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Abstract  

Inspired by Imitation Learning, this dissertation trained a LSTM network by a mock-

up operation experience of a solar energy community distribution system. Unlike the 

conventional method that implements LSTM only to predict features for the control 

programme to calculate an operation action according to a strategy, the LSTM of the 

proposed model integrates the strategy into its structure and thus can outputs actions 

directly. To examine whether the proposed model outperforms the conventional 

model, this dissertation first describes an operation strategy, adopted by both models, 

that aims to decrease total operation cost. Since the strategy needs accurate 

predictions to work effectively, an expert who can perfectly predict the future is 

created by historical data. The behaviours of the expert that follows the strategy are 

used as the training data of the LSTM in the proposed model. During simulation, the 

proposed model has better performance and computation efficiency than the 

conventional model by 25% higher and 75 times faster. Many researches have 

proposed control models for different systems and implemented LSTM only to 

predict key uncertainty in those models. To these researches, this dissertation 

demonstrates a promising result that the performance of a control model can be 

improved by integrating the strategy of that model into a neural network with mock-

up operation experience. 
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1 Introduction 

This dissertation presents a practical application of Long Short-Term Memory neural 

network (LSTM) [1] on a solar energy community distribution system. Unlike other 

models that predict features individually for supporting operators or control 

programmes to decide on operation actions, the proposed model in this dissertation 

was trained for directly determining the next operation action based on input features. 

LSTM is capable of predicting time sequence by learning long-term dependencies 

in a dataset. It has the power of extracting non-linear relationship between input and 

output, and the capability of identifying patterns in time sequence. Thus, it has been 

widely used in electricity systems because key uncertainties, such PV generation, 

wind speed, demands and electricity price, have a temporal dependency between 

each time step.  

Many researches applied neural network purely to predict key features related to 

electricity industry, such as energy demands, weather condition and electricity prices. 

These predictions can be used to support operator’s decision making, but not directly 

provide operation actions on the electricity equipment or systems. In Ref [2], a next-

value prediction and a sequence-to-sequence LSTM networks were built to estimate 
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building electricity load. These networks receive time/date indicator and load data 

from previous time steps as input and then it outputs an estimation of future load. 

Another LSTM networks created in Ref [3] forecasts the energy consumption at a 

target time, taking past energy consumptions data of individual residential 

households, indicators of each hour in a day, indicators of each day in a week and a 

binary indicator of whether it is a holiday as input. Ref [4] developed a DNN that 

takes more input features, including weather features of the target date (temperature, 

humidity, wind speed, solar radiation, and cloud cover), past electricity 

consumptions and time/date/month/season indicators. It forecasts the energy loads 

of the target date, divided into 24 hours intervals. In Ref [5], LSTM networks was 

trained by hourly data of past prices and loads to predict day ahead and week ahead 

electricity price and load in a smart grid. In a similar way, Ref [6] trained RNNs, 

LSTM and GRU networks with multiple input features for conducting electricity 

price forecast. Performance of these networks were compared with single and multi-

layer neural networks and statistical methods. Ref [7] compared the performance of 

many machine learning and statistical approaches for electricity price forecasting, 

including DNN, LSTM, GRU, SVR, MLP, fARX-EN, fARX-Lasso, etc.  

LSTM has also been widely adopted in weather forecasting. Two sequence-to-

sequence LSTM networks were built in Ref [8]. These networks receive values of a 

feature of previous 𝑛 hours to predict values of the same features of next 𝑛 hours. 

Features studied in Ref [8] includes temperature, humidity and wind speed with 𝑛 

equal to 24 or 72. In contrast to using only the same feature of output as input, Ref 

[9] created LSTM networks to forecast future solar irradiance with previous local 

data of solar irradiance and exogenous features, including wind speed, wind  

direction and solar irradiance of each neighbouring locations. It showed that input 
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data from multi-location improves the performance of LSTM predictors. With input 

and output of the same hours, Ref [10] created another kind of LSTM networks to 

predict solar irradiance of 24 hours in a day, using different features of the same 24 

hours in that day as input, including time/date/month indicators, temperature, dew 

point, humidity, visibility, wind speed and weather types.  

The main difference between each model mentioned above is the feature selection 

and the architecture of those networks. It is obvious that this difference could 

influence accuracy of each network. Many researchers have worked on improving 

the performance of their networks by introducing novel/hybrid networks or feature 

engineering. Ref [11] built a sequence-to-sequence CNN to predict energy load with 

historic data of past load. The output sequence of this CNN, along with time/date 

indicators, are then fed into fully connected layers to make a final prediction of future 

energy load. In Ref [12], wrapper and embedded feature selection methods were 

adopted to determine the best feature set for training a LSTM network that forecasts 

energy load. Genetic algorithm was also used in Ref [12] to figure out an effective 

number of hidden layers and an effective number of time lag between input and 

output sequences. Introducing the idea of encoder-decoder architecture, Ref [13] 

combined LSTM and multi-layered perceptron layers for load prediction. The LSTM 

layer provides variables that represents the pattern of an input sequence. The 

variables then were concatenated with the original input sequence for the following 

multi-layered perceptron network. For short-term building energy load, Ref [14] 

analysed RNN, LSTM and GRU with different architectures and systematically 

tested the effectiveness of each network. 

To increase the accuracy of electricity price forecast, Ref [15] implemented Decision 

Tree, Recursive Feature Elimination and Random Forest for feature selection. In 
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addition, Grid Search was also used for tuning parameters of a network. Ref [16] 

combined CNN and LSTM that the CNN extract important convolution features 

from the input sequence, and the LSTM receives these features to make a prediction 

of electricity price. Ref [17] built a similar network that conducts a feature selection 

by CNN and then a solar radiation prediction by LSTM. Stack on this CNN+LSTM 

architecture, Ref [18] further applied wavelet decomposition on raw data of solar 

irradiance sequence. 

Statistical methods were also adopted by researches. Ref [19] used Pearson 

coefficient to extract main features that affect photovoltaic power (PV). Ref [20] 

used least absolute shrinkage and selection operator (LASSO) to represent linear 

relationship and LSTM to learn the nonlinear. K-means++ was also used in Ref [20] 

to cluster historic data for training different networks.  

Researches, such as Ref [3, 4, 6, 10, 12, 13, 14, 16, 17, 19], consider that increasing 

the accuracy of prediction for features that cause uncertainty in a system can improve 

the operation of that system. Therefore, these researches adopted neural networks as 

predictors and focused on improving the accuracy of neural networks. In this 

dissertation, this approach is called the standard model or the conventional way in 

which the predictors are only used to support the operation strategy. Ref [21] 

developed a control strategy for thermal storage electric boiler. This strategy uses 

the predictive load curve of a LSTM network to determine how to operate the boiler. 

Similarly, Ref [22] introduced control strategies of operating energy storage and then 

implemented this strategy based on the predictive load of a LSTM network. 

In the field of sewer system operation, Zhang (2017, 2018) [23, 24] proposed 

operation strategies for water managements, and then pointed out key uncertainty in 

these strategies. LSTM networks were implemented only to predict the uncertainty, 
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such as future inflow of each wastewater treatment plant or sewer. Similarly, LSTM 

predictions made in [23, 24] have no connection to their proposed strategies, but 

only provide better information to operators who use those strategies. 

In Chapter 2, we introduced a solar energy community distribution system that has 

five operation features: PV generation, electricity demand, heat demand, System Sell 

Price (SSP) and System Buy Price (SBP). The five features are all with uncertainty 

which means that future values of each feature are unknown. As showed in Figure 

1.1, the Standard Model, a conventional way of implementing LSTM predictors, 

includes five different predictors for each feature. It’s obvious that the accuracy of 

each predictor is critical to the performance of the operation strategy. As discussed 

later, we expected the occurrence of significant error with SSP and SBP predictors 

since too many factors have influence on electricity price and it is hard to forecast 

future prices only by historical data of prices. Therefore, we had expected the 

performance of the Standard Model would be compromised. 

As showed in Figure 1.2, we proposed a novel way to utilise the potential of LSTM. 

A mock-up expert was created by executing the operation strategy with historical 

data in advance. The mock-up expert provides the training pair of historical 

sequences and the target heat level for operation a heat storage. Thus, the Proposed 

Model of this dissertation fundamentally changes how a LSTM predictor can be used 

in system operation. 

By examining the simulation results of the Standard Model and the Proposed Model, 

we aimed to answer that in a system where all features have uncertainty, and part of 

which would cause significant errors of prediction, can reconstructing the 

relationship between inputs and outputs of the predictors improve the performance 

of operating that system?  
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Figure 1.1 Structure of Standard Model 

 

Figure 1.2 Structure of Proposed Model (compared with Standard Model) 

 

In this dissertation, we built three models to compare the performance of 

conventional and our proposed method. The Standard Model adopted the idea 
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discussed above that forecast only serves as a reference in operating a system. 

Operators or control programmes accept the forecast and run the operation strategy 

to determine the current action. On the contrary, our Proposed Model integrates the 

operation strategy into its training set, enabling the model to directly control the 

system. Simulative results show that the Proposed Model outperforms the Standard 

Model. Moreover, even though the Proposed Model takes more resources to prepare 

the training set, no calculation needs to be done when processing online. In the long 

run, the Proposed Model consumes less processing time than the Standard Model. 

Last, for comparison, the Vanilla Model follows a common strategy that the heat 

storage always starts at fixed times to be charged and to be discharged. 

Note that when we use the word, ‘operator,’ in this dissertation, it usually means the 

same as ‘control programme’ since the three Models are controlled by computer 

programmes. 

In addition, in this dissertation, the Standard Model, the Propose Model and the 

Vanilla Model refer to the ‘methods’ or ‘framework’ of operating the solar energy 

community distribution system, as shown in Figure 1.1 and  Figure 1.2. The word, 

‘predictor,’ is used to refer to the LSTM networks in the Standard Model and in the 

Proposed Model. 

1.1 Standard Model 

Applying the concept mentioned above, we build a Standard Model to provide a 

basis for comparison to the Proposed Model. This concept is a straightforward 

implementation of LSTM networks for operation of systems with uncertainty and 

has been adopted by many researches. 
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Figure 1.3 depicts the Standard Model of using LSTM predictors to aid operators in 

operation of a solar energy distribution system. The energy distribution system is 

shown in Figure 2.1 and detailed in Chapter 2. Each predictor (green square) in 

Figure 1.3 is a LSTM network. In the beginning of every half hour, each predictor 

accepts input from historical data to make prediction of five key features relevant to 

operation decision: PV generation, electricity demand, heat demand, importing price 

of the grid and exporting price of the grid. A computer programme that follows 

operating strategy (blue square) then accepts those predictions as input for 

calculating the operation action in current half hour. 

Figure 1.3 Concept of Standard Model 

Note that predictors of the Standard Model can be more complicated, taking more 

features as input to increase its accuracy. However, since the Proposed Model in this 

dissertation only use the five input features, we set predictors of the Standard Model 

only take its own feature as input for a fair comparison of the two models.  

Figure 1.4 shows the training method of each predictor of the Standard Model. The 

LSTM predictors approximate the relationship between two sets of time sequence. 
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Operators or control programmes accept the output sequence as a guideline to decide 

their operation action. 

Figure 1.4 Training of Standard Model 

 

1.2 Proposed Model 

To design our Proposed Model, we first formulated an operating strategy that 

determines the target level of heat storage at the end of every half hour, based on the 

five input features. Following our proposed strategy, the heat storage will be charged 

if its current energy level is less than the target level. Charging can be done not only 

by PV generation but also electricity imported from the grid if future importing price 

is expected to become higher. If the current energy level is more than the target level, 

the heat storage discharges. This proposed strategy is designed to decrease total 

operation cost, detailed in Section 2.2. To make the comparison meaningful, 

‘Operation Strategy (blue square)’ in Figure 1.3 is the same as our proposed 

operating strategy of heat storage in Figure 1.5. Note that the operation strategy (blue 

square) in Figure 1.5 is not actually executed during online operation. The Proposed 

Model executes this operation strategy during the preparation of training pairs, 

discussed in Chapter 4. 

To utilise the proposed strategy, uncertainties of the five input features must be 

eliminated. Instead of training five LSTM predictors that predict these features, the 
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Proposed Model trained only one LSTM predictor that takes these five features as 

inputs to directly output a target level of heat storage at the end of every half hour.  

We applied the principle behind Imitation Learning, of which a network learns from 

expert’s behaviours. For example, when learning self-driving cars, a network is 

shown with pairs of state and action for it to interpret the policy behind the decision 

of actions. Those demonstrated actions are recorded from an expert, such as a human 

driver. Imitation Learning is usually implemented when calculation of an action is 

impossible or too expensive, but the task is easy for a human to perform. In our case, 

although no person can perfectly predict future when operating a heat storage, we 

can create a mock-up expert from historical data. This mock-up expert follows the 

proposed strategy in simulations of operating a system. The expert’s behaviours are 

then used as the training pairs for the LSTM predictor in the Proposed Model. 

The training method of the predictor in Proposed Model is shown in Figure 1.6. In 

contrast to the training pairs for the Standard Model in 

Figure 1.4, the predictor in the Proposed Model learns to interpret the relationship 

between time sequences and one output value. The training pairs in Figure 1.6 are 

‘handcrafted’ by following the proposed strategy. Consequently, the predictor in the 

Proposed Model is connected to the proposed strategy itself, and it directly outputs 

the target level of heat storage at the end of next half hour. 

The working process of the Proposed Model is depicted in Figure 1.5. Compared 

with the Standard Model depicted in Figure 1.3, the Proposed Model runs the 

strategy only once during preparation of training pairs, while the computer 

programme in the Standard Model must repeat calculation of the strategy every half 

hour when it receives new forecasts from its five predictors. 
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Figure 1.5 Concept of Proposed Model 

 

Figure 1.6 Training of Proposed Model 

 

1.3 Vanilla Model 

A common strategy is to charge and to discharge heat storage at fixed times. 

Examining the actions performed by the expert discussed in the Proposed Model, we 

found that most of the time the expert charges the storage at 13:30 and discharges 

the storage at 17:00. Therefore, we set that the Vanilla Model always charges and 
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discharges at these two times every day. The storage is charged and discharged with 

a fix rate.  

Another key difference between the Vanilla Model and other two models is that 

during charging the Vanilla Model never imports electricity from the grid if PV 

generation is not enough, because the Vanilla Model have no ability to forecast 

electricity price. It would end up in excessive expenditure if allowing the Vanilla 

Model to import electricity. When there’s no PV generation during charging, the 

Vanilla Model would stop charging the storage until PV generation resumes.  

The remainder of this dissertation is organized in the following way: Chapter 2 

details the components of the solar energy community distribution system and the 

objective of its operation. Chapter 3 introduces the proposed strategy for operation 

of this community distribution system and describes how an expert is created and 

the operation behaviour of this expert. Chapter 4 explains the implementation of the 

three Models and the simulation process in python environment. Chapter 5 discusses 

and analyses the outcome of simulation. Chapter 6 summarises the results and 

provides a suggestion of future researches. 
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2 Solar Energy Community 

Distribution System 

2.1 Details of the System 

Shown in Figure 2.1, the design of this system is based on a real proposed project 

for a community located in North West of England. PV generation is the only 

domestic supply in the system. During each half hour, PV generation is used to meets 

electricity demand first, and any insufficiency is addressed by importing electricity 

from the grid. After that, surplus of PV generation, if any, is used to run heat pumps 

for meeting heat demand. Electricity demand takes priority over heat demand 

because PV generation would suffer loss due to energy conversion in heat pumps. 

In Figure 2.1, COP stands for Coefficient of Performance, which defines the 

conversion factor between electricity energy and heat energy. 

Figure 2.1 Solar Energy Community Distribution System 
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If PV generation is insufficient to cover heat demand, the short of heat supply is 

compensated by importing electricity from the grid to run heat pumps or by 

discharging heat from the storage. When heat pumps run out of capacity, the only 

way to provide heat is discharging the storage. In this dissertation, we assume that 

heat pump capacity is always sufficient to cover demand peak. The heat pump 

capacity is set to be a little high than the maximum heat demand in our simulative 

environment, but not infinite. 

Finally, excess PV generation can be sold to the grid, or be used to charge heat 

storage if heat pumps still has capacity. In this study, we assume that domestic use 

of PV generation for heat demand is always more economical than selling to the grid. 

In other word, System Buy Price (SBP) is always higher than System Sell Price (SSP) 

of the same half hour. 

Heat storage can be charged by heat pumps that consume PV generation, imported 

electricity or both. Due to the capacity of heat pumps, charging storage may be 

limited sometimes. 

In each half hour there are two prices: System Sell Price (SSP) and System Buy Price 

(SBP). When the operator imports electricity from the grid, the operator needs to pay 

the SBP. Likewise, the grid pays the SSP to the operator when the operator exports 

electricity to the grid. These two prices are called ‘imbalance prices’ and originally 

designed to tackle the deficit of imbalance energy. In our study, we use a historical 

data of SSP and SBP around Lancaster area to simulate the price changes faced by 

operators. 
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2.2 Objective of Operation 

In our system, PV generation is always used to meets electricity demand first and 

then heat demand. After that if any PV generation remains, it can be used to charge 

the storage or be sold to the grid. Thus, we defined ‘PV Surplus’ as the amount of 

remaining PV generation we can manipulate: 

𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 = 𝑷𝑽 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 − 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒅𝒆𝒎𝒂𝒏𝒅 − (𝒉𝒆𝒂𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 ÷ 𝑪𝑶𝑷) ( 1 ) 

𝒊𝒇 𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 < 𝟎, 𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 = 𝟎  

When PV generation is unable to cover all heat demand, we defined a term ‘Shortage’ 

as the amount of remaining heat demand that we need to cope with by heat storage 

or importing electricity: 

𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 = 𝒉𝒆𝒂𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 − [(𝑷𝑽 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 − 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒅𝒆𝒎𝒂𝒏𝒅) × 𝑪𝑶𝑷] ( 2 ) 

𝒊𝒇 (𝑷𝑽 𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒊𝒐𝒏 − 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒅𝒆𝒎𝒂𝒏𝒅) < 𝟎, 𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 = 𝒉𝒆𝒂𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 

𝒊𝒇 𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 < 𝟎, 𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 = 𝟎     

Every half hour the operator determines a target level for the heat storage. If current 

level is high than the target level, the heat storage is discharged until current level 

drops to the target level. If current level is lower than the target level, the heat storage 

is charged by PV surplus first. It can also be charged by imported electricity only if 

importing electricity with current SBP is beneficial, compared to importing 

electricity with future SBP when the demand actually occurs in the future. In other 

words, the operator must have the capability to forecast future electricity prices to 

know when the best time to buy electricity is. Furthermore, the operator must be able 

to forecast future PV generation and demands to determine what is the actual amount 

of heat needed to be prepared in advance. For example, if a sunny day is expected, 

the operator has no need to import electricity to charge the storage even though 

current SBP is low than future SBP. 
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The goal of the operator is to reduce operation cost of the system. Operation cost is 

equal to the expenditure of importing electricity from the grid subtracted by the 

income of selling PV generation to the grid. In terms of cost, income is negative: 

𝑶𝒑𝒆𝒓𝒂𝒕𝒐𝒊𝒏 𝒄𝒐𝒔𝒕 = 𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 + (−𝒊𝒏𝒄𝒐𝒎𝒆 𝒐𝒇 𝒆𝒙𝒑𝒐𝒓𝒕𝒊𝒏𝒈) ( 3 ) 

With heat storage and a good predictor of future PV generation, demands and system 

prices, the operator can accomplish several tasks to decrease operation cost: 

A. If the operator has PV surplus in the current moment and expects a Shortage in 

a future moment and importing electricity with future SBP is expensive than not 

selling PV surplus with current SSP, the operator should charge the storage with 

current PV surplus: 

 (𝒊) 𝑺𝒆𝒍𝒍𝒊𝒏𝒈 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 𝒓𝒊𝒈𝒉𝒕 𝒏𝒐𝒘, 𝒂𝒏𝒅 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒊𝒏 𝒕𝒉𝒆 𝒇𝒖𝒕𝒖𝒓𝒆: 

𝒊𝒏𝒄𝒐𝒎𝒆 = −𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 = [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 

 

(𝒊𝒊) 𝑺𝒂𝒗𝒊𝒏𝒈 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 𝒓𝒊𝒈𝒉𝒕 𝒏𝒐𝒘 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒇𝒖𝒕𝒖𝒓𝒆:  

𝒊𝒏𝒄𝒐𝒎𝒆 = 𝟎  

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 = 𝟎 

(𝑨𝒔𝒔𝒖𝒎𝒊𝒏𝒈: 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝑪𝑶𝑷 × 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) = 𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆) 
𝒊𝒇 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕(𝒊𝒊) − 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕(𝒊) < 𝟎:  

→ 𝟎 − (−𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 + [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷) < 𝟎 

→ 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 < [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 

→ 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 < 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔 × 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 

→ 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) < 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷  ( 4 ) 

, where 𝑡𝑓𝑢𝑡𝑢𝑟𝑒 − 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the difference between current and future time. And 

𝑙𝑜𝑠𝑠 is the heat loss in storage per unit time. In our study, the unit time is equal to a 

half hour, and transition loss is ignored for simplification. 
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B. If the operator has no PV surplus in the current moment and expects a Shortage 

in a future moment and importing electricity with future SBP is expensive than 

importing electricity with current SBP, the operator should import electricity 

with current SBP to charge the storage.  

(𝒊) 𝑫𝒐 𝒏𝒐𝒕𝒉𝒊𝒏𝒈 𝒓𝒊𝒈𝒉𝒕 𝒏𝒐𝒘, 𝒂𝒏𝒅 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒊𝒏 𝒕𝒉𝒆 𝒇𝒖𝒕𝒖𝒓𝒆: 

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 = 𝟎  

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒇𝒖𝒕𝒖𝒓𝒆 = [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷  

 

(𝒊𝒊) 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒓𝒊𝒈𝒉𝒕 𝒏𝒐𝒘 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒇𝒖𝒕𝒖𝒓𝒆:  

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒄𝒖𝒓𝒓𝒆𝒏𝒕 = 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷  

𝒆𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆𝒇𝒖𝒕𝒖𝒓𝒆 = 𝟎  

(𝑨𝒔𝒔𝒖𝒎𝒊𝒏𝒈: 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝑪𝑶𝑷 × 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) = 𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆) 

𝒊𝒇 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕(𝒊𝒊) − 𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 𝒄𝒐𝒔𝒕(𝒊) < 𝟎:  

→ 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷 − [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 < 𝟎  

→ 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷 < [𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 ÷ 𝑪𝑶𝑷] × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷  

→ 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷

< 𝑰𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 × 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) × 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 

→ 𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕) < 𝒇𝒖𝒕𝒖𝒓𝒆 𝑺𝑩𝑷 ( 5 ) 

C. If the operator expects several available electricity sources at 𝑡1, 𝑡2, 𝑡3, 𝑡4, and a 

Shortage at 𝑡5, the operator must compare the prices, which are modified by loss 

and different time spans. The modified prices could be: 

 {
𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑺𝑷 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕), 𝒊𝒇 𝒕𝒉𝒆 𝒔𝒐𝒖𝒓𝒄𝒆 𝒊𝒔 𝑷𝑽 𝒔𝒖𝒓𝒑𝒍𝒖𝒔                        

𝒄𝒖𝒓𝒓𝒆𝒏𝒕 𝑺𝑩𝑷 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒇𝒖𝒕𝒖𝒓𝒆−𝒕𝒄𝒖𝒓𝒓𝒆𝒏𝒕), 𝒊𝒇 𝒕𝒉𝒆 𝒔𝒐𝒖𝒓𝒄𝒆 𝒊𝒔 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚
  

After comparison, the operator exploits the sources in order of profitability. 

Consequently, depending on the amount of heat required by Shortage at 𝑡5, some of 

the sources may be exhausted, some never used, and some used only part of their 
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available supply. It is important for the operator not to consume an electricity source 

more than the requirement; otherwise operation cost would increase. For example, 

if the operator takes the exact amount of electricity, remaining PV generation can be 

sold to the grid instead of suffering unnecessary loss in the heat storage and being 

used in somewhere not actually profitable. Similarly, if the operator imports the 

exact amount of electricity from the grid, no extra expenditure would be incurred. 

In summary, the objectives of operating the solar energy community distribution 

system are: 

◼ Reduce the operation cost of the system by decreasing expenditure of importing 

electricity. 

◼ PV generation is always used to meets electricity demand first and then heat 

demand. After that if any PV generation remains, it can be used to charge the 

storage or be sold to the grid. This is called 𝑃𝑉 𝑆𝑢𝑟𝑝𝑙𝑢𝑠.  

◼ Store an exact amount of 𝑃𝑉 𝑆𝑢𝑟𝑝𝑙𝑢𝑠 needed to meet an expected heat demand 

in the future if importing electricity in the future costs more than not exporting 

currrent 𝑃𝑉 𝑆𝑢𝑟𝑝𝑙𝑢𝑠 to the grid. 

◼ Store an amount of imported electricity needed to meet an expected heat 

demand in the future if importing electricity in the future costs more than 

importing electricity currently from the grid. 

In this dissertation, the Models predict a target level at the start of every half hour, 

attempting to achieve the objectives mentioned above. The heat storage compares 

its current heat level with the target level to determine whether to be charged or 

discharged during that half hour.  
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3 Operation Strategy for the 

Community System 

With historical data, we can pretend that there is an expert who knows all 

information we need in next 24 hours, which is divided equally into 𝑡0 to 𝑡47. In this 

way an operation strategy was developed with omniscient knowledge of PV surplus, 

Shortage, SSP and SBP each half hour of a day, 𝑡0  to 𝑡47 . By analysing the 

information of next 24 hours, a daily optimal operation curve, i.e., the optimal heat 

level of heat storage at the end of each half hour, can be determined.  

In this section, the operation strategy is introduced. Its pseudo code is showed in 

Table 3.1 as Algorithm 1. Feeding information of each day into Algorithm 1, we 

obtain the daily optimal operation curves. These curves serve as a benchmark of 

which operation cost is the lowest, as discussed later.  

In the Standard Model, five conventional LSTM predictors forecast future 

information by historical data, and then the operation strategy is executed with this 

predictive information to determine an optimal heat level of heat storage at the end 

of each half hour. 

For the Proposed Model, we first prepared the training set by pairing the historical 

data with the optimal heat level of heat storage based on the benchmark shown by 

the mock-up expert, and then trained the one LSTM predictor of the Proposed Model. 

Thus, in the Proposed Model the predictor receives historical data and output an 

optimal heat level of heat storage at the end of each half hour directly. 
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Only with perfect knowledge of future information, the operation strategy can be 

realised. Following the strategy, a mock-up expert analyses the relationship of PV 

surplus, Shortage, SSP and SBP at 𝑡0 to 𝑡47, to determine the profitability of each 

available electricity source and to distribute all available electricity sources to all 

Shortage at 𝑡0 to 𝑡47 accordingly. Available electricity sources include PV Surplus 

and importing electricity from the grid. 

At the start of 𝑡0, the mock-up expert holds the values of PV surplus, Shortage, SSP 

and SBP at 𝑡0 to 𝑡47. Following the operation strategy, the mock-up expert creates a 

profit table, in which each entry is called a ‘profit number’: 

𝒑𝒓𝒐𝒇𝒊𝒕 𝒏𝒖𝒎𝒃𝒆𝒓

=  {
(𝑺𝑺𝑷𝒑 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒏−𝒕𝒑)) ÷ 𝑺𝑩𝑷𝒏 , 𝒊𝒇 𝒖𝒔𝒊𝒏𝒈 𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 𝒂𝒕 𝒕𝒑 𝒕𝒐 𝒄𝒉𝒂𝒓𝒈𝒆 𝒉𝒆𝒂𝒕 𝒔𝒕𝒐𝒓𝒂𝒈𝒆       

(𝑺𝑩𝑷𝒑 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒏−𝒕𝒑)) ÷ 𝑺𝑩𝑷𝒏 , 𝒊𝒇 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒂𝒕 𝒕𝒑 𝒕𝒐 𝒄𝒉𝒂𝒓𝒈𝒆 𝒉𝒆𝒂𝒕 𝒔𝒕𝒐𝒓𝒂𝒈𝒆
 

, where 𝑡𝑛 > 𝑡𝑝 and 𝑡𝑛, 𝑡𝑝  ∈ 𝑡0 to 𝑡47. 𝑆𝑆𝑃𝑝 is the SSP at 𝑡𝑝, 𝑆𝐵𝑃𝑝 is the SBP at 𝑡𝑝 

and 𝑆𝐵𝑃𝑛 is the SBP at 𝑡𝑛. We only consider 𝑡𝑛 when there is a Shortage at 𝑡𝑛. 

We set 𝑝𝑓𝑝,𝑛
𝑃𝑉  be the profit number when using PV Surplus at 𝑡𝑝 to charge heat 

storage for future Shortage at 𝑡𝑛 .  Similarly, 𝑝𝑓𝑝,𝑛
𝐺𝑑  is the profit number when 

importing electricity from the grid at 𝑡𝑝 to charge heat storage for future Shortage at 

𝑡𝑛 . Refer to Equation (4) and (5), it is obvious that if 𝑝𝑓𝑝,𝑛 < 1, it’s profitable to use 

electricity source at 𝑡𝑝 . On the other hand, if 𝑝𝑓𝑝,𝑛 ≥ 1 , it has no need to use 

electricity source at 𝑡𝑝 and this 𝑝𝑓𝑝,𝑛 would be excluded from the profit table. 

Next, the mock-up expert distributes all available electricity source to all Shortage, 

starting from the smallest 𝑝𝑓𝑝,𝑛. The mock-up expert calculates the exact amount of 

electricity needed at 𝑡𝑝 for the Shortage at 𝑡𝑛 : 

( 6 ) 
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𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒓𝒆𝒒𝒖𝒊𝒓𝒎𝒆𝒏𝒕 𝒂𝒕 𝒕𝒑 = (𝑺𝒉𝒐𝒓𝒕𝒂𝒈𝒆 𝒂𝒕 𝒕𝒏 ÷ 𝒍𝒐𝒔𝒔(𝒕𝒏−𝒕𝒑)) × 𝑪𝑶𝑷 ( 7 ) 

The mock-up expert then adjusts the electricity requirement at 𝑡𝑝 according to heat 

pump capacity at 𝑡𝑝 and heat storage capacity at 𝑡𝑝, 𝑡𝑝+1, 𝑡𝑝+2,……, and 𝑡𝑛 because 

heat pump capacity limits the amount of heat that can be charged, and heat storage 

capacity limits the amount of heat that can be stored in the heat storage. 

Finally, the mock-up expert decreases the electricity source at 𝑡𝑝 as much as possible 

according to the modified electricity requirement at 𝑡𝑝. If the electricity source is PV 

Surplus, the expert records how much amount of PV Surplus remains. If the 

electricity source is from the grid, the expert can import as much as it need, because 

we assume that the connection to the grid is always available. The amount of 

electricity consumed at 𝑡𝑝 turns into heat, which reduces heat pump capacity at 𝑡𝑝. 

The expert also records the decrease of Shortage at 𝑡𝑛 and the decreases of heat 

storage capacity at 𝑡𝑝, 𝑡𝑝+1, 𝑡𝑝+2,……, and 𝑡𝑛, accordingly. 

To increase the efficiency of the algorithm, when a heat pump capacity at 𝑡𝑝  is 

exhausted, all 𝑝𝑓𝑝,𝑛 with 𝑡𝑝 will be deleted from the profit table. Similarly, when a 

heat storage capacity at 𝑡𝑥 is used up, all 𝑝𝑓𝑝,𝑛 with 𝑡𝑝 ≤ 𝑡𝑥 ≤ 𝑡𝑛 will be deleted. In 

addition, after a Shortage at 𝑡𝑛 is fully fulfilled, all 𝑝𝑓𝑝,𝑛 with 𝑡𝑛 will be deleted. 

After the mock-up expert goes through all entries of the profit table, all Shortages 

that are not fully fulfilled will be coped with importing electricity at their current 

time. Finally the mock-up expert obtain an optimal operation curve, such as shown 

in Figure 3.1 and Figure 3.2.  

In Figure 3.1 and Figure 3.2, the heat level of heat storage (purple dot) of 𝑡𝑛 is the 

heat level at the start of 𝑡𝑛, and the bars (orange and indigo) show how much amount 
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of heat is charged into the storage at the end of 𝑡𝑛. For example, at the start of 𝑡0 and 

𝑡1 in Figure 3.1 there is no heat in the storage, and the operator charges the storage 

by 243.18 kWh during 𝑡1. Thus, at the start of 𝑡2 the heat level is equal to 243.18 

kWh as shown in the figure.  

Note that PV generation in Figure 3.1 and Figure 3.2 has been subtracted by 

electricity demand first and then converted to heat energy for clearly demonstrating 

how PV generation is used to charge the storage. 

The operation curves shown by the mock-up expert in Figure 3.1 and Figure 3.2 

demonstrate several behaviours that the predictor of the Proposed Model must learn: 

A. Avoid storing excessive heat: 

Comparing the sum of heat demand from 𝑡12 and 𝑡17(approx. 771.36 kWh) and the 

total heat released from the heat storage from 𝑡12 and 𝑡17 (approx. 762.98 kWh) in 

Figure 3.1, it can be seen that heat prepared in the storage is slightly less than the 

heat demand because it can be covered by the PV generation at 𝑡17 (approx. 8.38 

kWh). After that, heat demand from 𝑡18 and 𝑡29 is fully covered by PV generation. 

This behaviour demonstrates that the mock-up expert knows the optimal amount of 

heat that needs to be prepared before a certain time, depending on when PV 

generation begins and what amount of PV generation occurs in the future. 

Likewise, expecting a low demand during the evening in Figure 3.2, the mock-up 

expert fills the storage to a sufficient amount of heat (approx. 794.52 kWh), but not 

to its full capacity (1500 kWh). This shows the mock-up expert’s capability of 

operating the storage optimally by knowing PV generation and heat demand in 

advance. 
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B. Charge the storage economically: 

Knowing how much amount of heat needs to be prepared is not enough. The mock-

up expert must figure out how to charge the storage in a cost-effective way. In Figure 

3.1, the mock-up expert imports electricity at 𝑡1, 𝑡2, 𝑡5 and 𝑡11 to meet the target 

level at 𝑡12 because SBPs at 𝑡1, 𝑡2, 𝑡5 and 𝑡11 are lower than other SBPs between 𝑡1 

to 𝑡11 . Note that even though SBP at 𝑡1  (0.03232 £/kWh) is lower than SBP at 

𝑡11( 0.03472 £/kWh), the mock-up expert still chooses to import electricity at 𝑡11 

due to the modification of SBP made by heat loss, as discussed in Equation (5). 

Similarly, in Figure 3.2, the expert consumes PV generation at 𝑡23, 𝑡24, 𝑡25, 𝑡28 and 

𝑡32 because modified prices at these times are relatively low during the period of PV 

generation between 𝑡18 and 𝑡33.  

In Figure 3.1, from 𝑡18 to 𝑡32, the mock-up expert has several different electricity 

sources from PV generation or from the grid for meeting the target level at 𝑡33. The 

mock-up expert exploits PV generation as much as possible from 𝑡29 to 𝑡24 and stop 

using PV generation at 𝑡23  because the modified SSP starts to be higher than 

modified SBP at 𝑡29 to 𝑡32. Note that PV generation between 𝑡27 and 𝑡29 is not fully 

used by the heat pump because PV generation need to meet heat demand first. On 

the other hand, PV generation between 𝑡24  and 𝑡26  is not fully used due to the 

maximum capacity of heat pump. 
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Figure 3.1 Expert’s Operation Curve on a cold day 

 

 

Figure 3.2 Expert’s Operation Curve on a warm day 
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Table 3.1 Pseudo Code: Operation strategy for optimal operation curve 

Feeding historical data of five features into Algorithm 1, we obtain the daily optimal 

operation curves, i.e., the optimal heat level of heat storage at the end of each half 

hour, 𝑡0 and 𝑡47. Detailed discussion can be found at the beginning of Chapter 3. 
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4 Python Implementation 

We use Python and Jupyter Notebook to create the simulation environment and the 

predictors in the Standard Model and the Proposed Models. The implement of LSTM 

networks is constructed by Keras, a neural networks API of Python [25]. 

Note that in this dissertation, the Standard Model, the Propose Model and the Vanilla 

Model refers to the ‘methods’ or ‘framework’ of operating the solar energy 

community distribution system, as shown in Figure 1.1 and  Figure 1.2. The word, 

‘predictor,’ is used to refer to the LSTM networks in the Standard Model and the 

Proposed Model. 

4.1 Simulation Environment 

We first set up a four-year database of the five features (PV generation, electricity 

and heat demand, SSP and SBP): 

A. PV generation is based on a four-year real data. 

B. We assumed that electricity demand per dwelling per year is set to be 3000 kWh 

and there are 180 houses in the community. Electricity demand curve is based 

on a one-year real data. This data was repeated four times to match the length of 

PV generation data. Random noises were introduced to add ±3% to the original 

data point of the second, third and fourth repeat. These random noises have a 

normal distribution.  

C. Heat demand per dwelling is set to be 4500 kWh. Heat demand curve is based 

on a one-year estimated data. This data was repeated four times to match the 

length of PV generation data. Random noises were introduced to add ±3% to the 
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original data point of the second, third and fourth repeat. These random noises 

have a normal distribution. 

D. SBP and SSP are based on a one-year real data. This data was repeated four times 

to match the length of PV generation data. The average of SBP is 0.04756 £/kW, 

and of SSP is 0.0366 £/kWh. SBP is always greater than or equal to SSP.  

This four-year database has a resolution of 30 minutes, from 𝑡0 to 𝑡70079 (48 half-

hours x 365 days x 4 years = 70080 time intervals). It consists of the five features 

mentioned above. Each data point is denoted by 𝐹𝑘,𝑡, where k = {1: PV generation, 

2: Heat Demand, 3: Electricity Demand, 4: SSP, 5: SBP} and t = {0, 1, 2, 3, ……, 

70079}. 

In the Standard Model , the training pair of each predictor for feature 𝑘 is prepared 

as {input: ( 𝐹𝑘,𝑢 , 𝐹𝑘,𝑢+1 , 𝐹𝑘,𝑢+2 , ……, 𝐹𝑘,𝑢+47 ), output: ( 𝐹𝑘,𝑢+48 , 𝐹𝑘,𝑢+49 , 

𝐹𝑘,𝑢+50, ……, 𝐹𝑘,𝑢+95)}, where 𝑢 = {0, 1, 2, 3, ……, 69984}. The total number of 

pairs in a training set for a feature 𝑘 is 69985. For each feature 𝑘, the order of the 

first three years data pairs was randomised and divided into two parts: training set 

and validation set with the ratio of 2:1. The training pairs of the last year is used as 

the testing set. 

The training pair of the only one predictor in the Proposed Model is {input: (𝐹1,𝑢, 

𝐹1,𝑢+1 , 𝐹1,𝑢+2 , ……, 𝐹1,𝑢+47 , 𝐹2,𝑢 , 𝐹2,𝑢+1 , 𝐹2,𝑢+2 , ……, 𝐹2,𝑢+47 , 𝐹3,𝑢 , 𝐹3,𝑢+1 , 

𝐹3,𝑢+2, ……, 𝐹3,𝑢+47, 𝐹4,𝑢, 𝐹4,𝑢+1, 𝐹4,𝑢+2, ……, 𝐹4,𝑢+47, 𝐹5,𝑢, 𝐹5,𝑢+1, 𝐹5,𝑢+2, ……, 

𝐹5,𝑢+47), output: 𝐻𝑢+48}, where 𝑢 = {0, 1, 2, 3, ……, 70031} and 𝐻 is the optimal 

heat level of heat storage calculated by executing the operation strategy (Algorithm 

1 discussed in Section 3). The total number of pairs in this training set is 70032. The 

order of the first three years data pairs was randomised and divided into two parts: 
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training set and validation set with the ratio of 2:1. The data pairs of the last year is 

used as the testing set. 

The pseudo code of simulation environment (Algorithm 2) is shown in Table 4.1.  

After picking a day from the testing set, Algorithm 2 conducts a daily simulation for 

each Model. The purpose of each simulation is to record the daily operation curve 

of heat storage if implementing one of the Models as the operator. With the operation 

curve and the historical data of the five features (PV generation, Heat Demand, 

Electricity Demand, SSP and SBP), the operation cost of that day can be calculated 

by Equation (3). Summing the cost of 365 simulations of each Model, annual cost 

of implementing each Model can be obtained separately. 

Algorithm 2 first conducts the simulation of the Standard model. With 𝑢 =

0 𝑡𝑜 47 𝑎𝑛𝑑 𝐹𝑘,48 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐹 𝑎𝑡 12:00 AM of chosen day, each predictor in the 

Standard model receives a historical sequence of ( 𝐹𝑘,𝑢 , 𝐹𝑘,𝑢+1 , 𝐹𝑘,𝑢+2 , ……, 

𝐹𝑘,𝑢+47), prepared by Algorithm 2, to forecast the sequence of (𝐹𝑘,𝑢+48, 𝐹𝑘,𝑢+49, 

𝐹𝑘,𝑢+50, ……, 𝐹𝑘,𝑢+95), as shown in  

Figure 1.4, in which 𝑛 = 𝑢 + 48, 𝑝 = 48 and 𝑚 = 47. The operator then put these 

predicted sequences into Algorithm 1 (Table 3.1) to determine the target level of 

heat storage at 𝐻𝑢+48. The pseudo code of these predictors (Algorithm 3) is shown 

in Table 4.2. The output of this simulation in Algorithm 2 is a daily operation curve 

of the Standard Model between 𝑢 + 48 and 𝑢 + 95, and the total operation cost of 

that day. 

Next, Algorithm 2 conducts the simulation of the Proposed model. With 𝑢 =

0 𝑡𝑜 47 𝑎𝑛𝑑 𝐹𝑘,48 = 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐹 𝑎𝑡 12:00 AM of chosen day, the predictor in the 

Proposed model receives a historical sequence of ( 𝐹𝑘,𝑢 , 𝐹𝑘,𝑢+1 , 𝐹𝑘,𝑢+2 , ……, 



Chapter 4 Python Implementation 

Chih-Hsiang Lee - March 2020   29 

𝐹𝑘,𝑢+47), prepared by Algorithm 2, to determine the target level of heat storage at 

𝐻𝑢+48, as shown in Figure 1.6, in which 𝑛 = 𝑢 + 48 and 𝑝 = 48. The pseudo code 

of the predictor (Algorithm 4) is shown in Table 4.3. The output of this simulation 

in Algorithm 2 is a daily operation curve of the Proposed Model between 𝑢 + 48 

and 𝑢 + 95, and the total operation cost of that day. 

Finally, the daily operation curve of the Vanilla Model is determined by the 

predefined charging and discharging time. Algorithm 2 uses these fix times to 

simulate the daily operation curve of the Vanilla Model between 𝑢 + 48 and 𝑢 + 95, 

and the total operation cost of that day. 

4.2 Proposed Model 

In the Proposed Model, we trained only one predictor. This predictor receives five 

sequences of 𝑡𝑛−48  to 𝑡𝑛−1  to forecast one value: the target heat level for 𝑡𝑛 , as 

shown in Figure 1.6, in which 𝑝 = 48. The operator has no need to run Algorithm 1 

(Table 3.1) repeatedly. The pseudo code of the predictor in the Proposed Model is 

shown in Table 4.3. 

The first layer of the predictor in the Proposed Model is a LSTM layer with a hard-

sigmoid function as its activation function. The second layer is a dropout layer with 

a dropout rate equal to 0.5, connected to the last layer which is a simple Dense layer 

with hard-sigmoid function. Both the common sigmoid function and the hard-

sigmoid function have been implemented, and both demonstrated similar 

performance, yet the training time with hard-sigmoid function is less. The output of 

the sigmoid function ranges from 0 to 1, which is suitable for the database since the 

five features are always positive. Implementing the dropout layer can mitigate the 

problem of overfitting [26]. The cost function of the predictor is MSE.  
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Input of the first layer is scaled to a range of 0 to 1, and the output of the Dense layer 

is also between 0 to 1, which will be transformed back to the original range based 

on the database. This is because normalization can make learning process faster. 

Several sets of training parameters and network settings have been examined: 

◼ optimiser: adam or nadam 

◼ learning rate: 0.001 or 0.002 

◼ epochs: 10 or 20 

◼ batch: 72 

◼ number of time steps: 48 (as 48 half hours of a day) 

◼ units (latent_dim) of the LSTM: 48, 64 or 96 

◼ dropout: 0.3 or 0.5 

Results shown that there is no significant difference with different sets of training 

parameters and network settings. The losses were around 0.0048 to 0.0058, and the 

validation losses were around 0.0044 to 0.0056. Consequently, the final training set 

of parameters and network settings was picked because of its shorter training time: 

optimiser=adam, learning rate=0.001, epochs=10 and batches=72. The chosen 

LSTM layer has units=64 and the dropout layer has a fraction of 0.5. 

4.3 Standard Model 

In Standard Model, we trained five predictors to predict each feature (PV generation, 

heat demand, electricity demand, SSP and SBP). Each predictor receives a value 

sequence of 𝑡𝑛−48 to 𝑡𝑛−1 to forecast the sequence of 𝑡𝑛 to 𝑡𝑛+47, as shown in  

Figure 1.4, in which 𝑝 = 48 and 𝑚 = 47. The operator then put these predicted 

sequences of 𝑡𝑛 to 𝑡𝑛+47 into Algorithm 1 (Table 3.1) to determine the target heat 
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level of heat storage at 𝑡𝑛. The pseudo code of the predictors in the Standard Model 

is shown in Table 4.2. 

The figuration of these five predictors in the Standard Model were set to be the same 

as the predictor in the Proposed Model because we attempted to demonstrate the 

influence of simply changing the relationship of the input and output, discussed in 

Chapter 1:” can reconstructing the relationship between inputs and outputs of the 

predictors improve the performance of operating that system?”  

The first layer of these predictors in the Standard Model is a LSTM layer with a 

hard-sigmoid function as its activation function. The second layer is a dropout layer 

with a dropout rate equal to 0.5, connected to the last layer which is a simple Dense 

layer with hard-sigmoid function. The cost function of the predictor is MSE.  

Input of the first layer is scaled to a range of 0 to 1, and the output of the Dense layer 

is also between 0 to 1, which will be transformed back to the original range based 

on the data set. This is because normalization can make learning process faster. 

The training set of parameters includes: optimiser=adam, learning rate=0.001, 

epochs=10 and batches=72. The LSTM layer has units=64 and the dropout layer has 

a fraction of 0.5. 
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Table 4.1 Pseudo Code: Simulation Environment 
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Table 4.2 Pseudo Code: Standard Model 

 

 

Table 4.3 Pseudo Code: Proposed Model 
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5 Results and Discussion 

5.1 Training result of the networks in Standard Model 

Figure 5.1 demonstrates six comparisons of predictive values and true values. More 

examples can be found in Appendix A. Blue lines in the figures are the true values 

of one day and red lines are the values predicted by the five predictors in Standard 

Model. The predictors that forecast PV generation, electricity and heat demands 

show the ability to match a rough pattern to the curve of true values. However, these 

predictors are unable to fit those small and rapid changes on the curve delicately. 

Predictions made for SBP and SSP are unsatisfying. Predictive values always 

fluctuate around the average number. This means that the SBP and SSP predictors 

are not trained enough, resulting in a bad approximation that sticks around average 

number to bring a smaller MSE. 

One reason could be that the SBP and SSP predictors need more features to better 

define an approximation between input and output of the prices. Many factors 

influence the variations of SBP and SSP, such as real-time changes of generation 

and consumption, unexpected shutdowns of some units and grid imbalance caused 

by other occurrence. 

In our study, we did not improve the SBP and SSP predictors of the Standard Model 

because we aim to demonstrate the difference of performance between the Standard 

Model and the Proposed Model. Therefore, the five predictors in the Standard Model 

can only receive the same five features as used in the Proposed Model.  
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Figure 5.1 Comparisons of predictive and true values in the Standard Model 

(1) PV Generation 

The x-axis shows feature values (PV generation in this figure), which is varied in the 

range of 0 and 1 since we’ve normalized the data. The y-axis is between 0 and 48, 

which denotes 𝑡0 and 𝑡48 respectively. However,  𝑡0 is not always match 12:00 AM 

because all input sequences have been randomized. 
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(2) Electricity Demand Prediction 

  

(3) Heat Demand Prediction 

 

(4) SBP Prediction 
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(5) SSP Prediction 

 

5.2 Operation Performance 

Figure 5.2 shown the simulation results of Algorithm 2, which are the heat storage 

daily operation curves of implementing each Model and the optimal curve 

demonstrate by the mock-up expert. Daily operation curves of the Standard Model 

and the Proposed Model exhibit a similar behaviour of the mock-up expert. Both 

Models identified the two demand peaks in the morning and the evening. It is 

obvious that the Vanilla Model has no ability to predict future heat demand. 

Therefore, the Vanilla Model saved more PV generation than the evening demand 

and lost the income of exporting PV generation to the grid. The Vanilla Model can 

be improved by setting two sets of on-and-off time, one for summer and another for 

winter, since the averages of heat demand in summer and winter are different. 

Note that in this dissertation, the Standard Model, the Propose Model and the Vanilla 

Model refer to the ‘methods’ or ‘framework’ of operating the solar energy 

community distribution system, as shown in Figure 1.1 and  Figure 1.2. The word, 

‘predictor,’ is used to refer to the LSTM networks in the Standard Model and the 

Proposed Model. 
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We can conclude that accurate predictions of heat demand are crucial to the 

operation of heat storage.  

Figure 5.3 shows one example that the predictor in the Standard Model incorrectly 

predicts two demand peaks. Consequently, it prepared more heat than the actual need. 

The excess use of heat storage in the morning leads to extra import of electricity. 

Another excess use in the evening consumes PV generation unnecessarily. 

Correct prediction of SBP and SSP is another key factor of a good performance. 

Even though a Model accurately identifies the heat demand, its performance still can 

be compromised by inaccurate prediction of price. In Figure 5.4, the predictor in the 

Standard Model predicts heat demand in the morning with accuracy to a certain 

extent. However, it expects a low SBP at 𝑡3; accordingly, the Standard Model starts 

to charge the heat storage too early, hence unnecessary heat loss in the heat storage 

occurred and, more importantly, the Standard Model imports electricity with a 

relative high SBP at 𝑡3, as shown in Figure 5.4 in which the SBP (red dot) at 𝑡3 

(approx. 0.048 £/kWh) is much higher than 𝑡10 (approx. 0.036 £/kWh), of which 

time the mock-up expert starts to charge the storage in the morning. 

The same behaviour of the Standard Model can be seen in Figure 5.5 during the 

morning. Since outputs of the unreliable SBP predictor in the Standard Model are 

stuck around the average of SBPs, it’s hard for the Standard Model to notice the 

sudden drop of SBP at 𝑡10 in Figure 5.5. 

In addition, incorrect prediction of PV generation can also weaken the performance 

of the Standard Model. In Figure 5.4, there are two PV generation peaks at 𝑡23, and 

𝑡29. Unlike the Proposed Model and the mock-up expert, the Standard Model charges 

no heat into the storage during the peak at 𝑡29 because its predictor does not expect 
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this PV generation peak. The Standard Model uses PV generation peak at 𝑡23 to 

charge the storage, and hence suffers from unnecessary heat loss in the heat storage.  

Note that in Figure 5.4 the true values of SSP during the midday are nearly the same. 

Thus, the reason for the mock-up expert to choose to consume PV generation at 𝑡29, 

instead of  𝑡23, is not because of a notable difference of SSP but considering on heat 

loss over the course of time. The predictive SSPs provided by tho SSP predictor in 

the Standard Model are almost the same as the average number and therefore we can 

conclude that in Figure 5.4 the Standard Model uses PV generation peak at 𝑡23 

because it didn’t expect another peak at 𝑡29, not because it expects a higher SSP 

around 𝑡29. 

The operation curve of the Proposed Model demonstrates roughly the same pattern 

as of the mock-up expert. Unlike the Standard Model, the network in the Proposed 

Model is trained to directly predict a target level. We cannot discuss the behaviour 

of the Proposed Model like we do with the Standard Model in above paragraphs 

because the predictor in the Proposed Model does not predict each feature separately.  

Figure 5.2 One-day simulation (Result 1) 
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The blue, red, indigo and yellow lines are the heat storage operation curves of the 

mock-up expert, the Proposed Model, the Standard Model and the Vanilla Model, 

respectively. Green dash line is the PV generation that has been subtracted by 

electricity demand and converted into heat by COP. Pink dash line is the heat 

demand. Red and Blue dots are SBP and SSP. 

Figure 5.3 One-day simulation (Result 2) 

 

Figure 5.4 One-day simulation (Result 3) 
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Figure 5.5 One-day simulation (Result 4) 

 

5.3 Annual Cost 

One way to examine the performance is to compare the operation costs of each 

Model in simulation. We run three one-year simulations for all the Models and 

summed the daily operation cost according to Equation (3). The results are shown in 

Table 5.1. Note that the last entry in the table, Model without storage, sells all PV 

Surplus to the grid, and whenever there is a Shortage, it imports electricity. 

Due to the limit of available data, only the simulation Result 1 was unseen by the 

trained LSTM, namely the fourth-year data mentioned in Section 4.1. 

Negative operation cost indicates that the system exported more electricity than 

imported from the grid in a year. Model without storage has the highest income of 

importing electricity in all three simulations, as shown in Column (A) in Table 5.1.  

Expenditure of importing in Equation (3) can be further separated depending on its 

purpose, as shown in Column (B) and (C). Since the Vanilla Model and the Model 

without storage cannot charging the heat storage by importing electricity, both shows 

zero in Column (C). 



Chapter 5 Results and Discussion 

Chih-Hsiang Lee - March 2020   43 

Column (D) shows that the mock-up expert outperforms other four Models. Our 

Proposed Model has close performance to the Model without heat storage. The 

Standard Model and the Vanilla Model fail to reduce overall operation cost, 

compared to the Model without heat storage.  

To compare the performance of these Models, we defined a number, 𝑒𝑜𝑝 , that 

describes the effectiveness of operation. Operating the heat storage, a Model 

decreases the total revenue of exporting electricity and increases the total 

expenditure of importing electricity from the grid for charging the heat storage, as 

shown in Equation (8) and (9). Similarly, the operation of heat storage reduces the 

total expenditure of importing electricity for meeting the heat demand, as Equation 

(10). According to the definition of 𝑒𝑜𝑝 as Equation (11), the Models aim to decrease 

𝐸𝑃𝑉 + 𝐸𝐺𝑟𝑖𝑑 and increase 𝑅 as much as possible because a higher 𝑒𝑜𝑝 indicates that 

a Model profits from its operation more effectively. It is profitable to implement a 

Model only if the 𝑒𝑜𝑝 of that Model is larger than 1. 

𝑬𝑷𝑽 = 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 𝒇𝒐𝒓 𝒄𝒉𝒂𝒓𝒈𝒊𝒏𝒈 𝒕𝒉𝒆 𝒔𝒕𝒐𝒓𝒂𝒈𝒆 

        = (𝑹𝒆𝒗𝒆𝒏𝒖𝒆 𝒐𝒇 𝒂 𝑴𝒐𝒅𝒆𝒍) − (𝑹𝒆𝒗𝒆𝒏𝒖𝒆 𝒐𝒇 𝒕𝒉𝒆 𝑴𝒐𝒅𝒆𝒍 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒔𝒕𝒐𝒓𝒂𝒈𝒆)   ( 8 ) 

𝑬𝑮𝒓𝒊𝒅 = 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒇𝒐𝒓 𝒄𝒉𝒂𝒓𝒈𝒊𝒏𝒈 𝒕𝒉𝒆 𝒔𝒕𝒐𝒓𝒂𝒈𝒆  ( 9 ) 

𝑹 = 𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒊𝒏 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒇𝒐𝒓 𝒉𝒆𝒂𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 

    = (𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇  𝒕𝒉𝒆 𝑴𝒐𝒅𝒆𝒍 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒔𝒕𝒐𝒓𝒂𝒈𝒆) − (𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝒂 𝑴𝒐𝒅𝒆𝒍)( 10 ) 

𝒆𝒐𝒑 =
𝑹

𝑬𝑷𝑽+𝑬𝑮𝒓𝒊𝒅
  ( 11 ) 

Table 5.2 shows each 𝑒𝑜𝑝 of each Model in the three simulations. As the same we 

observe from the comparison of total operation cost of each Model, the mock-up 

expert has the highest 𝑒𝑜𝑝  around 1.55. The Propose Model nearly meets the 
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requirement with a 𝑒𝑜𝑝 around 0.98. The Standard Model and the Vanilla Model 

fails with 𝑒𝑜𝑝 around 0.75 and 0.45 respectively.  

We also calculated different 𝑒𝑜𝑝 in each week in the simulation result 1, as shown in 

Table 5.3, to examine how PV generation and heat demand affects 𝑒𝑜𝑝  of each 

Model. During the cold weeks, such as week 1, 2, 12 and 13, we have smaller amount 

of PV generation to meet the heat demand directly or to be charged into the heat 

storage in advance. Since SBP are always larger or equal to SSP, using PV Surplus 

is usually more economical than importing electricity. Consequently, with less 

amount of economical PV generation, the operation costs of these weeks are positive. 

It should be note that the term, ‘cold’ or ‘warm,’ does not mean that the weather is 

colder or warmer in those weeks. ‘Cold’ means the system must import more 

electricity from the grid because the total PV generation is relative lower, and/or the 

total heat demand is relative higher. 

The 𝑒𝑜𝑝 of the Proposed Model, the Standard Model and the Vanilla Model is greater 

than 1 during the cold weeks. This is because most of the time during the cold weeks 

the Models has no need to predict PV generation correctly since PV generation in 

cold weeks is relative less and has less influence on operation. Consequently, the 

Models need only reliable predictions on demand and prices, and thus it is easier for 

the Models to make a better decision. Since the price predictors of the Standard 

Model are less effective, the 𝑒𝑜𝑝 of the Standard Model is lower than of other Models 

in the cold weeks.  

The Vanilla Model sometimes has better 𝑒𝑜𝑝 during cold weeks because most of the 

time in a cold week the remaining PV Surplus is usually small, and the heat demand 

is usually large. Therefore, with a lower risk of suffering from unnecessary heat loss 
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in the storage, it’s tolerable to always store all remaining PV Surplus for the heat 

demand in the evening. 

Note that even though the 𝑒𝑜𝑝 of the Vanilla Model is greater, it does not guarantee 

that the Vanilla Model can outperform other Models because the Vanilla Model has 

no concern with future price. Table 5.4 shows the 𝑒𝑜𝑝 and the total reduction, 𝑅, of 

operation cost during cold weeks. In week 1, the 𝑒𝑜𝑝 of the Vanilla Model (1.54) is 

greater than the Proposed Model (1.32). However, 𝑅 of the Vanilla Model (£65) is 

less than the Proposed Model (£197). The same occurs in week 13.   
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Table 5.1 Yearly Operation Cost 

Result 1: 

Model 

(D) 

Operation Cost (£) 

(D)=(A)+(B)+(C) 

(A) 

Sell to the 
Grid 

(B) 

Buy for 
Heat 
Demand 

(C)  

Buy for 
Charging  

Mock-up 

Expert 
-48999 -53150 1494 2657 

Proposed 

Model 
-46429 -53377 3889 3059 

Standard 

Model 
-44744 -52577 3212 4621 

Vanilla 

Model 
-44433 -51245 6812 0 

Without 

Storage 
-46459 -54913 8454 0 
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Result 2: 

Model 

(D) 

Operation Cost (£) 

(D)=(A)+(B)+(C) 

(A) 

Sell to the 
Grid 

(B) 

Buy for 
Heat 
Demand 

(C)  

Buy for 
Charging  

Mock-up 

Expert 
-51713 -55934 1428 2793 

Proposed 

Model 
-49154 -56131 3763 3214 

Standard 

Model 
-47452 -55345 3144 4749 

Vanilla 

Model 
-47151 -54062 6911 0 

Without 

Storage 
-49272 -57608 8336 0 
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Result 3: 

Model 

(D) 

Operation Cost (£) 

(D)=(A)+(B)+(C) 

(A) 

Sell to the 
Grid 

(B) 

Buy for 
Heat 
Demand 

(C)  

Buy for 
Charging  

Mock-up 

Expert 
-42620 -46884 1619 2645 

Proposed 

Model 
-40072 -47185 4103 3010 

Standard 

Model 
-38491 -46326 3325 4510 

Vanilla 

Model 
-38236 -45116 6880 0 

Without 

Storage 
-40223 -48689 8466 0 
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Table 5.2 Operation effectiveness, 𝒆𝒐𝒑 

Model Result 1 Result 2 Result 3 

Mock-up 

Expert 
1.57 1.55 1.54 

Proposed 

Model 
0.99 0.97 0.97 

Standard 

Model 
0.75 0.74 0.75 

Vanilla 

Model 
0.45 0.40 0.44 
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Table 5.3 Operation effectiveness, 𝒆𝒐𝒑, of each week in Result 1 

Week 
Mock-up 
Expert 

Proposed 
Model 

Standard 
Model 

Vanilla 
Model 

Operation Cost 

1 1.74 1.32 1.16 1.54 positive 

2 1.6 1.16 0.99 1.47 positive 

3 1.43 0.89 0.75 0.77 negative 

4 1.43 0.71 0.58 0.31 negative 

5 1.42 0.68 0.47 0.12 negative 

6 1.63 0.62 0.41 0.07 negative 

7 1.46 0.36 0.26 0.05 negative 

8 1.56 0.46 0.39 0.06 negative 

9 1.43 0.65 0.49 0.13 negative 

10 1.46 0.81 0.62 0.29 negative 

11 1.45 0.85 0.75 0.49 negative 

12 1.59 1.19 1.01 1.01 positive 

13 1.72 1.27 1.06 1.50 positive 
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Table 5.4 𝒆𝒐𝒑 and 𝑹 of operation cost during cold weeks in Result 1 

 
Mock-up 
Expert 

Proposed 
Model 

Standard 
Model 

Vanilla 
Model 

Week 1     

𝑒𝑜𝑝 1.74 1.32 1.16 1.54 

𝑅 462 197 106 65 

Week 2     

𝑒𝑜𝑝 1.6 1.16 0.99 1.47 

𝑅 379 90 -7 103 

Week 12     

𝑒𝑜𝑝 1.59 1.19 1.01 1.01 

𝑅 363 113 7 2 

Week 13     

𝑒𝑜𝑝 1.72 1.27 1.06 1.50 

𝑅 440 169 46 63 
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5.4 Training and Computation Efficiency 

Since the Standard Model and the Proposed Model follow the different concept as 

shown in Figure 1.3, Figure 1.4, Figure 1.5 and Figure 1.6, it is interesting to 

examine the training and computation efficiency of the two Models. 

5.4.1 Preparation of Training Dataset 

For the five predictors in the Standard Model, time spent for preparing the training 

dataset is neglectable because it is only a rearrangement of values according to each 

time steps. On the contrary, it took approx. 6 hours to prepare the dataset for the 

predictor in the Proposed Model due to the computation caused by running 

Algorithm 1 for a three-year historical data. 

5.4.2 Training of Models 

It is meaningless to compare the training time of each LSTM networks because the 

total number of trainable weights/variables is different in each Model. In addition, 

the training time can also be influenced by the complexity of the dataset, which is 

different in the two Models. 

5.4.3 Computation Efficiency 

For a one-day simulation, it took approx. 0.8 second for the Proposed Model to make 

decision, while the Standard Model took approx. 1 minute. The difference between 

0.8 second and 1 minute is neglectable compared to one day (24 hours), though it 

demonstrates to what extend an improvement of computation efficiency can be 

achieved if we build models and train networks in a different way, as discussed in 

Figure 1.3, Figure 1.4, Figure 1.5 and Figure 1.6.  
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6 Conclusion 

In this dissertation we proposed a LSTM network for the operation of heat storage 

in a solar energy community distribution system with PV generation as the only 

domestic generation and a connection to the main grid. Unlike conventional LSTM 

network that are only used to predict features for supporting an operator or a control 

programme to make a decision, in our proposed model, the operation strategy was 

integrated into the LSTM network, and thus the network provides an operation 

action directly.  

With historical data, we created a mock-up expert who can perfectly predict future. 

This mock-up expert follows the operation strategy we proposed in this dissertation, 

and then the operation behaviours of the mock-up expert are used to train a LSTM 

network in our proposed model. 

We set up three different Models: 

A. The Standard Model has five LSTM networks that receive past values of PV 

generation, electricity demand, heat demand, SSP and SBP to predict future 

values. These predictive values are then passed to a control programme that 

follows the operation strategy proposed in this dissertation to calculate the 

current target level of the heat storage. 

B. The Proposed Model has only one LSTM network that is trained by the 

operation behaviour of the mock-up expert. This network receives past values 

of PV generation, electricity demand, heat demand, SSP and SBP to provide 
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the current target level of the heat storage directly without executing the 

operation strategy. 

C. The Vanilla Model always starts to charge and to discharge the heat storage at 

fixed times every day. This model has no LSTM network. 

We conducted one-year simulations for the mock-up expert, the three Models and a 

system without heat storage. To decrease the total cost of importing electricity to 

meet the heat demand, each model consumes PV generation that could have been 

sold to the grid or imports electricity to charge the heat storage when SBP is 

relatively low. We defined a number, 𝑒𝑜𝑝, to describe the operation effectiveness of 

a Model: 

𝒆𝒐𝒑 =
𝑹

𝑬𝑷𝑽+𝑬𝑮𝒓𝒊𝒅
  

𝑹 = 𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝒊𝒏 𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒇𝒐𝒓 𝒉𝒆𝒂𝒕 𝒅𝒆𝒎𝒂𝒏𝒅 

𝑬 =  𝑬𝒙𝒑𝒆𝒏𝒅𝒊𝒕𝒖𝒓𝒆 𝒐𝒇 𝑷𝑽 𝑺𝒖𝒓𝒑𝒍𝒖𝒔 𝒐𝒓 𝒊𝒎𝒑𝒐𝒓𝒕𝒊𝒏𝒈 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚 𝒇𝒐𝒓 𝒄𝒉𝒂𝒓𝒈𝒊𝒏𝒈 𝒉𝒆𝒂𝒕 𝒔𝒕𝒐𝒓𝒂𝒈𝒆 

The results of one-year simulations show that the mock-up expert has the highest 

𝑒𝑜𝑝 around 1.55, and the Propose Model has 𝑒𝑜𝑝 around 0.98. The Standard Model 

and the Vanilla Model fails with 𝑒𝑜𝑝  around 0.75 and 0.45 respectively. The 

performance of our Proposed Model is nearly to be profitable if its 𝑒𝑜𝑝 can be further 

improved to be greater than 1. 

We found that during the weeks when the PV generation is low, and the heat demand 

is high, the 𝑒𝑜𝑝 of the Proposed Model, the Standard Model and the Vanilla Model 

is greater than 1. This is because the accuracy of prediction on PV generation has 

less influence on the performance of a Model. Thus, it is easier for a Model to operate 

the heat storage during a ‘colder’ week. 
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Since the Standard Model and the Proposed Model introduces different concepts of 

implementing LSTM networks, computation efficiency of each Model during the 

simulation is different. The Standard Model first runs its five LSTM networks to 

predict features related to operation, and then run the operation strategy to decide an 

operation action. On the other hand, the Proposed Model directly predicts an 

operation action. The computation time spent by the Standard Model is 75 times 

larger than the Proposed Model. 

With the same input (five features at 𝑡𝑛−48 to 𝑡𝑛−1), our Proposed Model has a better 

operation effectiveness and less computation time in simulation than the Standard 

Model which follows the conventional way of implementing LSTM networks. 

In further studies, we intend to create other experts by new operation strategies or 

by real experience of human operator. By introducing new operation strategy, the 

number of input features may increase or decrease and further affect 𝑒𝑜𝑝  of the 

model. On the other hand, if we introduce human operation experience, the selection 

of input features would be the key decision for constructing the model. Alternatively, 

the model can learn directly from extracting a policy from the human operation 

experience [27] without conducting a supervised learning. 

We also aim to examine different scenario for this solar energy community 

distribution system, such as an increase or decrease in the number of houses or solar 

panels. This would affect 𝑒𝑜𝑝 of the models because it changes the amount of PV 

generation and heat demand in certain weeks, and thus makes a week ‘warmer’ or 

‘colder,’ as we discussed in Chapter 5.3. Another scenario is that we can put the 

solar energy community distribution system into another electricity market which is 

different from the imbalance prices we used in this dissertation. We can also consider 
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how carbon tax or subsidy for solar energy influences the operation strategy and the 

performance of our Proposed Model.   
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8 Appendices 
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Appendix 1 Comparisons of predictive and true values 

in the Standard Model 

(1) PV generation Prediction 
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(2) Electricity Demand Prediction 
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(3) Heat Demand Prediction 
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(4) SBP Prediction 
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(5) SSP Prediction 
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