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Abstract

Outdoor air pollution kills more than 4 million people around the world per year and heavy

pollution episodes continue to occur especially around large urban centres. In addition to

long-term mitigation strategies, short-term emission controls are needed to prevent heavy

pollution episodes in megacities such as Beijing. Such controls have been implemented

with reasonable success in the past, notably during mega-events, but need to be carefully

evaluated to develop a robust mitigation strategy for future. In this work, the 10-day long

controls implemented before the APEC summit in Beijing during November 2014 were

evaluated for their e�ectiveness using an online atmospheric chemical transport model

WRF-Chem. The controls were found to be only partly responsible for the improvement

in air quality during the summit period, while the rest of the improvement was due to

favourable meteorology which reduced pollutant levels signi�cantly as compared to the

levels before the control period. The controls were found to be insu�cient in meeting

national air quality standards if applied during periods with more stagnant conditions.

Sensitivity studies were performed to identify temporally-resolved source contributions

from various sectors and regions. It was found that controls on local emissions bene�t air

quality on the same day, controls on regional emissions show peak bene�ts a day or two

after the start of controls and controls on distant emissions show peak bene�ts three to

four days later. Local and regional residential and industry sectors were found to dominate

contributions to PM2.5 levels in Beijing. A Gaussian statistical technique was used to

replace the model behaviour over Beijing with a fast emulator to generate concentration

response surfaces for emission reductions across various sectors and regions. These results

were utilized to develop an optimal policy for short-term emission controls in Beijing and

were implemented in an automatic air quality forecasting and emission prescription system
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which runs the model successively with reduced emissions to meet daily air quality targets

and outputs the magnitude and timing of controls needed across various sectors and regions

to prevent heavy pollution episodes in Beijing. This is a novel application of the popular

method called Model Predictive Control often used in the petrochemical industry, to air

quality modelling. The framework developed here is for Beijing but can be readily adopted

for any other polluted region of the world.
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Quote

"Jhonka hawa ka aaj bhi,

zulfein udaata hoga na."

(The gust of wind, even today, must be blowing your hair.)

- Mehboob
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CHAPTER 1

Introduction

Air pollution is a major global environmental problem which is responsible for premature

deaths, illness and loss of quality of life for millions of people around the world. It is

characterised by high concentrations of pollutants in the air which occur when emission

rates exceed the natural assimilative and cleansing capacity of the atmosphere.

In order to support an ever-growing population of 7.7 billion people in terms of food,

transport, electricity, and other services, the modern industrial economy primarily relies

on burning of fossil fuels such as coal, oil and natural gas. Developing countries in Asia

and Africa also rely on solid biofuels like wood and animal waste which are even more

polluting than oil and gas. Fossil fuel burning from industrial use, power production, vehi-

cles and household cooking and heating emits harmful pollutants such as carbon dioxide,

ozone, carbon monoxide, nitrogen oxides, sulfur oxides, volatile organic compounds and

particulate matter. Increasing use of fertilizers in farmlands to achieve higher agricultural

productivity in order to feed a growing population emits pollutants such as ammonia which

is also a precursor for particulates. These pollutants often exceed safe levels prescribed

by the World Health Organization and national governments. Apart from adverse e�ects

on human health, air pollution also damages plant health and reduces crop productivity.

High levels of particulate matter reduce visibility, often causing road accidents and de-

laying trains and �ights, and play an important role in climate by modulating regional

temperature and precipitation.

Instances of heavy urban smog and acid rain were common in the developed world in the

mid-twentieth century. Heavy smog episodes were reported in cities like London and Los

1



CHAPTER 1. INTRODUCTION

Angeles in the 1950s that claimed many lives. Widespread acid rain in the 1970s led to the

acidi�cation of soil, water and forests, harming fragile ecosystems. While emissions of key

pollutants have signi�cantly decreased in the developed world in the last few decades, they

have had an increasing trend in the developing world, especially Asia. This is because in the

last few decades the developed world (North America and Western Europe) transitioned

into a cleaner services-based economy (real-estate, banking, �nance and insurance, health

and social care, information technology and tourism) which consumes little fossil fuel while

a large part of the fuel-intensive manufacturing industries shifted to eastern countries like

China, South Korea and Taiwan. Since Asia is home to a larger population than the

developed world, increasing pollution in this region has increased net per capita exposure

to pollutants and led to a total increase in the number of deaths due to outdoor air pollution

globally. Therefore there is an acute need to mitigate air pollution, esp. in Asia which

adversely a�ects large populations.

There are a number of ways to reduce human exposure to air pollution including, in-

stallation of green infrastructures which may trap or absorb pollutants; moving emission

sources away from large population centres; and most importantly, reducing emissions.

Reducing emissions without reducing economic growth and production is a long-term tran-

sition process which involves technology upgrades in industries and vehicles, along with

gradual phasing-out of dirty fossil fuels in exchange of higher grade fossil fuels and cleaner

energy alternatives such as wind, solar and nuclear.

Even as these long-term emission reduction strategies are in place, severe pollutant

episodes continue to occur frequently, especially in winter months across Asia. Emer-

gency emission-cuts are required in the short-term to prevent air pollution from reaching

hazardous levels. Such emergency measures reduce emissions at the expense of economic

growth and production for a few days for the sake of human health and well-being. These

measures include, limiting industrial production or completely shutting down factories,

limiting vehicle use through license plate rules, temporary shutdown of coal- and gas-�red

power plants, ban on construction activities, and ban on residential combustion. Such

short-term strategies have been tested in many cities, for example tra�c restrictions in

Paris, Delhi and Beijing.

While the spatial in�uence of air pollution can be regional (up to hundreds of kilo-

meters), the biggest problems are often concentrated over urban centres, home to large

populations and most emission sources. Most vehicular and residential pollution origi-

nates from urban centres. Industries and power plants are also generally located near

cities. Therefore cities often become the focus of short-term air pollution control e�orts.
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CHAPTER 1. INTRODUCTION

Current emission control policies to reduce air pollution in the short-term are ad-

hoc and leave a lot to be desired. Repeating successful short-term control policies of

the past does not promise prevention of future episodes. This is because air pollution is

strongly controlled by meteorology, and the same meteorology is not guaranteed for all

future pollution episodes. Therefore a more modular approach which takes a range of

possible meteorological conditions of the region into account is needed.

Atmospheric simulations by means of mathematical models are a great way to assess

past emission control policies and prescribe robust control policies for the future. Recent

advancements in computational resources and availability of ground-based measurements

as well as satellite observations have led to signi�cant improvement in scienti�c understand-

ing of physical and chemical processes governing air pollution. Sophisticated science-based

mathematical models of the atmosphere that represent these detailed processes and simu-

late transport and evolution of pollutants, can be used on conjunction with data-based sta-

tistical and machine learning techniques to devise tailor made short-term emission control

strategies. Such episode-speci�c policies can guarantee successful abatement of pollution

episodes of varying intensities, for a range of di�erent weather conditions.

In this work I explore the possibilities of improving short-term emission controls in the

megacity of Beijing, China. Beijing is an ideal city for this kind of study due to its high

pollution levels and a very large human exposure as well as the availability of good quality

emissions data and ground-based observations which allow accurate modelling of formation

and evolution of pollution episodes and evaluation of past emission control policies.

The aims and objectives of this work are: to con�gure and thoroughly evaluate a state-

of-the-art atmospheric chemical transport model for China with a focus on Beijing laying

out the strengths and weaknesses of the model in its ability to reproduce real-world at-

mospheric environment over the study region; simulate a previous emission control period

and understand the e�ectiveness of the short-term emission control policy in context of

meteorological conditions and implications for future; to lay out the scope of improvement

in existing short-term emission control policies in terms of emission sectors, regions and

timing of control by studying source contributions to pollution in Beijing, with a focus

on PM2.5; to build a reduced-form model trained on the chemical transport model output

with the help of statistical techniques; to produce emission-concentration contour plots

(response-surfaces) which serve as a quick decision making tool for policymakers in varied

weather conditions; to develop an emissions toolkit which generates anthropogenic emis-

sions for the study region based on the user input scalings for various sectors and regions;

and create an automatic model running framework with dynamic emissions scaling where
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the model is run successively with reduced emissions for each day based on consultation

with the response-surfaces until daily healthy air quality standards are met, �nally pre-

scribing speci�c sectoral and regional controls required over the period�all without user

intervention.

This thesis is organised into six chapters. Chapter 2 provides a general background

on air pollution, air pollution in China and Beijing, and air quality modelling techniques.

I use the Weather Research and Forecasting�Chemistry (WRF-Chem) modelling tool for

my studies. Chapter 3 describes the model set-up and evaluation and discusses emission

controls during the 2014 Asia-Paci�c Economic Cooperation (APEC) summit as a case

study. Chapter 4 presents sensitivity analysis of di�erent emission sectors and regions to

understand source contributions, discusses the lingering e�ects on 1-day emission cuts on

subsequent days, and presents easy-to-use emission-concentration contour plots (response-

surfaces) derived from statistical emulation of the science-based model output. Chapter 5

presents dynamic emissions control model runs with automatic iterative emissions scaling

based on predicted pollution level guided by response-surfaces, to meet daily healthy air

quality targets. Chapter 6 summarises the work and presents the conclusions.
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CHAPTER 2

Background and Literature Review

2.1 Air pollution and its sources

Air pollution profoundly impacts human health, visibility, the ecosystem, the weather, and

climate (IPCC 2013). Pollutants from both outdoor and indoor sources represent the single

largest environmental risk to health globally. As per recent estimates 9 out of 10 people

in the world breathe air containing high levels of pollutants (WHO 2016).

The atmosphere is the recipient of many of the products of our technological soci-

ety (Seinfeld & Pandis 2006). Common air pollutants include trace gases such as carbon

dioxide (CO2), ozone (O3), carbon monoxide (CO), nitrogen oxides (NOX), sulfur oxides

(SOX), ammonia (NH3) and millions of volatile organic compounds (VOCs), and particu-

late matter (PM) or aerosol which comprises organic and black carbon, sulfates, nitrates,

ammonium and chloride salts. Metals such as lead (Pb) and mercury (Hg) may also be

present as particulates.

Air pollution primarily arises from combustion processes and evaporation of industrial

solvents. Common anthropogenic sources include coal- and gas-powered power stations,

manufacturing industries (factories), vehicles, residential cooking, and traditional biomass

(wood, dung, crop and waste) burning which involve combustion of fossil fuels. Industrial

production of synthetic chemicals such as paint, hair spray, varnish, aerosol sprays is an-

other major source of air pollution esp. volatile organic compounds (VOCs). Fertilized

farmlands are a major source of NH3 and NOX. Natural sources of air pollution include

desert dust, livestock (emits methane), wild�res (CO and PM), and volcanic activity (sul-
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phur, chlorine and PM).

Air pollutants can either be primary which are directly emitted into the atmosphere,

e.g., CO, NOX, SOX, NH3, black carbon etc. or secondary which are not directly emitted

but formed away from the emission sources as a result of complex chemical reactions

of directly emitted species (precursors) in the atmosphere, e.g., tropospheric ozone and

secondary aerosols. A signi�cant fraction of aerosols are formed from gaseous precursors

and exist in a kinetic and thermodynamic equilibrium with them.

2.2 Urban air pollution: history and status

Big cities have historically been at the receiving end of the worst e�ects of air pollution.

Records exist about health impacts of air pollution in ancient Rome (Hippocratic Corpus,

Epistulae Morales CIV) which may have had a population over one million (Brimblecombe

et al. 1998). Air pollution surged during the industrial revolution in major European

cities with widespread combustion of wood and coal. The �rst recorded modern smog

episode occurred in the Meuse valley in Belgium during 1st�5thDecember 1930 which led

to more than 63 deaths (Firket 1931). Los Angeles had 1 million vehicles as early as in

1940 which doubled to 2 million by 1950 in a post-war booming population and economy.

The city experienced many smog episodes in the summer months of the 1940s and 1950s

with very high levels of PM and ozone. Major federal, state, and local regulations on

vehicle emission control were put in place to control urban smog in Los Angeles (Parrish

et al. 2011). The Great Fog of London, 5th�8thDecember, 1952 was one of the �rst widely

recognised smog episode which resulted from coal burning of domestic heating and power

generation and led to extremely high levels of particulate matter and SO2 (more than

1000 times the safe levels recommended today), resulting in over 4000 premature deaths

and 10000 illnesses (Brimblecombe 2006) and its persisting e�ects caused about 12000

excess deaths by February 1953 (Bell & Davis 2001). The London smog was a classical or

sulphurous smog characterised by high levels of SO2 caused by burning of sulfur-rich fossil

fuels, particularly coal. On the other hand, the Los Angeles smog was a photochemical

smog caused due to high levels of NO2 and VOCs in the presence of sunlight (something

not very common in London!). The occurrence of these two distinct smogs in two di�erent

cities of the world highlights the di�erent sources and chemistry of air pollution.

Much has changed today, at least in the developed world�residential heating in major

cities has become centralised, through electricity, and industries have moved far away

from city centres which are now generally �lled with a dense �eet of vehicles. However,
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the modern industrial economy is still powered by coal, oil and gas, which inevitably

produce harmful byproducts on burning. Urban air pollution remains one of the greatest

environmental challenges facing mankind in the 21st century (WHO 2016, Zhang et al.

2015c). Today, urban air pollutants consist of a complex combination of gases and �ne

particulate matter, PM2.5 (particles with the aerodynamic diameter smaller than 2.5 µm)

emanating from vehicles, residential cooking, coal-�red power stations and factories among

other sources.

Air pollution a�ects people in middle-income countries, with fuel-intensive economies,

at a much higher rate than those in high-income countries with mature service-based

economies. In the recent past, many developing countries, such as China and India, have

experienced severe air pollution because of their fast-developing economy and urbanization.

Globally, the urbanization trend is projected to continue: 70% of the world population will

reside in urban centers by 2050, and there will exist 41 megacities (cities with more than 10

million inhabitants) by 2030 (Zhang et al. 2015c). Many of the world's megacities exceed

WHO's guideline levels for air quality by more than �ve times, representing a major risk

to people's health. WHO air quality recommendations call for countries to reduce annual

mean values of air pollution to 20µgm−3 for PM10 and 10 µgm−3 for PM2.5.

Countries are taking measures to reduce air pollution from particulate matter. For ex-

ample, the annual median exposure to ambient PM2.5 in China was 48.8µgm
−3 in 2016�a

17% reduction from the estimate for 2012, but still almost �ve times higher than WHO

recommendations (Zheng et al. 2018, Cheng et al. 2018). Governments are increasing

commitments to monitor and reduce air pollution. The estimated number of air pollution

deaths in the region has come down from 2.8 million in 2012 to 2.2 million in 2016 (WHO

2016).

2.3 Health impacts and standards

Polluted air was responsible for 8 million deaths worldwide in 2016: 3.8 million from

household air pollution and 4.2 million from ambient air pollution (burden of disease 2016,

WHO 2016). Polluted air penetrates deep into their lungs and cardiovascular system and

leads to heart disease, stroke, chronic obstructive pulmonary disease, lung cancer, and acute

respiratory infections in children. Ambient air pollution accounts for 29% of all deaths

and disease from lung cancer, 17% of all deaths and disease from acute lower respiratory

infection, 24% of all deaths from stroke, 25% of all deaths and disease from ischaemic heart

disease, and 43% of all deaths and disease from chronic obstructive pulmonary disease
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Table 2.1: Healthy standards for criteria pollutants prescribed by World Health
Organization.

Pollutant Annual mean 24h mean 8h mean 1h mean 10minute mean

PM2.5 10 25 � � �
PM10 20 50 � � �
O3 � � 100 � �
NO2 40 � � 200 �
SO2 � 20 � � 500

All units are in µgm−3.

(burden of disease 2016). While mortality is the most important health e�ect of severe

ambient air pollution and has been studied the longest (Anderson 2009), sustained exposure

to milder levels of air pollution can also cause respiratory symptoms, pulmonary disease,

and other human annoyance e�ects (WHO 2016, State of Global Air 2018).

The World Health Organization has set guideline values for pollutants which have

the strongest evidence for public health concern. These are 10µgm−3 annual mean and

25 µgm−3 24-hour mean for �ne particulate matter (PM2.5), 20 µgm
−3 annual mean and

50 µgm−3 24-hour mean for coarse particulate matter (PM10), 100 µgm
−3 8-hour mean

for ozone, 40µgm−3 annual mean and 200µgm−3 1-hour mean for NO2, and 20 µgm−3

24-hour mean and 500 µgm−3 10-minute mean for SO2. These standards are summarized

in Table 2.1.

2.4 Air pollution meteorology

Meteorological processes occurring close to the earth's surface are central to understanding

air pollution. Weather parameters such as temperature, moisture, wind speed and direc-

tion can greatly in�uence regional air pollution levels. Some key meteorological processes

that a�ect air quality are: solar radiation (determines photolytic reaction rates), horizontal

wind speed (determines the extent of advection of pollutants), turbulence (a�ects vertical

mixing and dilution of pollutants), clouds and precipitation (scavenge pollutant species),

temperature and humidity (determine the kinetic and thermodynamic equilibrium of sev-

eral pollutant species).

Fronts are boundaries between air masses where a meteorological variable changes

rapidly across a small horizontal distance and divides air masses. Passage of fronts over a

region can cause rapid change in air quality. Enhanced convection can lead to improvement

in air quality through vertical dilution of air pollutants. Temperature inversions suppress

vertical dispersion of pollutants and trap them near the surface thereby exacerbating air

8



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

quality.

Air pollution levels can be low despite high emissions if they are e�ciently transported

high up in the atmosphere, thereby lowering surface pollution levels. In this context,

it is important to understand the concept of Atmospheric Stability. Stability classes (or

states of the atmosphere) are de�ned based on the behaviour of air parcels once they are

displaced from their initial position. Positive stability implies that a displaced air parcel

will return to its initial position, neutral stability implies that a displaced air parcel will

remain at its new position, and negative stability or instability means that a displaced air

parcel will continue to accelerate away from its rest position. Positive, neutral and negative

stability classes are associated with high, moderate and low air pollution respectively. This

is because, under unstable conditions, even upon slight disturbance an air parcel at the

surface will keep moving away from its initial position, i.e., higher up in the atmosphere and

will carry the surface pollutants along with it. On the other hand, under stable conditions,

an air parcel at the surface will remain at the surface for a long time, thereby leading to

build-up of pollutants.

Horizontal transport at various scales (local, regional and synoptic) is also a key factor

in determining air quality for a given location. High pollutant concentration upwind can

be transported to a di�erent region causing substantial increases in air pollution levels

than would otherwise occur.

Air pollution meteorology includes the e�ect of meteorology on air pollutants as de-

scribed above as well as the e�ect of pollutants on meteorology. This often leads to a posi-

tive feedback loop where unfavourable meteorology (low temperatures, milder winds, high

RH) increases pollution levels which then make the meteorology even more unfavourable.

Some common air pollutants are also greenhouse gases (e.g., CO2, O3). While their sur-

face concentrations are determined by various meteorological parameters discussed above,

they trap outgoing infrared radiation thereby leading to an increase in temperature - which

further a�ects these and other pollutants. Particulate matter such as black carbon can dim

the light entering the earth's surface and convert it into heat. It can also indirectly lead

to sooty clouds which absorb more light. Other forms of particulates such as sulfates may

have the opposite e�ect as they are lighter in color and can re�ect some of the incoming

solar radiation away from earth's surface. Such e�ects modulate meteorological parameters

which can in turn a�ect air quality. Therefore, a sound understanding of these two-way

feedback e�ects is central to understanding air pollution.
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2.5 Air pollution in China

Air pollution levels remain dangerously high in many parts of Asia and around 2.2 million

of the world's 6.4 million premature deaths each year from household (indoor) and ambient

(outdoor) air pollution are in East and South-East Asia�home to one quarter of the world's

population (WHO 2016, State of Global Air 2018).

China has had rapid economic growth for the past three decades and became the

world's second largest economy in terms of gross domestic product (GDP) in 2010 and was

the world's biggest energy consumer in 2009. In 2012, China's total energy consumption

reached 2·43 billion tonnes oil equivalent, and its per-capita GDP energy consumption

was 1·4 times the world average (Chen et al. 2013b). In 2012 coal consumption in China

accounted for 67% of the country's total energy consumption and 50% of world's total coal

consumption. The number of on-road civilian vehicles in China increased from 16·09 million

in 2000 to 93·56 million in 2011. China's heavy chemical and petrochemical industries have

been growing robustly over the past years. The country's current cement and crude steel

production capacity total 1·7 billion tonnes and more than 1 billion tonnes, respectively.

China's extensive industrial development, substantial coal-dependent energy consumption,

and increasing number of vehicles have led to a signi�cant rise in emissions of air pollutants

and carbon dioxide (Chen et al. 2013b). The Global Burden of Disease Study 2010 found

that PM2.5 has become the fourth biggest threat to the health of the Chinese people. In

addition, the death rate from lung cancer has soared since 1970, and is now the leading

cause of death from malignant tumours in the country.

Since 1978 in China, increasing numbers of workers have migrated from the countryside

to the urban areas, particularly to large and developed cities for better job opportunities.

From 1980 to 2005, the urban population in China increased from 19.6 to 40.5%. The num-

ber of cities increased to over 660, and more than 170 cities had over 1 million permanent

residents in 2004. These metropolises generated 65.5% of the GDP, but at the expense

of the environment (China Statistical Yearbook 2005, 2006 n.d.). Megacities, which are

conventionally de�ned as cities with populations over 10 million, emerged in the 1990s in

China and city clusters were developed in the proximity of the mega cities during the last

decade (Urban Statistical Yearbook of China 2005, 2006 n.d.). This urbanization trend is

likely to continue in the future (Liu & Diamond 2005, Shao et al. 2006).

Total emissions in China for all key pollutants rose swiftly during the last few decades

(Hoesly et al. 2018) with signi�cant increases in urban clusters (Lin & Zhu 2018). As of

2015, 65% of Chinese cities did not meet the secondary national air quality standards for
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PM10; 18.4% of the cities did not meet the secondary standards for NO2; and 3.3% of the

cities did not meet the secondary standards for SO2 (Lin & Zhu 2018). Severe winter haze

days (days with daily mean PM2.5 exceeding 150 µgm−3) have consistently increased in

the Beijing�Tianjin�Hebei region from 1985 to 2017 with an average increase of 4.5 days

per decade and a corresponding increase of 13.5µgm−3 in PM2.5 averaged over the haze

days (Dang & Liao 2019). Chang et al. (2009) reported consistent reduction in visibility

in Beijing, Chengdu, Guangzhou, Shanghai, and Xi'an during 1973�2007.

The National Plan on Air Pollution Control was launched by the Chinese Government

in 2010 during the 12th Five-Year Plan (2011�15) that set out strict targets and measures

to prevent and control air pollution in thirteen key regions across China. Further, in 2013,

the National Action Plan on Air Pollution Prevention and Control (2013�17) was rolled

out which required PM10 in cities at or above the prefecture level to be reduced by over

10% by 2017 compared with the 2012 level, and that the number of blue-sky days should

grow every year. This plan also identi�ed three key regions, namely, Beijing-Tianjin-

Hebei (BTH) Area, Yangtze River Delta (YRD), and Pearl River Delta (PRD) requiring

the annual mean PM2.5 level to be reduced by over 25%, 20% and 15% respectively, by

2017 compared with 2012 levels, and that the annual mean PM2.5 level in Beijing should

be controlled at 60 µgm−3 in 2017. A budget of US$ 277·5 billion was set for this �ve

year plan. The National Health and Family Planning Commission of China initiated the

development of an air pollution and health e�ects monitoring system in October 2013. The

Chinese Academy for Environmental Planning claimed that these measures will prevent

200,000 premature deaths each year if the annual level of PM10 in Chinese cities reaches the

�rst level standard of 40 µgm−3, as set out in the newly revised China National Ambient

Air Quality Standards (Chen et al. 2013b). Emissions decreased by 62% for SO2, 17% for

NOX, 27% for CO, 38% for PM10, 35% for PM2.5, 27% for Black Carbon (BC), and 35%

for Organic carbon (OC) from 2010 to 2017. However, there was an increase of 11% for

non-methane volatile organic compounds (NMVOCs) and 1% for NH3 during the same

period (Zheng et al. 2018).

While the long-term action plan has been e�ective to bring down annual mean pollution

levels and may improve the overall air-quality substantially, it does not avert the extreme

pollution episodes, esp. haze episodes during the winter months which generally have

a 3�5 day span and are mostly caused due to unfavourable weather conditions such as

low temperature, high relative humidity and low wind speeds. Therefore, more radical

short-term emission controls are needed especially during winter months in order to avoid

extreme haze episodes which cause severe health damage to citizens as short-term exposures
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to PM2.5 are found to be signi�cantly associated with increased risk of mortality (Di et al.

2017).

Figure 2.1: A picture of Tiananmen square in Beijing during a haze
episode.

The �rst concerted attempt at short-term controls in China were made during the

Beijing Olympics in 2008. Test studies were conducted prior to the event which revealed

that controlling only local sources in Beijing would not be su�cient to attain the healthy

air quality goal and that Hebei province can contribute to 50-70% of PM2.5 in Beijing

(Streets et al. 2008). The controls were implemented in phases. While the event spanned 8�

24August 2008, partial controls started even before 20 July. Heavy industrial polluters (e.g.

the Capital Steel Company) were relocated, and 50% of government cars were forbidden

to drive in Beijing after 23 June. During the full-scale control (20 July to 19 September),

the odd-even license plate number rule was applied on personal vehicles in Beijing; stricter

control was applied on vehicles entering Beijing; and the production of high-emitting fac-

tories was limited or stopped. Another 20% of government cars were forbidden to drive

in Beijing (70% total reduction), some outdoor constructions were stopped, and usage of

coal-burning facilities were restricted during 8�24August (Olympic Games period) and

7�19 September (Paralympics period) (Gao et al. 2011). Estimated emissions of aerosol

precursors during the Olympic Games were reduced by about 40�60% compared with those

in June 2008 (Wang et al. 2010a, Zhou et al. 2010).

On-road concentrations of NOX, SO2, CO and BC were reduced by 41%, 70%, 54% and

12% respectively and the mean daytime O3 concentration was reduced by 15 ppbv during

the Olympics as compared to those of the pre-control period (Wang et al. 2010a). Modelling

and data analysis studies found that favourable meteorology during the control period

contributed to at least 16% reduction in PM2.5 levels while emission controls contributed
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to at least 43% reduction (Yang et al. 2011). Also, despite overall reduction in PM2.5 levels

during the control period, unfavourable weather conditions associated with southwesterly

�ow led to occasional high PM2.5 concentrations (higher than 150 µgm−3) during the

control period (Gao et al. 2011).

Since then similar short-term emission control e�orts have been made to ensure satis-

factory air quality for many other special events such as the 41st Shanghai World Expo in

2010 (Huang et al. 2012, SEPB: Shanghai Environmental Protection Bureau 2010), the 16th

Guangzhou Asian Games and Asian Para Games in 2010 (GEPB: Guangzhou Environmen-

tal Protection Bureau 2009, Liu et al. 2013), the Chengdu Fortune Forum 2013 (CEPB:

Chengdu Environmental Protection Bureau 2013) and more recently the Asia-Paci�c Eco-

nomic Cooperation (APEC) summit 2014 and the 2015 China Victory Day Parade(Liang

et al. 2017). Since most of these short-term controls have been a �rst such initiative for

most regions except Beijing, they tend do be based on ad-hoc decisions. However, Bei-

jing has seen multiple short-term controls which should allow us to build enough scienti�c

knowledge to inform smarter controls for future. There is ample scope of improvement in

short-term emission control policies in urban Beijing esp. because it has a good network

of ground-based observations all around the city and also a representative meteorological

station at the airport, along with other observations available from tower measurements

from various scienti�c campaigns.

Although air pollution in China has been extensively studied through ground measure-

ments, modelling, satellite observations, and long-term data analysis, some key research

gaps remain. Firstly, the duration of controls need to be optimized by investigating tempo-

ral nature of reductions in pollutant concentrations for a wide range of weather conditions.

Secondly, while many studies advocate for wider controls (Gao et al. 2011, Wang et al.

2016b, Chang et al. 2018), few have evaluated contributions from far-away sources outside

of Beijing�Tianjin�Heibei region to Beijing. Furthermore, changes in relative contributions

from the near and far regions of control need to be understood in terms of their temporal

e�ect as well as dominant sources for varying meteorological conditions.

2.6 Atmospheric chemical transport models

The processes controlling the formation and fate of air pollution can be explored in detail

using chemical transport models. Atmospheric Chemical Transport Models (ACTMs) are

weather forecast models which include emissions, and chemical and deposition processes

needed to represent air pollution. The general objective of ACTMs is to simulate the
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evolution of interacting chemicals in the atmosphere (Brasseur & Jacob 2017). This is

done by solving a coupled system of continuity equations that represent conservation of

mass.
∂Ci

∂t
= −v · ∇Ci + Pi(C)− Li(C)(i = 1, ...n) (2.1)

Here, v is the 3-D wind vector, and Pi and Li are total production and loss rates for species i

which involve contributions from chemical reactions (coupling to other species), emissions,

and deposition. (∂Ci/∂t) is the change in mixing ratio with time which is expressed as

the sum of in�ow minus out�ow (�ux divergence term v ·∇Ci) within a grid point and

net local production (Pi � Li). The solution of equation 2.1 depends on meteorological

variables through the 3-D wind vector v. The production and loss terms may also depend

on meteorological variables.

O�ine ACTMs borrow 3-D time-dependent data (e.g., winds, humidity, temperature

etc.) from an external meteorological model which must de�ne a mass-conserving air�ow

with consistent values for di�erent variables that a�ect transport, production, and loss

terms in eqn 2.1. Various independently developed o�ine ACTMs have been successfully

used to study air pollution events in China, e.g., CMAQ (developed by the US Environment

Protection Agency) (Chang et al. 2018, Hu et al. 2016, Zhang et al. 2017, 2016b), NAQPMS

(developed at FRSGC, Yokohama, Japan) (Li et al. 2014, Chen et al. 2015a, Wang et al.

2017b, Chen et al. 2019a) and CAMx (developed at Ramboll Environment and Health,

US) (Li et al. 2015, Zhang et al. 2018).

Online ACTMs generate their own meteorological environment where continuity equa-

tions for chemical species are solved together with the meteorological equations for conser-

vation of air mass, momentum, heat, and water. Online ACTMs, while more computation-

ally expensive than the o�ine ACTMs, o�er several advantages over the latter: they enable

studying feedback e�ects of pollutants (e.g.,O3, aerosols) on meteorology, they avoid the

need for separate high-resolution meteorological archives to study air pollution, and they

are not subject to time-averaging errors associated with the use of o�ine meteorological

�elds (Brasseur & Jacob 2017). Two-way coupled WRF-CMAQ (Wong et al. 2012), WRF-

Chem (Grell et al. 2005), GEOS-Chem (Bey et al. 2001), UKCA (Morgenstern et al. 2008)

and ECHAM-HAM (Zhang et al. 2012) are some examples of online ACTMs.

ACTMs can be global (e.g., ECHAM, GEOS-Chem, UKCA) which simulate the atmo-

sphere of the entire globe or regional (e.g., CMAQ, WRF-Chem, NAQPMS) which simulate

only the region of interest. Regional ACTMs are also called Limited-Area Models (LAMs).

Global ACTMs have a coarser horizontal resolution (larger grid sizes) and are traditionally
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used to study global change in atmospheric composition, for example in Wild et al. (2004),

Strode et al. (2019).

It is common to use a higher resolution of the model over a region of interest with-

out the computational expense of high resolution at other regions. Nesting is a process

where a model runs at a �ner resolution by borrowing initial and boundary conditions

about the physical and chemical state of the atmosphere from the output of its coarser

version and both versions proceed ahead in time simultaneously with either one-way or

two-way exchange of information. In one-way nesting, the coarser version of the model

supplies information about the state of the atmosphere at the boundaries of the region of

interest which is being simulated at a higher resolution. In two-way nesting, the coarser

version provides this information to the �ner version which then also provides aggregated

information back to the coarser version and both versions evolve simultaneously in time,

bene�ting from higher resolution geographic and emissions data and a �ner representation

of wind �ow, turbulence and convective processes.

Recent studies have used global models at �ner resolutions to study smaller target re-

gions such as the North China Plain and Seoul with or without nesting (see Wang et al.

2014b, Lee et al. 2017). However, if we are not interested in studying global change, it

makes less sense to use our computational resources to simulate the entire globe. Regional

ACTMs only simulate a limited area of the globe so that most of the computational re-

sources are exploited in modelling the region of interest, while relying on external global

model output (easily downloadable for free) for meteorological and chemical initial and

boundary conditions. Therefore, regional ACTMs have become an attractive choice to

model city- and district-level pollution episodes in su�cient detail without worrying about

the state of pollution farther away. I have chosen the well-tested regional ACTM, WRF-

Chem for my studies which is described in the next section.

2.7 The WRF-Chem model

The Weather Research and Forecasting model with chemistry (WRF-Chem) is an online

ACTM where the meteorological component and chemistry component share the same

transport scheme, grid, physics schemes for subgrid-scale transport, and time-step.

The meteorological component WRF features an advanced numerical solver�an itera-

tive procedure to �nd approximate solutions to ordinary di�erential equations�for solving

continuity equations for mass and water vapour, (thermodynamic) energy conservation

equations to relate air temperature to heating and cooling processes, 3-D Navier-Stokes
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equation for momentum conservation, and the ideal gas law to relate pressure to air den-

sity and temperature. WRF features a mass-based terrain-following coordinate and allows

for two-way nesting with multiple nests and nest levels, �exible vertical grid spacing for

better representation of boundary layer processes and inversion, multiple map projections

(polar, conic, cylindrical etc.) to represent a limited-area across any part of the globe

with minimal map distortion, a selection of di�erent advection schemes with mass and

scalar conservation, and parameterized representations for land-surface, planetary bound-

ary layer, atmospheric and surface radiation, cloud microphysics and cumulus convection.

For a detailed description of governing equations, the numerical solver, treatment of initial

and boundary conditions, nesting, and representation of boundary layer turbulence, land

surface processes, radiation, cloud processes and convection, see Skamarock et al. (2008).

The chemistry component Chem consists of a variety of independently developed chem-

ical mechanisms for gas-phase pollutants and aerosols. The user can select simpler or

complex gas-phase and aerosol representations based on their research question and avail-

ability of computational resources. The chemistry component also features sophisticated

atmospheric processes such as dry deposition, wet deposition and scavenging, cloud chem-

istry, and photolysis (Grell et al. 2005). Figure 2.2 shows a simple schematic diagram of

the modelling framework. The user supplies geographic data (land use and topography),

emissions (anthropogenic, biogenic and biomass burning), meteorological reanalysis (global

model output assimilated with observations) for lateral boundary conditions, and global

ACTM output for chemical initial and boundary conditions which are preprocessed to a

gridded form on a user-selected map projection. The preprocessing system prepares the

initial meteorological and chemical state of the atmosphere on the required grid focusing

on the study region. The model is then run forward in time which performs numerical inte-

gration of various ordinary di�erential equations as mentioned in section 2.6 and produces

a range of di�erent 3D and 4D �elds of both meteorology and pollutants at �ner spatial

and temporal scales representing the evolution of the atmosphere over the study period.

WRF-Chem is a well-tested model in the atmospheric pollution modelling community

and o�ers some excellent options which other models do not. Its meteorological compo-

nent features fully compressible nonhydrostatic equations with hydrostatic option (Ooyama

1990), an accurate and e�cient numerical solver (Skamarock & Klemp 2008) with mass-

based terrain-following coordinate (Laprise 1992), variable vertical grid spacing, 2-way

nesting, full physics options for land-surface, planetary boundary layer, atmospheric and

surface radiation, cloud microphysics and cumulus convection, and the chemistry compo-

nent features two-way coupling with simultaneous evolution of meteorology and chemistry,
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Figure 2.2: A simple schematic diagram of the WRF-Chem model
running framework

a range of choices of various gas-phase and aerosol chemical mechanisms including inter-

action of aerosols with gases (e.g., gas-to-particle conversion), scattering and absorption

of both solar and terrestrial radiation by aerosols, and aerosol e�ects on cloud formation�

something still lacking in other models. It also allows for data assimilation�a technique

of nudging the model results towards available observations to improve overall prediction.

WRF-Chem has been used extensively to study trace gases (Zhang et al. 2009, Wang et al.

2010b, Chen et al. 2013a, Ansari et al. 2016, Sharma et al. 2016, Mu et al. 2017) and

aerosols (Luo & Yu 2011, Saide et al. 2012, He et al. 2014, Ansari et al. 2015, Ma et al.

2018) and has been thoroughly evaluated at multiple scales for various parts of the world

including China (Misenis & Zhang 2010, Kuik et al. 2016, Banks et al. 2016, Zhong et al.

2016, Flaounas et al. 2017, Crippa et al. 2017, Yahya et al. 2017, Pithani et al. 2018). It

is therefore a great choice for air pollution studies over Beijing as it has a good well-tested

representation of key atmospheric processes for investigation of haze episodes. Choosing

a well-tested model helps us to build over existing knowledge while also aiding in repro-

ducibility of previous results over the same region thereby strengthening our con�dence in

a consistent theoretical understanding of pollution events.

The WRF-Chem model code is written in FORTRAN90 and relies on several other

libraries such as NetCDF, GRIB, zlib, szip and MPI. WRF-Chem code is modular and

allows for serial or parallel build, i.e., the model may be ported onto a single-processor

machine (serial), a shared-memory machine or a distributed cluster (parallel mode). Mod-

elling of atmospheric chemistry is a grand computational challenge which requires solving

a large system of 4-D partial di�erential equations, therefore it is practical to port the

model on to large distributed clusters or supercomputers. For this research, WRF-Chem

was ported on to the Lancaster HEC distributed cluster and up to 64 processors were

were used in parallel to conduct the simulations. Other tools for emissions and boundary
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conditions preprocessing were also installed.

Several tests were performed to select the best-suited model parameters for the study

region and period. Firstly, to select the optimal time-stepping of meteorological and chem-

ical solvers, the model was run with various combinations of meteorological time step and

chemical time step: (90s,90s), (150s,150s) and (150s,30m). Finally a meteorological time

step of 150 s and a chemical time step of 10m was selected as a good compromise between

numerical accuracy and computational e�ciency. Then, with these time steps, further tests

were performed to obtain a good vertical representation of the atmosphere over the study

region�mainly by testing several combinations of model top, number of vertical levels,

and the boundary layer scheme with and without data assimilation of key meteorological

parameters. Ultimately, 31 vertical levels with a model top of 50 hPa and the Yonsei Uni-

versity boundary layer scheme were selected along with grid nudging of moisture, heat and

winds outside the boundary layer, based on a realistic spatial and temporal representation

of boundary layer height and other pollutants. Results from some of these tests are shown

in AppendixD.

2.8 Modelling approaches

Although WRF-Chem has been used extensively in the last decade to study air pollution

events all across the world, its application has been rather conventional, i.e., running the

model during a pollution episode, comparing the model output against observations and

explaining the di�erences. There is tremendous scope for novel application techniques of

the model to gain further insight into formation mechanisms and source attribution of air

pollution.

Several studies also miss the crucial step of meteorological evaluation prior to the

chemical evaluation. In atmospheric modelling, simulated results often match antici-

pated/observed values due to various intermediate parameters having an o�setting e�ect

on each other�right answers for the wrong reasons. For example, a model may have a lower

chemical production of a chemical species than reality but also a shallower boundary layer

which leads to reduced vertical mixing and more chemical accumulation at the surface,

�nally matching the levels of observations. Similarly, an emission inventory (emission in-

put data) that is read by the model might have a wrong location of an emission source

of a precursor species, say, slightly upwind of its real location, but the model may under-

estimate temperature in the region leading to a slower chemical production of secondary

species thereby forming further downwind in the model than it should, ultimately matching
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the ground-based observations due to o�setting e�ect of chemistry and transport. Higher

emission rates or chemical production can also be compensated by higher removal rates

(dry and wet deposition, chemical destruction) in the model which may not be the same

as real atmosphere but ultimately lead to the same levels of pollutant accumulation in

the atmosphere at a given time. Such results can lead to an incorrect understanding of

atmospheric processes, and formulation of a �awed a control policy. Therefore careful eval-

uation is required at each step of prediction, and the uncertainties have to be recognized.

A thorough meteorological evaluation highlighting the strengths and weaknesses of the

model across all domains (if nesting is used) is necessary before making claims about the

chemical prediction skill of the model. The causes of better or worse model performance

in certain regions or at certain times have to be explained. This helps us better interpret

the pollutant predictions and identify the inadequacies within the model in context of a

particular research question.

Source apportionment (identifying sources of pollution for a given receptor) is a key

exercise in formulating smarter emission-control policies. Source attribution can be per-

formed through sensitivity analysis or through 'tagging' of emissions. Sensitivity analysis

involves running the model with reduced emissions from a particular source to obtain pol-

lutant concentrations at the receptor which are then compared with concentrations from

the baseline emissions run. The di�erence gives us the contribution from the considered

source to the receptor. Multiple simulations are needed to identify contributions from

di�erent sources. Therefore the sensitivity analysis method can become very tedious if

several sources are considered. The tagging method overcomes the problem of multiple

simulations by treating emissions of a given species from di�erent regions as completely

independent species in the model such that the model simulates their emission, transport

and removal independently. In such a model run, the tagged species are reported as sepa-

rate variables. Simulations with several tagged species can be much more computationally

expensive than individual simulations of the brute-force method but may still be a more

e�cient choice overall depending on the computational resources available. The biggest

problem of tagging method is that it cannot attribute secondary pollutants accurately�as

they do not originate from primary emission sources but are formed on the way. PM2.5

episodes in Beijing are dominated by secondary aerosols (Sun et al. 2016a,b, Tao et al.

2017, Li et al. 2017, Chen et al. 2015b, Huang et al. 2019), therefore tagging is not an

attractive method to investigate their sources. Sensitivity analysis can attribute secondary

pollutants to considered sources and has been used extensively in modelling studies for

source attribution (Burr & Zhang 2011, Han et al. 2016, Zhang et al. 2017). However, the
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sensitivity analysis method can only be used to attribute secondary pollutants to individual

emission sources by removing one source at a time and does not take into account the in-

teractions of various sources and non-linear response of secondary pollutant concentrations

towards emissions. To fully understand source contributions, the nonlinearity of pollution

response to reductions in various emission sources has to be understood in detail. Ideally,

hundreds of thousands of simulations are needed with di�erent sets of perturbations to all

emission sources in order to su�ciently capture the interactions between di�erent sources.

Such a large number of runs with a computationally expensive ACTM is impractical.

Statistical and machine learning (ML) techniques are useful in learning the underlying

behavior of a system from a set of training data without a prior knowledge about the

nature of the relationships between the data (Lary et al. 2016). ML-based techniques are

particularly useful in: classi�cation problems; when there is no deterministic model for the

system; and when the system's deterministic model is computationally expensive (Lary

et al. 2016). The problem of source attribution corresponds to the third case here due to

the large number of simulations involved.

Gaussian Process Emulation is an attractive statistical technique to study source at-

tribution of pollution. Here, the computationally expensive ACTM (simulator) is replaced

by an emulator trained on the input-output relationships derived from a su�cient number

of perturbation runs of the simulator such that enough parameter space is covered. The

emulator, being computationally e�cient, can then be run thousands of times with a lot

more perturbations in the input parameters (here, emission strengths of di�erent sources)

to calculate the Global Sensitivity Indices of each input parameter; this is the sensitivity

of each emission source towards pollution levels at the receptor, averaged over all possi-

ble values of other sources. Global sensitivity indices present a more holistic information

about source attribution than simple one-at-a-time sensitivity studies�this is because the

latter attribute contributions to a given source while all other sources remain �xed at their

nominal values while Global Sensitivity Indices represent a mean response to changes in

strength of a given source averaged over all possible changes in other sources.

Apart from computing Global Sensitivity Indices, Gaussian Process Emulation can also

be used to create response surfaces which relate emission strength of various sources to

resulting concentration at the receptor. Response surfaces can be utilized to work out

the most optimal reductions needed across various sectors and regions to meet a certain

pollution target at the receptor which can be implemented back in the simulator to test the

results. These set of reductions can either be constant in time during a pollution episode

(linear controls) or variable in time. The latter method can lead to a more dynamic policy
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framework which updates daily and controls emissions by just the right amount to meet

daily targets. This method of optimizing a multivariable system is called Model Predictive

Control (MPC) and has been used in several applications such as industrial processes,

self-driving cars and guided missiles.

MPC is a feedback control algorithm that uses a model to make predictions about

future outputs of a process. MPC can handle multi-input multi-output systems that might

have interactions between their inputs and outputs. MPC can handle constraints and

incorporate future reference information into the control problem thereby acquiring preview

capabilities. In a control problem, the goal of a controller is to calculate the input to

the system (here, the ACTM) such that the system output follows a desired reference.

MPC uses a simpli�ed model of the system to make predictions about the future of the

system output behaviour. It also uses an optimizer which ensures that the predicted future

system output tracks the desired reference. The MPC controller simulates multiple future

scenarios of the system for a given prediction horizon. These predictions are not done in

a random way but in a systematic way by means of the optimizer which solves an error

minimization problem. While solving this optimization problem it is also made sure that

the prediction stays within prescribed limits or constraints. The optimized prediction is

then implemented to the system and predictions are made for the next prediction horizon

with updated conditions. An MPC-based approach is developed in this work by means of

gaussian process emulation to guide the WRF-Chem model towards the desired output:

the national standard for daily mean PM2.5 concentration in Beijing.

This work presents a comprehensive model study of pollution episodes in Northern

China with a focus on Beijing using a state-of-the-art high-resolution atmospheric chem-

ical transport model WRF-Chem. A past short-term emission control policy in Beijing

is evaluated for its robustness and temporally-resolved source contributions from various

sectors and regions to PM2.5 levels are investigated. Furthermore, novel use of computa-

tionally cheap statistical emulation is demonstrated to identify nonlinearities in pollution

response to emission cuts, and response surface charts are produced for informing short-

term emission control policy. An automatic model running framework is developed with

dynamically changing emissions guided by response surfaces in order to meet daily healthy

air quality targets. This is one of the �rst studies to emulate an air quality model, and the

�rst to build a dynamic emission scaling framework based on emulated results.
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3.1 Abstract

We explore the impacts of short-term emission controls on haze events in Beijing in

October�November 2014 using high resolution WRF-Chem simulations. The model re-

produces surface temperature and relative humidity pro�les over the period well and cap-

tures the observed variations in key atmospheric pollutants. We highlight the sensitivity

of simulated pollutant levels to meteorological variables and model resolution, and in par-

ticular to treatment of turbulent mixing in the planetary boundary layer. We note that

simulating particle composition in the region remains a challenge, and we overpredict NH4

and NO3 at the expense of SO4. We �nd that the emission controls implemented for

the APEC Summit period made a relatively small contribution to improved air quality

(20�26%), highlighting the important role played by favourable meteorological conditions

over this period. We demonstrate that the same controls applied under less favourable

meteorological conditions would have been insu�cient in reducing pollutant levels to meet

the required standards. Continued application of these controls over the 6-week period

considered would only have reduced the number of haze days when daily mean �ne partic-

ulate matter exceeds 75 µgm−3 from 15 to 13 days. Our study highlights the limitations

of current emission controls and the need for more stringent measures over a wider region

during meteorologically stagnant weather.

3.2 Introduction

Air pollution poses serious health risks to urban residents and is one of the most important

environmental problems facing cities around the world (Liang et al. 2017). Fine particulate

matter with a diameter less than 2.5 µm (PM2.5) is a major air pollutant that often ex-

ceeds safe limits during haze episodes which are a common occurrence in many developing

megacities over the past decade. It has been estimated that outdoor air pollution, mostly

by PM2.5, leads to 3.3million premature deaths per year worldwide, predominantly in Asia

(Lelieveld et al. 2015). PM2.5 also reduces visibility and has important impacts on regional

climate (Westervelt et al. 2016). Beijing is the capital and political and cultural centre

of China and is among the most polluted cities in the country (Batterman et al. 2016).

The population of Beijing municipality increased from 14.2million in 2002 to 21.2million

in 2013 (Jiantang et al. 2014), and this has been accompanied by an increase in anthro-

pogenic emissions across the region. High PM2.5 concentrations are frequently reported

in city clusters in the Beijing�Tianjin�Hebei, Yangtze River Delta, and Pearl River Delta
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regions in China. Haze episodes are particularly common during winter months and have

attracted substantial scienti�c attention (Gao et al. 2017). Independent observational (Gao

et al. 2016a, Zhong et al. 2018, Shang et al. 2018, Chen et al. 2015b, Sun et al. 2016a),

modelling (Matsui et al. 2009, Kajino et al. 2017, Gao et al. 2015a, Chen et al. 2016e) and

long-term data analysis studies (Chen et al. 2016, Liu et al. 2016d, Chen et al. 2015c, Yan

et al. 2018) have investigated the sources, evolution and fate of PM2.5 in Beijing, but many

uncertainties remain, and improved understanding is required in order to inform sound,

evidence-based emission control policies. Strict short-term emission controls have been ap-

plied e�ectively to improve air quality in Beijing during the Beijing Olympics in 2008 (Gao

et al. 2011, Yang et al. 2011) and more recently for major events such as the Asia-Paci�c

Economic Cooperation (APEC) summit in November 2014 (Li et al. 2017d, Wang et al.

2016c) and the China Victory Day Parade in 2015 (Liang et al. 2017, Liu et al. 2016c, Zhao

et al. 2016). Real-world emission controls provide an ideal opportunity for testing current

scienti�c understanding of the sources and processing of air pollution as represented in

models in a robust way. With improved con�dence in model performance over a focus

region we can explore the impact of alternative control options to aid formulation of more

e�ective policies for emission reduction.

A number of previous studies investigated the e�ect of emission controls during the

APEC period in November 2014 using surface observations (Sun et al. 2016b, Xu et al.

2015, Wang et al. 2016c, Li et al. 2017d, Zhou et al. 2017) and atmospheric chemical trans-

port models (Zhang et al. 2016a, Guo et al. 2016, Wang et al. 2017a, Gao et al. 2017) and

found that PM2.5 concentrations were much lower than during the preceding weeks. Many

of these studies attributed this improved air quality largely to the emission controls that

were applied without thoroughly evaluating the role of meteorological variations. Com-

parison with observations in preceding weeks or over similar time periods in earlier years

does not adequately account for the role of meteorology in governing haze episodes. Model

studies with and without emission controls are insu�cient to evaluate the contribution of

meteorological processes if they focus on the control period alone, without evaluating the

model performance outside the control period. Gao et al. (2017) found that the emission

controls reduced PM2.5 levels by about 18 µgm−3 during APEC with about half the re-

duction being due to emission controls in surrounding districts outside Beijing. However,

the study involved coarse-resolution (27 km) model simulations which may be insu�cient

in capturing regional and city-level atmospheric events well and lacked component-level

analysis of aerosols. Other studies have noted the role of meteorology during the period

but have not quanti�ed it, attributing the bene�ts mostly to emission controls.

24



CHAPTER 3. MODELLING APEC EMISSION CONTROLS

In this study we investigate the e�ectiveness of short-term emission controls and how

meteorological processes in�uence this, using the APEC period as an example. We use

a nested version of the Weather Research and Forecasting model with Chemistry (WRF-

Chem) over China with a speci�c focus on the Beijing�Tianjin�Hebei region. WRF-Chem

has been used successfully at coarser resolution in previous studies investigating haze for-

mation over Beijing (Matsui et al. 2009, Tie et al. 2014, Zhang et al. 2015b, Chen et al.

2016e). We describe the model set-up, emissions, and observations in Section 5.3. In

section 3.4 we present a thorough meteorological and chemical evaluation of the model

simulations against surface observations and tower measurements, including aerosol com-

position, and we assess the strengths and weaknesses of the model. We present sensitivity

studies to key physical and chemical processes in section 3.5. In section 3.6 we investigate

the impact of emission controls over the APEC period and compare these with the same

controls over a period two weeks earlier to demonstrate the important role of meteorological

conditions in governing their e�ectiveness.

3.3 Model con�guration and the APEC period

We use the WRF-Chem model (Grell et al. 2005, Fast et al. 2006) version 3.7.1 to simulate

the meteorology and air quality over northern China. Previous studies have shown that

WRF-Chem is capable of reproducing air quality in China relatively well (Gao et al. 2015a,

2016b, Guo et al. 2016, Chen et al. 2016e). We use the Carbon Bond Mechanism version

Z (CBMZ) chemistry scheme coupled with the Model for Simulating Aerosol Interactions

and Chemistry (MOSAIC) aerosol module (Zaveri et al. 2008). CBMZ explicitly treats 67

species with 164 gas-phase, heterogeneous and aqueous reactions, and provides a suitable

compromise between chemical complexity and computational e�ciency. MOSAIC uses a

sectional approach with eight aerosol size bins and treats the key aerosol species, including

sulfate, nitrate, chloride, ammonium, sodium, black carbon (BC), primary organic mass,

liquid water and other inorganic mass. Secondary organic aerosol (SOA) formation is

not included in the chemical mechanism used here. Current SOA schemes are poorly

parameterized for Chinese conditions and signi�cantly underpredict SOA (Gao et al. 2016b,

2015b). SOA contributed only 17�23% of total ground-level �ne particulate matter in

Beijing during the period investigated here, while secondary inorganic aerosols contributed

up to 62% by mass (Sun et al. 2016b). We consider the lack of SOA formation in the model

in drawing our conclusions. Further details of the model con�guration used in this study

are given in Table 3.1.
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Figure 3.1: Map of the model domain (left) showing nests over north-
ern China and the North China Plain, and map of Beijing munici-
pality (right) showing the location of IAP (black) and measurement
stations for meteorology (blue) and air quality (red).

We perform two-way coupled simulations with three nested domains that include China

as the parent domain (D01) at 27 km horizontal resolution, northern China as a nest (D02)

at 9 km resolution and the North China Plain as an innermost nest (D03) at 3 km resolution,

as shown in Fig. 3.1. The model is nudged to meteorological reanalysis data above the

boundary layer every six hours for winds, temperature and moisture to permit direct

comparison of the simulations with observed pollutant concentrations under comparable

conditions.

We use anthropogenic emissions from the Multi-resolution Emission Inventory for China

(MEIC) for the year 2010 (Li et al. 2017c). This provides emissions of major air pollutants

including NOx, CO, non-methane volatile organic compounds (NMVOCs), SO2, NH3,

PM2.5, PM10, black carbon (BC) and organic carbon (OC) from �ve major emission sectors

that include residential, tra�c, industry, power and agricultural sources, and it has been

used in a number of previous modelling studies (Li et al. 2015, Gao et al. 2015a, Zhang et al.

2015b, Chen et al. 2015a, 2016e). Emissions were provided at the native resolution of each

domain, i.e., at 27 km, 9 km and 3 km. We impose a vertical pro�le for these emissions over

the lowest eight model levels to account for the e�ective source height distribution for each

sector based on the distribution used for EMEP emissions (Bieser et al. 2011, Mailler et al.

2013), and impose a diurnal cycle for each sector. SO2 emissions over the Beijing�Tianjin�

Hebei region were reduced by 50% to account for strong emission reductions between 2010

and our focus year of 2014 (Zheng et al. 2018, Krotkov et al. 2016). We assume that 6%

by mass of SO2 is emitted as primary SO4 to account for the discrepancy between high

observed concentrations of SO4 and low secondary production in the model (Gao et al.
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Table 3.1: Model con�guration used in this study

Con�guration Description

Horizontal resolution 27 km, 9 km, 3 km (three domains)
Vertical levels 31 with model top at 50 hPa
Aerosol scheme MOSAIC with eight bins (Zaveri et al. 2008)
Photolysis scheme FAST-J photolysis (Wild et al. 2000)
Gas-phase chemistry CBMZ (Zaveri & Peters 1999)
Cumulus parameterization Grell 3-D scheme
Shortwave radiation RRTMG shortwave scheme (Clough et al. 2005)
Longwave radiation RRTMG longwave scheme (Mlawer et al. 1997)
Cloud microphysics Lin scheme (Lin, Yuh-Lang, Richard D. Farley 1983)
Land surface scheme NOAH LSM (Chen & Dudhia 2001)
Land-use data MODIS 20 category at 30 arcseconds
Surface layer scheme Monin�Obukhov scheme (Monin & Obukhov 1954)
Boundary layer scheme YSU (Hong et al. 2006)
Meteorological conditions ECMWF 6-hourly data
Chemical boundary conditions MOZART (Emmons et al. 2010)

2015a, Chen et al. 2016e, Li et al. 2017a). Biogenic emissions are based on the Model of

Emissions of Gases and Aerosols from Nature (MEGAN, Guenther et al., 2012). These

are calculated online in the model based on canopy and emission factors and factors for

leaf age, soil moisture, the leaf area index, light dependence and temperature responses.

Hourly �re emissions are included from the Fire Emissions INventory from NCAR (FINN;

Wiedinmyer et al., 2011) to represent biomass burning, although this is not a major source

in the region at this time of year.

To evaluate the model, meteorological observations were obtained from the National

Climatic Data Center (NCDC) hourly integrated surface database http://www.ncdc.

noaa.gov/data-access/ for all of China. These sites are shown in Fig. 3.1. We focus

on 2m temperature and relative humidity, 10m wind speed, and direction for model eval-

uation. Vertical pro�les of meteorological variables were obtained from the 325m high ob-

servational tower located at the Institute of Atmospheric Physics (IAP), Chinese Academy

of Sciences, Beijing (39◦58′28′′N, 116◦22′16′′ E). This provides independent measurements

of temperature, relative humidity, wind speed and wind direction at 17 di�erent height

levels. Measurements of boundary layer mixing height were retrieved from aerosol lidar

pro�les at IAP (Yang et al. 2017), providing a valuable additional test of model meteo-

rological processes. Hourly concentrations of NO2, CO, SO2, O3, PM2.5 and PM10 are

available from the national monitoring network run by the China National Environmental

Monitoring Center (CNEMC). In addition, detailed measurements of atmospheric pollu-

tants and aerosol composition were made from the IAP tower over the October-November

2014 period. These include measurements of NH4, NO3, SO4, and OC from an Aerodyne
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Table 3.2: Comparison of observed and simulated meteorological variables using FNL and ECMWF �elds

Obs. avg. Sim. avg. Bias RMSE r
FNL ECMWF FNL ECMWF FNL ECMWF FNL ECMWF

2-m Temperature (◦C)
Beijing 9.68 11.52 11.44 1.84 1.76 3.28 3.36 0.88 0.87
North China Plain 8.91 8.98 8.95 0.07 0.04 2.47 2.46 0.94 0.94
2-m Relative Humidity (%)
Beijing 54.7 34.1 39.1 -20.6 -15.6 26.9 22.4 0.77 0.81
North China Plain 54.9 44.8 48.9 -10.1 -6.0 19.6 16.7 0.75 0.78
10-m Wind Speed (ms−1)
Beijing 5.41 2.27 2.24 -3.14 -3.17 4.98 5.09 0.72 0.69
North China Plain 5.73 3.26 3.20 -2.47 -2.53 4.60 4.65 0.62 0.61
10-m Wind Direction (◦)
Beijing 197.5 214.2 191.0 16.7 -6.6 73.9 73.9 0.79 0.80
North China Plain 215.1 210.0 206.5 -6.9 -8.6 62.7 63.4 0.78 0.78

Hourly values are taken from 1 station in Beijing and 30 stations over the North China Plain from 12 October to 19 November

2014. Where observation data are missing, model values were removed to ensure that sampling was consistent.

Aerosol Chemical Speciation Monitor (ACSM) instrument at 260m altitude (Sun et al.

2016b) and from a high-resolution aerosol mass spectrometer (HR-AMS) instrument at

the surface (Xu et al. 2015), and BC at the surface was measured with an aethalometer.

The size-segregated samples collected at the two heights were analysed for water-soluble

ions. Detailed procedures for the data analysis are described in Ng et al. (2011) and Sun

et al. (2012).

3.4 Model evaluation

To investigate the strengths and weaknesses of the model in representing air quality in

China, the model was evaluated against meteorological and pollutant measurements across

all three domains and at the IAP tower site in Beijing.

3.4.1 Meteorology

We test the model performance using two sets of meteorological �elds: �nal reanalysis

data (FNL) from the National Centers for Environmental Prediction (NCEP) and ERA-

Interim data from the European Centre for Medium-Range Weather Forecasts (ECMWF).

Table 3.2 presents a comparison of the performance of the model against ground-based

observations from the NCDC dataset for Beijing and the North China Plain. For a detailed

evaluation over each model domain, please see TableA.1 in the supplement. The average

2m temperature is reproduced well over the North China Plain but is overpredicted at the

single Beijing site. This is located at the airport on the outskirts of the city, and may not be

representative of the wider region. The surface relative humidity is underpredicted for all

domains with both sets of �elds, although the biases are smaller and correlation is better
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Figure 3.2: Comparison of meteorological measurements at 190�
310m on the IAP tower in Beijing with model simulations using
ECMWF meteorological �elds between 12 October and 12 Novem-
ber 2014. The period with emission controls is shaded.

with ECMWF data. The humidity is underpredicted by about 15% at the Beijing site

and this may have implications for heterogeneous reactions and the hygroscopic growth of

secondary aerosols. The 10m wind speed is substantially underpredicted using both sets

of �elds, and this is most notable for the Beijing site. However, the correlation at this

site is reasonably good suggesting that the hourly variability in wind speeds is captured

adequately. The 10m wind direction and its variability are also reproduced relatively well.

Based on these comparisons, and on subsequent comparison of pollutant concentrations, we

�nd that the model performs marginally better using the ECMWF meteorological �elds.

With these �elds the model captures the timing of pollution episodes better, leading to

more realistic pollutant behaviour, and we have therefore chosen to use ECMWF �elds for

our model studies.

Figure 3.2 presents an evaluation of meteorological variables with measurements from

the IAP tower. We evaluate the model against measurements at 190�310m (model level 4)

to minimize the e�ects of buildings surrounding the site, which are not adequately resolved

in the model. The daily maxima and minima in temperature are reproduced reasonably

well with a small underestimation that averages less than 2 oC. The diurnal variations

and averages for relative humidity, wind speed and wind direction are also captured well.

The mean bias in relative humidity is 0.9% and the large underprediction seen at the

airport meteorological station is not evident here, suggesting that it may be a surface-level
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feature or re�ect overestimation of temperature at that location. Over the height of the

tower (�ve model levels, FigureA.2) the diurnal variation in humidity drops by more than

a factor of 2, very similar to the reduction seen in the observations. The wind speed is

slightly overestimated during windier periods, with a mean bias of 0.54ms−1. This suggests

that the underestimation of 10m wind speeds at meteorological stations seen in Table 3.2

is a surface feature in the model�and does not represent a systematic bias throughout

the boundary layer. The synoptic patterns in all four variables are captured very well,

highlighting the quality of the ECMWF meteorological data, and there is only one occasion

on 20�21 October when substantial deviations in temperature and humidity are evident.

There are some marked di�erences in meteorological conditions between the APEC period

(3�12Nov) and the period preceding it. These include a gradual temperature drop of 7 ◦C

associated with the changing seasons which is accompanied by a drop in relative humidity.

There is an increase in the frequency of northwesterly �ow with higher wind speeds, and

this contrasts strongly with the lighter wind speeds and more frequent southerly �ow in

October. These changes are captured well by the model. A more detailed comparison of

the meteorological conditions is given in TableA.2 in the supplement.

3.4.2 Air quality

We ran the model from 10 October to 19 November 2014 using ECMWF meteorology,

and the �rst two days were set aside as model spin-up. A comparison of hourly modelled

pollutants for Beijing and the North China Plain against measurements from the CNEMC

network is presented for October in Table 3.3 and the mean spatial distribution of PM2.5

during October is shown in Fig. 3.3. We do not include the November period here because

emission controls were implemented across Beijing and surrounding provinces from the

beginning of November. A more detailed comparison of concentrations on an hourly and

daily basis over all model domains is given in TableA.3.

The model overpredicts average surface PM2.5 over the period by 5�18% across the

three model domains. The correlation for hourly PM2.5 improves with resolution, from

r=0.47 for domain 1 to 0.63 for domain 3 and 0.68 for the 12 Beijing sites. The model

underestimates PM10, although the biases are relatively small (<10%) over Beijing. This

may be attributed to neglect of mineral dust sources in the model, which play a relatively

small role over Beijing at this time of year. CO is underestimated over much of China,

suggesting that the emissions in the inventory are too low, but the biases are relatively

small over Beijing, and the variability is captured well. A similar e�ect is seen for NO2,
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Table 3.3: Comparison of hourly pollutant concentrations with network mea-
surements over the period 12�31 October 2014

Stations Obs Sim Bias RMSE r slope

PM2.5 (µgm
−3)

Beijing stations 12 108.3 126.2 17.9 86.7 0.68 0.83
North China Plain 137 92.6 109.3 16.7 72.2 0.63 0.71
PM10 (µgm

−3)
Beijing stations 12 155.4 141.5 -13.9 96.5 0.65 0.79
North China Plain 137 165.7 122.9 -42.8 104.0 0.57 0.50
CO (ppm)
Beijing stations 12 1.11 0.94 -0.17 0.63 0.60 0.46
North China Plain 137 1.17 0.83 -0.34 0.87 0.29 0.21
NO2 (ppb)
Beijing stations 12 39.09 36.09 -3.00 19.33 0.62 0.66
North China Plain 137 29.75 25.88 -3.87 18.95 0.47 0.45
SO2 (ppb)
Beijing stations 12 3.92 12.27 8.35 11.88 0.27 0.68
North China Plain 137 13.28 14.47 1.19 13.66 0.21 0.22
O3 (ppb)
Beijing stations 12 12.53 12.19 -0.34 13.92 0.47 0.44
North China Plain 137 17.76 18.75 0.99 15.96 0.45 0.43

Where observation data are missing, model values were removed to ensure consistent

sampling.

which is underestimated by as much as 45% over parts of China, but by only 8% over the

Beijing sites. This may partly re�ect better representation of the emission distribution

for this shorter-lived pollutant on a �ner grid. SO2 is underestimated by 13% over most

of China but is overestimated over Beijing by a factor of 3. The large overestimation for

Beijing can be attributed to the recent rapid reduction in emissions in the region between

2010 and 2014 that are not represented in the 2010 inventory (Zheng et al. 2018). Ozone

is reproduced well over Beijing, but is overestimated over much of China; this may re�ect

the bias in NO2 concentrations, and is likely to be in�uenced by the urban locations of

most of the air quality stations.

For most pollutants, the correlation and slope improve substantially with resolution,

and are better on a daily mean basis than at hourly resolution. This suggests that the day-

to-day variability driven largely by regional meteorological processes is captured better than

the diurnal variations driven by chemistry and local boundary layer mixing, as expected.

This is particularly noticeable for ozone, although concentrations of this pollutant remain

low at this time of year. Daily mean concentrations are typically used for most metrics

of pollutant impacts on human health, and the reasonable model performance for daily

averaged data suggests that it is suitable for assessment of these policy-relevant metrics.

The spatial distribution of mean PM2.5 concentrations over 12�31 October is shown
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Figure 3.3: Average spatial distribution of PM2.5 over the period 12�
31 October 2014 for model Domain 1 (China, left) and Domain 3
(North China Plain, right) along with observations shown in circles.

in Fig. 3.3. The distribution is captured reasonably well by the model, with the western

parts of China showing clean air with concentrations less than 10µgm−3) while the eastern,

more populous parts of the country show average concentrations of 70�150µgm−3. Key

hotspots over the North China Plain, central China and the Sichuan Basin are reproduced,

and concentrations in coastal regions are notably lower, matching observations. The North

China Plain is one of the most densely populated parts of the country, incorporating major

cities such as Beijing, Tianjin, and Shijiazhuang, and frequently experiences heavy haze

episodes with high levels of particulate matter (Wang et al. 2014a, Gao et al. 2015a).

The highest concentrations of PM2.5 occur on the western side of the North China Plain,

where they are trapped by southeasterly winds against the Taihang Mountains, and this

is reproduced well by the model. There is a notable east�west gradient as concentrations

drop o� eastwards towards the coast. Over the mountains to the northwest of Beijing

concentrations are much lower, being typically less than 40µgm−3.

Figure 3.4 shows the time series of key gas-phase and particulate pollutants averaged

over the 12 network sites in Beijing. The general synoptic and diurnal patterns of PM2.5,

PM10, CO, NO2 and O3 are reproduced well by the model, including the magnitude of

daily maxima and minima. SO2 is greatly overestimated in October, re�ecting recent rapid

emission reductions in Beijing (Zheng et al. 2018), and this is consistent with the �ndings

of previous studies (Chen et al. 2016e, Gao et al. 2015a, Guo et al. 2016). However,

we note that SO2 is reproduced much better from 15 November onwards, following the

start of the heating season, highlighting the continuing major importance of this source.

The observations show that the region experiences clear synoptic patterns of pollutant
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Figure 3.4: Mean time-series of surface pollutants over the 12 air
quality stations in Beijing. Model values are with baseline emissions
at all times including during the APEC period (shaded).

build-up over 4�5 days followed by sudden clean-out which is typically associated with

frontal passage from the northwest (Guo et al. 2014). These synoptic patterns are seen

more clearly for particulate matter than for gas-phase pollutants like NO2 and CO which

exhibit a stronger diurnal signal re�ecting chemical and dynamical processes. With the

exception of SO2, key pollutants and their variation over this period are reproduced well.

Comparison of aerosol composition with measurements at IAP over this period pro-

vides a more critical test of model performance�see Fig. 3.5. The model overestimates

BC, NO3 and NH4 and underpredicts OC and SO4 during the three episodes in October.

Overestimation of BC likely re�ects the reduction in emissions between 2010 and 2014,

but may also indicate insu�cient removal in the model. The overprediction of NO3 and

NH4 may be due to uncertainty in NO2 and NH3 emissions or to overestimated gas to

particle conversion in the model. In particular, secondary production of NO3 and NH4

may be overestimated during stagnant conditions during pollution episodes�but matches
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Figure 3.5: Measured and simulated aerosol components at the sur-
face (left) and 260m (right) on the IAP tower in Beijing. Model
values are with baseline emissions at all times including during the
APEC period (shaded).

better in November when conditions are less stagnant. The underestimation of SO4 occurs

despite an overestimation of gas-phase SO2, highlighting insu�cient formation of SO4 in

the model. This may also contribute to the overestimation of NO3 as a decrease in SO4

frees up ammonia to react with nitric acid and transfers it into the aerosol phase (Seinfeld

& Pandis 2006). The underestimation of OC can be explained by the absence of secondary

organic aerosol in our studies.

The model captures the vertical gradients of NO3 and SO4 well, with drops of 10�15%

and 30% between the surface and 260m, respectively, similar to the drops seen in the

observations. However, the model shows a weaker vertical gradient than that observed

(22% vs. 33% drop) for NH4 which can be attributed to higher secondary production

of NH4 in the model. For OC, the model shows a stronger vertical gradient than that

observed (53% vs. 12% drop) which re�ects the lack of secondary production at elevated

levels in the model.

3.5 Investigating model weaknesses

While the baseline model simulation with ECMWF meteorological �elds reproduces ob-

served pollutant levels reasonably well, the comparisons have highlighted uncertainties

associated with resolution, vertical mixing processes, and aerosol composition. We explore

the sensitivity of our results to these factors here.
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Table 3.4: Impacts of model resolution on simulation of hourly PM2.5

concentrations in (µgm−3) in Beijing over 12�31 October 2014

Obs mean Sim mean Mean Bias RMSE r slope

D03 (3-km) 108.4 126.2 17.8 86.7 0.68 0.83
D02 (9-km) 108.4 128.7 20.3 87.4 0.69 0.85
D01 (27-km) 108.4 123.1 14.7 86.1 0.68 0.81
D01 (no nest) 108.4 99.2 -9.2 83.2 0.59 0.55

3.5.1 Model resolution

To investigate the bene�ts of high spatial resolution, we sample all three model domains

at the 12 Beijing stations and compare the results with observations. To eliminate the

in�uence of two-way nesting, where results from nested domains feed back to the parent

domain, we perform an additional simulation at 27 km resolution over the parent domain

only. Table 3.4 shows a comparison of modelled PM2.5 over Beijing for the di�erent resolu-

tions with measurements in October. In the nested simulation, PM2.5 is overestimated by

14% for domain 1, 19% for domain 2 and 16% for domain 3, but is underestimated by 8%

for the domain 1 simulation without nesting. Although the mean biases do not improve

with higher resolution, re�ecting the two-way nesting, there is a substantial improvement

in the correlation coe�cient (0.59 to 0.68) and slope (0.55 to 0.83) for PM2.5 when nest-

ing is used, and this occurs for other pollutants too (see TableA.4). For many variables

the results sampled at 9 km resolution (Domain 2) are slightly better than those sampled

at 3-km resolution (Domain 3). Results at 27 km resolution without nesting are substan-

tially less good than those with two-way nesting, highlighting the important contribution

of the coupling. We conclude that it is worth performing simulations at higher horizontal

resolution as it gives a better representation of urban pollution levels.

3.5.2 Boundary layer mixing

Representing turbulent mixing processes in the boundary layer well is critical for simulating

surface air quality. The nighttime boundary layer under stable meteorological conditions

is particularly di�cult to model, and we �nd that the mixing height is often severely

underpredicted (as low as 20m on some occasions), causing pollutant concentrations to

reach unrealistically high levels. Nudging meteorological �elds to ECMWF reanalysis data

reduces this bias but does not remove it. After testing a number of di�erent boundary

layer algorithms we selected the Yonsei University (YSU) scheme (Hong et al. 2006), as

it provides the best overall match to lidar-derived observations of boundary layer height.

However, stable conditions remain a challenge for this scheme, and we therefore explore
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Figure 3.6: Simulated and observed boundary layer mixing height in
metres (top) and simulated and observed PM2.5 in µgm−3 showing
the e�ect of mixing up to the PBL height in the model (bottom)
between 21 October and 1 November 2014.

the sensitivity of simulated surface concentrations to boundary layer mixing under these

conditions.

Figure 3.6 shows the time series of simulated and observed planetary boundary layer

(PBL) height. The observed PBL height was derived from lidar extinction pro�les at IAP

using the cubic root gradient method of Yang et al. (2017). The simulated PBL height was

diagnosed using the maximum decrease in the modelled PM2.5 pro�le to ensure a consistent

de�nition. We compare the observed PBL height with the simulated height at IAP, and

use PM2.5 measurements from the surface pollutant station at Aotizhongxin, the closest

station to the IAP site (within 2 km) to assess the e�ect on PM2.5 concentrations. The

PBL height shows highly variable behaviour over the day and from day to day. While the

average model PBL height (514m) is similar to the average observed PBLH height (509m)

over the haze episodes shown, the nighttime PBL height is severely underpredicted on a

number of occasions. Assuming that the PBL height re�ects the e�ciency of mixing in the

boundary layer, we expect the model to overpredict surface pollutant concentrations under

these stable nighttime conditions, and this is seen in the time series of PM2.5 in Fig. 3.6. To

account for misrepresentation of local boundary layer mixing, we post-process the model

results by vertically mixing PM2.5 up to the simulated mixing height, to eliminate the

e�ect of underestimated mixing, and up to the observed mixing height, to provide a direct

comparison against PM2.5 observations. Averaging up to the observed PBL height gives

a substantial improvement in PM2.5 levels compared to observations, particularly for the

episodes of 21�25 October and 27 October�1 November when the model underestimates

the PBL height. The simulated mean surface PM2.5 concentration during the period is

reduced from 169 to 118 µgm−3 (the observed mean is 129µgm−3) and the root-mean-

square-error (RMSE) is reduced from 94 to 65µgm−3; and the biases in NO3, NH4 and
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BC are signi�cantly reduced. For a more detailed analysis of component-level sensitivity

to boundary layer mixing see FigureA.1 and TableA.5 in the supplement.

These results highlight the importance of representing PBL mixing well for accurate

reproduction of surface pollutant levels. We note a steady decline in PBL height over the

pollution episode during 21�25 October, and PM2.5 shows a consistent build-up over this

period. This provides observational evidence for the radiative feedback between aerosol

concentrations and mixing height, and this appears to be captured relatively well by the

model, as shown in previous studies (Gao et al. 2015b). Further improvement in simulation

of surface pollutant concentrations requires additional research on representation of PBL

mixing processes in urban environments. Pro�les of aerosol and meteorological variables

from high-resolution lidar measurements provide an important aid to such investigations.

3.5.3 Regional NH3 emissions

The aerosol components NO3 and NH4 are overestimated in these simulations, as shown

in Fig. 3.5. These components are governed by secondary production from their gaseous

precursors NO2 and NH3. Since the concentration of NO2 is close to that observed, we

perform a short sensitivity study over the pollution episode from 21�25 October with NH3

emissions over the North China Plain reduced by 50% to explore the response of NO3 and

NH4 to ammonia emissions in the model. We �nd that the reduction in NH3 emissions

reduces NH4 and NO3 concentrations substantially and brings them closer to observations

(see Table 3.5 and FigureA.3). This is likely because NH3 is the limiting reactant in

the formation of NH4NO3 that directly controls the concentration of both NH4 and NO3

aerosols in the North China Plain (Gao et al. 2016b, Chen et al. 2016e). However, reduc-

tion in SO4 concentrations is small (1µgm−3) because SO4 formation is only indirectly

associated with NH3 availability (Tsimpidi et al. 2007). Total PM2.5 concentrations are

reduced by approximately 26% bringing them closer to observed concentrations. Ammonia

emissions were reported to be 1574 kt/yr over the Beijing�Tianjin�Hebei region in 2010

(Zhou et al. 2015) while those in the MEIC emission inventory used here are only 540 kt/yr.

Given that our NH3 emissions are already low compared with other studies (Kang et al.

2016), we do not reduce them further in this study. However, we have demonstrated that

PM2.5 concentrations during this period are highly sensitive to NH3 emissions, consistent

with the �ndings of other studies (Zhang et al. 2016a), and highlight this issue for further

investigation.
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Table 3.5: Mean concentrations (in µgm−3) at IAP during 21�25 Oc-
tober 2014

Species Control run Reduced NH3 run Observations

PM2.5 210.8 154.9 157.5
NO3 61.28 36.60 33.81
NH4 23.11 15.24 15.03
SO4 12.70 11.59 20.40

Table 3.6: Emission controls during APEC period

Emission sector Emission reduction (%)
Beijing Other districts

Industry 50 35
Power 50 35
Agriculture 40 30
Residential 40 30
Transport 40 30
PM coarse (all sectors) 80 �

APEC1: Beijing, Langfang, Baoding, Shijiazhuang, Xing-

tai, Handan; APEC2: APEC1 + Tangshan, Tianjin,

Cangzhou, Hengshui, Dezhou, Binzhou, Dongying, Zibo,

Jinan and Liaocheng

3.6 APEC emission controls

The Asia-Paci�c Economic Cooperation (APEC) summit was held from 10�12 November

2014 in Beijing, and was the focus of short-term emission controls to ensure good air qual-

ity over the period. Emission controls were applied in Beijing and surrounding regions

including Tianjin, the provinces of Hebei, Shanxi, and Shandong; and Inner Mongolia Au-

tonomous Region. More than 460 businesses with high emissions in Beijing were required

to limit or stop their production during 3�12 November 2014 (Tang et al. 2015, Wang

et al. 2016a, Guo et al. 2016). The number of private vehicles in operation over this period

was reduced by about 50% through odd-even license-plate restrictions. Furthermore, 9300

enterprises were suspended, 3900 enterprises were ordered to limit production, and more

than 40,000 construction sites were shut down across the northern China region (Wang

et al. 2016c, Tang et al. 2015). The start-up of municipal winter heating systems was de-

layed until 15 November, after the summit. Previous studies report that implementation

of these emission controls resulted in signi�cant impacts on regional pollutant transport

and local pollutant contributions (Meng et al. 2014, Sun et al. 2016b, Gao et al. 2017).

Previous model studies of the APEC period have adopted di�erent estimates of the

emission reductions imposed (Guo et al. 2016, Gao et al. 2017, Wen et al. 2016, Liu et al.

2017, Wang et al. 2017a). The most detailed study of emission reductions considered

38



CHAPTER 3. MODELLING APEC EMISSION CONTROLS

Figure 3.7: Map of districts where major emissions controls were
implemented during the APEC period. During phase 1 emissions
were focused on Beijing and western Hebei (blue) and in phase 2
additional controls were applied over other parts of the North China
Plain (red).

application of controls in two distinct phases (Wen et al. 2016), and we have chosen to

implement these controls in our study, as the emission reductions applied are consistent

with observation-based assessments of regional emission controls (Li et al. 2017d). During

the initial phase (APEC1; 3�5 November), emission controls were implemented in Bei-

jing and the western side of the North China Plain. In a subsequent phase (APEC2;

6�12 November) controls were applied over a wider region including eastern Hebei and

parts of Shandong. We represent these controls in the model over the districts shown in

Fig. 3.7, following Li et al. (2017d), and neglect smaller changes in emissions in other dis-

tricts and more distant provinces. Controls were applied across di�erent activity sectors

following Wen et al. (2016) and Li et al. (2017d), see Table 3.6.

Figure 3.8 shows the e�ect of these controls on key pollutants over the period 3�

12 November. There is a minor pollution episode over 4�5 November, and the model

underestimates PM2.5 levels over this period even without emission controls. This may

partly re�ect an underestimation of OC as the simulation of secondary inorganic aerosol

for these two days is good (see Fig. 3.5). PM2.5 levels are very well matched in the period

6�9 November leading up to the summit when emission controls are applied. PM10 levels

are underestimated in the simulations, but this is in�uenced by what may be a minor dust

episode on 11�12 November, when coarse particles were high but PM2.5 remained very
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Figure 3.8: Time series of surface pollutants averaged over the
12 measurement stations in Beijing during the APEC period.

low. Overall, the controls had a notable e�ect, reducing concentrations by 20�30% for all

pollutants except O3, which showed a small increase as expected with reduced levels of

NO. Over the critical 10�12 November meeting period, PM2.5, PM10, CO and NO2 were

reduced by 21%, 26%, 22% and 22%, respectively (see Table 3.7). The reduction in PM2.5

is very similar to the 22% reduction found in previous studies (Gao et al. 2017). However,

the absolute improvement in air quality over the meeting period was small, averaging less

than 10 µgm−3 for PM2.5, re�ecting the relatively clean conditions over the period. Average

PM2.5 in the baseline simulation was 39 µgm−3, close to the observed 36µgm−3. Under

these conditions the key air quality standard, a 24-hour averaged PM2.5 of 75 µgm−3,

corresponding to a Chinese Air Quality Index (AQI) value of 100, would have been met in

the model simulation even without the controls.

To explore the importance of meteorological conditions in contributing to favourable

air quality during the APEC period, we apply the same magnitude, location and duration

of emission controls to the major pollution episode at the end of October. Fig 3.9 shows

the e�ect of these controls on key pollutants over 16�25 October. The controls reduced

pollutant concentrations by a larger amount than during the APEC period, but the relative

improvements of 23�38% were very similar. The absolute pollutant concentrations were
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Figure 3.9: Time series of surface pollutants averaged over the
12 measurement stations in Beijing during 16�25 October 2014.

much higher than in November. This can be attributed to lower wind speeds and to winds

from the south and east bringing air from across the North China Plain, in contrast to

the APEC period which experienced higher wind speeds and more frequent air from the

clean northwest sector (see Figure 3.2). The 3-day baseline average concentrations over

23�25 October for PM2.5, PM10, CO, and NO2 were 279µgm−3,310µgm−3, 1.48 ppm,

and 53 ppb, respectively, substantially exceeding air quality standards. The di�erence

in baseline PM2.5 concentrations between the October and November periods without

emission controls, 279 vs. 39 µgm−3, highlights the dominant role played by meteorology

in bringing clean air during APEC. The emission controls have a much larger absolute

e�ect during the October episode than in the APEC period, with reductions in PM2.5 of

65 µgm−3 for 23�25 October, bringing average PM2.5 levels down to 214 µgm−3. However,

this is insu�cient in meeting the standard needed for clean air of 75 µgm−3. This indicates

that the same emission control policies applied would have failed to produce the desired

results if the meeting had been held at the end of October.

Table 3.8 presents the e�ect on aerosol components and gas-phase pollutants at the IAP

tower. During the emission controls in both the polluted October and cleaner November

periods, primary components were reduced by 31�34% while secondary components were
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reduced by only 3�17%. This suggests that pollution episodes dominated by primary

aerosols may be more easily controlled and has serious implications for winter haze episodes

over the North China Plain because much of the increase in aerosol loading is contributed

by regional secondary aerosols (see Sun et al. 2016b). The percentage reduction in SO4 (14�

17%) may be overestimated as some fraction of SO4 mass for which chemical formation

pathway remains unknown is treated as primary aerosol in the model. Similarly, the

percentage reduction in OC may be overestimated because all OC is primary in the model.

To investigate the feasibility of meeting air quality standards during pollution episodes

such as that on 21�25 October, we ran the model with all anthropogenic emissions removed

over the North China Plain from 16�25 October. The 3-day average concentrations over

23�25 October showed substantial reductions: 83% for PM2.5, 82% for PM10, 79% for

CO, 99% for NO2 and 88% for SO2. Average PM2.5 concentrations were reduced from

279µgm−3 to 48 µgm−3, demonstrating that air quality standards can be met on highly

polluted days, at least in theory, under the most stringent emission controls. From this

simulation, and accounting for nonlinearity in secondary aerosol formation, we estimate

that a 92% emission reduction over the 10 day period would have been needed to keep the

average concentrations for 23�25th October below 75 µgm−3. Even accounting for model

overestimation of average PM2.5 during this period, driven principally by the positive

bias on 24 October, we �nd that an 85% emission reduction would be required, which is

substantially more than what is feasible realistically. It is clear from this analysis that

emission controls would need to be applied over a much wider area over neighbouring

provinces if the air quality standards in Beijing are to be met.

Finally, we analyse the full simulation period (12 October�19 November) to investigate

how many days would meet the "blue-sky" criteria of 24-hour average PM2.5 concentra-

tions less than 75 µgm−3 with and without APEC-like controls. We conducted another

simulation with APEC2 controls implemented over the full period and found a reduction in

daily average PM2.5 of 26± 6%, and a reduction of 23± 4% for haze days with daily mean

PM2.5 >75µgm−3. Since primary and secondary aerosol components can respond di�er-

ently to emission controls, we use component-level fractional reductions from the model

and apply them to the observed component concentrations to �nd the reduction in total

PM. This is approximately 22% for both October and November periods based on our

APEC control runs, suggesting that this scaling is appropriate and robust to uncertain-

ties in model aerosol composition. To generate an emission controls scenario over the full

period, we reduce daily mean observed PM2.5 concentrations by 22% for all days except

3�12 November when controls were actually in place. For this 3�12 November period we
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Figure 3.10: Frequency distribution of daily average PM2.5 over
12 October�19 November 2014 showing the number of days meet-
ing thresholds of 75 µgm−3 (blue) and 150 µgm−3 (blue plus orange)
without (left panel) and with (right panel) emission controls.

apply an increase of 16�33% based on the APEC controls run to represent conditions with

no controls. With these scenarios we �nd that 15 of the 39 days considered failed to meet

the blue-sky criteria of daily average PM2.5 concentrations less than 75µgm−3 without

controls, and this fell to 13 days when the controls were implemented, a modest decrease

of 2 days, see Fig. 3.10. However, if we choose a higher threshold of 150 µgm−3 (AQI

of 200), the emission controls appear more e�ective, reducing the number of exceedances

from 8 days to 5 days, and with a threshold of 200µgm−3 (AQI of 250) the number of

exceedances falls from 4 days to 1 day.

To organize a three-day meeting such as APEC successfully, all three days must in-

dividually meet the chosen air quality criteria. We �nd that without emission controls,

only 9 out of 37 possible three-day time slots in our simulation period meet the crite-

ria, including only 3 out of the 8 available during the APEC period of 3�12 November.

Under the emission controls, the meeting could have been organized on 14 out of the 37

slots, including all 8 during early November. This suggests that the emission controls were

only su�cient to provide an additional 5 time slots to hold a three-day event meeting the

criteria. Interestingly, these all occur during the APEC period, highlighting that while

favourable weather conditions were vital for meeting the air quality criteria, the emission

controls provided critical support in achieving the 75µgm−3 threshold needed to realize

blue-sky conditions. Speci�cally, in the absence of emission controls the �rst day of the

APEC meeting (10 November) would have exceeded the air quality standards. In this re-

spect, it is reasonable to claim that the APEC emission controls were a success. However,

it is clear that favourable meteorology was essential in making it possible for the emission
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Table 3.7: In�uence of emission controls averaged over Beijing air
quality stations in October and November

Species Observed Model
Mean Baseline Controls Improvement

APEC period (10�12 November)
PM2.5 (µgm

−3) 36.1 39.3 31.1 8.2 (21%)
PM10 (µgm

−3) 65.3 43.9 32.5 11.4 (26%)
CO (ppm) 0.64 0.48 0.38 0.11 (22%)
NO2 (ppb) 19.0 20.6 16.0 4.6 (22%)
SO2 (ppb) 2.1 6.1 4.2 1.9 (30%)
O3 (ppb) 20.0 16.5 19.0 -2.5 (-15%)
October period (23�25 October)
PM2.5 (µgm

−3) 216.1 278.8 213.7 65.1 (23%)
PM10 (µgm

−3) 263.8 309.6 236.4 73.2 (24%)
CO (ppm) 1.77 1.48 1.05 0.44 (30%)
NO2 (ppb) 46.3 53.2 34.9 18.3 (34%)
SO2 (ppb) 4.0 18.6 11.6 7.0 (38%)
O3 (ppb) 11.4 15.2 26.7 -11.5 (-76%)

controls to produce the marginal improvements needed to meet the air quality standards.

It should be noted that 23 out of the 37 possible three-day time periods (more than

60%) would not have met the standards even under the emission controls applied. It is

therefore clear that much more stringent controls are needed in future to counter the e�ect

of unfavourable meteorological conditions. While greater reductions in the magnitude of

emissions are required, it is important that these are applied over a much larger area,

including in the neighbouring provinces that surround the North China Plain.

3.7 Conclusions

We have demonstrated that using a high-resolution nested air quality model we can re-

produce the observed hourly variation of major pollutants in Beijing during October�

November 2014 reasonably well. We capture the synoptic drivers of air quality well, in-

cluding the build-up of pollutants during pollution episodes and the subsequent cleaning

e�ect of winds from the northwest. The concentrations of PM2.5, the dominant pollutant

in this season, are reproduced well, and we show that where the model is biased high,

typically during nighttime, underlying weaknesses in the treatment of turbulent mixing in

the planetary boundary layer are often responsible. We show that use of two-way nesting

to high resolution brings a substantial bene�t in reproducing observed pollutant concentra-

tions, even when comparing at the coarsest resolution used. Thorough evaluation against

aerosol composition measurements over the period highlights some weaknesses in repre-
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Table 3.8: In�uence of emission controls at the IAP site in October
and November

Species Observed Model
Mean Baseline Controls Improvement

APEC period (10�12 November)
OC (µgm−3) 30.6 9.8 6.8 3.1 (31%)
BC (µgm−3) 3.4 4.8 3.2 1.6 (34%)
NO3 (µgm

−3) 10.9 8.6 8.3 0.3 (3%)
NH4 (µgm

−3) 5.0 3.8 3.5 0.3 (8%)
SO4 (µgm

−3) 4.8 3.5 2.9 0.6 (17%)
CO (ppm) 2.60 0.68 0.52 0.16 (24%)
NO2 (ppb) 17.2 30.2 22.9 7.4 (24%)
SO2 (ppb) 10.4 9.4 6.3 3.1 (33%)
O3 (ppb) 3.5 17.6 21.6 -4.0 (-23%)
October period (23�25 October)
OC (µgm−3) 60.5 39.5 26.7 12.8 (32%)
BC (µgm−3) 10.2 16.5 11.0 5.5 (33%)
NO3 (µgm

−3) 51.3 95.0 79.7 15.3 (16%)
NH4 (µgm

−3) 21.1 35.2 29.9 5.4 (15%)
SO4 (µgm

−3) 31.2 18.4 15.8 2.5 (14%)
CO (ppm) 2.92 2.03 1.43 0.60 (30%)
NO2 (ppb) 44.2 78.1 57.8 20.3 (26%)
SO2 (ppb) 18.4 26.5 16.5 9.9 (37%)
O3 (ppb) 5.9 10.3 22.1 -11.8 (-115%)

sentation of key aerosol components, particularly the balance between SO4, NO3 and NH3

which requires more detailed analysis.

We show that short-term emission controls played a valuable role in improving air

quality over the APEC period, but that their overall contribution was relatively small,

with average reductions of 20�26% for key pollutants. Without the controls, average PM2.5

levels are likely to have exceeded the national standard of 75µgm−3 on 10 November,

the �rst day of the APEC meeting, but the e�ects were largely incremental, highlighting

the important role played by favourable meteorology during the period. If the APEC

meeting had been held at a di�erent time, particularly at the end of October, air quality

standards would not have been achieved with the emission controls applied. We �nd that

the relative e�ect of the controls during the pollution episodes of late October is very

similar to that during the clean APEC period, averaging 23% for PM2.5. Much greater

emission reductions of at least 85% would have been needed over the North China Plain

region to bring pollutant levels down to meet air quality standards. It is clear that under

the stable meteorological conditions present during these pollution episodes, much more

stringent emission controls are needed than those that were applied and that these need

to be implemented over a much wider region of northern China. Our study demonstrates
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the value of short-term emission controls but highlights that long-term, sustained emission

reductions on a regional scale are required to bring blue skies to Beijing.

46



APPENDIX A

Supplementary material for chapter 3

The contents shown in this appendix were submitted as supplementary material for (Ansari

et al. 2019a) to Atmospheric Chemistry and Physics. A comprehensive domain-based sta-

tistical evaluation of hourly model output is performed against hourly observations from

324 meteorological stations and 1312 pollutant stations across China. Meteorological eval-

uation is performed for both FNL- and ECMWF-driven model runs (FigureA.1). The

distinct meteorology during pre-APEC and APEC period is highlighted in FigureA.2. For

air quality evaluation, separate statistical metrics are provided for hourly and daily mean

model performance (FigureA.3). Increase in signal through increase in model resolution

is presented for all pollutants by sampling model output corresponding to Beijing stations

from each domain (FigureA.4). E�ect of turbulent mixing up to the model level cor-

responding to the observed boundary layer height is shown in FigureA.1 and compared

with observations in TableA.5. Meteorological evaluation for the bottom �ve model levels

against IAP tower measurements is shown in FigureA.2. E�ect of NH3 emission reduction

on inorganic aerosol components is shown in FigureA.3

Tables A.1,A.3 and A.4 were originally part of the manuscript but were asked to be

moved to supplement by one of the reviewers.
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Table A.1: Comparison of observed and simulated meteorological
variables for the entire period using FNL and ECMWF �elds

Number of Obs. avg. Sim avg Bias RMSE r
Stations FNL ECMWF FNL ECMWF FNL ECMWF FNL ECMWF

2-m Temperature (◦C)
Beijing 1 9.68 11.52 11.44 1.84 1.76 3.28 3.36 0.88 0.87
D03 30 8.91 8.98 8.95 0.07 0.04 2.47 2.46 0.94 0.94
D02 77 7.87 7.53 7.55 -0.34 -0.32 2.39 2.35 0.95 0.95
D01 324 9.62 7.77 7.79 -1.85 -1.83 3.23 3.23 0.94 0.94
2-m Relative Humidity (%)
Beijing 1 54.7 34.1 39.1 -20.6 -15.6 26.9 22.4 0.77 0.81
D03 30 54.9 44.8 48.9 -10.1 -6.0 19.6 16.7 0.75 0.78
D02 77 54.4 47.8 51.1 -6.6 -3.3 17.4 15.2 0.74 0.78
D01 324 62.8 60.4 62.6 -2.4 -0.2 16.8 15.6 0.73 0.76
10-m Wind Speed (ms−1)
Beijing 1 5.41 2.27 2.24 -3.14 -3.17 4.98 5.09 0.72 0.69
D03 30 5.73 3.26 3.20 -2.47 -2.53 4.60 4.65 0.62 0.61
D02 77 6.18 3.60 3.55 -2.58 -2.63 4.52 4.55 0.67 0.66
D01 324 5.67 3.38 3.36 -2.29 -2.31 4.29 4.30 0.60 0.61
10-m Wind Direction (◦)
Beijing 1 197.5 214.2 191.0 16.7 -6.6 73.9 73.9 0.79 0.80
D03 30 215.1 210.0 206.5 -6.9 -8.6 62.7 63.4 0.78 0.78
D02 77 214.4 212.2 208.9 -2.8 -5.5 65.4 65.4 0.76 0.76
D01 324 206.5 193.4 188.4 -13.1 -18.0 71.9 72.2 0.74 0.74

Table A.2: Meteorological performance over Beijing during pre-
APEC and APEC period

Obs. avg. Sim. avg. Mean bias RMSE R

2m Temperature (◦C)
Episode 1 14.63 16.84 2.21 3.79 0.79
Episode 2 12.15 14.47 2.32 3.28 0.74
Episode 3 11.35 11.76 0.41 1.78 0.86
APEC period 7.14 9.14 2.00 3.76 0.82
Relative Humidity (%)
Episode 1 61.9 41.4 -20.6 26.6 0.76
Episode 2 74.3 52.7 -21.5 26.0 0.74
Episode 3 55.6 41.3 -14.3 19.5 0.89
APEC period 47.0 34.4 -12.6 21.2 0.82
Wind Speed (ms−1)
Episode 1 5.30 2.45 -2.85 4.86 0.74
Episode 2 3.50 1.82 -1.68 2.76 0.56
Episode 3 5.46 2.07 -3.39 5.35 0.79
APEC period 6.50 2.56 -3.94 6.06 0.67
Wind Direction (◦)
Episode 1 176.9 172.9 -4.1 63.5 0.78
Episode 2 148.6 141.4 -7.3 74.9 0.85
Episode 3 143.6 163.4 19.7 62.1 0.88
APEC period 257.3 220.8 -36.5 69.4 0.79
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Table A.3: Comparison of pollutant concentrations with network
measurements over the period 12�31 October 2014

Number of Obs Sim Bias RMSE r slope
Stations hourly/daily hourly/daily hourly/daily

PM2.5 (µgm
−3)

Beijing stations 12 108.3 126.2 17.9 86.7/66.7 0.68/0.78 0.83/0.93
D03 137 92.6 109.3 16.7 72.2/52.2 0.63/0.74 0.71/0.80
D02 375 75.8 87.9 12.1 63.9/48.6 0.60/0.69 0.65/0.71
D01 1312 71.1 74.8 3.7 61.1/50.2 0.47/0.53 0.48/0.54
PM10 (µgm

−3)
Beijing stations 12 155.4 141.5 -13.9 96.5/74.0 0.65/0.77 0.79/0.98
D03 137 165.7 122.9 -42.8 104.0/82.1 0.57/0.68 0.50/0.58
D02 375 138.0 98.6 -39.4 94.3/75.8 0.54/0.65 0.44/0.52
D01 1312 121.0 82.2 -38.8 89.0/76.7 0.42/0.47 0.32/0.37
CO (ppm)
Beijing stations 12 1.11 0.94 -0.17 0.63/0.43 0.60/0.75 0.46/0.61
D03 137 1.17 0.83 -0.34 0.87/0.72 0.29/0.34 0.21/0.22
D02 375 1.14 0.66 -0.48 0.88/0.79 0.33/0.37 0.20/0.20
D01 1312 1.00 0.50 -0.50 0.79/0.73 0.32/0.34 0.13/0.14
NO2 (ppb)
Beijing stations 12 39.09 36.09 -3.00 19.33/11.10 0.62/0.80 0.66/0.83
D03 137 29.75 25.88 -3.87 18.95/14.32 0.47/0.54 0.45/0.51
D02 375 24.86 19.45 -5.41 16.99/13.21 0.49/0.55 0.44/0.50
D01 1312 22.73 12.45 -10.28 18.33/15.44 0.42/0.47 0.30/0.36
SO2 (ppb)
Beijing stations 12 3.92 12.27 8.35 11.88/10.55 0.27/0.52 0.68/1.74
D03 137 13.28 14.47 1.19 13.66/9.66 0.21/0.31 0.22/0.24
D02 375 12.23 13.21 0.98 13.19/9.01 0.24/0.34 0.26/0.28
D01 1312 10.27 8.93 -1.34 11.17/8.54 0.19/0.28 0.18/0.24
O3 (ppb)
Beijing stations 12 12.53 12.19 -0.34 13.92/6.49 0.47/0.67 0.44/0.82
D03 137 17.76 18.75 0.99 15.96/10.88 0.45/0.49 0.43/0.50
D02 375 21.23 23.08 1.85 17.19/12.80 0.42/0.43 0.37/0.40
D01 1312 21.44 32.29 10.85 22.44/17.03 0.29/0.27 0.27/0.25
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Table A.4: Impacts of model resolution on simulation of hourly pol-
lutant concentrations in Beijing over 12�31 October 2014

N points Obs mean Sim mean Mean Bias RMSE r slope

PM2.5 (µgm
−3)

D03 (3-km) 3171 108.4 126.2 17.8 86.7 0.68 0.83
D02 (9-km) 3171 108.4 128.7 20.3 87.4 0.69 0.85
D01 (27-km) 3171 108.4 123.1 14.7 86.1 0.68 0.81
D01 (no nest) 3171 108.4 99.2 -9.2 83.2 0.59 0.55
PM10 (µgm

−3)
D03 2670 155.4 141.5 -13.9 96.5 0.65 0.79
D02 2670 155.4 143.6 -11.8 96.6 0.65 0.80
D01 2670 155.4 137.9 -17.5 96.6 0.65 0.79
D01 (no nest) 2670 155.4 111.2 -44.2 99.8 0.58 0.54
CO (ppm)
D03 3074 1.11 0.94 -0.17 0.63 0.60 0.46
D02 3074 1.11 0.95 -0.16 0.61 0.61 0.47
D01 3074 1.11 0.88 -0.23 0.61 0.64 0.44
D01 (no nest) 3074 1.11 0.68 -0.43 0.73 0.62 0.31
NO2 (ppb)
D03 3080 39.09 36.09 -3.00 19.33 0.62 0.66
D02 3080 39.09 35.55 -3.54 19.34 0.62 0.64
D01 3080 39.09 31.92 -7.17 18.33 0.67 0.62
D01 (no nest) 3080 39.09 21.81 -17.28 24.74 0.60 0.48
SO2 (ppb)
D03 3074 3.92 12.27 8.35 11.88 0.27 0.68
D02 3074 3.92 12.15 8.23 11.64 0.27 0.66
D01 3074 3.92 10.91 6.99 9.82 0.32 0.69
D01 (no nest) 3074 3.92 6.47 2.55 5.57 0.29 0.40
O3 (ppb)
D03 3046 12.56 12.19 -0.37 13.92 0.47 0.44
D02 3046 12.56 12.71 0.15 13.94 0.47 0.43
D01 3046 12.56 14.96 2.40 13.53 0.49 0.44
D01 (no nest) 3046 12.56 17.59 5.03 14.08 0.51 0.45

Table A.5: Comparison of simulated aerosol components in µgm−3

with and without mixing up to observed boundary layer height
against surface observations at IAP site

Obs. avg. Sim avg Mean Bias RMSE
Components surface mixed surface mixed surface mixed

OC 31.08 23.24 12.86 -7.84 -18.22 21.43 27.30
BC 6.13 10.19 4.96 4.06 -1.16 5.96 3.27
NO3 23.30 36.73 29.42 13.44 6.12 25.47 18.00
SO4 13.16 8.12 6.27 -5.03 -6.89 12.05 13.67
NH4 10.36 14.16 11.12 3.80 0.78 8.05 6.40
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Figure A.1: Time-series of simulated aerosol components with and
without averaging up to observed boundary layer height against sur-
face observations at the IAP site.
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Figure A.2: Meteorological evaluation against IAP tower measure-
ments for bottom 5 model levels. lev 0: 0�27m, lev 1: 27�90m, lev 2:
90�178m, lev 3: 178�289m, lev 4: 289�429m.
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Figure A.3: Time-series of aerosol components NH4, NO3 and SO4 at
the IAP site and PM2.5 at Aotizhongxin showing simulated concen-
trations (in µgm−3) from the baseline model run and reduced NH3

emissions run compared to observations.
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Additional information on model setup

This appendix provides additional information on the model setup used for the simulations

presented in chapter 3, in particular the method used to determine vertical distribution

of emission sources and the diurnal cycle applied to various emission sectors, and also

describes the aqueous phase chemistry used in the model. Emission maps of key species

for the three model domains are presented and total emissions per domain are summarized.

B.1 Emissions: Vertical and temporal pro�les

MEIC emissions were initially obtained as 2D arrays for each emission sector for chemical

species based on the CB05 chemical mechanism. They were �rst respeciated by merging or

separating to conform to CBMZ-MOSAIC chemistry scheme used in the study. Simulations

performed with these emissions generally overestimated surface pollutant concentrations

for all species as compared to ground observations. To get a more realistic representation

of emissions in the model, the emission inventory was modi�ed by prescribing a vertical

distribution to various species based on emission sector and also a diurnal cycle was applied.

The vertical pro�le for emissions was based on the methodology of Mailler et al. (2013)

where they distributed emissions into the bottom 7 model layers (0�20m, 20�92,m, 92�

184m, 184�324m, 324�522m, 522�781m, 781�1106m) di�erently for the 10 di�erent Stan-

dard Nomenclature of sources of Air Pollution (SNAP) sectors namely, combustion in en-

ergy and transformation industries (SNAP1), non-industrial combustion plants (SNAP2),

combustion in manufacturing industry (SNAP3), production processes (SNAP4), extrac-

tion of fossil fuels (SNAP5), solvent use and other product use (SNAP6), road transport
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Table B.1: Vertical pro�le of emissions for di�erent sectors

Model level Height span Industry-VOCs Industry Power Residential Transport Agriculture
(m) (%) (%) (%) (%) (%) (%)

0 0�28 71.64 14 0 100 100 100
1 28�95 13.40 40.6 0 0 0 0
2 95�187 13.14 39.85 0.3 0 0 0
3 187�305 1.60 4.89 38.2 0 0 0
4 305�453 0.22 0.66 36.8 0 0 0
5 453�643 0 0 22.3 0 0 0
6 643�877 0 0 2.2 0 0 0
7 877�1115 0 0 0.2 0 0 0

(SNAP7), other mobile sources and machinery (SNAP8), waste treatment and disposal

(SNAP9), and agriculture (SNAP10). See Table 1 in Mailler et al. (2013) for more details.

Emissions sectors were represented di�erently in the MEIC inventory - in �ve broad sec-

tors namely, industry, power, residential, agriculture and transport. Therefore, the vertical

pro�les of the 10 SNAP sectors were adapted to suit the �ve emission sectors used in this

modelling setup.

SNAP1 pro�le was used for all species in the power sector, an average pro�le was de-

rived from SNAP (2, 3, 4, 5 and 9) sectors for all species of the industry sectors except for

NMVOCs which were assumed to be sourced 67% from SNAP6 and 33% from SNAP (2,

3, 4, 5 and 9) (Qi et al. 2017, Zheng et al. 2018, Bieser et al. 2011) and a weighted average

of these vertical pro�les were calculated accordingly for all the NMVOCs within the in-

dustry sector. The thickness of model levels in Mailler et al. (2013) was di�erent from the

WRF model setup of this study. Here, the bottommost eight model layers approximately

corresponded to the height of the bottommost seven model layers in Mailler et al. (2013).

Therefore the derived vertical pro�les for all species and sectors were then modi�ed ac-

cordingly to apportion the emissions into eight parts for the WRF model using volumetric

interpolation. The emissions of all species within the residential, agriculture and transport

sector were completely allocated at the lowest model level. The �nal percentage allocations

to the bottommost eight model levels are described in TableB.1.

The 2D MEIC emissions that were acquired from Tsinghua University came along

with a temporal pro�le for each sector. These pro�les were retained even after vertically

distributing the emissions. Hourly sectoral scalings were used for all the species within a

sector (see, TableB.1). The model uses two 12-hourly emission �les for each domain which

are supplied in Universal Time Coordinates (UTC). The temporal pro�le was shifted eight

hours behind to transform from Beijing local time to UTC.

TableB.2 summarises total emissions for each model domain for the months of October

and November. October emissions are higher than November emissions for all species.
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Figure B.1: Temporal pro�les applied to emissions of all species for
di�erent sectors. I, P, T, R and A refer to industry, power, transport,
residential and agriculture sectors respectively.

FiguresB.2-B.7 show time-averaged spatial distribution of emissions of CO, NO, SO2,

NMVOCs, NH3 and total aerosols respectively for the three model domains at 27, 9 and

3 km resolutions. CO and aerosol emissions show clear hotspots near cities and residential

clusters. The 3 km resolution domain maps (panels c and f) also show highways and roads.

NO emissions are more sparsely distributed than CO and aerosol emissions and show

clearer streets and roads in the �nest resolution highlighting the transportation sector

as a major source and much less emissions from the residential sector. NMVOCs show

a similar spatial pro�le to NO but with slightly less pronounced transportation sources

and more pronounced industrial sources particularly from solvent use. SO2 does not show

hotspots corresponding to residential clusters or cities but shows strong sources in the

second domain, outside of Beijin�Tianjin�Hebei region, corresponding to coal-�red power

plants. NH3 shows a signi�cantly di�erent spatial pro�le re�ecting the rural areas instead

of cities, industries or roads as strongest sources. This is because most of the NH3 is

emitted from fertilizer use in agricultural areas.

B.2 Aqueous-phase chemistry

Production of secondary sulphate aerosol has multiple pathways. The gas-phase oxidation

of SO2 by the OH radical dominates near the surface. However, higher-up in the atmo-

sphere, aqueous-phase oxidation of SO2 by photochemical oxidants such as H2O2 and O3

can dominate under cloudy conditions (Seigneur & Saxena 1988). The WRF-Chem setup

used in this study contains a size-resolved description of aqueous-phase oxidation of SO2

based on the Variable Size Resolved Model (Fahey & Pandis 2003). A size-resolved de-

scription is more accurate than a bulk description because of the pH-dependent oxidation

pathways involved in the aqueous-phase oxidation of SO2, as cloud droplet-pH levels vary

with their size. Even though the aqueous pathways of sulphate production are more im-
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Table B.2: Total emissions for each species per domain. I and J refer
to Aitken and accumulation mode aerosols respectively.

Species Description Domain 1 Domain 2 Domain 3
Oct Nov Oct Nov Oct Nov

Gas-phase species (mol h−1)
CO Carbon monoxide 6.78e+08 6.04e+08 2.29e+08 1.99e+08 1.08e+08 9.11e+07
NO Nitric oxide 5.69e+07 4.94e+07 2.00e+07 1.73e+07 8.73e+06 7.49e+06
NO2 Nitric oxide 5.81e+06 5.05e+06 2.04e+06 1.77e+06 8.93e+05 7.66e+05
SO2 Sulphur dioxide 4.52e+07 3.77e+07 1.50e+07 1.25e+07 4.94e+06 4.10e+06
NH3 Ammonia 5.34e+07 5.28e+07 1.26e+07 1.24e+07 5.49e+06 5.42e+06
HCHO Formaldehyde 1.90e+06 1.81e+06 5.59e+05 5.30e+05 2.31e+05 2.17e+05
ALD Other Aldehydes 7.22e+05 6.58e+05 2.20e+05 1.99e+05 9.80e+04 8.78e+04
CH3OH Methanol 8.87e+05 8.62e+05 2.68e+05 2.55e+05 1.12e+05 1.05e+05
C2H5OH Ethanol 5.41e+05 4.24e+05 1.68e+05 1.32e+05 8.24e+04 6.47e+04
TOL Toluene 3.32e+06 2.48e+06 1.02e+06 7.66e+05 5.16e+05 3.83e+05
OL2 Ethene 4.49e+06 3.89e+06 1.61e+06 1.37e+06 6.87e+05 5.76e+05
OLT Terminal ole�ns 1.80e+06 1.55e+06 5.91e+05 5.03e+05 2.62e+05 2.19e+05
OLI Internal ole�ns 4.69e+05 3.88e+05 1.48e+05 1.22e+05 6.96e+04 5.63e+04
KET Ketones 9.65e+05 8.81e+05 2.94e+05 2.66e+05 1.31e+05 1.17e+05
ETH Ethane 2.99e+06 2.44e+06 9.54e+05 7.89e+05 3.92e+05 3.20e+05
HC3 3-carbon alkanes 3.50e+06 2.81e+06 1.19e+06 9.44e+05 5.60e+05 4.42e+05
HC5 5-carbon alkanes 3.50e+06 2.81e+06 1.19e+06 9.44e+05 5.60e+05 4.42e+05
HC8 8-carbon alkanes 3.50e+06 2.81e+06 1.19e+06 9.44e+05 5.60e+05 4.42e+05
XYL Xylene 2.12e+06 1.66e+06 6.55e+05 5.16e+05 3.20e+05 2.48e+05
Aerosols (g h−1)
ECI Elemental carbon I 4.09e+07 3.71e+07 1.35e+07 1.20e+07 5.69e+06 4.99e+06
ECJ Elemental carbon J 1.64e+08 1.49e+08 5.40e+07 4.78e+07 2.27e+07 2.00e+07
ORGI Organic matter I 1.28e+08 1.23e+08 3.79e+07 3.54e+07 1.51e+07 1.40e+07
ORGJ Organic matter J 5.13e+08 4.91e+08 1.52e+08 1.42e+08 6.05e+07 5.62e+07
SO4I Sulphate I 5.20e+07 4.34e+07 1.72e+07 1.44e+07 5.69e+06 4.72e+06
SO4J Sulphate J 2.08e+08 1.74e+08 6.89e+07 5.77e+07 2.28e+07 1.89e+07
PM25I PM2.5 other I 1.40e+08 1.13e+08 4.94e+07 3.93e+07 2.20e+07 1.72e+07
PM25J PM2.5 other J 5.61e+08 4.50e+08 1.97e+08 1.57e+08 8.79e+07 6.88e+07
PM10 PM coarse 4.71e+08 3.70e+08 1.55e+08 1.21e+08 7.02e+07 5.40e+07

portant at the altitude of clouds, sulphate formed through these pathways can reach the

surface via downdrafts or turbulent mixing. Currently, aqueous-phase chemistry is only

available for resolved (not parameterized) clouds in the model. Despite the representation

of both gas-phase and aqueous-phase oxidation of SO2 within the model, the sulphate

aerosol was underpredicted for the haze events in late October. To bridge this gap, there

is emerging science coming up suggesting new aqueous-phase pathways for near-surface

sulphate aerosol formation based on reactive nitrogen chemistry in the presence of aerosol

water under hazy conditions when photochemical activity is weak (Cheng et al. 2016).
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Figure B.2: Vertically integrated and 24 hour averaged emissions of
carbon monoxide for October (a, b and c) and November (d, e and
f) for the three model domains.

Figure B.3: Vertically integrated and 24 hour averaged emissions of
nitric oxide for October (a, b and c) and November (d, e and f) for
the three model domains.
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Figure B.4: Vertically integrated and 24 hour averaged emissions of
sulphur dioxide for October (a, b and c) and November (d, e and f)
for the three model domains.

Figure B.5: Vertically integrated and 24 hour averaged emissions of
non-methane volatile organic compounds for October (a, b and c)
and November (d, e and f) for the three model domains.

59



APPENDIX B. ADDITIONAL INFORMATION ON MODEL SETUP

Figure B.6: Vertically integrated and 24 hour averaged emissions of
ammonia for October (a, b and c) and November (d, e and f) for the
three model domains.

Figure B.7: Vertically integrated and 24 hour averaged emissions of
all aerosol species for October (a, b and c) and November (d, e and
f) for the three model domains.
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4.1 Abstract

We investigate the contributions of major local and regional emission sources to air quality

in Beijing to inform short-term emission controls aimed at mitigating major pollution

episodes. We use a well-evaluated version of the WRF-Chem model at 3 km horizontal

resolution to explore the temporal contribution of local and regional emission sources to
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air quality in Beijing under a range of meteorological conditions. Considering feasible

emission reductions of 40�50% across industry, power, residential and transport sectors we

�nd that the e�ect of local emission cuts is greatest (up to 38%) on the day of control,

but that they still make a small contribution (up to 8%) �ve days later under stagnant

conditions. Emission controls in surrounding regions have greatest e�ect (up to 18%) on the

second day but may be negligible under northwesterly �ow when local emissions dominate.

To determine the e�ect of di�erent emission sectors and regions, we consider the four main

emission sectors over local (Beijing), near-neighbourhood (North China Plain) and far-

neighbourhood (North China) regions. Using simple one-at-a-time sensitivity studies over

a 11-day period that encompasses a range of di�ering meteorological conditions, we found

that residential and industry sectors from neighbouring provinces dominate PM2.5 levels

in Beijing on polluted days however local residential as well as industry and residential

emissions from farther provinces can also contribute signi�cantly during some episodes.

We then apply a novel Gaussian Process Emulation approach to build pollutant response

surfaces over this period, and use these surfaces to identify the short-term emission controls

needed to meet the national air quality target of daily average PM2.5 less than 75 µgm−3

for various intensities of episodes. We found that for heavy pollution days with daily mean

PM2.5 higher than 225 µgm−3, 90% reduction is needed across all four sectors for all three

source regions considered in order to reduce it to less than 75 µgm−3, which is much more

stringent than what has been implemented in the past.

4.2 Introduction

Beijing, located at the foot of the Yanshan mountains on the northern edge of the heavily-

populated North China Plain, has consistently been named among the most polluted cap-

ital cities in the world (State of Global Air 2018, WHO 2016). While recent emission

controls have brought substantial improvements in air quality (Ma et al. 2018, Cheng et al.

2018), the city continues to experience high levels of PM2.5 (atmospheric particulate mat-

ter with diameter less than 2.5µm) especially in winter when frequent haze episodes pose

risks to human health, visibility and climate (Lelieveld et al. 2015, Luan et al. 2018, WMO

2011). In 2013, the State Council of China launched the Air Pollution Prevention and

Control Action Plan (APPCAP) setting targets to reduce PM2.5 concentrations over the

Beijing�Tianjin�Hebei region by 25% by 2017, and to reduce annual mean PM2.5 concen-

trations in Beijing to 60 µgm−3 (Zheng et al. 2018, WEI et al. 2017). During 2013�2017,

the air quality in Beijing signi�cantly improved following the implementation of local and
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regional emission control measures, and the annual mean PM2.5 concentration decreased

from 89.5µgm−3 in 2013 to 58 µgm−3 in 2017 (Ma et al. 2018, Cheng et al. 2018, Zheng

et al. 2018). These long-term mitigation strategies included measures such as gradual

phase-out of residential biofuel use, changes in industrial technology, improved vehicle fuel

standards and relocation of coal-�red power plants.

Despite these long-term pollution mitigation strategies, PM2.5 concentrations in ex-

cess of 500 µgm−3, twenty times the WHO 24h standard, are common in many Chinese

cities during periods of heavy pollution (Sheehan et al. 2014). Additional, short-term

emission-control measures, generally lasting 3�7 days, are necessary to prevent these ex-

treme pollution episodes, especially during winter when stable meteorological conditions

are conducive to formation and accumulation of very high levels of particulate matter.

Such short-term controls have been tested, with some success, during special events such

as the 2008 Beijing Olympics, 2014 Asia-Paci�c Economic Cooperation (APEC) meeting

and 2015 China Victory Day Parade (Zhang et al. 2015a, Xu et al. 2019, 2017). However,

these successful outcomes have often been helped by favourable weather conditions (Liu

et al. 2017, Liang et al. 2017, Gao et al. 2017) and studies have shown that these control

strategies would fail under less favourable meteorological conditions (Ansari et al. 2019a).

Previous studies have advocated application of emission controls over a wider geographical

region (Guo et al. 2016, Wen et al. 2016, Ansari et al. 2019a) but have not identi�ed the

spatial or temporal scales needed for successful policy implementation, or proposed any

general framework to devise future mitigation strategies that account for di�ering meteo-

rological conditions. In this study we use a range of new modelling approaches, including

1-day emission cuts and Gaussian Process emulation, to gain a detailed understanding of

the magnitude and timing of local and regional source contributions to PM2.5 in Beijing

under varying meteorological conditions. We develop easy-to-use pollutant response sur-

faces based on these di�erent emission sectors and regions, and demonstrate how they can

be used to guide the development of future short-term emission control policies in the city.

4.3 Modelling Approaches

We use the Weather Research and Forecasting�Chemistry model (WRF-Chem) version

3.7.1 at a horizontal resolution of 27 km over China with nested domains over Northern

China at 9 km and the North China Plain at 3 km resolution. Gas-phase chemistry in

the model is represented by the Carbon Bond mechanism version Z (CBMZ) which is

coupled with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)
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Figure 4.1: Average simulated hourly and daily mean PM2.5 in Bei-
jing in October 2014. The national air quality standard for 24 hr
average PM2.5 of 75µgm

−3 is shown in green, and the threshold for
heavy pollution, 150 µgm−3, is shown in red.

aerosol module with eight aerosol size bins (Zaveri & Peters 1999, Zaveri et al. 2008). We

use meteorological �elds from the European Centre for Medium-Range Weather Forecasts

(ECMWF), and anthropogenic emissions from the Multi-resolution Emission Inventory

for China (MEIC) appropriate for 2014. Further details of the model con�guration and

evaluation over North China are provided in a previous study where we explored emis-

sion controls in Beijing during the Asia-Paci�c Economic Cooperation (APEC) summit

in November 2014 (Ansari et al. 2019a). In this previous study we demonstrated that

the model reproduces the magnitude and variation of key pollutants over Beijing well,

and showed that while national air quality standards were met during the APEC summit,

they would have been greatly exceeded under the same emission controls if the summit

had been held in October when the weather was less favourable (Ansari et al. 2019a).

Formulation of e�ective short-term emission control policies therefore needs to account

for the important role played by meteorological processes. In this study we focus on the

same October-November period in 2014 and investigate the key source sectors and regions

responsible for short-term pollution episodes during a range of meteorological conditions.

Figure 4.1 shows hourly and daily mean simulated PM2.5 concentrations for Beijing at

the end of October 2014, the period just before APEC emission controls were implemented.

In the last 15 days of October, only three days meet the daily national Class 2 air qual-

ity standard of 24 h average PM2.5 concentration less than 75 µgm−3 (Air Quality Index,

AQI = 100), and eight days exceed the higher threshold for heavy pollution of 150µgm−3

(AQI=200). Reducing the 24 h average PM2.5 concentration below 75 µgm−3 over the

entire period would require strict, carefully tailored emission reductions across multiple

sectors and regions that are timed to provide maximum bene�t during the heaviest pollu-

tion episodes.

The APEC emission controls were implemented in two stages; an initial phase (APEC1)

that covered Beijing and some western districts of Hebei province including Baoding, Lang-
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Figure 4.2: North China region (model domain 2) showing emission
control regions used in this study.

fang, Shijiazhuang, Xingtai and Handan, and a second more stringent phase (APEC2) that

additionally covered Tianjin, Tangshan, Cangzhou, Hengshui, Dezhou, Binzhou, Dongy-

ing, Jinan, Liaocheng and Zibo. In this study we consider three broad regions of con-

trol: local emissions from Beijing, Near-Neighbourhood emissions from the North China

Plain and Far-Neighbourhood emissions from surrounding provinces (see �gure 4.2). The

Near-Neighbourhood region used here is de�ned to match the APEC2 control region de-

scribed above. Since we have shown that applying APEC controls over this period was

not su�cient to meet healthy air quality standards (Ansari et al. 2019a), we consider a

Far-Neighbourhood region which covers parts of Shanxi, Shaanxi, Shandong, Henan, Inner

Mongolia, Liaoning and Jilin provinces.

A number of measurement and modelling studies have investigated source apportion-

ment of air pollution in Beijing. Most measurement studies have used the Positive Matrix

Factorization (PMF) technique which e�ectively attributes PM2.5 to di�erent emission sec-

tors but does not provide the district-based regional contributions critical for policymaking

(Zhang et al. 2013, Zíková et al. 2016, Shang et al. 2018). Li et al. (2015) performed a

comprehensive modelling study using the PSAT emissions-tagging approach in the CAMx

model at 36 km resolution to generate district-based source contributions. However, the

emissions-tagging technique does not apportion secondary aerosols, a major part of PM2.5

loading in Beijing, to any speci�c emission source. Recently, Chen et al. (2019) used the

CAMx-PSAT technique at 12 km resolution to calculate source contributions from districts

included in the Chinese government's "2+26" regional emission control strategy, but they

do not include the e�ect of surrounding regions in their analysis, which may be needed
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to formulate successful emission control policy in unfavourable meteorological conditions.

Moreover, none of these studies provide information about the temporal contribution of

di�erent sources which is important in the context of short-term emergency control mea-

sures. Matsui et al. (2009) provided some preliminary information on the temporal nature

of source contribution from di�erent regions. They found that primary aerosols in Bei-

jing are a�ected by emissions within 100 km in the previous 24 h and secondary aerosols

over Beijing are a�ected by emission sources within 500 km in the previous 3 days. How-

ever, a more detailed understanding of the temporal nature of regionally-resolved sectoral

source contributions under a range of meteorological conditions is required to aid robust

short-term emission control policymaking for Beijing.

With the aim of improving short-term emission reduction policies, we investigate the

temporal contributions from di�erent emission sectors and regions by conducting a range

of di�erent simulation experiments described below:

Experiment 1 (1-day pulses, 60 runs): In order to investigate the temporal nature of source

contributions from di�erent regions, we reduced anthropogenic emissions across all ma-

jor sectors to APEC levels but just for the �rst day of simulation and conducted 5�day

long runs with twenty di�erent starting days to cover a range of di�erent meteorological

regimes. Three sets of these twenty runs were conducted where the emissions were reduced

for (i) Beijing only, (ii) near-neighbourhood only, and (iii) far-neighbourhood only. This is

described in section 4.4. See TableC.1 in the supplement for a list.

Experiment 2 (Zero-out, 14 runs): In order to quantify sectoral and regional source con-

tributions, we conducted fourteen 11-day long runs including a baseline run, twelve runs

where one of the twelve emission parameters (4 sectors for 3 regions) were reduced to zero

continuously for the entire period, and one run where all twelve emission parameters were

switched-o� together. This is described in section 4.5. See TableC.3 in the supplement for

a list.

Experiment 3 (Perturbation, 60 runs): In order to assess non-linear e�ects of combined

sectoral controls, we conducted sixty 11-day long runs similar to experiment 2 but with

di�erent scalings of 0�120% across the twelve emission parameters (4 sectors for 3 regions)

for each run instead of switching-o� (zeroing-out) just one parameter. See TableC.4 in

the supplement for a list. These runs were used to train a Gaussian Process Emulator

which was then utilized to perform further 10,000 perturbation runs to obtain sensitivity

indices for each of the twelve emission parameters and to build emission-concentration

response-surfaces for Beijing. This is described in section 4.6.
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Figure 4.3: Schematic showing the start and end dates of each pulse
run. These runs were performed for each of the three regions of
control. The dates are from 12October to 15November.

4.4 Temporal response to emission controls

To ensure good air quality, regional short-term emission controls have been implemented

for high-pro�le events in Beijing over the past decade, including the 2008 Olympics, the

2014 APEC meeting, and the 2015 China Victory Day parade. These controls resulted

in improved air quality, although for all three events the successful outcomes were greatly

helped by favourable meteorological conditions (Yang et al. 2011, Liang et al. 2017). In

each case, emission controls were initiated substantially before the event: 18 days before

for the Olympic games in 2008 (Gao et al. 2011, Yang et al. 2011), 7 days before for the

APEC meeting in 2014 (Zhang et al. 2016a, Sun et al. 2016b) and 14 days before for the

Victory Parade in 2015 (Liang et al. 2017, Zhao et al. 2016). This period allowed emission

controls to take e�ect and existing pollution to be swept away, but the optimal timing for

controls that balances improvements in air quality against the economic and social costs

of implementing them remains unclear. To resolve this, it is important to understand how

pollution from previous days and di�erent regions builds up under di�erent meteorological

conditions and to determine the persistence of pollution from a single day of emissions.

We consider three regions of control: Beijing, Near-Neighbourhood and Far-Neighbourhood

(Figure 4.2) and conducted sixty 5-day long model runs, twenty for each region, with emis-

sion reductions for the �rst day of simulation only and baseline emissions for the following

four days as shown in �gure 4.3). We applied emission reductions following those imple-

mented during the APEC summit period: 40�50% for Beijing and 30�35% for surrounding

districts (see Ansari et al. 2019a). The timing of the model runs was selected to cover a

range of di�erent meteorological conditions and includes a polluted period in mid to late

October (10 days) and a cleaner period in early to mid November (also 10 days in length).

The di�erence in simulated PM2.5 values between each model run and the baseline run

gives the contribution from a speci�c day over subsequent days.
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Figure 4.4: Contribution of one-day emission reductions on successive
days to PM2.5 in Beijing in October 2014.

Figure 4.4 shows the contribution of one-day emission reductions across all three regions

on successive days to PM2.5 in Beijing for 21�27 October 2014. While emission cuts on

a given day make a substantial contribution to PM2.5 on that day, the bene�ts often

extend to a number of subsequent days due to the meteorological conditions and timescales

for transport. The most polluted days (e.g., 24 and 25 October) show the accumulated

contributions to PM2.5 from as much as �ve days previously. Under clean, northwesterly

winds, the pollution is swept away over the North China Plain, and the resulting clean days

are dominated by fresh pollution from the same day, as occurs on 26 October. The daily

contributions vary substantially in magnitude as well as timing, and pollution levels are

typically higher at nighttime when the Planetary Boundary Layer (PBL) is more stable.

To gain insight into how meteorological processes a�ect the timescales for transport

from di�erent regions, we explore the contributions from Beijing, Near-Neighbourhood

and Far-Neighbourhood regions separately. Figure 4.5 presents the contributions to PM2.5

in Beijing from 1-day emission reductions relative to the day of control for the three

di�erent source regions over the two periods (20 days) considered here. Contributions from

Beijing sources a�ect PM2.5 in Beijing immediately and typically last 1�2 days, with peak

contributions ranging from 8�43µgm−3 (median value 21µgm−3) and occurring towards

the end of the day of emissions control. Contributions from the near-neighbourhood region

are delayed somewhat and typically extend until the third day. The contributions are

generally smaller than those from Beijing sources and and are greatest on the second

day. Contributions from the far-neighbourhood region are even more spread-out and are

further delayed in time, with very little contribution over Beijing on the day of control.

The contributions are greater in the two days following controls, re�ecting the timescales

for transport, and can persist for as much as �ve days. The right hand panels in �gure 4.5

show 24 h average contributions from each of the three source regions and highlight the

variability in the contributions from these regions under meteorological conditions over all

20 simulations. The highest hourly contribution from Beijing controls (43µgm−3) occurs
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Figure 4.5: Hourly (left) and daily (right) contributions to PM2.5

in Beijing due to one-day emission cuts in the Beijing (top), Near-
Neighbourhood (middle) and Far-Neighbourhood (bottom) source re-
gions. The contribution of individual days is shown in grey, mean
contributions are coloured, and maximum and minimum contribu-
tions are shown in black. Boxplots (right) show hourly the mean,
25th/75th percentiles, and maximum/minimum contributions across
all runs each day.

for emissions on 25October, which is one of the most polluted days during the study

period (see �gure 4.1). The highest hourly contribution from near-neighbourhood controls

is similar in magnitude (also 43 µgm−3) occurs from the 23�27 October run where two of

the most polluted days (24 and 25October) are the second and third days subsequent to the

emission reduction day, and the highest hourly peak contribution from far-neighbourhood

pulses comes from the 22�26 October run where the most polluted days (24 and 25 October)

are the third and fourth days subsequent to the emission emission reduction day.

To characterize the source contributions for each simulation, we calculate the peak

contribution, the timing of the peak, the integrated contribution and the duration of

the contribution (see TableC.2 in the supplementary material). For 5 of the 10 cases

in October, the more polluted period, the highest integrated contribution comes from Bei-

jing sources while near-neighbourhood sources dominated 4 cases and far-neighbourhood

sources only 1 case. For the cleaner November period, the highest integrated contribu-

tions are from Beijing sources for 9 of the 10 cases, and far-neighbourhood sources made a
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greater contribution than near-neighbourhood sources for 8 of the 10 cases. Highest peak

contributions came from Beijing sources for 6 out of 10 cases in October and for all 10

cases in November. However near-neighbourhood sources also made a major contribution

on polluted days. Far-neighbourhood sources showed higher or equal peaks as compared

to near-neighbourhood sources for 7 out of 10 cases in November, however unlike the inte-

grated contributions they were signi�cantly smaller than the Beijing peaks. The greatest

contributions from Beijing sources occur in late afternoon or early evening of the day of

control, re�ecting the accumulation of pollutants, rush hour tra�c sources, and increased

PBL stability in the evening. Peak contributions from near-neighbourhood sources occur

in the morning to afternoon of the second day, while those from far-neighbourhood sources

are more uniformly distributed over time and can occur anytime between the third and

fourth day. The duration of contributions from Beijing sources never extends beyond the

second day whereas contributions from near- and far-neighbourhood may extend to the

�fth day. To test the persistence of contributions beyond the �fth day, we extended far-

neighbourhood pulse runs to 8 days but their contributions became negligible beyond the

�fth day.

While the temporal contributions from each region show clear mean behaviour, they

also show signi�cant variability. This is due to di�ering meteorological conditions for each

day. To understand the e�ect of meteorology on the temporal contributions, we investigate

the relationship between peak and integrated contributions with meteorological parameters

such as daily average wind speed and direction on each day of the simulations. Some key

relationships are shown in Figure 4.6. We �nd that peak contributions from Beijing sources

show a clear negative correlation (r-value of -0.74) with average wind speed in Beijing on

the day of emission control. This is as expected, and re�ects the greater build up of

pollution under more stagnant conditions. The wind speed on subsequent days did not

show a strong correlation with the contributions from Beijing or neighbourhood sources.

The integrated contribution from all three source regions was higher when the wind was

blowing from the south. This re�ects the fact that the strongest emission sources lie over

the North China Plain south of Beijing. Lower integrated contributions were seen during

southerly winds when the wind speed was higher. It is noteworthy that over these periods

wind speeds were generally lower when coming from the south, supporting the build-up of

pollution as well as bring pollutants from the highest emission regions.

Overall, it is clear that local emission controls in Beijing provide an immediate but

typically relatively short-lived bene�t to air quality in the city, with the magnitude of

the bene�t dependent on whether stagnant meteorological conditions with low wind speed
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Figure 4.6: E�ect of meteorology on peak and integrated contri-
butions from the three regions of control. (a) Peak bene�t from
Beijing sources vs average wind speed on day 1, (b) integrated ben-
e�t from Beijing vs average wind direction on day 1, and integrated
bene�ts from (c) Near-Neighbourhood and (d) Far-neighbourhood
sources vs average wind direction on day 2. The shaded area high-
lights southerly winds.

are present. Regional emission controls over the North China Plain generally lead to

smaller bene�ts which start later and last longer, although the contribution may rival those

from local emissions under weak, southerly winds. More distant regions may also make a

contribution under these conditions, although these typically take a number of days to build

up. These results suggest that avoiding major pollution episodes in Beijing requires control

of local emissions one or two days in advance, control of near-neighbourhood emissions two

to three days in advance, and control of far-neighbourhood emissions three to four days in

advance.

4.5 Sectoral emission controls

An understanding of contributions from individual sectors (industry, transport, residential

and power plants) from di�erent regions is also important to inform successful short-term
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Figure 4.7: Contribution of each sector in each emission region to
PM2.5 in Beijing. The emission sectors include residential (R), in-
dustrial (I), power (P) and transport (T) sources.

emission control policies. To determine the impact of each source sector in each di�erent

region, we conduct model simulations where one of the twelve emission sources (4 sectors

over 3 regions) was removed in turn for the entire simulation period (21�31October). The

di�erence of each of these runs from the baseline run yields an estimate of the contributions

of the source considered. We also conducted an additional run with all twelve emission

sources removed to provide an estimate of the background contribution from sources outside

the regions considered here.

The October simulation period is characterised by two distinct pollution episodes: 21�

25 October (episode 1) and 26�30 October (episode 2). During each episode the total PM2.5

over Beijing builds up over a �ve-day period and peaks on the �fth day. Figure 4.7 shows

hourly time-series of contributions from each emission source. In general, residential and

industrial sectors make much greater contributions than the power and transport sectors.

The Beijing emission sources show a more pronounced diurnal variation than the regional

sources. This is because the Beijing plume is still fresh and contains the diurnal signal of

local emissions whereas regional plumes are transported to Beijing over longer distances and

are better mixed, losing this diurnal signal through dispersion. All sources show a build up

during the two episodes, but the rate of this increase is high for Beijing sources, low for near-

neighbourhood sources and lower still for far-neighbourhood sources. Far-neighbourhood

contributions show a much delayed increase compared with those from Beijing and Near-

Neighbourhood sources, highlighting that 3�4 days of stagnation over Beijing are needed

before Far-Neighbourhood sources make a substantial contribution. This is consistent with

our �ndings on the temporal response to emission changes in Section 4.4. It is interesting

to note that the source contributions do not peak at the same time, and therefore the

maximum concentrations of PM2.5 do not re�ect the maximum contributions from each

source. Figure 4.7 reveals the anatomy of the two PM2.5 episodes shown in Figure 4.1 and

shows that episode 1 was dominated by regional pollution, particularly industry, residential

and transport emissions from near-neighbourhood sources, while episode 2 had greatest
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Figure 4.8: Absolute (left) and relative (right) contributions to daily
mean PM2.5 obtained by removing one emission sector from one re-
gion at a time. The three regions are shown in di�erent colours and
the four sectors are shown with distinct patterns. Contribution from
other sources is shown in white and contributions due to interactions
between emission sectors is shown in grey.

in�uence from local residential emissions which exceeded the contributions from regional

emissions. This is because episode 1 experienced stronger southwesterly winds during 23�24

October (4ms−1) that brought PM2.5 from high-emission sources south of Beijing enabling

greater accumulation over the city before it was swept away by the clean northeasterly

winds the next day. Episode 2 experienced weak southeasterly winds during 29�30 October

(2ms−1) which did not bring as much PM2.5 from neighbouring sources but allowed local

emissions to build up under calmer conditions. See FigureC.1 in the supplement for more

details on the meteorological conditions during the simulation period.

Figure 4.8 presents absolute and relative contributions to daily mean PM2.5 in Beijing

from the twelve emission sources along with those from the background sources. For each

day, the total height of all stacked bars represents the baseline levels. The size of each

of 12 coloured bars was calculated by subtracting the daily mean PM2.5 concentrations

of each sectoral sensitivity run from the baseline values. The white bars were calculated

by subtracting PM2.5 values of the sensitivity run where all 12 sectors were removed to-

gether from the baseline values. The remainder was attributed as "interactions", shown

in grey bars which can be interpreted as the extra reductions in PM2.5 concentrations

due to combined reduction of various emission sectors compared to the added reductions
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from individual reduction of each sector. The major contributions are from Beijing and

Near-Neighbourhood sources on most days, which make up an average of 35% and 32%

respectively. However, Far-Neighbourhood sources also show signi�cant contributions (up

to 28%) on more polluted days. The two episodes have slightly di�erent characteristics:

as noted above, the 24October episode was more greatly a�ected by near-neighbourhood

emissions while the 30October showed a greater in�uence from local residential emissions.

The spatial distribution of 24 h average PM2.5 for the two days is shown in Figure 4.9

and con�rms this �nding. It is interesting to note the di�erences between these two pol-

lution episodes just �ve days apart, which emphasises the importance of meteorological

processes in governing the source contributions. It is worth noting that local sources are

proportionally smallest on polluted days (and largest on clean days).

The contributions of key sources, including background sources build up consistently

over the course of each pollution episode. The relative contribution of background sources

is slightly higher during the �rst episode (17%) as compared to that for the second episode

(12%). This is likely because, for the �rst few days, the white bars must also include

contribution from the 12 known sources (coloured bars) from previous days before the start

date of controls. After about �ve days, the white bars show only background contribution

because we know from experiment 1 that at this point all contribution from the 12 sources

are from days within the simulation period, i.e., after the controls began and therefore

they are included in the blue, green and red bars.

A sizeable portion of PM2.5, denoted as "Interactions" in the �gure, remains unattributed

to the 12 emission sources or to background, and this re�ects non-linear model responses,

particularly in the formation of secondary aerosols. Removal of individual sources indepen-

dently does not account for the interactions between gas-phase precursors from di�erent

sectors or regions that drive secondary aerosol formation, and the contribution to total

aerosol may thus be underestimated (Zhao et al. 2017). The grey bars show a notably

di�erent behaviour from that of other sources, for example, some cleaner days have higher

contributions from interactions (e.g., 23 October) than do more polluted days (30 Octo-

ber). On further analysis, the interaction contributions were found to be highly correlated

to near-neighbourhood power and transport sectors. In general, the days which have higher

contributions from transport and power sectors (not necessarily highest total concentra-

tions) show bigger grey bars. Power and transportation sectors are major sources of SO2

and NO2 respectively and this nonlinear behaviour can be explained by the competition be-

tween SO2 and NO2 in the presence of ammonia to form sulphate and nitrate aerosols. For

instance, if a particular day has signi�cant contributions from power and transport sector,
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Figure 4.9: 24 h average PM2.5 over the study region for 24 October
(left) and 30 October (right) episodes showing regional and local
accumulation respectively.

reducing power sector emissions alone will reduce SO2 and therefore (NH4)2SO4 thereby

freeing up ammonia gas which may then react with NO2 to form NH4NO3 with little change

in total PM2.5 concentrations, thereby o�setting the bene�ts of emission reduction. On the

other hand, if both power and transportation sectors are controlled together, there may

not be enough NO2 available to react with the freed ammonia, leading to a more e�cient

PM reduction. However, if power and transportation sectors have small contributions for

a particular day, this nonlinear chemistry will not have a signi�cant e�ect.

To check the robustness of the attribution approaches used here and gain further insight

into secondary aerosol responses, we compare the cumulative contributions from one-day

controls across all sectors with those from continuous controls on individual sectors. We

scale the contributions from individual sectors by 45% for Beijing sources and by 35% for

regional sources to match the emission reductions used in the one-day control runs described

in Section ??. A comparison of the cumulative contributions to PM2.5 in Beijing from the

one-day pulses against those from the continuous controls from each of three regions is

shown in Figure 4.10, and the total contributions from all three regions combined is shown

in Figure 4.11.

Figure 4.10 shows the composition of contributions from the three source regions in two

di�erent ways: as a cumulative of successive one-day controls and as a cumulative of each

emission sector. The left hand panels demonstrate that the cleaner days had predominantly
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Figure 4.10: Contributions of one-day emission controls (left) and
continuous controls (right). Contributions from continuous reduc-
tions of each sector (at 100%) were scaled down to match the 30�50%
reductions used for the one-day controls.

Figure 4.11: Comparison of cumulative contributions from successive
one-day pulses and from continuous controls. Contributions from
continuous removal of each sector (100% reductions) were scaled
down to match one-day controls (30�50% reductions) similar to
APEC levels.

local contribution from the same day while the polluted days are formed of accumulated

contribution from the previous day for local sources, from up to three days before for near-

neighbourhood sources, and from up to four days before for far-neighbourhood sources.

In fact, there's no contribution of current day emissions from far-neighbourhood sources.

The right hand panels show the region-wise contributions broken into sectors. Industry

and residential sectors dominate for all three source regions. Contributions from all three

regions show a di�erent, and slow, build-up pro�le towards the polluted days followed by

rapid and almost simultaneous reductions. This behaviour denotes the partly chemical

nature of build-up through secondary aerosol production (slower), and on the contrary the

physical nature of regional clean-up.

The cumulative contributions of di�erent sources based on one-day emission controls are
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very similar to those from the continuous sectoral controls, see Figure 4.10, demonstrating

that the two approaches give comparable responses. This lends con�dence in our separate

attribution of the temporal and sectoral contributions to PM2.5 in Beijing.

4.6 Integrated source contributions

To assess the nonlinear response of secondary aerosols towards primary emissions from

di�erent sectors, generally a large number of model runs are required with distinct pertur-

bations across all emission sectors. Ideally, if we conduct thousands of model runs with

di�erent perturbations across all known primary emission sectors, it would be possible to

derive a sensitivity index for each emission sector towards the pollutant of interest, here

PM2.5 including its secondary mass. This sensitivity index for a sector would be computed

to re�ect the response of PM2.5 towards change in the given sector, averaged over all pos-

sible ranges of all other sectors. Such a sensitivity index provides richer information than

one-at-a-time local sensitivity index as it re�ects the importance of a given parameter in

relation with various magnitudes of other parameters rather than independent of them, and

helps us in identifying the most in�uential parameter. Such sensitivity indices are called

Global Sensitivity Indices or GSIs (see Dellino & Meloni 2008). However, the thousands of

model runs required to generate such indices are not practical given the high computational

cost of running a fully coupled high-resolution atmospheric chemical transport model.

Gaussian Process Emulation is an attractive technique to circumvent the large number

of model runs required and still derive GSIs. An emulator is a statistical model that mimics

the input-output relationship of an expensive simulator, here, the WRF-Chem model. If

we are con�dent that the emulator is accurate, then we can compute GSIs from the outputs

of the emulator instead of the simulator (Ryan et al. 2018). The number of model runs

required to build an accurate emulator is far less than the number of runs required to obtain

reliable GSIs directly from the model. Here, we built daily Gaussian Process emulators

using the DICE-Kriging package in R (Roustant et al. 2012) which relate daily mean PM2.5

in Beijing for each day to the twelve emission parameters (four sectors across three regions)

considered in this study.

To design the model training runs, we use maximin Latin Hypercube sampling, follow-

ing (Lee et al. 2011), to assign 60 distinct sets of scalings in the range 0�120% to each of

the 12 emission sources (see sections C.1 and C.2 in the supplementary material for a brief

description of Gaussian process emulation and Latin Hypercube sampling, and TableC.4

for the scalings used). We performed new model simulations for each of these conditions
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Figure 4.12: A comparison between daily global sensitivity indices
for the 12 emission parameters based on Gaussian process emula-
tion (left) and normalized contributions obtained from one-at-a-time
sensitivity runs.

for the 11-day period 21�31October and built 11 corresponding emulators to predict daily

mean PM2.5 in Beijing for each day using model output. The 11 daily emulators are val-

idated using a leave-one-out method where all 11 emulators are successively rebuilt sixty

times using 59 of the model outputs and are tested against the remaining one. This gives

a correlation coe�cient of 0.9996 (see FigureC.2) indicating that the emulators reproduce

the model results well.

We conducted 10,000 sensitivity runs with the emulators to calculate the Global Sensi-

tivity Indices for each of the twelve emission parameters. Figure 4.12 presents a comparison

of GSIs obtained from emulation and normalized contributions of each emission parameter

from one-at-a-time zero-out runs for all 11 days. We see that the local emissions dominate

PM2.5 pollution in Beijing on the cleaner days whereas, they become much less impor-

tant on the polluted days which are dominated by Near-Neighbourhood emissions and to

a lesser extent, Far-Neighbourhood emissions. Residential and Industry remain the two

most important emission sectors for controlling PM2.5 levels in Beijing.

While the sensitivity indices and contributions look very similar on a regional level,
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there are some notable di�erences between sectors. In general, power and transport sec-

tors have higher sensitivity than contributions. This means that while power and transport

sectors are not likely to reduce PM2.5 levels in Beijing signi�cantly if they are controlled

alone, they might have a larger e�ect when controlled along with other sectors (especially

with each other). This kind of non-linear behaviour can be explained by the precursor

chemistry that forms PM2.5 in Beijing. A large part of PM2.5 during these episodes was

composed of secondary inorganic aerosols, mainly NH4NO3 and NH4SO4 (see Ansari et al.

2019a). Power plants are a major source of SO2 and transport is a major source of NO2.

Reducing only SO2, through power sector, may lead NH3 to bind with free NO2 thereby

forming NH4NO3. Similarly, reducing only NO2, through transport sector, may lead NH3

to bind with free SO2, forming NH4SO4 and thereby not reducing total PM2.5 concentra-

tion (see Seinfeld & Pandis 2006). However, when both power and transport sectors are

reduced together, their individual e�ect will be more signi�cant�and this is re�ected in the

sensitivity indices.

Concentration response surfaces were developed for daily average PM2.5 in Beijing for

each day of the training runs (21�31 October) using computationally e�cient Gaussian

process emulation. Figure 4.13 presents response surfaces for some key combinations of

emission sources for 24October, the day with highest PM2.5 concentrations. Panels (a-c)

show PM2.5 response to changes in key sectors from all source regions. Panel a highlights

that transport sector is more e�cient than power sector in reducing total PM2.5 over

Beijing; 80% reduction in transport results in a drop of 30µgm−3 (from 343µgm−3 down

to 313 µgm−3) as compared to a drop of only 16 µgm−3 for the same reduction in power

sector. The nonlinearity of PM2.5 response is also worth noting. For example, reducing the

transport sector by 60% (from 100% to 40% strength) when the power sector is at its full

strength reduces PM2.5 by 20 µgm−3 (343 to 323) while the same reduction in transport

sector when the power sector is only at its 20% strength reduces PM2.5 by 27 µgm−3 (327

to 300). The more dominant sector from panel a is then compared against residential sector

in panel b and the more dominant sector in panel b is compared against industry sector in

panel c. Industry turns out to be the most dominant sector, showing highest gradient of

PM2.5, as shown in panel c and is therefore the most dominant of all sectors.

Panels d and e show response surfaces for di�erent source regions with all sectors com-

bined. Based on PM2.5 gradient, panel d highlights that Near Neighbourhood is more

dominant than Beijing and panel e highlights that it is also more dominant than Far

Neighbourhood. So panels (a-e) establish that industry is the most dominant emission

sector overall and Near Neighbourhood is the most dominant source region. To further
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Figure 4.13: Response of daily average PM2.5 concentrations in Bei-
jing to changes in sectoral and regional emissions. Axes show the
scaling applied to the relevant source (in %) starting on 21October;
contours show the corresponding daily mean PM2.5 in Beijing on
24October (concentrations at 20% intervals are labelled).

investigate the most dominant sector within the most dominant source region, a response

surface for Near Neighbourhood Industry versus Near Neighbourhood Residential sectors

was developed and is shown in panel f. Near Neighbourhood Industry turns out to be the

most dominant individual sector of all the 12 emission parameters considered, leading to

a drop of 53µgm−3 in PM2.5 over Beijing for a 80% reduction.

While panels (a-f) highlight the most important emission sectors and source regions

for PM2.5 control in Beijing, they also show that even 80% reduction of up to 8 out of the

12 emission parameters cannot reduce the PM2.5 in Beijing to safe levels. Therefore, three

new response surfaces were developed which include reductions across all 12 parameters in

various combinations. Three such response surfaces are shown in panels (g-i) which present

reductions across the 12 parameters in three di�erent combinations. Panels (g-i) show a

substantial drop of 213µgm−3 in PM2.5 levels (from 343µgm−3 down to 130µgm−3) if
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Table 4.1: Policy options for controlling PM2.5 in Beijing

Daily mean PM2.5 Policy recommendation
reduction needed (µgm−3)

up to 25 60% reduction across residential and industry sectors for Beijing
26�50 80% reduction across all sectors for Beijing
51�75 50% reduction across all sectors for Beijing and Near-Neighbourhood

or, 80% reduction across all sectors for Beijing and 40% reduction
across industry in Near- and Far-Neighbourhood
or, 80% reduction across industry for all three regions

76�100 60% reduction across all sectors for Beijing and Near-Neighbourhood
or, 80% reduction across all sectors for Beijing and 60% reduction
across industry for Near- and Far-Neighbourhood

101�125 70% reduction across all sectors for Beijing and Near-Neighbourhood
or, 60% reduction across all sectors for all three regions

126�150 80% reduction across all sectors for Beijing and Near-Neighbourhood
or, 70% reduction across all sectors for all three regions

151�175 80% reduction across all sectors for all three regions
more than 175 90% reduction across all sectors for all three regions

all 12 parameters are reduced simultaneously by 80%. However, it still does not meet the

healthy air quality standard of daily average PM2.5 concentrations less than or equal to

75 µgm−3. Meeting this stringent target would require complete control of all emission

sectors for all three regions (Figure 4.13 �rst column) which would bring down the levels to

79 µgm−3. To further reduce the PM2.5 concentrations on 24 October, the controls should

start one or two days earlier than 21 October, as demonstrated in section 4.4. Nonetheless,

these response surfaces provide us with a variety of di�erent emission reduction choices to

reduce PM2.5 over Beijing in order to meet the healthy air quality target, without the need

to run the computationally expensive simulations.

Table 4.1 presents some policy recommendations for pollution episodes of various in-

tensities based on the drop in daily average PM2.5 needed. For less polluted episodes of

daily mean PM2.5 concentrations up to 125µgm−3, the air quality target can be met by

controlling local emissions only, although stringently. For episodes of moderate intensities

(daily average PM2.5 of 126�225µgm
−3) stringent controls within the Near-neighbourhood

region can meet the standards, whereas for highly polluted episodes (daily average PM2.5

of more than 225 µgm−3), all emission sectors within the entire Far-Neighbourhood re-

gion need to be controlled. The response surfaces developed here can serve as a guide to

prioritizing the more important emission parameters over others, enabling formulation of

e�cient and e�ective short-term emission reduction policies for Beijing.
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4.7 Conclusions

In this study we provide critical understanding of source contributions for improvement of

short-term emission control policies in terms of sectoral and regional selection of emissions

and the timing of control for two PM pollution episodes in Beijing using a state-of-the-

art numerical atmospheric chemical transport model WRF-Chem and a statistical model

trained by it. We split the north China region into three regions of control: Beijing, near-

neighbourhood and far-neighbourhood. We found that the e�ects of local emission controls

in Beijing on a given day last until the next day, near-regional controls last until two to

three, and far-regional controls up to four days. We found through model sensitivity studies

that near-regional industry and residential sectors are major sources of PM2.5 pollution in

Beijing and further developed a fast metamodel based on Gaussian process emulation to im-

prove source attribution estimates. We �nally developed emission-concentration response

surfaces for PM2.5 in Beijing to serve as a quick guide for better formulating short-term

emission control policies without the need of running computationally expensive numerical

models.

Results of this study are derived from model simulations over a limited period in

October-November 2014, and therefore care must be taken to apply these results over

a di�erent period or season. The response surfaces developed here can nonetheless serve

as a valuable guide in policy formulation for Beijing for winter period. More generally,

these methods can be utilized to build an extensive framework for policy formulation and

improvement for other seasons as well as other cities around the world.
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APPENDIX C

Supplementary material for chapter 4

This appendix presents the supplementary material of the manuscript prepared for submis-

sion in Atmospheric Chemistry and Physics. The tables C.1, C.3 and C.4 brie�y describe

the runs performed for experiments 1,2 and 3 respectively. TableC.2 presents some key

statistics about temporal contributions from each source region. FigureC.1 shows time-

series of local and regional average wind speed and direction to facilitate interpretation

of results. FigureC.2 shows a scatterplot of simulated versus emulated daily mean PM2.5

concentration in Beijing for 60 di�erent sets of emulators trained on 59 sets of model output

leaving out one set for validation.

C.1 Gaussian process emulation

In statistics, Gaussian process emulator is a type of statistical model that is used in con-

texts where the problem is to make maximum use of the outputs of a complicated (often

non-random) computer-based simulation model. Each run of the simulation model is com-

putationally expensive and each run is based on many di�erent controlling inputs. The

variation of the outputs of the simulation model is expected to vary reasonably smoothly

with the inputs, but in an unknown way. The overall analysis involves two models: the sim-

ulation model, or "simulator", and the statistical model, or "emulator", which notionally

emulates the unknown outputs from the simulator. The Gaussian process emulator model

treats the problem from the viewpoint of Bayesian statistics. In this approach, even though

the output of the simulation model is �xed for any given set of inputs, the actual outputs

are unknown unless the simulator is run with those inputs, and hence can be made the
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subject of a Bayesian analysis (O'Hagan 2006). The main element of the Gaussian process

emulator is that it models the outputs as a Gaussian process on a space that is de�ned by

the model inputs. The emulator includes a description of the correlation or covariance of

the outputs, which enables the model to encompass the idea that di�erences in the output

will be small if there are only small di�erences in the inputs. In such a framework, the

uncertainty does not refer to an actual random phenomenon, but to a partially observed

deterministic phenomenon. One often refers to the latter kind of uncertainty as epistemic,

whereas the former one is called aleatory (Helton & Davis 2003). Gaussian process em-

ulation has been successfully used for global sensitivity analysis in atmospheric chemical

transport models (Lee et al. 2012, Ryan et al. 2018).

C.2 Latin hypercube sampling

Latin Hypercube Sampling (LHS) is a way of generating random samples of parameter

values. It is widely used in Monte Carlo simulation, because it can drastically reduce the

number of runs necessary to achieve a reasonably accurate result. The whole purpose of

LHS is to capture the probability distribution with less number of samples and it is done by

stratifying the probability distribution into equal intervals and choosing random samples

from each strati�cation (Loh 1996, Helton & Davis 2003). LHS is based on the Latin

square design, which has a single sample in each strati�cation. In the context of statistical

sampling, a square grid containing sample positions is a Latin Square if and only if there

is only one sample in each row and each column. A �hypercube� is a cube with more than

three dimensions; the Latin square is extended to sample from multiple dimensions and

multiple hyperplanes.
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Table C.1: List of pulse runs for the three source re-
gions. These runs were part of experiment 1.

Span Beijing Near-Neigh. Far-Neigh.

18�22Oct Run 1 Run 21 Run 41
19�23Oct Run 2 Run 22 Run 42
20�24Oct Run 3 Run 23 Run 43
21�25Oct Run 4 Run 24 Run 44
22�26Oct Run 5 Run 25 Run 45
23�27Oct Run 6 Run 26 Run 46
24�28Oct Run 7 Run 27 Run 47
25�29Oct Run 8 Run 28 Run 48
26�30Oct Run 9 Run 29 Run 49
27�31Oct Run 10 Run 30 Run 50

2�6Nov Run 11 Run 31 Run 51
3�7Nov Run 12 Run 32 Run 52
4�8Nov Run 13 Run 33 Run 53
5�9Nov Run 14 Run 34 Run 54
6�10Nov Run 15 Run 35 Run 55
7�11Nov Run 16 Run 36 Run 56
8�12Nov Run 17 Run 37 Run 57
9�13Nov Run 18 Run 38 Run 58
10�14Nov Run 19 Run 39 Run 59
11�15Nov Run 20 Run 40 Run 60

Each run is 5-day long with APEC-level controls on Day 1

but no controls for Day 2�Day 5

Table C.2: Statistical metrics of 1-day pulses of emission cuts for various regions

Start/End Peak Bene�t Time to reach peak bene�t Length of bene�ts Integrated bene�t
(µgm−3) (hours) (hours) (µgm−3 hours)

Beijing Near Far Beijing Near Far Beijing Near Far Beijing Near Far

Polluted period
18�22Oct 33.12 33.73 15.03 16 30 46 28 44 61 393.1 386.07 243.89
19�23Oct 29.93 21.61 1.93 14 24 31 35 36 44 502.67 320.45 29.49
20�24Oct 13.03 5.76 3.76 12 21 103 23 116 117 170.65 108 203.02
21�25Oct 18.65 11.52 6.63 16 33 79 33 101 93 225.37 560.02 153.42
22�26Oct 26.52 27.4 15.82 15 39 58 34 93 95 366.64 913.39 398.29
23�27Oct 28.81 43.12 6 15 36 61 40 71 72 532.95 794.94 86.81
24�28Oct 31.05 22.86 5.48 14 37 38 48 48 49 662.57 226.01 73.35
25�29Oct 43.47 0.62 1.27 14 103 19 24 66 49 496.45 0.00 7.75
26�30Oct 8.34 9.25 3.12 13 34 105 25 45 50 95.1 68.58 57
27�31Oct 20.89 10.31 8.19 17 33 82 30 91 101 270.17 462.06 306.6
Clean period
2�6Nov 19.04 0.25 2.63 14 33 37 25 30 74 138.22 1.45 91.16
3�7Nov 21.76 4.68 8.53 13 28 40 35 49 55 295.85 92.23 137.14
4�8Nov 29.29 7.78 4.38 16 21 34 26 28 34 378.48 70.37 28.29
5�9Nov 20.56 0.34 2.84 12 91 87 23 119 99 146.15 2.83 45.98
6�10Nov 19.25 8.8 4.01 13 58 38 26 74 77 147.34 236.41 153.45
7�11Nov 33.16 3.23 1.77 17 17 44 33 28 105 365.47 48.94 51.97
8�12Nov 27.37 2.75 4.43 13 20 37 25 24 99 357.81 14.77 124.34
9�13Nov 28.01 2.6 5.65 13 28 35 29 79 69 298.03 12.81 135.82
10�14Nov 36.18 3.11 3.1 14 14 20 24 69 31 349.86 12.12 30.4
11�15Nov 11.27 0.71 1.19 12 30 15 22 119 46 112.8 2.31 11.68

3 sets of simulations corresponding to the 3 regions were performed for each 5-day slot. Emissions were reduced only on the �rst day of each

simulation. Bene�ts were calculated by substracting hourly PM2.5 values of each run from the baseline run. A 24-hour running average was

applied on the absolute bene�ts time-series to calculate reliable peak timings.

85



APPENDIX C. SUPPLEMENTARY MATERIAL FOR CHAPTER4

Figure C.1: Hourly wind speed and direction averaged over various
regions.

Table C.3: List of runs part of experiment 2 where one of the emission
sectors was removed.

Run no. Switched-o� Emissions

Run 1 Beijing Industry
Run 2 Beijing Power
Run 3 Beijing Transport
Run 4 Beijing Residential

Run 5 Near-Neighbourhood Industry
Run 6 Near-Neighbourhood Power
Run 7 Near-Neighbourhood Transport
Run 8 Near-Neighbourhood Residential

Run 9 Far-Neighbourhood Industry
Run 10 Far-Neighbourhood Power
Run 11 Far-Neighbourhood Transport
Run 12 Far-Neighbourhood Residential

Run 13 All of the above
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Table C.4: Perturbations across the 12 emission parameters ranging
from 0�1.2 for the 60 runs

Run No. Beijing Beijing Beijing Beijing Near Near Near Near Far Far Far Far

Industry Power Tranport Residential Industry Power Tranport Residential Industry Power Tranport Residential

1 0.730 1.055 0.620 0.509 0.907 0.280 0.974 0.150 0.505 0.992 0.128 0.602
2 0.949 0.923 1.020 0.255 0.420 0.040 1.149 1.028 0.574 0.160 1.061 0.055
3 0.101 0.322 0.669 0.225 0.161 1.051 0.684 0.047 0.095 0.204 0.434 0.686
4 0.594 0.164 0.206 0.061 1.062 0.199 0.829 0.077 0.365 0.690 0.512 0.771
5 0.042 0.945 1.185 0.993 0.414 0.141 0.887 0.400 1.094 1.177 0.539 1.084
6 0.247 1.013 0.176 1.139 1.094 1.175 0.451 0.990 0.943 0.387 0.191 0.810
7 0.322 0.416 0.688 0.498 1.135 0.309 0.983 0.352 0.875 0.959 0.173 1.189
8 0.009 0.789 0.709 0.527 0.920 0.229 0.049 0.637 0.841 1.139 0.768 1.136
9 0.658 0.457 0.798 0.378 0.460 0.734 0.790 0.948 1.159 0.522 0.660 1.160
10 0.274 0.536 0.094 0.029 0.094 0.572 0.847 0.681 0.748 0.711 0.994 0.369
11 0.536 0.668 0.727 0.900 0.034 0.758 1.185 1.058 0.661 0.021 0.267 0.542
12 0.845 1.137 0.255 0.479 0.265 0.540 0.352 0.473 0.980 0.403 0.970 0.333
13 0.411 0.372 1.076 0.676 0.869 0.670 0.674 0.857 0.265 1.069 0.340 0.745
14 0.786 0.593 0.144 0.558 1.104 0.386 0.136 0.715 1.182 0.816 0.086 1.180
15 0.511 0.516 0.517 0.682 0.392 0.866 0.616 0.793 0.017 0.622 0.898 0.073
16 1.043 0.061 0.559 1.004 0.970 0.209 0.491 0.617 0.547 0.483 0.077 0.507
17 0.027 0.118 0.871 0.581 0.055 1.025 0.750 1.151 0.438 0.932 0.231 0.171
18 0.442 0.850 0.185 0.601 0.281 0.544 1.100 0.219 1.020 0.276 1.195 0.262
19 0.567 0.764 0.607 0.818 0.073 0.422 0.027 0.442 0.308 0.659 1.111 0.673
20 1.193 0.882 0.314 0.433 1.162 0.376 0.420 0.025 0.905 0.433 1.059 1.049
21 0.695 0.997 1.165 0.771 0.138 1.018 1.047 0.739 0.713 0.789 1.096 0.450
22 1.032 0.714 0.108 0.154 0.204 1.193 0.236 0.162 1.120 0.352 0.709 0.910
23 0.097 0.193 0.849 0.972 0.530 0.408 0.012 0.820 0.400 1.198 1.022 0.526
24 0.176 0.907 0.943 0.107 0.672 0.653 0.410 0.262 0.188 0.745 0.026 0.213
25 0.619 1.101 0.373 0.338 0.319 0.681 0.264 0.898 0.036 0.587 0.149 0.186
26 0.500 0.825 0.432 0.736 0.324 0.764 0.517 1.139 0.823 0.905 1.017 0.561
27 0.977 0.488 0.776 1.093 1.017 0.883 1.134 0.974 0.412 0.139 0.638 0.233
28 0.806 0.300 0.990 1.080 1.052 0.906 1.018 0.577 1.122 0.224 0.616 0.825
29 1.174 0.093 0.835 0.178 0.799 0.090 0.090 0.300 0.072 0.002 0.295 0.582
30 0.310 1.161 0.584 0.705 1.035 0.446 0.730 1.095 0.352 0.826 0.939 0.418
31 0.399 1.195 1.151 0.564 0.888 0.472 0.205 1.186 0.465 0.193 0.445 0.248
32 0.998 0.462 0.534 0.850 0.563 0.964 0.873 1.102 0.137 0.861 0.251 0.659
33 0.422 0.750 0.815 1.169 0.621 0.923 1.175 0.091 0.584 0.459 0.866 1.010
34 0.376 0.730 0.914 0.647 0.518 1.141 0.717 0.380 0.680 0.380 0.205 0.111
35 1.004 0.387 0.754 0.888 0.836 1.093 0.158 0.656 0.460 0.555 1.138 0.629
36 0.868 0.046 0.461 1.052 0.843 0.835 0.108 0.194 0.888 0.083 0.686 0.032
37 1.103 0.602 0.064 1.021 0.643 0.595 0.560 0.400 0.162 0.109 0.757 0.982
38 0.135 0.012 0.966 0.310 0.990 0.811 1.062 0.921 0.339 0.257 0.003 0.010
39 1.070 0.639 0.269 1.107 0.682 1.061 0.761 0.498 0.769 1.112 0.473 0.347
40 0.839 0.243 0.481 0.865 0.224 0.984 1.106 0.915 0.732 0.053 0.948 0.462
41 1.149 0.153 0.231 0.285 0.114 1.132 0.536 0.813 0.118 1.036 0.919 1.036
42 0.471 0.878 0.574 1.183 0.734 0.629 0.364 0.424 0.793 0.890 1.175 0.392
43 0.181 0.660 1.125 0.082 0.243 0.007 0.912 0.013 0.220 0.564 0.860 1.115
44 0.287 1.159 0.649 0.260 1.155 0.792 0.311 0.244 0.298 0.294 0.586 0.785
45 0.710 0.134 0.413 0.942 0.149 0.077 0.937 0.559 0.818 0.853 0.802 0.140
46 0.741 0.542 1.091 0.448 0.610 0.340 0.199 0.331 0.057 0.612 1.144 0.292
47 0.671 0.340 1.106 0.793 0.808 1.103 0.079 0.315 0.156 1.047 0.568 0.895
48 0.776 1.072 0.932 0.635 0.186 0.117 0.654 0.865 0.980 1.006 0.786 0.428
49 0.552 0.204 0.007 0.921 0.717 0.266 0.477 1.066 1.179 0.317 0.542 0.974
50 0.905 0.817 0.322 0.833 0.376 0.351 0.396 0.511 0.625 0.331 0.051 1.061
51 0.077 0.425 0.046 0.211 0.585 0.958 0.168 0.763 0.922 0.737 0.491 0.848
52 0.893 0.233 0.022 0.418 0.751 0.509 0.952 1.017 0.610 0.469 0.312 0.952
53 0.156 0.034 1.060 0.181 0.341 0.480 0.816 0.596 1.060 0.960 0.827 0.726
54 1.086 0.564 0.400 0.047 0.007 0.242 0.291 0.536 0.485 1.090 0.113 0.152
55 0.239 0.264 0.356 0.747 1.190 0.851 0.324 0.676 0.534 0.080 0.647 0.300
56 0.213 1.040 0.889 0.398 0.480 0.704 0.584 0.116 1.034 0.771 0.405 0.497
57 0.342 0.973 0.458 0.136 0.774 0.169 0.626 1.169 0.210 0.661 0.329 0.936
58 0.637 0.315 1.017 0.358 0.459 0.135 0.241 0.757 0.645 1.159 0.389 0.719
59 0.934 0.698 0.137 1.151 0.543 0.027 0.540 0.133 0.252 0.152 0.726 0.097
60 1.123 1.082 0.280 0.004 0.945 0.601 1.031 0.236 1.042 0.510 0.380 0.865
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Figure C.2: Correlation plot showing simulated versus emulated daily
mean PM2.5 in Beijing. The plot contains results for sixty di�erent
sets of 11 daily emulators (21�31October) built by training with all
but one set of model output which they are validated against. A
total of 60x11 datapoints are shown.
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5.1 Abstract

Despite the implementation of long-term action plans to curb air pollution, Beijing contin-

ues to experience severe winter haze days. Additional short-term emergency measures are

needed to prevent high levels of �ne particulate matter. Here we present, for the �rst time,

a dynamic emissions scaling framework DESMoRF that uses a state-of-the-art atmospheric

chemical transport model WRF-Chem at high-resolution over Northern China and Beijing

to identify optimal emission controls across major emission sectors in order to mitigate a

forthcoming pollution episode in Beijing. The reductions are optimized across industry,

power plants, transportation and residential sectors for Beijing, neighbouring provinces,

and farther provinces based on their contribution to PM2.5 in Beijing. We demonstrate

three di�erent implementations of DESMoRF based on one-day, three-day and four-day
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forecasts. This approach can be used for other polluted regions of the world and has

tremendous potential to be extended into a multi-faceted air quality policy guidance and

implementation system.

5.2 Introduction

Air pollution episodes are a major problem in many cities around the world damaging

health and well-being of the local population (Brimblecombe 2017, Anderson 1999). In

recent decades, severe winter haze episodes characterized by very high values of �ne par-

ticulate matter (PM2.5) have become a high-pro�le problem particularly in China(Guo

et al. 2014, Dang & Liao 2019, An et al. 2019). Reduction of emissions through change

in industrial technology, and transition to cleaner fossil fuels (e.g., oil and gas instead of

coal) is the only durable solution to the persistent menace of air pollution. However, such

transition takes place slowly and does not immediately prevent air pollution episodes.

The Chinese government has implemented long-term pollution mitigation policies such

as the Action Plan on Prevention and Control of Air Pollution, APPCAP, 2013�2017

which set PM2.5 targets for the city clusters of Beijing�Tianjin�Hebei and the Pearl and

Yangtze Deltas. This action plan covered a wide variety of measures such as industrial

restructuring, technology transformation, clean energy supply, change in economic policy,

improving laws and regulations, regional cooperation, monitoring systems and public par-

ticipation (McMullen-Laird et al. 2015). The APPCAP was followed by the Three year

Action Plan for Winning the Blue Sky War, 2018-2020 which covers a total of 338 cities

and sets a standard of annual mean PM2.5 of 35µgm
−3.

While the implementation of these long term pollution mitigation policies has signi�-

cantly reduced annual average PM2.5 concentrations and mortality (Huang & Gao 2018),

Beijing and its neighbourhood continues to experience heavy haze days with very high

levels of PM2.5 especially during the winter months (Dang & Liao 2019, Yu et al. 2018).

Therefore, short-term controls are still needed to mitigate the worst episodes.

National policies for short-term control measures such as the Clean Air Protection dur-

ing Mega Events and Air Pollution Warning and Protection Measures have been introduced

by the Ministry of Ecology and Environment of China (Li et al. 2019) and have been suc-

cessfully implemented during major events including the 2008 Beijing Olympics; the 2010

Guangzhou Asian Games; the 2014 Asia-Paci�c Economic Cooperation forum (APEC);

2014 Summer Youth Olympics in Nanjing; and the 2015 China Victory Day Parade. Sev-

eral observational studies have reported an improvement in air quality during these events
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(Wang et al. 2014c, Tao et al. 2015, Wang et al. 2015, Miettinen et al. 2019, Ren et al.

2019) while modelling studies have evaluated the e�ectiveness of these emission controls

(Streets et al. 2008, Liu et al. 2013, Ansari et al. 2019a, Wang et al. 2017a). These short-

term controls have typically been successful in reducing PM2.5 concentrations but were

greatly aided by favourable meteorology (Zhang et al. 2016a, Gao et al. 2017) and may

not be e�ective under more stagnant weather conditions. Ansari et al. (2019a) studied a

�ve week period in October-November 2014 during which 15 days did not meet the healthy

air quality criteria of 24h average PM2.5 less than 75 µgm−3 (henceforth, AQ criteria) and

demonstrated that while implementation of emission controls similar to APEC-controls

would bring the pollutant levels down, still 13 days (about 30% of the time) would not

meet the standards, highlighting the need for more stringent controls.

Even as signi�cant knowledge has been gained from past experience of these real-world

experiments of short- and long-term emission controls, there is still need for a framework

to inform short-term controls�ideally to identify controls that are no stricter (and more

expensive) than needed to meet the AQ criteria on a continuous basis. Limited studies

(e.g., Yu et al. 2018, Li et al. 2019) have attempted to identify optimal short-term controls

through model simulations but have not developed an automatic emission prescription

framework.

Here, we introduce an entirely new approach bringing ideas from system control theory

together with air quality models for the �rst time to demonstrate an e�ective way to identify

appropriate emission controls to mitigate major episodes: the Dynamic Emissions Scaling

Model Running Framework (DESMoRF). DESMoRF performs air quality forecasts on a

daily basis to determine if a major pollution episode is forthcoming, calculates appropriate

emission reduction needed based on pre-de�ned model pollutant response surfaces (see

chapter 4), and applies these controls in the model so that the AQ standards are met.

A brief description of the model and the study period is presented in section 5.3. A

description of the approach is presented in section 5.4 and its three di�erent implementa-

tions are presented in sections 5.5, 5.6 and 5.7. Section 5.8 provides further discussions and

implications and future outlook.

5.3 Model con�guration and study period

We use a well-tested con�guration of the WRF-Chem model version 3.7.1 as developed

in our previous studies (Ansari et al. 2019a,b) to simulate air pollution over China focus-

ing on to Beijing at 3 km horizontal resolution for the October 2014 period. We use the
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Figure 5.1: Simulated and observed hourly PM2.5 concentrations av-
eraged over 12 measurement stations in Beijing during 16�20October
2014.

Multi-resolution Emission Inventory for China (MEIC) with base year 2010 modi�ed for

2014 for anthropogenic emissions of NOX, CO, NMVOCs, SO2, NH3, PM2.5, PM10, black

carbon (BC) and organic carbon (OC) which are provided for four major emission sectors

that include industrial sources, power plants, transportation sources, and residential cook-

ing and heating (Li et al. 2017c). NH3 is also provided for agricultural sources. While

residential, transportation and agricultural emissions were supplied at surface, emissions

from industries and power plants were supplied at various heights based on EMEP emis-

sions (Bieser et al. 2011, Mailler et al. 2013). Biogenic emissions are provided based on

online calculations within the model (MEGAN; Guenther et al. 2012) and hourly �re emis-

sions are provided through the Fire Emissions INventory from NCAR (FINN; Wiedinmyer

et al. 2011). We use the Carbon Bond Mechanism version Z (CBMZ) gas-phase chemistry

scheme along with the Model for Simulating Aerosol Interactions and Chemistry (MO-

SAIC) sectional aerosol scheme with 8 size bins. Further details of the model con�guration

and a comprehensive meteorological and chemical evaluation are presented in Ansari et al.

(2019a).

Strict short-term emission controls were implemented in Beijing and its neighbourhood

at the beginning of November 2014 before and during the Asia-Paci�c Economic Cooper-

ation (APEC) summit which was held in Beijing from 10�12November 2014 (Tang et al.

2015, Wen et al. 2016). The controls were largely successful in reducing PM2.5 concentra-

tions in Beijing during the meeting but favourable meteorology made a major contribution

to this reduction (Zhang et al. 2016a, Gao et al. 2017) and the same controls would have

been insu�cient in meeting healthy air quality standards during the pre-APEC period

(Ansari et al. 2019a). Here we focus on a �ve-day pollution episode during the extended

polluted period at the end of October 2014 preceding the APEC summit (see Figure 5.1).
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Figure 5.2: Emissions scalings needed for controlling PM2.5 in Bei-
jing. I, P, T and R refer to industry, power, transport and residential
sectors respectively.

5.4 Methods

Figure 5.2 shows a simple emission reduction policy based on the response surface results

as discussed in chapter 4. This policy framework is adopted in DESMoRF where emissions

are reduced across industry, power, transport and residential sectors of three regions of

control: Beijing, Near neighbourhood and Far neighbourhood (see Figure 4.2) based on

the predicted daily mean PM2.5 concentration in Beijing. Here, we have considered eight

cases with di�erent set of emission reductions across the twelve sectors. There are multiple

ways to achieve a given target some of which are highlighted in Table 4.1, however we have

prioritized the residential and industry sectors over others due to their higher contribution

to PM2.5 in Beijing. Similarly we have prioritized Beijing over Near neighbourhood which

is prioritized over Far neighbourhood because local and near neighbourhood controls show

quicker and higher peak reductions over Beijing (see Ansari et al. 2019b). For simplicity

we use 10% reduction steps across each sector and a bracket of 25µgm−3 for each case.

However, the same policy can also be implemented at a higher resolution: say, 300 cases

93



CHAPTER 5. DAY�BY�DAY CONTROLS

Scale all 12 emission
parameters to 100%

(baseline)
Run the model N

days forward

Calculate 24h
average PM2.5

over Beijing for each
of the N days

Go back N days;
discard all N days

forecast

Go back (N-1) days;
discard all but first

day forecast

Apply scaling factors to the 12
emission parameters from

response surfaces based on the
most polluted day of N

Yes

No

Is the
length of

simulation
reached?

Stop
YesNo

Is daily avg. PM2.5
<75 ug/m3 

for all N days?
Start

Figure 5.3: A simple �owchart of the dynamic emission controls run.
Three cases (N=1,3,4) were tested.

based on 1 µgm−3 change in predicted daily mean PM2.5 and 1% reduction steps across

each sector.

Figure 5.3 shows the general work�ow of DESMoRF. It begins with a one day forecast

with baseline emissions and calculates the daily mean PM2.5 concentration for Beijing. If

the forecasted PM2.5 concentration meets the AQ criteria, the model forecasts the next

day and repeats the same operations. If the AQ criteria is not met, emissions are reduced

across the twelve emission sectors based on the emission reductions shown in Figure 5.2

and the model performs the forecast with the reduced emissions. It then moves to the

next day and repeats the same procedure. Ultimately DESMoRF provides the prescribed

emission reductions for each day of the simulation.

Since regional controls need three to four days to provide maximum reductions in

PM2.5 concentration at the receptor, as discussed in the previous chapter, controls based

on a one-day forecast may not be su�cient to mitigate a next day episode. Therefore, we

demonstrate additional implementations of DESMoRF where the reductions are applied

over longer time periods (3-4 days) before the episode.

While such emission reductions can be tested by manually applying them to the model

input and running the model for every pollution episode, it is desirable to have an auto-

mated system where the model runs ahead in time with baseline emissions, stops if the

forecasted day violates the AQ criteria and reruns with reduced emissions until it meets

it, then proceeds to the next day following the same rule, ultimately providing us with the

requisite scalings for all 12 emission sectors and their optimal timing. DESMoRF performs

all these operations without user intervention.
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5.5 One-day forecast

Figure 5.4: Simulated hourly PM2.5 concentrations in Beijing with
baseline and reduced emissions for 1 day ahead.

In this implementation, the model was run one day forward with baseline emissions for

16October leading to a daily mean PM2.5 concentration of 40µgm−3 (see Figure 5.4).

Since this value is below the target value of 75 µgm−3, the model run was continued for

the next day with the same emissions and a daily mean PM2.5 concentration of 80µgm−3

was obtained which violates the AQ criteria. The model output for 17October is then

discarded, emissions are scaled down as per Figure 5.2 and the model is run again for

17October leading to a daily mean PM2.5 concentration of 61µgm−3 which meets the AQ
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criteria. The model is then advanced to 18October with baseline emissions leading to a

daily mean PM2.5 concentration of 89 µgm−3. The model is rerun for 18October with

scaled down emissions following the reductions identi�ed for case 1 leading to a daily mean

PM2.5 concentration of 71 µgm−3 (AQ criteria satis�ed). From this point the model is run

one day forward for 19October with baseline emissions leading to a very high daily mean

PM2.5 concentration of 264µgm−3. Again, the model output for 19October is deleted and

the model is rerun with greatly reduced emissions (80% reduction across all parameters;

case 7) leading to a daily mean PM2.5 concentration of 215 µgm−3. This shows that the

reductions in Figure 5.2 are not su�cient if implemented just one day in advance of a

major pollution episode. Nonetheless, the model run is carried on from this point for

the next day with baseline emissions leading to a a daily mean PM2.5 concentration of

116µgm−3 (case 3) which, again, was discarded and repeated with scaled down emissions

for case 3 leading to a �nal daily mean PM2.5 concentration of 101µgm−3 (lesser than 116

but still above the critical value of 75), again highlighting the inadequacy of just-in-time

implementation of emission controls.

Figure 5.4 shows the predicted PM2.5 concentrations in Beijing at each step along with

the emissions scalings applied. The black line denotes the PM2.5 concentrations corre-

sponding to the �nalized emission reductions for each day which are shown in the bottom

most panel. Here, we demonstrated that dynamic emission controls can be applied online

to generate feasible combinations of reductions that improve air quality but that applying

controls one day in advance is insu�cient to meet AQ standards.

5.6 Three-day forecasts

Here we implement the emission controls policy three days in advance. We start with a

three day forward run with baseline emissions and gives us daily mean PM2.5 concentrations

of 40, 80 and 97 µgm−3 for 16�18October (see Figure 5.5). Since both 17 and 18October

fail to meet the AQ criteria, the model is rerun for 16�18October with reduced emissions to

meet the AQ criteria for the worst of the three days, i.e., 18October (97µgm−3). Applying

emission controls given by Case 1 leads to PM2.5 concentrations of 32, 60 and 71µgm−3

for 16�18October and all three days meet the criteria.

Now, the model output and corresponding emission reductions for 17 and 18October

are discarded. This is because although both these days meet the criteria with the current

reductions, it is uncertain whether the pollutant levels on the next day would be low

enough to be avoided by continuing these controls or implementing more stringent controls
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Figure 5.5: Simulated hourly PM2.5 concentrations in Beijing with
baseline and reduced emissions for 3 days ahead.

just one day in advance. In this framework, the possible more stringent controls need to

start three days in advance so instead of preserving the emission reductions and model

output for 16�18October and starting the next forecast for 19October, we only preserve

the model output and reductions for 16October (32µgm−3) and start the model from this

point onwards again with baseline emissions for the next three days and obtain daily mean

PM2.5 concentrations of 77, 92 and 268µgm
−3 for 17�19October. We then select the worst

of the three cases, i.e. 268µgm−3 (case 7) and scale the emissions accordingly. The model

output for 17�19October is then discarded and the model is rerun for these three days

with reduced emissions (case 7) leading to new daily mean PM2.5 concentrations of 47, 36

and 159µgm−3 for 17�19October. This shows that guided emission scalings are not able

to reduce the PM2.5 concentrations to desired levels, even when implemented three days in

advance. However, the framework is continued to complete the �ve day simulation period.

The model output and corresponding reductions for 18 and 19October are discarded

while preserving 16 and 17October results. The model is then run three day forward for

18�20October with baseline emissions to obtain new daily mean PM2.5 concentrations of
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Figure 5.6: Simulated hourly PM2.5 concentrations in Beijing with
baseline and reduced emissions for 4 days ahead.

67, 248 and 151µgm−3. The highest of these concentrations (248µgm−3) is used to reduce

emissions and the model output is discarded for all three days. The model is rerun with

reduced emissions as per case 7 leading to new daily mean PM2.5 concentrations of 36, 159

and 92 µgm−3 for 18�20October. These results and corresponding emission reductions are

preserved. Finally, we get the preserved output for all �ve days of the simulation period

(32, 47, 36, 159 and 92 µgm−3) and also their corresponding reductions. These are shown

in Figure 5.5.

Here we demonstrate the �exibility of the dynamic emission control framework applied

under di�erent assumptions with three day long emission controls based on the worst of the

three forecasted days. It shows that air quality can be improved greatly during episodes

when emissions can be controlled up to three days in advance: a reduction in maximum

daily mean PM2.5 concentration from 274 to 159 µgm−3 and a reduction in peak hourly

PM2.5 concentration from 338 to 197 µgm−3.

5.7 Four-day forecasts

In this implementation of DESMoRF, the emission reductions are identi�ed based on the

highest daily mean PM2.5 in a four-day forecast. It begins by running the model four
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days forward with baseline emissions to obtain daily mean PM2.5 concentrations of 40,

80, 97 and 275 µgm−3 for 16�19October (see Figure 5.6). Emissions are reduced based

on the most polluted of these days ,i.e., 19October (275 µgm−3) and the model is rerun

with reduced emissions (case 7) for the same period. The next four-day forecast begins

from the next day, 17October and the emission reductions for 16October are preserved

from the previous run. This implementation takes fewer steps than one-day and three-day

implementations to complete the �ve day simulation period. Each forecast step is shown

in Figure 5.6 along with the �nalised reductions (80% reductions across all 12 sectors for

all �ve days continuously) and the resulting hourly and daily PM2.5 concentrations (20,

28, 23, 126 and 79 µgm−3).

Here, we get further improvement in air quality on all days as compared to the one-day

and three-day implementations: a further drop in the daily mean PM2.5 concentration on

19October to 126 µgm−3 which meets the secondary air quality criteria of 24 h average

PM2.5 concentration less than 150 µgm
−3 and a signi�cant reduction in peak hourly PM2.5

concentration from 338 to 164µgm−3. We did not implement the controls based on longer

forecasts because the meteorology is increasingly uncertain beyond �ve days (Epstein 1987).

5.8 Discussion and conclusions

We have created a novel modelling framework based on dynamic emission scaling guided by

emission-concentration response surfaces for Beijing developed earlier and demonstrated its

three di�erent implementations: one-day forecast, three-day forecast and four-day forecast.

The framework works well and identi�es the emission reductions needed for each day

throughout the simulation period without the need for user intervention to stop and restart

the model. It uses a state-of-the-art atmospheric chemical transport model WRF-Chem at

a high resolution of 3 km and is �rst to utilize the temporal aspect of source contributions.

Although here we show the application of the approach over a �ve day period, it can

be applied to much longer periods in hindcast mode to get a detailed understanding of

source contributions as well as model behaviour. Here, for simplicity and to demonstrate

the technique, we adopted a simple one-step process where the emission reduction was

applied based on a policy which was informed by model behaviour over other episodes.

However, the policy itself can be updated every time the model fails to meet the criteria

on its implementation. Such an iterative method can lead to a robust policy and modelling

framework and longer tests in hindcast mode along with availability of observations can

improve the accuracy of the system.
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This approach also has tremendous scope to be coupled with economic models in order

to prioritize emission controls based on cost-bene�t analysis and ease-of-implementability

such that alternative policies can be used to achieve the same results. It can be actively

used in air quality forecasting centres such as China National Environmental Monitoring

Center (CNEMC) in Beijing and can also be extended to other polluted cities of the world.
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Conclusions

This research aimed at building better-informed approaches to urban air pollution control

in Beijing. Short-term emission controls during the APEC summit of 2014, the most

recent in Beijing at the time of the start of this research, were chosen for a comprehensive

evaluation. The state-of-the-art online atmospheric chemical transport model WRF-Chem

was tuned over China, zooming into Northern China and the North China Plain at a high

resolution of 3 km. Model performance was evaluated against hourly observations from over

300 meteorological stations and over 1300 pollutant measurement stations across China

for a 40 day period including the pre-APEC, APEC and post-APEC periods. Vertical

representation of pollutants in the model was also evaluated against a host of meteorological

and pollutant observations from tower measurements in Beijing city. Best-suited model

parameters for physical and chemical representations were carefully selected based on a

number of sensitivity studies. Sensitivity of model results to model resolution, emissions,

and particularly boundary layer mixing were highlighted. The issue of underestimation of

nighttime boundary layer mixing was circumvented by nudging the model using reanalysis

data.

After comprehensive testing and tuning of both input parameters and model processes,

a �nal version of the model was arrived at which was demonstrated to be a true-enough

representation of the physical and chemical atmospheric processes governing air quality

in Beijing and its regional neighbourhood. The model was then used to conduct what-if

experiments: without emission controls during the APEC period and with emission controls

during the pre-APEC period. It was found that the better air quality during APEC period
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was largely due to favourable meteorology and also that the same emission controls would

have been insu�cient in achieving the same air quality a few weeks earlier: out of the 15

days which did not meet the national air quality standard of daily mean PM2.5 less than

75 µgm−3 without controls during the study period, only 2 days would meet the criteria

on implementation of APEC-like controls.

With model results indicating that 45% reduction across all major emission sectors

in Beijing and its neighbourhood would lead only to roughly 22% reduction in PM2.5

concentrations over Beijing, and that much more stringent emission controls (85% reduc-

tion) would have been needed across these sectors for 10 days to mitigate major pollution

episodes, the model was then utilized to investigate temporally-resolved regional contri-

butions to PM2.5 concentrations in Beijing, for multiple source regions including farther

provinces not included in APEC controls. It was found that while reduction in local sources

improves air quality in Beijing on the same day, sources in nearby provinces show their

peak e�ect two to three days after the beginning of controls, and farther sources show peak

e�ect in Beijing three to four days later. Local sources show higher and earlier peak con-

tributions than regional sources. It was also found, quite surprisingly, that during milder

episodes, the far-regional sources often contribute more than the near-regional sources to

PM2.5 levels in Beijing.

Furthermore, it was identi�ed through simple one-at-a-time sensitivity studies and

through statistical emulation that local and near-regional residential and industry sectors

are major contributors to PM2.5 pollution in Beijing. Contributions from four emission

sectors of three source regions were quanti�ed through these studies for diverse meteorolog-

ical conditions. Computationally e�cient statistical emulators built on training data from

60 perturbation model runs were used to create response surfaces which relate emission

strength of a source (or a combination of sources) to the resulting PM2.5 concentration

in Beijing. These response surfaces can be used to identify the needed emission cuts

across various sectors in order to mitigate a future pollution episode. Through their multi-

dimensionality, the response surfaces provide di�erent ways of reaching the same air quality

goal.

Combining the �ndings about the temporal contributions as well as sectoral and re-

gional contributions, a dynamic emissions scaling system was built which works in tandem

with the model run, identi�es the needed emission reductions based on the forecasted target

and supplies the reduced emissions across four emission sectors over three source regions

to the model in order to meet daily air quality standards. Three implementations of this

automated framework (one-day forecast, three-day forecast and four-day forecast) were
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demonstrated. The framework prescribes optimal emission controls through an iterative

approach as the model runs forward in time. The preferential order in which di�erent source

regions are controlled to prevent the forthcoming air quality episode is informed by the

�ndings of the temporal assessment of contributions based on the delay between the start

of controls and their peak contributions to PM2.5 levels in Beijing. Beijing sectors are con-

trolled before near-neighbourhood sectors, which are controlled before far-neighbourhood

sectors. Similarly, within a source region, industry and residential sectors are reduced �rst

and others are additionally reduced only of air quality standards are still not met. The

magnitude of reductions prescribed within the forecasting framework is based on the gra-

dients of the various response surfaces developed earlier. The framework was tested over a

new air quality episode over the same region. It works well and can be used operationally

across air quality forecasting centres in Beijing and other cities.

The results of this work are subject to inevitable uncertainties both in the modelling

system, including input parameters, and in observations. Some of the uncertainties in the

model world were explored in section 3.5 and the sensitivity of model results to emissions,

model resolution and boundary layer treatment in the model were discussed. Further

improvements in modelling of secondary aerosol formation processes are needed to increase

con�dence in emissions scenario modelling. Dust treatment in the model also needs a

more realistic representation in order to model other regions and periods where dust is

a major issue. Explicit representation of parameterized processes such as convection and

turbulence is also desirable. However, the success of the framework is independent of

the model and can be applied despite the weaknesses in the modelling system. The use of

Model Predictive Control can in fact help identify the de�ciencies in the model and address

them by incorporating new atmospheric processes.

The approach developed in this work has scope to be further modularized by includ-

ing economic and practical considerations of emission controls. Very recently, Xing et al.

(2019) have developed a module for least-cost control strategy optimization for meeting air

quality goals for PM2.5 and O3 in the Beijing�Tianjin�Hebei region. They used the cost

associated with control technology application to optimize their control policies. Tools are

also available to calculate the economic value of health impacts resulting from changes in

air quality ,e.g., the BenMap tool developed by USEPA (https://www.epa.gov/benmap).

While such methods might be more relevant for longer-term control strategies, other con-

siderations such as cost of implementation can be explored for short-term controls. Such

economic and practical considerations can be incorporated into the approach developed

in this work to achieve an automated least-cost control policy prescription system. The
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framework is open-source and the atmospheric modelling community is invited to use it

and implement it for other polluted regions of the world.

104



APPENDIXD

Model tuning

A lot of time and e�ort went in performing short sensitivity tests to select the best-suited

model parameters such as the meteorological and chemical time steps, number of vertical

levels in the model, location of model top, boundary layer schemes, realistic emissions,

meteorological reanalyses, and nudging options in order to achieve a realistic simulation

of air quality in Northern China and particularly in Beijing. Since it is computationally

expensive to run a high-resolution nested air quality model, sensitivity tests were carried

out to investigate the di�erence in output with shorter and longer time steps. To maintain

numberical stability of the model, the meteorological time step in seconds has to be three

to six times the grid size in km. FigureD.1 shows PM2.5 concentrations from three runs

with di�erent combinations of meteorological and chemical time steps. It shows that in-

creasing time steps leads to only minor di�erences between the simulated concentrations.

In the interest of computational e�ciency, a meteorological time step of 150 seconds and

a chemical time step of 10 minutes was selected for further tests. FigureD.2 shows the

simulated PM2.5 concentrations for two di�erent vertical resolutions of the model - with

31 and 51 levels and with chemical time steps of 10 minutes and 150 seconds. The aim of

this experiment was to assess the di�erence in simulated concentrations with the compu-

tationally most intensive option versus the computationally cheapest option. The model

con�guration with 51 levels showed a smoother temporal pro�le of the simulated PM2.5.

Since increasing the model resolution to 51 levels meant a signi�cant increase in compu-

tational time and model output size, 31 vertical levels were chosen. Further, a suitable

model top of 50 hPa was selected based on realistic boundary layer height simulation (see,
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Figure D.1: Simulated PM2.5 for various combinations of meteoro-
logical and chemical time steps. The legends denote meteorological
time step value followed by chemical time step value. There are minor
di�erences in predicted concentrations.

Figure D.2: Simulated PM2.5 for di�erent no. of vertical levels and
chemical time steps. chemdt=0 means it is equal to meteorological
time step, in this case, 150s.

FigureD.3).

A particular problem faced in the study was unrealistically high simulated concentra-

tions of all pollutants during 21�25Oct particularly due to unrealistically low nighttime

boundary layer height. Several tests were performed to address this issue which are listed

in tableD.1 with results shown in �gureD.4. 3D injection of emissions (as described earlier

in sectionB.1), and nudging of key meteorological �elds (temperature, moisture and winds)

to reanalysis data reduced the bias and provided a more realistic simulation of PM2.5 levels

during this period. Ultimately, the YSU boundary layer scheme, 3D emission injection,

grid nudging and 2-way nesting were selected.

Figure D.3: Simulated boundary layer height for various combina-
tions of model top, no. of vertical levels and boundary layer schemes.
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Table D.1: Description of short sensitivity runs as shown in �gureD.4

Run no. PBL scheme Grid nudging of Vertical emission Emission Urban canopy Nesting Top-down
met parameters injection reduction parameterization PBL mix

1 YSU No No No O� 2-way No
2 YSU Yes Yes No O� 2-way No
3 YSU Yes Yes No On 2-way No
4 QNSE No Yes No On 2-way No
5 QNSE No Yes No O� 2-way No
6 QNSE Yes Yes No O� 2-way No
7 YSU Yes Yes Yes O� 2-way No
8 YSU Yes Yes Yes O� 1-way No
9 YSU Yes Yes Yes O� 2-way Yes

Figure D.4: Temporal evolution of simulated vertical distribution of
PM2.5 at IAP site and corresponding boundary layer height using
various combinations of boundary layer schemes, emission injection
heights, urban canopy parameterization and grid nudging of key me-
teorological parameters.
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Figure D.5: A comparison between EDGAR-HTAP and MEIC emis-
sion inventories for PM2.5 emissions over the inner domain. While
the magnitudes are comparable, the spatial detail in MEIC is �ner
which provides an improved simulation of pollution over the region.
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