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Summary:  

The omentum is a visceral adipose tissue rich in fat-associated lymphoid clusters (FALCs) 

which collects peritoneal contaminants and provides a first layer of immunological defence 

within the abdomen. Here we investigate the mechanisms that mediate the capture of 

peritoneal contaminants during peritonitis. Single-cell RNA sequencing and spatial analysis of 

omental stromal cells revealed that the surface of FALCs were 

covered with  CXCL1+ mesothelial cells, which we named FALC cover cells. Blocking 

CXCL1 inhibited the recruitment and aggregation of neutrophils at FALCs during peritonitis. 

Inhibition of Protein arginine deiminase 4, an enzyme important for the release of neutrophil 

extra-cellular traps, abolished neutrophil aggregation and the capture of peritoneal 

contaminants by omental FALCs. Analysis of human omental samples confirmed neutrophil 

recruitment and provided evidence of bacterial capture in patients with acute appendicitis. 

Combined, these observations demonstrate how specialised omental mesothelial cells co-

ordinate the recruitment of aggregating neutrophils to capture peritoneal contaminants. 
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Introduction 

The omentum, a visceral fat depot contained within a fold of peritoneum, has the capacity to 

rapidly absorb particles and pathogens present in the peritoneal cavity (Meza-Perez and 

Randall, 2017; Platell et al., 2000). The omentum has important immunological properties 

derived from the presence of numerous immune cell clusters called fat-associated lymphoid 

clusters (FALCs) (Rangel-Moreno et al., 2009) which are also found in the mesentery (Moro 

et al., 2010), the mediastinum and pericardium, in association with the peritoneal, pleural and 

pericardial cavities (Benezech et al., 2015; Jackson-Jones et al., 2016). The continuous flow of 

fluid from the peritoneal cavity through omental (om)FALCs makes them unique niches for 

the clearance of peritoneal contaminants and initiation of protective immune responses during 

peritonitis.  

FALCs support multifaceted stromal-immune cell interactions which are critical for the 

maintenance and function of innate-like B cells (IBCs) within the serous cavities as well as 

facilitating T cell dependent B cell immune responses to peritoneal antigens (Ansel et al., 2002; 

Benezech et al., 2015; Rangel-Moreno et al., 2009). FALC stromal cells produce the 

chemokine CXCL13, which maintains peritoneal IBCs (Ansel et al., 2002; Benezech et al., 

2015; Rangel-Moreno et al., 2009). Upon inflammatory signals, serous B cells migrate into 

FALCs where the provision of interleukin (IL)-5 by type 2 innate lymphocytes (ILC2) causes 

rapid B cell proliferation and IgM secretion (Jackson-Jones and Benezech, 2018; Jackson-

Jones et al., 2016). FALC stromal cells produce IL-33 (Jackson-Jones et al., 2016), which 

induces IL-5 secretion by ILC2 (Moro et al., 2010). Peritonitis induces de novo FALC 

formation that is dependent on the production of tumor necrosis factor (TNF) by monocytes 

and/or macrophages, and TNF receptor (TNFR) signalling in stromal cells (Benezech et al., 

2015). The initial recruitment of inflammatory monocytes into FALCs requires MYD88 

dependent activation of Ccl19 expressing FALC stromal cells (Perez-Shibayama et al., 2018). 
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The cross-talk between monocytes and FALC stromal cells supports B cell differentiation 

(Perez-Shibayama et al., 2018) and FALC expansion (Benezech et al., 2015).  

FALCs are highly vascularised (Cruz-Migoni and Caamano, 2016; Meza-Perez and 

Randall, 2017) and act as gateways to the peritoneal cavity during peritonitis. During TNF-

induced peritonitis, neutrophils rapidly transit through the high endothelial venules (HEV) of 

omFALCs to enter the peritoneal cavity (Buscher et al., 2016). The extravasation of cells into 

the peritoneal cavity via FALCs may be facilitated by the presence of a loose lining of 

mesothelial cells (Doherty et al., 1995; Hodel, 1970). 

The ability of the omentum to collect peritoneal contaminants is attributed to the flow 

of fluid from the peritoneal cavity through the omentum with omFALCs acting as an integrated 

filtration system. Here we investigate the mechanisms enabling the capture of peritoneal 

contaminants by FALCs and the contribution of stromal-immune cell interactions to the capture 

and neutralisation of contaminants. 

We set out to define the stromal cell compartment of the murine omentum to gain 

insight into the contribution of these cells to omFALC function in homeostasis and upon 

immune challenge. Single-cell RNA sequencing (scRNAseq) revealed heterogeneity within the 

stomal compartment and defined two populations of mesothelial-derived stromal cells. Three-

dimensional reconstruction of FALC stromal architecture showed that mesothelial-derived 

stromal cells covered the surface of omFALCs. These cells produced immune mediators 

including the neutrophil recruitment chemokine CXCL1.  CXCL1 was critical for the retention 

and accumulation of neutrophils in omFALCs during Zymosan-induced peritonitis.  Neutrophil 

aggregates at omFALCs were coated with neutrophil extra-cellular trap (NET)-like DNA 

structures that concentrated Zymosan particles. In vivo chemical inhibition of protein arginine 

deiminase 4 (PAD4), an enzyme important to NET formation, abolished neutrophil aggregation 

at omFALCs and resulted in increased dissemination of peritoneal contaminants to the spleen.  
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Similar NET-like DNA structures were detected within the omentum of patients with acute 

appendicitis. Thus, stromal cells within omFALCs coordinate the neutrophil response to 

restrict peritoneal contaminants.  Manipulating this pathway may provide therapeutic avenues 

for the treatment of peritonitis.  

 

Results  

scRNAseq reveals the presence of three distinct omental FALC mesothelial cell populations  

To characterise the mesothelial and stromal cell populations of the omentum we performed 

droplet-based scRNAseq on isolated mouse omental CD45-CD41-Ter119-CD31-PDPN+/- 

stromal cells from naïve mice (Figure 1A).  Unsupervised clustering identified five populations 

visualised using UMAP and a hierarchical cluster tree (Figures 1B and 1C). Cluster 1 was 

designated mesothelial cells as differentially expressed genes (DEG; genes with a 0.25 log-

fold change and expressed in at least 25% of the cells in the cluster under comparison) were 

enriched for epithelial (Upk1b, Upk3b, Krt19, Krt7) and mesothelial (Msln and Cd200) lineage 

marker genes (Figures 1D-F and S1A). Clusters 2 and 3 (Figures 1B and 1C) shared similarity 

with mesothelial cells in keeping with the expression of some epithelial lineage marker genes 

such as Upk1b, Upk3b, Krt19 and Krt76 (Figures 1F and S1A). Cluster 2 was distinguished by 

DEG involved in the recruitment, adhesion or activation of immune cells such as Hdc, Enpp2, 

Ccl2, Cd44, Il34, Cxcl10, Cxcl13, Cd55, Ctsc, Ccl7 and Cxcl1 and was designated Cxcl13+ 

mesothelium (Figures 1D, 1E, 1G, and S1B). A population of CXCL13+ stromal cells is found 

around the outside of FALCs (Benezech et al., 2015; Rangel-Moreno et al., 2009). The fact 

that Cxcl13+ mesothelial cells expressed mesothelial markers suggested that Cxcl13+ cells were 

covering the surface of FALCs. Cluster 3 was distinguished by DEGs associated with 

interferon signalling such as Ifit3b, Ifit3, Ifit1 and Isg15 and anti-viral responses such as Rsad2 

and was designated Ifit+ mesothelium (Figures 1D, 1E, 1H and S1C). Pathway analysis 
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confirmed association of this cluster with interferon signalling and anti-viral mechanism terms 

(Table S1). Pseudotime analysis of the mesothelial cell cluster (cluster 1) to the Cxcl13+ 

mesothelial cluster (cluster 2) showed the gradual up and downregulation of groups of genes 

along the mesothelial to Cxcl13+ mesothelial trajectory (Figures S2A and S2C);  pseudotime 

analysis also revealed groups of genes whose expression were gradually up and down regulated 

along the mesothelial (cluster 1) to Ifit+ mesothelial (cluster 3) trajectory (Figures S2B and 

S2D). This suggests that cells from the Cxcl13+ and Ifit+ mesothelial cell clusters derive from 

mesothelial cells and acquired specific immune functions.  

 

scRNAseq reveals the presence of two distinct FALC fibroblast populations within omental 

stroma 

Clusters 4 and 5, displayed DEGs enriched for genes associated with fibroblasts such as Fn1, 

Col4a1, Col14a1 and Pdgfra (Figures 1D, 1I and S1D). Cluster 4 was distinguished by the 

expression of Ccl11 (also called Eotaxin) and assigned the name Ccl11+Pdgfra+ fibroblasts 

(Figures 1B, 1E and 1I). Cluster 5 was characterised by the expression of Matn2. FALC B cells 

of the omentum and mesenteries are embedded in a dense network of PDFGRα+ fibroblast 

reticular cells (FRC) expressing Ccl19 (Perez-Shibayama et al., 2018). Matn2+Pdgfra+ 

fibroblasts expressed Ccl19 and showed enrichment for genes involved in formation of the 

extra-cellular matrix (ECM) characteristic of lymph node (LN) and FALC FRCs such as 

Sparcl, Spon2, Col15a1, Bgn, Emilin1 and Spon1 (Figures 1D, 1I and  S1E) (Huang et al., 

2018; Malhotra et al., 2012; Perez-Shibayama et al., 2018). They represented a distinct subset 

of FRCs which gene expression profile did not fit any of the LN stromal cell populations 

recently described by scRNAseq (Rodda et al., 2018). In particular Matn2+Pdgfra+ fibroblasts 

did not express Il7, Ccl21, Bst1 or Cxcl9 but expressed high levels of Cd34 (Figure 1J), Inmt, 

and Nr4a1 (Figure S1E). The Matn2+Pdgfra+ fibroblast subset was distinct from the 
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populations of fibroblasts identified in the inflamed synovium (Croft et al., 2019) and did not 

express Fapa or Thy1. Ccl11+Pdgfra+ fibroblasts did not express Fapa and showed only 

limited expression of Thy1 (Figure S1D), thus suggesting that the adipose tissue is associated 

with distinct and specific fibroblast subsets.   

All five clusters expressed Pdpn, Wt1, Cd34, Itgb1 (Cd29) and Ly6a (Sca-1) which 

have been used collectively to identify cells of mesothelial origin giving rise to adipocytes in 

visceral fat depots (Figures 1J and S1F) (Chau et al., 2014). Regulation of retinol metabolism 

by Wt1+ expressing cells is critical to maintain GATA6+ resident macrophages in the peritoneal 

cavity (Buechler et al., 2019). The 2 step-limiting enzymes of retinol metabolism were 

expressed by omental stromal cells with expression of Aldh1a1 by mesothelial cells and 

Aldh1a2 by both mesothelial cells and Ccl11+Pdgfra+ fibroblasts (Figure S1F). Il33 was 

expressed by all three mesothelial clusters (Figure 1J), in agreement with previous reports 

(Mahlakoiv et al., 2019; Spallanzani et al., 2019) as well as in FALC FRCs, confirming our 

previous observation that IL-33 is expressed by FALC stromal cells (Jackson-Jones et al., 

2016).   

 

Cxcl13+  and Ifit+ mesothelial cells are present in other adipose tissues rich in FALCs 

Distinct clusters of PDPN+PDGFRα+ fibroblasts and PDPN+PDGFRα- mesothelial 

cells are found in the mesenteric adipose tissue (Koga et al., 2018). As mesenteries contain 

FALCs, we reasoned that cells corresponding to Cxcl13+ and Ifit+ mesothelial cells should be 

identifiable within the mesenteric scRNAseq dataset (Koga et al., 2018). Projection of the 

mesenteric PDPN+PDGFRα- mesothelial cell dataset onto our omental stromal dataset 

confirmed the presence of Cxcl13+ and Ifit+ mesothelial cells in the mesenteries (Figures S2E-

G). Projection of the mesenteric PDPN+PDGFRα+ fibroblasts onto our omental stromal dataset 
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confirmed the presence of Mtn2+ fibroblast cells in the mesenteries (Figures S2E, S2F and 

S2H).  

We compared the gene expression profile of PDPN+PDGFRα- mesothelium from the 

gonadal adipose tissue, which does not contain FALCs, with the PDPN+PDGFRα- mesothelium 

of the omentum using published RNAseq data sets (Buechler et al., 2019). A number of genes 

were overexpressed in the omental mesothelium, including DEGs characterising the Cxcl13+ 

mesothelial cluster such as Krt76, Cd55, Cd44, Ccl2, Hdc, Enpp2 and Cxcl1 (Figure S1H). In 

our omental dataset, Cxcl13+ mesothelial cells were distinguished from mesothelial cells by 

195 DEGs. Of these, 68 were also overexpressed in the omental mesothelium compared to the 

gonadal fat pad mesothelium of the Beuchler et al dataset (Figure S1G), confirming that the 

Cxcl13+ mesothelial cluster was associated with the presence of FALCs in the adipose tissue. 

Flow-cytometric analysis of FALC rich tissues confirmed the presence of PDGFRα-

PDPN+CD200+CD55-/lowCD44low mesothelial cells and PDGFRα+PDPN+CD200-

CD55intCD44- fibroblasts in the omentum and allowed the identification of a population of 

cells transitioning from PDGFRα-CD200high to PDGFRα+CD200- expressing high levels of 

CD55 and CD44 in keeping with the gene expression profile of  Cxcl13+ mesothelial cells 

(Figure 1K). Detection of CD200 on the surface of Cxcl13+ mesothelium suggested 

maintenance of protein expression following Cd200 transcript downregulation (Figure 1F) 

during differentiation from mesothelial cells. In mouse, the omentum is the tissue with the 

highest abundance in FALCs, followed by pericardium, mediastinum and mesenteries 

(Benezech et al., 2015). In keeping with the relative abundance of FALCs in these tissues, the 

omentum was the tissue with the highest proportion of Cxcl13+ mesothelial cells identified as 

PDPN+PDGFRαintCD200int cells followed by the pericardium, mediastinum and mesenteries. 

The gonadal adipose tissue, which does not contain FALCs showed minimal 

PDPN+PDGFRαintCD200int cells (Figure S3A). 
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FALCs are covered by a monolayer of stromal cells expressing markers of Cxcl13+ and Ifit+ 

mesothelial cells 

To elucidate the spatial organisation of FALCs, we performed wholemount immuno-

fluorescence staining using marker genes identified from our scRNAseq analysis. The B-cell 

positioning chemokine CXCL13 was found within PDPN+ mesothelial cells covering the 

surface of omFALCs (Figures 2A and 2B; FALC) as well as pericardial FALCs (Figure S3B). 

The morphology of these cells differed from the typical cobblestone appearance of PDPN+ 

mesothelial cells which surrounded the FALC and did not express CXCL13 (Figure 2A and 

2C, mesothelium). The lysophospholipase ENPP2 (Ectonucleotide 

Pyrophosphatase/Phosphodiesterase 2), expression of which was enriched in the Cxcl13+ 

FALC stromal cell population, was also present at high levels on the surface of FALCs and 

was expressed by CXCL13+ cells (Figures 2D, S4A and S4B). The lysosomal cysteine protease 

Cathepsin-C (Ctsc; also known as di-peptidyl peptidase I), was present within PDPN+ stromal 

cells covering omFALCs but not within the mesothelial surface outwith the FALC (Figures 

2E, S4C). Our results thus confirm the existence of a mesothelial derived population of cells 

covering the surface of FALCs and expressing ENPP2, CXCL13 and Cathepsin-C, which we 

named Cxcl13+ FALC cover cells. ISG15 was found in the cytoplasm of a subset of the PDPN+ 

cells covering omFALCs confirming the existence of Ifit+ mesothelial cells. ENPP2 and ISG15 

were co-expressed by PDPN+ cover cells (Figures 2F and S4D). We named these cells Ifit+ 

FALC cover cells. PDPN+ FALC FRCs, which formed a reticular network at the core of the 

cluster, expressed very low levels of ENPP2 as predicted (Figure S4A, enlargement 4). Finally, 

staining for CCL11 revealed that fibroblasts contained in the adipose (non-FALC) stroma of 

the omentum expressed high levels of CCL11, while FALC FRCs and mesothelial cells did not 

(Figures S4E and S4F).  
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Cxcl13+ FALC cover cells express inflammatory chemokines 

The Cxcl13+ FALC cover cell cluster was distinguished by the expression of the monocyte 

chemoattractants Ccl2 and Ccl7 and the neutrophil chemoattractants Cxcl1 and Cxcl10 (Figure 

2G) suggesting a role for these cells in orchestrating the recruitment of inflammatory cells 

during peritonitis. The expression of Cxcl1 was also enriched in Ccl11+Pdgfra+ fibroblasts and 

Mtn2+Pdgfra+ fibroblasts. Analysis of omental explant culture supernatants showed that 

CXCL1 protein was released at steady state by the omentum and that CXCL1 secretion was 

potentiated after a two-hour exposure to Zymosan-A, in vivo or ex vivo (Figure 2H). In contrast, 

the two other early chemo-attractants, CCL2 and CXCL10, were released by the omentum only 

after peritoneal inflammation was triggered by Zymosan-A, and this could not be recapitulated 

ex vivo (Figure 2H). This suggests that CXCL1 is constitutively produced by the omentum, 

while the initial secretion of CCL2 and CXCL10 is dependent on the early recruitment of 

immune cells upon sensing of an inflammatory signal. In addition, the rapid induction of 

secretion of CXCL1 (2 hours) suggests that this is due to release of pre-formed CXCL1 rather 

than increase transcription. Radiation resistant stromal derived CXCL1 is important in the 

control of bacterial infection during peritonitis (Jin et al., 2017). Protein expression of CXCL1 

was particularly high in FALC cover cells within the omentum (Figure 2I), as well as the 

pericardium and mesenteries (Figures S3C and S3D). While the expression of Cxcl1 was 

comparable in the Cxl13+ mesothelial cell cluster and the Mtn2+Pdgfra+ and Ccl11+Pdgfra+ 

fibroblast clusters, CXCL1 protein was much higher in FALC cover cells suggesting that these 

cells retain intracellular stores of CXCL1. Given the spatially constrained expression of 

CXCL1 over the surface of FALCs and that neutrophils use FALC HEVs to enter the peritoneal 

cavity (Buscher et al., 2016), we next assessed whether CXCL1 was important for the 

recruitment of neutrophils to omFALCs during peritonitis. 
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CXCL1 mediates active recruitment of neutrophils into omFALCs 

To characterise the dynamics of neutrophil recruitment to omFALCs during peritonitis we used 

the well-established murine model, Zymosan-A induced peritonitis. Peritonitis led to a 

transient increase in the number of Ly6G+ neutrophils in the omentum, peaking at 24 hours 

(Figures 3A and S5A). Wholemount immunofluorescence staining and confocal analysis 

revealed that FALCs were the site of extensive recruitment of Ly6G+ Myeloperoxidase+ (MPO) 

neutrophils, which formed dense cellular aggregates between 6 and 24 hours post-induction of 

peritonitis (Figures 3B, 3C and S5B). The volume of omFALCs increased exponentially during 

the first 18 hours post-Zymosan injection (75 fold), before rapidly contracting back to their 

normal size by 24 hours (Figure 3D). This timing coincided with the influx of MPO+ 

neutrophils and their disappearance by 24 hours (Figures 3C and 3D).  This accretion of 

neutrophils was specific to omFALCs and did not happen on the rest of the surface of the 

omentum, the diaphragm or the parietal wall (Figures 3E, S5C and S5D). We then tested 

whether CXCL1 was involved in the accumulation of neutrophils at omFALCs during 

peritonitis, using an anti-CXCL1 blocking antibody. Eighteen hours post-Zymosan injection, 

CXCL1 blockade led to a 2.6-fold decrease in the number of neutrophils recovered from the 

omentum compared to mice treated with isotype control antibodies. There was no difference 

in the number of neutrophils recovered from the peritoneal cavity, suggesting that the 

trafficking of neutrophils through omFALC HEVs was not altered (Figure 3F). Thus, the 

extensive recruitment of neutrophils to FALCs is not simply a consequence of increased 

trafficking of neutrophils through HEV, but the result of active retention dependent upon 

CXCL1.  

To confirm that the omentum is a major source of CXCL1 during peritonitis we 

quantified secretion of CXCL1 following 2h ex vivo explant culture of omentum, mesenteries, 
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peritoneal wall, diaphragm and liver from naïve mice and at 2h following injection of 

Zymosan-A. In contrast to liver, the mesenteries, peritoneal wall and diaphragm all 

significantly increased secretion of CXCL1 following exposure to Zymosan-A in vivo, 

however per mg of tissue, the omentum secreted significantly more CXCL1 than any of these 

peritoneal tissues (Figure S5E). Having established that FALC cover cells constituted an 

important store of CXCL1, and that inflammation led to rapid release of pre-formed CXCL1, 

we next assessed the effect of inflammation on the expression of Cxcl1 mRNA in various 

omental cell fractions: PDPN+CD31-PDGFRa+CD200- fibroblasts, PDPN+CD31-

PDGFRaintCD200int FALC cover cells, PDPN+CD31-PDGFRa-CD200+ mesothelial cells, as 

well as PDPN-CD45-CD31+ endothelial cells, and CD45+ hematopoietic cells. Two hour 

Zymosan-A exposure significantly increased the transcription of Cxcl1 by all populations 

assessed except the hematopoietic population where Cxcl1 expression remained low 

confirming the stromal origin of CXCL1 within the omentum.  The highest expression of Cxcl1 

was found in fibroblasts and FALC cover cells (Figure S5F). 

 

Neutrophils form large aggregates in omFALCs which are encapsulated in NET-like structures  

Immunofluorescence imaging analysis of accumulated neutrophils within omFALCs  revealed 

the presence of multiple areas of DAPI staining presenting with a non-nuclear appearance 

(Figure 4A, right). Neutrophils have the capacity to form neutrophil extracellular traps (NETs), 

which consist of uncoiled DNA scaffold decorated with proteases and anti-microbial peptides 

found in neutrophil granules. NETs are formed as a defence mechanism to immobilize invading 

microorganisms but also in response to sterile triggers (Boeltz et al., 2019; Papayannopoulos, 

2018). In some conditions, NETs mediate neutrophil aggregation (Leppkes et al., 2016; Munoz 

et al., 2019; Schauer et al., 2014). Chromatin decondensation, which is required for the 

formation of NETs can be mediated by the citrullination of histones. Staining for citrullinated 
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histone H3 (CitH3), revealed that the areas of DAPI staining presenting with an extruded DNA 

pattern were highly stained for CitH3 (Figure 4A). CitH3+ DNA was found in FALCs between 

6 and 18 hours post-Zymosan injection at the peak of neutrophil recruitment (Figures 4B,  3A 

and 3C). The highest density of CitH3+ DNA was found on the surface of the expanded FALCs, 

which typically formed a dense core of neutrophils coated with a CitH3+ DNA outer-layer 

(Figures 4C, S6A and S6B).  

To further characterise the CitH3+ DNA outer-layer and determine if it could be 

considered as NETs, we analysed the requirement for Neutrophil elastase (NE). NE is a granule 

serine protease which translocate to the nucleus, where it promotes chromatin decondensation 

and the formation of NETs (Papayannopoulos et al., 2010). Here we found that the formation 

of the CitH3+ DNA layer coating omFALC neutrophil aggregates and the expansion of these 

structures during Zymosan induced peritonitis was not affected in NE-/- mice compared to WT 

mice (Figure 4D). MPO, another granule serine protease, synergises the action of NE and is 

found associated with NETs (Papayannopoulos et al., 2010). Staining for MPO revealed that 

the CitH3+ DNA covering the neutrophil aggregates was not associated with MPO suggesting 

that MPO relocation to the nucleus is not required for the formation of the CitH3+ DNA outer-

layer (Figure 4E). Given that the neutrophil aggregates formed independently of NE, we sought 

to confirm that the aggregates were formed by neutrophils. Injection of anti-Gr1 antibodies 

successfully mediated depletion of the Ly6G+ peritoneal neutrophil population at 6h following 

Zymosan-A i.p. injection (Figure S7A). Following depletion of peritoneal neutrophils, no 

accretion of Ly6G+ neutrophils, staining for CitH3+ nor expansion in cluster volume occurred 

within the omentum (Figure S7B). Therefore, the formation of the CitH3+ DNA layer coating 

the omFALC aggregates that appear during Zymosan-induced peritonitis is formed by 

neutrophils independently of NE and thus different from the formation of “classical” NETs. 
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Inhibition of PAD4 prevents the aggregation of neutrophils in omFALCs and the trapping of 

Zymosan by omFALCs 

The enzyme PAD4, which mediates the conversion of arginine into citrulline, is implicated in 

vitro and in vivo in the formation of NETs. The role of PAD4 in NET formation remains 

controversial and seems to be context dependent (Boeltz et al., 2019; Konig and Andrade, 

2016). In order to test whether PAD4 was involved in the capture of particulate contaminants 

and the formation of neutrophil aggregates on omFALCs, we used fluorescently labelled 

Zymosan (Fluo-Zym) and the specific PAD4 inhibitor GSK484 (Lewis et al., 2015). 

Observation of the omentum with a stereo-microscope at 6 hours post-injection, revealed that 

omFALCs had undergone a massive expansion and very effectively captured and concentrated 

Fluo-Zym particles in FALCs (Figure 5A). In contrast to the omentum, the epidydimal fat pad, 

parietal wall and diaphragm did not capture any Fluo-Zym (Figure S7C). The Fluo-Zym 

particles were concentrated in dispersed spots on the mesenteries in keeping with the lower 

proportion of FALCs within this tissue compared to the omentum. PAD4 inhibition completely 

abrogated both the omFALC expansion and the capture of Fluo-Zym particles by omFALCs 

(Figures 5A-C). Fluo-Zym injection led to the formation of large neutrophil aggregates 

embedded in CitH3+ DNA, while PAD4 inhibition blocked the recruitment of Ly6G+ 

neutrophils into omFALCs, and significantly reduced the CitH3 staining compared to Fluo-

Zym only controls (Figures 5B and 5D). PAD4 inhibition was associated with omFALCs 

failing to capture Fluo-Zym particles and expand in size (Figures 5A and 5E).  

In contrast, GSK484 did not block the recruitment of neutrophils into the peritoneal 

cavity since we recovered twice as many neutrophils from the peritoneal cavity when mice 

received GSK484 and Fluo-Zym compared to Fluo-Zym only (Figure 5F). Thus GSK484 

inhibits neutrophil accretion in omFALCs, leading to a very severe reduction in the capacity of 

the omentum to capture Zymosan particles. While neutrophils clearly underwent citrullination 



 15 

of Histone H3 during Zymosan induced peritonitis, the fact that PAD4 inhibition led to a near 

complete abrogation of neutrophil aggregation within FALCs did not allow us to conclude 

whether PAD4 was involved in the formation of the CitH3+ DNA outer-layer we observed.  

 

Inhibition of PAD4 leads to impaired clearance of Zymosan particles from the peritoneal cavity 

and increases dissemination to the spleen 

We next addressed the effect of PAD4 inhibition on peritoneal neutrophil clearance of 

Zymosan-A. Inhibition of PAD4 resulted in a significant increase in the retention of neutrophils 

and Fluo-Zym particles within the peritoneal cavity (Figures 5F and 5G). There was a three-

fold increase in the proportion of neutrophils retaining Fluo-Zym particles, with a near two-

fold increase in Fluo-Zym MFI, indicating that PAD4 inhibition led to increased phagocytosis 

of Fluo-Zym particles by peritoneal neutrophils (Figure 5H). Finally, PAD4 inhibition led to 

increased dissemination of Fluo-Zym particles to the spleen (Figure 5I). Thus, this suggests 

that PAD4 dependent neutrophil aggregation within omFALCs, and other SLOs, provides a 

rapid and efficient mechanism to clear particulate material from the peritoneal cavity and limit 

the systemic spread of peritoneal contaminants.    

 

Neutrophil recruitment and aggregation confer increased adhesive properties to omFALCs. 

In the peritoneal cavity, the capture of particles by omFALCs results from a 

combination of peritoneal fluid flow through the omentum and the capacity of the omentum to 

retain these particles. To assess the importance of neutrophil aggregation on the adhesive 

properties of the omentum independent of fluid flow we measured ex vivo the capacity of the 

omentum to capture bacteria relevant to peritonitis by briefly incubating fluorescently-labelled 

E.coli bioparticles with omentum samples isolated from untreated control mice, or from mice 

undergoing Zymosan induced peritonitis that had been treated with isotype control antibodies 
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or anti-CXCL1 antibodies in vivo (Figure 6A). Omenta were collected at 18h post-Zymosan 

injection and incubated ex vivo for 5 minutes at room temperature with E. coli bioparticles, 

before fixation and wholemount immuno-fluorescence imaging. Omentum tissue sampled 

from mice with peritonitis proficiently trapped E.coli whereas those from control mice without 

peritonitis did not (Figure 6A). Blockade of CXCL1 resulted in fewer neutrophils within the 

omentum and a failure to efficiently trap E. coli, indicating that CXCL1-mediated recruitment 

of neutrophils to the omentum dramatically increased the capacity of the omentum to capture 

bacterial contaminants. We confirmed the importance of neutrophil recruitment and 

aggregation for the increased adhesive properties of the omentum during peritonitis using 

omenta isolated from naïve mice, those undergoing peritonitis and those undergoing peritonitis 

with PAD4 inhibition, and E.coli expressing the fluorescent protein mCherry. Omenta from 

naïve mice did not trap E.coli, contrary to omenta from mice with peritonitis (containing NET-

like structures) where large areas of FALCs were covered in E.coli. PAD4 inhibition led to a 

marked decrease in the efficiency with which the omentum captured E. coli (Figure 6B). These 

data suggest that neutrophil aggregation within omFALCs during peritonitis contributes to 

omental clearance of peritoneal bacterial contaminants.  

 

Neutrophils are recruited to the human omentum during peritonitis 

We reasoned that appendicitis would provide a useful translational platform to examine the 

function of the omentum during peritonitis. During acute appendicitis the omentum wraps itself 

around and adheres to the inflamed appendix (Morison, 1906). By comparison, in patients 

undergoing laparoscopic surgery for biliary colic (surgery for gallstones without active 

inflammation) the omentum and appendix are both uninvolved. We recruited patients who were 

undergoing laparoscopic surgery for possible or suspected acute appendicitis (App), or 

laparoscopic cholecystectomy for biliary colic (non-inflamed; NI) (Table S2). Acute 
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appendicitis induced a stark influx of CD16++CD14-CD19-CD3-CD56-CD15+ neutrophils into 

the omentum and the peritoneal cavity (Figures 7A and 7B).  

We next investigated whether the mechanisms regulating recruitment of neutrophils to 

the human omentum were similar to mouse by analysing the secretion of inflammatory 

chemokines and cytokines over a two-hour interval in ex vivo human omentum explant cultures 

(Figure 7C). CXCL8 (human homologue of murine CXCL1) and IL-1β, two important factors 

for neutrophil recruitment and activation (Biondo et al., 2014), were secreted at much higher 

levels in omental explant cultures and peritoneal lavage in inflammatory conditions compared 

to controls, but not in serum (Fig. 7C, D). In patients with acute appendicitis, 1g of omental 

explant released 25ng of CXCL8, approximately 400 times more than the amount found per 

ml of peritoneal lavage, despite the number of neutrophils being similar in equivalent volumes 

of omentum and wash fluid (Figure 7D) indicating that the human omentum is a key site of 

CXCL8 release and neutrophil recruitment during peritonitis.  

 

CitH3+ NET-like structures are released on the human omentum during peritonitis 

Finally, we tested whether neutrophils recruited to the omentum during peritonitis in 

humans also released CitH3+ NET-like structures. Wholemount immunofluorescence staining 

showed the presence of extracellular DNA fibrils stained with SYTOX or DAPI, which co-

localise with CitH3, in regions where there was a substantial CD15+ neutrophil infiltrate during 

acute appendicitis (Figure 7E). Areas of CitH3+ DNA staining which did not co-localise with 

MPO were found, comparable to the murine omentum during peritonitis. No NET-like 

structures were detected in any non-inflamed control samples (Figure 7E). dsDNA was found 

in omental explant culture supernatants and in the peritoneal wash fluid from patients with 

acute appendicitis, but not from control patients (Figure 7F). Since an equivalent number of 
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neutrophils were present per gram of omentum and per ml of peritoneal wash (Figure 7B), the 

fact that dsDNA was released in the greatest amounts by the omental explants strongly suggests 

that the omentum supports DNA release from neutrophils. Using a limulus amoebocyte lysate 

(LAL) assay, we measured bacterial LPS within omental explant cultures and detected LPS 

release into culture supernatants from omentum isolated from patients with acute appendicitis, 

but not from non-inflamed patients. Patients with appendicitis also had higher serum levels of 

LPS, but there was no evidence of LPS within the peritoneal wash (Figure 7G). This suggested 

that during appendicitis, neutrophil aggregation and the release of CitH3+ NET-like structures 

on the omentum mediate successful capture of bacterial antigens arising from the inflamed 

appendix and thus protecte the wider peritoneal cavity from contamination and generalized 

peritonitis.  

 

Discussion 

In the present study, we uncovered important facets of the stromal-immune cell interactions 

which governed omFALC function within the peritoneal cavity and revealed how neutrophils 

mediated the clearance of peritoneal contaminants by omFALCs. The surface of FALCs was 

covered by differentiated mesothelial cells specialising in the secretion of inflammatory 

mediators (Cxcl13+ FALC cover cells) and the response to virus (Ifit+ FALC cover cells). 

During peritonitis, neutrophils rapidly accumulated within omFALCs where they formed large 

aggregates concentrating peritoneal contaminants. The formation of these aggregates was 

dependent on two mechanisms: (i) CXCL1, which was produced by Cxcl13+ FALC cover cells; 

and (ii) the PAD4 dependent formation of a CitH3+ DNA outer-layer coating the omFALC 

neutrophil aggregates. In humans with appendicitis, the omentum was also a site of neutrophil 

recruitment and the release of CitH3+ DNA. In addition, we provided evidence that the 
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omentum efficiently captured bacterial antigens, leaving the peritoneal cavity free of 

contamination.  

In the omentum, the mesothelium acts as a filtration system for peritoneal fluid. 

Entrance of peritoneal fluid is facilitated by the presence of stomata (Mironov et al., 1979) that 

afford particles and cells entrance into FALCs and enable fluid to be drained into neighbouring 

lymphatic vessels. Our analysis revealed the exquisite adaptation of the mesothelium for this 

function, which gave rise to Cxcl13+ FALC cover cells, specialised in the attraction of immune 

cells and the secretion of inflammatory mediators and Ifit+ FALC cover cells competent for the 

secretion of anti-viral factors. Cxcl1 was expressed by both Cxcl13+ FALC stromal cells and 

Pdgfra+ fibroblast, but only FALC cover cells had intra-cellular stores of CXCL1 suggesting 

that CXCL1 production was post-transcriptionally regulated in FALC cover cells. In absence 

of a genetic model allowing the specific deletion of Cxcl1 in FALC cover cells, we cannot rule 

out that CXCL1 from other cellular sources is important for the recruitment of neutrophils to 

the omentum. We hypothesise based on our results that following the initial Cxcl13+ FALC 

cover cell CXCL1 mediated recruitment of zymosan-loaded peritoneal neutrophils to 

omFALCs, the release of extracellular DNA facilitates the adhesion of further waves of 

neutrophils which also extrude their DNA resulting in the large aggregates imaged at 6-18h. 

To account for the staining pattern seen, we assume that re-modelling of the DNA extrusions 

must occur to clear CitH3 from the centre of the aggregates while leaving the fluid-facing 

aggregates coated in NET-like structures. This intriguing CitH3+ DNA outer-coating raises 

multiple questions, 1)What is the role of the CitH3+ DNA on the fluid facing surface of the 

cluster; are CitH3+ neutrophil aggregated omFALCs anti-bacterial? 2)Are the aggregations 

performing a purely structural role by barricading the omFALC to limit the spread of peritoneal 

contaminants? 3)How are the aggregates cleared during the resolution of peritonitis? 4)Does 

resolution require exposure of CitH3+ DNA?  
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In sepsis, NETs promote a toxic inflammatory and procoagulant host response to 

endotoxin (Martinod et al., 2015). However, our data points toward an important role for 

omental NET release to limit the propagation of contaminants from the peritoneal cavity to the 

circulation. Due to constant drainage of peritoneal fluid through FALCs and their high 

vascularisation (Buscher et al., 2016; Dickinson, 1906; Gray et al., 2012), FALCs are the main 

portals for the systemic transit of peritoneal contaminants. Additional experiments are required 

to further investigate the effect of PAD4 inhibition on neutrophil trafficking to secondary 

lymphoid organs during peritonitis; altered neutrophil trafficking may influence the export of 

peritoneal contaminants through the draining lymph nodes and spleen. While targeted NET 

release on omFALCs is beneficial during peritonitis, it may play a detrimental role in ovarian 

cancer metastasis (Lee et al., 2019).  

Resident peritoneal macrophages undergo a clotting response within the first 2h of  

contamination of the peritoneal cavity, providing a means of clearing peritoneal contaminants 

via coagulation and adhesion (Zhang et al., 2019). This mechanism serves to convert fluid 

phase inflammation to a solid state within the clots. Neutrophil aggregation within FALCs also 

enable the conversion to a solid state which is required for efficient clearing of particles from 

the fluid phase. In doing so, neutrophils provide a timely relay for the neutralisation of 

peritoneal contaminants, since resident peritoneal macrophages are rapidly sequestered in clots 

(Zhang et al., 2019). In gout and pancreatitis, presence of high density neutrophils in 

combination with the release of NETs lead to the formation of large DNA aggregates. In gout, 

these aggregated NETs have the ability to degrade cytokines and chemokines via serine 

proteases and may be important to limit inflammation (Schauer et al., 2014). In pancreatitis, 

PAD4 mediates the release of NETs which cause neutrophil aggregation and occlusion of 

pancreatic ducts (Leppkes et al., 2016). Aggregated NETs have been implicated in the 

formation of gallstones (Munoz et al., 2019); Munoz et al report that uptake of small crystals 
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results in NET release that is dependent upon PAD4. Here we show that omFALCs are also 

sites where high densities of actively phagocytosing neutrophils aggregate in a PAD4 

dependent mechanism during peritonitis.  

 Previous studies have posited that both MPO and NE are necessary for the release of 

bona fide NETs (Metzler et al., 2011)(Papayannopoulos et al., 2010). Here we found that the 

release of CitH3+ DNA and aggregation of neutrophils over the surface of expanded omFALCs 

during peritonitis occurred even in the absence of NE, suggesting a mechanism of DNA release 

that did not conform to the same rules as classical NETosis. In addition, CitH3+ DNA did not 

robustly co-localise with MPO staining, again indicating a non-classical mechanism of 

neutrophil CitH3+ DNA release. In contrast to NE, the formation of omFALC neutrophil 

aggregates was dependent upon PAD4. Taken together, our findings contribute to mounting 

evidence that mechanisms of NET release vary dependent upon context and location (Boeltz 

et al., 2019).  
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Figure legends 

Figure 1: Identification of non-endothelial stromal cell populations within the omentum. 

A CD45-CD41-Ter119-CD31-PDPN+/- non-endothelial omental stromal cell were cell-sorted 

and underwent scRNAseq. B-C, Unsupervised clustering of non-endothelial omental stromal 

cells visualized with UMAP where each dot is a single cell colored by cluster assignment (B) 

hierarchical cluster tree (C). D, Heatmap of each cell’s (column) scaled expression of DEGs 

(row) expressed by a minimum of 30% of cells per cluster. E, Gene expression distinguishing 

the five clusters projected onto UMAP plots. Colour scaled for each gene with highest log-

normalized expression level noted. F-J, Violin plots of canonical omental stromal cell gene 

expression by cluster with highest log-normalized expression value labelled. K, Representative 

gating strategy of non-endothelial omental PDPN+PDFGRa+CD200- (blue), 

PDPN+PDFGRaintCD200int (green), and PDPN+PDFGRa-CD200+ (red) stromal cells and level 

of expression of CD44 and CD55 in these populations. FMO in grey. 

 

Figure 2: FALCs are covered by a differentiated monolayer of mesothelial cells. A, 3D 

reconstruction of a large portion of the omentum obtained by imaging of wholemount staining 

of the omentum showing omFALCs with DAPI (white). B-C Confocal imaging and 3D 

reconstruction of an omFALC showing a view of the surface of the cluster and a z section 

(along the dotted line) of the cluster (B) and of the surface of the omentum (C) with PDPN 

(red), CXCL13 (green), DAPI (blue) and IgM (yellow). D-F, Representative confocal imaging 

and 3D reconstruction of an omFALC showing a view of the surface of the cluster and a z 

section (dotted line) of the cluster with PDPN (red), ENPP2 (D, green) or Cathepsin-C (E, 

CTSC, green) or ISG15 (F, green), DAPI (blue) and IgM (D, yellow) or CD45 (E-F, yellow). 

The surface of the cluster and the mesothelium are delimited by a hyphenated line. G, Violin 

plots of gene expression of inflammatory chemokines by cluster with highest log-normalized 
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expression value labelled. H, Amounts of CCL2, CXCL10 and CXCL1 secreted into the 

supernatant of 2h omentum explant culture per omentum and per ml after exposure to 

Zymosan-A for 2h either in vivo (i.p. injection) or ex vivo. Data pooled from two independent 

experiments with n=10 mice per group. I, Confocal imaging and 3D reconstruction of 

omFALC showing the surface of omFALCs (first column) and a clipped view inside the cluster 

(second column). Scale bars 100 μm. All staining representative of n≥8 clusters from n≥4 mice 

in at least 2 independent experiments. Error bars show SEM. Kruskal Wallis test with Dunn’s 

multiple comparisons test or ANOVA with Sidak’s multiple comparisons test were applied 

after assessing normality using D’Agostino and Pearson Normality test, ns= non-significant, 

*** P=<0.001. 

 

Figure 3: CXCL1 is required for the recruitment of neutrophils into omFALCs. A 

Number of neutrophils in digested omentum as assessed by flow-cytometric analysis (Figure 

S5A) of naïve (white bar) and at the indicated time points following i.p. injection of Zymosan-

A (blue bars). Data pooled from two independent experiments with n=5-11 mice per group. B, 

Representative confocal imaging and 3D reconstruction of omFALCs from naïve and 6 hours 

post-Zymosan mice, DAPI (magenta) and Ly6G (white). Scale bar 200 μm. C, Quantification 

of the mean grey value of Ly6G and MPO stained as in Figure S5B of omenta from naïve 

(white bar) and at the indicated time points following i.p. injection of Zymosan (blue bars). 

Data for cluster quantification pooled from two independent experiments with n≥24 imaged 

clusters from n=8 mice per group. D, Quantification of the volume of omFALCs at the 

indicated times following i.p. injection of Zymosan-A (blue). Data pooled from two 

independent experiments with n≥32 imaged clusters from n=6 mice per group. E, 

Representative confocal images of omentum, the peritoneal surface of the diaphragm and 

parietal wall from naïve and 6 hours post-Zymosan mice, DAPI (magenta) and Ly6G (white) 
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and quantification of the mean grey value for Ly6G for all conditions. Data for cluster 

quantification pooled from two independent experiments with n≥24 imaged clusters from n=6 

mice per group. Scale bar 50 μm. F, Representative density plots showing proportion of 

neutrophils found in the PEC and omentum 18h post Zymosan i.p injection, in combination 

with the injection of anti-CXCL1 or isotype control antibodies after 2h and number of 

neutrophils found in PEC and per g of omentum in naïve and treated mice. Data pooled from 

two independent experiments n=5-11mice per group. Error bars show SEM. Box and whiskers 

showing min to max value. Kruskal Wallis test with Dunn’s multiple comparisons test or 

ANOVA with Sidak’s multiple comparisons test were applied after assessing normality using 

D’Agostino and Pearson Normality tests, ns= non-significant, *=P <0.05, **=P <0.01, *** 

P=<0.001, **** P=<0.0001. 

 

Figure 4. CitH3+ DNA coats neutrophil aggregates on omFALCs during peritonitis. A, 

Representative confocal images of wholemount staining of omentum from naïve and 6 hours 

post-Zymosan mice, DAPI (magenta), CitH3 (Green) and Ly6G (Blue). Scale bar 50 μm. B, 

Quantification of the number of CitH3 positive nuclei per mm at the times indicated post 

Zymosan injection. Data for cluster quantification pooled from two independent experiments 

with n≥24 imaged clusters from n=8 mice per group. C, 3D reconstruction of omFALC at 6 

hours post-Zymosan injection  showing the surface of a cluster (first row) and a clipped view  

inside of the cluster (second row). Ly6G (Blue), CitH3 (Green), DAPI (Magenta). Scale Bar 

100 μm. D. WT or NE-/- mice were left naïve (WT white, NE-/- grey) or injected i.p. with 

Zymosan (WT blue, NE-/- grey), omenta were collected 18 hours post-injection; the number of 

CitH3+ cells per mm and volume of each cluster was assessed by wholemount staining and 

confocal analysis of omenta from naïve and treated mice. Data for cluster quantification pooled 

from two independent experiments with n≥14 (CitH3+ cells) or n≥20 (cluster size) imaged 
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clusters from n=4 mice per group. E. Representative confocal images of omFALCs at 6H 

following Zymosan injection showing MPO (Green), Ly6G (Blue), CitH3 (White) and DAPI 

(Magenta). Staining representative of n≥24 clusters from n≥8 mice in 2 independent 

experiments. Scale Bar 50 μm. Student’s T-test, Kruskal Wallis test with Dunn’s multiple 

comparisons test or Mann Whitney test were applied after assessing normality using 

D’Agostino and Pearson Normality test, ns= non-significant, **** P=<0.0001. 

 

Figure 5: Inhibition of PAD4 prevents neutrophil aggregation and capture of Zymosan 

particles within omFALCs, while increasing the retention of Zymosan in the peritoneal 

cavity and spread to the spleen. A-I, Mice were left naïve (white) or injected i.p. with Fluo-

Zym in combination with the PAD4 inhibitor GSK484 (red) or vehicle (blue) and the omentum, 

PEC and spleen were analyzed 6 hours post injection. Representative low (A, scale bar 1 mm) 

and high (B, scale bar 50 μm) magnification confocal images of wholemount immuno-

fluorescence staining of omentum. Number of Fluo-Zym particles per mm2 of omFALCs (C), 

mean grey value for CitH3 and Ly6G staining (D), volume of omFALCs (E). Total number of 

PEC neutrophils (F). Representative histogram showing fluorescence intensity of Fluo-Zym in 

all PEC and number of Fluo-Zym+ PEC (G). Number of Fluo-Zym+ neutrophils and MFI of 

Fluo-Zym within Fluo-Zym+ neutrophils (H). Representative histogram showing fluorescence 

intensity of Fluo-Zym in spleen and percentage and number of Fluo-Zym+ events per spleen 

(I). Data for cluster quantification pooled from two independent experiments with n≥30 (C-D) 

and n≥60 (E) imaged clusters from n=7-8 mice per group. Data pooled from two independent 

experiments with n=7-8 mice per group. Kruskal Wallis test with Dunn’s multiple comparisons 

test or Mann Whitney test were applied after assessing normality using D’Agostino and 

Pearson Normality test, ns= non-significant, **=P <0.01, *** P=<0.001, **** P=<0.0001. 
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Figure 6. CXCL1 and PAD4 are required for the adhesion of bacteria to the omentum in 

the absence of fluid flow. A. Representative confocal images of wholemount staining of 

Omenta isolated from either naïve animals or 18h after Zymosan i.p injection, in combination 

with the injection of either anti-CXCL1 or isotype control antibodies were cultured with 

fluorescently labelled E.coli bio-particles for 10 minutes, number of E.coli bioparticles found 

per cluster section and per μm2 of cluster were graphed. MPO (white), E.coli (green), DAPI 

(red), Ly6G (blue). Data for cluster quantification pooled from two independent experiments 

with n≥18 imaged clusters from n=10-11 mice per group. B, Mice were left naïve (white 

circles) or injected i.p. with Zymosan in combination with the PAD4 inhibitor GSK484 (grey 

circles) or vehicle (blue circles), the omenta were collected 18 hours post-injection and 

incubated in vitro for 5 minutes with mCherry+ E. coli. Representative confocal images of 

wholemount staining of omentum. E.coli (green), DAPI (magenta). Mean grey value of E. coli 

in omFALCs and percentage area covered by E. coli. Data for cluster quantification pooled 

from two independent experiments with n≥10 imaged clusters from n=7-8 mice per group. 

Error bars show SEM. Kruskal Wallis test with Dunn’s multiple comparisons test were applied 

after assessing normality using D’Agostino and Pearson Normality tests, ns= non-significant, 

**=P <0.01, *** P=<0.001, **** P=<0.0001. Scale bar 50 μm. 

 

Figure  7: The human omentum recruits neutrophils and collects bacterial antigens 

during appendicitis. A, Representative gating strategy showing CD45+ CD19-, CD3-, NCAM-

, CD15+ neutrophils in the omentum (Om) of non-inflamed (NI) and appendicitis (App) 

patients. Histogram showing expression of CD16 and CD14 by omental neutrophils from 

representative patients with appendicitis and quantification of CD16 and CD14 MFI on CD15+ 

neutrophils from non-inflamed (white) and appendicitis (red) patients. B, Number of 

neutrophils found per gram of Om or per ml of peritoneal wash (PW) of NI and App patients. 
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Patients were stratified based on surgical outcome into one of 2 groups, NI (white) or App 

(red), n=7 and 10 patients per group. Error bars show SEM.  C, Chemokines and cytokines 

found in 2h Om explant culture supernatant, PW and serum comparing NI and App patients. 

Each column represents one patient. D, Amounts of CXCL8 per g per ml of 2h Om explant 

culture supernatant E, Representative confocal images of wholemount immunofluorescence 

staining of omentum biopsies from NI or App patients (n≥6) showing in grey DNA stained 

with DAPI (upper) or extra-cellular DNA stained with SYTOX (middle, grey), or CD15 

(lower); in magenta CD11b; in green Myeloperoxidase (MPO) and in red Citrullinated histone 

H3 (CitH3). F, Amounts of double stranded DNA (dsDNA) released into the supernatant of 2h 

omental explant culture per g, per ml and per ml of  PW in control and appendicitis patients. 

G, LAL activity within the supernatant of 2h omental explant culture per g and per ml and per 

ml of PW and serum in control and appendicitis patients. n=10-13 patients per group. Error 

bars show SEM. Unpaired student’s T-test or Mann Whitney test were applied after assessing 

normality using D’Agostino and Pearson and Shapiro-Wilk Normality tests n.s.=non-

significant, * = P<0.05, **=P <0.01, *** P=<0.001.   
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STAR Methods 

RESOURCE AVAILABILITY 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead 
Contact, Cecile Benezech (cbenezec@ed.ac.uk) 

Materials availability 

This study did not generate new unique reagents 

Data and Code Availability 

The scRNAseq dataset generated during this study are available at GEO accession code GSM4053741. The 
authors declare that all relevant data supporting the findings of this study are available on request. R scripts for 
performing the main steps of analysis are available from the Lead contact on reasonable request 

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS  
 
Experimental animals 
 
All experiments were conducted under a license granted by the Home Office (UK) that was approved by the 
University of Edinburgh animal welfare and ethics review board. All individual experimental protocols were 
approved by a named veterinarian surgeon prior to the start of the experiment. Experiments were performed using 
female C57BL/6 (C57BL/6JOlaHsd) or NE deficient mice (Belaaouaj et al., 1998) aged 8-12 weeks. All animals 
were bred and maintained under specific pathogen–free conditions at the University of Edinburgh Animal 
Facilities.  
 
Human subjects 
 
This study was approved by the Regional Research Ethics Committee (SE Scotland REC 02; 16/SS/0042), the 
University of Edinburgh/NHS Lothian ACCORD R and D Office (ref: 2016/0035) and the Office of the Caldicott 
Guardian, NHS Lothian (patient confidentiality advocate). Individuals were recruited after informed, signed 
consent was obtained. Clinical data (Table S1) and samples were collected from patients undergoing laparoscopic 
surgery under general anaesthesia for the following indications: biliary colic and possible or suspected 
appendicitis, at the Royal Infirmary of Edinburgh between 1st April 2016 and 30th June 2018. After the induction 
of anaesthesia, a single tube of blood was collected into a BD Vacutainer prefilled by the manufacturer with the 
anticoagulant EDTA. At operation, and as soon as practical and safe after the insertion of the laparoscopic ports 
(to avoid iatrogenic contamination with blood), 25mL of sterile 0.154 M NaCl solution was washed into the area 
of interest and then aspirated using a sputum trap interposed into the surgical suction equipment. Next a 5 cm3 
sample of omentum was resected with scissors to avoid diathermy artefact, retrieved and the sample site 
haemostasis ensured with diathermy. A 2 cm2 sample of parietal peritoneum adjacent to a port site was obtained 
and haemostasis ensured. Operations then continued as planned. Clinical samples were handled as follows: 
omentum and parietal peritoneum samples were collected into 20 ml of sterile dPBS (Sigma) within a 50ml tube. 
Peritoneal washings were placed into a sterile 50ml tube. All patient samples were stored on wet ice or at 4 °C 
prior to collection from the clinical research facility and transported to the research laboratory on foot, samples 
collected after 5pm were processed the following day. If there were any unexpected findings at surgery, e.g. free 
peritoneal blood or peritoneal malignancy, patients were removed from the study and no tissue samples were 
taken for research purposes. There were no adverse effects due to the research study conduct. 
 
METHOD DETAILS  
 
Peritonitis models 
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To induce peritonitis, mice were injected intra-peritoneally with either 0.5mg Zymosan-A (Sigma) in PBS, 
0.25mg of Fluorescein labelled Zymosan-A (Invitrogen), or PBS alone and samples were isolated 2-72h later. To 
block NETosis, mice were injected i.p. with 400μg/mouse of GSK484 (Cayman Chemical). Blocking antibodies 
against CXCL1 (Clone 48415, Invitrogen) or isotype control Rat IgG2a (Invitrogen) antibodies were injected i.p. 
2h after induction of peritonitis (40μg/mouse). Following Zymosan and anti-CXCL1 treatment, omenta were 
isolated and cultured with mCherry E. coli (Amarh et al., 2018) or E. coli bioparticles (Invitrogen) in vitro for 5 
minutes prior to thorough washing with RPMI-1640 (Sigma), and wholemount staining as described below.  
Peritoneal exudate cells (PEC) were isolated by flushing murine peritoneal cavities with RPMI 1640 (Sigma). 
Murine omenta were enzymatically digested with 1mg/ml Collagenase D (Roche) for 35 minutes at 37oC in RPMI 
1640 (Sigma) containing 1% Fetal Bovine Serum (FBS) (Sigma). Spleens were mechanically disrupted using 
glass slides.  
 
Human sample preparation 
 
Human Omentum was weighed and 0.035 – 1.8g of tissue was digested using 2mg/ml Collagenase I 
(Worthington) in PBS (Invitrogen/sigma) 2% Bovine Serum Albumin (BSA, Sigma), samples were disrupted 
using an Octolyser (Miltenyi), incubated at 37oC with intermittent shaking for 45 minutes, subjected to a second 
Octolyser dissociation step, ions were chelated by addition of EDTA (0.5M, Sigma), samples were filtered through 
a 100μM filter (BD) and washed with 20ml of 2%BSA PBS prior to centrifugation at 1700pm for 10 minutes. 
The cell pellet was resuspended in 2ml of PBS 2% BSA for flow-cytometric analysis. Peritoneal wash and blood 
samples were centrifuged, the supernatant and serum were collected for further analysis and the cell pellet was 
resuspended for flow-cytometric analysis. Cell numbers and live cell count were determined using a BioRad TC20 
automated cell counter and 0.4% Trypan Blue (Sigma). For the omentum ex vivo culture, a small piece of omentum 
(between 0.02 and 0.06g) was placed in culture in 1ml of RPMI 1640 (Sigma) 10% foetal bovine serum (Sigma) 
2 mM L-glutamine (Sigma) for 2 hours at 37 oC. 
 
Flow cytometry 
 
Murine cells were stained with LIVE/DEAD (Invitrogen), blocked with mouse serum and anti-murine CD16/32 
(clone 2.4G2, Biolegend) and stained for cell surface markers. Human samples were blocked with serum, stained 
for cell surface markers (See Table S2 for list of antibodies used), and DAPI (sigma) was added to the cells prior 
to acquisition. All samples were acquired using a BD Fortessa and analyzed with FlowJo software (FlowJo, LLC). 
 
Cell-sorting and quantitative real-time PCR 
 
Cells were stained for cell surface marker and sorted using a FACS Aria Fusion directly in 350 μl RLP buffer 
before RNA extraction using RNeasy Plus Micro Kit (Qiagen) according to manufacturer’s instruction. 
Complementary DNA for mRNA analysis was synthesized from total RNA using High Capacity cDNA Reverse 
Transcription Kit (Applied biosystems). Cxcl1 expression was assessed using TaqManGene Expression Assay 
(Mm04207460_m1) by qRT-PCR (Life Technologies) and normalized to glyceraldehyde-3-phosphate 
dehydrogenase (Gapdh, Mm9999995_g1). The Ct of Gapdh was subtracted from the Ct of Cxcl1, and the relative 
amount was calculated as 2−ΔCt. Means of triplicate reactions were represented for n=4 biological samples per 
condition from two separate sorts. 
 
Detection of chemokines, cytokine, dDNA and LPS 
 
dsDNA was detected in lavage fluid and omentum culture supernatants using the picogreen assay following the 
manufacturer’s instructions (Invitrogen). LPS was detected in human serum, omentum culture supernatants and 
peritoneal lavage fluid using the ToxinSensorTM Chromogenic LAL Endotoxin Assay Kit (GenScript) following 
manufacturer’s instructions. Human Pro-inflammatory chemokines and Human Inflammation Legendplex arrays 
(Biolegend) were used to detect cytokines and chemokines following the manufacturer’s instructions. For the 
heatmap representation in Fig. 7C, original values were scaled between 0 and the maximum value detected for 
each cytokine and presented as a fraction of maximum secretion. Murine samples of omentum, mesenteries, 
parietal wall, diaphragm and liver were placed in culture for 2 hours in 300μl RPMI containing 10% FBS (Sigma) 
and 1% L-glutamine (Sigma). The quantity of murine CXCL1, CCL2 and CXCL10 present within cell culture 
supernatants was determined using a mix and match mouse pro-inflammatory chemokine Legendplex array 
(Biolegend) following the manufacturer’s instructions.  
 
Immunofluorescence staining and microscopy 
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Human and mouse omentum samples were fixed for one hour on ice in 10% NBF (Sigma) and then permeabilized 
in PBS 1% Triton-X 100 (Sigma) for 20 minutes at room temperature prior to staining with primary antibodies 
for one hour at room temperature in PBS 0.5% BSA 0.5% Triton. After washing in PBS, tissues were stained with 
secondary antibodies for one hour at room temperature in PBS 0.5% BSA 0.5% Triton. For extra-cellular DNA 
staining, human omental tissues were first stained with SYTOX Blue (Invitrogen) 1 in 5000 in RPMI 1640 
(Sigma) for 30 minutes at room temperature, washed in RPMI and then fixed in 10% NBF (Sigma) prior to 
permeabilization and staining. Antibodies used are listed in Table S2. After mounting with Fluoromount G 
(Thermofisher), confocal images were acquired using a Leica TCS SP5 or TCS SP8 laser scanning confocal 
microscope. Image analysis was performed using Fiji and 3D reconstruction was created using LAS-X-3D 
(Leica). The mean grey value of MPO, Ly6G, CitH3 and mCherry E. coli was calculated inside a perimeter 
delimited manually as the border of the cluster. To calculate FALC volume, we manually assessed the maximum 
length, width and depth (z) of the clusters visualised with DAPI using 10x objective while scanning on SP5 
confocal microscope. To calculate the area of FALCs covered by E. coli,  the perimeter of the FALC was delimited 
manually and a fixed threshold for E.coli fluorescence was set. The number of CitH3+ nuclei and E. coli 
bioparticles was calculated using the “analyse particles” function of Fiji. The large picture of the omentum was 
taken as stack on a Zeiss Axio Observer Z1,   deconvolved using the SVI Huygens 19.0 software and  processed 
in Fiji first using the Maximum Intensity Projection and then stitched using Grid/Collection stitching (Preibisch 
et al., 2009). 
 
Droplet based scRNAseq and data pre-processing 
 
Immediately post-sorting, DAPI-CD45-Ter119-CD41-CD31- stromal cell pooled from the omenta from three naive 
mice were run on the 10X chromium (10X Genomics) and then through library preparation following the 
recommended protocol for the Chromium Single Cell 3’ Reagent Kit (v2). Libraries were run on the NovaSeq 
S1for Illumina sequencing. Sequence reads were processed using the Cell Ranger v3.0.2 Single-Cell Software 
Suite from 10x Genomics. Reads were aligned to the mm10 mouse references genome (Ensembl 93). As a quality 
control step, genes were excluded if they were expressed in fewer than three cells. Cells were excluded on a 
number of criteria: those with fewer than 300 genes (n=13), those with fewer than 300 or greater than 16000 UMIs 
(n=21) or those with mitochondrial gene proportion of over 20% of total UMI counts (n=14). A global 
normalisation was performed where gene expression was normalised for each cell based on its total expression 
before being multiplied by a scale factor of 10,000 and log transformed. Variation in the UMI counts of each cell 
was regressed using a linear regression. Residuals from this model were centred and scaled by subtracting the 
average expression of each gene followed by dividing by the standard deviation of each gene. A list of 2000 
variable genes were generated using the ‘vst’ method of the FindVariableFeatures function from the Seurat R 
package version 3.1.1 (Stuart et al., 2019). We obtained the transcriptional profile of 4,501 cells that passed quality 
control and filtering, for which we measured a median of 2,214 genes per cell. 
 
scRNAseq data analysis and visualisation 
 
Dimensionality reduction, unsupervised clustering and differential gene expression were performed using Seurat. 
We used between 1 and 10 principal components for shared nearest neighbour (SNN) clustering, as determined 
by the dataset variability shown in the principle component analysis (PCA). The resolution parameter was 
optimised based on the number of resulting clusters. Clusters were initially categorised into cell lineages based 
on expression of known marker genes. Clusters annotated as endothelial (Pecam1, Cdh5), immune (Ptprc), 
proliferating (Mki67, Pcna, Top2a) or those with a median number of genes per cell below 1000 were excluded 
from further analysis. The final dataset contained 3,838  cells measuring a median of 2,249 genes per cell. Variable 
features and scaled expression were re-calculated for the refined dataset, followed by dimensionality reduction 
and re-clustering using the same methodology described above. Differential gene expression analysis was 
conducted using the FindAllMarkers function of Seurat and a Wilcox rank sum test (Supplementary Table 3). 
Only genes with at least a 0.25 log-fold change and expressed in at least 25% of the cells in the cluster under 
comparison were evaluated. The FindMarkers function was used for direct cluster-to-cluster comparison using 
the same statistical model and thresholds. Cluster similarity was assessed using the BuildClusterTree function of 
Seurat. All violin plots, UMAP visualisations and heatmaps were generated using functions from Seurat, ggplot2, 
pheatmap, and grid R packages. UMAPs were constructed using the same number of principle components as the 
corresponding clustering. Heatmaps were generated using scaled expression and their range was clipped from -
2.5 to 2.5.  DEGs from each cluster were used for pathway analysis using Bioreactome (Fabregat et al., 2018) 
 
Mesothelium trajectory inference 
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We generated a subset of the data including clusters “Cxcl13+ mesothelium”, “Ifit+ mesothelium”, and 
“Mesothelium”, re-scaled the expression data, and performed PCA analysis followed by pseudotime analysis in 
slingshot (Street et al., 2018). Lineage inference was performed using a cluster-based minimum spanning tree on 
PCs 1:10, specifying “Mesothelium” as the starting cluster. Pseudotime values thus generated were mapped to the 
previously generated UMAP for visualisation. Variable genes of the subsetted data were then regressed on the 
resulting pseudotime variables using a general additive model to identify those genes that are differentially 
expressed across pseudotime. Cubic smoothing spline curves were fitted to the scaled expression of a selection of 
the top 50 differentially expressed genes (p value < 1e-16) along the pseudotemporal trajectory using the 
smooth.spline (df=3) command from the R stats package. These results were plotted as a heatmap with the range 
clipped from -2 to 2.  
 
Mapping mesenteric single cell data 
 
The processed single cell mesenteric dataset was downloaded from GEO accession number GSE102665 (Koga et 
al., 2018). Cell filtering, normalisation and dimensionality reduction from the omentum scRNAseq data analysis 
(as above) were replicated on the mesenteric scRNAseq data. Pdgfra+Pdpn- and Pdgfra+Pdpn+ clusters were 
identified, isolated and mapped individually to the omentum dataset using Scmap version 1.8.0 (Kiselev et al., 
2018), following instructions given in the package vignette for feature selection and indexing of the omentum 
data, and cluster mapping.  
 
RNAseq data analysis 

RNAseq data for epididymal adipose mesothelial cells was downloaded from GEO accession numbers 
GSM3754627, GSM3754628, and GSM3754629. RNAseq data for omentum mesothelial cells was downloaded 
from GEO accessions GSM3754642, GSM3754643, and GSM3754644 (Buechler et al., 2019). We used Salmon 
version 0.14.1 (Patro et al., 2017) to align and quantify transcripts to the GRCm38 reference transcriptome 
(ensemble 81) with “validateMappings”, “seqBias”, and “gcBias” options enabled. This data was imported into 
R using the tximeta package (citation), and genes with a count level of 1 or less were removed. DESeq2 (Love et 
al., 2014) was used to perform differential gene expression analysis between the omentum and epididymal samples 
with an adjusted p value cutoff set to 0.05 for a log fold change threshold of 0. Log-fold change shrinking was 
performed using the apeglm method (Zhu et al., 2019) before plotting a volcano plot in EnhancedVolcano version 
1.4.0 (Blighe K, 2019) where y axis (-log10 adjusted P) were clipped to 50. 
 
QUANTIFICATION AND STATISTICAL ANALYSIS  
 
No randomization and no blinding was used for the animal experiments. Whenever possible, the investigator was 
partially blinded for assessing the outcome (bacterial binding). All data were analyzed using Prism 7 (GraphPad 
Prism, La Jolla, CA). Statistical tests performed, sample size and number of repetitions for each data set, are 
described within the relevant figure legend.  
 
DATA AND SOFTWARE AVAILABILITY  
 
The authors declare that all relevant data supporting the finding of this study are available on request. R scripts 
for performing the main steps of analysis are available from the corresponding authors on reasonable request. 
scRNAseq data sets have been deposited at GEO, accession GSM4053741. 
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Supplemental Table Legends 

Table S3. List of DEGs (omentum scRNAseq data) related to Figure S1. Differentially 

expressed genes were identified as genes with a 0.25 log-fold change and expressed in at least 

25% of the cells in the cluster under comparison for each cluster 

Table S4. List of DEG between omentum mesothelium and epidydimal fat pad 

mesothelium related to Figure S2 (Buechler et al., 2019). Differentially expressed genes were 

identified as genes with an adjusted p value cutoff set to 0.05 for a log-fold change threshold 

of 0.  

Table S5. List of DEGs between Cxcl13+ mesothelium and Mesothelium (omentum 

scRNAseq data) related to Figure S2. Differentially expressed genes were identified as genes 

with a 0.25 log-fold change and expressed in at least 25% of the cells in the cluster. 
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Figure S1. Related to Figure 1. (A-F) Violin plots of canonical omental stromal cell gene expression by cluster with
highest log-normalized expression value labelled. Plots highlighting DEGs characteristic of mesothelial (A, F)
immune (B, C) fibroblast (D) and ECM (E). (G-H) Differential gene expression analysis between omentum
mesothelial cells and epidydimal mesothelial cells. G, Venn Diagram showing the number of genes significantly
upregulated (adjusted p value <0.05) by the omental Cxcl13+ mesothelial cell cluster compared to the omental
mesothelial cell cluster (yellow circle, 195 total) and by PDPN+PDFGRa- omental mesothelial cells compared to
PDPN+PDFGRa- epidydimal fat pad mesothelial cells (blue circle, 973 total) obtained from published RNAseq data
GSM3754642, GSM3754643, GSM3754644, GSM3754627, GSM3754628, and GSM3754629) (Buechler et al.,
2019). 68 DEG overlapping. H, Volcano plot showing DEG between omentum mesothelial cells and epididymal
mesothelial cells in grey. Examples of genes that are also upregulated by the omental Cxcl13+mesothelial cell cluster
compared to the omental mesothelial cell cluster are shown in yellow.
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spline curves fitted to genes differentially expressed along a trajectory from mesothelium to Cxcl13+
mesothelium (C) and Ifit+ mesothelium (D). E, Unsupervised clustering of mesenteric cells visualized with
UMAP from the published single cell dataset GSE102665 (Koga et al., 2018). F, Gene expression of Pdpn and
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images of wholemount immuno-fluorescence staining of omentum showing the surface of omFALCs and the
expression of CXCL13 (B, green), Cathepsin-C (C, green) and ISG15 (D, green) with DAPI (white), ENPP2 (A,D
red) and PDPN (C, red) by FALC cover cells. Scale Bar 50µM. Staining representative of n≥8 clusters from n≥4
mice in 2 independent experiments. E, Representative confocal image of naive whole mount immunofluorescence
staining of omentum, DAPI (blue), PDPN (green), CD45 (yellow), CCL11 (magenta). Upper panel showing
omental adipose in the absence of FALC, lower panel CD45+ FALC within omental adipose. FALC boundary
delineated by dotted line in lower panel. Scale bar 50µM. F, Representative confocal imaging and 3D
reconstruction of adipocyte in omentum with neutral lipid stained with LipidTox (red), CCL11 (green), DAPI
(blue) and CD45 (magenta). Scale bar 100 µm. Staining representative of n=8 clusters or field of view from n=4
mice in 2 independent experiments.
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Figure S5. Analysis of neutrophil recruitment in the peritoneal cavity following Zymosan-A injection related to
Figure 3. A, Flow-cytometric gating strategy of murine PEC and omentum digests. PEC and omentum were analysed
by dead cell exclusion, determination of single cell populations (including B cells) using scatter profiles and based on
CD45 positivity. CD19+ B cells, TCRβ+ T cells and Siglec F+ eosinophils were excluded, Ly6G+ neutrophils were
gated. B, Representative confocal images of wholemount immuno-fluorescence staining of omentum from naïve mice
and 6 hours post-i.p. injection of Zymosan-A, DAPI (magenta), MPO (White) and Ly6G (Blue). C-D, Representative
confocal images of wholemount immuno-fluorescence staining of the omentum and the peritoneal surface of the
parietal wall from naïve mice and at the indicated time points following i.p. injection of Zymosan with MPO (white)
and CD11b (magenta) (C) and quantification of the percentage CD11b+ or MPO+ area (D). E, Amounts of CXCL1
secreted into the supernatant of 2h omentum, mesenteric, parietal wall, diaphragm or liver explant culture per mg of
tissue and per ml from naïve mice (white squares) and 2h after i.p. injection of Zymosan-A (blue squares). Data pooled
from two independent experiments with n=6 mice per group. F, Relative amounts of Cxcl1 expressed by the following
stromal cell populations (CD45-CD41-Ter119-) PDPN+CD31-PDGFRa+CD200-, PDPN+CD31-PDGFRaintCD200int,
PDPN+CD31-PDGFRa-CD200+, CD31+, and CD45+ hematopoietic cells isolated from naïve mice and 2h post-Zymosan
A i.p. injection. Data pooled from 2 independent experiments with n=4 biological replicates per group. ANOVA with
Sidak’s multiple comparisons test (D, E) or Mann Whitney test (F) were applied after assessing normality using
Shapiro-Wilk Normality test, ns= non-significant, **** P=<0.0001. All staining representative of n≥8 clusters or areas
from n≥4 mice in at least 2 independent experiments. Scale bar 50 µm.
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Figure S6. CitH3+ DNA covers neutrophil aggregates forming on omental and mesenteric FALCs during
peritonitis related to Figure 4. A, Confocal image showing inside the cluster presented in Fig. 4C obtained by
wholemount immuno-fluorescence staining of omentum from mice 6 hours post-Zymosan injection showing
DAPI (magenta), CitH3 (Green) and Ly6G (Blue). B, Confocal image showing inside another representative
cluster 6 hours post-Zymosan injection (first panel) and 3D reconstruction of whole omFALC showing the
surface of the cluster (first row) and a clipped view of the inside of the cluster (second row). C, Representative
3D reconstruction obtained by wholemount immuno-fluorescence staining of mesenteries from mice 6 hours
post-Zymosan injection as in A. All staining representative of n≥8 clusters or areas from n≥4 mice in at least 2
independent experiments. Scale bar 100µM.
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Figure S7. Neutrophil depletion blocks the formation of aggregates recovered with CitH3+ DNA and
FALCs concentrates Fluo-Zym particles in the omentum and mesenteries related to Figure 4 and 5. A,
Mice received anti-Gr1 blocking antibodies to deplete neutrophils 24h prior to Zymosan i.p. injection. Flow-
cytometric analysis showing frequency of neutrophils in PEC and quantification of the number of neutrophil
found in PEC of naïve mice (white circle) , mice 6h post Zymosan-A injection (blue circle) and mice which
received anti-Gr1 antibody prior to Zymosan injection (red circle). Data pooled from two independent
experiments with n=6 mice per group. B, Representative confocal images of wholemount immuno-fluorescence
staining of omFALCs from mice as described in A with DAPI (magenta), CitH3 (green) and Ly6G (grey);
quantification of the mean grey value of Ly6G and the number of CitH3+ nuclei in omFALC sections; and
quantification of the volume of omFALCs as assessed by measuring the maximal length, width and depth of
clusters visualized with DAPI. Data pooled from two independent experiments with n≥25 (mean grey value
Ly6G and CitH3+ quantification) or n≥50 (cluster size quantification) imaged clusters from n=7 mice per
group. C,Mice were injected i.p. with Fluo-Zym and the epididymal fat pad, omentum, parietal wall, diaphragm
and mesenteries were analyzed 6 hours post injection. Representative stereo-microscope imaging of the tissues
showing bright field (top) and Fluo-Zym (bottom). Scale bar 0.5 cm. Data pooled from two independent
experiments with n=6 mice per group.
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Pathway -Log10(P)
Matn2+ fibroblasts Elastic fibre formation 1.43891036

Extracellular matrix organization 1.44523816
Diseases associated with O-glycosylation of proteins 1.45319981
Post-translational protein phosphorylation 1.53030527
Molecules associated with elastic fibres 1.64886348
IRE1alpha activates chaperones 1.65319331
O-glycosylation of TSR domain-containing proteins 2.37862719
Extrinsic Pathway of Fibrin Clot Formation 2.38400989

Ccl11+ fibroblasts Signaling by Interleukins 3.23957752
Laminin interactions 3.24336389
Elastic fibre formation 4.17783192
Collagen formation 4.75945075
Assembly of collagen fibrils and other multimeric structures 4.7878124
Integrin cell surface interactions 5.5214335
Non-integrin membrane-ECM interactions 6.01233374
Collagen biosynthesis and modifying enzymes 6.03151705
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding 
Proteins (IGFBPs) 6.10568394

Collagen chain trimerization 6.24795155
Collagen degradation 6.43651891
Degradation of the extracellular matrix 8.326058
Axon guidance 8.4034029
Interleukin-4 and Interleukin-13 signaling 8.82681373
Extracellular matrix organization 10.4546929

Ifit+ mesothelium Cytokine Signaling in Immune system 1.82320711
Antiviral mechanism by IFN-stimulated genes 2.31609774
ISG15 antiviral mechanism 2.57665941
Regulation of IFNA signaling 2.90374714
Interferon alpha/beta signaling 7.04000516
Interferon Signaling 8.65560773

Cxcl13+ mesothelium Interleukin-1 family signaling 2.72327862
Interferon gamma signaling 2.73810127
Interleukin-1 signaling 2.79221515
NIK-->noncanonical NF-kB signaling 2.86431568
TNFR2 non-canonical NF-kB pathway 2.88167673
Innate Immune System 3.14327111
Activation of NF-kappaB in B cells 3.2313619
Immune System 3.3705904
Attenuation phase 3.37882372
Interferon alpha/beta signaling 3.74472749
Chemokine receptors bind chemokines 3.79317412
Interferon Signaling 3.95467702
Signaling by Interleukins 4.84163751
Cytokine Signaling in Immune system 4.91009489
Interleukin-10 signaling 6.47366072

Mesothelium Extracellular matrix organization 2.68782751
Proton-coupled monocarboxylate transport 2.76531065
Hemostasis 2.87661033
Keratan sulfate biosynthesis 3.08196966
Cell junction organization 3.26042766
Transport of connexons to the plasma membrane 4.01954211
Microtubule-dependent trafficking of connexons from Golgi to the plasma membrane 4.1090204
Cell-Cell communication 4.16941133
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding 
Proteins (IGFBPs) 4.34582346

Formation of tubulin folding intermediates by CCT/TriC 4.51999306
Gap junction assembly 4.74472749
Gap junction trafficking and regulation 4.79048499
Post-chaperonin tubulin folding pathway 4.95860731
Gap junction trafficking 5.01818139
Smooth Muscle Contraction 7.81815641

Table S1. Pathway analysis of omentum stromal cell subsets related to Figure 1. Bioreactome analysis of DEGs
for each cluster.



    Acute appendicitis   Biliary colic 

Number of participants  13  10 
Female:Male  7:6  8:2 

Median age in years (range)  28 (16 – 58)   48 (22 to 67) 
Body mass index (mean)  29.1  32.3 
White blood cell count x 

10^9/L*  
14.78 (5.2 - 19.7)   6.81 (3.90 - 9.80) 

Neutrophil count x 10^9/L*  11.95 (3.16 - 16.81)  4.05 (2.16 - 8.08)  
Lymphocyte count x 10^9/L*  1.63 (0.38 - 2.90)   1.99 (1.13 - 2.74)  

Monocyte count x 10^9/L*  1.10 (0.14 - 2.06)   0.54 (0.35 - 0.75)  

Eosinophil count x 10^9/L* 
 

0.07 (0.01 - 0.06)   0.24 (0.05 - 
62.00)  

Basophil count x 10^9/L*  0.02 (0.01 - 0.06)   0.03 (0.01 - 0.05)  
Serum C-reactive protein 

mg/L   63 (6 to 215)    4 (< 1 to 5)  

*data are mean (range)  
   

Fig. S7. Summary table of patient demographics. Sex, Age, body mass index (BMI), white 
blood cell (WBC) count and C-reactive protein (CRP) characteristics of the biliary colic patients 
and acute appendicitis patients recruited for the study. 
 

Table S2. Summary table of patient demographics related to Figure 7. Sex, Age, body mass index (BMI)
white blood cell (WBC) count and C-reactive protein (CRP) characteristics of the Biliary colic patients and
acute appendicitis patients recruited for the study.


