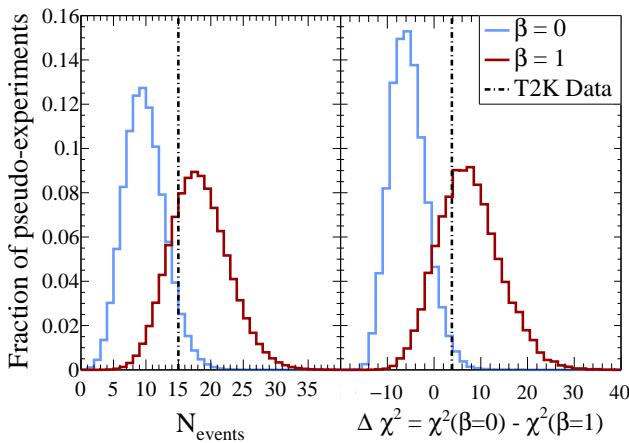


FIG. 2. Test statistic distributions taken from the $\beta = 0$ and $\beta = 1$ pseudo-experiment ensembles for the rate-only analysis (left) and rate+shape analysis (right). Here N_{events} denotes the number of observed events in the $\bar{\nu}$ mode single-ring e-like sample.

TABLE I. p -values and significance of the $\beta = 0$ and $\beta = 1$ hypotheses using both the rate-only and rate+shape analyses

β	Analysis	p -value		Significance (σ)	
		Expected	Observed	Expected	Observed
0	rate-only	0.019	0.059	2.36	1.89
	rate+shape	0.006	0.016	2.76	2.40
1	rate-only	0.379	0.321	0.88	0.99
	rate+shape	0.409	0.300	0.83	1.04

429 *Continuous β* —A complementary analysis allows β to
430 be a free parameter, which allows for a continuum of non-
431 PMNS models, rather than only the single $\beta = 0$ no- $\bar{\nu}_e$ -
432 appearance case. The impact of this analysis is shown
433 in the parameter space of $P(\nu_\mu \rightarrow \nu_e)$ vs $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$,
434 and in the ν_e vs $\bar{\nu}_e$ event rate space. Varying δ_{CP} at a
435 fixed energy creates an ellipse with a negatively sloping
436 major axis in the biprobability phase space. Switching
437 the mass ordering shifts the center of the ellipse along the
438 $P(\nu_\mu \rightarrow \nu_e) = -P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ axis. The other oscillation
439 parameters shift the ellipses along the identity line in
440 the biprobability space. Two ellipses are shown on the
441 left pane in Fig. 3 in orange and brown, with the input
442 oscillation parameter values taken from the $\beta = 1$ fit;
443 the eccentricity of the ellipses is very large for the T2K
444 experiment, which makes them appear like lines. In the
445 ellipses, the bottom right corresponds to $\delta_{CP} = -\pi/2$,
446 top left to $\delta_{CP} = \pi/2$, and the middle to $\delta_{CP} = 0, \pm\pi$.

447 Credible interval contours (68% and 90%) are pro-
448 duced by a Bayesian Markov Chain Monte Carlo
449 (MCMC) for the standard, fixed $\beta = 1$ parameteriza-
450 tion and the new non-PMNS continuous- β parameteri-
451 zation. These are shown in Fig 3 on the biprobability
452 space (left panel) and the bievent space (right panel). In
453 the biprobability plot, both the credible intervals and the
454 expectation ellipses are calculated with neutrino energy
455 fixed to 600 MeV.

456 In the biprobability fit with β fixed to 1, two lobes
457 appear in the contours, which correspond to the two mass
458 orderings: the upper lobe to the inverted orderings, and
459 the lower to the normal ordering. These lobes coincide
460 with the maximally CP -violating δ_{CP} value regions of
461 the two T2K expectation ovals, shown in brown (normal
462 ordering) and orange (inverse ordering). The width of the
463 credible intervals comes mainly from the uncertainties in
464 $\sin^2(2\theta_{13})$ and $\sin^2(\theta_{23})$, and height from δ_{CP} and the
465 mass ordering. This effect disappears in the bievent space
466 after including statistical fluctuations in the contours for
467 easier comparison against the data point.

468 The free β fit explores a larger area, especially in
469 $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$ and $\bar{\nu}_e$, which is expected; the lower num-
470 ber of $\bar{\nu}_e$ than ν_e candidate events leads to a higher
471 uncertainty in $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$, when not constrained by
472 the PMNS model; additionally, the two probabilities are
473 now decoupled due to the additional β parameter, giving
474 an independent results for both probabilities and both
475 event rates. These credible intervals can be used to com-
476 pare other neutrino oscillation models against the fit con-

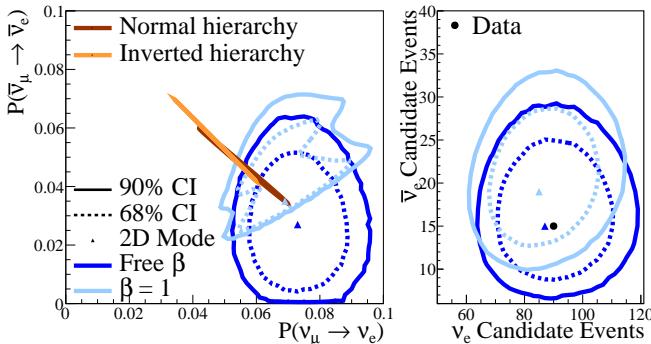


FIG. 3. Biprobability (left) and bievent (right) credible interval comparison between the standard fit constrained by the PMNS (light blue) model and the non-PMNS fit with the free β parameterization (dark blue). The maximum posterior density point is marked as the 2D mode. The narrow T2K prediction ovals for normal and inverse mass orderings are in brown and orange respectively. In the ellipses, the bottom right corresponds to $\delta_{CP} = -\pi/2$, top left to $\delta_{CP} = \pi/2$, and the middle to $\delta_{CP} = 0, \pm\pi$. All probabilities are calculated at 600 MeV. The bi-event credible intervals include statistical Poisson fluctuation.

477 strained by the PMNS model and against the free β fit
 478 that represents the information given by the T2K data
 479 with additional freedom.

480 The 90% and the 68% credible intervals from both
 481 continuous- β and PMNS-constrained fits significantly
 482 overlap. There is good agreement between the two fits,
 483 showing consistency between T2K data and the PMNS
 484 model. Additionally, the value of β is consistent with
 485 1 (90% credible interval [0.3,1.06]), when marginalizing
 486 over all other oscillation parameters. The data point is
 487 well within the 68% credible interval in both fits after
 488 including the statistical fluctuations.

489 *Conclusions*—The T2K collaboration has searched for
 490 $\bar{\nu}_e$ appearance in a $\bar{\nu}_\mu$ beam using a data set twice as large
 491 as in its previous searches. The data have been analyzed
 492 within two frameworks, and have been compared to pre-
 493 dictions with either no $\bar{\nu}_e$ appearance or $\bar{\nu}_e$ appearance
 494 as expected from the PMNS model prediction. In both
 495 frameworks, the data are consistent with the presence
 496 of $\bar{\nu}_e$ appearance and no significant deviation from the
 497 PMNS prediction is seen. Using full rate and shape in-
 498 formation, the no-appearance scenario is disfavored with
 499 a significance of 2.40 standard deviations.

Acknowledgements—We thank the J-PARC staff for superb accelerator performance. We thank the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), NRC and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN) and Ministry of Science and Higher Education, Poland; RSF (Grant #19-12-00325) and Ministry of Science and Higher Education, Russia; MINECO and ERDF funds, Spain; SNSF and SERI, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid, SciNet and CalculQuebec consortia in Compute Canada, and GridPP in the United Kingdom. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), "la Caixa Foundation (ID 100010434, fellowship code LCF/BQ/IN17/11620050), the European Unions Horizon 2020 Research and Innovation programme under the Marie Skłodowska-Curie grant agreement no. 713673 and H2020 Grant No. RISE-GA644294-JENNIFER 2020; JSPS, Japan; Royal Society, UK; and the DOE Early Career program, USA.

[1] Y. Fukuda *et al.* (Super-Kamiokande Collaboration), Phys. Rev. Lett. **81**, 1562 (1998).

[2] Q. R. Ahmad *et al.* (SNO Collaboration), Phys. Rev. Lett. **87**, 071301 (2001).

[3] K. Abe *et al.* (T2K Collaboration), Phys. Rev. Lett. **107**, 041801 (2011).

[4] F. P. An *et al.*, Phys. Rev. Lett. **108**, 171803 (2012).

[5] Z. Maki, M. Nakagawa, and S. Sakata, Progress of Theoretical Physics **28**, 870 (1962).

[6] B. Pontecorvo, Sov. Phys. JETP **26**, 165 (1968).

[7] K. Abe *et al.*, Phys. Rev. Lett. **112**, 061802 (2014).

[8] K. Abe *et al.* (T2K Collaboration), Phys. Rev. D **96**, 092006 (2017).

[9] M. A. Acero *et al.* (NOvA Collaboration), Phys. Rev. Lett. **123**, 151803 (2019).

[10] K. Abe *et al.* (T2K Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A **659**, 106 (2011).

[11] K. Abe *et al.* (T2K Collaboration), Phys. Rev. Lett. **121**, 171802 (2018).

[12] A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, CERN-2005-010 (2005).

[13] N. Abgrall *et al.* (NA61/SHINE), Phys. Rev. **C84**, 034604 (2011).

[14] N. Abgrall *et al.* (NA61/SHINE), Phys. Rev. C **85**, 035210 (2012).

[15] N. Abgrall *et al.* (NA61/SHINE), Eur. Phys. J. **C76**, 617 (2016).

[16] K. Abe *et al.* (T2K Collaboration), Phys. Rev. **D87**, 012001 (2013), [Addendum: Phys. Rev. D87, no. 1, 019902 (2013)].

[17] M. Posiadała-Zežula, J. Phys. Conf. Ser. **888**, 012064 (2017).

[18] L. Zambelli, A. Fiorentini, T. Vladisavljević, *et al.*, J. Phys. Conf. Ser. **888**, 012067 (2017).

[19] Y. Hayato, Acta Phys. Polon. **40**, 2477 (2009).

[20] J. Nieves, J. E. Amaro, and M. Valverde, Phys. Rev. C **70**, 055503 (2004).

[21] R. Gran *et al.*, Phys. Rev. D **88**, 113007 (2013).

⁵⁶³ [22] J. Nieves, I. R. Simo, and M. J. V. Vacas, Phys. Rev. C ⁵⁶⁹ (2012).
⁵⁶⁴ **83**, 045501 (2011).
⁵⁶⁵ [23] M. Valverde, J. Amaro, and J. Nieves, Physics Letters B ⁵⁷⁰ [26] M. Kabirnezhad, Phys. Rev. D **97**, 013002 (2018).
⁵⁶⁶ **638**, 325 (2006).
⁵⁶⁷ [27] K. Abe *et al.* (T2K Collaboration), Phys. Rev. Lett. **121**,
⁵⁶⁸ [24] R. Gran, arXiv preprint arXiv:1705.02932 (2017). ⁵⁷¹ [28] M. Tanabashi *et al.* (Particle Data Group), Phys. Rev. D **98**, 030001 (2018).
⁵⁷² 171802 (2018), arXiv:1807.07891 [hep-ex].
⁵⁷³ [25] M. Day and K. McFarland, Phys. Rev. D **86**, 053003 ⁵⁷⁴ D **98**, 030001 (2018).