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Abstract

Galaxies have existed for the majority of the lifetime of the Universe,

having first formed 400-1000 Myr after the Big Bang, and it is known

that most galaxies contain supermassive black holes (SMBHs) at their

centres. In recent years, correlations have been found between the

evolution of galaxies and that of their central SMBHs. Therefore, un-

derstanding the evolution of SMBHs is key to our understanding of

the evolution of their host galaxies and that of the Universe. Early

studies have shown a link between merger activity in galaxies and the

growth of their SMBHs; however, more recent studies have shown that

merger-free processes and very minor interactions provide an impor-

tant additional pathway to SMBH growth. We investigate a relatively

unexplored possible pathway to SMBH growth: minor gravitational

interactions (short of mergers) between galaxies. We compare the en-

vironments of a sample of nearby (z∼0.15) disc-dominated AGN host

galaxies, which have no recent history of mergers (the ‘merger-free’

sample), to a control sample of AGN host galaxies at similar red-

shifts. We employ three main methods: cylinder searches for poten-

tial companion galaxies to the sample galaxies, a search for companion

galaxies to the sample galaxies in a well-studied group catalogue and

calculation of environment coefficients for each of the galaxies in each

sample. We found no significant difference between the environments

of galaxies each sample from our cylinder searches with depths of 500

kpc (0.6σ) and 1 Mpc (0.1σ) and only a marginally significant differ-

ence between the environments of galaxies from our cylinder search

with a depth of 5 Mpc (2.1σ), with the merger-free sample having an

increased number of potential companion galaxies found at projected
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distances close to 500 kpc compared to projected distances ≤ 350

kpc. This effect was not seen as prominently in the control sample.

These results may be interpreted to suggest that whilst AGN host

galaxies with no recent history of mergers may have less nearby com-

panion galaxies than control AGN host galaxies, they may have a

greater number of galaxies gravitationally interacting with them at

greater projected distances and with high peculiar velocities. We sug-

gest that SMBH growth in galaxies with no recent history of mergers

may be influenced by passing galaxies with high peculiar velocities,

which gravitationally interact with galaxies, but do not become grav-

itationally bound to them. Such interactions may provide enough

kinetic energy to gas in the centre of galaxies to fuel SMBH growth.

We found no significant difference (1.1σ) between the environments

of galaxies in each sample from our analysis of the results of a well-

studied group catalogue. This suggests there may be no difference

between the environments of bulgeless AGN host galaxies and control

AGN host galaxies.Our calculation of environment coefficients for each

of the galaxies in each sample found a marginally significant (2.6σ)

difference between the environments of each sample. Overall, some

of our results suggest that AGN host galaxies with no recent history

of mergers may reside in denser environments than control AGN host

galaxies, but further work would be required to ascertain whether or

not these results are caused by a true difference in environment or by

factors such as fibre collisions or redshift differences between samples.
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own reason for existing. One cannot help but be in awe when one

contemplates the mysteries of eternity, of life, of the marvelous struc-

ture of reality. It is enough if one tries merely to comprehend only a

little of this mystery every day.”- Albert Einstein as quoted from the

memoirs of William Miller, Life magazine, May 2, 1955. Reproduced

with permission of the Hebrew University of Jerusalem.
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Chapter 1

Introduction

Galaxies are an integral part of the structure of the Universe. The first galaxies

are estimated to have formed 400–1000 Myr after the Big Bang (which occurred

13.8 Gyr (3sf) ago [7],[8]), with candidates for galaxies with redshifts of z > 8.5

having been identified [9],[10] and galaxies with redshifts of z ∼ 7 having been

spectroscopically confirmed [11]. Since galaxies have existed for most of the life-

time of the Universe, studying their evolution over time can provide us with a

way to understand the history of the Universe as well as predict its future.

The vast majority of galaxies, including our own Milky Way, contain super-

massive black holes (SMBHs) at their centres [12],[13],[14]. These are black holes

with masses of & 106M� (for examples of this see Figure 2.2). As such, it is

important to understand the evolution of supermassive black holes and their in-

teraction with their host galaxies as part of understanding the evolution of the

host galaxies themselves.

In this dissertation, we investigate one possible consequence of interaction be-

tween a galaxies and their central SMBHs— the potential effect of a host galaxy’s

external environment on the growth of its SMBH.
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1.1 Galaxy Evolution

1.1.1 Stages of Evolution and Morphology

Over the course of a galaxy’s lifetime, its structure and composition evolves.

This results in the existence of galaxies with varied morphologies and structures.

Almost a century ago, Hubble first classified [15] ‘extra-galactic nebulae’ (later

found to be galaxies) based on their morphology from photographic images. This

classification was later formalised [16],[17] to the Hubble classification scheme

that is well-known today. Hubble sorted ‘extra-galactic nebulae’ into three broad

categories— elliptical, spirals and irregular. The ‘spirals’ category was further

subdivided into ‘normal spirals’ and ‘barred spirals’, and these were both subdi-

vided into ‘early’, ‘intermediate’ and ‘late’ types based on the size of their nucleus

and unwinding of their spiral arms. Hubble hypothesised that elliptical galaxies

morphed into spiral galaxies, whose spiral arms unwound as the galaxy evolved,

hence Hubble’s ‘early’ type spirals were those spiral galaxies that most closely

resembled elliptical galaxies and ‘late’ type spirals were those with more clearly

defined spiral arms.

Spiral galaxies (also referred to as disc galaxies) are characterised by their spi-

ral arms, which extend from the centre of the galaxy. They are usually actively

star-forming and therefore are bluer in colour than elliptical galaxies. Elliptical

galaxies are mostly featureless and continuous. They are usually redder in colour

than spiral galaxies due to having ceased star formation. Irregular galaxies are

those which do not have a typical spiral or elliptical shape; they may have fea-

tures such as trails of gas extending from core mass of the galaxy, or multiple

‘clumps’ (bright regions that are not at the galaxy’s centre).

Since Hubble’s classification, the morphology of galaxies has been studied

extensively and linked to physical processes occurring during galaxy evolution

[18],[19]. This has led to the understanding that spiral galaxies evolve into ellipti-

cal galaxies— the opposite of Hubble’s hypothesis; however, the term ‘early-type’

is still regularly used to refer to elliptical galaxies.
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1.1.2 Processes Affecting Galaxy Evolution

The main processes which occur during the transformation from a star-forming

spiral galaxy to a quiescent elliptical galaxy are mergers between galaxies and

quenching (the halting of star formation). Mergers can cause a galaxy’s shape to

become more similar to that of an elliptical galaxy [20], whilst quenching— which

can occur via environmental processes [21]— causes a galaxy’s colour to change.

Galaxies that actively star-forming tend to be ‘bluer’ in colour than those that

have ceased star-formation (quiescent galaxies).

Correlations have been found between the environment in which galaxies re-

side and their morphology [22],[23],[24],[25],[26],[27],[28],[29],[30],[31] and also be-

tween stellar mass and morphology [25],[26],[31]. Bamford et al (2009) [26] also

relate colour to environment. These correlations further indicate that processes

that may be related to a galaxy’s environment, such as mergers and quenching,

are responsible for changes in morphology and colour in galaxies.

Secular processes— which, for the purposes of this dissertation, we define as

any process occurring within a galaxy and not involving external factors (some-

times referred to as ‘in-situ’ processes)— also affect the morphology and evolution

of galaxies. For example, disc instabilities can lead to the formation of bars [32].

They may also affect the formation and/or growth of bulges, as discussed in

Section 1.1.3.

1.1.3 Bulge Formation and Growth

Most spiral galaxies contain bulges at their centres. These can be generally de-

fined as an area in the centre of a galaxy with a higher density of stars and a

greater luminosity than the rest of the galaxy (the disc) [33]. Bulges can be clas-

sified into multiple categories [34]. Classical bulges are those that protrude from

the galaxy when viewed edge on and display a rounded shape; boxy (sometimes

called peanut) bulges also protrude from the galaxy and display a rectangular

shape, usually the result of a bar in the galaxy’s centre [34]. Areas that are more

luminous than the rest of the galaxy but do not protrude (or protrude very little)

from the disc also exist [35]— these are referred to as pseudo-bulges (sometimes

called disc-like bulges), since they appear the same as a classical bulge from some
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angles but not when viewed edge on, and therefore may easily be mistaken for

classical bulges.

Classical bulges form when galaxies merge [35], and can also be formed by

secular processes, including calm star formation processes [36]. Despite it being

possible for bulges to form without mergers, it remains clear that galaxies with-

out a classical bulge present would not have had any significant merger activity,

since this would have caused a classical bulge to form.

Pseudo-bulges, on the other hand, are found in galaxies with a quiet merger

history [37] and form only via secular processes [35]. Therefore, relevantly to

this dissertation, the presence of a pseudo-bulge does not indicate any significant

merger history in a galaxy.

Boxy/peanut bulges form as part of a galaxy’s bar [32],[34]. Bar formation is a

secular process (by the definition we provide in Section 1.1.2), and evidence shows

that boxy bulges are formed from disc material [38],[35]; therefore, boxy bulges,

like pseudo-bulges, form via secular processes and therefore a barred galaxy which

does not also display a classical bulge would not indicate a significant merger his-

tory.
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1.2 Supermassive Black Holes

As noted at the beginning of this chapter, most, if not all, galaxies in the Universe

have a central supermassive black hole (SMBH) [12],[13],[14]. Various scenarios

have been suggested for their formation. Some models suggest that very mas-

sive, early (Population III) stars collapsed, leaving the beginnings of SMBHs in

early galaxies [39],[40],[41]. Others suggest that SMBHs may be formed from

the collapse of gas with low angular momentum in the centres of early galaxies

[42],[43],[44],[45],[46],[47],[41], or via a mechanism of ‘bars within bars’, which

would also cause gas to collapse into a SMBH [48],[49],[41]. Yet another ‘family’

of models suggest that SMBHs formed via stellar-dynamical interactions in dense

systems of non-Population III stars after the first metals were formed [50],[51],[41].

1.2.1 Active Galactic Nuclei

Active galactic nuclei (AGN) are extremely luminous areas in the centre of galax-

ies, whose luminosity, unlike that of bulges, does not originate from stellar ac-

tivity. AGN have been observed in various electromagnetic frequency bands [52],

including optical [53],[54],[55] and radio [56],[57]. They are believed to form when

gas becomes concentrated around a SMBH, forming an accretion disc. Gas flows

into the SMBH and causes the disc to gain angular momentum, which heats the

disc, increasing its luminosity [58],[59],[60],[61],[62],[63]. This theory is supported

by observations from the Event Horizon Telescope [64].

AGN can be broadly classified as either radio-quiet or radio-loud. Radio-quiet

AGN include those found in Seyfert galaxies, low-ionisation nuclear emission line

regions (LINERs) and radio-quiet quasars; radio-loud AGN include radio galax-

ies, blazars and radio-loud quasars [63]. Radio-loud quasars are those that have

relativistic jets; these are beams of ionised matter travelling at close to the speed

of light away from the AGN. They are associated with magnetic flux around the

centre of the disc [65],[61],[66].

Despite many types of AGN existing, it is theorised that all AGN are similar

in structure— this is referred to as AGN unification [67],[68],[57].

The work in this dissertation only considers unobscured, radio-quiet AGN;
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that is, AGN that are at such an angle that the broad line region is visible to

observers and do not have jets. This type of AGN allows the black hole mass to

be measured by using relations between emission line width and flux and black

hole mass [69],[55].
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1.3 Galaxy-Black Hole Coevolution

Correlations have been observed between the properties of supermassive black

holes, most notably black hole mass, and the properties of their corresponding

host galaxies [14],[70]. This implies that the evolution of supermassive black holes

could be linked to that of their host galaxies.

Examples of correlations found between the properties of SMBHs and their

host galaxies include correlations between black hole growth and star formation

[71],[72]; AGN activity and total stellar mass [73]; AGN incidence and star for-

mation rate [74]; black hole mass and total stellar mass [13],[75],[76]; black hole

mass and bulge stellar mass [77],[78],[79],[80],[81]; black hole mass and velocity

dispersion [12],[82],[83],[84],[85].

It has been established that supermassive black hole growth is connected to

merger activity between galaxies. Such works as [86] (theoretical) and [87],[74]

(observational) suggest a connection between major mergers and AGN triggering.

Hopkins & Hernquist [88], for example, predict, using an analytic model, that gas

is driven into the centre of galaxies during major mergers, thereby triggering AGN

activity. Works such as [89] and [90] link the correlations between supermassive

black hole growth and bulge growth to both processes being affected by major

mergers.

However, it has been shown that supermassive black hole growth also occurs

in galaxies without a history of major mergers such as bulgeless galaxies (see Sec-

tion 1.1 for a discussion of why bulgeless galaxies are unlikely to have a history

of major mergers) [91],[54],[55] and Ellison et al [92] suggest that recent merg-

ers may not be the main trigger of AGN activity in nearby AGN host galaxies

(z∼0). There is some evidence that, apart from mergers, secular processes such as

calm star formation processes may contribute to supermassive black hole growth

[93],[94],[95]. Disc instabilities, such as galactic bars, which we also classify as

secular processes in this dissertation, are found to contribute very little or not

at all to black hole growth and AGN triggering [96],[97],[98],[99]. However, a

relatively unexplored factor that may affect supermassive black hole growth is

gravitational interactions short of mergers (major or minor). These interactions
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may influence the motion of gas in galaxies and therefore contribute to the accre-

tion of gas in the centre of galaxies and therefore the growth and/or formation

of supermassive black holes.
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Chapter 2

Data

2.1 Galaxy Samples

2.1.1 Merger-Free Sample

In order to investigate supermassive black hole growth in galaxies without a

history of mergers, we must analyse a sample of galaxies which are both disc-

dominated (and hence have no history of mergers) and host growing black holes.

We make use of the Simmons et al (2017) [55] sample of disc-dominated AGN

host galaxies for this purpose. The following sections (2.1.1.1, 2.1.1.2) provide a

brief description of the sample’s properties and the selection processes applied by

Simmons et al.

2.1.1.1 AGN Selection

Galaxies hosting unobscured AGN with broad emission lines were selected for

this sample, since these allow for the black hole mass to be measured by using

relations between emission line width and flux and black hole mass. This allows

a comparison to be made between the black hole masses and fluxes of this sample

and that of black holes from other samples, such as the control sample described

in Section 2.1.2. These emission lines can be classified as broadened based on

their width compared to the narrow line component of the spectrum, in this case
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the primary component of [OIII] emission. In general, an emission line would be

classified as broadened if its full width at half maximum (FWHM) is & 2 times

that of the narrow line component or if its FWHM is > 1000 kms−1. Given that

the peak primary [OIII] emission line FWHM for the merger-free sample is ∼ 350

kms−1, many of the emission lines for this sample would require a FWHM of

& 700 kms−1 to be considered broadened.

The AGN in this sample were selected using multi-wavelength imaging. Un-

obscured AGN have characteristic colours in the ultraviolet [100], X-ray [101]

and infrared [102] wavelength bands. By combining these bands, uncertainties

in each band can be accounted for. Since all-sky surveys exist for each of these

wavelength bands, it is possible to select unobscured AGN photometrically using

a combination of wavelength bands. Simmons et al select an initial sample of un-

obscured AGN using the W2R (WISE, 2MASS and ROSAT) sample [103], which

comprises 4316 unobscured AGN sources from the Wide-field Infrared Survey

Explorer (WISE) [104], the Two-Micron All-Sky Survey (2MASS) [105] and the

ROSAT All-Sky Survey (RASS) [106]. W2R [103] selects unobscured AGN with

a confidence level of &95% by combining infrared colours with X-ray information.

2.1.1.2 Morphology

Following the AGN selection described in Section 2.1.1.1, a subset of galaxies

in this sample were selected due to their bulgeless morphology. This means

that the galaxies are disc galaxies without a central bulge or with a very small

central bulge. The morphology of these galaxies was defined as such by an expert

classifier (a classifier who is considerably more experienced in the visual analysis

of the morphology of galaxies than members of the general public, in this case Dr

Brooke Simmons) who, following AGN selection, visually identified 137 galaxies

that either displayed features typical of disc galaxies, such as spiral arms or bars,

but which did not show an obvious bulge or displayed an edge-on disc morphology

and similarly did not show an obvious bulge [55]. The galaxies may contain

pseudo-bulges but none can be deemed to have classical bulges. This classification

was performed using colour images from the Sloan Digital Sky Survey [107]. The
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sample size was later reduced to 101 galaxies because only these galaxies had

spectra available.

The morphology of the galaxies included in this sample indicates that they

are unlikely to have undergone major mergers in their recent history—this is

demonstrated theoretically by simulation in [108], in which none of the simulated

galaxies with a bulge-to-total mass ratio of less than 0.3 have undergone a major

merger at redshifts less than 1.

2.1.1.3 Spectroscopic Confirmation

The sources in the sample were spectroscopically confirmed to be unobscured

AGN. Spectra for 96 galaxies were obtained from SDSS DR9 [107],[109] (encom-

passing SDSS DR7 [107],[110]) and the spectra for 5 more galaxies were obtained

from observations taken by Simmons et al using the Intermediate Dispersion

Spectrograph on the Isaac Newton Telescope between 21-25 May 2014 [55]. The

sample galaxies all show broadened Hα line emission, which confirms that they

do indeed host unobscured AGN. These spectra were also used to determine the

redshift of the galaxies in the Simmons et al (2017) [55] sample, which are used

in throughout this dissertation.

2.1.1.4 Removal of Three Galaxies from the Sample

Three galaxies were later removed from the merger-free sample following inspec-

tion of Hubble Space Telescope (HST) images processed whilst the research pre-

sented in this dissertation was ongoing. These galaxies appeared to be either

elliptical galaxies or currently undergoing a merger, although a full morphologi-

cal analysis of these images, which would confirm or disconfirm this, has yet to

be conducted and is outside the scope of this dissertation.

These galaxies remain included in all results and analysis in this dissertation

except for the calculation and analysis of environment coefficients, described in

Sections 3.4 and 4.4. The exclusion of the three galaxies from these results is

discussed in Section 4.4.1 and the environment coefficients that are yielded when

these galaxies are not removed are shown in Figure 4.14. It was found that the

effect of removing these galaxies on the results was minimal, and therefore all
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of the results presented throughout this dissertation remain comparable to one

another. For a further discussion of this, please see Section 4.4.1.

The HST band used to observe all three of the removed galaxies was F850LP.

This produced red optical images of the removed galaxies. Using this band meant

that the AGN at the centre of the galaxies did not appear as bright as they

might have done in other bands/wavelengths and therefore the morphology of

the galaxies was displayed clearly as opposed to the images being dominated by

AGN emission. This also reduced the likelihood of AGN emission either dominat-

ing a galaxy’s bulge or AGN emission appearing as a pseudobulge. Whilst using

this band caused the images produced to be useful for morphological analysis,

the same images would not be as useful for analysing the properties of the AGN

themselves because the AGN emit little radiation in this band. The same im-

ages would also be less useful for locating potential companion galaxies because

faint potential companion galaxies (which are at redshifts similar to those of the

merger-free and control samples) are not likely to appear clearly in red optical

images.

2.1.2 Control Sample

We use a control sample consisting of 101 galaxies from the Shen et al (2011) [53]

sample of AGN host galaxies. We refer to this subset hereafter as the ‘control’

sample. This sample is identical to the ‘QSOCONTROL’ sample described and

used in [55]. It provides examples of more ‘typical’ quasar-like objects with which

to compare the Simmons et al (2017) [55] sample.

This is a suitable control sample to compare to the Simmons et al (2017) [55]

(merger-free) sample because the selected galaxies are at similar redshifts to those

in the merger-free sample and therefore exist at a similar epoch (see Figure 2.1

for a comparison of redshift distributions between the two samples). Due to this

redshift selection, the control sample we use is reduced to a very small subset of

the original Shen et al (2011) [53] sample, which contains 105783 galaxies at a

wide range of redshifts up to z = 4.95 and was selected based on various differ-

ent broad (with a full width at half maximum of >1000 kms−1) emission lines

depending on redshift. All spectra for the original Shen et al (2011) [53] sample
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originate from the Schneider et al (2010) [111] compilation of the spectroscopic

quasar catalogue from the seventh data release of the Sloan Digital Sky Survey

[110]. These spectra were also used to determine the redshift of the galaxies in the

control sample, which are used in throughout this dissertation. The 101 galaxies

selected for the control sample are those with broadened (with a full width at

half maximum of >1000 kms−1) Hα emission lines (indicating unobscured AGN)

which are within the redshift range of the Simmons et al (2017) [55] sample.

As noted in [55], the control sample galaxies that have morphological classifi-

cations available from Galaxy Zoo [112],[113] are, in general, not found to be disc

galaxies, and therefore also cannot be bulgeless disc galaxies. This is expected

for AGN host galaxies that are not selected based on their morphology, since as

discussed in Section 1.3, supermassive black holes often form via mergers, which

cause bulges to form.

2.1.3 Redshift

Figure 2.1 shows the redshift1 distribution of the Simmons et al (2017) [55]

(merger-free) and control (a subset of Shen et al (2011) [53]) samples of AGN

host galaxies in terms of absolute numbers of galaxies at each redshift (in redshift

bins of size 0.025). There is a tendency towards lower redshifts in the merger-free

sample compared to the control sample. This occurs due to overlap between the

Shen et al (2011) [53] sample and the Simmons et al (2017) [55] at lower red-

shifts. In the case of a galaxy being present in both samples, the galaxy does not

form part of the ‘control’ subset of Shen et al (2011) sample [53] that we use.

Therefore, the control sample has a greater average redshift than the merger-free

sample. The average redshift of the merger-free sample is 〈z〉 = 0.132 ± 0.053

(3 sf) and the average redshift of the control sample is 〈z〉 = 0.141 ± 0.045 (3

sf)2. It must also be noted that the redshift distributions of the merger-free and

control samples are not perfectly symmetrical Gaussian distributions. In both

cases, the average redshift is lower than the centre of the redshift range that the

1All redshifts for galaxies in the merger-free and control samples are spectroscopic. See
Sections 2.1.1.3 and 2.1.2 for the sources of these spectra.

2The errors in the average redshifts shown are the standard deviations of each redshift
distribution around the mean average value for each sample.
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distribution covers. This shows that there is a general tendency towards lower

redshifts in both distributions.
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Figure 2.1: A frequency histogram showing the redshift distribution of the Sim-
mons et al (2017) (merger-free) and control (a subset of Shen et al (2011)) samples
of AGN host galaxies in terms of absolute numbers of galaxies at each redshift (in
redshift bins of size 0.025)

A K-S statistical test (see Section 3.5 for a brief description of this method)

comparing the redshift distributions of these samples gives a p-value of 0.102,

which corresponds to a difference between distributions at the 1.6σ significance

level. This indicates that there is a marginal difference in redshift distribution

between the samples, which may be explained by overlap between the samples

as previously discussed in this section, but the difference is not statistically sig-

nificant, therefore the null hypothesis (that the redshift distributions of the two

samples could be drawn from the same distribution) cannot be rejected. The

two samples that we use may be therefore be considered to be from the same
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evolutionary epoch.

The lowest redshift of any galaxy in the merger-free sample is z = 0.0312 (3

sf) and the highest redshift of any galaxy in the merger-free sample is z = 0.244 (3

sf). Applying the cosmological parameters H0 = 70 kms-1Mpc-1, Ωm = 0.27 and

ΩΛ = 0.73, as described fully in Section 3.1, this gives a look-back time1 of 0.426

Gyr for the lowest redshift galaxy in the merger-free sample and 2.899 Gyr for

the highest redshift galaxy in the merger-free sample, thereby giving a look-back

time difference of 2.473 Gyr between the galaxy with the lowest redshift and the

galaxy with the highest redshift in the merger-free sample.

Similarly, the lowest redshift of any galaxy in the control sample was z =

0.0645 and the highest redshift of any galaxy in the control sample was z = 0.253.

Applying the same cosmology as was applied to the merger-free sample in the

previous paragraph and using the same method, the look-back time for the lowest

redshift galaxy in the control sample is 0.862 Gyr and the look-back time for the

highest redshift galaxy in the control sample is 2.987 Gyr. This gives a difference

in look-back time of 2.125 Gyr over the entire control sample.

Table 2.1 summarises the results described in the previous two paragraphs.

Sample Merger-Free Control
Lowest Redshift 0.0312 0.0645
Highest Redshift 0.244 0.253

Minimum Look-back Time (Gyr) 0.426 0.862
Maximum Look-back Time (Gyr) 2.899 2.987

Difference in Look-back Time Over Entire Sample (Gyr) 2.473 2.125

Table 2.1: The lowest and highest redshifts of galaxies in the merger-free and
control samples, along with their corresponding look-back times and the difference
in look-back time between the highest and lowest redshift galaxies in each sample.

1All look-back times were calculated from cosmological parameters using the cosmological
calculator developed by Wright et al (2006) [114].
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2.1.4 Black Hole Mass and Bolometric Luminosity

Figure 2.2 shows the relationship between black hole mass and bolometric lumi-

nosity for both samples.
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Figure 2.2: A logarithmic plot showing black hole mass (MBH , x axis) plotted
against bolometric luminosity (Lbol, y axis) for both samples of galaxies considered
(Simmons et al (2017) and the ‘control’ subset of Shen et al (2011)).

Galaxies in the control sample have greater median black hole masses and

greater median bolometric luminosities than those in the Simmons et al (2017)

[55] sample. However, there is a large overlap between the samples on both axes.

Whilst the error in some measurements may be large, the errors of both samples

may be assumed to be heteroscedastic, and hence the median measurements of

both black hole mass and luminosity are comparable to one another despite the

presence of relatively large uncertainties. Therefore, the black holes in the control

sample can be stated to be more luminous and more massive than black holes in
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the merger-free sample, despite the large errors in black hole mass and bolomet-

ric luminosity. This could be an effect of the difference in redshift between the

merger-free and control samples described in Section 2.1.3, since AGN at higher

redshifts would require a greater luminosity to be detected than those at lower

redshifts and due to the relationship between supermassive black hole mass and

AGN luminosity, AGN with greater masses tend to also have greater luminosities.

The galaxies in the control sample, on average, are at higher redshifts than those

in the merger-free sample. Therefore, it would be plausible for galaxies in the

control sample to have greater luminosities and black hole masses than galaxies

in the merger-free sample for this reason.
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2.2 Group Catalogue

2.2.1 The Yang et al Group Finders

We analyse the environment in which the samples of galaxies that we consider

([55],[53], see Sections 2.1.1 and 2.1.2) reside by considering the results of Yang

et al (2007) group finder [115] when applied to the seventh data release of the

New York University Value Added Galaxy Catalogue (NYU-VAGC DR7)[116]

(based on the seventh data release of the Sloan Digital Sky Survey (SDSS DR7)

[107],[110],[117]). For more information on our analysis see Section 3.3. In this

section, we will discuss the properties of the Yang et al (2007) [115] group finder

and its results when applied to NYU-VAGC DR7, as mentioned in [118].

The Yang et al (2007) group finder [115], hereafter Y07, is a slightly modified

version of the Yang et al (2005) [119] group finder, hereafter Y05, which in turn

improves upon on the ‘friends of friends’ (FOF) galaxy group finder algorithms

that preceded it (for example, Davis et al (1985) [120]). ‘Friends of friends’ algo-

rithms are those that link objects into groups in which, if a object is linked to one

other objects in the group, it is also linked to all other objects in the group. Two

objects in the a given group are not necessarily directly linked or connected to the

same object, but will be associated via a ‘chain’ of connections between objects

[121],[122]. In the case of galaxy group finders, this involves linking galaxies that

are within a certain distance (defined by a ‘linking length’) of each other [121].

The key difference between Y05 and previous FOF algorithms is its consider-

ation of dark matter haloes in the grouping of galaxies. This provides a physical

basis upon which to group galaxies and, importantly for our purposes, to base

claims that galaxies in the same group are likely to be undergoing gravitational

interactions with one another, either directly or indirectly. The aim of Y05 is to

group galaxies whose dark matter haloes overlap, and hence form one common

halo; however, since dark matter haloes cannot be directly observed, this requires

modelling the halo sizes and masses based on the luminosity of the galaxies that

the haloes are associated with. The Y05 algorithm begins by using a ‘traditional’

FOF algorithm to link galaxies within 0.3 times the mean distance between galax-

ies in the sample being considered in the direction along the line of sight and 0.05
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times the mean distance between galaxies in the sample being considered in the

transverse direction, thereby obtaining initial group centres. Galaxies that are

the brightest within the volume of a cylinder of radius 1 h−1 Mpc 1 and a depth

(in terms of the relative velocities of galaxies around the sample galaxy) of ±500

kms−1 around themselves are also considered as initial group centres. The to-

tal luminosity of each initial group is determined based on the luminosities of

galaxies in the group. This group luminosity is then used to estimate the size,

mass and velocity dispersion of the group (including the dark matter halo). This

then allows more galaxies to be added to the groups based on the properties of

the dark matter haloes associated with each group. The group centres are then

recomputed and the process is repeated from the point of computing the total

luminosity of each group until there are no changes in group membership between

further iterations. Y05 also differs from previous FOF algorithms in that it allows

groups to be of size one (with only one galaxy in the group) rather than requiring

a group to consist of multiple galaxies.

The Y07 group finder differs from Y05 in that it considers all galaxies as po-

tential group centres instead of only considering galaxies that are the brightest

within a specific cylindrical volume. This means that every galaxy in the sample

that the algorithm is run on will be assigned to a group, even if the group consists

of only one galaxy.

The group catalogue we use is that obtained by applying the Y07 group finder

to the New York University Value Added Galaxy Catalogue (NYU-VAGC) Data

Release 7 [116], which is based on SDSS DR7 [107],[110],[117] as mentioned in

Yang et al (2012) [118]. Specifically, we use the ‘PetroA’ galaxy and group cat-

alogues. These result from the use of Petrosian [124] magnitudes and galaxies

in ‘Sample I’ (as described in Y07) when running the group finder. Sample I is

the sample of galaxies in the NYU-VAGC [116] with “reliable r-band magnitudes

and measured redshifts from the SDSS”[115]2 and redshifts between 0.01 and 0.20

(inclusive).

1The distance this corresponds to depends on the cosmology applied. In Y07 the cosmolog-
ical parameters used are those provided by the three-year data release of the WMAP mission
[123], therefore h = 0.73 and the cylinder’s radius is 1

0.73Mpc (1.37 Mpc to three significant
figures).

2Specifically, these galaxies have spectroscopic redshifts drawn from SDSS DR7 [110].
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2.2 Group Catalogue

We acknowledge that Sample I suffers from incompleteness due to fibre col-

lisions. As described in Yang et al (2007), “∼ 7% of all galaxies eligible for

spectroscopy do not have a measured redshift” [115] due to fibre collisions. This

is likely to lead to some potential companion galaxies being excluded from the re-

sults of our analysis of the data from the Yang et al (2007) [115] group catalogue.

Yang et al (2007) do provide a sample (sample III) in which corrections are made

for fibre collisions by assuming that galaxies which are within 55 arcsecs of an-

other galaxy (and therefore are affected by fibre collisions) are assigned the same

redshift as the galaxy which they collide with, except for in cases where doing so

would cause a galaxy to have an excessively large implied absolute magnitude.

We do not use sample III in our analysis because, although the assumptions of

Yang et al (2007) are reasonable and would eliminate the issue of galaxies be-

ing excluded from the data due to the lack of an available redshift, these fibre

collision corrections would potentially introduce some error in the redshifts of po-

tential companion galaxies, and hence in exact group sizes, since these redshifts

are assumed rather than measured.
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Chapter 3

Methods

3.1 Calculation of Relative Distances

Right ascension (RA) and declination (dec) co-ordinates and redshifts are avail-

able for both the sample galaxies and surrounding galaxies (see Chapter 2), there-

fore distances between galaxies can be derived from this information.

Initially, the angular diameter distance to each galaxy was calculated as a

function of redshift, z, the Hubble constant, H0, the mass density parameter of

matter in the universe, Ωm and the effective mass density parameter of dark en-

ergy in the universe, ΩΛ using the following cosmology: H0 = 70 kms-1Mpc-1,

Ωm = 0.27 and ΩΛ = 0.73— this cosmology is consistent to 2 significant figures

and within the stated error of the results of the three-year data release of the

Wilkinson Microwave Anisotropy Probe (WMAP) [123]. Spectroscopic redshifts

were used for this calculation when available, otherwise photometric redshifts

were used. Using photometric redshifts when spectroscopic redshifts were not

available ensured greater completeness— at the cost of increased uncertainty—

because few galaxies had spectroscopic redshifts available.

Both the photometric redshifts and the spectroscopic redshifts for potential

companion galaxies were obtained from the thirteenth data release of the Sloan

Digital Sky Survey (SDSS DR13)[107],[125], which also encompasses data from

all previous Sloan Digital Sky Survey data releases. The photometric redshifts in
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3.1 Calculation of Relative Distances

SDSS DR13 originated from SDSS DR12 [107],[126] and were obtained by Beck et

al (2016) [127]. Beck et al (2016) employed a machine learning technique known

as a kd-tree nearest neighbour fit (KF) in order to estimate redshifts for photo-

metric observations in SDSS DR12 that have been tagged as galaxies, based on

a training set of spectroscopic and photometric observations (including the en-

tire SDSS DR12 spectroscopic catalogue [128],[129] and data from nine external

surveys1), allowing a prediction of spectroscopic redshift to be made based on

photometric observations for each galaxy.

Of the galaxies in the ninth data release of the Sloan Digital Sky Survey (SDSS

DR9) [107],[109] that were within 10 arcmin of any galaxy in the merger-free sam-

ple [55], 3% had spectroscopic redshifts available, whereas 38% had photometric

redshifts available. For the control sample [53], these were 4% and 36% respec-

tively. For both samples, less than 1% of galaxies have both a spectroscopic

redshift and a photometric redshift available, therefore in the merger-free [55]

sample 41% of galaxies have a redshift available and in the control [53] sample

40% of galaxies have a redshift available— therefore only 40–41% of galaxies in

each sample have a calculable three-dimensional distance. The information in

this paragraph is summarised in Table 3.1.

1External surveys: 2dF [130],[131], 6dF [132],[133], DEEP2 [134],[135], GAMA [136],[137],
PRIMUS [138],[139], VIPERS [140],[141], VVDS [142],[143], WiggleZ [144],[145] and zCOSMOS
[146],[147].

22



3.1 Calculation of Relative Distances

Sample Merger-Free Control
Total number of galaxies within 10 arcmin of

a sample galaxy 370268 383495
Number of galaxies within 10 arcmin 141198 139370

of a sample galaxy with available
photometric redshifts

Percentage of galaxies within 10 arcmin 12758 15943
of a sample galaxy with available

spectroscopic redshifts
Number of galaxies with both photometric 2470 2640

and spectroscopic redshifts available
Total number of galaxies with available redshifts 151486 152643

Percentage of galaxies within 10 arcmin 38% 36%
of a sample galaxy with available

photometric redshifts (2sf)
Percentage of galaxies within 10 arcmin 3.4% 4.2%

of a sample galaxy with available
spectroscopic redshifts (2sf)

Percentage of galaxies with both photometric 0.67% 0.69%
and spectroscopic redshifts available (2sf)

Total percentage of galaxies with
available redshifts (2sf) 41% 40%

Table 3.1: A summary of the percentages of galaxies that were included in the
ninth data release of the Sloan Digital Sky Survey that are within 10 arcmin of
galaxies in the merger-free and control samples and also have photometric redshifts
available from Beck et al (2016) and/or spectroscopic redshifts available from the
thirteenth data release of the Sloan Digital Sky Survey.

Figures 3.1 and 3.2 compare the error in photometric redshift to the photo-

metric redshift measurement for all galaxies within a 500 kpc projected distance

of each sample, regardless of redshift. In both figures, it is clear that there is

some dependence of the error in redshift on the redshift itself— greater redshifts

have greater associated errors. The fact that the minimum error appears to also

increase with redshift in both figures indicates that there may be a minimum

percentage error in each photometric redshift measurement. The average error

in photometric redshift is 0.0955 (3 sf) for the galaxies shown in Figure 3.1 and

0.0950 (3 sf) for galaxies shown in Figure 3.2, whilst the average redshifts of
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3.1 Calculation of Relative Distances

Figure 3.1: A comparison of the pho-
tometric redshifts for all galaxies within
a 500 kpc projected distance of any
galaxy in the merger-free sample (re-
gardless of redshift) and the error in
those redshifts.

Figure 3.2: A comparison of the pho-
tometric redshifts for all galaxies within
a 500 kpc projected distance of any
galaxy in the control sample (regard-
less of redshift) and the error in those
redshifts.

the same galaxies are 0.460 (3 sf) (Figure 3.1) and 0.451 (3 sf) (Figure 3.2) re-

spectively. This indicates the photometric redshifts that we use have an error of

∼ 21%. In contrast to the spectroscopic redshifts we use, whose average errors are

of the order 10−5, these errors are very large and therefore spectroscopic redshifts

would be preferable. However, as previously mentioned, our use of photometric

redshifts is necessary for completeness.

Spectroscopic redshifts were available for all of the galaxies in both the control

and merger-free samples because a spectrum had been taken for each galaxy as

part of the sampling process [55],[53], therefore the angular diameter distance for

these galaxies was always calculated using a spectroscopic redshift.

The standard trigonometric formulae for calculating the projected separation

between two points on a projected sphere (in this case the sample galaxy and

its neighbour), as shown in Equations 3.1 and 3.3, were used. In this case, the

average declination of the two galaxies was used when calculating the RA distance

(see Equation 3.2).

∆dRA = |dz tan((RA1 − RA2) cos(decav))| (3.1)

decav =
dec1 + dec2

2
(3.2)

∆ddec = |dz tan(dec1 − dec2)| (3.3)
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3.1 Calculation of Relative Distances

where ∆dRA represents the projected RA distance between a sample galaxy and

its neighbour, RA1 represents the RA co-ordinate of a sample galaxy, RA2 rep-

resents the RA co-ordinate of the same sample galaxy’s neighbouring galaxy, dz

represents the angular diameter distance to the sample galaxy, dec1 represents

the dec co-ordinate of a sample galaxy and dec2 represents the dec co-ordinate of

the same sample galaxy’s neighbouring galaxy.

The overall three-dimensional distance between galaxies was then calculated

using the three-dimensional pythagorean theorem shown in Equation 3.4.

doverall =
√

(∆dz)2 + (∆dRA)2 + (∆ddec)2 (3.4)

where doverall represents the overall three-dimensional distance between a sam-

ple galaxy and its neighbouring galaxy, ∆dz represents the absolute value of the

difference between the angular diameter distance to the sample galaxy and the

angular diameter distance to the neighbouring galaxy, ∆dRA represents the RA

distance between the sample galaxy and its neighbouring galaxy and ∆ddec rep-

resents the dec distance between the sample galaxy and its neighbouring galaxy.
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3.2 Cylindrical Search for Potential Companion Galaxies

3.2 Cylindrical Search for Potential Companion

Galaxies

One method by which we are able to quantitatively describe the environment in

which galaxies reside is by counting neighbouring galaxies within a defined search

area. In order to achieve this, we use a cylindrical search area with the sample

galaxy in the centre as shown in Figure 3.3.

Figure 3.3: A labelled diagram showing the volume around each sample galaxy
covered by the cylinder search.

The radius of the cylinder is 500 kpc at the redshift of the sample galaxy.

This was achieved by performing a search for galaxies in the ninth data release

of the Sloan Digital Sky Survey [107],[109], searching within the angular radius

corresponding to a 500 kpc projected distance from the sample galaxy at the

redshift of the sample galaxy.

An angular diameter ‘redshift distance’ between each galaxy found in the

search and its corresponding sample galaxy was then calculated in the man-

ner described in Section 3.1. The ‘redshift distance’ was used to determine the

length of the cylindrical search area. Three ‘redshift distance tolerances’ were

considered— 500 kpc, 1 Mpc and 5 Mpc.
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3.2 Cylindrical Search for Potential Companion Galaxies

3.2.1 Free Fall Time

The free fall time is the time that would be taken for a small test particle to

fall from one point to another given that only gravitational forces act upon the

particle and the particle has an initial velocity of zero. In the case of minor

gravitational interactions between galaxies, this represents the approximate time

elapsed before one galaxy could have any affect on another when the galaxies are

separated by distance R.

The free fall time at each of the distances considered in the cylinder search

was calculated using Equation 3.5 1.

tff =

√
2R3

GM
(3.5)

Where, in this case, tff represents the free fall time, R represents the distance

between the centre of the sample galaxy (the location of the AGN) and the edge

another galaxy, G represents Newton’s gravitational constant and M represents

the total mass in the area between the two galaxy centres. We take M to be

the mass of the Milky Way galaxy, which is similar to the sample galaxies we

consider, and assume a vacuum in the space between the two galaxies. Given

these assumptions, when R = 500 kpc, tff = 7.4× 109 yr. This is 0.53tH (2 s.f.),

where tH represents the Hubble time (14× 109 yr, approximately the age of the

universe). It is therefore reasonable to conclude that galaxies at a distance of 500

kpc from one another would be exert a gravitational force over one another and

would therefore be interacting since enough time has elapsed for such interactions

to have occurred and to have had affected the centre of the sample galaxy.

It is possible to calculate the value of R at a given value of tff by rearranging

Equation 3.5 to give Equation 3.6.

R =
3

√
t2ffGM

2
(3.6)

1See Appendix A for a derivation of this. We assume Newton’s Law of Gravitation and
Newton’s Laws of Motion [148] are valid.
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3.2 Cylindrical Search for Potential Companion Galaxies

where all definitions are as in Equation 3.5. From this, we find that when tff = tH ,

R = 750 kpc. Therefore, galaxies at distances of over 750 kpc from the sample

galaxy will not have directly gravitationally interacted with the sample galaxy.

However, it should be considered that redshift distances between nearby galax-

ies may not be indicative the true distances between these galaxies because poten-

tial companion galaxies may have peculiar velocities, which are not considered in

the calculation of an angular diameter distance as this assumes a galaxy’s redshift

only depends on the expansion of the universe.

vH = H0d (3.7)

where vH represents the Hubble velocity (velocity due to the expansion of the uni-

verse) of a galaxy, H0 represents the Hubble constant and d represents the distance

along the line of sight- in this case the ‘redshift distance’. Considering only the

expansion of the universe and applying Equation 3.7 as an approximation of the

calculation used to determine the ‘redshift distance’ and H0 = 70 kms−1Mpc−1 as

was used in when calculating ‘redshift distance’ (see Section 3.1), a ‘redshift dis-

tance’ of 1 Mpc corresponds to a total velocity of 70 kms−1. The same calculation

performed for a ‘redshift distance’ of 750 kpc (the free fall distance corresponding

to the age of the universe) gives a Hubble velocity of 52.5 kms−1. Since a galaxy’s

total velocity is the sum of its Hubble velocity and its peculiar velocity, a galaxy

at a distance of 750 kpc from another and a peculiar velocity of 17.5 kms−1 would

appear to have a ‘redshift distance’ of 1 Mpc from the other galaxy.

There is evidence from previous studies that the large-scale environment of

galaxies is relevant to their evolution (an effect known as conformity) [149],[150].

Therefore, we also continue to include the results of the cylinder search using a 5

Mpc ‘redshift distance’ both for completeness and to provide a measurement of

the wider environment in which the sample galaxies reside despite many of the

galaxies identified in this search being unable to directly interact with the sample

galaxies.
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3.2 Cylindrical Search for Potential Companion Galaxies

3.2.2 Redshift Availability in the Cylinder Search and the

Potential Effect of Fibre Collisions

At the highest redshift of any galaxy in either of the merger-free or control sam-

ples (z = 0.253), 500 kpc corresponds to an angular distance of 2.10 arcmin (3

sf)1. At this angular scale, fibre collisions are unlikely to affect our results [151].

However, since our study intended to detect galaxies within distances of less than

500 kpc from other galaxies, in cases where galaxies were at angular separations

of less than 1 arcmin [151] from one another (and especially in cases where galax-

ies were separated by an angle of less than the SDSS fibre collision limit of 55

arcsec [107]), fibre collisions may have limited the availability of spectroscopic

detections in the SDSS.

Similarly, at the lowest redshift of any galaxy in either of the merger-free

or control samples (z = 0.0312), 500 kpc corresponds to an angular separation

of 12.9 arcmin (3sf), a scale at which fibre collisions should not affect results.

The same caveat— that galaxies separated by less than 1 arcmin, and especially

galaxies separated by less than 55 arcsec, from another galaxy may not be spec-

troscopically detected in the SDSS— applies at all redshifts, but it is less likely

that this will occur at lower redshifts since all distances correspond to larger an-

gular scales than at higher redshifts.

This means that fibre collisions may partially account for the lack of availabil-

ity of redshifts for all galaxies. Since this cylinder search includes photometric

(imaging) detections of galaxies as well as spectroscopic detection, this effect does

not necessarily extend to a lack of detections of potential companion galaxies at

angular separations of less than 1 arcmin, but may lead to these galaxies not

having available redshift measurements. If a potential galaxy does not have an

available redshift measurement (either spectroscopic or photometric), then its

three-dimensional distance from the galaxies in the merger-free and control sam-

ples cannot be calculated and therefore the galaxy cannot be presented in the

results of the cylinder search. Especially for the highest redshift galaxies in the

1Applying the same cosmological parameters that we used to calculate the ‘redshift dis-
tances’ of potential companion galaxies in Section 3.1 (H0 = 70 kms−1Mpc−1, Ωm = 0.27 and
ΩΛ = 0.73).
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3.2 Cylindrical Search for Potential Companion Galaxies

merger-free and control samples, this could lead to an artificial scarcity of galax-

ies at small separations from the sample galaxies in the results of the cylinder

search. This is discussed further in Section 4.1. If a potential companion galaxy

has a photometric redshift measurement available but not a spectroscopic redshift

measurement, then the galaxy will be included in our results, but the error in its

redshift may be ∼ 21%, as discussed in Section 3.1, which would mean that its

three-dimensional distance had a greater uncertainty than that of galaxies whose

three-dimensional distances were calculated using spectroscopic redshifts.

Table 3.2 shows the availability of redshifts for all galaxies within a 500 kpc

projected distance of any galaxy in the merger-free or control samples. 60–70%

of these galaxies do not have an available redshift measurement. This may be

due to fibre collisions or due to the galaxies appearing as very faint in imagery. It

is likely that many of these galaxies are background galaxies, with much higher

redshifts than those of the merger-free and control samples. However, without

any measured redshift for these galaxies, it is not possible to state for certain

whether or not these galaxies could be potential companions to galaxies in the

merger-free or control samples.

Tables 3.3, 3.4 and 3.5 show the numbers and percentages of galaxies within

each ‘redshift distance tolerance’ for which spectroscopic or photometric redshifts

were used to calculate their three-dimensional distances. As described in Section

3.1, spectroscopic redshifts were preferred over photometric redshifts when cal-

culating three-dimensional distances. For all tolerances, a greater percentage of

potential companion galaxies to the merger-free sample had spectroscopic red-

shifts available than for the control sample. This may be related to the control

sample having a greater average redshift than the merger-free sample (see Section

2.1). This would have given potential companion galaxies to the control sample

a greater likelihood of being affected by fibre collisions and therefore could have

limited the availability of spectroscopic redshifts for potential companion galaxies

to the control sample.
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3.2 Cylindrical Search for Potential Companion Galaxies

Sample Merger-Free Control
Total Number of Galaxies 73696 60475

Number of Galaxies that do not have
an available redshift measurement 44013 42557

Number of Galaxies that have Available
Spectroscopic Redshifts 152 76

Number of Galaxies that have Available
Photometric Redshifts 29683 17917

Number of Galaxies that have an Available
Spectroscopic Redshift and an Available

Photometric Redshift 152 75
Percentage of Galaxies that do not have
an available redshift measurement (2 sf) 60% 70%

Percentage of Galaxies that have Available
Spectroscopic Redshifts 0.21% 0.13%

Percentage of Galaxies that have Available
Photometric Redshifts 40% 30%

Percentage of Galaxies that have an Available
Spectroscopic Redshift and an Available

Photometric Redshift 0.21% 0.12%

Table 3.2: The numbers and percentages of all galaxies within a 500 kpc projected
distance of any galaxy the merger-free or control samples that have (and that do
not have) spectroscopic and/or photometric redshifts available from SDSS DR13.
This includes background galaxies with redshifts that are much greater that those
of the merger-free and control samples.
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3.2 Cylindrical Search for Potential Companion Galaxies

Sample Merger-Free Control
Total Number of Galaxies 12 7

Number of Galaxies whose distance
was calculated using a spectroscopic redshift 8 3

Number of Galaxies whose distance
was calculated using a photometric redshift 4 4

Percentage of Galaxies whose distance
was calculated using a spectroscopic redshift 67% 43%

Percentage of Galaxies whose distance
was calculated using a photometric redshift 33% 57%

Table 3.3: The numbers and percentages of all galaxies within a 500 kpc projected
distance and within a 500 kpc ‘redshift distance’ of any galaxy the merger-free or
control samples whose three-dimensional distances were calculated using spectro-
scopic and/or photometric redshifts available from SDSS DR13.

Sample Merger-Free Control
Total Number of Galaxies 17 16

Number of Galaxies whose distance
was calculated using a spectroscopic redshift 11 7

Number of Galaxies whose distance
was calculated using a photometric redshift 6 9

Percentage of Galaxies whose distance
was calculated using a spectroscopic redshift 65% 44%

Percentage of Galaxies whose distance
was calculated using a photometric redshift 35% 56%

Table 3.4: The numbers and percentages of all galaxies within a 500 kpc projected
distance and within a 1 Mpc ‘redshift distance’ of any galaxy the merger-free or
control samples whose three-dimensional distances were calculated using spectro-
scopic and/or photometric redshifts available from SDSS DR13.
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3.2 Cylindrical Search for Potential Companion Galaxies

Sample Merger-Free Control
Total Number of Galaxies 51 61

Number of Galaxies whose distance
was calculated using a spectroscopic redshift 28 20

Number of Galaxies whose distance
was calculated using a photometric redshift 23 41

Percentage of Galaxies whose distance
was calculated using a spectroscopic redshift 55% 33%

Percentage of Galaxies whose distance
was calculated using a photometric redshift 45% 67%

Table 3.5: The numbers and percentages of all galaxies within a 500 kpc projected
distance and within a 5 Mpc ‘redshift distance’ of any galaxy the merger-free or
control samples whose three-dimensional distances were calculated using spectro-
scopic and/or photometric redshifts available from SDSS DR13.
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3.3 Analysis of Data from a Group Catalogue

3.3 Analysis of Data from a Group Catalogue

We apply the analysis techniques described in this section to the data described

in Section 2.2.1.

Initially, we matched the data in the galaxy catalogue (iPetroA as described

in Section 2.2.1) to the single group catalogue detailing the galaxies contained in

each group by matching catalogue entries with the same object ID in the NYU-

VAGC DR7 catalogue [116]. This produced a single table for each sample (a

total of two tables), containing enough information to place each of the sample

galaxies into groups and find any galaxies that this group catalogue deems to be

gravitationally interacting with the sample galaxies. We then cross-matched the

resulting tables to the sample galaxy data for both samples described in Sections

2.1.1 and 2.1.2 based on the right ascension and declination (RA and dec) of

each galaxy, with a tolerance of 1 arcsec, in order to locate any sample galaxies

included in the iPetroA galaxy catalogue data. This provided 75 matches (74%

of the sample) for the merger-free sample and 53 matches (52% of the sample)

for the control sample.

Following this, we searched for all galaxies in the group catalogue that had

the same group identifier as any of the sample galaxies, and therefore would

be in the same group as at least one of the sample galaxies. This produced

another table for each sample containing the sample galaxies and the galaxies

found using this search. These tables contained 217 galaxies for the merger-free

sample and 115 galaxies for the control sample. A further table was created

by matching the tables containing both sample galaxies and galaxies in groups

containing sample galaxies to the sample data, using RA and dec co-ordinates

with a tolerance of 1 arcsec, and removing the sample galaxies to produce tables

containing only galaxies in the same group as sample galaxies and not the sample

galaxies themselves. This would be of use when comparing the distances from the

sample galaxies at which such ‘companion’ galaxies reside (see Section 4.2). These

tables contained 142 galaxies for the merger-free sample and 62 galaxies for the

control sample. The information in the previous two paragraphs is summarised

in Table 3.6.
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3.3 Analysis of Data from a Group Catalogue

Sample Merger-Free Control
Total Number of Galaxies in Sample 101 101

Number of Galaxies in the Sample that are
also in the Yang et al (2007) Group Catalogue 75 53
Percentage of Galaxies in the Sample that are
also in the Yang et al (2007) Group Catalogue 74% 52%
Total Number of Galaxies that are in the same

group as a Galaxy in the Sample
(including the sample galaxies) 217 115

Number of Potential Companion Galaxies 142 62

Table 3.6: A table summarising the results of matching the merger-free and
control sample tables of galaxies to the Yang et al (2007) group catalogue.

The tables produced from this analysis were used to produce the plots and

results shown and discussed in Section 4.2.
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3.4 Environment Coefficients

3.4 Environment Coefficients

In order to gain a single-number measure of the density of environment in which

each galaxy resides, we make use of the method described in [152]. An environ-

ment coefficient, σ, was calculated for each galaxy according to Equations 3.8

and 3.9.

σ =
log10(Σ4) + log10(Σ5)

2
(3.8)

ΣN =
N

πd2
N

(3.9)

where N describes the order of galaxies in terms of distance from the sample

galaxy, with the nearest galaxy having N = 1, the second nearest having N = 2,

etc. In this case, the fourth and fifth nearest galaxies to the sample galaxy are

used. dN represents the three-dimensional distance between the sample galaxy

and the Nth galaxy.

We perform this calculation for all galaxies in each of the samples that we

consider, using the five nearest galaxies to each sample galaxy in the ninth data

release of the Sloan Digital Sky Survey [107],[109] based on three-dimensional dis-

tances calculated using the method described in Section 3.1. Since, as noted in

Section 3.1, not all galaxies have available redshifts and we are unable to calculate

three-dimensional distances for those that do not have redshifts available, we are

only able to consider galaxies for which redshifts (either spectroscopic or photo-

metric) are available when calculating environment coefficients. This is 40–41%

of all galaxies within 10 arcmin of galaxies in the merger-free and control sam-

ples1. This may affect the result of the calculation for some galaxies, since their

nearest five neighbouring galaxies may include those for which we do not have a

measured redshift. Also, since most galaxies do not have available spectroscopic

redshifts, more uncertainty in our calculation of environment coefficients may be

introduced by using photometric redshifts for these galaxies in our calculation

of their three-dimensional distance from a sample galaxy; however, this impacts

1For a breakdown of the exact numerical and percentage availability of redshifts for all
galaxies within 10 arcmin (projected distance) of galaxies in both the merger-free and control
samples, which includes all galaxies used to calculate environment coefficients, see Table 3.1.
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3.4 Environment Coefficients

the results of our calculation of environment coefficients far less than the possible

effect of only considering galaxies with available spectroscopic redshifts due to

the lack of available spectroscopic redshifts.

37



3.5 Statistical Testing

3.5 Statistical Testing

3.5.1 Kolmogorov-Smirnov (K-S) Test

We make use of the Kolmogorov-Smirnov (K-S) [153],[154],[155] method of sta-

tistical testing in order to assess the level of significance of our results. When

applied in two dimensions [156], this method compares two distributions of results

by shape and determines the likelihood of the results having been drawn from

the same distribution. We choose to use this test since we are comparing two dis-

tributions (those of the two galaxy samples and their associated environments)

and we wish to determine whether or not the distributions could be drawn from

different functions (e.g. different environments, different redshift distributions).

3.5.2 Pearson Correlation Coefficient

The Pearson product-moment (sometimes referred to as Pearson ‘r’) correlation

coefficient [157],[158] is a quantity which describes the strength and direction

(positive or negative) of linear regression between two continuous variables. A

correlation coefficient of r = 0 would indicate that no linear correlation was

present, whereas correlation coefficients of r = 1 or r = −1 would indicate that

a line of best fit drawn on a scatter plot comparing the two variables would

pass through every data point, with r = 1 corresponding to a perfect positive

correlation and r = −1 corresponding to a perfect negative correlation. This

can be used to easily determine whether or not linear correlation is present. We

apply this method in Section 4.4.4 to quantitatively determine whether a clear

correlation between redshift and environment coefficient is present.
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Chapter 4

Results and Discussion

4.1 Cylinder Search

As discussed in Section 3.2, we performed a cylinder search for galaxies around

the sample galaxies, applying three different ‘redshift distance tolerances’ and

thereby producing three datasets containing galaxies found in each of the three

searches. We obtained data for redshift distance tolerances of 500 kpc, 1 Mpc

and 5 Mpc. It should be noted that these datasets are not mutually exclusive;

by definition, the entirety of the 500 kpc dataset is contained within the 1 Mpc

dataset and the entirety of the 1 Mpc dataset (and therefore also the 500 kpc

dataset) is contained within the 5 Mpc dataset.

4.1.1 Cumulative Histograms Showing Projected Distances

Between Sample Galaxies and Companions

Figures 4.1, 4.2 and 4.3 are cumulative frequency histograms showing the dis-

tances of potential companion galaxies from their associated sample galaxy. The

histograms show the results of cylinder searches conducted using ‘redshift tol-

erances’ of 500 kpc (Figure 4.1), 1 Mpc (Figure 4.2) and 5 Mpc (Figure 4.3).
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Figure 4.1: A cumulative histogram
showing the results of a cylinder search
for galaxies that are within 500 kpc pro-
jected distance of any sample galaxy
and within 500 kpc ‘redshift distance’
of any sample galaxy. The projected
distance (not considering redshift) be-
tween each galaxy found in the search
and its associated sample galaxy (x)
is plotted against cumulative frequency
(y). A bin size of 1 kpc is used.
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Figure 4.2: A cumulative histogram
showing the results of a cylinder search
for galaxies that are within 500 kpc pro-
jected distance of any sample galaxy
and within 1 Mpc ‘redshift distance’
of any sample galaxy. The projected
distance (not considering redshift) be-
tween each galaxy found in the search
and its associated sample galaxy (x)
is plotted against cumulative frequency
(y). A bin size of 1 kpc is used.

From Figures 4.1, 4.2 and 4.3, it appears that for the cylinder search with a

‘redshift distance tolerance’ of 500 kpc, a greater number of potential companions

are found for the merger-free sample than for the control sample, however the

inverse is shown in the histogram for the 5 Mpc ‘redshift tolerance’ search— the

control sample appears to have a greater number of potential companions than

the merger-free sample at projected distances greater than 50 kpc from a sample

galaxy.

However, when the distributions are compared using a K-S test, the 500 kpc

‘redshift distance tolerance’ search results (Figure 4.1) differ between samples

with a p-value of 0.568 (corresponding to the 0.6σ significance level); the 1 Mpc

‘redshift distance tolerance’ search results (Figure 4.2) differ between samples

with a p-value of 0.930 (corresponding to the 0.1σ significance level) and the 5

Mpc ‘redshift distance tolerance’ search results (Figure 4.3) differ between sam-

ples with a p-value of 0.0363 (corresponding to the 2.1σ significance level). This
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Figure 4.3: A cumulative histogram showing the results of a cylinder search
for galaxies that are within 500 kpc projected distance of any sample galaxy and
within 5 Mpc ‘redshift distance’ of any sample galaxy. The projected distance (not
considering redshift) between each galaxy found in the search and its associated
sample galaxy (x) is plotted against cumulative frequency (y). A bin size of 1 kpc
is used.

suggests that there is no statistically significant difference in distribution of dis-

tances of potential companion galaxies between the merger-free and control sam-

ples when a cylinder search is conducted using a 500 kpc or a 1 Mpc ‘redshift

distance tolerance’ and the distributions differ with marginal significance when a

cylinder search is conducted using a 5 Mpc ‘redshift distance tolerance’. There-

fore, the null hypothesis that the distributions of distances of potential companion

galaxies from their associated sample galaxies do not differ between the two sam-

ples that we consider cannot be rejected for any of the cylinder searches that we

conducted.
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Since the distribution of distances of galaxies from the sample galaxies is a

measure of the environment in which the sample galaxies reside, the fact that we

cannot reject the null hypothesis in this case indicates that the environments in

which both samples reside, in terms of density of galaxies, are similar. However,

the marginally significant difference in distributions for the cylinder search with a

5 Mpc ‘redshift tolerance’ may be indicative of a difference in environment either

at further distances from the sample galaxies or in terms of galaxies with high

peculiar velocities. This is discussed further in Section 4.1.2.

4.1.2 Non-Cumulative Histograms Showing Projected Dis-

tances Between Sample Galaxies and Companions

Through the use of non-cumulative histograms showing the projected distances of

potential companion galaxies from their associated sample galaxies (Figures 4.4,

4.5 and 4.6), we are able to more intuitively compare environments in terms of

the projected distance of potential companion galaxies from the sample galaxies

and compare these between the two samples that we consider and between the

three ‘redshift distance tolerances’ that we consider.

Since the same distributions of distances are being compared, the same

statistical results apply as in Section 4.1.1; there is no statistically significant

difference between the distributions of distances for the two samples we consider

for the cylinder searches applying ‘redshift distance tolerances’ of 500 kpc and

1 Mpc (Figures 4.4 and 4.5). In the case of the cylinder search with a 500 kpc

‘redshift distance tolerance’, this may be due to the total number of potential

companions found being too small to give a significant result. The difference in

distributions for the cylinder search applying a ‘redshift distance tolerance’ of 5

Mpc (Figure 4.6) is of marginal significance. This difference is visible in Figure

4.6, as the peak frequency for the histogram for the merger-free sample occurs in

the 450–500 kpc projected distance bin and a positive correlation is displayed be-

tween projected distance from a sample galaxy and frequency (number of galaxies

at each projected distance). In contrast, the control sample, whilst displaying a

slightly increased frequency of galaxies at projected distances greater than 150
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Figure 4.4: A non-cumulative his-
togram showing the distribution of dis-
tances of potential companion galax-
ies from their associated sample galax-
ies for galaxies within a 500 kpc ‘red-
shift distance’ of their associated sam-
ple galaxy and within a 500 kpc pro-
jected distance around their sample
galaxy. We use distance bins of size 50
kpc.
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Figure 4.5: A non-cumulative his-
togram showing the distribution of dis-
tances of potential companion galax-
ies from their associated sample galax-
ies for galaxies within a 1 Mpc ‘red-
shift distance’ of their associated sam-
ple galaxy and within a 500 kpc pro-
jected distance around their sample
galaxy. We use distance bins of size 50
kpc.

kpc, remains generally level, showing little correlation between projected distance

from a sample galaxy and frequency. This is notable because this occurs only for

the 5 Mpc ‘redshift distance tolerance’ search. As previously mentioned in Section

4.1.1, this could be interpreted to indicate a presence of galaxies with high pecu-

liar velocities relative to the sample galaxies that only occurs for the merger-free

sample. These galaxies may be travelling at sufficiently high velocities relative to

the sample galaxies that they could pass a sample galaxy at a projected distance

of less than 500 kpc and not become bound in orbit. We refer to such galaxies as

‘fly-by’ galaxies. Such an interaction may transfer enough kinetic energy to gas

within a sample galaxy to affect the growth of its supermassive black hole.

The distributions shown throughout this section may also be subject to some

biases due to the effect of fibre collisions or a lack of available redshifts for faint

galaxies. As discussed in Section 3.2.2, fibre collisions and faint galaxies could

lead to the decreased availability of redshifts for potential companion galaxies at

higher redshifts, which could cause less galaxies to appear in the results of the
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Figure 4.6: A non-cumulative histogram showing the distribution of distances
of potential companion galaxies from their associated sample galaxies for galaxies
within a 5 Mpc ‘redshift distance’ of their associated sample galaxy and within a
500 kpc projected distance around their sample galaxy. We use distance bins of
size 50 kpc.

cylinder search at smaller projected distances from the sample galaxies, as is seen

for both samples in Figure 4.6. This would be expected to have a greater effect on

the control sample than the merger-free sample because the control sample has a

greater average redshift than the merger-free sample (see Section 2.1.3). At the

highest redshift of any galaxy in the control sample (z = 0.253), 1 arcmin (the

angular separation at which fibre collisions become relevant [151]), corresponds

to 238 kpc (3 sf). Therefore, the results of the cylinder search for potential com-

panion galaxies to the control sample may have been affected by fibre collisions

at any projected distance less than 238 kpc. Similarly, at the highest redshift of

any galaxy in the merger-free sample (z = 0.244), 1 arcmin corresponds to 232
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kpc. Therefore, the results of the cylinder search for potential companion galax-

ies to the merger-free sample at any projected distance less than 232 kpc may

have been affected by fibre collisions. However, this would not fully explain the

differences between distributions seen in Figure 4.6 as the control sample shows a

greater number of companion galaxies than the merger-free sample at these low

projected distances, which is the opposite of what would be expected if the effect

occurred due to fibre collisions, and there are differences between the distribu-

tions at distances greater than 238 kpc, which are not affected by fibre collisions

due to small separations between the sample galaxies and potential companions.

45



4.1 Cylinder Search

4.1.3 Potential Error in Distributions

The distributions shown throughout Section 4.1 are discrete distributions created

by counting galaxies in the areas around the merger-free and control samples. If

it is assumed that galaxies occur randomly and independently from one another

(not in clusters, for example) in the areas around the merger-free and control

samples, then the distributions shown throughout Section 4.1 may be modelled

as Poisson distributions.

If it is assumed that the error in these distributions occurs independently and

randomly throughout the distributions, then the error in these distributions may

be modelled as Poisson variation [159]. Therefore, the error in these distributions

may be calculated as: √
N (4.1)

where N represents the number of counts (in this case galaxies) in a particular

bin [159].
√
N may be added or subtracted from the measured count to give the

theoretical maximum or minimum true value of the count.

In the case of the distributions that result from the cylinder searches that we

conducted with ’redshift distance tolerances’ of 500 kpc and 1 Mpc, these errors

are very large compared to the counts themselves. For example, it the maximum

number of galaxies in any bin shown in Figures 4.4 and 4.5 is 3. The error in this

measurement would therefore be
√

3 (1.73 (3 sf)). This means that the theoret-

ical true value of the count has a minimum value of 1.27 (3sf) and a maximum

value of 4.73 (3sf). Since the true value of counts must be discrete, the true value

may be any value in the range 1–5. In the case of these distributions, such a

difference could potentially mean that the overall shape of the distributions may

theoretically be very different from that which we have observed.

Although these error bars are not explicitly shown on the plots in Section

4.1 because their large relative size would mean that they dominated the plots,

the fact that the error in these distributions is large compared to the numbers of

counts is considered when performing K-S tests (see Section 3.5 for more infor-

mation about these) to compare the shapes of the distributions, since it is less

likely that distributions will vary significantly according to a K-S test if the over-

all sample size is small. This occurs because when the cumulative distributions
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are normalised, as occurs during the K-S testing process, a single count (of one

galaxy) would have a larger impact on the shape of a normalised distribution if

the total sample size were smaller.
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4.2 Analysis of Data from a Group Catalogue

We analyse the environments of galaxies in the merger-free and control samples

which also appear in the Yang et al (2007) [115] group catalogue— 75 out of

101 galaxies for the merger-free sample and 53 out of 101 galaxies for the control

sample (see Section 3.3).

4.2.1 Projected Distances of Companions from their As-

sociated Sample Galaxies

The projected distance (using the RA and dec distances only, not considering red-

shift) was calculated for each galaxy in the group catalogue (described in Section

2.2.1) that was in the same group as a sample galaxy. This provides a measure

of the environment in which each sample galaxy resides according to the group

catalogue.

Figure 4.7 shows the projected distances of companion galaxies in each group

from their associated sample galaxies1. The largest group, both in terms of pro-

jected distance and number of galaxies is one which contains a galaxy in the

merger-free sample and the four groups containing the most galaxies contain

a merger-free galaxy. This may indicate a tendency towards larger groups for

merger-free galaxies, meaning they may reside in denser environments than the

control galaxies. However, groups containing merger-free galaxies that are not

among the largest four groups tend to be a similar size to the groups containing

control galaxies.

Figure 4.8 shows the total number of galaxies associated with each sample by

each projected distance. This is the result of summing the number of galaxies

across all of the groups for each sample that are shown in Figure 4.7. This shows

that at all projected distances, the merger-free sample has more companion galax-

ies overall than the control sample and the merger-free sample has many more

companion galaxies overall than the control sample. This indicates a difference

1Groups containing a total of two galaxies (the sample galaxy and one companion) are not
included in Figure 4.7 for clarity. For individual plots for each group, including those containing
a total of two galaxies see Appendix B.
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Figure 4.7: Cumulative histograms for each group showing the distances of com-
panion galaxies from their associated sample galaxies in kpc. Each histogram ends
at the distance of the furthest galaxy in the group. The bin size is set at 50 kpc.

in overall environment between the two samples, since the initial samples were of

the same size (101 galaxies).

When a K-S test is performed to compare the two distributions shown in

Figure 4.8, the distributions differ with a p value of 0.289, indicating a 1.1σ sig-

nificance level. Even though the merger-free sample is associated with the largest

groups and has the greatest number of overall companions, the difference in the

distribution of galaxies in their environments is not statistically significant; we

are unable to reject the null hypothesis that the projected distances of galaxies

in groups associated with each sample are drawn from the same distribution.

Additionally, these results may be skewed by the largest groups, which are only

associated with merger-free galaxies and could be anomalous. In order to analyse

the differences between the smaller groups associated with merger-free sample

galaxies and the groups associated with control sample galaxies, we repeat this
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Figure 4.8: A cumulative frequency histogram showing the total number of com-
panion galaxies associated with each sample by projected distance from their as-
sociated sample galaxy, according to the group catalogue we use. The bin size is
set at 50 kpc.

analysis ignoring the largest two groups (in terms of numbers of galaxies). This

results in Figure 4.9.

When a K-S test is performed to compare the new merger-free distribution

to the control distribution, a p-value of 0.289 is obtained, indicating that the

distributions differ with a significance of 1.1σ. This is the same result as when

all groups are included, suggesting that the shape of the merger-free distribution

is not being skewed by the largest two groups. As before, the distributions do

not vary significantly in shape. However, there is still a greater overall num-

ber of galaxies in the merger-free sample than in the control sample. This may

be interpreted to indicate that a difference in overall environment between the

merger-free and control samples remains even when the two largest groups are
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Figure 4.9: A cumulative frequency histogram showing the sum of frequency of
galaxies for all groups in each sample by projected distance of companion galaxies
from their associated sample galaxy, excluding the two largest groups in terms of
number of galaxies. The bin size is set to 50 kpc.

not considered. This may have only occurred because more sample galaxies from

merger-free sample than the control sample initially matched with galaxies in the

Yang et al (2007) [115] group catalogue.

4.2.2 Potential Error in Distributions

As discussed in Section 4.1.3, the distances of potential companion galaxies from

their associated sample galaxy may be modelled as a Poisson distribution. Simi-

larly to the errors in Section 4.1, the error in the distributions shown throughout

Section 4.2 may be modelled as Poisson errors. Therefore, the error in each 50

kpc bin, if the distributions were drawn as non-cumulative histograms, would
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4.2 Analysis of Data from a Group Catalogue

be a symmetrical error of
√
N , where N represents the number of galaxies in

that bin. As in Section 4.1, this means that many of the errors would be very

large compared to the number of galaxies being counted, given that some bins

contain only one galaxy. This would especially affect the smallest groups. Such

errors would accumulate when drawing a cumulative distribution showing the

results of counting galaxies, which may give some uncertainty in the shapes of

distributions, especially at small projected distances (. 500 kpc). As discussed

in Section 4.1.3, the K-S test does consider the overall numbers of companion

galaxies when comparing distributions by normalising the distributions before

making a comparison.
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4.3 Comparison Between Cylinder Search and

Group Catalogue Results
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Figure 4.10: Cumulative frequency histograms showing the projected distances
of companion galaxies from their associated sample galaxies for both samples for
companions found using the group catalogue analysis and the cylinder search with
a ‘redshift distance tolerance’ of 500 kpc. The x axis uses a log10 scale and the bin
size is set to 0.1 log(kpc).

Figures 4.10, 4.11 and 4.12 compare the results of the cylinder searches (Sec-

tion 4.1) to the results of our analysis of a well-studied group catalogue (Section

4.2). The figures show the results for the cylinder searches performed using ‘red-

shift distance tolerances’ of 500 kpc, 1 Mpc and 5 Mpc respectively.

The frequency for any of the cylinder search results does not increase at

log10 (Projected Distance from Associated Sample Galaxy) > log10(500 kpc) (∼
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Figure 4.11: Cumulative frequency histograms showing the projected distances
of companion galaxies from their associated sample galaxies for both samples for
companions found using the group catalogue analysis and the cylinder search with
a ‘redshift distance tolerance’ of 1 Mpc. The x axis uses a log10 scale and the bin
size is set to 0.1 log(kpc).

2.7 log10(kpc)) because the cylinder searches were only conducted up to a pro-

jected distance of 500 kpc from each sample galaxy, whereas no distance limits

were placed on the group catalogue. This makes the results difficult to compare

past this point. The presence of companions in the group catalogue at further

projected distances than those considered for the cylinder search indicates that,

had the cylinder search been extended to further projected distances, more inter-

acting companion galaxies would have been found. However, at further projected

distances we cannot be certain that the companion galaxies are gravitationally

interacting with the sample galaxies and therefore it is likely that galaxies that

are not interacting with the sample galaxies would also have been found if we
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Figure 4.12: Cumulative frequency histograms showing the projected distances
of companion galaxies from their associated sample galaxies for both samples for
companions found using the group catalogue analysis and the cylinder search with
a ‘redshift distance tolerance’ of 5 Mpc. The x axis uses a log10 scale and the bin
size is set to 0.1 log(kpc).

were to expand the cylinder search radius.

When a KS test is performed to compare the distributions for each of the

cylinder searches to the group catalogue results for projected distances of less

than 500 kpc from an associated sample galaxy (the range in which the results

are comparable) for each sample, the p-values and statistical significances ob-

tained are as shown in Table 4.1.

The results shown in Table 4.1 indicate that there is a significant difference

between the distributions of projected distances found using each method for

the same sample for all of the ‘redshift distance tolerances’ used in the cylinder

searches and for both samples. These differences are more prominent for greater
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Sample ‘RDT’ P-Value and Significance
Merger-Free (Simmons et al (2017)) 500 kpc 1.19× 10−4 (3.8σ)
Merger-Free (Simmons et al (2017)) 1 Mpc 3.92× 10−6 (4.6σ)
Merger-Free (Simmons et al (2017)) 5 Mpc 1.11× 10−14 (7.7σ)

Control (Shen et al (2011)) 500 kpc 5.25× 10−3 (2.8σ)
Control (Shen et al (2011)) 1 Mpc 1.18× 10−5 (4.4σ)
Control (Shen et al (2011)) 5 Mpc 7.05× 10−12 (6.9σ)

Table 4.1: The results of KS statistical tests comparing the distributions of pro-
jected distances of companion galaxies from their associated sample galaxies for the
cylinder searches (using each ‘redshift distance tolerance’ (RDT)) and the group
catalogue for each sample.

‘redshift distance tolerances’. This shows that the distributions of potential com-

panion galaxies found when using each method differ significantly in shape. This

may be a result of differences in which galaxies each method consider to be poten-

tial companions. For example, a cylinder search will consider any galaxy within a

certain distance of a sample galaxy to be a potential companion, while the Yang

et al (2007) [115] algorithm may not find them to be interacting. This may lead

to cylinder searches finding more potential companions than the group finder.

Similarly, the Yang et al (2007) [115] group finder algorithm may find galaxies

that are outside of the cylinder search area to be linked to a sample galaxy, which

may lead to the group catalogue containing more companion galaxies than are

found by a cylinder search at a given projected distance from the sample galaxy.
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4.4 Environment Coefficients

4.4.1 Environment Coefficients of Sample Galaxies
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Figure 4.13: Histograms comparing the environment coefficients obtained for
galaxies in the merger-free and control samples. The bin size is set to 0.5 Mpc−2.

Figure 4.13 shows the frequency distribution of environment coefficients for

galaxies in both of the samples that we consider.

There is a slight difference in peak environment coefficient between the merger-

free and control samples. In the merger-free sample, the 0–0.5Mpc−2 bin contains

the greatest number of galaxies, whereas in the control sample, the -0.5–0 Mpc−2

bin contains the greatest number of galaxies. The merger-free distribution also

appears to tend towards greater environment coefficients than the control sample.

This may be interpreted to indicate that galaxies in the merger-free sample may
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reside in denser environments to galaxies in the control sample. When a K-S sta-

tistical test is performed comparing these two distributions, a p-value of 0.00919

is obtained, indicating that the distributions differ with a statistical significance

of 2.6σ. Therefore, the differences between these distributions are of marginal

significance.

In the results detailed in this section, we do not include three galaxies in

the merger-free sample which— upon inspection of Hubble Space Telescope im-

ages processed whilst the research presented in this dissertation was ongoing—

appeared to be either elliptical galaxies or currently undergoing a merger, al-

though a full morphological analysis of these images, which would confirm or

disconfirm this, has yet to be conducted and is outside the scope of this disserta-

tion. These galaxies had been included in previous sections of this dissertation.

Figure 4.14 shows the environment coefficients of both samples when these galax-

ies remain included. When a K-S statistical test is performed comparing the

merger-free distribution shown in Figure 4.13 to that shown in Figure 4.14, a p-

value of 1.00 is obtained, indicating there is almost no difference between the two

distributions and therefore we can conclude that removing these three galaxies

from the merger-free sample has not significantly affected our results.
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Figure 4.14: Histograms comparing the environment coefficients obtained for
galaxies in the merger-free and control samples with all galaxies included. The bin
size is set to 0.5 Mpc−2.

4.4.2 Potential Error in Distributions

As in previous sections, the distribution of the environment coefficients of galaxies

in the merger-free and control samples may be modelled as a Poisson distribution,

assuming that potential companion galaxies are randomly distributed. Therefore,

the error in a discrete binned distribution of galaxies with various environment

coefficients, as shown in Figure 4.14 would be
√
N for each bin of 0.5 Mpc−2,

where N represents the number of galaxies in that bin (see Section 4.1.3 for a

further discussion of Poisson errors). Therefore, in the case of bins containing few

galaxies, the error in the count may be large compared to the number of galaxies

in the bin. In the case of the -2.5– -2 bin for the merger-free sample, which

contains 2 galaxies, for example, the Poisson error would be
√

2 (1.41 (3sf)).
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Since the values of a count must be discrete, this would indicate that the true

value of the number of galaxies in that bin may be as few as 0 or as many as 3.

Such differences would affect the overall shape of the distribution.

However, the bin in which the merger-free distribution peaks remains certain

as the most populated bin for this distribution contains 28 galaxies, giving an

error of
√

28 (5.29 (3 sf)), meaning the lowest possible true value of the peak is

22. The greatest possible value of the second most populated bin (which contains

15 galaxies and therefore has an error of
√

15 (3.87 (3 sf))), is 19. Therefore,

the most populated and the second most populated bins cannot overlap for the

merger-free distributions. The same is not true of the control sample distribution,

in which the most populated and second most populated bins contain 24 and 17

galaxies respectively. This would mean that the lowest possible value of the most

populated bin would be 19 and the highest possible value of the second most

populated bin would be 22. Also, the two bins which contain 16 galaxies have

a maximum true value of 20 galaxies, meaning that these bins may also be the

location of the true peak for the control distribution. This casts some uncertainty

over the difference in shape between the merger-free and control distributions of

environment coefficients, since within error they may peak in the same bin or the

control sample may peak at a greater environment coefficient than the merger-free

sample.

60



4.4 Environment Coefficients

4.4.3 Comparison of Sample Environment Coefficients to

those of the Baldry et al (2006) Sample

In this section, we compare the environment coefficients that we calculated for

the two samples we consider to the environment coefficients calculated by Baldry

et al (2006) [152] for the version of their sample that is based on the seventh data

release of the Sloan Digital Sky Survey [107],[110]. We do this in order to ensure

that our environment coefficients are reasonable and— since most of the Baldry

et al (2006) [152] sample is at a lower redshift than the merger-free and control

samples (all galaxies in the Baldry et al (2006) [152] sample are at z < 0.14

whereas galaxies in the merger-free and control samples are at 0.025 ≤ z < 0.275

(as shown in Section 2.1))— to assess any effect that redshift may have when

applying the method of Baldry et al (2006) [152] to samples containing slightly

higher-redshift galaxies, such as the merger-free and control samples.

Figure 4.15 displays this comparison as a set of histograms showing the envi-

ronment coefficient (x axis) against normalised frequency (number of galaxies).

It was necessary to normalise the number of galaxies due to samples being of very

different sizes. The Baldry et al (2006) [152] sample contains 265466 galaxies,

whereas the samples that we consider contain only 101 galaxies each. In Figure

4.15, the frequency is normalised such that the total area beneath each histogram

is equal to 1 Mpc−2.

It is visible from Figure 4.15 that the distribution of environment coefficients

for the Baldry et al (2006) [152] sample has a narrower range than those of the

other samples and the peak of the Baldry et al (2006) [152] distribution occurs

within the −0.5 ≤ σ < 0 Mpc−2 bin, which is the same bin in which the peak oc-

curs for the control sample distribution, but not for the merger-free distribution,

whose peak occurs in the 0 ≤ σ < 0.5 bin. When a K-S statistical test is per-

formed comparing the environment coefficients Baldry et al (2006) [152] sample

to those of the merger-free sample, a p-value of 1.43× 10−13 is obtained, indicat-

ing that the distributions differ with a statistical significance of 7.4σ. When a

K-S statistical test is performed comparing the environment coefficients Baldry

et al (2006) [152] sample to those of the control sample, a p-value of 2.64× 10−4

is obtained, indicating that the distributions differ with a statistical significance
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Figure 4.15: Normalised histograms comparing the environment coefficients ob-
tained for galaxies in the two samples that we consider to those obtained in the
Baldry et al (2006) study for a different sample of galaxies. The bin size is set to
0.5 Mpc−2.

of 3.6σ. The large size of the Baldry et al (2006) [152] sample is likely to cause

any differences between samples to be of high statistical significance.

These differences may occur due to greater uncertainty being present in the

redshift, and hence the distance, of the merger-free and control sample galaxies

and their neighbours compared to the Baldry et al (2006) [152] sample, or due

to the lack of redshifts available for neighbouring galaxies to the merger-free and

control samples causing some sample galaxies to have lower environment coeffi-

cients than they would have if redshifts were available for all galaxies— however,

the latter explanation does not account for an wider range appearing at higher

environment coefficients as well as lower ones. Alternatively, this could be a re-

sult of the difference in redshift between the Baldry et al (2006) [152] and the
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merger-free and control samples. It should also be noted that we have not applied

any additional selection criteria to the Baldry et al (2006) [152] sample, therefore

factors such as differences in the stellar mass of galaxies between samples may

result in differences between distributions.

4.4.4 Redshift-Environment Coefficient Relation
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Figure 4.16: A scatter plot showing the relationship between environment coef-
ficient and redshift for each of the sample galaxies.

Figure 4.16 shows the distribution of galaxies in terms of their environment

coefficient (y axis) and redshift (x axis). This shows a fairly random distribu-

tion of points for both samples, with no clear correlation between redshift and

environment coefficient visible for either sample. To give a quantitative value of

the correlation, we calculate the Pearson correlation coefficients between redshift

and environment coefficient for each sample. This gives a value of -0.248 (3sf) for
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the merger-free sample and -0.0600 (3sf) for the control sample. This indicates

a slight negative correlation between redshift and environmental coefficient for

the merger-free sample and almost no correlation between redshift and environ-

mental coefficient for the control sample. The negative correlation found for the

merger-free sample may be due to a detection bias, since neighbours to galaxies at

higher redshifts may be fainter than those at lower redshifts, and hence less likely

to be detected. This may affect our calculation of environment coefficients since

we only consider galaxies with redshifts available in SDSS DR9 [107],[109]. The

same correlation is not found in the control sample, despite the same method and

survey being used when searching for neighbouring galaxies and calculating the

environment coefficient for both samples. This may occur because, as discussed

in Section 2.1, the merger-free sample contains some galaxies at lower redshifts

than any of those in the control sample.

It is also possible that a detection bias against galaxies within 55–60 arcsecs

of other galaxies due to fibre collisions is present. This would have a greater

effect on galaxies at higher redshifts than on those at lower redshifts because all

angular scales are smaller at greater redshifts than at lower redshifts for equal

linear distances. Hence, fibre collisions could cause a negative correlation between

redshift and environment coefficient as is shown in Figure 4.16.

However, the negative correlation found between redshift and environment

coefficient for the merger-free sample is small, and therefore the effect of selec-

tion bias and the difference in the effect of fibre collisions differences in redshift

within a sample may not be considered to have significantly impacted our results

for either sample when considered individually.

The difference redshift range between the merger-free and control samples

may have impacted our results. As is shown in Figure 4.16, the samples are not

matched in redshift and are also not matched in environment. The slight nega-

tive correlation between redshift and environment coefficient in the merger-free

sample occurs due to some galaxies with redshifts lower than any of those in

the control sample having very high environment coefficients. This could lead to

the merger-free sample appearing to have a greater average environment coeffi-

cient than the control sample due to the merger-free sample containing galaxies

at lower redshifts than the control sample. In order to compare these samples
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more fairly, either control galaxies at lower redshifts would need to be added to

the control sample or galaxies at redshifts lower than any of those in the control

sample would need to be removed from the merger-free sample.
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Chapter 5

Conclusion

5.1 Summary

We investigate the possible relationship between supermassive black hole growth

and minor gravitational interactions short of mergers. To this end, we compare

two samples of galaxies: the Simmons et al (2017) [55] sample of bulgeless AGN

host galaxies, which we refer to as the ‘merger-free’ sample (fully described in

Section 2.1.1), and the ‘control’ sample (fully described in Section 2.1.2), a sub-

set drawn from the Shen et al (2011) [53] sample, whose redshift is approximately

matched to that of the ‘merger-free’ sample, but is slightly higher on average—

the merger-free sample has an average redshift of 〈z〉 = 0.132± 0.053, whilst the

control sample has an average redshift of 〈z〉 = 0.141 ± 0.0451. These average

redshifts are not central for either sample, since the redshift distribution of both

samples is skewed towards lower redshifts. It is also important to note the caveat

that AGN in the control sample generally have greater black hole masses and

greater bolometric luminosities than galaxies in the merger-free sample. This is

possibly a result of the samples not being entirely matched in redshift.

We employ three methods to analyse the environments of the galaxies in both

samples: three cylinder searches for potential companion galaxies, with search

1The errors in average redshifts shown are the standard deviations of each redshift distri-
bution around the mean value for each sample.
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radii of 500 kpc and depths of 500 kpc, 1 Mpc and 5 Mpc respectively either

side of the sample galaxies (Section 3.2); a search for galaxies that are in the

same groups as sample galaxies in the well-studied Yang et al (2007) [115] group

catalogue (Section 3.3) and calculation of environment coefficients for each of the

sample galaxies using the method of Baldry et al (2006) [152] (Section 3.4).

From the cylinder searches, we find that the distributions of projected dis-

tances of potential companion galaxies from their associated sample galaxies do

not vary significantly when search depths of 500 kpc and 1 Mpc were applied

(the samples differed with statistical significance levels of 0.6σ (500 kpc) and

0.1σ (1 Mpc)), but did vary with marginal statistical significance (2.1σ) when a

search depth of 5 Mpc was applied. At projected distances >350 kpc, we found

more potential companion galaxies to the merger-free sample than to the control

sample, but at projected distances ≤350 kpc, we found less potential compan-

ion galaxies to the merger-free sample than to the control sample. Whilst we

showed in Section 3.5 that galaxies at 5 Mpc from a sample galaxy would not

be directly gravitationally interacting with the sample galaxy, the large-scale en-

vironment may have an effect on the evolution of galaxies through conformity

[149],[150]. Also, it is possible, although speculative, that galaxies found to have

a high difference in redshift from the sample galaxies may not be at high distances

from the sample galaxies, but travelling at high peculiar velocities relative to the

sample galaxies, since our calculation of distances based on redshifts assumes

that all redshift differences between galaxies originate from the expansion of the

Universe. Such galaxies passing others at high peculiar velocities might trans-

fer enough kinetic energy to funnel gas into a supermassive black hole, thereby

contributing to increased AGN activity. If these ‘fly-by’ galaxies were passing

the sample galaxies at high peculiar velocities and causing a disturbance which

contributed to black hole growth, this would explain the increased number of

galaxies at greater projected distances for the merger-free sample compared to

the control sample. Alternatively, the observed difference in the number of po-

tential companion galaxies to the merger-free sample across projected distances

from the sample galaxies may occur due to the increased effect of fibre collisions

at lower projected distances from the sample galaxies, but this would not explain

the difference in distributions between the merger-free sample and the control
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sample, as in this case the control sample would be expected to be more severely

affected than the merger-free sample at low projected distances from the sample

galaxies due to the control sample’s higher average redshift, and this is not ap-

parent in the results of our cylinder search with a 5 Mpc search depth. It is also

important to note that the results of all of our cylinder searches are subject to

large Poisson errors relative to the numbers of galaxies counted due to the small

numbers of potential companion galaxies that were counted. Therefore, these re-

sults are subject to large uncertainties, although this is accounted for somewhat

in the normalisation process when calculating the statistical significance of our

results.

Our analysis of the environments of the merger-free and control samples of

galaxies based on the Yang et al (2007) [115] group catalogue found no statisti-

cally significant difference (a difference at the 1.1σ statistical significance level)

between the merger-free and control samples in terms of the projected distances

of companion galaxies from their associated sample galaxies. However, a much

greater total number of companion galaxies was found for the merger-free sample

compared to the control sample. This could be a result of the merger-free sample

having a greater overlap with the Yang et al (2007) [115] group catalogue than

the control sample or could be interpreted to indicate that galaxies in the merger-

free sample reside in denser environments than galaxies in the control sample—

further studies and/or analysis would be required to determine whether this in-

dicates a physical difference between the samples. Also, the two largest groups

of galaxies were those associated with the merger-free sample. This result is less

affected by the variation in overlap with the group catalogue between the samples

(although the probability of a galaxy being in a large group may be greater for

a larger sample). The two largest groups being associated with the merger-free

sample could be interpreted as an indicator that being a member of a large group,

and hence having a large number of gravitationally interacting companion galax-

ies, contributes to supermassive black hole growth in bulgeless galaxies.

From our calculation of environment coefficients for the merger-free and con-

trol samples, we find that there is a marginally significant (2.6σ) difference be-

tween the environment coefficients of the merger-free and control samples. Galax-

ies in the merger-free sample are found to typically have greater environment co-
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efficients than those in the control sample. This could indicate that the galaxies

in the merger-free sample reside in denser environments than those in the control

sample and if this is also found to be the case in future studies, that may indicate

that residing in a higher density environment contributes to supermassive black

hole growth in bulgeless galaxies.

Across all the methods of environmental analysis that we have employed,

we find that there is either no statistically significant difference in environment

between the merger-free and control samples or that there is a difference in envi-

ronment of marginal significance. The results of our calculation of environment

coefficients indicates that the galaxies in the merger-free sample may potentially

reside in overall denser environments than galaxies in the control sample. The

results of our cylinder search with a 5 Mpc search depth suggest that, whilst the

nearby environment of galaxies in the merger-free sample may be less dense than

that of galaxies in the control sample, their environment at projected distances

> 350 kpc may be denser than that of galaxies in the control sample. However,

since the statistical significance of both of these results is marginal, then further

studies would be required in order to state this with more certainty. Our results

indicate that it is possible for high-density environments to be contributing fac-

tors in, or responsible for, supermassive black hole growth in galaxies with no

recent history of mergers (bulgeless galaxies). Our results may also support the

possibility of gravitational interactions with high-velocity ‘fly-by’ galaxies con-

tributing to or being responsible for supermassive black hole growth in bulgeless

galaxies. However, the low statistical significance of our results means that we

are currently unable to reject the null hypothesis that minor gravitational inter-

actions do not affect supermassive black hole growth in bulgeless galaxies.

In addition, all of our results could have been affected by fibre collisions.

These occur when two sources in the Sloan Digital Sky Survey (SDSS) have an

angular separation of less than 55 arcsecs, since this is the minimum separation

of the centres of two SDSS fibres [107]. Fibre collisions could have a significant

effect at other separations also, especially those of less than 1 arcmin [151]. In

our case, this would mean any two potential companion galaxies with separations

. 1 arcmin between them may have been affected by fibre collisions, which would

have caused one of the galaxies to not have an available spectroscopic redshift
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measurement, and hence either not have a calculable three-dimensional distance

or have a relatively large error in this distance due to the use of a photometric

redshift.

In the case of the results of the cylinder search, since at the highest redshift of

any galaxy in the merger-free sample (z = 0.244), an angular separation of 1 ar-

cmin corresponds to a linear distance of 232 kpc, there may be a lack of recorded

potential companion galaxies with smaller separations than this from their asso-

ciated sample galaxy due to fibre collisions. This is similar for the control sample,

whose maximum redshift is z = 0.253, at which an angular separation of 1 ar-

cmin corresponds to a linear distance of 238 kpc. Therefore, fibre collisions may

partially explain the lack of potential companion galaxies at projected distances

of ≤ 350 kpc seen in the cylinder search with a 5 Mpc depth for the merger-free

sample. This is in addition to the more general effect of fibre collisions potentially

‘removing’ any galaxies with similarly small separations from any other galaxies

from our results. As shown in Table 3.2, > 99% of galaxies within a 500 kpc pro-

jected distance of galaxies in the merger-free and control samples did not have

available spectroscopic redshifts, and hence would have either used a photometric

redshift (with an error of ∼ 21%) to calculate their three-dimensional distance

or would not have been included in our results due to having no available red-

shift measurement. This is likely to be due to a mixture of fibre collisions and

galaxies being too faint to measure their redshift. 60% of galaxies within a 500

kpc projected distance of galaxies in the merger-free sample and 70% of galax-

ies within a 500 kpc projected distance of the control sample did not have any

available redshift measurement, meaning that the results of the cylinder searches

performed around the control sample may have been disproportionately affected

by ‘missing’ potential companion galaxies compared to those performed around

the merger-free sample.

Fibre collisions affect ∼ 7% of potential companion galaxies that might be

covered by the Yang et al (2007) group study for the sample that we analysed

[115]. In this case, since only spectroscopic redshifts were used, this caused these

galaxies to not be included in the results due to not having a spectroscopic red-

shift measurement available from SDSS DR7 [110]. Therefore, the results of our
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analysis of the results of the Yang et al (2007) group finder [115] may be incom-

plete due to fibre collisions.

In the case of our calculation of environment coefficients for galaxies in the

merger-free and control samples, fibre collisions are likely to have affected the

overall results in a similar way to the cylinder search results— by causing some

galaxies to be ‘missing’ from the final results and causing others to have their

three-dimensional distance calculated using a photometric redshift rather than

a spectroscopic redshift. Since all angular scales correspond to greater linear

distances at higher redshifts and the control sample has a higher average red-

shift than the merger-free sample, fibre collisions may have had a greater effect

on the environment coefficients of galaxies in the control sample than on the

environment coefficients of galaxies in the merger-free sample. This is one pos-

sible explanation for the difference in environment coefficients seen between the

merger-free and control samples. However, further work involving matching the

samples completely in redshift and correcting for fibre collisions would be required

to determine whether or not this is the cause of the difference.
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5.2 Further Work

Given the marginal statistical significance of our results, we suggest that further

work should be undertaken in order to ascertain whether or not statistically sig-

nificant relationship is present between the environment of bulgeless galaxies and

supermassive black hole growth. The Large Synoptic Survey Telescope (LSST),

whose first light is expected in 2020, will survey the entire southern sky every

night, producing extremely large amounts of data [160],[161]. This would allow

us to gather much larger samples of bulgeless AGN host galaxies as well as control

AGN host galaxies at similar redshifts to the bulgeless samples. Unsupervised

machine learning, alongside other methods currently in use such as visual classi-

fication by humans via Galaxy Zoo [112], can be used as a tool to quickly analyse

the morphology of galaxies [162], allowing us to identify bulgeless galaxies in the

LSST data. Analysis of such large samples would clarify the environments in

which bulgeless galaxies reside and may provide a more definitive answer as to

whether or not this differs between bulgeless and control AGN host galaxies.

As for the currently available Simmons et al (2017) [55] sample, whilst im-

ages from the Hubble Space Telescope (HST) are currently available for some of

the sample galaxies, providing higher resolution images than those available from

the Sloan Digital Sky Survey (SDSS) [107] and allowing detailed morphological

analysis, such images are not yet available for all galaxies in the sample. As

mentioned in Sections 2.1.1.4 and 4.4.1, some sample galaxies which have HST

images available appear to not be bulgeless galaxies as was previously thought.

This could also be the case for other galaxies in the sample for which HST im-

ages are not yet available, hence it is important to take high resolution images

of all the sample galaxies and conduct a detailed morphological analysis on these

images and the HST images already available for the sample.

In Section 4.3, we show that the Yang et al (2007) [115] group catalogue

finds companion galaxies to galaxies in both the merger-free and control samples

at greater projected distances from sample galaxies than our cylinder searches

covered. In order to make a full comparison between the group catalogue and

cylinder searches, and to find potential companion galaxies at these greater pro-

jected distances— especially for sample galaxies not included in the Yang et al
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(2007) [115] group catalogue— it would be necessary to extend the radii of our

cylinder searches to at least the maximum projected distance of a companion

galaxy in the group catalogue. However, this would increase the risk of galaxies

that were not gravitationally interacting with the sample galaxies being consid-

ered as potential companions.

Further work may also be necessary in order to account for the effect of fibre

collisions on our results. Without such corrections, galaxies that are within 55–60

arcsecs of another galaxy in the Sloan Digital Sky Survey [107] may not have an

available spectroscopic redshift measurement [107],[151], causing them to either

not be included in our results or to have a large error in their redshift. One

possible method of correcting for fibre collisions is that employed by Yang et al

(2007) [115], in which galaxies affected by fibre collisions are assigned the same

redshift as the galaxies with which they collide, except in cases where this would

cause the galaxy’s implied absolute magnitude to be excessively large. Whilst

we do not use the corrected sample when analysing the results of the Yang et al

(2007) group finder in this work, performing the same analysis on the corrected

sample provided by Yang et al (2007) and comparing this to the results in Section

4.2 would allow us to assess and account for the effect of fibre collisions on these

results. The same correction method could also be applied to the other results in

this dissertation, however it is important to note that whilst the assumption that

galaxies that are affected by fibre collisions have the same redshifts as the galax-

ies with which they collide is reasonable in many cases, this would not produce

entirely accurate results as such galaxies are unlikely to share the exact same

redshift as their neighbouring galaxies.

In addition, the difference in redshift between the merger-free and control

samples may cause each sample to be affected differently by fibre collisions. Fur-

ther work— involving matching the samples fully in redshift by either removing

galaxies in the merger-free sample with redshifts lower than any of those in the

control sample or including control galaxies from a different sample that are at

these lower redshifts— would be necessary to ensure that the differing effects of fi-

bre collisions between the samples did not translate to a difference in environment

in our results.
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Appendix A

Derivation of Free Fall Time

Equation

The following is a derivation of Equation 3.5 from Newton’s Law of Gravitation

and Newton’s Laws of Motion [148], used to calculate the free fall time between

two galaxies.

Given the definition of gravitational force from Newton’s Law of Gravitation:

Fgrav =
GMm

R2

where Fgrav represents the total gravitational force, G represents Newton’s gravi-

tational constant, M represents the mass of the system we are calculating the free

fall time for, m represents a second mass both being acted upon by and exerting

gravitational force on the system we are calculating the free fall time for and R

represents the radius of the system.
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And the general force equation from Newton’s Second Law of Motion:

Facceleration = ma

where Facceleration represents the total force due to acceleration, m represents the

mass of the accelerating object— in this case the same small test mass as in the

previous equation and a represents the acceleration.

Assuming all motion is due to the action of gravitational force acting upon the

small test mass:

Fgrav = Facceleration

∴ ma =
GMm

R2

=⇒ a =
GM

R2

Given the definition of acceleration:

a =
dv

dt
=
d2r

dt2

∴
d2r

dt2
=
GM

R2

where v represents the velocity of the accelerating object, t represents the time

elapsed and r represents the distance travelled by the accelerating object.
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We can integrate this twice to obtain the free fall time:

dr

dt
=

∫ t

0

GM

R2
dt =

GM

R2
t

=⇒ r =

∫ t

0

GM

R2
t dt =

GM

2R2
t2

t = tff , r = R

∴ tff =

√
2R3

GM

where tff represents the free fall time.
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Appendix B

Individual plots for each group in

Figure 4.7

This chapter displays individual plots for each group of companion galaxies shown

in Figure 4.7. Also included are plots showing groups for which there was only one

companion galaxy (therefore the entire group contained two galaxies including the

sample galaxy), which were not included in Figure 4.7.
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Figure B.1: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.
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Figure B.2: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.
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Figure B.3: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.
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Figure B.4: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.
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Figure B.5: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.
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Figure B.6: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.
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Figure B.7: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.
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Figure B.8: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.

85



0 500 1000 1500 2000 2500 3000
Projected Distance from Associated Sample Galaxy /kpc

0

5

10

15

20

25

30

35

Nu
m

be
r o

f G
al

ax
ie

s

Merger-Free (Simmons et al (2017))

Figure B.9: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.

86



0 500 1000 1500 2000 2500 3000
Projected Distance from Associated Sample Galaxy /kpc

0

5

10

15

20

25

30

35

Nu
m

be
r o

f G
al

ax
ie

s

Merger-Free (Simmons et al (2017))

Figure B.10: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.
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Figure B.11: Cumulative histogram for one group from Yang et al (2007) show-
ing the distances of companion galaxies from their associated sample galaxy from
Simmons et al (2017) in kpc. The histogram ends at the distance of the furthest
galaxy in the group. The bin size is set at 50 kpc.
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Figure B.12: Cumulative histogram for one group from Yang et al (2007) showing
the distances of companion galaxies from their associated sample galaxy from Shen
et al (2011)) in kpc. The histogram ends at the distance of the furthest galaxy in
the group. The bin size is set at 50 kpc.
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Figure B.13: Cumulative histogram for one group from Yang et al (2007) showing
the distances of companion galaxies from their associated sample galaxy from Shen
et al (2011)) in kpc. The histogram ends at the distance of the furthest galaxy in
the group. The bin size is set at 50 kpc.
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Figure B.14: Cumulative histogram for one group from Yang et al (2007) showing
the distances of companion galaxies from their associated sample galaxy from Shen
et al (2011)) in kpc. The histogram ends at the distance of the furthest galaxy in
the group. The bin size is set at 50 kpc.
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Figure B.15: Cumulative histogram for one group from Yang et al (2007) showing
the distances of companion galaxies from their associated sample galaxy from Shen
et al (2011)) in kpc. The histogram ends at the distance of the furthest galaxy in
the group. The bin size is set at 50 kpc.
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Figure B.16: Cumulative histogram for one group from Yang et al (2007) showing
the distances of companion galaxies from their associated sample galaxy from Shen
et al (2011)) in kpc. The histogram ends at the distance of the furthest galaxy in
the group. The bin size is set at 50 kpc.
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Figure B.17: Cumulative histogram for one group from Yang et al (2007) showing
the distances of companion galaxies from their associated sample galaxy from Shen
et al (2011)) in kpc. The histogram ends at the distance of the furthest galaxy in
the group. The bin size is set at 50 kpc.
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Appendix C

An adjustment to the plots and

significance levels of some

cylinder search results

It was found whilst making corrections to this dissertation that a small number

of potential companion galaxies were repeated in the cylinder search results with

1 Mpc and 5 Mpc depths. Whilst this does not affect the general shape of the

plots, it does somewhat affect the significance levels of these results, therefore it

is necessary to mention this here. The new plots are provided below in Figures

C.1, C.2, C.3 and C.4.

In the case of the cylinder search with a 1 Mpc depth, this affected only one

galaxy, which was a potential companion to a galaxy in the control sample. This

caused the significance level gained from the K-S test to become 0.2σ, with a

p-value of 0.847. This result is therefore still not statistically significant.

In the case of the cylinder search with a 5 Mpc depth, this affected 4 galaxies

that were potential companions to the merger-free sample and 3 galaxies that

were potential companions to the control sample. This caused the significance

level gained from the K-S test to become 1.6σ, which would mean that, whilst the

differences between samples in this search are of much higher significance than

those of the searches with 500 kpc and 1 Mpc depths, and therefore should not be
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ignored, this value is not of marginal statistical significance as stated elsewhere

in the dissertation. Also, the number of potential companion galaxies in the

merger-free sample now peaks in the 400–450 kpc bin rather than in the 450–500

kpc bin as stated elsewhere in this dissertation.
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Figure C.1: A cumulative histogram showing the results of a cylinder search
for galaxies that are within 500 kpc projected distance of any sample galaxy and
within 1 Mpc ‘redshift distance’ of any sample galaxy. The projected distance (not
considering redshift) between each galaxy found in the search and its associated
sample galaxy (x) is plotted against cumulative frequency (y). A bin size of 1 kpc
is used.
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Figure C.2: A cumulative histogram showing the results of a cylinder search
for galaxies that are within 500 kpc projected distance of any sample galaxy and
within 5 Mpc ‘redshift distance’ of any sample galaxy. The projected distance (not
considering redshift) between each galaxy found in the search and its associated
sample galaxy (x) is plotted against cumulative frequency (y). A bin size of 1 kpc
is used.
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Figure C.3: A non-cumulative histogram showing the distribution of distances
of potential companion galaxies from their associated sample galaxies for galaxies
within a 1 Mpc ‘redshift distance’ of their associated sample galaxy and within a
500 kpc projected distance around their sample galaxy. We use distance bins of
size 50 kpc.

98



0 100 200 300 400 500
Projected Distance from Associated Sample Galaxy /kpc

0

2

4

6

8

10

Nu
m

be
r o

f G
al

ax
ie

s

Control (Shen et al (2011))
Merger-Free (Simmons et al (2017))

Figure C.4: A non-cumulative histogram showing the distribution of distances
of potential companion galaxies from their associated sample galaxies for galaxies
within a 5 Mpc ‘redshift distance’ of their associated sample galaxy and within a
500 kpc projected distance around their sample galaxy. We use distance bins of
size 50 kpc.
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Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th

Python in Science Conference, pages 51 – 56, 2010.

[6] M. B. Taylor. TOPCAT & STIL: Starlink Table/VOTable Processing Soft-

ware. In P. Shopbell, M. Britton, and R. Ebert, editors, Astronomical Data

Analysis Software and Systems XIV, volume 347 of Astronomical Society

of the Pacific Conference Series, page 29, Dec 2005.

[7] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, N. Ode-

gard, et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP)

Observations: Final Maps and Results. ApJS, 208(2):20, Oct 2013.

100



REFERENCES

[8] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont,

C. Baccigalupi, et al. Planck 2018 results. VI. Cosmological parameters.

arXiv e-prints, page arXiv:1807.06209, Jul 2018.

[9] R. J. Bouwens, G. D. Illingworth, I. Labbe, P. A. Oesch, M. Trenti, C. M.

Carollo, et al. A candidate redshift z˜10 galaxy and rapid changes in that

population at an age of 500Myr. Nature, 469(7331):504–507, Jan 2011.

[10] Richard S. Ellis, Ross J. McLure, James S. Dunlop, Brant E. Robertson,

Yoshiaki Ono, Matthew A. Schenker, et al. The Abundance of Star-forming

Galaxies in the Redshift Range 8.5-12: New Results from the 2012 Hubble

Ultra Deep Field Campaign. ApJ, 763(1):L7, Jan 2013.

[11] David Sobral, Jorryt Matthee, Behnam Darvish, Daniel Schaerer, Bahram
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