
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

An Ontological Architecture for Principled and Automated
System of Systems Composition

Abdessalam Elhabbash, Vatsala Nundloll,
Yehia Elkhatib, Gordon S. Blair

a.elhabbash@lancaster.ac.uk
SCC, Lancaster University, UK

Vicent Sanz Marco
FCRL, Osaka University, Japan

ABSTRACT
A distributed system’s functionality must continuously evolve, es-
pecially when environmental context changes. Such required evo-
lution imposes unbearable complexity on system development. An
alternative is tomake systems able to self-adapt by opportunistically
composing at runtime to generate systems of systems (SoSs) that
offer value-added functionality. The success of such an approach
calls for abstracting the heterogeneity of systems and enabling
the programmatic construction of SoSs with minimal developer
intervention. We propose a general ontology-based approach to
describe distributed systems, seeking to achieve abstraction and
enable runtime reasoning between systems. We also propose an ar-
chitecture for systems that utilize such ontologies to enable systems
to discover and ‘understand’ each other, and potentially compose,
all at runtime. We detail features of the ontology and the architec-
ture through two contrasting case studies. We also quantitatively
evaluate the scalability and validity of our approach through exper-
iments and simulations. Our approach enables system developers
to focus on high-level SoS composition without being tied down
with the specific deployment-specific implementation details.

CCS CONCEPTS
• Computer systems organization → Architectures; • Com-
puter systems organization Self-organizing autonomic com-
puting;
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1 INTRODUCTION
Computing systems have evolved from the basic picture of con-
nected PCs and mobile devices to the complicated picture of the
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inter-connected collections of heterogeneous systems. These sys-
tems include Internet of Things (IoT), clouds and micro-clouds,
ad-hoc networks (MANETS, VANETs, FANETs), smart grids, among
others. Each of these systems contains a set of heterogeneous com-
ponents that implement diverse functions communicating using
different protocols. Furthermore, these various systems often need
to interact and collaborate to achieve their goals. For example, iso-
lated rescue teams need to opportunistically compose and access
each others services (e.g., data look-up) to exchange information;
deployed environmental IoT systems process their data on a micro-
cloud in their vicinity and offload certain processing to the cloud
when needed; etc. In this sense, larger systems are constructed
through the interaction of smaller ones, a practice known as System
of Systems (SoS) composition or construction [21].

The inherent characteristics of SoSs make the development of
these systems a challenging task [27]. By definition, a SoS is a com-
plex system built from a (potentially large) number of sub-systems
that in turn are made up of different components, and so on. More-
over, SoSs are typically deployed in environments where context
changes. This is where the need arises to veer from a strict work-
flow path that has been defined at design time, and form a more
complex system in order to maintain the intended abstract behavior
or to be able to provide new behavior that is only possible through
uniting with other systems in the new context. Such examples in-
clude disaster recovery, adaptive IoT applications, volunteer and
crowd computing, military defense operations, and other forms
of cyberphysical systems. Furthermore, the development of SoS is
dynamic in nature. This is grounded in the knowledge that systems
are persistent and long-living [29]. As such, their objectives and
functionalities evolve over time as they are constantly added, mod-
ified, or removed at different time scales. This might also predicate
changes in architectural and functional dependencies.

Despite the challenges posed by the above characteristics, cur-
rent approaches of constructing SoSs assume that developers have
in-depth knowledge of the internal structure of each system and its
components [23]. Taking into account the above challenges and the
characteristics of SoSs, it might be obvious that such approaches
are deficient. We argue that the construction of SoS needs to be
autonomous and dynamic. Systematic approaches for internal and
context awareness are required to attain this goal. All systems
should be able to accumulate knowledge about their own structure
and behavior. Then, systems should exchange and be able to under-
stand such knowledge at runtime so that they can opportunistically
compose and form complex SoSs.

In order to achieve this objective, there is a need for semantics
to comprehensively describe the system structure, capturing the
information required for dynamically composing systems such as
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those relating to communication (e.g., unique identifiers), service
discovery, quality of service, physical properties (e.g., power level
and location), environmental properties, etc. We refer to this com-
prehensive structure description of a system as a holon [7]. A holon
is constantly modified to reflect the system structure and to contain
any new or modified information, and then published to aid discov-
ery and reasoning about composition. When holons compose, they
form a new holon that represents the SoS. This newly constructed
holon will now have its own specification, which is published so
that the system can further compose with other SoSs and so on.

The above holon ecosystem requires means of utilizing system
(or holon) description in order to reason about SoS construction at
runtime, and in a programmatic and adaptive manner. One solution
is to adopt ontologies to specify the holons. Ontologies are engineer-
ing tools for formal and explicit specification of a shared conceptual-
ization [8]. They provide vocabularies that can be used to represent
knowledge that can be utilized programmatically to understand
the corresponding contents, mainly system parameters, offered
services, and requirements. These are expressed through standard
concepts, allowing other holons to understand the described holon
and, accordingly, make decisions about how to interact with it.

In [7] we proposed the vision towards the construction of dis-
tributed SoSs using holons, then in [28] we defined the basic con-
ceptual structure with particular focus on IoT deployments. In this
paper we build on these works by putting forward an architecture
for realizing the holons and how they compose. The paper inves-
tigates how ontologies can be used to capture the holons’ space
to enable autonomous SoS construction. Once specified, the holon
description can be published through broadcasting to other sys-
tems. The description is compiled by receiving systems in order to
understand the functionality of the sending system, reason about
it, and determine how to communicate with it.

Briefly, the main contributions of this paper are as follows:

• A framework for specification, compilation, dissemination, and
modification of the holons (§4–§6)

• A qualitative evaluation of the proposed approach using two
different case studies that motivate the need for dynamic SoSs
construction and configuration (§7–§9).

• A quantitative evaluation of the scalability and validity of the
proposed approach (§8,§10).

2 PROBLEM SPACE AND RELATEDWORK
The SoS concept has featured in the literature for over two decades [21].
However, composing SoS from already existing systems at runtime
is still an area that requires more research.

The significant body of work looming here is the Service Ori-
ented Architecture (SOA) legacy. SOA allows a system to expose its
functionalities as services, and then SOA composition technologies
can be applied to form a SoS; cf. [4, 6, 39]. We argue that such
SOA-based automation is not suitable for the following three main
reasons. First, SOA does not readily provide concepts that capture
physical system properties such as the context they are operating in.
The service composition supported by SOA is mainly functionality-
based composition. However, SoS composition is wider than this, as
it also requires knowledge about system properties and context to
reason about the composition. Second, services in SOA are assumed

to be published in a repository that an orchestrator can consult to
select services from. This assumption is not valid in the general SoS
context which is fully distributed. Third, SOA-based SoS developers
are expected to know a lot about individual systems, or invest sig-
nificant time learning them. Fig. 1 illustrates the tasks performed
by the vendors, developers, and the system for SOS composition.
Developers are required to acquire knowledge about the APIs and
properties of the elementary systems they need to compose. Then,
they need to leverage that knowledge to design and implement the
SoS, and finally deploy it. This requires the developer to focus on
the elementary systems instead of the whole SoS.

Figure 1: Responsibilities in current SoS composition ap-
proaches as compared to the proposed one.

There has also been other non-SOA efforts. These include facili-
tating discovery and composition using cellular infrastructure [12]
and network middleboxes [9]. Such approaches, though, require
specific infrastructure deployment for mediation and, more impor-
tantly, still assume too much on the part of the developer in terms of
reasoning about discovered systems. This final task is crucially dif-
ficult without means of identifying these systems’ modus operandi.
Someworks have chosen to do this at design time (e.g., [22]) through
analyzing qualitative mission objectives of systems, but these are
hard to express in a programmatic way that enables automated
reasoning at runtime.

The closest work to ours also defines the notion of a holon [19,
31], but is focused on goal-driven service composition without
means of allowing holons to reason and self-compose.

Agent-based ontological approaches have been proposed, e.g., [2,
3, 13, 33]. However, these works are less systematic than our holon
ontology. Moreover, they also do not indicate how composition is
reasoned about in a heterogeneous environment.

3 RESEARCH STRATEGY
Based on the above, our ultimate goal is to shift the developers’
focus from learning the internals of elementary systems to thinking
at the level of the SoS. As shown in Fig. 1, holons allow devel-
opers to focus on defining high-level workflows of the SoS. The
elementary systems need to autonomously discover each other
and compose to serve the requests. The achievement of this goal
requires (1) a comprehensive description of the atomic systems
(their services, properties, and context) that enable autonomous
composition between systems; and (2) an architecture the exploits
such descriptions and supports SoS composition and adaptation.

Our research seeks to answer the following three questions.
RQ1: What are the right abstractions to represent different sys-

tems within a SoS framework?
RQ2: What systems principles and techniques are then required

to support SoS composition?
2
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RQ3: What extensions are required to support SoS composition
and adaptation in heterogeneous, large-scale environments?

Our work uses an ontological approach towards real-time rea-
soning around the composition of systems of systems. This is made
possible by an architecture we have built for comprehending what
an SoS is made up of, if composition is required, and how such com-
position would take place. Moreover, the architecture automatically
actions the low-level mechanics that enable the composition. To
validate the feasibility and utility of our architecture, we adopt a
hybrid experimental evaluation strategy that comprises of quali-
tative assessment of controlled testbed experiments (specifically
in the domains of IoT and infrastructure management) as well as
quantitative assessment of real open-source systems.

4 THE HOLONIC LIFECYCLE
A holon starts as an atomic one then might evolve to being com-
posite. An atomic holon represents a single system that provides
one or more functionalities. A composite holon includes functionali-
ties provided by a number of systems interacting with each other,
where each pair of systems can interact directly or through a third
one. In order for the holons to compose, atomic holons need to
be comprehensively specified by the system developer. After that,
the system will be dynamically constructed as the holons iterate
in their lifecycle. Fig. 2 illustrates the four stages of the holon’s
lifecycle, which are outlined below.

Run Time
(Section V)

Design Time
(Section IV)

Specification Dissemination

Compilation

Modification

Figure 2: A holon’s lifecycle

Specification. A system developer uses an ontology to create
the holon from a number of elementary descriptions. This includes
a holon identifier, the physical properties of the system (e.g., power
level), quality of service (e.g., availability and reliability), environ-
mental properties (e.g., location), policies (e.g., routing protocol),
services (e.g., sensing temperature), among others. All these are
specified using our ontological model, described in §5.

Dissemination. A created holon disseminates its specification
so it can be discovered. Different dissemination strategies can be
adopted: push, pull, and lookup. In the push strategy, the holon
periodically broadcasts its latest description. In contrast, a pull
strategy uses heartbeat signals; i.e., the holon periodically sends
‘Hello’ messages to establish interaction with other systems, which
could then request the full holon description. This strategy reduces
overhead, so is useful in energy-constrained environments. In the
lookup strategy, the holon registers its description with a registry
that can be consulted by other systems to obtain the holon. This
strategy is to be used when infrastructure assistance is guaranteed.
We adopt the push strategy for the scope of this paper.

Compilation. This aims at understanding other holons their
functionalities. This is achieved by parsing received descriptions
(in the form of XML representations), and identifying the func-
tionalities contained within, and how they interact with that of

the received holon. Compiling these functionalities into one holon
representing a new SoS comprising of the interacting holons.

Modification. Holons can change at runtime due to a change in
the physical system (e.g., update of a service) or due to a structural
change (e.g., composition to a new holon). In either case, the holon
description will be modified to reflect the change. Upon obtaining
a modified version of a holon, the receiving holon will recompile
its own holon and disseminate it. This will convey the changes to
the whole SoS.

5 THE ONTOLOGICAL MODEL
5.1 Background
For a holon to be able to compose with another holon at runtime, it
needs to advertise its own definition in a systematic way that can
be easily understood by the receiving holon. For this, the definition
needs to embody the different concepts surrounding the holon,
triggering the need for an appropriate structure to represent it. In
this respect, an ontology seems to be the best technique to capture
the definition and behavior of a holon. An ontology is a formal and
explicit specification of a shared conceptualization. It models some
aspect of the world (called a domain), and provides a simplified
view of certain phenomena in this domain. The description of the
domain is based on a vocabulary that explicitly defines its concepts,
properties, relations, functions, and constraints.

For our purposes, the ontology will be used by a holon to ad-
vertise its services, the types of input parameters required for said
services, and the types of outputs they produce, if any. Furthermore,
the ontology is used to identify the physical properties of the holon
such as the power level (infinite/finite), location, operating system,
mobility, etc.

Whilst an entirely new ontology can be developed from scratch,
we deemed it more constructive to look at existing ontologies and
extend suitable ones if and where necessary. In order to identify
the most appropriate ontology to represent holons, we looked at
different sensor and observation ontologies. We started with those
surveyed by the W3C Semantic Sensor Network (SSN) Incubator
Group [36]1, and continued with our own study of others. Table 1
shows the main ontologies that we reviewed.

Based on this investigation, the ontologies that we found suit-
able for extension are (in chronological order): CoDAMOS, Swamo,
A3ME, and Ontonym. We concluded to use CoDAMOS [30] due
to its inherent predisposition for modification, making it easily
extensible for defining context-aware computing infrastructures
varying from small embedded devices to high-end service platforms.
Furthermore, CoDAMOS’s concepts closely match the kind of def-
initions we want to create for a holon. For example, the Service
concept - i.e., having a service profile - can be used to define the
types of services provided or required by a holon. Note, however,
that this does not imply that the other shortlisted ontologies cannot
be used. Indeed, A3ME [14] (to pick just one other ontology) could
be merged with CoDAMOS to describe further concepts related to
holonic design; for instance, the APIPublic CoDAMOS concept can

1It should be noted that we did not specifically opt for the SSN ontology – despite it
being a complete ontology about sensors and their measurements – as our focus is not
limited to a sensor-based system, but is rather more on capturing the abstract nature
of a holon and on how to reason over whether a holon is atomic or composite.

3



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

SEAMS 2020, May 25–26, 2020, Seoul, South Korea A. Elhabbash et al.

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

Table 1: Survey of existing sensor-based ontologies

Ontology Comments on Suitability Suitable?
CoDAMOS Easily extended to accommodate new

definitions of devices and systems
✓

OntoSensor The organization of concepts and properties
is not transferable to a different context

✕

MMI Not well tested in other contexts ✕

SensorML Basic and without concept documentation ✕

O&M Expressive representations of time and
space are not available

✕

Swamo Describes autonomous agents for
system-wide resource sharing, distributed
decision-making and autonomic operations

✓

SDO Not available for use ✕

A3ME Can be easily extended ✓

Ontonym A set of ontologies for representing core
pervasive computing concepts

✓

Sensei Some properties are not completely defined ✕

be further described asGlobalAddress, LocalAddress, orOtherAddress
using the Address concept of A3ME.

For this paper, we use CoDAMOS as the basis ontology with the
aim of answering our research questions (§3), and in particular RQ1:
is it possible to define something as abstract as a holon using an
ontology, which is by nature prescriptive and unambiguous?

5.2 Extensions
Among its various concepts, there are four basic CoDAMOS con-
cepts that stand out in terms of designing holons: User, Environment,
Platform, and Service. The User concept has a profile, a role, and a
task. The task can have activities and/or uses a service. The Envi-
ronment concept has a location (relative or absolute), a time, and
an environmental condition (e.g., temperature, pressure, humidity,
lighting, noise). The Platform concept has an Environment and can
provide a Service (used by User). The Service concept has a profile, a
model, and grounding. Resources such as memory, network, power,
storage resources can also be modeled through the ontology, as
well as different kinds of software or hardware.

Figure 3: Our extensions to the CoDAMOS ontology, en-
abling the representation of holons to form SoSs

Fig. 3 summarizes how we extended CoDAMOS to accommodate
the requirements of a holon. The Profile is extended to show profile
preferences for routing messages in a system such as Ordering,
Reliability and Delay. A new concept Node is added to capture the
types of nodes encountered in a system: physical and abstract. This
allows systems to be organized in a hierarchical way with physical
systems at the very bottom of the hierarchy as leaf holons, and
abstract systems as their parents, and so on till a root holon at
the very top. All of these are added as concepts under the Holon

concept. Furthermore, Service Properties has been extended to
accommodate routing properties such as Delay, Reliability and
Ordering. For implementing these extensions we used Protégé [24],
an open-source ontology editor.

5.3 Application
For demonstration, we show how two holons can be composed
using their underlying description. As such, the starting point is
where each holon defines itself using the ontology: its properties,
the services it provides, and the parameters being used. These
descriptions are broadcasted by each respective holon.

On receiving such broadcast, holons will compose with each
other if they meet the criteria for composition, for instance: if
a holon H1 is requiring a service X , and it encounters another
holon H2 that is providing such service, then H1 can initiate the
composition procedure withH2. OnceH1 gets composed withH2, it
needs to update its definition to reflect its new state as a composed
holon, i.e., a SoS, that is now providing service X . This update is
carried out at runtime through creating an instance of the holon
concept (called, say, H3) to represent the new holon that has been
encountered, and it also holds the definition of H2 in this case.

Moreover, the ontology retains the ability to infer new knowl-
edge based on the domain information provided. For example, there
is a defined concept called composedHolon that is used to identify
whether a holon is a simple or composed one. In this context, given
that a holon has been composed to another holon, the ontology
reasoner can determine whether this holon is a composed one. If
H2 gets out of reach, then the ontology of the composed H1 will be
updated to accommodate this change, simply by removing the H3
instance and clearing composedHolon.

6 SOS CONSTRUCTION MODEL
This section provides the mechanics of using holonic ontologies in
order to reason about their composition to form a SoS at runtime.
At a high level, our approach is first to transform a holon to be
represented as weighted tree that reflects its interaction with other
holons. Then, upon receiving a request for a service, the tree is
used to find through which holon the service can be accessed. This
section also presents the architecture that realizes the approach.

6.1 Composition model
Each holon needs to build a model that represents its awareness
about the existence of other holons (i.e., systems) and their ser-
vices. This model (called the composition model) is used to interact
(compose) with the other systems by accessing their services. The
composition model of a holon is represented as a weighted tree
T rooted by the holon and with a depth of three. The children
of the root are the holons that are directly reachable by the root
holon. The leaf nodes represent the detected functionalities that
are provided by or accessed through the children holons. Each leaf
node i is assigned a weight that represents the cost of accessing
the corresponding functionality Fi . For simplicity, in this paper
we define the cost as the distance between the root and the holon
providing Fi in terms of the number of intermediate holons. Other
cost functions such as delay, reliability or aggregated Quality of
Service (QoS) can also be used. It is worth mentioning that a holon

4
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is not aware where a functionality Fi is located. However, the holon
is aware of the cost of accessing Fi and through which holon can Fi
be accessed. Fig. 4 shows an example of a holon connected to three
other holons in its neighborhood. Functionality F2 can be reached
through both H1 and H2, but it is less costly to access through H1.

The compositionmodel is frequently updated during the lifecycle
of the holon. Updates include adding/removing new holon branches,
and updating the services of current ones. Adding and updating
are performed upon receiving holon ontologies, while removing
is carried out if the ontology is not received during a certain time
period (we set this to be three times the dissemination period).

Figure 4: Composition/interaction modeling example.

6.2 Reasoning architecture
We assume that a system developer will create the atomic holon
using the ontology described in §5. Once deployed, the holon lives
in the described lifecycle (§4). Fig. 5 offers a high level view of
the architecture that realizes SoS construction using the holonic
approach. The architecture consists of five main components.

Figure 5: System architecture

OWL parser. This component receives ontologies from sur-
rounding holons and parses them, creating objects that represent
each holon and its functionalities. We adopt OWLAPI V5.1 [16] to
parse ontologies and extract the knowledge therein.

Fig. 6 displays an overview of the mapping of ontology elements
to a holon object. For each Class element, a Java class is created to
represent it. For example, a Java class Service represents the ontol-
ogy Service concept, Profile represents the Pro f ile concept, and
so on. The Instance elements of the ontology are instances of the
Class elements. The instances are linked together using DataType
or Object properties. Such structure is mapped as attribute objects
of the Holon object. For example, assume the ontology contains an
element servicei that is an element of class Service . This instance
can be linked to the Holon concept using an object property ele-
ment called hasService . In the Java Holon class, this is mapped by
having an attribute called service_i of type Service in the Holon
class. Finally, in the ontologyValue elements represent some of the
parameters values that are mapped as attribute values of the Holon

Figure 6: The relationship between main ontology elements
and those of a holon.

Java objects. An example is the value ‘25°C’ of theTemperature ele-
ment which is assigned to the temperature attribute in the Holon
Java object. The OWL parser then passes the created Holon object
to the Compiler.

Compiler. This component formulates a notional model of the
developing SoS as seen from the perspective of the receiving holon.
This model takes the form of a tree data structure with the receiv-
ing holon at the root, with each branch representing a neighboring
holon and the functionalities provided either natively by it or in-
directly through it. To construct or modify the tree, the Compiler
creates a tree branch that represents the received holon object and
its provided functionalists as children. The cost of each functional-
ity is also updated as this stage. After that, the newly formed branch
is attached to the root holon as a child. The Compiler then passes
the constructed tree to the Server/Mediator and OWLRenderer.

Server/Mediator. This component receives requests for the
functionalities provided by the system and serves them. It uses
the constructed holon tree to specify whether the request can be
satisfied by the system or needs to be directed to another holon.
If the requested functionality is provided by the holon, then the
system processes the request and responds to the requester. Other-
wise, the system acts as a mediator and redirects the request to the
holon that provides the request, waits for the response, and passes
back the response to the requester.

OWLRenderer. What this component fundamentally does is
represent the knowledge of a developing SoS based on interaction
with new holons. The OWLRenderer reads the holon tree data
structure from the Compiler and converts each node and the corre-
sponding attributes into the appropriate XML tags that construct
a valid ontology (i.e., an inverse mapping of Fig. 6). To render the
ontology into an OWL description, we also use OWLAPI.

Disseminator. Upon receiving an OWL description represent-
ing the holon and the compositions with other holons, the Dissemi-
nator publishes this description by broadcasting it – as is the policy
in the Push strategy (see §4).

7 CASE STUDY I: AUTONOMIC SMART HOME
In this case study, we focus on the ontology exchange between
holons to realize SoS logic.

7.1 Background and challenges
Smart Home is an application of IoT that promises the ability for
users to intelligently manage their homes with minimum interven-
tion. Devices are utilized to monitor home conditions (e.g., temper-
ature, humidity) and the state of appliances (e.g., battery levels) to
enable smart management of energy consumption, security, and
various house keeping functions. However, it is no longer realistic
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to assume a defined and small scale of smart home deployments. As
smart home systems are increasing in popularity, the dimensional-
ity of IoT devices used is increasing as new devices are constantly
offered in the market and with increased capabilities [37]. Thus,
their deployment environments are continually evolving [35], mak-
ing self-adaptation a necessity [17, 23].

Furthermore, homogeneity cannot be taken for granted [38]. The
fact that these devices are developed by various vendors means that
heterogeneous technologies and APIs exist. Smart home application
developers need to learn these various technologies and APIs in
order to develop IoT applications that manage the different aspects
of a smart home in a coherent manner.

Finally, IoT applications generally limit consumers to the prede-
termined deployment environments they were designed for [26].
Consequently, they are brittle and susceptible to suboptimal op-
eration when their context changes, e.g., due to a backhaul net-
work fault or a server outage. Under such conditions, centralized
(mainly cloud-based) approaches fall short especially in network-
constrained conditions [10]. Instead, IoT applications often need a
way to be able to adapt at the edge without preparation or central
coordination.

7.2 Overview of our approach
In this case study, we illustrate how the adoption of our ontology-
based approach helps to significantly mitigate the mentioned com-
plexity. Building on the approach of integrating web services with
the IoT technology to enable remote access of data gathered by the
IoT devices (e.g., [32]), we argue that our approach enables the auto-
matic discovery of services that are required for an adaptive smart
home management application. As in the web service composition
case, application developers need to specify the abstract workflow
of the application execution where each task in the workflow rep-
resents an abstract service. Then, concrete implementations of the
abstract services are selected for the workflow realization.

We consider each device as a holon that is described using the
ontology (probably by the vendor). The management application
is also considered as a holon that receives other holon ontologies,
parses and compiles them, and then uses their services. Application
developers specify the abstract workflow of the smart home man-
agement application. Then, the Server/Mediator component selects
the concrete services that implement the abstract services of the
workflow. A concrete workflow (the application) is passed to an
execution unit that executes the application and passes the results
to the smart home actuators. Fig. 7 illustrates the above steps.

Figure 7: Smart Home Controller

Figure 8: Object properties of the device ontologies.

Figure 9: Prototype workflow

7.3 Experimental setup
We developed a proof of concept prototype focused on smart home
temperature management. We assume a smart home that has the
following smart devices: heaters, thermometers, windows, and a
fridge. The devices provide the services listed in Table 2.

Table 2: Smart home devices and services.

Device Service Description
Window openWindows Opens the windows (by actuators)

closeWindows Closes the windows (by actuators)
Thermometer getTemeprature Returns the home temperature
Heater switchHeaterOn Switches on the heating

switchHeaterOff Switches off the heating
getStatus Returns true if the heating is on

Fridge replaceFilter Tells if the filter should be replaced
foodLevelLow Returns true if food level is low

We created a simple ontology for each of the devices as shown
in Fig. 8. We also created an abstract workflow that aims at keeping
the smart home temperature at 22°C, which is depicted in Fig. 9. The
application reads the temperature from the thermometers. If the
temperature is less than 22°C, it calls the heaters’ switchHeaterOn
service to switch on the heating and the windows’ closeWindows to
close thewindows. If the temperature is higher than 22°C, it turns off
the heater (calling switchHeaterOff). If the temperature is higher
than 22°C it also opens the windows (by calling openWindows).

7.4 Behavior
Fig. 10 shows a snapshot of the object properties of the controller
ontology after parsing the device ontologies and constructing the
SoS tree. The ontology shows that the controller provides services
that are provided by the devices themselves (see Fig. 8) in addition to
servicesSelector, which selects concrete services for the abstract
workflow.

The execution starts with reading the temperature from the ther-
mometer by calling the getTemeprature service. Table 3 presents
the experimental cases and the invoked cases for each case. As the
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Figure 10: Object properties of the controller ontology

Table 3: Experimental cases of the workflow in Fig. 9

Temp. Invoked Services
10°C getTemperature→ switchHeaterOn→ closeWindows
18°C getTemperature→ switchHeaterOn→ closeWindows
22°C getTemperature→ switchHeaterOff → closeWindows
23°C getTemperature→ switchHeaterOff → closeWindows
26°C getTemperature→ switchHeaterOff → openWindows

table illustrates, the sequence of invoked services complies with
the abstract workflow provided by the developer to the controller,
despite the developer not hard-coding the required connections
between devices. For example, when the temperature is 22°C, the
execution unit invokes the getTemperature, switchHeaterOff,
and closeWindows services respectively, which complies with the
abstract workflow (Fig. 9).

This case study demonstrates the potential for easing the devel-
opment of IoT applications, where application developers do not
need to know the details of smart device APIs. Definition of device
ontologies (by vendors) and an abstract application workflow (by
smart home developer) are sufficient for runtime application syn-
thesis and execution by the proposed architecture. Table 4 compares
the tasks required from the smart home developers to implement
this case study in both the classical and holonic approaches.

Table 4: Tasks required from developers to implement the
smart home case study.

Classical approach Holonic approach

1. Understand the services, APIs, and proper-
ties of the devices listed in Table 2.

2. Design the composition of services based
on required functionality and context.

3. Develop code to compose the services.
4. Deploy the system.

1. Define the abstract
workflow of the re-
quired functionality on
the controller.

2. Deploy the devices
listed in Table 2.

8 CASE STUDY II: DYNAMIC CLUSTER
MANAGEMENT

In this case study we center our attention on holon interaction,
demonstrating how holons containing the same service in their
ontologies and in constant movement creating and modifying new
SoSs, can interact with each other.

8.1 Background and challenges
Inspired by heterogeneous fog clusters, we set a scenario where
device interaction is constant.We use ApacheMesos [15], an orches-
tration tool commonly used to manage resources that are shared

between different applications and their sub-tasks. In effect, Mesos
enables the viewing of data centers and other computing clusters
as a single consolidated resource.

Although Mesos is a very useful utility, it was designed mainly
for shared resources in relatively stable environments such as data
centers. As such, the computing cluster can only change (grow or
shrink) through manual modifications to the configuration by the
user. Mesos was not designed to work in an environment where
node status is constant flux due to movement, unreliable power, or
communication outages. Mesos is also designed to work in a hier-
archical fashion, whereby Agents (worker nodes) can only commu-
nicate directly to the Master but not through other Agents [15, 18].

8.2 Overview of our approach
Both of the above restrictions can be overcome using the holonic
ontology presented, which offers opportunistic composition (over-
coming the first restriction) and horizontal composition between
self-describing clusters in the form of holons (second restriction).
We draw a scenario here to demonstrate this using containers run-
ning over an unreliable infrastructure such as edge PoPs [11]. In
this scenario, each node can be a Master or an Agent. Following
the basic design of Mesos, Masters are responsible for dispatching
containers to the Agents, who in turn operate the containers.

8.3 Experimental setup
A simple example is given here to illustrate how holons could be
used to facilitate the union of Mesos clusters with mobile nodes
without the need for establishing direct communication. Due to the
high mobility of nodes during the tests, the composition of SoSs
is dynamic, creating several additions and removals of the Mesos
Services. This is something that would have been prohibitive to
accomplish using Mesos’ manual configuration.

We tested this use case study using 100 devices that can move
freely. Every device is considered a node for Mesos and is individu-
ally defined as a holon at the beginning of the experiment. Shortly
afterwards (a minute later), bigger holons begin to be created, con-
taining one or more devices. After that, each holon starts an internal
process of randomized leader election mechanism [25] to elect a
master from amongst the constituent devices.

hasParameter    NodeA-mobility

providesService    NodeA-AskForMaster

providesService    NodeA-SendMaster

providesService     NodeA-BridgeToMaster

Property assertions: NodeA

Object property assertions

NodeA

hasParameter   NodeA-id

hasParameter   NodeA-isMaster

Figure 11: The ontology model of Mesos NodeA.

Each holon contains parameters to define its identifier, mobility,
and whether or not it is a Mesos Master (e.g., Fig. 11). Additionally,
each holon contains three services: The AskForMaster service is
performed every time two holons reach each other for the first time,
where it would return the ID of the Master. After a holon receives
the request of whom is its Master, it will perform the SendMaster
service to send such ID. BridgeToMaster is used by the nodes to
communicate with the Master through its Agents. Fig. 12 shows
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an abstract workflow of the experiment when a node reaches a
new node from another Mesos cluster. A second abstract workflow
has been created when a node receives a new ontology, which is
depicted in Fig. 13. Both abstract workflows are used by the nodes
to allow dynamic union of Mesos clusters with mobile nodes.

Figure 12: Prototype workflow of Dynamic Cluster Manage-
ment when a node reach another node.

Figure 13: Prototype workflow of Dynamic Cluster Manage-
ment when a node receive a new ontology.

NodeA-Master NodeF-Master

NodeB-Agent NodeC-Agent

NodeD-Agent

NodeE-Agent

H1
H2

(a) H1 is unreachable from H2

NodeF-Master
NodeE-Agent

H1

H2

NodeA-Master

NodeB-Agent NodeC-Agent

NodeD-Agent

(b) C and E come in range, interact

H1

H2

NodeF-Master
NodeE-Agent

NodeA-Master

NodeB-Agent NodeC-Agent

NodeD-Agent

(c) Ontologies exchanged & updated

H3
H1

H2

NodeF-Master
NodeE-Agent

NodeA-Master

NodeB-Agent NodeC-Agent

NodeD-Agent

(d) A SoS, H3, is created

Figure 14: How to use holons to construct a SoS of Mesos
clusters running on mobile nodes.

8.4 Behavior
Fig. 14a presents the starting point with two holons: H1 and H2. H1
is formed by four nodes: nodeA, working as a Master Mesos, and
nodeB, nodeC and nodeD working as Agents. On the other hand,
H2 is formed by two nodes: nodeF, a Master, and nodeE, an Agent.
In this case, H1 and H2 cannot reach each other.

In Fig. 14b,H1 andH2 reach each other through nodeC and nodeE
that come in range of one another. This triggers them to exchange
ontologies and call AskForMaster and subsequently SendMaster.
The orange arrow in the figure represents this interaction.

Then, nodeC and nodeE broadcast their new ontologies to neigh-
bors as shown in Fig. 14c. As all nodes in H1 and H2 receive the
updated ontology, a new holon is created: H3, which is the union of
H1 and H2. As a result, all nodes inside H3 have the same ontology.

All Agents are sharing the Masters nodeA (from H1) and nodeF
(from H2). This is achieved using the service BridgeToMaster, per-
formed continuously by nodeC and nodeE while they can reach
each other. The resulting SoS H3 has 2 Master nodes and 4 Agents.
Therefore, each of the two Masters can communicate to all Agents
in H3 as if they were connected directly.

As such, the ontological exchange and reasoning of holons al-
lows Apache Mesos to transcend its innate design shortcomings
and enables it to form a dynamic cluster structure. Achieving such
dynamic structure using manual configuration (which is the only
way possible using native Mesos) significantly restricts adaptation
and reduces cluster efficiency by a factor of 5 compared to using
holons. Table 5 compares the tasks required from Mesos develop-
ers to implement this case study in both classical and proposed
approaches.

Table 5: Tasks required from Mesos developers to imple-
ment the dynamic cluster management case study.

Classical approach Holonic approach
Repeatedly:

1. Select a cluster Master.
2. Add nodes to cluster.
3. Add services to cluster.
4. Remove nodes from cluster.
5. Remove services from cluster.

1. Define the cluster node as a
holon using the ontology.

2. Implement the cluster Master
election algorithm.

3. Deploy the holons.

8.5 Simulations
For evaluating the efficacy of automated expansion of Mesos clus-
ters through the use of holon ontologies, we used the Omnet++
discrete-event simulation framework [34] to simulate 100 nodes.We
set the node transmission range to 20m and their speed to 1.43m/s ,
an average walking speed [20]. Additionally, the nodes used the
individual-level (random walks) [5] as a mobility model.

We used Mesosaurus [1] to create task loads to test the perfor-
mance of the formed clusters. Specifically, we seek the length of
time required by a Mesos Master to perform a specific task. The
task created for this experiment is one that a Master with 5 Agents
will normally perform in about 20 seconds. If more Agents are
employed, execution time is expected to decrease.

Fig. 15 displays the average task execution time across all Mesos
clusters in the experiment after performing it 20 times. Using
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Figure 15: Computational tasks are completed faster on dy-
namic clusters constructed using holons as opposed to na-
tive Mesos cluster configurations.

Mesos’ native method of cluster management, task execution time
decreases slightly (from ≈ 23s) as Masters expand their clusters
through the use of scripts that to add nodes they encounter in
their environment. This improvement in performance, however,
eventually plateaus (≈ 20s) as churn overwhelms Masters through
frequent configuration management, despite the use of automated
scripts. On the other hand, using holons and ontologies introduces
some overhead in terms of ontology creation and reasoning. This
results in a slightly inflated initial execution time (≈ 27s). However,
as nodes encounter others during the lifetime of the simulation,
Mesos clusters identifying as holons expand dynamically accord-
ing to changes in their environment. Compiling and reasoning
overheads soon become relatively insignificant, enabling Mesos
holons to achieve an average of 17s execution time, a 15% increase
in performance.

9 DISCUSSION
The above experiments show how we are able to enable the au-
tomatic self-discovery and composition of systems through rich
ontological description of elementary systems that are required to
realize a SoS. We now reflect on our research questions (§3).

9.1 Abstractions for SoS representation
Holons offer the ability for systems to richly describe themselves
and independently reason about the change in their environment
and how it might affect their set up and operation. This concept en-
ables systems to reflect on their existence and how they fit into the
rest of the system around them. This in line with the ethos of reflec-
tive middleware, which enables systems to build a representation of
itself that it can then adapt. In addition, holonic representation al-
lows systems to transfer such knowledge about themselves to other
systems they get in touch with. Along with this, each system is able
to build a representation of the behavior of systems in its vicinity
and form more complex systems without prior arrangement.

There is an assumption that each system needs to start with a
representation of itself in its simplest form as an ontology. Because
of this, we built our ontological architecture on the most generalize
and easy-to-use ontology available in the literature. Furthermore,
using such framework makes it easy to create ontologies, which is
a relatively small development overhead of similar or less scale of
defining a system’s API. However, this enables the system to adapt

after its deployment and unlock a new world of complex system
creation that facilitates new forms of aware applications.

9.2 Techniques for SoS composition
The presented case studies demonstrated how a developer could
define desired behavior at a high level (as summarized in Tables 4–
5), and a system is subsequently composed of other sub-systems
to align with this behavior. Our architecture allows systems to
independently reason about their environment, and how changes
might affect their set up and operation. This is a powerful concept
as it maintains the separation of concerns, which is crucial for
effective system development, whilst also reaping the rewards of
complex system formation through autonomous composition.

Furthermore, the holonic ontology could be applied at different
levels: at the atomic service level (e.g., temperature sensor), at a
system component level (e.g., smart sensors), or at a higher system
level (e.g., smart home controller). This enables developers to write
behavior at different levels of granularity with the same modeling
effort, which is especially beneficial for dynamic environments such
as the IoT where context-dependent behavior could be sought at
different levels.

9.3 SoS adaptation
The presented architecture exploits the holonic ontology and main-
tains the holonic lifecycle to fully support the vision of autonomous
SoS composition and adaptation presented in this paper. The archi-
tecture continuously updates the holonic ontology allowing up-to-
date SoS state exchange and enables timely response to changes.
This allows holons to detect failures and discover new functionali-
ties a holon needs to rebuild a SoS. As demonstrated in the cluster
management case study, adaptation is fully autonomous. The sys-
tem can, for example, detect the arrival of new working nodes and
add them to the cluster.

Furthermore, human involvement is only needed when major
requirements changes are required, i.e., at the SoS level. For exam-
ple, a change in the smart home requirements that demands the
deployment of new devices might require updating the behavior
of the smart home applications. This will need developers to adapt
the abstract workflows. However, such intervention is guaranteed
to be minimal as developers do not need to know the low-level
details of post-deployment systems such as device-specific APIs. As
such, our proposed architecture provides a generic framework for
supporting high-level behavior adaptation to real implementation.

10 QUANTITATIVE EVALUATION
We conducted experiments to evaluate the feasibility of our ap-
proach, specifically the time required to parse and render the on-
tologies at different scales. We also evaluate the validity of the
parsing and rendering stages. From this, we extract conclusions
about the ability of using holons to compose SoS during runtime
and at scale. The used platform is Intel Core i7 with 16GB RAM,
running Linux Ubuntu 16.04 and Java SE v1.8.0. Each experiment is
repeated 100 times to obtain representative mean values.
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10.1 Parsing
This first experiment focuses on evaluating the parsing time de-
fined as the time of converting a received ontology into a tree (§6).
Recalling that the tree contains the holon object as a root and the
services provided by/via the holon as children, in this experiment
we vary the number of services provided by/via the holon, which is
the main dimension affecting the scalability of the parsing. Fig. 16a
plots the average parsing time in milliseconds. We notice that the
parsing time increases with the number of services, exhibiting a
linear trend. The increase is expected and the linear complexity is
acceptable as it indicates the feasibility of parsing an increasing
number of holons in a SoS.

10.2 Rendering
This experiment focuses on evaluating the rendering time defined
as the time of converting the holon tree into an ontology to be
disseminated. Recalling that the tree contains the system holon as
the root, the neighbor holons as the children, and their services as
leaf nodes, we vary both the number of neighbor holons and the
number of services that are provided by/via them. Fig. 16b plots the
rendering time in milliseconds. The plot shows that the rendering
overhead increases both with the number of holons and with the
number of services per holon. In other words, the more sub-systems
a holon contains, the longer it takes to create its ontology that could
be used for composition. Again, the increase exhibits a linear trend
which is practically acceptable.

10.3 Validation
As previously mentioned, the proposed framework includes parsing
holon ontologies to build a tree that represents the SoS construction,
and then subsequently rendering the tree to disseminate the modi-
fied ontologies that reflect the SoS evolution. In this subsection we
validate the output of the parsing and rendering operations using
two experiments.

In the first experiment we adopt the process depicted in Fig. 17a.
We create ontologies for 100 holons with random values for each
of their parameter and service values. We then pass the ontology
files to the OWLParser, which creates the holon trees. The trees are
then passed to the OWLRenderer to render them into ontologies.
We then query (using OWLAPI [16]) both the created ontologies

(a) Parsing time (b) Rendering time

Figure 16: (a) Ontology parsing time as the number of ser-
vices per holon increases. (b) Rendering time for holons of
increasing size (and, thus, ontology complexity) as the num-
ber of holons increases.

Figure 17: A diagrammatic representation of our two meth-
ods to validate ontology parsing and rendering experiments.
The parsing and rendering of the ontology are valid when
the information returned by the queries match.

and the rendered ones to check if the results are equal. For all of
the 100 ontologies, the returned values were indeed equal.

In the second experiment, we adopt the process portrayed in
Fig. 17b. Here, we synthesized 100 compiled trees, each representing
a SoS. We then passed the trees to the OWLRenderer to render them
into a SoS ontology for each tree. Thenwe queried both the rendered
ontologies and the created trees and compared the results. Again,
for all of the 100 cases, the returned values were equal.

11 CONCLUSION
We propose an approach for the dynamic construction of distributed
systems of systems (SoSs). The approach is based on two key ideas.
First, we define the concept of a holon as a self-describing sys-
tem, which could span from atomic to complex distributed sys-
tems. Holons need to be prepared for autonomic integration with
other holons. This is achieved by comprehensively describing them
using an ontology that enables both self-awareness and context-
awareness. Second, an architecture for SoS construction is proposed
to make use of the holon description to discover, reason about their
functionalities, and integrate them to form more complex SoS.

We demonstrate the feasibility of our approach through two case
studies that implement contrasting SoS construction scenarios. The
cases studies show that our approach reduces the development com-
plexity of SoS by abstracting the heterogeneity of the systems using
holon descriptions and their autonomic manipulation at runtime.
We also evaluate scalability and validity through experimentation,
concluding that our approach is realistically feasible with perfor-
mance exhibiting a linear trend for manipulating and reasoning
about descriptions.

This novel contribution has strong potential to be applied in
various application fields beyond those covered in our case studies.
Similarly, our architecture could be modified to cater for domain-
specific interactions if particular situational-awareness are needed.
Moreover, we are extending this work by building tools that allow
very high level specification of desired SoS construction behavior
and evolution.
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