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ABSTRACT
Using archival X-ray observations and a log-normal population model, we estimate con-
straints on the intrinsic scatter in halo mass at fixed optical richness for a galaxy cluster sample
identified in Dark Energy Survey Year-One (DES-Y1) data with the redMaPPer algorithm. We
examine the scaling behavior of X-ray temperatures, TX , with optical richness, λRM, for clus-
ters in the redshift range 0.2 < z < 0.7. X-ray temperatures are obtained from Chandra and
XMM observations for 58 and 110 redMaPPer systems, respectively. Despite non-uniform sky
coverage, the TX measurements are > 50% complete for clusters with λRM > 130. Regression
analysis on the two samples produces consistent posterior scaling parameters, from which
we derive a combined constraint on the residual scatter, σln T |λ = 0.275 ± 0.019. Joined
with constraints for TX scaling with halo mass from the Weighing the Giants program and
richness–temperature covariance estimates from the LoCuSS sample, we derive the richness-
conditioned scatter in mass, σln M |λ = 0.30 ± 0.04 (stat) ± 0.09 (sys), at an optical richness
of approximately 70. Uncertainties in external parameters, particularly the slope and vari-
ance of the TX–mass relation and the covariance of TX and λRM at fixed mass, dominate the
systematic error. The 95% confidence region from joint sample analysis is relatively broad,
σln M |λ ∈ [0.14, 0.55], or a factor ten in variance.

Key words: galaxies: clusters: general, X-rays: galaxies: clusters, galaxies: clusters: statistics

1 INTRODUCTION

Population statistics of galaxy clusters are acknowledged as a valu-
able probe of cosmological parameters (Allen et al. 2011; Wein-
berg et al. 2013; Huterer & Shafer 2018), as illustrated by analysis

? corresponding author: afarahi@andrew.cmu.edu

of modern cluster samples (e.g., Vikhlinin et al. 2009; Rozo et al.
2010; Benson et al. 2013; Mantz et al. 2014; de Haan et al. 2016;
Bocquet et al. 2018), and anticipated from larger and deeper clus-
ter samples being assembled. The Dark Energy Survey (DES, Dark
Energy Survey Collaboration et al. 2016) is identifying clusters us-
ing color-based searches in five-band optical photometry. A small
initial sample from the Science Verification survey phase, with 786
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clusters, (Rykoff et al. 2016) is supplemented by a Year-1 (Y1)
data sample containing ∼ 7, 000 clusters with 20 or more statisti-
cal galaxy members (McClintock et al. 2019).

The population statistics approach relies on comparing the
number and spatial clustering of galaxy clusters, as a function of
their observable properties and redshift, to theoretical expectations
derived from simulations of dark matter halos, particularly the Halo
Mass Function (HMF) (e.g., Jenkins et al. 2001; Evrard et al. 2002;
Tinker et al. 2008; Murray et al. 2013). To connect halo and clus-
ter properties, a probabilistic model commonly referred to as the
mass–observable relation is employed to map host halo mass to
multiple cluster observables. This paper focuses on the statistical
relationships between optical and X-ray properties of a cluster and
the underlying total mass of the halo hosting it.

Ensemble-averaging, or stacking, to estimate mean mass as a
function of galaxy richness has been applied to the DES-Y1 clus-
ter sample by McClintock et al. (2019). The process of stacking
has the drawback that it integrates out the variance in halo mass,
M, conditioned on galaxy richness, λ. A complementary inference
technique is needed to determine the width and shape of the condi-
tional probability distribution, Pr(M |λ).

Both observations (Pratt et al. 2009; Reichert et al. 2011; Mah-
davi et al. 2013; Lieu et al. 2016; Mantz et al. 2016a,b) and simula-
tions (Evrard et al. 2008; Stanek et al. 2010; Farahi et al. 2018) sup-
port a log-normal form for observable-mass conditional distribu-
tions. This form, coupled with a low-order polynomial approxima-
tion for the HMF, yields analytic expressions for the space density
as a function of multiple observable properties as well as property-
conditioned statistics of the massive halos hosting groups and clus-
ters (Evrard et al. 2014, hereafter, E14). We employ this model in
our analysis, with particular emphasis on conditional property co-
variance.

The red-sequence Matched-filter Probabilistic Percolation
(redMaPPer) identifies clusters using an empirically-calibrated,
matched-filter model for old, red galaxies (Rykoff et al. 2014). The
algorithm outputs a probabilistic estimate of optical richness – the
count of red galaxies inside a cluster – along with a mean clus-
ter redshift and a set of up to five likely central galaxies. Previous
studies found this photometric cluster-finder algorithm produces
a highly complete and pure cluster sample with accurate redshift
estimates (Rykoff et al. 2012; Rozo & Rykoff 2014; Rozo et al.
2015a,b).

The Sloan Digital Sky Survey (SDSS) DR-8 redMaPPer clus-
ter sample (Rykoff et al. 2014) has recently been combined with
ensemble-average weak lensing masses (Simet et al. 2017) to pro-
duce cosmological constraints (Costanzi et al. 2018). A similar
analysis is underway for DES-Y1 (McClintock et al. 2019). In both
of these works, marginalization over the weakly constrained scatter
between mass and richness weakens posterior likelihoods of cos-
mological parameters. The aim of our work is to provide an em-
pirical constraint on the mass-richness variance, a result that will
be combined with other systematics calibration effort to refine and
improve likelihood analysis of cluster counts for cosmology.

Integrated measures of clusters such as redMaPPer richness,
λRM, X-ray temperature, TX , and luminosity, LX , are proxies for
host halo mass in that each scales as a (typically) positive power
of M. In general, each proxy has intrinsic variance generated by
internal dynamics within halos, as well as extrinsic scatter caused
by projection, measurement uncertainties and other effects. For the
intrinsic component, the log-normal property covariance model of
E14 provides expressions that link proxy properties to each other
and to unobservable host halo mass. The expressions involve the

local slope and curvature of the HMF because of the convolution
required to map mass to the observed measures.

Here we study the scaling behavior of TX as a function of λRM
for a redMaPPer sample of clusters identified in DES-Y1 imaging
data within the redshift range, z ∈ [0.2, 0.7] (McClintock et al.
2019). X-ray properties of clusters contained in archival Chandra
or XMM pointings are measured via the Mass Analysis Tool for
Chandra (MATCha, Hollowood et al. 2018) or XCS data analysis
pipelines (Giles et al. in preparation), respectively. We employ the
Bayesian regression model of Kelly (2007) to estimate parameters
of the conditional scaling, Pr(ln TX |λRM).

The inference of mass scatter requires additional information,
namely the TX–Mwl scaling relation and the λRM–TX covariance at
fixed halo mass. These additional quantities are taken from previ-
ous studies (Mantz et al. 2016b, Farahi et al. in prep.). Uncertainties
on the inferred scatter are determined by marginalizing over uncer-
tainties in the model priors.

The structure of this paper is as follows. In Section 2, we in-
troduce the cluster sample and X-ray follow-up programs of the
optically-selected clusters. In Section 3, we describe the regression
algorithm and the population model employed to obtain an estimate
of the mass–richness scatter, with results presented in Section 4. In
Section 5, we discuss our treatment of systematic uncertainties. Fi-
nally, we conclude in Section 6. Appendix A provides the tables of
cluster properties employed in this work. Appendix B provides cor-
rections for a small number of richness measurements using the X-
ray emission peak locations of Chandra and XMM observations. Fi-
nally in Appendices C and D, we present the richness–temperature
correlation at fixed halo mass and upper limits on the running of
temperature variance at fixed optical–richness, respectively.

We assume a flat ΛCDM cosmology with Ωm = 0.3 and
H0 = 70 km s–1 Mpc–1. Distances and masses, unless otherwise
noted, are defined as physical quantities with this choice of cos-
mology, rather than in comoving coordinates. We denote the mass
inside spheres around the cluster center as M200c, corresponding to
an overdensity of 200 times the critical matter density at the cluster
redshift.

2 DES-Y1 DATA

This work is based on data obtained during the DES-Y1 observa-
tional season, between 31st, August 2013 and 9th, February 2014
(Drlica-Wagner et al. 2018). During this period 1839 deg2 was
mapped out in three to four tilings using g, r, i, z filters. This strat-
egy produces a shallower survey depth compared to the full-depth
Science Verification data, but it covers a significantly larger area.
We use approximately 1,500 deg2 of the main survey split into
two contiguous areas, one overlapping the South Pole Telescope
(SPT) Sunyaev-Zel’dovich Survey area, and the other overlapping
the Stripe-82 (S82) deep field of SDSS. The sky footprint is illus-
trated in Fig. 1 of McClintock et al. (2019).

We first describe the main data products used in our analy-
sis and refer the reader to corresponding papers for a more de-
tailed overview. Imaging and galaxy catalogs associated with the
redMaPPer catalog used here are publicly available1 in the first
DES data release (DES DR-1, Abbott et al. 2018) and the Y1A1
GOLD wide-area object catalog (Drlica-Wagner et al. 2018).

1 https://des.ncsa.illinois.edu/releases/dr1
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Table 1. Supplemental X-ray Sample Size and Median Characteristics.

Source Nsam zmed λmed kTX,med [keV]

Chandra 58 0.41 76 7.45
XMM 110 0.41 38 4.41

2.1 Optical cluster catalog

We employ a volume-limited sample of galaxy clusters detected in
the DES-Y1 photometric data using version 6.4.17 of the redMaP-
Per cluster-finding algorithm (Rykoff et al. 2016). The redMaPPer
algorithm identifies clusters of red-sequence galaxies in the multi-
dimensional space of four-band magnitudes and sky position. Start-
ing from an initial spectroscopic seed sample of galaxies, the al-
gorithm iteratively fits a model for the local red-sequence. It then
performs a matched filter step to find cluster candidates and as-
sign membership probabilities to potential members. Starting with
a most likely central galaxy, ideally the brightest cluster galaxy,
member weights, pmem, of additional cluster galaxies are computed
with a matched-filter algorithm based on spatial, color, and magni-
tude filters (Rykoff et al. 2014). The method is iterative, and the
ambiguity of selecting a central galaxy is recognized by recording
likelihoods for up to five central galaxies in each cluster. The fi-
nal richness, λRM, is defined as the sum of the pmem values of its
member galaxies.

2.2 Supplemental X-ray catalogs

Table 1 summarizes contents of the XMM and Chandra samples
employed in this work, and Fig. 1 shows the distribution of cluster
samples as a function of their observables. The X-ray catalogs are
provided in Appendix A and will be available from the online jour-
nal in machine-readable format. In the following, we detail how the
redMaPPer clusters are matched to the X-ray sources identified in
Chandra and XMM archival data, and how the X-ray properties of
the matched sources are measured.

The two methods produce independent luminosity and tem-
perature estimates, and we adjust the latter to remove the known
spectral bias between the two X-ray telescopes (Schellenberger
et al. 2015). The two catalogs have similar depth (median redshifts
of 0.41) while differing in their coverage of halo mass scale, re-
flected in Table 1 by offsets in the median values of mass proxies.
The median richness is 76 for Chandra, 38 for XMM, and the re-
spective median X-ray temperatures are 7.45 and 4.41 keV. In terms
of natural logarithms, these offsets are 0.48 and 0.52, respectively.
Both samples have range of a factor of ten in both λRM and TX
dimensions.

We are concerned about the relation between the properties
of the redMaPPer-selected cluster observables and its host halo.
Therefore, we need to correct for the fraction of the mis-centered
population. Instead of modeling the mis-centered population, we
correct our cluster observables with an associated X-ray center and
re-estimate the optical–richness at X-ray peak (see Appendix B for
more detail). In the following, richness, λRM, implies the optical–
richness assigned by the redMaPPer algorithm at the X-ray peak,
unless otherwise mentioned.

2.2.1 Chandra-redMaPPer Catalogs

The analysis of Chandra observations was conducted with the
MATCha pipeline described in Hollowood et al. (2018). We briefly
outline the steps here. Starting from the volume-limited, λ > 20
redMaPPer catalog, we analyze all archival Chandra data, public
at the time of the analysis, which overlapped redMaPPer cluster
positions. In brief, after standard data reduction and cleaning, we
search for a significant X-ray cluster detection starting from the
redMaPPer position and iteratively re-centering toward the X-ray
peak using an initial 500 kpc aperture. If the cluster is X-ray de-
tected (SNR> 5), a spectrum is extracted, and we attempt to fit
for the X-ray temperature, TX . An iterative process is employed to
center, determine cluster temperature and luminosity in the same
X-ray band, and estimate cluster radius based on the TX fit. To
evaluate TX , the metal abundance is fixed at 0.3Z�, using the model
from Anders & Grevesse (1989). For clusters with sufficiently well-
sampled data, the output of the MATCha algorithm includes the
centroid location, LX , and TX within a series of apertures, 500 kpc,
r2500, r500, and core-cropped r500. In this work, we only use core
included r2500 TX values.

In addition, we estimate the X-ray emission peak position of
each detected cluster for use in studying the redMaPPer centering
distribution (Hollowood et al. 2018; Zhang et al. 2019). The peak
is determined, after smoothing the point-source subtracted cluster
image with a Gaussian of 50 kpc width, as the brightest pixel within
500 kpc of redMaPPer position. We perform a visual check and
then remove clusters for which the position, source spectrum, or
background spectrum were significantly affected by instrumental
chip edges or where the identified X-ray cluster was a foreground
or background cluster not matched to the redMaPPer cluster.

2.2.2 XCS-redMaPPer Catalogs

For the the XMM-redMaPPer analysis (Giles et al. in preparation),
the redMaPPer sample is matched to all XMM ObsIDs (with use-
able EPIC science data) under the requirement that the redMaPPer
position be within 13′ of the aim point of the ObsID. Next, the
XMM observations were filtered based upon exposure time. The
exposure time is determined within a radius of 5 pixels centred on
the redMaPPer position, with the mean and median required to be
>3ks and >1.5ks respectively. Here the mean is taken to be the ex-
posure time averaged over the sum of each pixel, while the median
refers to 50 percent of the pixels in the enclosed region. These cuts
are applied to ensure the redMaPPer cluster of interest is within the
XMM FOV and has a sufficiently long exposure time for reliable
SNR and TX measurements.

X-ray sources for each ObsID were then detected using
the XCS Automated Pipeline Algorithm (XAPA, Lloyd-Davies
et al. 2011). At the position of the most likely central galaxy of
each redMaPPer cluster, we match to all XAPA-defined extended
sources within a comoving distance of 2 Mpc. Cutout DES and
XMM images are then produced and visually examined to assign a
XAPA source to the optical cluster. Through this process, the final
XMM-redMaPPer sample contains 110 clusters.

The luminosities and temperatures for the XMM-redMaPPer
sample are derived using the XCS Post Processing Pipeline (Lloyd-
Davies et al. 2011), with updates presented in Giles et al. (in prepa-
ration). Cluster spectra are extracted and fit in the 0.3 – 7.9 keV
band with an absorbed MeKaL model (Liedahl et al. 1995). The
fits are performed using the xspec package (Arnaud 1996), with
the metallicity fixed at 0.3 Z�. Using an iterative procedure, spectra
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Figure 1. Supplementary sample properties. Left and right panels show the richness and hot gas temperatures as a function of cluster redshift obtained from
XMM and Chandra archival data. The optical-richness is re-measured at the location of the X-ray emission peak (see Section 2.2 for more detail). XMM
temperatures are scaled to the Chandra according to equation 1. The error bars are 68% measurement errors.

are extracted within r2500. We estimate an initial temperature within
the XAPA source detection region (Lloyd-Davies et al. 2011), and
an initial r2500 estimated from the r2500–kT relation of Arnaud et al.
(2005). A temperature is estimated within this r2500, and hence an
updated r2500 estimated as above. This process is then iterated until
r2500 converges to 10%. To asses the reliability of temperature esti-
mates, variance of the temperature is calculated for each iteration.
This involves generating a grid of 5-by-5 pixels and estimating the
temperature for each region. We assign a mean temperature to each
cluster which satisfies σ(Tx)/〈Tx〉) 6 0.25, where σ is the standard
deviation and 〈Tx〉 is the mean of estimated temperatures. Similar
to the Chandra analysis, the peak is determined, after smoothing
the point-source subtracted cluster image with a Gaussian of 50 kpc
width, as the brightest pixel within 500 kpc of redMaPPer position.

The different X-ray detection method, combined with the
larger collecting area of XMM compared to the Chandra observa-
tory, produces an X-ray sample for XMM that both is larger and
extends to lower richness than the Chandra detections. We defer a
detailed analysis of the X-ray selection processes used here to fu-
ture work. Here, we first analyze each sample independently, com-
bining them after demonstrating consistency of posterior scaling
parameters.

2.2.3 X-ray temperature as primary mass proxy

While X-ray luminosities, LX , are measured for a larger number
of clusters than are temperatures, the larger variance in non-core
excised LX (Fabian et al. 1994; Mantz et al. 2016b) and the com-
plexities of modeling the supplemental survey masks motivate the
choice of TX as the primary link to halo mass. As we will see, sys-
tematic uncertainties limit the precision with which we can recover
the scatter in underlying halo mass.

An important systematic effect that we address is the misalign-
ment of X-ray cluster temperatures derived from the instruments on
the Chandra and XMM observatories (Schellenberger et al. 2015).
Since we are particularly interested in population variance, it is im-
portant to align the TX measurements before performing a joint
sample regression. We use the calibration of Rykoff et al. (2016)

based on 41 SDSS redMaPPer-selected clusters,

log10(TChandra
X ) = 1.0133 log10(TXMM

X ) + 0.1008 , (1)

with temperatures in units of keV. Rykoff et al. (2016) note that
the above relation is consistent with that of Schellenberger et al.
(2015). We employ the Chandra temperature scale in analysis be-
low.

Within our sample, there are < 20 clusters with both Chandra
and XMM temperatures. The calibration relation from these clusters
alone is consistent with that of Rykoff et al. (2016), but with larger
uncertainties.

Mgas is another low-scatter mass proxy (Mulroy et al. 2019).
Currently, Mgas measurement for these sets of clusters is unavail-
able. We are planning on employing Mgas measurement as another
cluster mass proxy in a future work.

2.2.4 X-ray Completeness

The supplemental samples, with fewer than 200 clusters, are far
from complete relative to the full DES-Y1 redMaPPer population
of ∼ 7, 000 clusters. The incompleteness is primarily due to the
limited sky coverage of the two observatory archives to the depths
required to detect distant clusters.

If the X-ray signal-to-noise-ratio (SNR) is > 5, typically a
few hundreds of photons, there is enough signal to measure the
X-ray luminosity; but at least 1,000 photons are needed to get a re-
liable estimation of the TX . Fewer counts leads to larger errors, but
not excluded from the sample. The variable depths of the archival
pointings produce a complex pattern of flux limits across the optical
sample. The observations also have different levels of background
noise, adding to the complexity of X-ray selection modeling. Thor-
ough synthetic observations (Bahé et al. 2012; ZuHone et al. 2014)
are needed to accurately model this selection function. We defer
such modeling to future work.

The archival nature of the follow-up also produces a mix of
previously known and newly detected X-ray systems. About 60%
of clusters are newly detected X-ray systems. Fig. 2 shows the frac-
tion of redMaPPer clusters with TX measurements as a function
of redMaPPer richness and redshift. As may be expected, com-
pleteness is high for the largest clusters. The sample is more than

c© 2018 RAS, MNRAS 000, 1–14
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Figure 2. X-ray completeness of the supplementary samples. Lines show the fractions of DES-Y1 redMaPPer clusters with both LX and TX measurements
from Chandra (left) and XMM (right) archival data. Solid, dashed, and dash-dot lines denoting increasing redshift bins given in the legend. Here, we employ
the redMaPPer original richness.

half complete in X-ray temperature at high optical richness values,
λRM & 130. At lower richness, the completeness falls off, with
more systems being found in the XMM archival analysis. We note
in Appendix D that the posterior scaling parameters found in §4
are relatively insensitive to an imposed minimum richness thresh-
old (see Fig. D1), but the effects of X-ray selection may affect our
estimates of variance at low richness, particularly at high redshift.

3 POPULATION STATISTICS

The observed richness and X-ray temperature reflect properties of
its host halo, subject to additional contributions from projected line-
of-sight structure and other source of noise. Costanzi et al. (2019)
develop a probabilistic model that maps intrinsic richness, λtrue, to
measured richness, λRM. Generically, projection both widens the
variance in Pr(λRM|M) and adds a moderate degree of skewness.
We do not apply corrections for projection effects, taking instead an
approach that assumes Pr(λRM, TX |M, z) is a bivariate log-normal.

The integrated stellar and gas mass fractions in halos ex-
tracted from recent hydrodynamic simulations follow a log-normal
form, as validated at percent-level accuracy by Farahi et al. (2018).
This form is also supported by previous cosmological simulations
(Evrard et al. 2008; Stanek et al. 2010; Truong et al. 2018). Below,
we show that normalized residuals in the measured scaling relation
are consistent with a log-normal form, supporting this choice for
our population inference model.

Our inference model has two steps: (i) TX is regressed against
richness to determine scaling properties, particularly the residual2

scatter in TX (Section 4.1), (ii) we combine the scatter of TX–λRM
with weak-lensing mass–λRM relations to infer the halo mass scat-
ter at fixed optical richness (Section 4.2).

2 While the term “intrinsic scatter” is often used here, we use residual so
as to avoid confusion with the scatter associated with simulated halos and
their properties measured within localized (typically spherical) cosmologi-
cal volumes. The residual variance in temperature at fixed observed cluster
richness will be larger than the intrinsic variance at the relevant host halo
richness because of projection. Cluster members lying outside of the pri-
mary halo hosting the optical cluster add variance to the intrinsic relation
and also bias the mean (Costanzi et al. 2019).

3.1 Regression model

We assume a log-normal form for the likelihood of a cluster of
richness λ to also have gas temperature T

Pr(ln T |λ, z) =
1√

2πσln T | λ
exp

{
–

(
ln T – 〈ln kT |λ, z〉

)2

2σ2
ln T | λ

}
.

(2)
Here, and below, we may drop subscripts for simplicity of notation;
T ≡ TX and λ ≡ λRM. Following E14 notation, we write the log-
mean scaling of kT , expressed in keV, with richness as

〈ln T |λ, z〉 =
[
πT | λ + 2/3 ln(E(z))

]
+ αT | λ ln(λ/λmed), (3)

where αT | λ is the slope, λmed = 70 is the median richness of the
joint sample, πT | λ is the logarithmic intercept at z = 0, and E(z) ≡
H(z)/H0 is the evolution of the Hubble parameter.

We regress TX on λRM, rather than the other way around, be-
cause optical richness is the primary selection variable. Under the
assumption that the X-ray temperature at fixed optical richness is
either complete or randomly selected, explicit modeling of X-ray
selection process is not required. We use the regression method of
Kelly (2007), which returns posterior estimates of the slope and
normalization along with the residual variance, σ2

ln T | λ.
The redshift dependence of the normalization in equation (3)

reflects a self-similar expectation, based on virial equilibrium, that
T ∝ [E(z)M]2/3 (Kaiser 1991; Bryan & Norman 1998). For obser-
vations spanning a range of redshift, the quantity E–2/3(z)kT should
be a closer reflection of halo mass, M, than temperature alone. Over
the redshift interval of our analysis, the E–2/3(z) factor decreases
modestly, from 0.94 at z = 0.2 to 0.77 at z = 0.7.

While the slope and scatter of scaling relations may be scale-
dependent and/or evolving with redshift (e.g., Farahi et al. 2018;
Ebrahimpour et al. 2018), our data are not yet rich enough to model
these effects. We crudely test richness dependence by splitting both
samples into two non-overlapping samples, with different charac-
teristic scales, at their pivot richness, and find no evidence of scale
dependence in the posterior scaling relation parameters.

The regression method of Kelly (2007) includes uncertainties
associated with the independent variable, here lnλRM, by assuming
a mixture model in that variable. The number of mixture elements
is a free parameter in the method. We use two components in our

c© 2018 RAS, MNRAS 000, 1–14
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Table 2. Best-fit parameters for the TX–λRM relation, equation (3).

Normalization Slope Residual scatter
Sample eπT | λ [keV] αT |λ σln T |λ

Chandra 5.23 ± 0.26 0.56 ± 0.09 0.260 ± 0.032
XMM 4.88 ± 0.15 0.61 ± 0.05 0.289 ± 0.025

Joint 4.97 ± 0.12 0.62 ± 0.04 0.275 ± 0.019

analysis, and have performed tests to demonstrate that our results
are insensitive to this hyperparameter.

3.2 Mass scatter inference

In the E14 population model, the variance in temperature of a sam-
ple conditioned on the selection variable, λ, is set by the joint (X-
ray+optical) selection mass variance scaled by the slope, αT | M , of
the temperature–mass relation,

σ2
ln T | λ = α2

T | M

[
σ2

ln M | λ + σ2
ln M | T – 2rλT σln M | λ σln M | T

]
,
(4)

where σ2
ln M | λ is the variance in halo mass at fixed optical richness

(and similarly for temperature) and rλT is the correlation coeffi-
cient between log-richness and log-temperature at fixed halo mass.
We use the variance relationship, σ2

ln M | T = σ2
ln T | M /α2

T | M , and
assume that all parameters are constant with mass and redshift.

Rearranging the expression isolates what this study is after,
the mass variance conditioned on optical richness,

σ2
ln M | λ = σ2

ln M | T

( σ2
ln T | λ

σ2
ln T | M

– (1 – r2
λT )

)1/2

+ rλT

2

. (5)

We ignore local curvature in the mass function, but note that its ef-
fect is to reduce the mass variance amplitude in equation (5). This
suggests that the upper limits we derive below are somewhat con-
servative.

If there is no property correlation, rλT = 0, the above expres-
sion simplifies to

σ2
ln M | λ = σ2

ln M | T

(
σ2

ln T | λ

σ2
ln T | M

– 1

)
. (6)

Note that the first term inside the parentheses is guaranteed to be
greater than one because, when rab = 0, the simple Euclidean con-
dition

σ2
b | a = σ2

b | M +
(
αb | M
αa | M

)2

σ2
a | M , (7)

holds for any pair of properties {a, b}.

4 RESULTS

In this section, we present temperature-richness scaling parameters
derived from Chandra and XMM data. Consistent posterior con-
straints are found, motivating a joint analysis. We then introduce
additional priors on the missing elements of the residual mass vari-
ance conditioned on observed richness in § 4.2, and present the
resulting constraints.

4.1 redMaPPer richness – hot gas temperature relation

Figure 3 shows the TX–λRM relation for the Chandra, XMM, and
joint samples respectively, and best-fit parameters are listed in Ta-
ble 2. The blue lines and shaded regions present best-fit and 68%
confidence intervals for the mean log scaling, equation (3). In this
regression, λRM is remeasured at the location of the X-ray peak,
for each cluster resulting in mostly small corrections and a small
number of significant adjustments, as detailed in Appendix B.

We find consistent slopes of 0.56 ± 0.09 (Chandra) and
0.61 ± 0.05 (XMM). The XMM temperature normalization, ex-
pressed in the Chandra system via the adjustment of equation (1),
is 4.88 ± 0.15 keV, roughly 1σ lower than the Chandra value of
5.23 ± 0.26. The XMM temperature normalization, before the ad-
justment of equation (1), is 3.82± 0.12.

Gray shaded regions show the residual scatter about the mean
relation. There are a small number of outliers, particularly toward
low values of TX given λRM or, equivalently, a larger λRM than
expected given their TX . Such systems are likely to have a boosted
richness due to lower-mass halos along the line of sight that boost
λRM more than TX (Rozo & Rykoff 2014; Ge et al. 2019).

We test the shape of Pr(kTX |λ, z) by examining the normal-
ized residuals of the data about the best-fit mean scaling,

δT |λ , i =
ln
(

E–2/3(zi) kTi

)
– αT |λ ln(λi) – πT |λ

(σ2
ln T | λ + σ2

err , i)
1/2

, (8)

using posterior maximum likelihood estimates of the parameters
πT |λ, αT |λ and σ2

ln T | λ, and the index i corresponds to the ith clus-
ter. The quadrature inclusion of σ2

err,i, the square of the measure-
ment uncertainty in ln Ti, is appropriate if measurement errors are
both accurately estimated and also uncorrelated with the underlying
astrophysical processes responsible for the residual scatter.

Figure 4 shows quantile-quantile (Q-Q) plots of the residu-
als in both samples. The Q-Q plot compares the quantiles of the
rank-ordered residuals, expressed in units of the measured standard
deviation, equation (8), to those expected under the assumed Gaus-
sian model. The Q-Q form of both samples support the log-normal
likelihood, equation (2), as shown by the proximity of the measured
quantiles to the dashed line of unity. There is a very slight skew in
the distribution, with more weight to the low-temperature side as
expected from projection effects (Cohn et al. 2007). In a previous
work, Mantz et al. (2008) employed the Q-Q plot and illustrated the
log-normality of their cluster sample (see their Fig. 4).

Within the statistical uncertainties, the slope of temperature–
richness scaling is consistent with a simple self-similar expectation
of 2/3, the result obtained if the star formation efficiency is con-
stant, so that λ ∝ Mstar ∝ M, and the temperature scales as T ∝
[E(z)M]2/3 from virial equilibrium (Kaiser 1991; Bryan & Nor-
man 1998). However, both dynamical and weak lensing analysis
of the same SDSS sample produce mean behavior M ∝ λ1.3±0.1

RM ,
which shows deviation from the self-similar expectation (Simet
et al. 2017; Farahi et al. 2016), and the Weighing the Giants (WtG)
analysis yielding TX ∝ M0.62±0.04.

If rλT is close to zero and there is no scatter about the mean
relation, then it is expected that temperature scales with mass with
slope αT | λ = 0.81±0.10. There is moderate tension with our result
of 0.62 ± 0.04 for the joint sample, which we suspect reflects the
lack of low luminosity and temperature systems having low optical
richness in the X-ray archives.
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Figure 3. X-ray temperature–redMaPPer richness scaling behavior from the Chandra, XMM, and joint archival data samples (left to right) using a pivot
richness of 70. XMM temperatures have been modified using equation (1) to align with Chandra estimates. In each panel, the blue line and blue shaded region
are the best-fit and 68% confidence interval of the mean logarithmic relation, equation (3). Gray shaded regions show 1σ, 2σ, and 3σ residual scatter about
the scaling relation. Fit parameters are given in Table 2. Richness errors are provided directly by the redMaPPer algorithm.
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Figure 4. Normalized, ranked residuals, equation (8), of the Chandra (top,
left), XMM (top, right), and joint (bottom) samples follow closely a log-
normal form, as indicated by the close proximity of the points to the dashed
line of equality.

Table 3. External constraints required for the richness-conditioned mass
variance, equation (5). Uncertainties are 68% confidence intervals.

Parameter Value Reference

σln T | M 0.16 ± 0.02 Mantz et al. (2016b)
αT | M 0.62 ± 0.04 Mantz et al. (2016b)
σln M | T 0.26 ± 0.04 (inferred from above)
rλT –0.25+0.24

–0.22 Farahi et al. (in preparation)

4.2 Mass scatter conditioned on optical richness

To derive mass variance with the multi-property population frame-
work, information on additional scaling parameters is required, as
reflected in equation (5). We employ recent derivations of scal-
ing behavior from the WtG program (Mantz et al. 2015), partic-
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Figure 5. Marginalized posterior likelihood of the halo mass scatter at fixed
richness derived from the supplementary X-ray samples given in the legend.

ularly the slope and residual scatter of the TX–Mwl relation de-
rived by Mantz et al. (2016b). In the WtG analysis, X-ray prop-
erties are regressed against lensing mass estimates for a sample of
40 clusters. Their posterior estimates of the scatter in temperature,
σln T | µ = 0.16 ± 0.02, and slope, αT | µ = 0.62 ± 0.04, imply a
scatter in mass at fixed temperature of 0.26 ± 0.04. These values
are listed in Table 3, and we assume that the uncertainties are Gaus-
sian distributed.

For the correlation coefficient between temperature and rich-
ness at fixed halo mass, we use constraints derived from nearby
LoCuSS clusters by Farahi et al. (in preparation). The X-ray bright
LoCuSS sample (Mulroy et al. 2019) contains 41 clusters in the
redshift range 0.15 < z < 0.3, with 33 overlapping the SDSS
sample region. The redMaPPer richness estimates for those sys-
tems range from 27 to 181, with the median value near 100. Us-
ing the same model framework as this paper, modified to include
the original X-ray selection criteria, Farahi et al. (in preparation)
derive the first empirical constraint on the correlation coefficient,
rλT = –0.25+0.24

–0.22 .
With these additional elements, we can now derive an esti-

mate of the richness-conditioned mass scatter, equation (5), result-
ing in σln M | λ = 0.30± 0.10. To get this result, we employ the val-
ues derived from the joint sample temperature variance conditioned
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on richness. Since the correlation coefficient is broad and slightly
asymmetric (see Fig. C1), we use Monte Carlo sampling of the
terms on the right-hand side of equation (5), discarding any combi-
nations that produce unphysical results (negative values inside the
square root). The resultant posterior distributions are shown in Fig.
5 for the Chandra, XMM, and joint analysis with values of σ2

ln T | λ
from Table 2.

For the joint sample analysis, the median value of the posterior
mass scatter is

σln M|λ = 0.30 ± 0.04 (stat) ± 0.09 (sys), (9)

where the quoted uncertainties are 68% confidence level. The sta-
tistical error derives from the TX–λRM residual variance uncertainty
while the systematic uncertainty is derived from the quoted errors
of the required external parameters. The overall 95% confidence
region is broad, spanning 0.14 to 0.55.

5 DISCUSSION

Here we review our treatment of systematic uncertainties, including
priors, before turning to a comparison with existing estimates of the
mass scatter using optical proxies in both observed cluster samples
and simulated halo ensembles.

5.1 Systematic and prior uncertainties

The richness-conditioned mass variance is inferred from the ob-
served temperature variance via equation (5). Uncertainties in the
additional elements (see Table 3) propagates to broaden the uncer-
tainty in σln M | λ.

Figure 6 explores the contribution of each element’s uncer-
tainty by systematically setting the error in specific terms to zero
– i.e., fixing the value of each element. The yellow curve fixes the
TX–Mwl relation parameters, both slope and scatter, while the red
curve fixes the correlation coefficient, rλT . Finally, the blue curve
shows the impact of having perfect knowledge of all above param-
eters.

The temperature–mass relation uncertainties make the largest
contribution to the uncertainty in mass variance. We note that the
contribution of the temperature–mass uncertainty in the slope is
negligible and it is dominated by the uncertainty in the scatter. The
width of the blue curve, the statistical uncertainty, is 0.04.

A potential source of systematic uncertainty in our analysis
is the lack of a selection model for the archival X-ray analysis.
The modest sampling of λRM < 100 (see Fig. 2) leaves open the
possibility that only the X-ray brightest subset of clusters are be-
ing measured at low optical richness. Such sample truncation in
flux would be likely to influence temperature selection, eliminating
low-TX clusters and thereby distorting estimates of both the slope
and variance at low richness values. We defer a detailed study of
these effects to future work.

We show in Appendix D that the current data do not display
strong dependence on an imposed lower richness limit, and a con-
servative view is to interpret the mass scatter constraints we report
as appropriate to λRM = 100, since the supplementary samples are,
cumulatively, 50% complete above this richness. We note that Pois-
son scatter sets the minimum expected richness variance at fixed
mass. This implies minimum mass scatter of 0.1αlnM | λ ' 0.13,
using a mass–richness scaling, 〈ln M|λ〉 ∝ λ1.3 (Simet et al. 2017;
Farahi et al. 2016). This value lies just outside the 2σ low tail of
our posterior joint-sample constraints.
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Figure 6. Illustration of the impact of uncertainties in the external ele-
ments, Table 3. The grey shaded region shows the joint analysis result fully
marginalized over external uncertainties. Red and yellow lines assume, re-
spectively, that rλT or the TX–M scaling parameters are exactly known. The
TX–M parameters dominate the error budget. The blue line shows the case
of all external quantities known. The width of the blue is our statistical un-
certainties.

5.2 Comparing to previous studies

Using a smaller set of redMaPPer clusters identified in science ver-
ification (DES-SV) data, Rykoff et al. (2016) estimated the slope
and the scatter of TX–λRM scaling relation to be 0.60 ± 0.09 and
0.28+0.07

–0.05 , respectively. With a larger sample size, we find values
in agreement with those of Rykoff et al. (2016), but with smaller
parameter uncertainties.

Our measurements can also be compared to those of Rozo
& Rykoff (2014). That work set is similar in spirit to this study
but differs in some key details. The correlation coefficient, rλT ,
was set to zero, and the analysis did not propagate uncertain-
ties in the TX–M relation. Employing sub-samples of X-ray se-
lected clusters from the literature, including the XCS (Mehrtens
et al. 2012), MCXC (Piffaretti et al. 2011), ACCEPT (Cavagnolo
et al. 2009), and Mantz et al. (2010) cluster samples, they estimate
σln M | λ = 0.26 ± 0.03, with the quoted uncertainty being entirely
statistical. Our central value is consistent with theirs, but a key step
of our analysis is to more carefully revise uncertainties by incorpo-
rating a coherent multi-property model.

In a separate work, Rozo et al. (2015a) directly estimated the
scatter in richness at fixed SZ-mass by comparing the redMaPPer
catalog to the Planck SZ-selected cluster catalog (Planck Collabo-
ration et al. 2014). They estimate σln M | λ = 0.277 ± 0.026, with
the reported uncertainties again being purely statistical. We note
that the SZ-masses are inferred from YSZ–M relation, so covari-
ance between λRM and YSZ needs to be taken into account in this
analysis.

In an independent analysis using abundance and stacked weak
lensing profiles for roughly 8,000 SDSS redMaPPer clusters with
richness, 20 6 λRM 6 100, and redshift, 0.1 < z < 0.33, Murata
et al. (2018) derive σln M | λ ∼ 0.46 ± 0.05 at a pivot mass scale
of 3× 1014h–1M�, equivalent to a richness of 24, from their mean
scaling relation. In their analysis, the scatter is allowed to run with
mass, and they find that σln M | λ ∝ M–0.17±0.03. Evaluating their
result at a richness of 70, or a mass scale roughly a factor of 4
larger, leads to a mass scatter of 0.36, consistent with our findings.

This work is concerned about mass scatter conditioned on
optical-richness. To estimate the richness scatter at fixed halo mass,
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Table 4. Best-fit parameters for the TX–λRM relation. Samples are splitted
into two non-overlapping subsets with z > 4 and z 6 0.4. The notation is
similar to Table 2.

Slope Residual scatter
Sample αT |λ σln T |λ

Chandra (z 6 0.4) 0.60 ± 0.13 0.30 ± 0.06
XMM (z 6 0.4) 0.56 ± 0.07 0.27 ± 0.04
Joint (z 6 0.4) 0.59 ± 0.05 0.27 ± 0.03

Chandra (z > 0.4) 0.51 ± 0.15 0.25 ± 0.05
XMM (z > 0.4) 0.65 ± 0.08 0.32 ± 0.04
Joint (z > 0.4) 0.65 ± 0.06 0.29 ± 0.03

Saro et al. (2015) modeled the total richness variance conditioned
on halo mass with a Poisson term and a log-normal scatter term. If
this additional Poisson contribution, at pivot richness of our joint
sample λpiv ∼ 72, is subtracted from the total variance, the rich-
ness variance conditioned on the halo mass yields

Var(lnλ|M) ≡ Var(µ| lnλ)
α2
µ| ln λ

= exp(–〈lnλ|M〉) + σ2
ln λ|M , (10)

where Var(µ| lnλ) = 0.093+0.082
–0.047 is the halo mass variance condi-

tioned on optical-richness, and α2
µ| ln λ = 1.356±0.052 is the slope

of M–λRM relation (McClintock et al. 2019). Plugging these num-
bers into Eq. 10, we infer

σln λ|M = 0.20+0.10
–0.08 . (11)

This result is consistent with what is previously found employing
redMaPPer clusters from SDSS survey (Saro et al. 2015; Simet
et al. 2017; Costanzi et al. 2018).

5.3 Redshift dependence

We find no evidence of the redshift evolution for the slope and the
scatter of the TX–λRM relation. We split the Chandra, the XMM,
and the joint samples in half at z = 0.4. The TX–λRM relation results
are presented in Table 4.

Farahi et al. (2018) studied the redshift evolution of integrated
stellar mass – halo mass scaling relation employing the hydrody-
namical simulations. They find a mild redshift evolution for both
slope and the scatter of this relation. The statistical uncertainties of
our sample are larger than the magnitude of the redshift evolution
they noticed. Therefore, we cannot rule out or confirm such a small
evolution using the current sample.

5.4 Application to DES cluster cosmology

The mass variance constraints we derive can inform priors for clus-
ter cosmology studies. For the DES survey, the model that links
observed cluster richness with halo mass (Costanzi et al. 2018)
is more complex than the log-normal population model we apply
here. In particular, Costanzi et al. (2019) develop an explicit model
of projection that is a component of a hierarchical Bayes frame-
work for Pr(λRM|M, z). The base of that framework is an intrin-
sic halo population variance frames as a Poisson distribution con-
volved with a Gaussian of width, σintr.

However, Costanzi et al. (2018) find that a log-normal model
for the intrinsic halo population gives cosmological constraints

consistent with the Poisson plus Gaussian model, and posterior es-
timates of Pr(M|λRM, z) are found to be nearly log-normal. More
work is needed to fully incorporate constraints of the type derived
in this study into cosmological analysis pipelines.

6 CONCLUSION

We use archival X-ray observations of 168 redMaPPer clusters
identified in DES-Y1 imaging to place limits on the mass variance
at fixed galaxy richness, a critical component of cluster cosmol-
ogy analysis. The X-ray observables, TX and LX , of galaxy clus-
ters at redshifts 0.2 < z < 0.7 falling within archival Chandra or
XMM archival data are extracted via MATCha and XAPA process-
ing pipelines, respectively. We determine parameters of a power-
law TX–λRM relation, particularly the residual scatter in the log of
temperature conditioned on richness, and infer the halo mass scatter
at fixed optical richness using a log-normal multi-property popula-
tion model.

Given the modest sample size and the lack of a detailed X-ray
selection model, we do not attempt to add scaling of the mass vari-
ance with cluster richness or redshift. The median redshift of both
samples is 0.41 while the median richness is 76 for Chandra and 47
for the larger XMM sample. We infer residual scatter in temperature
at fixed richness, σln T | λ = 0.26± 0.03 (Chandra) and 0.29± 0.03
(XMM). The moderately larger variance in the lower-richness XMM
sample may be providing a hint of mass dependence. Larger sam-
ples and a model for archival X-ray selection are required to address
this issue.

Constraining the mass scatter requires additional information:
the slope and variance of the TX–M relation as well as the cor-
relation between λRM and TX at fixed halo mass. Incorporating
values from the Weighing the Giants and LoCuSS samples, re-
spectively, and using the richness-conditioned temperature variance
from the combined sample, we derive the mass scatter parameter,
σln M|λ = 0.30 ± 0.04 (stat) ± 0.09 (sys).

The contribution of the external parameter uncertainties in
these systematics to the overall uncertainty budget is considerable.
Therefore, as we make progress to better understand the scaling
relations of multi-wavelength observables, it is necessary to pay at-
tention to the off-diagonal elements of the mass-conditioned prop-
erty covariance matrix. Mantz et al. (2016a) pioneered empirical
estimates of the full covariance matrix for X-ray observables and
Farahi et al. (in preparation) take the lead in combining optical,
X-ray and SZ observables in the LoCuSS sample. Improved un-
derstanding of the broad property covariance matrix behavior will
allow us to improve the mass variance constraints from studies such
as this.
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APPENDIX A: CLUSTER CATALOGS

In Table A1 and A2, we provide the optical and the X-ray proper-
ties of Chandra and XMM clusters, i.e. the data vector, employed
in this work. The MEM_MATCH_ID is the redMaPPer Cluster Iden-
tification Number that shall be used to match the X-ray clusters
to the original redMaPPer clusters (McClintock et al. 2019). The
full original redMaPPer DES Y1A1 catalogs will be available at
http://risa.stanford.edu/redmapper/ in FITS for-
mat. LAMBDA_CHISQ and LAMBDA_CHISQ (X-ray peak)
are the original redMaPPer optical richness and the new richness
assigned to each cluster at the location of the X-ray emission peak,
respectively. XCS_NAME in Table A2 is the unique source identifier

c© 2018 RAS, MNRAS 000, 1–14
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which could be used to match with the XCS source catalog (Giles
et al. in preparation). The full X-ray catalogs will be available from
the online journal in machine-readable formats.
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Figure B1. Re-estimation of redMaPPer-selected clusters richness at the
X-ray emission peak versus their original redMaPPer richness. Left (right)
panel shows the clusters with a matched X-ray source in the Chandra
(XMM) archival dataset. The black line is a unity line for the reference.

APPENDIX B: X-RAY EMISSION PEAK CENTERING
SENSITIVITY

We are concerned about the relation between the properties of the
redMaPPer-selected cluster observables and its host halo. There-
fore, we need to correct for the fraction of the mis-centered popula-
tion. The mass scale of the redMaPPer host halos is studied in Mc-
Clintock et al. (2019) by correcting for the mis-centered clusters.
Instead of modeling, we correct our cluster observables with an as-
sociated X-ray center. To assign a center, we assume the hot gas
content of galaxy clusters traces the gravitational potential sourced
by the host halo. Specifically, we estimate the center of the host halo
with the location of the X-ray emission peak. We run the redMaP-
Per algorithm and assign a new optical richness to each X-ray ex-
tended source which is matched to a redMaPPer-selected cluster.
Figure B1 shows the assigned richness at the X-ray emission peak
versus the original redMaPPer richness. Except for a handful of
mis-centered clusters, the change in the richness is negligible (see
Zhang et al. 2019, for more detail). We also find that the estimated
richness is insensitive to the data obtained by different instruments
and the two X-ray analysis pipelines.
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Table A1. Chandra Clusters.

MEM_MATCH_ID zλ LAMBDA_CHISQ LAMBDA_CHISQ (X-ray peak) kTX [keV] obsid(s)

2 0.310 195.07 ± 6.78 200.65 ± 6.90 10.90+0.84
–0.81 9331,15099

3 0.424 174.46 ± 5.07 171.91 ± 4.49 7.39+0.41
–0.32 13396,16355,17536

4 0.307 146.24 ± 4.04 144.10 ± 4.00 10.24+0.26
–0.26 12260,16127,16282,16524,16525,16526

5 0.355 178.84 ± 8.71 188.40 ± 10.06 14.89+0.59
–0.55 4966

6 0.373 139.18 ± 4.67 138.85 ± 4.72 7.88+1.08
–0.80 13395

8 0.243 135.48 ± 5.08 136.44 ± 4.69 12.16+1.36
–0.92 15097

10 0.330 141.08 ± 5.96 142.26 ± 6.28 9.48+0.73
–0.53 11710,16285

12 0.534 160.33 ± 6.45 159.39 ± 6.29 7.51+3.04
–1.41 13466

14 0.282 129.00 ± 4.30 132.86 ± 4.36 9.46+0.66
–0.45 3248,11728

15 0.610 169.08 ± 5.77 165.92 ± 5.63 7.71+0.84
–0.55 12264,13116,13117

16 0.289 132.62 ± 4.75 130.37 ± 4.73 6.25+2.57
–1.30 17162,16271,17162

17 0.597 144.88 ± 5.51 152.04 ± 5.00 14.32+0.52
–0.52 13401,16135,16545

19 0.421 127.98 ± 4.61 124.99 ± 4.26 11.83+1.25
–0.90 12259

20 0.231 136.78 ± 7.18 135.36 ± 6.69 9.88+0.79
–0.66 15108

21 0.350 139.94 ± 7.49 125.67 ± 5.83 5.86+0.63
–0.37 17185

Table A2. XMM Clusters

MEM_MATCH_ID zλ LAMBDA_CHISQ LAMBDA_CHISQ (X-ray peak) kTX [keV] XCS_NAME

1 0.430 234.50 ± 7.52 238.88 ± 7.37 8.07+0.22
–0.21 XMMXCSJ025417.8-585705.2

2 0.310 195.07 ± 6.78 198.50 ± 6.67 6.11+0.14
–0.14 XMMXCSJ051636.6-543120.8

3 0.424 174.46 ± 5.07 171.91 ± 4.79 5.78+0.70
–0.59 XMMXCSJ041114.1-481910.9

4 0.307 146.24 ± 4.04 149.23 ± 3.98 8.46+0.25
–0.24 XMMXCSJ024529.3-530210.7

5 0.355 178.84 ± 8.71 190.51 ± 10.17 3.39+0.83
–0.56 XMMXCSJ224857.4-443013.6

8 0.243 135.48 ± 5.08 135.74 ± 4.70 9.48+0.36
–0.34 XMMXCSJ213516.8-012600.0

10 0.330 141.08 ± 5.96 140.76 ± 5.94 7.06+0.78
–0.67 XMMXCSJ213511.8-010258.0

14 0.282 129.00 ± 4.30 134.66 ± 4.43 7.45+0.24
–0.22 XMMXCSJ233738.6-001614.5

15 0.610 169.08 ± 5.77 164.19 ± 5.68 7.29+0.76
–0.62 XMMXCSJ055943.5-524937.5

17 0.597 144.88 ± 5.51 150.54 ± 4.93 12.11+0.07
–0.07 XMMXCSJ234444.0-424314.2

19 0.421 127.98 ± 4.61 125.71 ± 4.58 8.31+0.24
–0.23 XMMXCSJ043818.3-541916.5

20 0.231 136.78 ± 7.18 134.34 ± 6.71 8.05+0.48
–0.44 XMMXCSJ202323.2-553504.7

24 0.494 126.99 ± 4.31 127.26 ± 4.33 5.79+0.17
–0.16 XMMXCSJ024339.4-483338.3

25 0.427 130.39 ± 6.17 131.88 ± 6.31 5.26+0.71
–0.56 XMMXCSJ213538.5-572616.6

26 0.450 138.53 ± 6.45 138.08 ± 6.31 6.41+0.28
–0.26 XMMXCSJ030415.7-440153.0

APPENDIX C: RICHNESS–TEMPERATURE
COVARIANCE

Farahi et al. (in preparation) studied the full property covariance of
ten observables, including redMaPPer richness and X-ray temper-
ature, regressed on the weak-lensing mass. Their sample consist of
a 41 X-ray luminosity selected, low-redshift clusters with a weak-

lensing mass measurement for each individual cluster. Figure C1
presents their marginalized posterior distribution for the ln(λRM)
and ln(TX) correlation coefficient about weak-lensing mass, which
is employed in this work. Clearly a strong positive and negative
correlations are ruled out with a high statistical significance.
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Figure C1. The marginalized posterior distribution for the ln(λRM) and
ln(TX) correlation coefficient about fixed host halo mass employed in this
work. This is taken from Farahi et al. (in preparation).

20 30 40 50 60 70 80 90
cut

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

ln
T|

Chandra
XMM

Figure D1. Constraints on the scatter of the TX–λRM relation derived from
subsamples of Chandra (blue, dashed line) and XMM (red solid line) data
thresholded by redMaPPer richness, λRM > λcut. Shaded regions show 68%
confidence intervals.

APPENDIX D: RUNNING OF VARIANCE WITH
RICHNESS

We further study the change in the scatter parameter for a subset of
clusters by progressively applying λRM > λcut (Fig. D1). We find
that within the 68% statistical confidence intervals the estimated in-
trinsic scatter about the mean relation does not change. This implies
that the bias caused by the X-ray analysis pipeline is negligible, or
otherwise there is a miraculous running of the scatter that cancels
the X-ray selection bias. Saying that, one should be cautious that
a different subset of redMaPPer cluster sample, with a larger sam-
ple size or a different X-ray analysis pipeline, can have different
characteristics.
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