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Abstract 
 

Raman spectroscopy is rapidly advancing as a cell imaging technique due to its advantages 

over existing techniques: it requires little sample preparation, is label-free and can be carried 

out in aqueous environments to image both fixed and live cells. However, Raman spectroscopy 

is not commonly used in clinical practice due to perceived long acquisition times and complex 

data analysis. The aim of this work is to develop Raman spectroscopy as a technique to image 

cells, specifically Caco-2 cells, and to use Raman spectroscopy to measure the response of 

these cells to abiotic perturbations. 

We have developed methodologies for mapping both fixed and live Caco-2 cells, as well as 

robust shading parameters to allow for direct comparisons. Using a metal rhenium complex 

to identify the mitochondria of these cells, we have demonstrated the difficulties in shading 

Raman maps to specific peaks of interest, and how the shading range needs to be carefully 

considered to avoid over or under interpretation of the data.  

Raman spectroscopy was also used to evaluate the effect of the cannabinoids cannabidiol 

(CBD) and anandamide (AEA) on Caco-2 cells. CBD affects Caco-2 cells differently at different 

concentrations; at low concentrations it may induce proliferation, but at high concentrations 

it causes cell death characterised by DNA breakdown. Investigating the mechanism of CBD 

induced cell death in Caco-2 cells suggested that it is not apoptosis or necrosis, but is mediated 

by caspases 3/7 with the broken down DNA being exported from the cell, which is more 

consistent with autophagy-dependent cell death or lysosomal-dependent cell death. At low 

concentrations, AEA may also induce proliferation, but at high concentrations it affects Caco-

2 cells differently and does not cause cell death; instead, we hypothesise that the drug has an 

anti-proliferative effect on these cells. Overall, we have demonstrated how Raman 

spectroscopy can be used to gain valuable visual and biochemical information about cells.  
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Chapter 1: Background and 
Literature Review 
 

1.1 Introduction 

Cells are the basic biological unit of all living organisms, and it is necessary to study cells to 

gain insights into both normal and abnormal cellular behaviour. Traditionally, cells have been 

studied using optical light microscopy, which allows for the observation of living cells but has 

a limited resolution (Wilson and Bacic, 2012). The development of electron microscopy led to 

improvements in resolution, however this can only be carried out on fixed cells which undergo 

extensive sample preparation (e.g. cryofixation, dehydration and sectioning). As cells are fixed, 

this technique can only give a ‘snapshot’ of the cells current state, and the preparation 

procedures have the potential to introduce artefacts in addition to interfering with the cells 

intracellular physiology (Koster and Klumperman, 2003).  

Imaging live cells is therefore vital to observe normal cellular behaviour and processes in real 

time, and over time. The development of fluorescence microscopy allowed for living cells to 

be imaged. However, as this technique usually involves the expression of exogenous 

fluorescent molecules intracellularly via the introduction of external genes, it may not reflect 

the normal physiology of the cell (Stephens and Allan, 2003). Several studies have reported 

that the introduction of fluorescent markers affected cell behaviour, by inhibiting the 

migration of macrophages (Denholm and Stankus, 1995), and leukocytes (Abbitt, Rainger and 

Nash, 2000). As a result, novel imaging techniques are required that can overcome the issues 

associated with current methods, and Raman spectroscopy has emerged as a potential 

alternative to fluorescence microscopy for cell studies.  
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Raman spectroscopy is a valuable biochemical technique that combines microscopy and 

vibrational spectroscopy in order to analyse samples according to the chemical information 

contained within their unique Raman spectra. It is particularly useful as an imaging technique, 

as these Raman spectra can be used to construct a Raman map of a sample to give spatially 

resolved biochemical information (Smith and Dent, 2005). As Raman spectroscopy does not 

require as much sample preparation prior to analysis in comparison to other techniques, is 

label-free and can be carried out in aqueous conditions, it is a viable technique for imaging 

both fixed and live cells.  

Raman imaging of cells is a relatively new and emerging field that has vast potential, including 

in the diagnosis of disease (Kong et al., 2013) and in cytological research (Palonpon, Sodeoka 

and Fujita, 2013).  In addition, it could prove to be an invaluable technique in the 

pharmaceutical industry, providing viable models of living human cells that can be monitored 

over an extended period of time for any biochemical and physiological changes in response to 

different drugs. It has the potential to enhance the knowledge of how different compounds 

interact with different cell types, and to be used in early phases of drug development in order 

to assess toxicity, delivery or uptake, and to visualise the intracellular distribution of a drug, 

all of which may reduce the high cost associated with drug development and testing, as well 

as potentially reduce the need for testing on animals (Kann et al., 2015). Overall, Raman 

spectroscopy is an important research tool with far-reaching applications that is at the 

forefront of cell-based imaging techniques.  

1.2 Vibrational Spectroscopy 

Vibrational spectroscopy is a technique used to detect vibrations in molecules. It has a wide 

range of uses, from providing structural information or determining chemical structure, to 

identifying substances from the specific spectra they produce, or to determining the amount 

of a specific substance within a sample. Vibrational spectroscopy can be used on samples in 
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gas, liquid or solid phases, and to examine single cells or surface layers, meaning that there 

are a wide range of applications for this type of spectroscopy.  

Molecular vibrations can be measured in two ways: via the inelastic scattering of photons, or 

the absorption of light. Vibrational spectroscopy based on the direct absorption of light is 

known as infrared (or IR) spectroscopy, while the inelastic scattering of photons is associated 

with Raman spectroscopy. 

1.2.1 Raman Scattering 

A molecule can either absorb or scatter photons when it interacts with light, and it is this 

scattering that is measured in Raman spectroscopy. Scattering involves the excitation of a 

molecule to a short-lived virtual state due to the distortion of electrons surrounding the 

functional group bonds within it, and there are three outcomes of this process (represented 

in figure 1.1). If the molecule relaxes back down to the ground state, it emits a photon that 

has the same energy as the incident photon; there is no change in energy. This is known as 

elastic, or Rayleigh scattering, and the majority of photons are scattered in this manner (Smith 

and Dent, 2005).  

Inelastic scattering occurs when there is a change in energy between the incident photon and 

the scattered, or emitted, photon. If the molecule relaxes into an excited vibrational state from 

the virtual state, then it emits a photon with less energy than the incident photon in a process 

known as Stokes scattering. If the molecule is already in an excited vibrational state and 

relaxes back down to the ground state after interacting with the photon, the scattered photon 

will have more energy than the incident photon. Here, the photon gains energy from the 

molecule, and this is known as anti-Stokes scattering (Smith and Dent, 2005; Amer., 2010). As 

most molecules are in the ground state at room temperature, anti-Stokes scattering is weaker 

than Stokes scattering, and is less commonly measured in traditional Raman spectroscopy. 
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However, coherent anti-Stokes Raman spectroscopy (CARS) is a method that measures anti-

Stokes scattering and is being used increasingly in biological studies (El-Diasty, 2011).  

 

 

 

 

 

 

Figure 1.1: Diagrammatic representation of the three types of Raman scattering. Adapted from (Smith 

and Dent, 2005). 

1.2.2 Theoretical Aspects of Raman spectroscopy: 

The key property that determines whether a molecule is able to scatter a photon is the 

molecule’s polarisability. Polarisability, α, is the ability of an applied electrical field, E, to induce 

a dipole moment, p, in an atom or molecule: 

p =  α E 

                                                              Equation 1.1 (Schrader, 1995) 

For a molecule to be Raman active there must be a change in polarisability. The rate of change 

in the polarisability must therefore not be equal to zero. This is known as a selection rule; a 

molecular motion will be Raman-active only if the motion occurs with a changing polarisability 

(Schrader, 1995).  

 

Virtual states 

Vibrational states 

Ground state 

Rayleigh Stokes anti-Stokes 
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1.2.3 Molecular Vibrations:  

Molecules comprise of atoms with a specific mass connected by elastic bonds. Due to this 

elasticity, they are able to perform periodic motions, or vibrations (Schrader, 1995). The 

number of possible vibrations (or vibrational degrees of freedom) for any particular molecule 

is 3N – 6 (3N – 5 for linear molecules), where N is the number of atoms the molecule contains. 

There are many different modes of vibration, depending on whether it is the bond length or 

angle that is changing. Stretching (symmetrical or asymmetrical) occurs when the bond length 

changes, and bending or deformation (scissoring, rocking, wagging, twisting) when the bond 

angle is altered (Wilson et al., 1955; Smith and Dent, 2005). These vibrational modes are 

demonstrated for a linear molecule in figure 1.2 below. 

 

 

 

 

 

 

Figure 1.2: Diagram representing the three different types of vibrations for a linear molecule.  

Vibrational spectra, such as those measured in Raman spectroscopy, are representative of 

these different modes of vibration, although due to the selection rule only some vibrational 

modes will be Raman-active.  

As previously mentioned, Raman scattering depends on a change in polarisation within the 

molecule, distorting the electron cloud around the nucleus.  

Symmetric Stretch 

Bending/Deformation 

Asymmetric Stretch 
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Highly polar bonds, such as the O-H bond, have a low polarisability and produce only a weak 

Raman peak as little scattering occurs. This makes Raman spectroscopy ideal for studying 

samples in aqueous environments (Smith and Dent, 2005). 

Raman spectra depend not only on the geometrical arrangement of atoms within a molecule, 

but also on the masses of the atoms in the molecule and the strength of the chemical bonds 

between them. The relationship between these three factors that influence the position of 

Raman peaks in a sample is represented by the equation below, with f the force constant of 

the bonds between atoms, and m the  mass of the atoms (Schrader, 1995). 

 � =
1

2�
�

�

�
 

                                       Equation 1.2 

Lighter atoms will have a higher frequency when compared to heavier atoms (e.g. C-H 

vibrations lie at 3000 cm-1 while C-I vibrations lie at 500 cm-1). As the force constant is a 

measure of bond strength, the stronger the bond the higher the frequency will be (Smith and 

Dent, 2005; Baia, Astilean and Iliescu, 2008; Siebert and Hildebrandt, 2008). As a result of this, 

the vibrational spectra will be different for different molecules containing different atoms and 

bonds, providing a unique spectral fingerprint.  

1.2.4 Fluorescence and Raman spectroscopy:  

Raman scattering and fluorescence emission have a similar origin. In Raman scattering, the 

molecule is excited into a short-lived virtual state when a photon of light is scattered from it. 

In fluorescence, the molecule absorbs a photon and is excited into a higher electronic state, 

and fluorescent light is emitted while molecules relax back to the lower energy level. However, 

as the Raman effect is a relatively weak process, any fluorescent signal can overwhelm the 

Raman signal and make it difficult to analyse the resulting Raman spectrum (Cebeci-Maltaş et 

al., 2017). This is one of the main disadvantages of Raman spectroscopy, however, it is possible 
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to reduce the amount of fluorescent signal generated by carefully selecting the wavelength of 

laser used, as well as by reducing the amount of fluorescent species in a sample e.g. by using 

phenol-red free cell culture media.  

1.3 Cells and Raman spectroscopy 

1.3.1 Cells 

The Raman fingerprint of a cell is shown in figure 1.3. The cell is the basic biological unit of all 

living organisms. They are the smallest units of life, able to replicate independently, and are 

invaluable in terms of biological research as most diseases arise from intracellular biochemical 

changes resulting in cellular abnormalities. Most eukaryotic cells have a similar structure, 

enclosed within a cell membrane consisting of a phospholipid bilayer. Membrane-bound 

organelles such as the nucleus (containing DNA), mitochondria and ribosomes exist within the 

cytoplasm, along with many other biomolecules including proteins and nucleic acids (Lodish 

et al., 2012).  

There are a number of different cell types and cell lines, but the ones we have focused on are 

Caco-2 cells. These are a human colon epithelial cancer cell line that are frequently used as a 

model of the intestinal barrier. After long-term culture (14-21 days), Caco-2 cells undergo 

spontaneous differentiation to express several characteristics of intestinal enterocytes, 

including tight junctions, a brush border, and the expression of several enzymes (Pinto et al., 

1983; Hidalgo, Raub and Borchardt, 1989). These properties make them an ideal model for 

studying drug absorption (Artursson, 1990) and uptake (Derakhshandeh, Hochhaus and 

Dadashzadeh, 2011), as well as drug toxicity (Shappell, 2003) (Meunier et al., 1995).  In 

contrast, undifferentiated Caco-2 cells, as they are derived from a colon carcinoma, are more 

similar in morphology to cancer cells (Macpherson et al., 2014), and are therefore a good 

model for studying the toxicity of potential anti-cancer compounds.  
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Studying and understanding the way cells work, from their replication to the process of cell 

death, is vital not just in the field of cell biology, but for a number of scientific research areas, 

particularly in the study of disease and in the development of drugs targeted towards those 

diseases. The visualisation of cells is an important part of this research, allowing for physical 

changes to be observed. There are a number of existing imaging techniques, including optical 

light microscopy, electron microscopy and fluorescence microscopy, but each of these have 

issues associated with them (limited resolution (Wilson and Bacic, 2012), introduction of 

artefacts (Koster and Klumperman, 2003), introduction of fluorescent markers that may affect 

cell behaviour (Stephens and Allan, 2003)). As a result, novel imaging techniques are required 

that can overcome the issues associated with current methods, and Raman spectroscopy has 

emerged as a potential alternative to these techniques to image both fixed and live cells. 

 

Figure 1.3: Typical labelled cell spectrum.  

A typical cell spectrum is shown in figure 1.3, with specific peaks labelled. Blue labels represent 

DNA peaks, green labels represent protein peaks and yellow labels represent lipid peaks. The 

assignments for each of these peaks is listed in table 1.1. A Raman spectrum therefore gives 

information from across the whole cell, and has a number of different uses. For example, 

Raman spectroscopy has been used to determine cell cycle stage by observing changes in 
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Raman spectra corresponding to lipid and DNA levels (Short et al., 2005; Swain, Jell and 

Stevens, 2008). Raman spectroscopy has also been used to identify cell phenotype or bacterial 

species by identifying key peaks (Sun et al., 2015), and has been used to distinguish between 

tumour and non-tumour cells by examining differences between their Raman spectra 

(Neugebauer et al., 2010; Dochow et al., 2011).  

Table 1.1 Peak assignments for a typical cell spectrum. 

Wavenumber:  Assignment: Reference: 

670 cm-1 Nucleic acids T and G  (Puppels, Garritsen, et al., 1991; Overman 
et al., 1998) 

717 cm-1 C-N stretches in phospholipid 
head ends  

(Overman et al., 1998; Kunapareddy, 
Freyer and Mourant, 2008) 

780 cm-1 O-P-O diester symmetric 
stretch of the DNA backbone  

(Puppels, Garritsen, et al., 1991; Yiming et 
al., 1999; Stone et al., 2004) 

850 cm-1 Ring breathing in the amino 
acid tyrosine  

(Naumann et al., 2001; Stone et al., 2004) 

937 cm-1 C-C backbone stretching  (Omberg et al., 2002) 

1000 cm-1 Symmetric ring breathing in 
the amino acid phenylalanine  

(Overman et al., 1998; Wolthuis et al., 
1999; Yiming et al., 1999) 

1032 cm-1 C-H in-plane phenylalanine 
bending  

(Omberg et al., 2002; Stone et al., 2004) 

1090 cm-1 PO2
- stretch  (Overman et al., 1998; Omberg et al., 

2002) 

1126 cm-1 C-N and C-C stretches  (Borchman, Tang and Yappert, 1999; 
Naumann et al., 2001; Omberg et al., 
2002; Stone et al., 2004) 

1209 cm-1 C-C6H5 stretches in 
phenylalanine and 
tryptophan  

(Omberg et al., 2002; Stone et al., 2004) 

1260 cm-1 Amide III β-sheet  (Gremlich, 2018) 

1300 cm-1 Amide III α-helix  (Gremlich, 2018) 

1450 cm-1 C-H deformations  (Borchman, Tang and Yappert, 1999; 
Naumann et al., 2001; Omberg et al., 
2002; Stone et al., 2004) 

1660 cm-1 Amide I α-helix ) (Puppels, Garritsen, et al., 1991; 
Naumann et al., 2001; Omberg et al., 
2002; Gremlich, 2018 
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1.3.2 Raman Spectroscopy and Microscopy 

In addition to giving qualitative chemical information, Raman spectroscopy can also be 

combined with optical light microscopy, first described in the literature in 1975 (Delhaye and 

Dhamelincourt, 1975), with the first self-built Raman microspectrometer being described in 

1990 (Puppels et al., 1990). This development enabled Raman mapping to become a 

possibility, however, because only one in every 106-108 of scattered photons have a different 

energy than the incident photon, Raman scattering is an inherently weak process, resulting in 

long acquisition times. This meant that Raman spectroscopy was not a feasible option for 

imaging biological samples until relatively recently, where advances in technology and 

methodology have resulted in a decrease in these acquisition times, making Raman 

spectroscopy a novel and attractive choice for the imaging of biological samples (Adar, 

Delhaye and DaSilva, 2007; Zoladek et al., 2010; Kong et al., 2013).  

In this technique, a microscope lens is used to focus the laser beam onto a sample, resulting 

in a better resolution than can be achieved with Raman spectroscopy alone (Puppels et al., 

1990). If the spectrometer is coupled to a camera, usually a charged-coupled device (CCD), 

confocal Raman spectroscopy can be used to image or map samples in order to visualise their 

underlying chemical components according to their Raman spectra (Zoladek et al., 2010). In 

Raman imaging, the entire sample is globally illuminated and Raman spectra at a specific 

wavenumber are collected in a single measurement, whereas Raman mapping involves 

collecting full Raman spectra from across the entire sample (Delhaye and Dhamelincourt, 

1975; Schlücker et al., 2003).  A Raman map can then be computationally produced to 

construct a pseudo-colour image of the sample, with each pixel shaded according to the 

relative intensity of the Raman spectra at a given wavenumber or range of wavenumbers (Ling 

et al., 2002). Currently, there is no standard approach for shading a Raman map, which has 

the potential to result in false-colouring and the loss or over-interpretation of the data. Better, 

universally-adopted approaches for shading and transparency in the shading parameters 
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applied are therefore required, especially in a clinical context, in order for Raman mapping to 

become a viable and reliable imaging technique (Ashton, Hollywood and Goodacre, 2015).   

The typical set-up for a Raman microspectrometer can be seen in figure 1.4 below. The main 

components include: laser source, microscope objective, filters, mirrors, and CCD, which are 

all important for the function of the Raman spectrometer. The laser source can vary in 

wavelength.  Stronger Raman intensities occur at shorter wavelengths because they generate 

a greater amount of scattered photons, but shorter wavelengths induce more 

autofluorescence than longer wavelengths. Autofluorescence is the natural emission of light 

by biological structures upon the absorption of light (Monici, 2005). As previously mentioned, 

as the Raman effect is usually weak, fluorescence signals can overwhelm and therefore 

interfere with the Raman signal (Kagan and McCreery, 1994). Shorter wavelengths are also 

more likely to induce photodamage and degradation of samples, which can be particularly 

detrimental in the study of biological material. The choice of laser is therefore an important 

one depending on the type of material being studied (Kann et al., 2015). The microscope 

objective can also be altered, depending on the sample being studied. The objective 

determines the magnification and resolution of the image, and for cell studies a higher 

resolution objective, such as a x60 lens, is preferred (Thorn, 2016).  

Filters are essential to remove the more intense Rayleigh scattering, and can either be notch 

or edge filters. There are advantages and disadvantages to both types of filters: notch filters 

are chosen to coincide with a specific laser wavelength and therefore different filters are 

required for different excitation wavelengths, whereas edge filters absorb all light up to a 

certain wavelength. Notch filters have a finite lifetime and degrade with time, whereas edge 

filters have a near infinite lifetime. Edge filters are therefore more beneficial, but they are 

much more expensive than notch filters (Smith and Dent, 2005). Mirrors are vital for directing 
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the laser photons onto the sample, and as previously discussed, the CCD detects the scattered 

light and constructs a Raman spectrum.  

 

Figure 1.4: Typical set-up of a Raman spectrometer coupled to an optical microscope. Adapted from: 

(Smith et al., 2015). 

1.3.3 Raman Imaging of Cells 

Raman spectroscopy boasts several advantages over the alternative imaging techniques 

mentioned previously. Namely, there is no sample preparation required, and as Raman 

spectroscopy measures the underlying chemical composition of a sample, there is no need for 

the addition of labels in order to identify intracellular components (Smith and Dent, 2005). 

Raman spectroscopy is therefore minimally invasive. Due to the fact that water is a weak 
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Raman scatterer, Raman measurements can be carried out in aqueous environments, meaning 

that cells can be maintained in cell culture media during analysis and ensuring that conditions 

are as close to physiologically normal in culture as possible. Finally, the low (<1 µm) resolution 

that can be achieved by Raman spectroscopy (Puppels et al., 1990; Schie and Huser, 2013) 

make it ideal for imaging both live and fixed single cells.  

Since the development of Raman microscopy, numerous studies concerning the imaging and 

mapping of cells have been carried out. The earliest of these experiments were carried out on 

fixed cells, and involved seeding cells onto calcium fluoride windows (which have low 

background scattering and therefore a low Raman signal), fixing them with either formalin, 

paraformaldehyde or methanol before being imaged by a Raman microspectrometer. Most of 

these studies were concerned with the distribution of organelles within a cell, including the 

mitochondria (Matthaus et al., 2007), DNA (Uzunbajakava, Lenferink, Kraan, Volokhina, et al., 

2003; Konorov et al., 2013), and proteins (Uzunbajakava, Lenferink, Kraan, Willekens, et al., 

2003). Studies on fixed cells have also been used to image the response of colon cancer cell 

lines to the drug sorafenib (Yosef et al., 2018), to monitor the interaction of actinomycin D on 

lung cancer cell lines (Farhane, Bonnier and Byrne, 2017), to study the effect of the drug 

doxorubin on lung cancer cells (Farhane, Bonnier and Byrne, 2017; Byrne, Bonnier and 

Farhane, 2019), and to monitor resistance to targeted cancer therapy, also in lung cancer cells 

(Hammoud et al., 2018).  

1.3.4 Live Cell Imaging 

While studies on fixed cells are useful in determining cellular organisation and drug response, 

there is still the potential for fixing procedures to cause damage to the cells or introduce 

artefacts into the image, and fixed cells have been shown to have an altered Raman spectra in 

comparison to unfixed cells (Chan et al., 2009; Chan, Taylor and Thompson, 2009; Draux et al., 

2010). The numerous advantages of Raman spectroscopy previously mentioned make it ideal 
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for studying living cells to overcome the issues associated with observing fixed cells, meaning 

that it can be utilised to image living cells to give valuable biochemical information that other 

imaging techniques are currently unable to provide.  

The first studies to image live cells follow very similar preparation procedures. Cells were first 

seeded onto a suitable substrate before being incubated overnight to allow for attachment. 

They were then washed before being immersed in a petri dish containing phosphate buffered 

saline (PBS) before they were imaged. This technique has been used to image single living non-

small cell lung cancer cells (Draux et al., 2009), glioma cells (Klein et al., 2012), to observe 

changes in morphology in different cell cycle stages (Swain, Jell and Stevens, 2008), to observe 

the distribution of an anti-cancer drug in live breast cancer cells (Ling et al., 2002), to identify 

cells of the immune system without the use of labels (Chen et al., 2015), and to monitor the 

effects of different compounds on breast cancer cells (Mignolet, Wood and Goormaghtigh, 

2018). However, these studies are only studying live cells in the short-term, as they are not 

cultured in media but in PBS, and therefore only show immediate effects. We are interested 

in being able to observe cells over a longer period of time by using a Raman microscope 

coupled to an incubator. This is an emerging technique for live cell imaging, allowing cells to 

be maintained under physiological conditions (in culture media at 37 °C and 5 % CO2) while 

spectral measurements and mapping occurs, and several studies have already been carried 

out in recent years to investigate whether it is a viable option for the imaging of live cells.  

In these experiments, cells are seeded onto a suitable substrate (usually held in a sample 

holder or chamber) but are immersed in fresh media rather than PBS before being placed 

inside the microscope’s incubator for mapping. This method has been used to detect changes 

in live cells cultured in different environments (Gargotti et al., 2018) 

In most studies producing Raman maps, spectra are collected by scanning single cells in a 

raster pattern, although the step size and integration times varies between some studies. Live 
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cell Raman mapping has been utilised in order to image several different cell lines over time, 

including breast cancer cells (Zoladek et al., 2010), neural stem cells (Ghita et al., 2012), and 

embryonic bodies (Chan et al., 2009; Pascut et al., 2011). These studies monitored cells over 

a period of several days with no loss of cell viability, suggesting that Raman spectroscopy can 

be used to image the same cells under normal physiological conditions over an extended 

period of time without any negative side effects. 

All of the above live-cell studies used a 785 nm laser. There is evidence that visible lasers 

induce damage to biological samples even when a minimal exposure time and a low laser 

power is used (Puppels et al., 1990; Wood et al., 2005). However, at 785 nm, which is just 

outside the visible spectrum, this degradation does not take place even after long exposure 

times at a high laser power. In addition, the amount of fluorescence observed using a 785 nm 

laser is very low when compared to other wavelengths (Notingher et al., 2002; Smith and Dent, 

2005), making 785 nm an ideal wavelength for measuring the Raman spectra of living cells. 

However, even though this wavelength is less damaging to cells than those that have been 

used previously, long acquisition times are still not ideal as it increases the amount of time 

taken to image the entire cell, hence an acquisition time of 1 second or less is usually used.  

1.3.5 Resonance Raman spectroscopy:  

Resonance Raman spectroscopy is a type of Raman spectroscopy where the wavelength of the 

incident photon is close in energy to an electronic transition of the sample under investigation, 

resulting in a greater incidence of scattered photons, therefore enhancing the Raman signal 

(Li and Kitagawa, 2014). For example, UV resonance Raman (UVRR) spectroscopy uses UV 

lasers (excitation wavelength range from 180-260 nm) to create a resonance effect which 

enhances the Raman signal of aromatics, and therefore enhances the features of both proteins 

and nucleic acids (Ashton et al., 2013). Previously, this technique has been primarily used in 

the biopharmaceutical industry, both as a tool to monitor changes in protein structure (Ashton 
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and Goodacre, 2011), and as a probe for cellular DNA and RNA in mammalian cell culture 

medium (Ashton et al., 2015). However, there is also interest in using resonance Raman 

spectroscopy as a technique for organelle-specific labelling in cells (Kuzmin et al., 2016), 

suggesting that it is a technique of interest in cell-based studies.  

1.3.6 Raman spectroscopy and drug studies  

The above single cell studies provided important structural and biological information in 

addition to showing that Raman spectroscopy is a valuable imaging technique. However, the 

fact that Raman imaging can be conducted on live cells over an extended time period provides 

an opportunity for time-course experiments, which is particularly useful in pharmacological 

studies of drug uptake and distribution.  

Studies on live cells have demonstrated the ability of Raman spectroscopy to monitor cell 

death in response to the addition of a toxic drug into the cell culture media. Apoptosis in 

human breast cancer cells exposed to etoposide has been monitored over a period of several 

hours, with the authors showing, via Raman mapping, a build-up of lipids within the cytoplasm 

of these cells after treatment with the drug, in addition to changes in the intensity of Raman 

peaks associated with DNA (Zoladek et al., 2011). Apoptosis as a result of treatment with 

another genotoxic agent, docetaxel, has also been studied in a different cell line by studying 

single cells over a period of 20 hours. This study again showed that Raman microscopy could 

be used to examine changes in cell structure, visualising a progressive loss of cell volume via 

Raman mapping, in addition to showing changes in the Raman spectra of treated cells over 

time in comparison to untreated cells (Bräutigam et al., 2013). A more recent study showed 

that Raman spectroscopy was able to detect and predict the effects of the drug tamoxifen in 

liver cells by looking at differences between spectra of treated and untreated cells (Ali et al., 

2019). Live cell Raman spectroscopy has also been used to monitor glial cells response to the 
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drugs doxorubin and methamphetamine, and detected a number of peaks characteristic of 

the induction of apoptosis in these cells (D’Brant et al., 2019). 

These studies utilise the Raman spectra of the cellular response to the drug (e.g. changes in 

DNA structure), but do not detect or use the spectra of the drug itself. Drug distribution can 

be imaged if the drug of interest has a peak that differs or has a higher intensity than the peaks 

typical of the cellular components (Keating et al., 2015). The movement of the drug paclitaxel 

into the cytoplasm of breast cancer cells has been investigated over a number of hours, using 

a peak at 1740 cm-1, representative of the vibration of the C=O bond within the drug, to 

visualise its position in the cell (Hamideh Salehi et al., 2013). The visualisation of drugs like 

these within subcellular organelles allows for a greater understanding of drug uptake, 

intracellular distribution and targeting, and shows that Raman spectroscopy has the potential 

to be a valuable development in the field of pharmokinetics.  

Collectively, these studies demonstrate the usefulness of Raman spectroscopy for both 

monitoring and visualising the effect of toxic agents and chemicals at the single cell level. 

However, there is still room for improvement within this area of research, by utilising true live-

cell Raman imaging, where cells are imaged within media rather than PBS. The development 

of live-cell imaging provides the opportunity to show the real-time response of cells to drugs 

under normal physiological conditions, which may allow for the development of suitable in 

vitro models for the early stages of drug testing, especially in toxicity studies. 

1.3.7 Cannabinoids  

Cannabinoids are pharmacologically active compounds derived from the plant Cannabis sativa 

that bind to cannabinoid receptors to produce their behavioural effects. These receptors 

include the CB1 and CB2 G-protein coupled receptors, as well as vanilloid receptors (Pertwee, 

2001). There are a number of existing cannabinoids, but the two we have chosen to focus on 

are cannabidiol (CBD) and anandamide (AEA). CBD is a phytocannabinoid derived from the 
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plant, whilst AEA is an endogenous cannabinoid, a fatty acid neurotransmitter (Pertwee and 

Ross, 2002). The mechanism of action of both of these drugs is currently not well understood, 

although both CBD and AEA have been linked to the induction of apoptosis in several different 

cell lines, including the Caco-2 cell line (Schwarz, Blanco and Lotz, 1994; Maccarrone et al., 

2000; Massi et al., 2004; McAllister et al., 2011; Kuc, Jenkins and van Dross, 2012; Macpherson 

et al., 2014). In addition, AEA has been said to have antiproliferative effects (De Petrocellis et 

al., 1998).  

Raman spectroscopy has previously been used to identify the presence of cannabinoids within 

trichomes of the Cannabis sativa using CARS (Ebersbach et al., 2018), and surface-enhanced 

Raman spectroscopy (SERS) has been used for the detection of synthetic cannabinoids in 

forensics (Mostowtt and McCord, 2017). However, both of these studies did not detect the 

cannabinoids CBD or AEA, and there are no existing studies that use Raman spectroscopy to 

determine the effect of these drugs within cultured cells. As a result of this, and due to the 

fact that the mechanism of action of both drugs is currently poorly understood, Raman 

spectroscopy may be a suitable technique to gain more understanding of the effect of these 

drugs on our chosen cell line.  

1.3.8 Use of metal complexes to help with Raman imaging 

Whilst Raman spectroscopy is a label-free technique, it has a limited resolution and some 

organelles, such as the mitochondria, cannot be visualised without the use of any labels 

(Smith, Wright and Ashton, 2016). Therefore, in order to visualise organelles such as these, 

labels are required. Compounds intended to be used as biological imaging agents must have 

several properties to make them suitable for this use, including stability, solubility in aqueous 

environments, low toxicity, and they must have a good rate of uptake by cells (Fernández-

Moreira, Thorp-Greenwood and Coogan, 2010). Metal complexes are ideal candidates for this 

and have been used in a number of Raman spectroscopy studies. An organometallic complex 
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has been conjugated to a drug to show the distribution of the Golgi apparatus within cells 

(Clède et al., 2013), a metal-carbonyl complex has been shown to localise in the nuclear 

membrane of colon cancer cells (Meister et al., 2010), and a ruthenium complex has been 

shown to localise to the mitochondria of cells (Burke, Byrne and Keyes, 2018). All of these 

studies used Raman spectroscopy as a technique to do this, indicating its potential to be used 

in conjunction with metal complexes in order to visualise cellular organelles.  

1.4 Conclusions 

To summarise, Raman spectroscopy is a technique that combines vibrational spectroscopy and 

light microscopy in order to allow for label free imaging of cells. It is particularly useful for cell 

imaging, as there is little sample preparation required, and water has a weak Raman signal, so 

both live and fixed cells can be studied within aqueous environments. However, at present 

Raman spectroscopy is not being routinely employed in cell biology due to perceived long 

acquisition times and a lack of consistency in data analysis. Due to its advantages over current 

techniques and the benefits and understanding it may bring to the field of cell biology, further 

research needs to be carried out to improve Raman spectroscopy for cell imaging in order to 

make it a viable imaging tool within laboratories.  
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1.5 Project Aims and Objectives 

1.5.1 Research Objectives 

The overall aims of the project are to develop Raman spectroscopy as a tool to study and map 

both live and fixed Caco-2 cells exposed to a number of different stimuli, such as a metal 

rhenium complex and the cannabinoid drugs CBD and AEA, and to gain a better understanding 

of the mechanism of action of CBD and AEA on this particular cell line.  

1.5.2 Objectives 

1.5.2.1 Successfully culture Caco-2 cells for Raman spectroscopy 

This involved all stages of sample preparation, including the development of a suitable 

methodology for attaching, growing and fixing Caco-2 cells on CaF2 windows.  

 

1.5.2.2 Collect Raman maps of fixed single cells 

In addition, once Raman maps were acquired, we determined the best pre-processing 

methods for these spectra.  

1.5.2.3 Develop robust shading parameters 

Once established, the shading parameters were then applied across all maps to ensure 

consistency in shading throughout the project. Once a suitable methodology was in place, we 

progressed onto adding substances into the cells and monitoring their response.  

1.5.2.4 Collect spectra of a rhenium complex for use as an intracellular label 

Once this spectrum had been collected, we carried out Raman mapping of fixed Caco-2 cells 

that had been treated with the complex to see if it could be used to visualise the mitochondria 

within cells.  
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1.5.2.5 Collect spectra of the cannabinoid drugs CBD and AEA 

Once these spectra had been acquired, we carried out Raman mapping of fixed cells which 

had been treated with these drugs in order to see if Raman spectroscopy could determine the 

effect of these drugs on Caco-2 cells.  

1.5.2.6 Establish procedures for live cell mapping 

We used a cell top incubator to maintain cells under normal physiological conditions 

throughout analysis. Initially, we collected maps of live control cells to ensure that they were 

not damaged by exposure to the laser. Following this, Raman maps of live cells incubated with 

the rhenium complex were collected, in order to establish if its uptake by Caco-2 cells could 

be detected over time. Finally, we collected Raman maps of live cells incubated with the 

cannabinoid drugs CBD and AEA to monitor the same cells response to these drugs over time.  
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Chapter 2: Materials and Method 
Development  
 

2.1 Introduction 

Raman spectroscopy has previously been established as an imaging method, and has been 

used with a number of different cell lines. However, each of these studies varies in their 

methodology, from the fixatives used, to the wavelength of the laser, the acquisition time, and 

the step size used when mapping. For example, one early study mapped the DNA and protein 

in lymphocytes, and fixed cells in 1 % PFA, mapped with a laser wavelength of 647 nm, and 

had an acquisition time of 1-2 seconds (Uzunbajakava, Lenferink, Kraan, Volokhina, et al., 

2003). In comparison, a study to map stress-induced changes in lung fibroblasts fixed cells in 

formalin, used a laser wavelength of 785 nm, an acquisition time of 10 seconds and a step size 

of 1 µm (Krafft et al., 2006). Another study used methanol to fix MCF-7 cells prior to carrying 

out Raman spectroscopy using a 785 nm laser (Konorov et al., 2013). Finally, a 532 nm laser 

has been used to map cells using Raman spectroscopy, with one study using a 0.3 µm step size 

(Krafft et al., 2005).  

There are similar variations in studies using Raman spectroscopy to map live cells. As 

previously discussed, some of the first studies to image live cells were short-term, and cells 

were maintained in PBS throughout analysis (Ling et al., 2002; Draux et al., 2009; Klein et al., 

2012). However, to allow the study of healthy, living cells over longer periods of time, cells 

need to be maintained in cell culture medium rather than PBS, which has been implemented 

in more recent studies. Step size and acquisition times still vary, and some examples are a step 

size of 1 µm and an acquisition time of 1 second per pixel (Zoladek et al., 2011), a step size of 

2 µm and an acquisition time of 1 second (Pascut et al., 2011), and a step size of 1 µm and an 

acquisition time of 0.5 seconds (Bräutigam et al., 2013). Most live cell studies have been 
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carried out using a 785 nm laser, but some have used a laser wavelength of 532 nm (Hobro et 

al., 2015).  

Overall, this demonstrates that there are a number of considerations that need to be made 

when using Raman spectroscopy to map single fixed or live cells, and there is a need to develop 

novel methodologies to optimize the technique for specific cell lines.  

The cell line used in all Raman spectroscopy experiments reported here was the colon 

carcinoma cell line, Caco-2. While there are some reported studies using these cells with 

Raman spectroscopy, these use primarily CARS (Saarinen et al., 2017) or SERS (Xu et al., 2016). 

One study has used confocal Raman spectroscopy to image Caco-2 cells, however, the authors 

used Raman imaging to collect only Raman spectra at the specific wavelength of 2800-3030 

cm-1, rather than by acquiring a full spectrum at each pixel of the image (Scalfi-Happ et al., 

2011). As such, suitable methodology needed to be established in order to carry out mapping 

of Caco-2 cells using Raman spectroscopy for all stages of sample preparation and Raman 

measurements, including: cell attachment, fixation, Raman setup, and data pre-processing.  

2.2 Materials and Methodology 

2.2.1 Cell Culture 

All compounds and cell culture reagents were purchased from Fisher Scientific UK 

(Loughborough, UK) unless otherwise stated. The human epithelial colorectal adenocarcinoma 

cell line, Caco-2, was obtained from the European Collection of Cell Cultures (ECACC). Caco-2 

cells were cultured in 75 cm3 sterile cell culture flasks with complete media (MEM substituted 

with 10 % foetal bovine serum and 1 % non-essential amino acids) and maintained in an 

incubator at 37 °C and 5 % CO2. When cells reached ~70 % confluence, flasks were washed 

twice with 5 mL of 1x Dulbecco’s phosphate buffered saline (DPBS) and incubated with 1 mL 

of 0.25 % trypsin with EDTA at 37 °C for 5 min to detach cells from the flask. Cells were then 
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resuspended in ~4 mL of media and ~1 mL transferred to a new flask; the volume was made 

up to 10 mL by adding fresh complete media and flasks returned to the incubator.  

2.2.2 Cell Attachment for Raman Analysis  

Initially, cells were detached via trypsin as above from culture flasks and cell concentration 

determined using trypan blue exclusion. A concentration of ~1x105 cells were seeded onto 

sterile calcium fluoride (CaF2) Raman compatible windows maintained inside 35 mm cell 

culture dishes.  Cells were returned to the incubator and allowed to adhere for ~2 hours. After 

this time, 2 mL of fresh complete media was added, and dishes left in the incubator overnight 

for cells to continue to adhere and grow on the substrate. Cells then underwent treatment 

and/or fixation prior to spectral analysis (see section 2.2.6).   

Early results showed that, when examined under the microscope on the Raman spectrometer, 

the cells had an abnormal morphology on the CaF2 windows when compared to their 

morphology on cell culture flasks, suggesting that they were failing to adhere to the substrate. 

Cell adhesion onto the substrate that it is growing on is vital for Caco-2 cells function and 

normal behaviour, and failure to attach to this substrate results in cell death (Frisch and 

Francis, 1994). Caco-2 cells  have been shown to undergo this process on a non-adhesive 

substrate (Kozlova et al., 2001), and our results indicated that the sterile CaF2 windows were 

non-adhesive to this cell line.  

As CaF2 windows are shown to be ideal for cell-based Raman studies due to their lack of 

background signal (Draux et al., 2009; Ramoji et al., 2016), instead of changing the substrate 

we opted to coat the windows in a substance to aid attachment. We chose poly-lysine for this 

as it is well established for increasing adhesion in several cell lines (Lieberman and Ove, 1958; 

Yavin and Yavin, 1974; Mazia, Schatten and Sale, 1975; Rainaldi, Calcabrini and Santini, 1998). 

In addition, it has minimal Raman signal within the biological fingerprint region (Kniggendorf, 

Gaul and Meinhardt-Wollweber, 2011), making it ideal for use in Raman studies. CaF2 windows 
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were aseptically coated with 800 µL of poly-lysine solution (Sigma Aldrich, UK) and incubated 

for 5 min before the solution was removed and the surface washed with sterile cell culture 

water. Windows were allowed to dry for at least 2 hours prior to the introduction of cells (using 

the same procedure as above); cells appeared to have a normal morphology under the 

microscope using this method.  

2.2.3 Fixation Procedure 

The next step was to develop a suitable protocol for fixing cells onto the CaF2 windows after 

the incubation period was complete. Media was removed from the cell culture dishes and the 

windows were washed twice with DPBS containing CaCl2 and MgCl2 in order to remove any 

traces of media. Different fixation methods were trialled prior to finding the optimum 

conditions. The first fixative used was methanol, which has previously been used to fix cells in 

Raman-based studies (Konorov et al., 2013). After washing, cells were fixed in 2mL of ice cold 

(-20 °C) 100 % methanol for 15 min at room temperature.  

However, this method was unsuccessful. Upon examination under the microscope, cells 

appeared to have clumped together as a single mass, suggesting that they had not fixed 

correctly (figure 2.1A). Following this, ethanol, which has also been used as a fixative in 

previous Raman studies (Jess et al., 2007) (Diem et al., 2013), was used. Cells were fixed in 2 

mL of 70 % ethanol at room temperature for 30 min, which gave similar results. 
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Figure 2.1: A comparison of different fixation methods on cell structure. Photographs taken beneath 

the Raman spectrometer microscope using a 60x water immersion objective of either cells fixed with 

(A) methanol, (B) PFA, or (C) live, unfixed cells.  

As both methanol and ethanol work in a very similar way to fix cells (coagulants that denature 

proteins within the cell by disrupting hydrophobic and hydrogen bonding (Eltoum et al., 

2001)), an alternative approach was to use an aldehyde (paraformaldehyde, or PFA) as a 

fixative instead of an alcohol.  

In this method, cells were fixed in 4 % PFA in PBS after washing and incubated for 20 min at 

room temperature. This was successful and allowed the visualisation of fixed single cells down 

the microscope for the first time (figure 2.1B). Furthermore, as PFA has been shown to induce 

less spectral changes in fixed versus live cells in comparison to methanol (Chan, Taylor and 

Thompson, 2009; Kuzmin, Pliss and Prasad, 2014; Hobro and Smith, 2017), it has an added 

advantage and was used as a fixative for all further Raman experiments. PFA also did not 
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appear to visibly alter the morphology of Caco-2 cells, as when viewed under the microscope, 

they appeared to have a similar morphology to live, unfixed cells (figure 2.1C). 

After the incubation times mentioned above, the fixative solution was removed, and windows 

washed a further three times with DPBS prior to Raman analysis. Cells were maintained in 

DPBS throughout Raman measurements in order to prevent samples from drying out.  

2.2.4 Raman Measurements  

Raman spectra were collected using a confocal Raman system (inVia, Renishaw plc, Wotton-

Under-Edge, UK), coupled to a 532 nm and 785 nm excitation wavelength laser. A 785 nm 

wavelength laser is usually preferred in live cell studies as it has been shown not to cause 

sample degradation (Notingher et al., 2002). However, shorter wavelengths induce stronger 

Raman intensities (Albrecht and Hutley, 1971; Palonpon, Sodeoka and Fujita, 2013), and there 

was less background noise associated with the 532 nm laser observed in our experiments. It 

was therefore decided that the 532 nm wavelength would be used whilst cells were fixed in 

order to generate the best Raman signal, whilst the 785 nm laser would be better equipped 

for live cell studies.  

StreamLineHR mapping, using a laser-spot focus, was carried out using a 60 x NA = 1.00 water 

immersion objective (LUMPLFLN 60XW Olympus) with a step size of 1 µm. An exposure time 

of 1 second was used on all samples, and the average total collection time for a complete cell 

varied from ~8 to ~20 min. Longer exposure times resulted in some photodamage to cells (via 

the development of a halo around the cell undergoing analysis) that has also been observed 

in previous studies as a result of the high laser intensity (Wood et al., 2005). Shorter acquisition 

times have a higher level of background noise, and after trying several different acquisition 

times, 1 second resulted in the best trade-off for giving good quality Raman signals whilst 

preventing any observable photodamage or degradation of the sample.  
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2.2.5 Cell Treatment 

2.2.5.1 Serum 

All experiments were carried out under low-serum (1 %) conditions. Whilst serum is necessary 

for optimum cell growth, its composition is poorly defined and highly variable. Eliminating or 

reducing the amount of serum present therefore removes unknowns, reduces interference, 

and provides more reproducible experimental conditions (Pirkmajer and Chibalin, 2011). In 

addition, serum deprivation is thought to reduce basal cell activity (Codeluppi et al., 2011), 

and increases homogeneity in proliferating populations of cells, as it causes them to cease the 

cell cycle and to enter the G0/G1 phase (Van Rechem et al., 2010). In order to do this, after cells 

had been allowed to adhere to CaF2 windows overnight, complete, 10 % serum media was 

removed from cells and replaced with 1 % serum media. Cells were then left overnight to allow 

time for synchronisation.  

2.2.5.2 Cannabidiol  

For experiments, cannabidiol (CBD) (Tocris Bioscience, Abingdon, UK) concentrations were 

made from a stock solution of 75 mM (in ethanol) and prepared in media. CBD was diluted in 

media, and the final concentration of CBD added to cells was either 10 or 1 µM. These 

concentrations were chosen as they had been used in previous studies (Shrivastava et al., 

2011; Macpherson et al., 2014; Sultan, Marie and Sheweita, 2018). 

After cells had been incubated on CaF2 windows overnight as above, media was removed and 

fresh media added containing drug solutions to make final concentrations of 10 µM or 1 µM. 

Dishes were then returned to the incubator. After treatment with CBD, cells were returned to 

the incubator for a range of incubation times, from 2 to 24 hours. Following this, cells were 

fixed. Control dishes were also prepared using media, and ethanol used as a vehicle control 

(section 2.4).  
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2.2.5.3 Anandamide 

Anandamide (AEA) (Tocris Bioscience, Abingdon, UK) concentrations were made from a stock 

solution of 14.4 mM (in ethanol) and prepared in media. AEA was diluted in media, and the 

final concentration added to cells was either 10 or 1 µM. These concentrations were chosen 

to be consistent with those for CBD. Cells were treated with the drug as above, for the same 

incubation times, and fixed prior to analysis.  

2.2.5.4 Metal Complexes 

For experiments, a rhenium complex (provided by Dr Mike Coogan, Lancaster University) was 

used at a concentration of 100 µg/mL, prepared from a stock solution of 10 mg/mL in DMSO 

and diluted in media. After cells had been incubated on CaF2 windows as above, media was 

removed and fresh media containing the complex solution was added. Dishes were returned 

to the incubator for a period of either 2 or 4 hours, after which cells were fixed. Control dishes 

were prepared using DMSO as a vehicle control.  

2.3 Spectral Analysis 

2.3.1 Data Collection 

Raman maps consist of many different spectra taken from across the cell. The longer the 

acquisition time for each individual spectrum, the less noise they contain, and they are 

therefore of a higher quality than spectra taken using shorter acquisition times (figure 2.2). 

For studies using fixed cells, this is less of an issue as longer acquisition times can be used in 

order to collect good-quality spectra without it having a detrimental effect on the cell 

(providing there is no photodamage). However, in live cell studies, measurements need to be 

carried out quickly as live cells are likely to move throughout analysis. Additionally, exposure 

time to the laser needs to be sufficiently low so as to ensure that cells are not perturbed or 

damaged. A 2 or 3 second acquisition time across a whole cell will result in the complete map 

taking upwards of two hours, which is not a realistic possibility in live cell imaging. It is 
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therefore vital to establish data processing techniques capable of reducing the background 

noise associated with shorter acquisition times in order to bring out the cellular features 

within the spectra. 

 

Figure 2.2: Raw Raman spectra of the cytoplasm region of fixed Caco-2 cells with varying acquisition 

times. Acquisition times were as follows: (A) 0.1 seconds, (B) 0.5 seconds, (C) 1 second, (D) 2 seconds. 

All spectra were acquired using a 532 nm wavelength excitation laser and a laser power at sample of 

~30 mW. 

2.3.2 Data Processing 

The first step in the pre-processing of Raman data is cosmic ray removal. Cosmic rays hitting 

the detector in the Raman spectrometer can result in the generation of narrow spikes within 

the Raman spectra that cannot be attributed to features of a sample, and therefore need to 

be removed prior to any data analysis. This removal is straightforward due to their distinctive 

shape, and this process can be carried out on the instrument software (WIRE 4.2), by 

comparing neighbouring spectra to identify and remove any cosmic rays that occurred during 

data collection.  

After Raman maps have undergone cosmic ray removal, there are several different types of 

pre-processing that can be applied to them in order to reduce the noise. For our maps, we 

A 

D C 

B 
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used the noise filter function on the instrument software (WIRE 4.2). This technique uses 

principal component analysis (PCA) in order to eliminate data variance that cannot be 

attributed to real or significant data; it will therefore remove noise from within each spectrum. 

It has the advantage of being included in the instrument software, and allows the user to 

examine each principal component in order to determine which contain all the real Raman 

information. Other smoothing methods such as Savitzky-Golay filtering smooth every sharp 

peak within a spectrum, which has the potential to reduce the spectral resolution and can 

remove weak spectral features completely (Mat, Clupek and Volka, 2007), which would be 

detrimental in later studies where we are interested in finding a peak from a drug or metal 

complex within a cell spectrum. The difference between a raw and noise filtered spectra can 

be seen in figure 2.3; it is much easier to distinguish the cellular features after data processing 

has been applied.  

We also normalised each map, which is a process used to eliminate experimental error. As the 

collection of Raman maps of fixed cells can take several hours, there is the potential for 

variations or perturbations to occur throughout analysis that are due to factors other than the 

sample itself, such as a change in laser power or focus, which can influence the intensity of 

spectral features. Normalisation reduces these variations from the data, so differences can be 

attributed to sample composition rather than experimental error (Gautam et al., 2015). To 

normalise the data we used mean variance, which transforms each spectra so that they have 

the same mean and variance to reduce experimental variations within the data. The inputted 

value for mean and variance was kept the same for all maps analysed to allow for comparison. 
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Figure 2.3: A comparison of raw and pre-processed Raman spectra taken from a fixed Caco-2 cell. (A) 

Typical Raman spectrum for a cell, prior to any data analysis, encompassing the spectral regions 630-

1800 cm-1. (B) Spectrum of the same cell after undergoing normalisation and noise filtering.  

Once suitable and effective data pre-processing procedures had been established, processed 

spectra could be used in order to generate Raman maps of single Caco-2 cells. To do this, data 

was exported to MATLAB software version 2016 (The MathWorks, MA, USA) for further data 

analysis and the generation of distribution plots which were then used to shade images in 

WIRE.  

2.3.3 Pseudo-Shading 

All Raman maps were shaded according to the relative intensity of a specific spectral region. 

This allows us to distinguish between different areas of the cell, for example nucleic acid rich 
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regions and protein rich regions, and enables the identification of the nucleus and the 

cytoplasm within a specific cell. The region of 780-802 cm-1 was used to shade for nucleic acids 

(representative of bands corresponding to the nucleic acids thymine and cytosine, and the 

phosphate backbone (Barhoumi et al., 2008; De Luca, Dholakia and Mazilu, 2015)), and the 

region 1630-1680 cm-1 to shade for proteins (representative of the amide I peak (Short et al., 

2005; Zhang et al., 2008)). 

Whilst Raman mapping is a useful technique for generated detailed chemical images based on 

a sample’s Raman spectra, care needs to be taken when applying shading to Raman maps. As 

previously discussed (chapter 1, section 1.3.2), currently, there is no standard approach for 

shading a Raman map, which has the potential to result in false-colouring and the loss or over-

interpretation of the data as the values can be arbitrarily altered in order to give the ‘best’ 

image (Ashton, Hollywood and Goodacre, 2015). To prevent this, shading needs to be carefully 

considered and selected, especially in circumstances where a comparison of Raman images is 

required.  

One way to ensure that shading is consistent across all maps is to use distribution plots to aid 

the shading parameters chosen. These distribution plots consist of all the peak area intensity 

values within the Raman map. Most of the values have a very low intensity and can be 

attributed to background; shading at higher intensities allows us to remove this background 

from the image and to only examine areas of interest. Shading ranges can therefore be chosen 

according to the distribution plots and applied across all Raman maps to allow for more 

appropriate comparisons.  

Figure 2.4 demonstrates the way in which the shading range used can drastically alter the end 

image. A shading range from minimum to maximum results in the whole image being 

dominated by either the protein signal, with no nucleus visible (4A), or the nucleic acid signal, 

with no cytoplasm of the cell visible (4D). In contrast, shading to only the highest intensity 
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suggests that there is very little protein, and therefore cytoplasm, within the cell (4B), or that 

there is no nucleic acid present within the cell (4E). For the protein content of the cell, shading 

to only the middle values (30-100) eliminates both the background and the highest intensity 

values, and shows more clearly the cytoplasm of this cell (4C). For the nucleic acid signal, 

shading approximately the top 60% of values (by multiplying the maximum value, ~3.3 by 0.4, 

and using this as our minimum value), results in a final image where the nucleus and cytoplasm 

of this cell are clearly visible (4F). Once a suitable range has been selected, this can then be 

applied to subsequent Raman maps in order to increase shading consistency.  

 

Figure 2.4: A comparison of shading ranges. Raman maps and distribution plots of the protein content 

(green, peak range 1630-80 cm-1) and nucleic acid content (blue, peak range 780-802 cm-1) of the same 

Caco-2 cell. The red box indicates the shading range applied to each map: (A) shading range of minimum 

too maximum, (B) top 10 % of values, and (C) middle range of values of the 1630-80 cm-1 peak; (D) 

shading range of minimum too maximum, (E) top 10 % of values, and (F) the top 60 % of values of the 

780-802 cm-1 peak. 

In addition to shading the nucleus and the cytoplasm, several studies have claimed to be able 

to visualise the mitochondria in cells without the use of any labels at 532 nm by using the peak 
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at ~750 cm-1 (Matthäus et al., 2007; Okada et al., 2012; Ichimura et al., 2014), which is assigned 

to the pyrrole breathing mode in cytochrome c (Hamada et al., 2008). The mitochondria are 

organelles vital for normal cellular function, and visualising these organelles within cells is 

valuable as they are indicators of cell health (Nunnari and Suomalainen, 2012). Using the peak 

range 737-767 cm-1, encompassing the 750 cm-1 cytochrome c peak, we attempted to shade 

Raman maps of Caco-2 cells in order to see if we could visualise the mitochondria within cells 

in the same way that we could visualise the nucleus and cytoplasm. In figure 2.5, three cells, 

shaded to their DNA and protein content, are shown, along with the distribution plot for the 

cytochrome c peak, shaded to several different ranges. No matter how the shading range is 

adjusted, the cytochrome c peak is present around and underneath the nucleus of all three 

cells. As the mitochondria are present only in the cytoplasm of cells, this suggests that this 

peak is not suitable, in these cells, for visualising the mitochondria. As such, all cells were 

subsequently shaded only to their DNA and protein content.  
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Figure 2.5: Shading to the cytochrome c peak. Raman maps and distribution plots of the potential 

cytochrome c content (red, peak range 737-767 cm-1) of three different Caco-2 cells. For composite 

images, protein content (green, peak range 1630-80 cm-1), and DNA content (blue, peak range 780-802 

cm-1) were shaded according to the previously established shading parameters. The boxes indicate the 

shading range applied to each map.  

 



37 
 

2.3.4 Principal Component Analysis  

Raman spectroscopy can not only be used to gain visual information in the form of Raman 

maps, but also biochemical information. One way to do this is to use principal component 

analysis (PCA). Mathematically, PCA is defined as an orthogonal linear transformation that 

transforms the data to a new coordinate system, such that the greatest variance by any 

projection of the data comes to lie on the first coordinate (called the first principal component) 

the second greatest variance on the second coordinate and so on (Ringnér, 2008). It provides 

a method to assess how variables change with respect to each other by finding combinations 

of variables which describe major trends in the data.  

For all PCA plots, second derivative spectra were used. This is a method that allows more 

specific identification of small Raman peaks, and also removes baseline errors to eliminate any 

variations in intensity from contributing to separation in the PCA-scores plots. The 

disadvantage of this technique is the loss of signal-to-noise ratio, as the signal is reduced whilst 

the noise is amplified (Rieppo et al., 2012). Spectra therefore also had to be smoothed (using 

a smooth width of 25) prior to carrying out PCA. Both the calculation of second derivative 

spectra and subsequent smoothing were carried out in MATLAB software version 2016 (The 

MathWorks, MA, USA).  

An example of PCA is demonstrated in figure 2.6. A total of 30 spectra were taken from either 

areas of high DNA content (blue) or high protein content (green) of a single Caco-2 cell, and 

PCA was carried out on these spectra. We would expect different areas of the cell to vary in 

their DNA, protein and lipid content, and there would therefore be differences in the spectra 

from these regions. We therefore see a clear separation in the PCA-scores plot (figure 2.6A), 

with spectra taken from DNA-rich areas of the cell falling on one side of the plot, and spectra 

from protein-rich areas on the other side of the plot. This separation occurs along the x-axis 

of the plot, which corresponds to PC1. If we want to investigate which peaks in the spectra 
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cause this separation, we can examine the PC1 loadings plot (figure 2.6B). This shows it is a 

mixture of DNA (780 cm-1, 1090 cm-1), protein (1300 cm-1, 1660 cm-1), and lipid (1450 cm-1) 

peaks that are causing the separation in the PCA-scores plot.  

 

Figure 2.6: A comparison of spectra taken from DNA-rich and protein-rich areas of a single Caco-2 cell. 

(A) PCA-scores plot of PC1 against PC2 for spectra taken from either the nucleus (blue, circles) or 

cytoplasm (green, squares) of a Caco-2 cell. (B) PC1 loadings plot.  

For subsequent PCA, MATLAB software version 2016 (The MathWorks, MA, USA) was used to 

extract spectra from collected Raman maps. These spectra were treated (cosmic rays 

removed, normalised and noise filtered). As the noise filter function in WIRE 4.2 uses PCA to 

eliminate data variance that cannot be attributed to real or significant data, we wanted to 

ensure that this did not have an effect when carrying out PCA, as the data would have 

technically undergone the process of PCA twice. To test this, we extracted the same spectra 

used in figure 2.6, but from a map that had undergone only cosmic ray removal and 

normalisation, in order to compare the PCA-plots and PC1 loadings.  

Figure 2.7 shows these two plots. The separation is the same in both, with spectra taken from 

the cytoplasm falling on the left side of the plot, and spectra from the nucleus located on the 

right. The PC loadings are also very similar, showing the same peaks changing to cause the 

separation. The only real difference between the two plots is the percentage variance, which 
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is the percentage by which PC1 and PC2 contribute to the overall variance of the data. For the 

original PCA-scores plot, carried out on data that had been noise filtered (figure 2.7A), the 

percentage variance for PC1 is very high (93.95%), whereas in figure 2.7C, which used spectra 

that had not been noise filtered, the percentage variance for PC1 is 19.96%, which is 

siginificanlty lower. However, this is likely to be due to the amount of noise present in the 

spectra used. The plots were therefore considered to be similar enough that it was acceptable 

to carry out PCA on data that had been noise filtered.  

As many of the individual spectra within the Raman map consist of background rather than 

any cellular material, in all subsequent PCA, only a small number of spectra were used as 

opposed to using every spectrum in the maps. Ten spectra were taken from areas identified 

as having a high DNA content, and ten from areas with a high protein content from Raman 

maps for all plots. This number was chosen as it is representative of the area chosen but isn’t 

such a large number of spectra that it over complicates analysis when several cells are plotted 

together. Six principal components were calculated each time, and all PCA-scores and loadings 

plots were created using MATLAB. 
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Figure 2.7: A comparison of PCA. PCA-scores plot of PC1 against PC2 for either noise filtered (A) or non-

noise filtered (C) spectra taken from either the nucleus (blue, circles) or cytoplasm (green, squares) of 

a Caco-2 cell.  (B) PC1 loadings plot for the PCA-scores plot in (A). (D)  PC1 loadings plot for the PCA-

scores plot in (C). 

2.4 Vehicle Control 

A vehicle control is required in studies in which a substance is used as a vehicle for a solution 

of the experimental compound. Using a vehicle control ensures that any effects seen are a 

result of the compound itself and not the vehicle it is dissolved in. The cannabinoid drugs CBD 

and AEA are dissolved in ethanol. Ethanol can disrupt the physical structure of cell membranes 

(Goldstein, 1986) and can be used as a fixative, and is therefore known to have an effect on 

cells. In order to ensure that the concentration of ethanol present in the final drug solutions 

of 1 and 10 µM used in experiments did not have a detrimental effect on cells, cells were 

treated with a matched concentration of ethanol or media control. Cells were treated with 
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either ethanol (vehicle control) or media (control) for a period of 6, 8 and 24 hours before they 

were mapped using Raman spectroscopy.  

 

Figure 2.8: Raman maps showing the DNA and protein content of cells treated with either ethanol or 

media for a period of either 6, 8 or 24 hours. DNA (blue) was measured using the region 780-802 cm-1 

and protein (green) using the region of 1630-1680 cm-1.  

The Raman maps (figure 2.8) showed that there was little visible difference between cells 

treated with ethanol and control cells, which suggested that the vehicle control has little effect 

on Caco-2 cells in the measured regions. To further confirm this, PCA was carried out on data 

taken from each of the above maps, in areas identified as the nucleus and the cytoplasm.   

The PCA data shows that at all three time points, there is no clear separation between cells 

treated with the vehicle and control cells, as all points group together (figure 2.9). There is a 

larger variance in PC2 in addition to PC1 in these plots; this is likely to correspond to 

differences between cells rather than the effect of ethanol, as little separation can be 

observed. This lack of separation suggests that there is little difference in the spectra of cells 

treated with ethanol in comparison to control cells, suggesting that ethanol is not inducing a 

significant change in Caco-2 cells. It is therefore unlikely that ethanol, at the concentration 

present in the final drug concentrations that was used in the following experiments, has any 

effect on the Raman spectra of Caco-2 cells. Based on these results, we decided not to carry 

out both vehicle controls and controls, and just one of them was necessary.  



42 
 

 

Figure 2.9: A comparison of Caco-2 cells treated with ethanol or media control after 6, 8 and 24 hours 

of treatment. Spectra were taken from regions of the cell identified as having a high DNA content after 

an incubation time of either 6 (A), 8 (C) or 24 (E) hours, or from regions with a high protein content after 

either 6 (B), 8 (D) or 24 (F) hours of incubation. Triangles represent cells treated with ethanol and 

diamonds cells treated with a media control. Each colour represents an individual cell. 
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2.5 Live Cell Raman: 

To carry out live cell Raman spectroscopy, cells were seeded onto CaF2 windows and returned 

to the incubator to adhere overnight. The following day, media was removed and replaced 

with 2.7 mL of 1 % serum media, and cells were transferred to the Raman incubator (figure 

2.10) and maintained at 37 °C and 5 % CO2. Cells were allowed to settle for ~1 hour before 

they were mapped. After the initial pre-treatment maps had been collected, 300 µL of a pre-

warmed complex or drug solution of either CBD or AEA in media was added to the media to 

make a final concentration of 100 µg/mL or 10 µM, respectively. Cells were immediately 

mapped at the 0 hour timepoint, and over several hours following treatment before they were 

removed from the incubator.  

 

 

Figure 2.10: Diagram of a live-cell incubator for Raman spectroscopy (Smith, Wright and Ashton, 2016). 

Control maps were taken to establish that there was no deterioration or loss of viability in cells 

over time in response to repeated exposure to the laser (figure 2.11). Maps were taken at 

regular intervals over different time periods, in order to determine that this did not influence 

the cells response over time. For all live cell maps, the timings are approximate, as it is not 

possible to map more than one cell at the same time on the same disk. Cell 1 can be mapped 

at ‘0 hours’, but as maps can take 10-20 minutes, the timepoint of the second cell will reflect 

this and therefore is only an approximation. 
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Figure 2.11: Raman maps showing the DNA (780-802 cm-1, blue) and protein (1630, 1680 cm-1, green) 

content of live control Caco-2 cells. Cells were mapped at either 0, 2 and 4 hours, or 0, 18, 20 and 22 

hours. Pre-treatment (Pre-T) maps were collected in order to ensure that control cells were mapped an 

equal number of times as treated cells.  

Control cells were mapped a total of four times, and the Raman maps do not appear to show 

any clear visible differences or deterioration over either time period, with maps of the same 

cell looking very similar in both the first and final maps. The cytoplasm of cell 5 at 18 hours 

appears to have degraded, but as this is not also seen at 20 hours, it is likely that this is due to 

the quality of the map, and not the destruction of the cell. As the cells were live, they have the 

potential to move whilst mapping is taking place, which can result in the end map being lower 

in quality than when the cell remains in place. Shorter acquisition times reduce the risk of this 

occurring, but it is still a possibility with each map collected. To confirm there were no 

biochemical changes in these cells over time, PCA was also carried out on collected data. 
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Figure 2.12: A comparison of live control cells mapped from pre-treatment to 4 hours. For PCA-scores 

plot of PC1 against PC2, spectra were taken from the regions of the cell identified as having a high DNA 

(A), or protein (B) content. Cell spectra were taken from cell 3 (figure 2.11), which was mapped at ‘pre-

treatment’, 0, 2 and 4 hours. Blue indicates pre-treatment cells, red 0 hours, green 2 hours and orange 

4 hours. The PC loadings for each condition are shown below.  

The PCA-scores plots show some separation in spectra taken from either the nucleus or the 

cytoplasm of cells. The spectra taken from the pre-treatment map appear to separate slightly 

from the other timepoints, but there is little separation at the other timepoints over 4 hours 

of mapping (figure 2.12A and B). Over 22 hours (figure 2.13A and B), again the pre-treatment 

spectra separate slightly, although this would be expected as the second map took place 18 

hours later, and the cell is likely to have changed slightly in that time. There is also some 

separation at 22 hours. The PC loadings plots show changes mainly across lipid and protein 

peaks, indicating changes in the levels of these over time, which would be expected as the cell 
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will change throughout mapping. Overall, the PCA results suggest that there is little 

deterioration in live cells that have been mapped over these two time periods, indicating that 

live cell Raman spectroscopy is suitable for mapping the same single cell at least four times 

without causing any visible damage.  

 

Figure 2.13: A comparison of live control cells mapped from 0 to 22 hours. For PCA-scores plot of PC1 

against PC2, spectra were taken from the regions of the cell identified as having a high DNA (A), or 

protein (B) content. Cell spectra were taken from cell 4 (figure 2.11), which was mapped at 0, 18, 20 

and 22 hours. Each colour represents a different time point. Blue indicates the cell at 0 hours, red at 18 

hours, green at 20 hours and orange at 22 hours. The PC loadings for each condition are shown below.  

2.6 Conclusion 

In summary, we have developed a suitable methodology for collecting Raman maps of both 

live and fixed Caco-2 cells. We discovered that these cells do not freely adhere and grow on 
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CaF2 windows, so in order to do this we coated the windows with poly-lysine to aid cell 

attachment. The fixatives methanol and ethanol were not suitable for use with Caco-2 cells 

but treating cells with 4 % PFA for 20 min at room temperature was effective. Raman spectra 

were collected with an acquisition time of 1 second and a step size of 1 µm, to give the best 

trade-off between the quality of the resulting Raman map and the time spent mapping each 

single cell. Live cell Raman spectroscopy was carried out using a cell top incubator to maintain 

cells at 5 % CO2 and at 37 °C; the metal complex or drug solutions were then added directly to 

the cell culture media and the cells response mapped over several hours. All spectra 

underwent the pre-processing steps of cosmic ray removal, noise filtering, and normalisation 

in order to reduce background noise. Once this had been carried out, Raman maps could be 

created by using distribution plots to shade the spectral regions of 780-802 cm-1 for DNA, and 

1630-1680 cm-1 for protein. Spectra were also used to carry out PCA, which was done using 

second derivative spectra. Once a suitable methodology had been established, we moved on 

to introducing substances into cells in order to see what effect they had.  
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Chapter 3: Mitochondrial detection 
in Caco-2 cells using Raman 
spectroscopy and a rhenium 
complex 
 

3.1 Introduction  

Rhenium complexes are good candidates for biological imaging agents as they are stable, non-

toxic, and have been shown to be taken up by several cell lines. They have previously been 

used with leukocytes (Stephenson et al., 2004), pancreatic cancer cells (Raszeja et al., 2017), 

HeLa cells (Louie et al., 2011), and breast cancer cells (Amoroso et al., 2008). In addition to 

visualising cells and components of cells such as the nucleus (Mari et al., 2012), complexes can 

also be targeted to specific receptors (Stephenson et al., 2004), making them a valuable 

imaging tool as cells do not need to be labelled prior to imaging. 

All of the previous studies used fluorescence microscopy in order to visualise the complexes 

within cells, but Raman spectroscopy has also been used to image metal complexes within 

cells. Raman spectroscopy has been used to monitor the uptake, localisation and retention of 

a complex in lung adenocarcinoma cells (Feofanov et al., 2000), and the intracellular 

localisation of metal-carbonyl complexes has also been studied in living cells (Meister et al., 

2010). However, little work has been done using Raman spectroscopy to visualise rhenium 

complexes within cells. This study therefore aims to show the potential of Raman spectroscopy 

to map the uptake and intracellular distribution of a rhenium complex within Caco-2 cells, and 

also to establish the use of Caco-2 cells as a suitable model for mapping single cells using 

Raman spectroscopy.  
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Figure 3.1: Molecular structure of the rhenium complex used in all experiments.  

The specific complex used for experiments was 3-Chloromethylpyridyl bipyridine fac-

tricarbonyl rhenium. This complex has been previously shown to accumulate within cells with 

a low toxicity, and target the mitochondria of cells (Amoroso et al., 2007). This is because it 

contains a chloromethyl group, which provides thiol reactivity, and thiol reactive compounds 

accumulate in healthy mitochondria due to the presence of reduced thiols within these 

organelles (Fernández-Moreira, Thorp-Greenwood and Coogan, 2010; Lee, Leung and Lo, 

2017). As previously discussed, some Raman studies have claimed to be able to visualise the 

mitochondria by shading to a peak corresponding to cytochrome c (Matthäus et al., 2007; 

Okada et al., 2012; Ichimura et al., 2014). However, we were unable to do this by shading to 

the same peak as there was an overlap with the nucleus of cells, and this suggested that this 

peak is not suitable, in these cells, for visualising the mitochondria (chapter 2, section 2.3.3). 

As such, this complex was an ideal candidate for an alternative way to image the mitochondria 

of these cells.  
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3.2 Methods 

3.2.1 Cell treatment 

Caco-2 cells were cultured and attached to CaF2 windows as described in the methods 

(chapter, section 2.2.2). Once cells had adhered to CaF2 windows, media was removed and 

replaced with media containing the rhenium complex at a concentration of 100 µg/mL. After 

2 or 4 hours of incubation, media was removed and cells were fixed as previously described.  

3.2.2 Raman spectroscopy of fixed cells 

Fixed cells were maintained in PBS throughout analysis. Raman maps were collected as 

described in the methods (chapter 2, section 2.2.4), using a laser wavelength of 532 nm.  

3.2.3 Raman spectroscopy of live cells 

Once adhered to CaF2 windows, cells were transported to the Raman incubator and 

maintained at 5 % CO2 and 37 °C. In this study, all live cells were mapped using a laser 

wavelength of 532 nm. Control maps were acquired by mapping the same cell over time to 

ensure there was no loss of viability (chapter 2, section 2.6). For the complex study, media was 

removed once cells were in the Raman incubator, and replaced with media containing the 

complex at a concentration of 100 µg/mL. Cells were then mapped at the times described. 

3.2.4 Raman maps and data analysis 

All Raman maps were pre-processed and shaded in WIRE 4.2 as described (chapter 2, section 

2.3.3). PCA plots were created in MATLAB software version 2016 (The MathWorks, MA, USA). 

3.3 Results  

3.3.1 Raman maps of fixed cells 

The overall aims of this study were to develop the imaging of Caco-2 cells, and to determine if 

Raman spectroscopy could be used to visualise the rhenium complex within Caco-2 cells. The 
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first stage in this process was acquiring a Raman spectrum of the complex, in order to see if 

there were any peaks within this spectrum that would be suitable for shading Raman maps. 

This spectrum is shown in figure 3.1A, alongside a typical cell spectrum (figure 3.1B), and 

shows several peaks of interest, most noticeably at 1035 cm-1, 1317 cm-1, 1493 cm-1 and 1604 

cm-1, and smaller peaks at 664 cm-1 and 785 cm-1. The structure of the complex is shown in 

figure 3.2 and can be used to assign some of these peaks to the vibrational modes of the 

molecules within it.  

 

Figure 3.2: A comparison of Raman spectra of the rhenium complex and a typical cell spectrum.  

(A) Raman spectrum of the rhenium complex in a solution of DMSO, spotted and left to dry on a CaF2 

window. This spectrum was acquired using a 532 nm wavelength excitation laser, acquisition time of 4 

seconds and a laser power of ~30 mW. (B) Raman spectrum of a fixed Caco-2 cell treated with the 

rhenium complex for 2 hours. This spectrum was acquired using a 532 nm wavelength excitation laser, 

acquisition time of 1 second and a laser power of ~30 mW. The concentration of the complex in both 

cases was 100 µg/mL.  
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Peaks at ~1035 cm-1 have been associated with ring deformations (Deshmukh et al., 2016), at 

1317 cm-1 with CCH in plane bending (Boyaci et al., 2015), and at 1493 cm-1 with a ring C-N 

stretch (Martin, Wartell and O’Shea, 1978). A peak at ~1604 cm-1 has been previously 

attributed to C=C bonds, which are found within the ring structure (Jallapuram et al., 2008). 

The peaks at 664 cm-1 and at 785 cm-1 are also associated with ring breathing (Benevides et al., 

1997) (Kann et al., 2015). Aside from 664 cm-1, all of these peaks fall within the range of 

wavenumbers used for biological studies (figure 3.1B), which could lead to complications with 

analysis, as they could be overshadowed by cellular components. In order to assess the 

potential of these peaks in determining the intracellular distribution of this complex within 

cells despite these difficulties, Raman maps were shaded to each of these peaks (figure 3.3). 

In the initial study, Raman maps were collected of fixed cells that had been incubated with the 

complex for a period of either 2 or 4 hours before fixation. 

Prior to shading to the complex peaks, Raman maps were first shaded to show the DNA and 

protein distribution within the cell (figure 3.3). In order to do this, distribution plots were used 

to ensure that shading parameters were kept the same for each cell. The values chosen to 

shade each map are indicated by the red box for each distribution plot; for both regions, values 

under 0 were excluded because these correspond to background noise. DNA was measured 

from 780-802 cm-1, and the first stage in shading all maps was to determine the maximum 

value to shade to. For some maps, e.g. figure 3.3B, they could simply be shaded to the 

maximum value of the map, but for others, the uppermost values had to be excluded, as they 

corresponded to material outside of the cell (red circles). Once this upper boundary had been 

determined, maps were shaded to the top 60% of values, calculated by multiplying the upper 

boundary value by 0.4 to determine the lower boundary for that map. For the protein region 

(1630-1680 cm-1), this process was simpler, as maps were shaded to the middle values, after 

exclusion of the highest and lowest values.  
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Figure 3.3: An example of shading Raman maps of single Caco-2 cells. Cells were treated with either 

the rhenium complex for (A) 2 hours or (B) 4 hours or DMSO control for (C) 2 hours or (D) 4 hours. DNA 

content was measured from 780-802 cm-1 and protein content from 1630-1680 cm-1. The distribution 

plots for each area are shown, and the region shaded indicated by the red box. The red circles indicate 

anomalies that are discussed in the text. 

Once composite maps had been created, maps could also be shaded to the peaks of interest 

from the rhenium complex spectrum (figure 3.4). They were also shaded to an additional peak 

at 1740 cm-1 which was from a region of background noise. All peaks were shaded using peak 

area, as this discounts the background noise from the axis to the peak height as spectra were 

not baselined before maps were created. The ranges used to shade each peak were as follows: 

663-665 cm-1 (664 cm-1), 784-786 cm-1 (785 cm-1), 1034-1036 cm-1 (1035 cm-1), 1316-1318 cm-

1 (1317 cm-1), 1492-1494 cm-1 (1493 cm-1), 1603-1605 cm-1 (1604 cm-1) and 1739-1741 cm-1 

(1740 cm-1).  



54 
 

The Raman maps show that, out of the six selected peaks and using these shading parameters, 

four of them (664 cm-1, 1317 cm-1, 1493 cm-1 and 1604 cm-1) cannot be attributed to the 

rhenium complex, as they show an intracellular distribution in both treated and control cells. 

These complex peaks are therefore likely to have been overshadowed by cellular components 

due to the overlap mentioned previously.  

 

Figure 3.4: Raman maps shaded to peaks of interest from the rhenium complex spectrum. Cells were 

treated with either 100 µg/mL of the rhenium complex for (A) 2 hours or (B) 4 hours or DMSO control 

for (C) 2 hours or (D) 4 hours. The concentration of the complex added to cells was 100 µg/mL, and a 

0.01% concentration of DMSO was used as a vehicle control. For the composite images, DNA content 

was measured from 780-802 cm-1 and protein content from 1630-1680 cm-1. When shading to the peaks 

of interest from the rhenium complex spectrum, for all seven selected peaks, maps were shaded from 

0 to max.  

The 785 cm-1 and 1035 cm-1 peaks appear to have more potential. The peak at 785 cm-1 appears 

to show a spatial distribution within cells treated with the complex at both 2 and 4 hours, and 

does not seem to be found within control cells. It does appear to be seen around the edges of 

the cell in the two controls, so it is possible that this peak may not correspond to the complex. 

However, if this peak corresponded to a part of the cell such as DNA or protein, we would 

expect to also see it within control cells and not only around the edges. It could therefore be 
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attributed to something on the slide within these two maps, or could be due to background 

noise. The distribution plots for this peak (figure 3.5) show that the intensity is lower in the 

two control cells in comparison to the two treated cells. 

 

Figure 3.5: Distribution plots of the 785 cm-1 peak. Cells were treated with either the rhenium complex 

for (A) 2 hours or (B) 4 hours or DMSO control for (C) 2 hours or (D) 4 hours. The red box indicates the 

region shaded, which was 0 to max in all four cells.   

For 1035 cm-1, there is no distribution within the cell at 2 hours, but by 4 hours there does 

appear to be some accumulation within the cell, which may indicate the presence of the 

complex. In the controls, shading to this peak shows no intracellular distribution, although the 

map at 4 hours appears to be very similar to the map of the treated cell at 2 hours. Again, this 

could indicate that this peak may not correspond to the rhenium complex, but the peak does 

not have a high intensity within untreated cells so it is unlikely to correspond to another 

molecule found within the cell. Looking at the maps shaded at 1740 cm-1, an area of noise with 

no peaks present in the Raman spectrum of either cells or the complex itself, there still appears 

to be some shading of the cell across all four maps. This indicates that, even when the intensity 

is very low and there are no spectrum peaks, maps can still show features of the cell, and this 

could be what is happening in the control cells or even in treated cells, as the relative intensity 

of each peak analysed is low, and demonstrates the complications in trying to pick out peaks 

representing the rhenium complex in a complicated cell spectrum.  
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Overall, these initial maps suggest that the peaks of 785 cm-1 and 1035 cm-1 are the most useful 

in trying to determine the intracellular distribution of the rhenium complex within Caco-2 cells. 

In figure 3.4, all of the maps were shaded from 0 to maximum for the complex peaks, which 

eliminates some of the background noise and begins to show some features within the cell. 

However, this shading range may not be the most appropriate for showing the intracellular 

distribution of the complex within Caco-2 cells (Ashton, Hollywood and Goodacre, 2015). In 

order to investigate this further, the shading range of all peaks were altered to see if a different 

shading range was more appropriate.  

Figure 3.6 demonstrates how adjusting the shading range can affect the final Raman map. The 

distribution plot is shown for the 785 cm-1 peak for each map, with different areas highlighted 

to demonstrate how shading to these values can drastically change the final image of the cell. 

Careful consideration of shading range is particularly important when shading to try and 

visualise a compound within the cell, as there is the potential for overinterpretation of the 

results. For example, applying a shading range of minimum to maximum, containing all of the 

values in the map, appears to show a high distribution of the 785 cm-1 peak both within and 

outside of the cell, in all four maps; this can also be seen when shading from 5-95 % of the 

values.  

Shading from 0 to maximum eliminates some of the background values that are likely to be 

noise, but this is not necessarily the best range to apply. The distribution plots show the 

intensity of the chosen peak throughout the whole cell, and the widest part of the plot is likely 

to be where all of the background is located. This is not necessarily always below 0, as the 

shape and intensity of the values can vary for each Raman map, so applying a different lower 

boundary may be more appropriate. Eliminating all but the highest values does not show any 

distribution within the cell, suggesting that this is also not a suitable range to use.  
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Figure 3.6: Distribution plots and Raman maps of the 785 cm-1 peak, demonstrating how different 

shading ranges can affect the map. (A) Cell incubated with the complex for 2 hours, (B) cell incubated 

with the complex for 4 hours, (C) cell incubated with DMSO control for 2 hours, (D) cell incubated with 

DMSO control for 4 hours. The shading ranges are as follows: minimum to maximum (red box), 5-95 % 

(purple), 0 to max (blue), highest values (orange) and chosen range for the final image (green). The 

corresponding Raman map is outlined in the same colour. 
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In contrast, shading to a small subset of values, eliminating both the highest and lowest values 

in the map, shows a clear intracellular distribution of this peak within the cell. This range can 

be kept consistent across all of the maps by using the shape of the distribution plot, rather 

than a specific value or percentage, and appears to be the most appropriate shading range for 

this peak when compared to the other ranges tried.  

The same principle was applied to the 1035 cm-1 peak, in order to find the most appropriate 

shading range. Again, shading from minimum to maximum, 5-95 % and the highest values are 

not appropriate for determining the potential intracellular distribution of the complex. 

Shading from 0 to maximum still includes a lot of the background noise values, as the widest 

part of the distribution plot for most of these maps lies above 0. Eliminating this background 

(yellow box) provides a better representation of areas of intensity within the cell; reducing this 

range to eliminate the highest values and using a similar range area to the 785 cm-1 peak 

appears to show a clearer picture of this peak within cells.  



59 
 

 

Figure 3.7: Distribution plots and Raman maps of the 1035 cm-1 peak, demonstrating how different 

shading ranges can affect the map. (A) Cell incubated with the complex for 2 hours, (B) cell incubated 

with the complex for 4 hours, (C) cell incubated with DMSO control for 2 hours, (D) cell incubated with 

DMSO control for 4 hours. The shading ranges are as follows: minimum to maximum (red box), 5-95% 

(purple), 0 to max (blue), highest values (orange), eliminating the background values in the widest part 

of the distribution plot and shading to max (yellow) and chosen range for the final image (green). The 

corresponding Raman map is outlined in the same colour. 
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Shading ranges were also altered for the additional complex spectrum peaks, in order to see 

if changing the shading range changed our earlier hypothesis that these peaks were not 

suitable for trying to visualise the complex within Caco-2 cells (appendix A). However, re-doing 

figure 3.4 with these new shading ranges still suggests that the 785 cm-1 and 1035 cm-1 peaks 

are the most suitable, as these are the only peaks visible within treated cells but not control 

cells. If these peaks both corresponded to the complex, we would expect their spatial 

distribution within the cell to overlap. However, the two peaks appear to localise to different 

parts of the cell, which may suggest that they do not both correspond to the complex. In order 

to investigate this further, once a suitable shading range had been chosen, four additional cells 

were shaded to the 785 cm-1 and 1035 cm-1 peaks in order to see if they could be used to 

visualise the complex within Caco-2 cells (figure 3.9).  

 

Figure 3.8: Raman maps shaded to peaks of interest from the rhenium complex spectrum, with the 

shading range adjusted. Cells were treated with either the rhenium complex for (A) 2 hours or (B) 4 

hours or DMSO control for (C) 2 hours or (D) 4 hours. For the composite images, DNA content was 

measured from 780-802 cm-1 and protein content from 1630-1680 cm-1. When shading to the peaks of 

interest from the rhenium complex spectrum, for all seven selected peaks, maps were shaded as 

specified above.  
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In all four maps, the peak at 785 cm-1 appears to correspond to something within the cell. 

However, for most of these maps, the distribution to this peak has some overlap with the DNA 

of the cell, which is unexpected if it corresponds to the complex, as it is expected to 

accumulate in the mitochondria of cells (Amoroso et al., 2007, 2008), which are found in the 

cytoplasm. The peak of 785 cm-1 is known to be attributed to DNA (symmetric phosphodiester 

stretch and ring breathing modes of nucleic acids (Zhang et al., 2012; De Angelis et al., 2017; 

Farhane, Bonnier and Byrne, 2017), so it is possible that shading to this peak is picking up on 

the nucleic acid of the cell and not the complex. However, this peak did not shade the DNA of 

control cells (figure 3.4), so could pick out the presence of the complex within cells despite the 

overlap with DNA peaks.  

In contrast, the peak at 1035 cm-1 does not appear to show an accumulation within cells after 

2 hours of incubation, which is in line with what was seen in the previous cell. However, by 4 

hours there is an intracellular distribution associated with this peak. Again, there is some 

overlap with the DNA regions of the cell, and this peak region can also be associated with the 

amino acid phenylalanine (Rehman, Movasaghi and Rehman, 2012; Zheng et al., 2014; 

Charwat et al., 2015; Gebrekidan et al., 2018), which is found within cells. It is therefore 

difficult to determine if these maps are showing the presence of the rhenium complex within 

Caco-2 cells or are representative of other intracellular components. Overall, this 

demonstrates the difficulties of shading Raman maps, specifically in trying to shade to identify 

the presence of a compound within a cell when that compound’s peaks fall within the 

wavenumber range assigned to cellular features.  
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Figure 3.9: Raman maps of Caco-2 cells treated with the rhenium complex for either 2 or 4 hours, 

shaded to the peak at either 785 cm-1 or 1035 cm-1. For composite images, DNA content was measured 

from 780-802 cm-1 and protein content from 1630-1680 cm-1. For the selected peaks, cells were shaded 

as specified above. 

3.3.2 Principal component analysis of fixed cells 

In addition to being useful as an imaging method, Raman spectroscopy can also provide 

biochemical information about a sample. As previously discussed (chapter 2, section 2.3.4), 

PCA can be applied to distinguish trends between groups of spectra. In this study, PCA was 

used to compare spectra from cells treated with the complex and control cells, in order to see 

which peaks, if any, were changing between them. In previous studies, it has been reported 

that the rhenium complex was non-toxic, and that there was no loss of cell viability associated 

with the introduction of the complex into cells (Amoroso et al., 2008). We would therefore 

expect to see little separation between treated and untreated cells, as if the complex was not 

affecting the cells, there should be no spectral differences between them.  

However, complications can arise when comparing many cells in this way, as each cell is 

distinct from the others within a population (Altschuler and Wu, 2010), and as such can vary 

in response to stimuli, as well as in their DNA, lipid and protein content. The PC loadings will 

therefore contain a mixture of peaks corresponding to these variations between cells, and 
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peaks that are a result of the complex. In order to investigate which peaks are likely to 

correspond to cellular differences, PCA was applied to a group of control cells which showed 

little separation (figure 3.10). To create this plot, spectra were taken from DNA-rich and 

protein-rich region of control cells. The only differences are therefore due to differences 

between individual cells, and the PC1 loadings plot shows that several peaks show differences, 

including protein (1000 cm-1, 1260 cm-1, 1300 cm-1, 1660 cm-1) and lipid (1450 cm-1) peaks from 

both regions, and additional DNA (780 cm-1, 1090 cm-1) peaks in regions of high nucleic acid 

content (figure 3.10C). Changes in these peaks reflect the fact that different cells contain 

different levels of DNA, protein and lipid. These loadings plots can therefore act as a 

benchmark, as if the same peaks are present in the PC loadings plots of cells incubated with 

the complex, it suggests that the complex does not have an effect on cells. In contrast, if there 

are different peaks present in the loadings plot, it indicates that those peaks are associated 

with an effect of the complex on cells. These benchmark plots were therefore plotted 

alongside all subsequent PC loadings plots. 
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Figure 3.10: A comparison of control cells to create benchmark PC1 loadings. For PCA-scores plots of 

PC1 against PC2, spectra were taken from the regions of the cell identified as having a high DNA (A) or 

protein (B) content.  The PC1 loadings for each plot are shown in (C and D). Different colours indicate 

different cells (n=4).  

The PCA scores plot in figure 3.11 shows spectra taken from areas of high DNA and protein in 

a mix of treated and untreated cells after 2 hours of incubation with the complex. In the 

protein PCA plot (figure 3.11B), there appears to be some separation along PC2, as cells 

incubated with the complex group towards the bottom of the plot, and control cells at the top. 

However, both the PC1 and PC2 loadings plots show peaks that overlap with the benchmark 

loadings, suggesting that any changes in these peaks are likely to be due to differences in 

protein and lipid content between individual cells, and not a result of the rhenium complex. 
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The rhenium complex therefore does not appear to have an effect on the cytoplasm of cells 

after 2 hours of incubation.  

 

Figure 3.11: A comparison of cells treated with the rhenium complex and control cells after 2 hours 

of incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from the regions of the cell 

identified as having a high DNA (A) or protein (B) content. Circles represent cells treated with the 

rhenium complex (n=3), and diamonds cells treated with a DMSO control (n=2). Each colour represents 
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an individual cell. The PC1 loadings for each PCA-scores plot are shown in (C and D) and the PC2 loadings 

are also shown (E and F). The benchmark loadings are indicated by the red dotted line. 

In contrast, the PCA scores plot for spectra taken from the DNA of cells shows a clear 

separation between treated and untreated cells (figure 3.11A), suggesting that the complex 

has had an effect on the DNA, or nucleus, of Caco-2 cells after 2 hours of treatment. The PC 

loadings for spectra taken from the DNA of cells (figure 3.11C), show that there is an overlap 

of some peaks with the benchmark plot, such as the 1450 cm-1 and 1660 cm-1 peaks, which are 

likely to be the result of differences between cells, and not the complex. However, there are 

some peaks that do not overlap or are different in comparison to the benchmark plot, at 780 

cm-1, 1090 cm-1 and 1300 cm-1, suggesting that it is these peaks that cause the separation 

between control and treated cells.  

The peak at ~780 cm-1 corresponds to DNA (Pully, Lenferink and Otto, 2011; Pascut et al., 2013; 

Ashton, Hollywood and Goodacre, 2015), as does the peak at 1090 cm-1 (Pully, Lenferink and 

Otto, 2011; Zhang et al., 2012), suggesting that the separation is caused by a change in the 

level of DNA within cells incubated with the complex for 2 hours. From the PC1 loadings plot 

it is not possible to determine whether this is an increase or a decrease in the level of DNA, 

but it is possible to do this by looking at the average spectra of treated and untreated cells. To 

do this, the ten spectra that were used for PCA were averaged for all cells and plotted on the 

same axis (figure 3.12). The average spectra suggest that there is an increase in the peak at 

1090 cm-1 in cells that have been incubated with the complex, although there does not appear 

to be any clear differences in the 780 cm-1 peak between treated and control cells. Overall, 

this may suggest that cells incubated with the complex have an increased level of DNA in 

comparison to control cells.  

The peak at 1300 cm-1 is within the amide III region, associated with proteins. Typically, this 

peak is broad and with two peaks at ~1260 cm-1 and 1300 cm-1 (Lo et al., 2011; Rivas-Arancibia 
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et al., 2017), which can be seen in the PC loadings for all three PCA scores plots that do not 

show any separation. However, in the PC1 loadings plot that does show separation (figure 

3.11C), there is a change in the peak at 1300 cm-1, suggesting that the complex is causing a 

change in this region. Looking at the average spectra (figure 3.12), this peak appears to be 

increased in treated cells. Changes in this region are associated with changes in protein 

structure, and the 1300 cm-1 peak in particular is associated with α-helix structure (Lippert, 

Tyminski and Desmeules, 1976; Krimm and Bandekar, 1986; Herrero, 2008). The average 

spectra suggest that there may be an increased level of α-helices within the nucleus of cells 

incubated with the complex in comparison to control cells, and may be associated with 

changes in chromatin structure (Eberharter and Becker, 2002).  

 

Figure 3.12: Average spectra of cells treated with the rhenium complex and control cells after 2 hours 

of incubation. (A) Average spectra (n=10) taken from the nucleus of cells treated with the rhenium 

complex (orange) and control cells (blue). Three treated and two control cells are plotted. (B) Insert of 

the region containing the peaks of interest.  

Figure 3.13 shows the PCA scores plot and PC loadings of treated and untreated cells after 4 

hours of incubation. The results show that there may be some separation, with one treated 
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cell falling within the controls but the other two cells separating from them, in both spectra 

taken from areas of high DNA and high protein content. However, as the PC1 loadings plot for 

both areas show changes across the whole cell and overlap with the benchmark plot, it is likely 

that this separation is due to differences between DNA, protein and lipid levels between 

different cells, rather than a result of the presence of the rhenium complex within cells. This 

suggests that, while the complex appears to have an effect on the DNA of Caco-2 cells after 2 

hours of incubation, this effect is short-term and has been resolved by 4 hours of incubation. 

 

Figure 3.13: A comparison of cells treated with the rhenium complex and control cells after 4 hours 

of incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from the regions of the cell 

identified as having a high DNA (A) or protein (B) content. Circles represent cells treated with the 

rhenium complex (n=3), and diamonds cells treated with a DMSO control (n=3). Each colour represents 

an individual cell. The PC1 loadings for each PCA-scores plot are shown in (C and D). The benchmark 

loadings are indicated by the red dotted line. 
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3.3.3 Live cell rhenium complex maps  

The previously discussed data was collected on fixed cells and, whilst valuable, can only 

provide a ‘snapshot’ of the cells state when it was fixed. There is also the risk of fixation 

introducing artefacts that can affect the quality of data collected (Chatterjee, 2014). One of 

the key advantages of Raman spectroscopy over other imaging methods is that it can be 

carried out on live cells maintained under normal physiological conditions. In order to further 

investigate the uptake of the rhenium complex by Caco-2 cells, live cells were incubated with 

the complex and mapped over a period of several hours. This has several advantages over 

studies on fixed cells, as the same cell can be monitored over time, and the uptake of the 

complex can also be measured in real time.  

Once it had been established that repeated mapping of single live cells does not appear to 

damage them (chapter 2, section 2.5), Raman maps were collected of live cells incubated with 

the rhenium complex, to see if their uptake could be monitored over time. Cells were mapped 

before the complex was introduced into the medium (‘pre-treatment’), and then immediately 

after the complex was added at 0 hours. Maps were then collected after 2, 4 and 6 hours of 

incubation. Raman maps were shaded to the DNA and protein content of the cell as before, 

and also to the peaks of 785 cm-1 and 1035 cm-1, to determine if these peaks could be used to 

monitor the uptake of the complex over time (figure 3.14).  
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Figure 3.14: Raman maps of live Caco-2 cells treated with the rhenium complex and mapped at the 

timepoints listed. For composite images, DNA content was measured from 780-802 cm-1 and protein 

content from 1630-1680 cm-1. Maps were also shaded to the peak at either 785 cm-1 or 1035 cm-1 using 

the previously established shading parameters (section 3.3.1).  

The Raman maps show that for both peaks, there is very little intensity within the cell at both 

pre-treatment and 0 hours, suggesting that in this case, neither peak shaded with this 

approach corresponds to an intracellular component e.g. DNA or phenylalanine. At 2 hours, 

across all cells there is an increase in the intracellular intensity of the 1035 cm-1 peak which 

can be attributed to being within the cytoplasm of the cell; this intensity is also present in the 

cell at 4 and 6 hours. There is also an increase in the intracellular intensity of the  

785 cm-1 peak, although this is not seen across all of the cells. There appears to be some 

intensity of the 785 cm-1 peak in the cytoplasm of several cells at 4 and 6 hours, but is not 

present in all of them, unlike the 1035 cm-1 peak. Overall, this suggests that of these two peaks, 
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1035 cm-1 appears to be the most appropriate peak to use with this complex, as it shows the 

most consistent shading across all five cells. The rhenium complex appears to be taken up by 

the cells by 2 hours of incubation and is localised to the cytoplasm; it appears to remain within 

cells for at least 4 hours after its initial introduction.  

3.4 Discussion 

The first aim of this study was to develop the imaging of Caco-2 cells. We have shown that 

using distribution plots, robust shading parameters can be applied across all cells to allow for 

consistent comparison, and that the nucleus and cytoplasm of Caco-2 cells can clearly be 

identified using Raman spectroscopy. The other aim was to determine if Raman spectroscopy 

could be used to visualise the rhenium complex, and therefore the mitochondria, within Caco-

2 cells. The initial Raman maps on fixed cells (figure 3.8) suggested that two peaks, 785 cm-1 

and 1035 cm-1, may be suitable for detecting the complex within cells. However, there was an 

issue with both of these peaks, as 785 cm-1 is a well-characterised DNA peak (Zhang et al., 

2012; De Angelis et al., 2017; Farhane, Bonnier and Byrne, 2017), and 1035 cm-1 can be 

assigned to the intracellular component phenylalanine (Rehman, Movasaghi and Rehman, 

2012; Zheng et al., 2014; Charwat et al., 2015; Gebrekidan et al., 2018). It is therefore difficult 

to determine if these maps are showing the presence of the rhenium complex within Caco-2 

cells or are representative of other intracellular components. Shading the live cell maps to 

these same peaks (figure 3.16) showed some intracellular distribution for both peaks, however 

the 1035 cm-1 peak appeared to show the most consistent shading over time and in the most 

cells, suggesting that this was the most suitable peak to shade Raman maps to in order to 

visualise this rhenium complex within Caco-2 cells. However, it is difficult to determine the 

spatial resolution of the complex within the cell, and to definitively identify the intracellular 

localisation of the mitochondria. Overall, this demonstrates the difficulties of shading Raman 
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maps, specifically in trying to shade to identify the presence of a compound within a cell when 

that compound’s peaks fall within the wavenumber range assigned to cellular features.  

The PCA results on fixed cells suggested that the complex had an effect on the nucleus of Caco-

2 cells after 2 hours of incubation (figure 3.10). This effect was not seen in the cytoplasm of 

cells after 2 hours of incubation, or in the nucleus or cytoplasm of cells after 4 hours of 

incubation with the complex, suggesting that it is a short-lived effect. The PC1 loadings plot 

and average spectra suggested that DNA and protein peaks were causing the separation seen 

in the PCA-scores plot. Specifically, the average spectra showed an increase in the 1090 cm-1 

peak, assigned to DNA (Pully, Lenferink and Otto, 2011; Zhang et al., 2012), and the 1300 cm-

1 peak, assigned to an α-helix secondary structure in proteins (Lippert, Tyminski and 

Desmeules, 1976; Krimm and Bandekar, 1986; Herrero, 2008). Together, this suggests that the 

nucleus of cells incubated with the rhenium complex for 2 hours have an increased level of 

DNA, and an increased level of proteins with an α-helix structure in comparison to control 

cells. This could be indicative of proliferating cells, as we would expect replicating cells to have 

an increased level of both DNA and protein (Swain, Jell and Stevens, 2008). The increase in the 

1300 cm-1 peak suggests that the complex induces a structural change in the proteins present 

in the nucleus of Caco-2 cells. Previously, post-translational modifications such as acetylation 

have been shown to increase the α-helical content of histone tails (Wang et al., 2000). Histone 

acetylation alters the accessibility of chromatin and allows transcription to occur (Eberharter 

and Becker, 2002), so it is possible that the introduction of this particular rhenium complex 

into Caco-2 cells results in a cellular response that involves the induction of transcription in 

the nucleus, leading to an increase in the DNA content of the cell.  

Overall, these results suggest that introducing an exogenous substance into the cell such as 

this rhenium complex can have an effect on the cell, bringing to the forefront the importance 

of label-free imaging techniques, and re-iterates the potential of Raman spectroscopy due to 
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its ability to carry this out. Raman spectroscopy has the advantage of being non-invasive, and 

Raman maps of the nucleus and the cytoplasm can be created without the use of any labels 

by shading to specific peaks. However, there is a limited resolution to which subcellular 

organelles Raman spectroscopy can be used to identify. As previously discussed (chapter 2, 

section 2.3.3), some studies have claimed to be able to visualise the mitochondria in cells 

without the use of any labels by using the peak at ~750 cm-1 (Matthäus et al., 2007; Okada et 

al., 2012; Ichimura et al., 2014), which is assigned to the pyrrole breathing mode in 

cytochrome c (Hamada et al., 2008). However, trying to replicate shading to this peak in Caco-

2 cells was not successful. This leads to the issue of labels being required in order to visualise 

organelles other than the nucleus, but as demonstrated here, even if that label is reported to 

be non-toxic, it can still have an effect on cells. There is therefore a trade-off, of how much 

information can be revealed without risking intracellular damage by introducing a label, and 

the advantages and disadvantages of both should be taken into consideration during 

experimental design.  
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Chapter 4: Using Raman 
spectroscopy to evaluate the effect 
of cannabidiol on Caco-2 cells 
 

4.1 Introduction: 

Cannabidiol (CBD) is a phytocannabinoid derived from the plant Cannabis sativa. Its structure 

is shown in figure 4.1, and it is reported to have therapeutic potential in a number of different 

diseases. Cannabinoids are pharmacologically active compounds that bind to specific G-

protein coupled receptors (Pertwee and Ross, 2002). Unlike many other cannabinoids, CBD 

does not appear to have a high affinity for the cannabinoid receptors CB1 or CB2 and appears 

to exert its effects via a number of different receptors independent of the endocannabinoid 

system (Pertwee, 2008). 

 

Figure 4.1: Molecular structure of cannabidiol. 

The mechanism of action of CBD is currently not well understood, although it is implicated to 

have anti-proliferative effects in a number of different cell lines including glioma, breast cancer 

and intestinal Caco-2 cells (Massi et al., 2004; McAllister et al., 2011; Macpherson et al., 2014). 

It is also suggested to decrease oxidative metabolism in these cells (McAllister et al., 2011). 

However, further study is needed in order to better understand this mechanism and to 
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increase the therapeutic potential of this drug. Raman spectroscopy has previously been used 

in pharmaceutical studies to monitor drug uptake and response by cells over time (Zoladek et 

al., 2011; Bräutigam et al., 2013; H. Salehi et al., 2013), and is therefore an ideal candidate for 

assessing the effect of CBD on both live and fixed cells. 

The potential of CBD as a treatment for colon carcinogenesis (Aviello et al., 2012) makes the 

Caco-2 cell line a particularly attractive in vitro model to examine the effect of CBD. These cells 

are a well-documented model for drug absorption and uptake (Hidalgo, Raub and Borchardt, 

1989; Artursson, 1990), and to assess drug toxicity (Meunier et al., 1995). As CBD has been 

shown previously to have an effect on Caco-2 cells (Alhamoruni et al., 2010; Macpherson et 

al., 2014), it suggests that they should act as a suitable model to use with Raman spectroscopy 

to evaluate the cellular response to this drug.  

4.2 Methods: 

4.2.1 Cell treatment 

Caco-2 cells were cultured and attached to CaF2 windows as described in the methods (chapter 

2, section 2.2.2). Once cells had adhered to CaF2 windows, media was removed and replaced 

with media containing CBD at a concentration of either 1 µM, 10 µM or media control. After 

2, 4, 6, 8 or 24 hours of incubation, media was removed and cells were fixed as previously 

described (chapter 2, section 2.2.3).  

4.2.2 Raman spectroscopy of fixed cells 

Fixed cells were maintained in PBS throughout analysis. Raman maps were collected as 

described in the methods (chapter 2, section 2.2.4), using a laser wavelength of 532 nm.  

4.2.3 Raman spectroscopy of live cells 

Once adhered to CaF2 windows, cells were transported to the Raman incubator and 

maintained at 5 % CO2 and 37 °C. In this study, all live cells were mapped using a laser 
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wavelength of 785 nm. Control maps were acquired by mapping the same cell over time to 

ensure there was no loss of viability. For the CBD study, media was removed once cells were 

in the Raman incubator, and replaced with media containing CBD at a concentration of 10 µM. 

Cells were then mapped at the times described. 

4.3 Results:  

4.3.1 Raman Maps 

The overall aim of this study was to determine the effect of CBD on Caco-2 cells. Initially, we 

wanted to investigate whether the drug could be visualised within Caco-2 cells, so the first 

step in this process was to acquire a spectrum of CBD. This spectrum (figure 4.2), showed 

several peaks of interest, at ~880 cm-1, ~1090 cm-1 and ~1450 cm-1.  

 

Figure 4.2: Raman spectrum of CBD, spotted and left to dry on a CaF2 disk. The spectrum was acquired 

using a 532 nm wavelength excitation laser, an acquisition time of 4 seconds with 15 accumulations 

(total time 1 minute) and a laser power of ~30 mW.  

Peaks at 880 cm-1 have previously been associated with both C-C (Nallasamy and Mohan, 2005) 

and C-H stretching (Sato and Martinho, 2018). Peaks in the region of 1090 cm-1 are commonly 

assigned to phosphate stretches, associated with DNA (Guan, Wurrey and Thomas, 1994). 
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However, they have also been associated with C-C stretches (Chen et al., 2014), which, unlike 

phosphate, are bonds present within the structure of CBD. Peaks in the region of 1450 cm-1 

are assigned to CH2 bending, most commonly associated with lipids (Palonpon, Sodeoka and 

Fujita, 2013), but there are CH2 bonds within the CBD molecule. In order to see if we could 

map the drug within Caco-2 cells, Raman maps were shaded to these three peaks at several 

timepoints (figure 4.3), using peak intensity measured from 875-890 cm-1, 1080-1100 cm-1 and 

1440-1460 cm-1. However, none of these peaks showed the distribution of the drug within 

cells, as they could also be seen in untreated cells; this is the case even when the shading range 

is adjusted, as demonstrated in appendix B. The CBD peaks may therefore overlap with cellular 

components, particularly as the peaks at 1090 cm-1 and 1450 cm-1 are associated with DNA 

and lipids, respectively, or the drug itself may not enter the cell and instead exert its effect by 

binding to receptors at the cell membrane. 

Although the drug could not be visualized within cells, the effect of the drug on cells could be 

investigated by shading Raman maps according to their DNA (780-802 cm-1) and protein (1630-

1680 cm-1) content to produce composite images at each time point. These images can then 

be compared in order to see if any visible changes could be observed as a result of drug 

treatment (figure 4.4). The maps were shaded according to the previously established shading 

parameters (chapter 2, section 2.3.3). 

A comparison of the shaded Raman maps suggests that the drug has had an effect on Caco-2 

cells at the higher concentration, as after 24 hours of treatment with the drug, there is no DNA 

content left within cells. There do not appear to be any clear visual changes at any of the 

earlier timepoints in comparison to control cells, or in the Raman maps of cells treated with 1 

µM of CBD.  Therefore, to further examine whether CBD was having any effect on cells, PCA 

was carried out on selected Raman spectra.  
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Figure 4.3: Raman maps of Caco-2 cells shaded to peaks of interest from the CBD spectrum. For the 

composite images, DNA was measured from 780-802 cm-1, and protein from 1630-1680 cm-1. When 

shading to peaks of interest from the CBD spectrum, all selected peaks were shaded from 0 to max.  
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Figure 4.4: Raman maps of Caco-2 cells shaded to their DNA and protein content. Shading ranges were 

780-802 cm-1 for DNA, blue, and 1630-1680 cm-1 for protein, green. Cells were treated with either 1 or 

10 µM of CBD or media control for each listed time point.  
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4.3.2 Principal Component Analysis  

The Raman maps suggested that the drug was affecting Caco-2 cells, but from the maps alone 

it is difficult to determine what that effect is. In order to obtain biochemical as well as visual 

information, PCA was carried out using ten Raman spectra selected from each of the Raman 

maps in figure 4.3. Ten spectra were selected from DNA rich-regions, and ten from protein-

rich regions to better establish which areas of the cell the drug may be effecting. As we 

hypothesised that the drug would have an effect on Caco-2 cells, we expected to see 

separation between treated and untreated cells.  

At 2 hours (figures 4.5A and 4.5B), there is a clear separation of cells treated with 1 µM of the 

drug from the controls, and this is seen in both the DNA and protein PCA-scores plot. This 

suggests that, although the Raman maps do not show any difference between cells treated 

with this concentration of CBD and control cells, the drug does have an effect on Caco-2 cells, 

and this effect is evident after 2 hours of incubation. In contrast, there is little separation seen 

at the 10 µM concentration of the drug, suggesting at that the two concentrations do not 

effect cells in the same way.  

At 4 hours, separation is less clear. Cells treated with 1 µM of CBD appear to fall mostly within 

the controls, suggesting that the effect of the drug at this concentration may be short-lived. 

Some cells treated with 10 µM begin to separate from control cells at 4 hours, suggesting that, 

at this concentration, the effect of the drug does not occur until ~4 hours of incubation.   
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Figure 4.5: PCA-scores plots of PC1 against PC2 for spectra taken from cells treated with either CBD 

or media control for 2 and 4 hours. Spectra were taken from regions of the cell identified as having a 

high DNA content after an incubation time of either 2 (A) or 4 (C) hours, or from regions with a high 

protein content after either 2 (B) or 4 (D) hours of incubation. Circles represent cells treated with 1 µM 

of CBD (n=4), squares cells treated with 10 µM of CBD (n=3 at 2 hours, n=4 at 4 hours), and diamonds 

cells treated with a media control (n=2 at 2 hours, n=3 at 4 hours). Each colour represents an individual 

cell.  
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Figure 4.6: PCA-scores plots of PC1 against PC2 for spectra taken from cells treated with either CBD 

or media control for 6, 8 and 24 hours. Spectra were taken from regions of the cell identified as having 

a high DNA content after an incubation time of either 6 (A), 8 (C) or 24 (E) hours, or from regions with 

a high protein content after either 6 (B), 8 (D) or 24 (F) hours of incubation. Circles represent cells 

treated with 1 µM of CBD (n=5), squares cells treated with 10 µM of CBD (n=5), and diamonds cells 

treated with a media control (n=5). Each colour represents an individual cell.  
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PCA was also carried out on data collected from the maps at 6, 8 and 24 hours (figure 4.6). It 

can be observed in figure 4.6 that there is some separation at the 1 µM concentration of the 

drug. The majority of cells separate slightly in the 6 hour DNA PCA scores plot (figure 4.6A), 

but this is less clear in the protein plot, and there is no separation in either of the 8 hour plots, 

again suggesting that the effect of the 1 µM concentration of CBD occurs in the early stages of 

incubation, and is completed by 8 hours. At the higher concentration of the drug, some cells 

begin to separate from the controls at 6 hours in both the DNA and protein plots, and by 8 

hours, all cells treated with 10 µM of CBD separate from control cells. A similar separation 

occurs after 24 hours of treatment with CBD, as all cells treated with 10 µM separate clearly 

from control cells and cells treated with 1 µM, which group together (figure 4.6F). As there 

appears to be no DNA left within cells treated with 10 µM of the drug, when looking at DNA-

rich regions of the cell, only control cells and cells incubated with 1 µM could be compared 

(figure 4.6E), and this plot shows little separation between the two groups.  

Overall, these results suggest that the effect of the lower concentration of the drug happens 

within 2 hours of incubation and is a short-term effect, whereas at 10 µM the effect only 

becomes apparent in the Raman spectra after ~4-6 hours of incubation, and the end result of 

this effect is the loss of DNA from within the cell.  

4.3.3 PCA and Average Spectra – Initial Response  

While the previous PCA scores plots are useful in determining differences between treated 

and untreated cells, it is difficult to determine the extent to which each peak contributes to 

the overall separation because so many variables are being compared. One way to reduce this 

variation is to reduce the number of conditions under investigation. In the initial PCA plots 

(figure 4.5), the greatest changes occurred in cells treated with 1 µM of CBD for 2 hours, so to 

look at the effect of the drug more closely, we carried out PCA to compare cells treated with 

this concentration of the drug and control cells (figure 4.7). As in the previous chapter, the 
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benchmark loadings plot was included alongside all PC loadings plots (shown in red dashed 

line). 

 

Figure 4.7: A comparison of cells treated with 1 µM of CBD and control cells after 2 hours of 

incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from regions of the cell 

identified as having a high DNA (A) or protein (B) content. Circles represent cells treated with CBD (n=4), 

and diamonds cells treated with a media control (n=2). Each colour represents an individual cell. The 

PC1 loadings for each plot are shown in (C and D), and the baselined spectra of treated (orange) and 

control (blue) cells, averaged from the 10 spectra used for PCA are shown in (E and F). The benchmark 

loadings are indicated by the red dotted line. 
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These plots show the same separation as before, but as only two conditions are being 

compared the PC loadings are easier to analyse. The greatest changes can be observed along 

PC1, and the PC1 loadings plots show which peaks have changed in order to cause the 

separation between treated and control cells. In both the loading plots for spectra taken from 

the nucleus and cytoplasm of Caco-2 cells, several peaks overlap with the benchmark loadings 

plot, including the peaks with the greatest intensity (1450 cm-1 and 1660 cm-1, associated with 

lipids and proteins, respectively). As previously discussed (chapter 3, section 3.3.2), these 

changes are likely to be due to differences in the level of protein and lipid between cells, and 

not a result of the drug. The most important peaks are the ones that differ from the benchmark 

loadings, and are associated with DNA (780 cm-1) or protein (1300 cm-1) in figure 4.6C, and 

protein (1260 cm-1, 1300 cm-1) in figure 4.6D.  

In order to investigate whether the drug is causing these peaks to increase or decrease, the 

ten spectra that were used for PCA were averaged for treated and control cells. These spectra 

were then plotted on the same axis to allow for comparison (figure 4.7E).  The average spectra 

show that the three peaks identified above (780 cm-1, 1260 cm-1 and 1300 cm-1), have all 

increased in cells treated with the drug.  

The 780 cm-1 peak can be assigned to nucleic acids, and the 1260 cm-1 and 1300 cm-1 peaks to 

proteins. Raman spectroscopy has previously been used as a tool to study the cell cycle (Swain, 

Jell and Stevens, 2008), and protein levels have been shown to increase in proliferating cells 

(Short et al., 2005). It is therefore possible that the increase in the intensity of DNA and protein 

peaks observed in the average spectra are indicative of cells being in different stages of the 

cell cycle during analysis. Previous studies have shown that some cannabinoids, including CBD, 

at low concentrations (1 µM or below), can enhance cell proliferation (Watanabe et al., 2005; 

Takeda et al., 2008). If this low dose of CBD induces proliferation in Caco-2 cells after 2 hours, 

it could be this effect that caused the separation of treated and untreated cells. These peaks 
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were also previously shown to be increased in Caco-2 cells treated with rhenium complexes 

(chapter 3, section 3.3.2) which was also linked to the induction of proliferation as a result of 

something being introduced to the cell.  

While at lower concentrations CBD has been shown to have proliferative effect on cells, at a 

higher concentration it has been shown to inhibit proliferation and induce apoptosis, or 

programmed cell death, in a number of different cell lines (Massi et al., 2004; McKallip et al., 

2006; Shrivastava et al., 2011). In order to investigate whether we could observe this effect in 

Caco-2 cells, we studied the later timepoints (8 and 24 hours), in more detail.  

4.3.4 PCA and Average Spectra – Later Response  

The PCA-scores plots for 8 hours (figure 4.8) show that cells treated with 10 µM of CBD 

separate from control cells along PC1, and the peaks changing to cause this separation include 

DNA (780 cm-1), and protein peaks (1126 cm-1, 1260 cm-1) in DNA-rich regions, and protein 

(1000 cm-1, 1126 cm-1) peaks in protein-rich regions, as these peaks do not overlap with the 

benchmark loadings.  The average spectra (figure 4.8E and F) showed that some of these peaks 

(1126 cm-1, 1260 cm-1, 1300 cm-1) are decreased in treated cells in comparison to control cells, 

suggesting that treated cells have decreased protein levels. Decreased protein levels have 

been seen in apoptotic cells previously (Czamara et al., 2016), associated with the activation 

of caspases leading to the degradation of proteins (Hengartner, 2000). This suggested that 

CBD may be inducing apoptosis, or another pathway of cell death, in Caco-2 cells. Further 

evidence for this can be found in the protein loadings plot, as there was a change in a peak at 

1375 cm-1. This peak has been shown to increase in apoptotic cells and can potentially be used 

as a marker of apoptosis using Raman spectroscopy (Brauchle et al., 2015), and appears to 

only be present in the spectra of treated cells. The PC loadings also show a change in the peak 

at 750 cm-1, which is associated with cytochrome c (Hamada et al., 2008). Changes in this peak 

may indicate a difference in the mitochondria of cells, as during apoptosis, cytochrome c 



87 
 

floods the cytoplasm of cells (Ott et al., 2002), which may be what causes this peak to change.

 

Figure 4.8: A comparison of cells treated with 10 µM of CBD and control cells after 8 hours of 

incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from regions of the cell 

identified as having a high DNA (A) or protein (B) content. Squares represent cells treated with CBD 

(n=5), and diamonds cells treated with a media control (n=5). Each colour represents an individual cell. 

The PC1 loadings for each plot are shown in (C and D), and the baselined spectra of treated (orange) 

and control (blue) cells, averaged from the 10 spectra used for PCA are shown in (E and F). The 

benchmark loadings are indicated by the red dotted line. 
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Analysing the data from 24 hours appears to confirm that the effect of the 1 µM concentration 

of CBD is short-term, as there is no separation between treated and untreated cells (figure 

4.9A). Some peaks in the PC1 loadings plot appear to be different from the benchmark plot, 

such as the 1260 cm-1 and 1450 cm-1 peaks, but as there is no separation in the PCA-scores 

plot, and there does not appear to be any differences in the average spectra between the two 

sets of cells, these peaks are most likely to be attributed to differences between individual 

cells rather than an effect of the drug.   

While it is not possible to compare the DNA of cells treated with 10 µM of CBD and control 

cells, we can look at the drugs effect on the cytoplasm of cells in more detail. The PCA-scores 

plot (figure 4.9B), shows a clear separation of all treated cells from control cells. The PC 

loadings show several peak changes from the benchmark, associated with lipid (714 cm-1, 1450 

cm-1
, 1585 cm-1) and protein (1032cm-1, 1280 cm-1, 1300 cm-1) peaks, similar to what was 

observed after 8 hours of incubation. The average spectra (figure 4.9F) show that lipid and 

protein peaks are decreased in treated cells. Decreases in lipid levels,  specifically the peak at 

1450 cm-1, have been seen in apoptotic cells, associated with a loss of lipid molecules due to 

the loss of membrane integrity (Ricci et al., 2018), so these decreases in both protein and lipid 

content may suggest that CBD induces cell death in Caco-2 cells. In addition, there appears to 

be a shift from ~1266 cm-1 in control cells to ~1254 cm-1 in treated cells. This is associated with 

a transition in protein structure from α-helices to β-sheets, which has previously been 

observed in endothelial cells that had been induced to undergo apoptosis. In these cells, the 

change in protein structure was thought to be as a result of the activation of caspases upon 

the induction of cell death, which degrade peptide bonds to cause changes in secondary 

structure that result in protein degradation (Czamara et al., 2016).  
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Figure 4.9: A comparison of cells treated with 10 µM of CBD and control cells after 24 hours of 

incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from regions of the cell 

identified as having a high DNA (A) or protein (B) content. Circles represent cells treated with 1 µM CBD 

(n=5), squares cells treated with 10 µM of CBD (n=5), and diamonds cells treated with a media control 

(n=5). Each colour represents an individual cell. The PC1 loadings for each plot are shown in (C and D), 

and the baselined spectra of treated (orange) and control (blue) cells, averaged from the 10 spectra 

used for PCA are shown in (E and F). The benchmark loadings are indicated by the red dotted line. 
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4.3.5 Live cell Raman spectroscopy 

As previously discussed, one of the key advantages of Raman spectroscopy is that it can be 

carried out on live cells. Therefore, in order to better understand the process of cell death CBD 

induces in Caco-2 cells, and the process by which the DNA of these cells is lost, Raman maps 

of live cells treated with the drug were collected. Figure 4.10 shows live cell maps of Caco-2 

cells treated with 10 µM of CBD. In cell 1, the DNA of the cell seems to begin to break down 

after just 4 hours of incubation with the drug, and by 21 hours, there is no DNA remaining 

within the cell and the cytoplasm is beginning to break down. Whilst there appears to be no 

clear degradation of the DNA at 4 hours in cell 2, by 21 hours the cytoplasm again seems to be 

breaking down, and by 24 hours there is very little of the cell left. Cells 3 and 4 show the later 

stages of incubation, from 18 hours onwards. In both cells, the DNA appears to be localised on 

one side of the cell, towards the membrane, at 18 hours. As time increases, this DNA seems 

to be externalised whilst the plasma membrane is intact, and at 24 hours the cytoplasm of 

both cells starts to break down, and membrane integrity is lost.  
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Figure 4.10: Raman maps of live Caco-2 cells treated with 10 µM of CBD, shaded to their DNA and 

protein content. Raman maps showing the DNA, measured from 780-802 cm-1 (blue) and protein, 

measured from 1630-680 cm-1 (green) content of live Caco-2 cells treated with 10 µM of CBD for each 

listed time point.   



92 
 

 

Figure 4.11: Raman maps of live control Caco-2 cells, shaded to their DNA and protein content. Raman 

maps showing the DNA (blue) and protein (green) content of live Caco-2 cells mapped at each listed 

time point.   

Raman maps of control cells were also collected (figure 4.11) and mapped at similar 

timepoints. These cells did not show the same deterioration that could be observed in cells 

treated with CBD, suggesting that it is the drug causing the cell to break down, and is not a 

result of repeated exposure to the laser. Once control maps had been collected, PCA was 

carried out on spectra from both treated and untreated live cells and compared at specific 

timepoints. The timepoints chosen were 4 hours, as the fixed data suggested that this was the 

approximate timepoint at which the drug’s effect on Caco-2 cells began, and 20 hours, as at 

this point the DNA of treated cells had broken down. As the live cell maps in this case were 

collected using a 785 nm laser, another benchmark PC1 loadings plot was created in the same 

way as before, using spectra taken from the control cells above (appendix B).  
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Figure 4.12: A comparison of live cells treated with 10 µM of CBD and control cells after 4 hours of 

incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from regions of the cell 

identified as having a high DNA (A) or protein (B) content.  Squares cells treated with 10 µM of CBD 

(n=2), and diamonds cells treated with a media control (n=2). Each colour represents an individual cell. 

The PC1 loadings for each plot are shown in (C and D), and the baselined spectra of treated (orange) 

and control (blue) cells, averaged from the 10 spectra used for PCA are shown in (E and F). The 

benchmark loadings are indicated by the red dotted line. 
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Figure 4.13: Average spectra of live cells treated with 10 µM of CBD and control cells after 4 hours of 

incubation. Baselined spectra of treated (orange) and control (blue) cells, averaged from the 10 spectra 

used for PCA are shown from (A) regions of high nucleic acid content, and (B) regions of high protein 

content.  

Figure 4.12 shows the PCA data from 4 hours of incubation. Both PCA-scores plots show that 

treated and control cells separate from one another along PC2, indicating that the drug has 

had an effect on treated cells by 4 hours of incubation. In addition, both treated cells separate 

from one another along PC1, suggesting that the effect of the drug is not the same in both 

cells, and demonstrating how different cells can react differently to the same stimulus. The 

PC1 loadings overlap with the benchmark plot, and therefore reflect differences between 

different cells. The PC2 loadings therefore show which peaks are changing in response to the 

drug. Figure 4.12E shows the PC2 loadings plot for spectra taken from the nucleus of cells, and 

shows several peaks that are different in comparison to the benchmark plot, particularly 

changes in DNA (780 cm-1), protein (1000 cm-1, 1300 cm-1, 855 cm-1, and 1660 cm-1) and lipid 

(1450 cm-1) peaks. There were also changes in the peak at 1155 cm-1, which has been 

previously been assigned to C-C stretching in carotenoids (Merlin, 2007; Ermakov and 

Gellermann, 2010; Addis et al., 2016). In the PC2 loadings plot from spectra taken from the 
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cytoplasm of cells (figure 4.12F), there were changes in protein (945 cm-1, 1000 cm-1, 1054 cm-

1) peaks.  

Overall, this could be indicative of differences in the level of DNA and protein in treated cells 

in comparison to control cells. However, the average spectra (figure 4.13A and B) show only 

one peak that is increased in treated cells in comparison to control cells, at ~1340 cm-1; this 

difference appears to be present only in spectra taken from the nucleus of cells. This peak can 

be assigned to the nucleic acids A and G (Chan et al., 2007; Su et al., 2013; Casabella et al., 

2016), and only one treated cell appears to have an increase in this peak. It may therefore 

mean that this cell contains more nucleic acids than the other three cells, and the increases 

seen in this peak are not as a result of the drug. It is therefore difficult to determine the effect 

of the drug at this timepoint, as there are no clear increases or decreases in the intensity of 

protein peaks in treated cells in comparison to control cells.   
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Figure 4.14: A comparison of live cells treated with 10 µM of CBD and control cells after 20 hours of 

incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from regions of the cell 

identified as having a high DNA (A) or protein (B) content. Squares cells treated with 10 µM of CBD 

(n=2), and diamonds cells treated with a media control (n=2). Each colour represents an individual cell. 

The PC1 loadings for each plot are shown in (C and D), and the baselined spectra of treated (orange) 

and control (blue) cells, averaged from the 10 spectra used for PCA are shown in (E and F). The 

benchmark loadings are indicated by the red dotted line. 
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Figure 4.14 shows the PCA data from 20 hours of incubation. The nucleus of treated cells had 

broken down by 20 hours, but the Raman maps did appear to show some areas with a high 

nucleic acid concentration, so spectra from these areas were used for PCA. The PCA-scores 

plots show a clear separation of treated and untreated cells, and both treated cells group 

together. The PC loadings from spectra taken from the cytoplasm (figure 4.14D) showed that 

most peaks overlapped with the benchmark loadings, but there were some changes in protein 

(1272 cm-1, 1300 cm-1, 1660 cm-1) peaks. The average spectra showed a change in the region 

1200-1400 cm-1, associated with amide III. Peaks in this region, particularly 1260 cm-1 and 1300 

cm-1, appear to be increased in treated cells, which could indicate an increased level of protein 

within treated cells. However, as the cytoplasm of both cells appears to begin breaking down 

at 22 hours of incubation with CBD, it seems unlikely that there would be an increased level 

of protein within the cells, as the induction of cell death would result in proteins being broken 

down. Changes in this region could therefore be as a result of changes in secondary structure. 

The amide III region comprises of a combination of N-H bending and C-N stretching of the 

amide group, and these vibrational modes are particularly sensitive to changes in secondary 

structure (Lord, 1977; Overman and Thomas, 1998; Jacob, Luber and Reiher, 2009). Both of 

the increased peaks (1260 cm-1 and 1303 cm-1) have been previously associated with α-helix 

secondary structures (Maiti et al., 2004; Esmonde-White et al., 2009), suggesting that treated 

cells may have an increased level of proteins in an α-helix conformation in comparison to 

control cells. As mentioned previously (chapter 4, section 4.3.4), changes in secondary 

structure has been associated with the induction of cell death (Czamara et al., 2016).  

The PC loadings from spectra taken from areas with a high DNA content (figure 4.14C) were 

very different when compared to the benchmark loadings, with very few peaks overlapping. 

There were changes in DNA (776 cm-1), lipid (1450 cm-1) and protein (1660 cm-1) peaks, but the 

greatest changes were in peaks at 1157 cm-1 and 1523 cm-1. Both of these peaks have a high 

intensity in the average spectra of cells treated with CBD, but are not present in spectra from 



98 
 

control cells, and neither of these peaks had increased in intensity in spectra taken from the 

cytoplasm of cells. This suggests that these peaks are not present within the cell, as spectra 

corresponding to nucleic acids were taken from outside of the cell. These peaks are therefore 

likely to be present outside of the cell and in the medium. To confirm this, spectra were taken 

from areas from outside of both control and treated cells (figure 4.15). This figure shows that 

neither of these two peaks are present in spectra taken from control cells at any timepoint. 

However, when looking at the spectra from treated cells, these peaks are not present at either 

pre-treatment or 0 hours of treatment with CBD, but are present by 18 hours of incubation. 

This suggests that these peaks are likely to be a result of the drug, and not a result of repeated 

exposure to the laser. They are also unlikely to belong to the drug itself as we would expect 

them to be in the spectra at 0 hours, as the drug has been added to the medium. The 1157 

cm-1 peak can be assigned to C-C and C-N stretching in proteins (De Gelder et al., 2007; C. et 

al., 2012; Bai et al., 2015), as well as to carotenoids (Hata et al., 2000), while the 1523 cm-1 

peak has previously been assigned to both C=C stretching in carotenoids (Stone et al., 2004; 

Yao et al., 2009; Talari et al., 2015), and the nucleic acid cytosine (Li et al., 2013). Increases in 

these peaks could therefore be due to increased level of nucleic acids in the medium 

surrounding treated cells as they are exported from the cell as a result of the response to the 

drug. However, the fact that both peaks have been previously assigned to carotenoids 

suggests that they may be present in the media.  
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Figure 4.15: A comparison of average spectra from treated and untreated live cells. Spectra were taken 

from areas identified as being outside of the cell from the Raman maps, and averaged and baselined 

prior to being plotted. Each colour represents a different timepoint: pre-treatment (red), 0 hours 

(orange), 18 hours (yellow), 20 hours (dark red), 22 hours (green) and 24 hours (purple).  

4.4 Discussion:  

Overall, these results suggest that different concentrations of the cannabinoid drug CBD affect 

Caco-2 cells in different ways. A low concentration of CBD induces a change in Caco-2 cells 

that can be seen after just two hours of incubation with the drug. This change appears to be 

due to a difference in the DNA, protein and lipid content within treated cells in comparison to 

controls, and may induce proliferation in cells at this concentration. This effect appears to be 

a short-term effect, as there was little separation in any of the other PCA plots between cells 

treated with 1 µM of CBD and control cells.  
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In contrast, at a higher concentration, the drug appears to only begin to have an effect after 

4-6 hours of incubation, and appears to result in cell death. The Raman maps of fixed cells 

showed that by 24 hours, the DNA of cells had broken down, and the cytoplasm was beginning 

to break down (figure 4.4). The PCA and average spectra data from both 8 (figure 4.8) and 24 

(figure 4.9) hours of incubation with CBD showed several peaks associated with cell death, 

including decreased lipid and protein levels in treated cells in comparison to control cells, the 

presence of a peak at 1375 cm-1 that has previously been used as a marker for apoptosis, 

changes in cytochrome c, and a shift from ~1266 cm-1 to ~1254 cm-1, previously associated with 

a transition in protein structure as a result of the activation of caspases (Czamara et al., 2016), 

suggesting that caspases may be involved in the pathway of cell death that CBD activates in 

Caco-2 cells. Caspases are a family of endoproteases that have an important role in the 

regulation of cellular processes, but particularly in cell death. Activation of apoptotic caspases 

results in the generation of a signalling cascade that culminates in the induction of apoptosis 

(McIlwain, Berger and Mak, 2013), which may occur in cells incubated with high 

concentrations of CBD.  

The live cell data expanded on the results collected from fixed cells, providing more detailed 

information on the cells response to the drug. The Raman maps suggested that CBD caused 

the breakdown and externalisation of DNA in Caco-2 cells at ~18 hours of incubation, followed 

by the degradation of the cytoplasm after 24 hours (figure 4.12). The breakdown and loss of 

DNA is associated with cell death, and there are considered to be three main nuclear 

morphological changes associated with this process. Pyknosis is nuclear condensation, and can 

be visualised by the shrinkage of the nucleus (Burgoyne, 1999; Hou et al., 2016). Karyorrhexis 

is characterised by the breakdown of DNA into small fragments (Nagata, 2000). Finally, 

karyolysis is the breakdown and loss of DNA as a result of the action of endonucleases. Usually, 

upon the induction of cell death, pyknosis is the first of these changes to occur, which is 

followed by either karyorrhexis or karyolysis (Kroemer et al., 2009; Kumar, 2012). 
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Karyorrhexis, or DNA fragmentation, is a hallmark of apoptosis, and occurs as a result of the 

activation of caspase-3 activated DNase (CAD), which cleaves chromosomal DNA into small 

fragments (Nagata, 2000). Earlier results suggested that caspases may be involved in the 

mechanism of cell death CBD induces in Caco-2 cells, however, the Raman maps do not appear 

to show any fragmentation, and there do not appear to be any apoptotic bodies present, 

which suggests that the process of cell death CBD induces in Caco-2 cells may not be apoptosis. 

The PCA results from the live cell maps revealed the presence of two peaks, 1157 cm-1 and 

1523 cm-1, that are present in the medium surrounding treated cells, but not in control cells. 

These two peaks have been associated with proteins and nucleic acids respectively, but are 

also characteristic of carotenoids (Hata et al., 2000). In carotenoids, the 1157 cm-1 peak 

corresponds to C-C stretch vibrations, and the 1523 cm-1 peak to C=C stretches (Koyama et al., 

1988). Carotenoids are a family of compounds, fat-soluble plant pigments that eukaryotic cells 

are unable to synthesise (Krinsky and Johnson, 2005). Due to this, it seems unlikely that 

carotenoids would be present in the medium, as they are not components of the medium itself 

(Sigma-Aldrich), so these peaks may be attributed to different cellular components that 

contain the same C-C and C=C stretches. The structure of CBD contains both C-C and C=C 

bonds, so it is possible that these peaks may correspond to the drug, although these peaks 

were not present in the spectrum of CBD (figure 4.2). They may therefore be a result of the 

metabolites that CBD is broken down into when metabolised by cells. There are many known 

metabolites of CBD, making it difficult to identify which specific ones may be present in media 

surrounding treated cells, and to identify their structure, although most of the major 

metabolites contain both types of carbon bond (Ujváry and Hanuš, 2016). As previous studies 

have also linked these two peaks with proteins and nucleic acids, it is possible that the medium 

surrounding treated cells contains nucleic acids and proteins. The Raman maps appear to 

support this, as the DNA of treated cells seems to be externalised, and if the cytoplasm of the 

cell is also breaking down, as seen in some of the maps, then proteins would also be 
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externalised as a result of the cellular response to CBD. Further investigation needed to be 

carried out in order to confirm if there were nucleic acids or proteins present in medium from 

treated cells, and this was done using UVRR spectroscopy (chapter 6, section 6.3.4). 

In summary, we have investigated the effect of the cannabinoid drug cannabidiol on Caco-2 

cells using Raman spectroscopy. CBD appears to have a dual effect on Caco-2 cells: at a low, 1 

µM concentration, it may induce proliferation, but at a higher, 10 µM concentration, it appears 

to cause cell death. However, this data does not elucidate the mechanism of action of the 

drug, or how it is able to induce cell death in Caco-2 cells and the pathway by which this 

process occurs. Further work was therefore carried out in order to further investigate the way 

in which CBD induces death in Caco-2 cells (chapter 6).  

 

 

 

 

 

 

 

 

 

  



103 
 

Chapter 5: Using Raman 
spectroscopy to evaluate the effect 
of anandamide on Caco-2 cells  

 

5.1 Introduction: 

Anandamide (AEA) is an endocannabinoid, a fatty acid neurotransmitter derived from 

arachidonic acid. The structure of AEA is shown in figure 5.1. It targets the CB1 and CB2 

receptors, as well as vanilloid receptors (Di Marzo, 1998; Pertwee, 2001). Once inside cells, 

AEA is broken down by the enzyme fatty acid amide hydrolase (FAAH) into arachidonic acid 

and ethanolamine (Maccarrone and Finazzi-Agró, 2003). Previously, AEA has been reported to 

have an antiproliferative effect in a breast cancer cell line (MCF-7), by arresting growth at the 

G1/S transition (De Petrocellis et al., 1998). It has also been associated with the induction of 

apoptosis in lymphocytes (Schwarz, Blanco and Lotz, 1994), keratinocytes (Kuc, Jenkins and 

van Dross, 2012) and neuroblastoma cells (Maccarrone et al., 2000; Pasquariello et al., 2009), 

although the mechanism of AEA-induced apoptosis is yet to be elucidated.   

 

Figure 5.1: Molecular structure of anadamide. 
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The aim of this chapter was to investigate whether other cannabinoids would affect Caco-2 

cells in the same or a different way to CBD. As AEA is known to be taken up by cells, and has 

previously been shown to have an effect on Caco-2 cells (Liao et al., 2011), it is an ideal 

candidate to use with Raman spectroscopy, in order to investigate if the drug can be visualised 

within cells, and to determine if its effect on Caco-2 cells can be monitored using Raman 

spectroscopy.  

5.2 Methods: 

5.2.1 Cell treatment 

Caco-2 cells were cultured and attached to CaF2 windows as described in the methods (chapter 

2. Section 2.2.2). Once cells had adhered to CaF2 windows, media was removed and replaced 

with media containing AEA at a concentration of either 1 µM, 10 µM or media control. After 

2, 4, 6, 8 or 24 hours of incubation, media was removed and cells were fixed as previously 

described.  

5.2.2 Raman spectroscopy of fixed cells 

Fixed cells were maintained in PBS throughout analysis. Raman maps were collected as 

described in the methods (chapter 2, section 2.2.4), using a laser wavelength of 532 nm.  

5.2.3 Raman spectroscopy of live cells 

Once adhered to CaF2 windows, cells were transported to the Raman incubator and 

maintained at 5% CO2 and 37°C. In this study, all live cells were mapped using a laser 

wavelength of 532 nm. Media was removed once cells were in the Raman incubator, and 

replaced with media containing AEA at a concentration of 10 µM. Cells were then mapped at 

the times described. 
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5.3 Results: 

5.3.1 Raman maps 

The overall aim of this study was to determine the effect of AEA on Caco-2 cells, and to see 

how it compares to the effect of CBD. Initially, we wanted to investigate whether the drug 

could be visualised within Caco-2 cells, so a spectrum of the drug was acquired (figure 5.2). 

 

Figure 5.2: Raman spectrum of AEA, spotted and left to dry on a CaF2 disk. The spectrum was acquired 

using a 532 nm excitation laser, an acquisition time of 10 seconds with 10 accumulations, and a laser 

power of ~30 mW. The molecular structure of AEA is also shown.  

This spectrum shows several peaks of interest, at 877 cm-1, 1050 cm-1, 1173 cm-1, 1313 cm-1, 

1412 cm-1, and 1555 cm-1, related to the structure of the drug, which is also shown. Peaks at 

877 cm-1, 1050 cm-1 and 1173 cm-1 are assigned to CH bending (Jones, 2009; Bai et al., 2015; 

Boutahir et al., 2016), whereas peaks in the region of 1313 cm-1 have previously been 

associated with C-OH stretching (Perna, Lasalvia and Capozzi, 2016). Peaks at around 1412 cm-

1 have been assigned to C=C vibrations (Perna, Lasalvia and Capozzi, 2016). Finally, peaks at 

1555 cm-1 are assigned to NH vibrations (Thomas, 2004). In order to investigate whether the 

drug could be visualised within cells, Raman maps were shaded to each of these peaks (figure 

5.2). The shading ranges used were as follows: 874-880 cm-1 (877 cm-1), 1047-1053 cm-1 (1050 
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cm-1), 1170-1176 cm-1 (1173 cm-1), 1310-1316 cm-1 (1313 cm-1), 1409-1415 cm-1 (1412 cm-1), 

and 1552-1558 cm-1).  

Figure 5.3 shows composite images of treated and control cells alongside Raman maps of them 

shaded to each of the drug peaks. It shows that all shaded peaks can either not be seen within 

either treated or control cells, or are present in both treated and control cells, suggesting that 

the drug cannot be visualised within cells by shading to these peaks. This was the case even 

when the shading parameters were altered. AEA is known to enter cells, but once inside it is 

rapidly broken down (Maccarrone and Finazzi-Agró, 2003), which may be why we cannot 

visualise the drug within cells using this method, or, as we saw with CBD, the drug peaks may 

be overshadowed by cellular components.  

Raman maps were also shaded according to their DNA (780-802 cm-1) and protein (1630-1680 

cm-1) content and composite images produced at each time point in order to see if any visible 

changes could be observed as a result of drug treatment (figure 5.4). Maps were shaded 

according to the previously established parameters (chapter 2, section 2.3.3).  

The Raman maps do not show any clear visual differences between cells that have been 

treated with the drug, and control cells. Even after 24 hours of incubation, treated cells at both 

the 1 µM and 10 µM concentration appear to show no deterioration, and, unlike cells that 

have been treated with CBD, still contain DNA, and their cytoplasm appears to be intact. 

Therefore, to gain a better understanding of the effect of AEA on Caco-2 cells, PCA was carried 

out on selected spectra.   
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Figure 5.3: Raman maps of Caco-2 cells shaded to peaks of interest from the AEA spectrum. For the 

composite images, DNA was measured from 780-802 cm-1, and protein from 1630-1680 cm-1. When 

shading to peaks of interest from the AEA spectrum, all selected peaks were shaded from 0 to max. 
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Figure 5.4: Raman maps of Caco-2 cells shaded to their DNA and protein content. Shading ranges were 

780-802 cm-1 for DNA, blue, and 1630-1680 cm-1 for protein, green. Cells were treated with either 1 or 

10 µM of AEA or media control for each listed time point.  
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5.3.2 Principal Component Analysis 

As demonstrated in previous chapters, PCA was carried out using Raman spectra selected from 

each of the Raman maps in figure 5.4. Ten spectra were selected from DNA-rich regions, and 

ten from protein-rich regions in order to better establish which areas of the cell the drug may 

be having an effect.  

Figure 5.5: PCA-scores plots of PC1 against PC2 for spectra taken from cells treated with either AEA 

or media control for 2 and 4 hours. Spectra were taken from regions of the cell identified as having a 

high DNA content after an incubation time of either 2 (A) or 4 (C) hours, or from regions with a high 

protein content after either 2 (B) or 4 (D) hours of incubation. Circles represent cells treated with 1 µM 

of AEA (n=5), squares cells treated with 10 µM of AEA (n=5), and diamonds cells treated with a media 

control (n=5). Each colour represents an individual cell.  
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Figure 5.5 shows the PCA scores plots for 2 and 4 hours of incubation with AEA. At 2 hours, 

there was some separation seen at the 1 µM concentration of the drug, and this separation 

can be seen in both the nucleus and cytoplasm of cells, suggesting that the drug has had an 

effect at this concentration after just 2 hours of incubation. At 10 µM, there did not seem to 

be any clear separation of treated cells from control cells, suggesting that at this concentration 

the drug may take longer to have an effect on cells, similar to that observed with CBD at this 

timepoint. At 4 hours, there was little separation between treated cells and control cells in the 

protein PCA-scores plot, with all cells appearing to group together. This suggested that the 

drug had no effect on the cytoplasm of cells at either concentration after 4 hours of incubation. 

Several cells at 1 µM separate from control cells in figure 5.5C, suggesting that the drug may 

be affecting the nucleus of these cells; no separation can be seen for the 10 µM concentration 

of the drug.  

PCA was also carried out on data collected from the maps at 6, 8 and 24 hours (figure 5.6). At 

6 hours, there appeared to be little separation of treated cells at either concentration of AEA 

in the DNA PCA-scores plot, suggesting that the drug does not have an effect on the nucleus 

of cells after 6 hours of incubation. However, in the protein PCA-scores plot (figure 5.6B), some 

cells treated with 10 µM of AEA begin to separate from control cells; there is no separation 

between cells treated with 1 µM. This suggests that the initial effect of the 1 µM concentration 

of AEA is short-lived, and is resolved by 6 hours of incubation, whilst the effect of the 10 µM 

concentration only begins to occur after ~6 hours of incubation. By 8 hours of incubation, most 

cells treated with 10 µM of AEA separate from controls in the DNA PCA-scores plot, and all 

cells separate in the protein PCA-scores plot. 

A similar separation can be seen after 24 hours of treatment, as cells treated with 10 µM of 

AEA separate from controls in both spectra taken from the nucleus and cytoplasm of cells 

(figure 5.6E and F). This differs from the PCA-scores plots after cells were treated with CBD, as 
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with those results there was a dramatic effect after 24 hours, as there was no DNA left in the 

cell to compare to control cells, and for protein taken from the spectra, there was a very clear 

separation between treated and control cells. This further demonstrates that the effects of 

the cannabinoids CBD and AEA, at a 10 µM concentration, are very different in Caco-2 cells. 

Aside from one cell in figure 5.6E, all cells treated with 1 µM of AEA group with the controls in 

both plots, further suggesting that the effect of this concentration of the drug is short-term, 

which is similar to that observed with CBD at the same concentration. 
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Figure 5.6: PCA-scores plots of PC1 against PC2 for spectra taken from cells treated with either AEA 

or media control for 6, 8 and 24 hours. Spectra were taken from regions of the cell identified as having 

a high DNA content after an incubation time of either 6 (A), 8 (C) or 24 (E) hours, or from regions with 

a high protein content after either 6 (B), 8 (D) or 24 (F) hours of incubation. Circles represent cells 

treated with 1 µM of AEA (n=5), squares cells treated with 10 µM of AEA (n=5), and diamonds cells 

treated with a media control (n=5). Each colour represents an individual cell.  
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5.3.3 PCA and Average Spectra – Initial Response 

In order to further investigate the effect of AEA on Caco-2 cells, the number of conditions 

compared in the PCA-scores plots was reduced. In the initial PCA plots (figure 5.5), the greatest 

changes were occurring in cells treated with 1 µM of AEA for 2 hours, so PCA was carried out 

to compare only cells treated with this concentration of the drug and control cells (figure 5.6). 

As in the previous chapters, a benchmark loading plot was included alongside each PC loadings 

plot.  

The PCA-scores plots show a clear separation between treated and control cells for spectra 

taken from the cytoplasm of cells (figure 5.6B), while only one treated cell separates clearly 

for spectra taken from the nucleus of cells. This suggests that the drug has an effect on the 

cytoplasm of cells after 2 hours of incubation, but not on the nucleus of all cells. The separation 

occurs along PC2, suggesting that the PC1 loadings show differences between cells and are not 

a result of the drug; this is demonstrated by the fact that they clearly overlap with the 

benchmark plot.  

The PC2 loadings plots (figure 5.7E and F) therefore show which peaks are changing as a result 

of the drug. The peaks that vary from the benchmark correspond to protein  

(1000 cm-1, 1242 cm-1, 1247 cm-1) and lipids (1450 cm-1, 1582 cm-1). The PC2 loadings plot for 

spectra taken from the nucleus also shows changes in DNA peaks (780 cm-1 and 1332 cm-1). 

This may indicate a different level of DNA, protein and lipid between treated and untreated 

cells.  
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Figure 5.7: A comparison of cells treated with 1 µM of AEA and control cells after 2 hours of 

incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from regions of the cell 

identified as having a high DNA (A) or protein (B) content. Circles represent cells treated with AEA (n=5), 

and diamonds cells treated with a media control (n=5). Each colour represents an individual cell. The 

PC1 loadings for each plot are shown in (C and D), and the PC2 loadings are also shown (E and F). The 

red spectrum represents the benchmark loadings. The benchmark loadings are indicated by the red 

dotted line. 
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The average spectra (figure 5.8A and B) show that there may be an increase in the protein 

peaks at ~1260 cm-1 in spectra taken from the nucleus and the cytoplasm; there are also 

increases in the peaks at 1300 cm-1 and 1660 cm-1 in spectra taken from the cytoplasm. This 

suggests that AEA may cause an increase in protein level in Caco-2 cells, and as increased 

protein levels are associated with proliferation (Short et al., 2005; Swain, Jell and Stevens, 

2008)(Swain, Jell and Stevens, 2008), it may suggest that AEA, at the 1 µM concentration, 

induces proliferation in Caco-2 cells. The average spectra from the cytoplasm also show 

increases in the peaks at 717 cm-1
 and at 1063 cm-1, which are both assigned to lipids 

(Kunapareddy, Freyer and Mourant, 2008; Huang et al., 2011; Kopec, Imiela and Abramczyk, 

2019), suggesting an increased level of lipids in cells incubated with AEA.  

This data gives more information on the effect of the 1 µM concentration of the drug; in order 

to investigate the effect of the 10 µM concentration, we examined the later timepoints (8 and 

24 hours) in more detail.  

 

Figure 5.8: Average spectra of cells treated with 1 µM of AEA and control cells after 2 hours of 

incubation. Baselined spectra of treated (orange) and control (blue) cells, averaged from the 10 spectra 

used for PCA are shown from (A) regions of high nucleic acid content, and (B) regions of high protein 

content.  
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5.3.4 PCA and Average Spectra – Later Response 

Figure 5.9 shows the PCA-scores plots from 8 hours of incubation at a 10 µM concentration of 

AEA. There is a clear separation between treated and untreated cells in spectra taken from 

protein-rich regions. In the PCA-scores plot for spectra taken from DNA-rich regions, not all 

cells separate from controls. Overall, this suggests that, at 10 µM, AEA has an effect on the 

cytoplasm of all cells after 8 hours of incubation, but only effects the nucleus of some cells.  

In figure 5.9A, the separation occurs along PC1, but the loadings plot shows that most peaks 

overlap with the benchmark plot, so may correspond to differences between cells. The only 

difference appears to be in the ratio of the 1260 cm-1 and 1300 cm-1 protein peaks, with the 

former decreased in comparison to the benchmark, and the latter increased. The average 

spectra (figure 5.10A), appear to show a decrease in the intensity of some protein (1260 cm-1 

and 1660 cm-1) and lipid (1450 cm-1) peaks in some treated cells in comparison to control cells, 

suggesting that some cells incubated with AEA may have a decreased protein and lipid 

content. Aside from these three peaks, it is difficult to see any clear difference in intensity in 

any of these peaks in treated cells in comparison to control cells.  
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Figure 5.9: A comparison of cells treated with 10 µM of AEA and control cells after 8 hours of 

incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from regions of the cell 

identified as having a high DNA (A) or protein (B) content. Squares represent cells treated with 10 µM 

of AEA (n=5), and diamonds cells treated with a media control (n=5). Each colour represents an 

individual cell. The PC1 loadings for each plot are shown in (C and D), and the PC2 loadings are also 

shown (E and F). The red spectrum represents the benchmark loadings. The benchmark loadings are 

indicated by the red dotted line. 
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In figure 5.9B, taken from protein-rich areas of the cell, the separation between treated and 

untreated cells occurs along PC2. The PC2 loadings plot shows the peaks changing as a result 

of the drug are associated with protein (1000 cm-1, 1126 cm-1, 1234 cm-1, 1260 cm-1, 1338 cm-

1) peaks. The average spectra (figure 5.9B), appear to show an increase in intensity of the 1260 

cm-1 and 1660 cm-1 peaks in treated cells in comparison to control cells, and a decrease in 

intensity of the 1450 cm-1 peak. This may indicate an increased level of protein, and a 

decreased level of lipid in the cytoplasm of cells that have been incubated with AEA. As 

previously discussed, this is characteristic of proliferating cells (Short et al., 2005; Swain, Jell 

and Stevens, 2008), which is unexpected as AEA has previously been reported to have an anti-

proliferative effect on several different cell lines (Schwarz, Blanco and Lotz, 1994; Maccarrone 

et al., 2000; Kuc, Jenkins and van Dross, 2012). Interestingly, the average spectra taken from 

DNA-rich regions of the cell appear to have a decreased protein level in comparison to control 

cells. In addition, there is the appearance of a small peak at ~970 cm-1 in the average spectra 

of treated cells that is not present in spectra taken from control cells.  

 

Figure 5.10: Average spectra of cells treated with 1 µM of AEA and control cells after 8 hours of 

incubation. Baselined spectra of treated (orange) and control (blue) cells, averaged from the 10 spectra 

used for PCA are shown from (A) regions of high nucleic acid content, and (B) regions of high protein 

content. 
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Figure 5.11: A comparison of cells treated with 10 µM of AEA and control cells after 24 hours of 

incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from regions of the cell 

identified as having a high DNA (A) or protein (B) content. Squares represent cells treated with 10 µM 

of AEA (n=5), and diamonds cells treated with a media control (n=5). Each colour represents an 

individual cell. The PC1 loadings for each plot are shown in (C and D), and the baselined spectra of 

treated (orange) and control (blue) cells, averaged from the 10 spectra used for PCA are shown in (E 

and F).  The red spectrum represents the benchmark loadings. The benchmark loadings are indicated 

by the red dotted line. 
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After 24 hours of incubation with 10 µM of AEA, aside from one cell, all treated cells separate 

clearly from control cells (figure 5.11), suggesting that the drug has an effect on both the 

cytoplasm and nucleus of cells after 24 hours of treatment. This separation occurs along PC1, 

and for spectra taken from the nucleus (figure 5.11C), the peaks that differ in comparison to 

the benchmark correspond to DNA (780 cm-1), protein (1300 cm-1) and lipid (1450 cm-1) peaks. 

The 1300 cm-1 and 1450 cm-1 peaks are also changing in the loadings plot of spectra taken from 

the cytoplasm of cells (figure 5.11D). These changes are very subtle in comparison to the 

changes seen in cells incubated with 10 µM of CBD for 24 hours. The average spectra taken 

from the nucleus of cells (figure 5.11E) appear to show an increased level of protein in treated 

cells in comparison to control cells, with increases seen in the 1660 cm-1 peak. This is in 

contrast to what was observed in the average spectra from 8 hours of incubation, where 

decreased protein levels were observed in the nucleus of some treated cells. However, there 

is a decrease in the peak at 1340 cm-1
 in treated cells, and this peak is assigned as a marker for 

the amino acid tryptophan (Takeuchi, 2003). There is also a shift from 1252 cm-1 in control 

cells to ~1260 cm-1 in treated cells, which may be associated with changes in protein structure. 

In addition, there may be a decreased level of DNA in treated cells, as the average spectra 

show that the ~780 cm-1 peak is increased in control cells when compared to cells incubated 

with AEA. However, not all control cells have an increase in this peak, so this may reflect 

differences in the DNA content of different cells, and not be an effect of the drug. Finally, there 

is the appearance of a small peak at ~970 cm-1, similar to that seen in the spectra taken from 

8 hours of incubation.   

As observed at 8 hours, the average spectra taken from the cytoplasm of cells (figure 5.11F) 

show increases in the intensity of protein peaks (1265 cm-1 and 1660 cm-1), indicative of an 

increased protein content in treated cells. There is also an increase in the peak at ~934 cm-1 in 

treated cells in comparison to control cells, which was not observed in any of the previous 

average spectra. This peak is associated with C-C backbone stretching in proteins (Bai et al., 
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2015; Barkur et al., 2015), and may also suggest an increase in protein level. However, there 

do not appear to be any differences in the level of lipids between treated and untreated cells, 

as the peak at ~1450 cm-1 has a similar intensity in both treated and control cells, so this effect 

may not be associated with proliferation. There does not appear to be a shift at ~1260 cm-1 in 

contrast to what was observed in the DNA plot and what we observed with CBD. In cells 

treated with CBD, this was indicative of the activation of caspases leading to protein 

degradation; as we do not observe the same effects with AEA, it may suggest that AEA does 

not activate caspases or cause changes in protein structure in the cytoplasm after 24 hours of 

incubation.  

There is the appearance of the peak at 970 cm-1 in treated cells, which has also been observed 

in previous average spectra from 8 hours of incubation (figure 5.9B). After 8 hours, this peak 

was only present in spectra taken from the cytoplasm of cells, but after 24 hours of incubation 

with AEA, this peak could be observed in spectra taken from both the cytoplasm and nucleus 

of cells. As this peak is only visible in spectra from treated cells and not control cells, and is 

only visible in treated cells when the drug begins to effect cells (as the PCA plots only show 

clear separation after 8 hours of treatment), it is likely to be due to the effect of AEA. Peaks in 

the region of 970 cm-1 have previously been assigned to phosphate groups, specifically the P-

O symmetric stretch (McManus et al., 2011; Smith et al., 2017).  

Overall, the results indicate that, unlike CBD, AEA does not induce cell death in Caco-2 cells at 

the 10 µM concentration after 24 hours of treatment. However, AEA still has an effect on Caco-

2 cells, as separation can be observed in many of the PCA plots over time, and this effect may 

be associated with an increase in protein level in treated cells.  

5.3.5 Live Cell Raman Spectroscopy 

Live cell Raman spectroscopy was also carried out, to allow a consistent comparison with the 

CBD study. Figure 5.12 shows live cell maps of Caco-2 cells treated with 10 µM of AEA. Cells 1, 
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2, 4 and 6 do not show any clear changes over time, while the only difference in cell 3 is that 

it appears to have begun dividing by 12 hours of incubation. In cell 5, the cytoplasm may be 

breaking down over time. However, there is still DNA left in this cell, and in all other cells after 

incubation with AEA, providing further evidence that the effect of the cannabinoids AEA and 

CBD in Caco-2 cells are different.  

 

Figure 5.12: Raman maps of live Caco-2 cells treated with 10 µM of AEA, shaded to their DNA and 

protein content. Raman maps showing the DNA, measured from 780-802 cm-1 (blue) and protein, 

measured from 1630-680 cm-1 (green) content of live Caco-2 cells treated with 10 µM of AEA for each 

listed time point.   
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The previously collected control maps at 532 nm (chapter 2, section 2.5) were used to carry 

out PCA on the collected live cell data. The two timepoints chosen for PCA were 4 and 20 

hours, as this was consistent with the timepoints used with CBD. For PCA, spectra were taken 

from two control and two treated cells. 

Figure 5.13: A comparison of live cells treated with 10 µM of AEA and control cells after 4 hours of 

incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from regions of the cell 

identified as having a high DNA (A) or protein (B) content.  Squares represent cells treated with 10 µM 

of AEA (n=2), and diamonds cells treated with a media control (n=2). Each colour represents an 

individual cell. The PC1 loadings for each plot are shown in (C and D). The benchmark loadings are 

indicated by the red dotted line. 

The PCA results for 4 hours are shown in figure 5.13. There is separation seen in both PCA-

scores plots between treated and control cells. However, the loadings plot shows that most 
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peaks overlap with the benchmark plot, suggesting that this separation may be due to 

differences in cells, and not a result of the drug.  

Figure 5.14 shows the PCA results for 18 hours. Again, there is separation of control and 

treated cells in both PCA-scores plots, suggesting that the drug is having an effect on Caco-2 

cells after 18 hours of incubation. This separation occurs along PC2 in spectra taken from the 

nucleus of cells (figure 5.14A), and therefore only the PC2 loadings plot is shown. This consists 

of a lot of noise that makes it difficult to pick out individual peaks, however, two notable peaks 

are the one at 970 cm-1, which was present in the spectra of fixed cells treated with AEA, and 

the peak at 1375 cm-1, which has previously been assigned as an apoptotic marker (Brauchle 

et al., 2015), and was present in the spectra of cells treated with CBD. In spectra taken from 

the cytoplasm of cells, separation occurs along PC1 (figure 5.14B), and the PC1 loadings plot 

shows that the peaks causing this separation are mostly protein (1260 cm-1, 1300 cm-1) and 

lipid (1450 cm-1) peaks. Again, there is the presence of a peak at  

970 cm-1.   

Average spectra were also plotted in order to see if there were any differences in the intensity 

of peaks between treated and untreated cells. In spectra taken from nucleic acid-rich regions 

of the cell (figure 5.14E), it is difficult to see any clear differences between treated and control 

cells. However, the average spectra taken from protein-rich regions (figure 5.14F), show that 

there is an increase in the intensity of protein peaks (1260 cm-1, 1300 cm-1, 1660 cm-1) in 

treated cells in comparison to control cells, which is consistent with the results on fixed cells. 

There are also changes in the region 1000-1100 cm-1, with increases in the intensity of peaks 

at ~1064 cm-1 and 1080 cm-1 in treated cells. The 1064 cm-1 peak is assigned to C-C stretching 

in lipids (Talari et al., 2015; Gong et al., 2017), suggesting that treated cells may have an 

increased level of lipid in comparison to control cells. Peaks in the region of 1080 cm-1 have 

previously been assigned to phosphate stretches (Matthäus et al., 2008). This is consistent 
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with the results in fixed cells, which suggested increased levels of phosphate stretches, 

associated with an increase in the intensity of the 970 cm-1 peak.  

 

Figure 5.14: A comparison of live cells treated with 10 µM of AEA and control cells after 20 hours of 

incubation. For PCA-scores plots of PC1 against PC2, spectra were taken from regions of the cell 

identified as having a high DNA (A) or protein (B) content.  Squares represent cells treated with 10 µM 

of AEA (n=2), and diamonds cells treated with a media control (n=2). Each colour represents an 

individual cell. The PC1 loadings for each plot are shown in (C and D), and the baselined spectra of 

treated (orange) and control (blue) cells, averaged from the 10 spectra used for PCA are shown in (E 

and F).  The benchmark loadings are indicated by the red dotted line. 
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5.4 Discussion 

The aim of this chapter was to compare the effect of the cannabinoid AEA to the results we 

observed with CBD, in order to see if the effect was the same or different. At a low, 1 µM 

concentration, the effect appears to be similar, as there is an initial response by the cell within 

2 hours, that is resolved by 4 to 6 hours of incubation. This effect is associated with changes 

in protein and DNA peaks, and an effect of both drugs is an increase in the intensity of protein 

and DNA peaks in the average spectra of treated cells in comparison to control cells. As 

previously mentioned, increases in these components is associated with proliferation (Short 

et al., 2005; Swain, Jell and Stevens, 2008), which low doses of CBD are known to induce. AEA 

has previously been shown to promote proliferation of endothelial cells at a 1 µM 

concentration (Hofmann et al., 2014), suggesting that it may also be able to induce 

proliferation in Caco-2 cells at a low dose.  

In contrast, cells treated with 10 µM of AEA behaved very differently to cells treated with 10 

µM of CBD. The CBD results showed a clear induction of cell death by 24 hours of incubation 

associated with the loss of DNA from the cell, whereas with AEA, the Raman maps appeared 

to show healthy cells after 24 hours of incubation as the nucleus and cytoplasm of all cells was 

intact. The PCA results indicated that AEA was having an effect on Caco-2 cells, and the peaks 

contributing to this separation were protein (1000 cm-1, 1126 cm-1, 1234 cm-1, 1260 cm-1, 1338 

cm-1) and DNA (780 cm-1) peaks. These peaks are similar to those observed with CBD, however, 

when looking at the average spectra we saw what appeared to be an increase in the intensity 

of protein peaks, and therefore protein content, in treated cells in comparison to control cells. 

In Caco-2 cells treated with 10 µM of CBD, we observed decreased protein content in treated 

cells. In addition, the PCA results from cells incubated with AEA did not reveal the presence of 

any cell death markers, or any peaks associated with cell death. Overall, this suggests that AEA, 
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at a concentration of 10 µM does not induce cell death in Caco-2 cells. This is in contrast with 

previous studies, which report that AEA induced apoptosis in several different cell lines 

(Schwarz, Blanco and Lotz, 1994; Maccarrone et al., 2000; Kuc, Jenkins and van Dross, 2012).  

The results suggest that AEA does not induce cell death, but that it does have an effect on 

Caco-2 cells. This effect is associated with the previously mentioned increased protein peak 

intensity, the presence of a peak at 970 cm-1 in the average spectra of treated cells, and a shift 

from 1252 cm-1 in control cells to ~1260 cm-1 in treated cells after 24 hours of incubation which 

may indicate a change in protein structure. Increased protein levels are associated with 

proliferation (Short et al., 2005; Swain, Jell and Stevens, 2008), but AEA has previously been 

reported to have an anti-proliferative effect on several different cell lines. In some of these 

cells, the anti-proliferative effect of the drug was not associated with the induction of 

apoptosis, and instead by blocking the completion of the S phase of the cell cycle, as an 

increased number of cells were found to be in this stage with a subsequent reduction in the 

G2/M phases that follow (De Petrocellis et al., 1998; Cencioni et al., 2010; Santoro, 2017).  This 

cell cycle arrest is associated with the suppression of Cdk2 activity, which is required for cell 

cycle progression (Laezza et al., 2006).The prior stage of the cell cycle to S phase is G1, where 

cells replicate proteins that are required for DNA synthesis (Bertoli, Skotheim and De Bruin, 

2013). As the protein content of cells in G1 and S phases has been shown to increase prior to 

the induction of S phase (Gerner, Meyn and Humphrey, 1976), it is therefore theoretically 

possible that, if AEA were having an anti-proliferative effect in Caco-2 cells, there could be an 

increase in cellular protein content as cells prepare to divide but are unable to complete the 

cell cycle due to the interference of the drug.  

Peaks at ~970 cm-1 have previously been assigned to phosphate groups, specifically the P-O 

symmetric stretch (McManus et al., 2011; Smith et al., 2017). An increase in the intensity of 

this peak may therefore correspond to an increased level of phosphorylation within treated 
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cells. Phosphorylation is a post-translation modification that involves the addition of a 

phosphate group (PO4) to various amino acids, modifying the protein and allowing changes in 

structure important for signal transduction (Ardito et al., 2017). Raman spectroscopy has 

previously been used to monitor the phosphorylation state of proteins using peaks in this 

region (Zhang et al., 2005; Ashton, Johannessen and Goodacre, 2011). If this peak indicates a 

change in the level of phosphorylated proteins in treated cells, then this would result in a 

change in protein conformation that may link with the observed shift in the amide III region.  

The live cell data confirmed that cells treated with 10 µM of AEA over 24 hours remain intact 

and appear to be healthy from the Raman maps. The PCA data also showed the presence of 

the 970 cm-1 peak, further suggesting that this peak is present as a result of treatment with 

the drug, and the average spectra showed an increase in protein content in treated cells. There 

was also the presence of a peak at 1375 cm-1, which in cells treated with CBD, appeared to be 

an apoptotic marker. This was present in spectra taken from the nucleus of cells after 20 hours 

of incubation, and may suggest that the drug is inducing cell death in Caco-2 cells, and the 

process takes longer to complete than CBD-mediated cell death and is not finished by 24 hours 

of incubation. However, this peak has also been associated with highly condensed chromatin 

structure (Puppels, Olminkhof, et al., 1991; Pully, Lenferink and Otto, 2011), so may relate to 

chromatin structure and not the onset of cell death.  

In summary, we have investigated the effect of the cannabinoid AEA on Caco-2 cells. Like CBD, 

AEA appears to have a dual effect on Caco-2 cells: at a low, 1 µM concentration, it appears to 

induce proliferation in Caco-2 cells, but at a higher, 10 µM concentration, it appears to have 

an anti-proliferative effect that may be mediated by cell cycle arrest in the S phase.  
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Chapter 6: Investigating the 
mechanism of CBD-induced cell 
death in Caco-2 cells 
 

6.1 Introduction: 

Previous results using Raman spectroscopy indicated that the cannabinoid CBD induced cell 

death in Caco-2 cells, in a process that involved the breakdown and externalisation of cellular 

DNA, followed by cytoplasm degradation (chapter 4). However, these results did not elucidate 

the pathway of cell death in these cells.  

There are two broad categories of cell death: regulated and unregulated (accidental). 

Regulated cell death is a mechanism to eliminate irreversibly damaged or harmful cells, and 

relies on dedicated molecular machinery, whereas accidental cell death is a result of exposure 

to severe insults, such as high temperatures or extreme pH changes. The most common type 

of regulated cell death is apoptosis, which is associated with distinct morphological changes, 

such as cytoplasmic shrinkage, chromatin condensation (pyknosis), nuclear fragmentation 

(karyorrhexis), and plasma membrane blebbing that results in the formation of apoptotic 

bodies. In contrast, the most common type of accidental cell death, necrosis, is characterised 

by rounding of the cell, the presence of dilated organelles, lack of chromatin condensation and 

cytoplasmic swelling. However, whereas once there were thought to be only these two types 

of cell death, expanding research has led to the discovery of a number of different 

subcategories, complicating the characterisation of cell death pathways in cells (Degterev and 

Yuan, 2008; Berghe et al., 2010; Galluzzi et al., 2018). There are currently several known 

pathways of cell death, which are summarised in figure 6.1, and described in table 6.1. The 

aim of this chapter was therefore to build on the Raman spectroscopy results, and to attempt 

to determine the type of cell death that CBD induces in Caco-2 cells.  



130 
 

 

Figure 6.1: A summary of all currently accepted distinct cell death pathways. LDCD is lysosome-

dependent cell death, ADCD is autophagy-dependent cell death, ICT is immunogenic cell death, and 

MPT-driven necrosis is mitochondrial permeability transition-driven necrosis. Adapted from (Galluzzi et 

al., 2018). 
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Table 6.1: A summary of the currently accepted distinct cell death pathways, and their descriptions 

Mode of cell death: Description:  

Necroptosis A regulated form of necrosis mediated by death receptors (Berghe et al., 2010) 

Ferroptosis Occurs as a result of severe lipid peroxidation (Dixon et al., 2012) 

Pyroptosis An inflammatory type of cell death mediated by caspase-1 (Shi, Gao and Shao, 
2017) 

Parthanatos Caused by the accumulation of PAR and translocation of apoptosis-inducing factor 
from the mitochondria (Fatokun, Dawson and Dawson, 2014) 

Entotic cell death Involves the engulfment and subsequent degradation of cells by non-phagocytic 
cells (Galluzzi et al., 2018) 

NETotic cell death Restricted to cells of the hematopoietic derivation (Galluzzi et al., 2018) 

Lysosome-dependent 
cell death (LDCD) 

Initiated by the permeabilization of lysosomal membranes, releasing lysosomal 
contents into the cytoplasm (Aits and Jaattela, 2013) 

Autophagy-dependent 
cell death (ADCD) 

A process of cell death that relies on the use of the autophagy machinery (Galluzzi 
et al., 2018) 

Immunogenic cell death 
(ICD) 

Relies on the generation of an immune response resulting in phagocytosis (Kepp 
et al., 2014) 

Intrinsic apoptosis Apoptosis activated by intracellular signals (Galluzzi et al., 2018) 

Extrinsic apoptosis Apoptosis activated by extracellular ligands binding to cell death receptors 
(Galluzzi et al., 2018) 

Mitochondrial 
permeability transition-
driven necrosis (MPT-
driven necrosis) 

Occurs when the mitochondrial membrane becomes impermeable, resulting in 
the loss of mitochondrial membrane potential (Izzo et al., 2016) 

 

6.2 Materials and Methods: 

6.2.1 RealTime-Glo™ Annexin-V Apoptosis and Necrosis Assay 

Assay components were purchased from Promega unless otherwise stated. Caco-2 cells were 

seeded onto clear-bottomed, black cell culture 96 well plates and left to adhere overnight.  

The following morning, media was removed and replaced with 100 µL of either CBD at a 10 

µM concentration or controls (ethanol as a vehicle control, media as a no treatment control, 

and media alone for a no-cell control). Immediately after treatments were added, 100 µL of 

Detection Reagent was added to each well, and the plate shaken using an orbital plate shaker 



132 
 

for 30 seconds at 500 rpm to mix. Luminescence and fluorescence (at 485 nmEx/520-530 nmEm) 

were measured using a Tecan infinite 2000 pro plate reader at 0 hours. Plates were then 

returned to the incubator, and readings taken at further timepoints of 2, 4, 6, 8, 12, 14, 16, 18 

and 24 hours.  

6.2.2 Caspase-Glo® 3/7 Assay 

Assay components were purchased from Promega unless otherwise stated. Caco-2 cells were 

seeded onto clear-bottomed, black cell culture 96 well plates and left to adhere overnight. The 

following morning, media was removed and replaced with 100 µL of CBD at a 10 µM 

concentration or controls (ethanol as a vehicle control, media as a no treatment control, and 

media alone for a no-cell control). 

After incubation, plates were removed from the incubator and allowed to equilibrate to room 

temperature before 100 µL of Caspase-Glo® 3/7 Reagent to each well and mixed using an 

orbital plate shaker at 500 rpm for 30 seconds. Plates were then incubated at room 

temperature for 1 hour. Following this, luminescence was measured using a Tecan infinite 

2000 pro plate reader.  

6.2.3 DNA Extraction 

All kit components were purchased from Fisher Scientific unless otherwise stated.  Cells were 

seeded onto sterile 6 well culture plates and left to adhere overnight. Following this, 10 µM of 

CBD was added and plates incubated for a period of either 2, 4, 8, 12, 14, 16, 18 or 24 hours.  

After incubation, media was removed and cells rinsed with PBS. Cells were detached from the 

plate by trypsinisation and transferred to a microcentrifuge tube. Cells were pelleted by 

centrifugation for 5 minutes at 250 x g, and the supernatant discarded. Cells were resuspended 

in 200 µL of PBS. Then, 200 µL of lysis solution and 20 µL of Proteinase K Solution were added 

to the pellet and mixed by vortexing to obtain a uniform suspension.  
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Samples were incubated at 56 °C using a heat block, and vortexed at regular intervals for 10 

mins. Following this, 20 µL of RNase A Solution was added, mixed by vortexing, and the sample 

incubated for 10 mins at room temperature. 400 µL of 50 % ethanol was then added and mixed 

by vortexing.  

The lysate was transferred to a GeneJET Genomic DNA Purification Column inserted in a 

collection tube. This column was centrifuged for 1 min at 8000 x g. The flow-through was 

discarded and the column placed into a new 2 mL collection tube.  

500 µL of Wash Buffer 1 was added, and the sample centrifuged at 8000 x g for 1 min. The 

flow-through was discarded and the column placed back into the collection tube before 500 

µL of Wash Buffer II was added. The sample was then centrifuged for 3 min at 13000 x g.  

Following this, the collection tube was discarded and the column transferred to a sterile 1.5 

mL microcentrifuge tube. 30 µL of elution buffer was added to the centre of the column, 

before it was incubated for 2 min at room temperature and centrifuged for 1 min at 8000 x g. 

The purification column was then discarded, and the concentration of purified DNA measured 

using a Nanodrop. Samples were then stored at -20 °C.  

6.2.4 DNA Fragmentation Assay 

0.5 mL of agarose was dissolved in 50 mL of TAE buffer to create a 1 % agarose gel. 1 µL of 

GelRed was added before the gel was poured into gel electrophoresis apparatus to set. 

Meanwhile, 10 µL of DNA samples were prepared at a concentration of 10 ng/mL in sterile 

water. 2 µL of sample loading buffer was then added to each sample.  

When the gel was set, 12 µL of each extracted DNA sample was added to each well, in addition 

to 12 µL of DNA markers. The gel was then covered with TAE buffer and run at 90 volts for ~45 

minutes. Following this, the gel was removed and DNA visualised using a Chemidoc.  



134 
 

6.2.5 UV Resonance Raman Spectroscopy 

Caco-2 cells were treated with 10 µM of CBD for a period of 4, 16 or 24 hours. After this time, 

1 mL of media was collected from the cells and frozen. Samples were thawed on ice before 

they were analysed. UVRR spectra were acquired using a Raman microscope (Renishaw, 

Wotton-under-edge, Gloucestershire, UK) coupled to a 244 nm Lexel Model 90 Ion Laser. 40µL 

of each medium sample was pipetted into a well on the lid of a 96 well microplate, with ~0.2 

mW of power at sample. The laser was focused onto the sample and the focus was checked to 

ensure we were measuring the sample and not the plate, as this has its own spectrum. The 

well was continuously rotated during data collection to avoid photodegradation. Spectra were 

collected using an acquisition time of 30 seconds, and three spectra were acquired for each 

sample. Spectra were normalised using SNV (standard normal variate). 

6.2.6 Mitochondrial ToxGlo™ Assay 

Assay components were purchased from Promega unless otherwise stated. Caco-2 cells were 

seeded onto clear-bottomed, black cell culture 96 well plates and left to adhere overnight. 50 

mL of galactose-containing media was prepared using glucose-free DMEM (Sigma). 0.09 g of 

galactose was added to 50 mL of media to give a final concentration of 10 mM of galactose, 

and 1.25 mL of HEPES was added to maintain pH. This solution was sterile filtered prior to use. 

The following morning, media was removed and replaced with 100 µL of either CBD at a 10 

µM concentration or controls (ethanol as a vehicle control, and media as a no treatment 

control). These compounds were made in either glucose-containing media (rows A-D), or 

galactose-containing media (rows E-H). Plates were then returned to the incubator for a period 

of 16 hours.  

After incubation, 20 µL of 5 X Cytotoxicity Reagent was added to each well and mixed by orbital 

shaking at 500 rpm for 1 minute. Plates were then incubated at 37 °C for 30 minutes. Following 

this, fluorescence was measured at 485 nmEx/520-530 nmEm using a Tecan infinite 2000 pro 
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plate reader. Plates were then equilibrated to room temperature before 100 µL of ATP 

Detection Reagent was added to each well and mixed by orbital shaking at 500 rpm for 3 

minutes. Following this, luminescence was measured using the same plate reader.  

6.2.7 Data Analysis 

To determine statistical significance (p<0.05), t-tests were performed using Microsoft excel. 

This was also used to generate all graphs. UVRR spectra were averaged in Microsoft Excel 

before being plotted in Matlab software version 2016 (The MathWorks, MA, USA).   

6.3 Results: 

6.3.1 Apoptosis and Necrosis Assay 

The first step in investigating the mechanism by which CBD induced cell death in Caco-2 cells 

was to determine whether cells exhibited characteristic features of apoptosis or necrosis, to 

determine whether the type of cell death fitted into the regulated or unregulated pathway. In 

order to do this, the RealTime-Glo™ Annexin-V Apoptosis and Necrosis Assay was carried out. 

This assay detects an increase in luminescence upon the induction of apoptosis as a result of 

phosphatidylserine exposure, and an increase in fluorescence upon the induction of necrosis 

as membrane integrity is lost and a membrane impermeable dye is able to enter the cell.  

If CBD was inducing apoptosis in cells, we would expect to see an increase in luminescence 

followed by an increase in fluorescence. Conversely, if CBD was inducing necrosis in Caco-2 

cells, we would expect to see an increase in fluorescence. However, the results did not appear 

to show any significant changes in fluorescence. Luminescence, on the other hand, increased 

initially from 0-8 hours before levelling off at 24 hours (figure 6.2A), and at the later timepoints 

increased up to 14 hours of incubation before decreasing (figure 6.2B). Overall, this data was 

not what would be expected if CBD was inducing either apoptosis or necrosis in Caco-2 cells, 
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and suggested that Caco-2 cells were following a non-apoptotic pathway of cell death in 

response to CBD.  

 

Figure 6.2: RealTime-Glo™ Annexin-V Apoptosis and Necrosis Assay. CBD was administered to Caco-2 

cells as described in methods. Luminescence and fluorescence readings were obtained at 0, 2, 4, 6, 8 

and 24 hours (A), or 0, 12, 14, 16 and 18 hours (B). Data was averaged and depicted as fold change over 

time, n=3.  
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6.3.2 Caspase Assay 

Caspases are a family endoproteases that play an important role in regulating cell death. 

Caspases 3 and 7 in particular are primarily associated with apoptosis and are classified as 

executioner caspases (McIlwain, Berger and Mak, 2013). We therefore investigated whether 

CBD activated caspases 3/7 in Caco-2 cells. This assay used a luminescent dye that emits a 

signal when in the presence of caspases 3/7, and therefore the luminescent signal produced 

is proportional to the amount of caspases present.  

The results show that after 12 hours of incubation with both cannabinoid drugs, there was no 

significant difference in the level of caspase activity when compared with controls (figure 6.3). 

However, after both 16 and 18 hours of incubation, significantly increased levels of 

luminescence, and therefore caspase activity, could be seen in cells that have been treated 

with CBD. As we know CBD induced cell death in Caco-2 cells at the 10 µM concentration 

(chapter 5, section 4.3), and we saw an increase in levels of caspase activation, it indicated 

that the mechanism of cell death involved the activation of caspases 3 or 7.

Figure 6.3: Caspase-Glo® 3/7 Assay. CBD was administered to Caco-2 cells as described in the methods. 

Luminescence readings were obtained after 12, 16 and 18 hours of incubation with CBD. Data was 

averaged and depicted as fold change in comparison to control cells on a bar chart, n=3. *p<0.05. 
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6.3.3 DNA fragmentation Assay 

One of the key events in apoptosis is DNA fragmentation. The molecular process of this 

involves the activation of caspase-activated DNase (CAD) that cleaves chromosomal DNA in a 

caspase-dependent manner (Nagata, 2000). As the caspase assay showed that CBD caused the 

activation of caspases, and that CBD caused a loss of DNA in Caco-2 cells after 24 hours of 

incubation, we carried out a DNA fragmentation assay to determine if there was any 

fragmentation in the DNA of treated cells over time.  

 

 

Figure 6.4: DNA Fragmentation Assay. 10 µM of CBD was administered to Caco-2 cells as described in 

methods. After  incubation times of 0, 2, 4, 8 and 24 hours (A), or 12, 14, 16 and 18 hours (B), DNA was 

extracted from cells, and underwent gel electrophoresis prior to being imaged.  

The results (figure 6.4) showed that no fragmentation of DNA can be seen at any of the 

timepoints tested, as the DNA appears as a single band, whereas if the DNA had fragmented 

we would expect to see several bands along the length of the gel. Comparing all timepoints 

with 0 hours suggested that there may be a decreased level of DNA in treated cells, as the 

bands across all other timepoints appear to be less intense than that at 0 hours, and an equal 

amount of DNA was added to each well. This decrease in intensity appears to be greatest after 
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24 hours of treatment with CBD, although we would have expected to see no band as the 

Raman spectroscopy results suggested that there was no DNA left within the cell at 24 hours. 

No fragmentation may be seen because this assay relies on the DNA being within the cell, and 

if it has exited the cell it may be in the culture medium, which could not be analysed using this 

method. UVVR spectroscopy was used to do this instead.   

6.3.4 UVRR of Cell Media Samples 

UV resonance Raman (UVRR) spectroscopy uses UV lasers (excitation wavelength range from 

180-260 nm) to create a resonance effect, which enhances the signal by a factor of 103-105 in 

comparison to using lasers within the visible range. In this case, using an excitation laser of 

244 nm enhances the signal of aromatics, and therefore enhances the features of both 

proteins and nucleic acids (Ashton et al., 2013). UVRR was therefore used on media samples 

collected from cells treated with CBD and control cells in order to determine if nucleic acids 

were present in the media of treated cells, as the DNA has been shown to be exported from 

cells incubated with CBD for 24 hours.  

Figure 6.5 shows the averaged UVRR spectra of medium samples for treated and untreated 

cells at 4, 16 and 24 hours. It shows a difference in the spectra of media containing the drug 

in comparison to controls, with increases seen in the peaks at ~1344 cm-1 and ~1480 cm-1. 

Peaks in the region of 1480 cm-1 have been assigned to the C-N and C=N stretching in the 

nucleotide guanine, and to NH2 bending in the nucleotide adenine, and therefore corresponds 

to DNA. The peak at 1344 cm-1 has previously been assigned to both C-N and C=N stretching 

in adenine and guanine molecules (Hobro et al., 2013), and tryptophan (Chi et al., 1998; Wen 

and Thomas, 2002), so this increase could either be due to an increase in nucleotides or 

proteins within the medium.  

For both peaks, there was an increase in intensity over time, with the greatest intensity seen 

at 24 hours, which is what we expected based on the previous Raman spectroscopy results. In 
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control cells, both peaks showed no change in intensity over time, and showed a much lower 

intensity than the spectra taken from treated cells. This suggested that there is an increased 

level of DNA molecules within the culture medium of cells treated with CBD.  

 

Figure 6.5: Averaged UVVR spectra of medium samples harvested at 4, 16 and 24 hours of treatment 

with either CBD or media control. (A) Full spectrum. (B) Insert of peaks of interest. Spectra were 

normalised using SNV prior to being plotted. (n=3). 

6.6.5 Mitochondrial Toxicity Assay 

Mitochondria are vital for cell function, providing cellular energy in the form of ATP and 

regulating a number of cellular functions, including the apoptosis pathway. Upon activation 

by pro-apoptotic factors, cytochrome c is released from the mitochondria, which can initiate 

the activation of a caspase cascade once it reaches the cytoplasm (Cai, Yang and Jones, 1998). 

CBD has previously been shown to reduce the oxygen consumption rate in Caco-2 cells after 2 

hours of incubation (Macpherson et al., 2014). This assay was used to predict mitochondrial 

dysfunction in response to CBD by measuring the amount of ATP present in control and treated 

cells; if CBD affected the mitochondria of Caco-2 cells, we would expect to see decreased levels 

of ATP in comparison to control cells.  
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Figure 6.6 showed that there was a significant decrease in the amount of ATP present within 

Caco-2 cells treated with CBD when compared to control cells. This decrease was present after 

2 hours of incubation, but the difference can be seen more clearly after 4 hours of treatment 

with CBD and suggested that CBD may have a direct effect on the mitochondria.  

 

Figure 6.6: Mitochondrial ToxGlo™ Assay. CBD was administered to Caco-2 cells as described in the 

methods. Luminescence readings were obtained after 2 (A) and 4 (B) hours of incubation with CBD. Data 

was averaged and depicted as fold change in comparison to control cells on a bar chart, n=3. *p<0.05. 

6.4 Discussion 

The overall aim of this chapter was to better elucidate the mechanism by which CBD induced 

cell death in Caco-2 cells, and a number of assays were implemented in order to investigate 

this. Overall, the results suggested that CBD does not induce either apoptosis or necrosis in 

Caco-2 cells, but that it did activate caspase 3/7. The Raman spectroscopy results showed that 

CBD caused the loss of DNA from cells by 24 hours of incubation, but this mechanism does not 

occur through nuclear fragmentation. However, the nucleic acids are transported outside of 

the cell and are present in the medium. Finally, CBD appeared to act on the mitochondria, and 

reduced the amount of ATP present within cells after just 4 hours of incubation.  
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As previously discussed, there are two broad categories of cell death, with apoptosis and 

necrosis being the most common in each. CBD has previously been shown to induce apoptosis 

in a number of different cell lines. This includes breast cancer cells, where apoptosis was 

confirmed by the observation of distinct morphological changes and DNA fragmentation 

(Sultan, Marie and Sheweita, 2018), and colorectal cancer cells, where apoptosis was 

confirmed by the presence of a number of apoptotic markers (Jeong et al., 2019). However, 

there is little research on the effect of CBD in Caco-2 cells, and our results suggested that CBD 

does not induce apoptosis or necrosis in Caco-2 cells, and therefore may induce another type 

of cell death in these cells. There are a number of other different pathways of cell death, 

summarised in figure 6.1, and many of these pathways overlap, sharing the same cellular 

machinery (Galluzzi et al., 2018). Some of these pathways can be eliminated as a possible 

mechanism of cell death in response to CBD. For example, NETotic cell death is restricted to 

cells of hematopoietic derivation, such as neutrophils and eosinophils (Remijsen et al., 2011). 

Immunogenic cell death (ICD) relies on the generation of an immune response resulting in 

phagocytosis (Kepp et al., 2014). Similarly, entotic cell death involves the engulfment and 

subsequent degradation of cells by non-phagocytic cells (Krishna and Overholtzer, 2016). 

However, there are still several pathways that CBD could activate in Caco-2 cells, and in order 

to better determine this pathway, we need to consider all of the evidence we have collected.  

CBD induced the activation of caspases 3 and 7 after ~16 hours of treatment, consistent with 

the beginning of DNA breakdown in the cell. Previously, CBD has been shown to cause an 

increased activation of caspases in endometrial cancer cells (Fonseca, Correia-da-Silva and 

Teixeira, 2018), and leukaemia cells (McKallip et al., 2006), although in both cell lines this was 

associated with the induction of apoptosis. Caspases 3 and 7 are classified as executioner 

caspases, essential for apoptosis, and cause this upon their activation by cleaving structural 

and repair proteins. In particular, caspase 3 has been shown to be essential for several steps 

of apoptosis, including DNA fragmentation and nuclear collapse (Slee, Adrain and Martin, 
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2001). However, these caspases have also been associated with other types of cell death, 

including pyroptosis (Shi, Gao and Shao, 2017) and lysosomal-dependent cell death (LDCD) 

(Loison et al., 2014). Caspase 3 has also been shown to have a role in autophagy-dependent 

cell death (ADCD), as it was found to be upregulated in cells that had been induced to undergo 

autophagic cell death (Sadasivan et al., 2006). CBD has previously been shown to induce ADCD 

in breast cancer cells (Shrivastava et al., 2011). This study suggested that CBD was able to 

induce both apoptosis and ADCD in these cells, and showed characteristic features of both, 

including increased caspase activation. This may therefore suggest that CBD induces ADCD in 

Caco-2 cells.  

The lack of DNA fragmentation suggested that the DNA of the cell is broken down by a 

mechanism that does not involve the activation of CAD. Previous work in senescent cells has 

shown that chromatin fragments can disperse from the nucleus and into the cytoplasm in a 

form of nuclear blebbing. Once in the cytoplasm, these fragments were targeted and broken 

down by the autophagy machinery (Adams et al., 2013). In autophagy, the nucleus is degraded 

by lysosomes, which are organelles within the cytoplasm of cells that contain enzymes able to 

break down nucleic acids, proteins, carbohydrates and lipids (Lodish et al., 2012). In this 

process, a protein associated with autophagy, LC3, interacts with the nuclear protein laminin 

B1, and binds to laminin-associated domains on chromatin. This facilitates transport into the 

cytoplasm and delivery to the lysosome (Dou et al., 2015). DNA has also been shown to be 

directly taken up by lysosomes and degraded (Fujiwara et al., 2013). Lysosomes also have a 

central role in LDCD. This is initiated by the permeabilization of lysosomal membranes, 

releasing lysosomal contents into the cytoplasm, and can result in necrotic, apoptotic or 

apoptosis-like features (Aits and Jaattela, 2013). The extensive release of lysosomal 

components results in necrosis with rapid membrane permeabilization, whereas limited 

release can activate the intrinsic apoptosis pathway (Kagedal et al., 2015) or caspase-

independent cell death with apoptosis-like morphology (Kirkegaard and Jäättelä, 2009). As in 
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both of these mechanisms, the DNA is being broken down, there would be no fragments 

present in a DNA fragmentation assay, consistent with the results we observed. However, the 

Raman maps suggested that the DNA was being transported to the outside of the cell, and 

nucleic acids were present within the media of treated cells, which is inconsistent with the 

degradation of the nucleus by lysosomes. This suggests that the DNA may be broken down 

and exported by another mechanism.  

The nucleus can also be broken down by other cellular machinery. Apoptosis-inducing factor 

(AIF) is a mitochondrial oxidoreductase that contributes to cell death programmes. Upon 

detrimental signals, AIF is translocated into the nucleus, where it forms a complex that causes 

the degradation of chromatin, leading to cell death (Bano and Prehn, 2018). AIF was originally 

implicated in apoptosis, and was reported to be released from the mitochondria and 

translocate to the nucleus in a caspase-dependent manner (Susin et al., 1999; Susin, 2004). 

AIF has also been shown to have a role in another pathway of cell death, parthanatos (Fatokun, 

Dawson and Dawson, 2014), however this was shown to be caspase-independent, so it is 

unlikely that parthanatos is the pathway through which CBD induces cell death in Caco-2 cells.   

The Raman maps of live cells treated with CBD showed a loss of the structure of the nucleus, 

with nucleic acids appearing to accumulate near the membrane of the cell before being 

exported (chapter 4, section 4.3.5). The UVRR spectroscopy results supported this, as nucleic 

acids were detected in the medium of cells treated with CBD but not control cells, suggesting 

that the nucleic acids had been broken down and then exported from the cell. This process 

appeared to occur before membrane integrity was lost. This is unusual, as in most pathways 

of cell death, nucleic acids either undergo fragmentation (intrinsic and extrinsic apoptosis), 

are degraded by other intracellular components (ADCD, LDCD) or the entire cell is engulfed 

and degraded by other cells (entotic cell death, ICD). Necrotic cell death appears to be the only 

reported type of death where the contents of the cell are released, but this occurs as a result 
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of cell membrane rupture (Zhang et al., 2018), which is inconsistent with what we observed in 

the Raman maps.  

Nucleic acids are known to be secreted from cells under normal conditions (Stroun and Anker, 

1972; Anker, Stroun and Maurice, 1975; Arroyo et al., 2011; Vickers et al., 2011), and cells 

have been shown to release extracellular vesicles such as exosomes and prostasomes which 

contain nucleic acids (Théry, 2011; Ronquist, 2012; Thakur et al., 2014). Secreted DNA is 

proposed to act as an intercellular messenger by entering target cells, and has been implicated 

in inducing tolerance against detrimental substances (Eldh et al., 2010), immunomodulation 

(Anker et al., 1980), and the development of metastasis (García-Olmo et al., 2010). However, 

increased levels of nucleic acids were not detected in samples of media taken from control 

cells, suggesting that the nucleic acids secreted by treated Caco-2 cells are secreted as a result 

of the response to CBD. Fragmented DNA has also been detected outside of cells, thought to 

be the result of either apoptosis or necrosis (Bronkhorst et al., 2016). It is not clear from our 

results whether the nucleic acids in the medium were fragmented, as the assay was carried 

out on DNA from within cells; attempts to isolate DNA from the medium were unsuccessful, 

however a number of different kits exist for extracting cell-free DNA (Diefenbach et al., 2018), 

which may be of interest in future work.  

Interestingly, recent studies have suggested that there may be a link between exosomes and 

autophagy. As previously mentioned, exosomes are extracellular vesicles that have been 

found to contain nucleic acids (Eldh et al., 2010; Théry, 2011). Exosomes are nano-sized 

vesicles that originate from the endocytic pathway, and are released from cells when an 

intermediate endocytic compartment, the multivesicular body (MVB), fuses with the plasma 

membrane (Théry, Zitvogel and Amigorena, 2002). Some studies have reported that some of 

the autophagy machinery contributes to exosome formation and release (Murrow, Malhotra 

and Debnath, 2015; Guo et al., 2017), suggesting that the activation of the autophagy 
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pathway, and perhaps ADCD, can result in the secretion of exosomes that may contain nucleic 

acids, which would explain their presence in the media of treated cells. A number of different 

techniques exist for both isolating (including ultracentrifugation and density-gradient 

separation) and detecting (including electron microscopy and flow cytometry) exosomes 

(summarised in (Ko, Carpenter and Issadore, 2016)), although it would be difficult to 

determine if the exosomes contained any DNA and whether that was a direct consequence of 

treatment with CBD.  

Our results also suggested that CBD may act on the mitochondria. Mitochondria have been 

shown to play a role in apoptosis, with the loss of outer membrane potential (MOMP) leading 

to the release of proapoptotic factors such as cytochrome c (Galluzzi et al., 2018). CBD, at a 10 

µM concentration, has previously been shown to increase intracellular calcium levels, leading 

to changes in mitochondrial function and morphology, resulting in cell death (Rimmerman et 

al., 2013), and demonstrating that CBD is able to effect the mitochondria of cells. In addition, 

impaired mitochondrial function results in increased reactive oxygen species (ROS) production 

(Zorov, Juhaszova and Sollott, 2014). Under normal conditions, ROS are important signalling 

molecules, and essential for cellular function. However, ROS can also cause DNA and protein 

damage (Simon, Haj-Yehia and Levi-Schaffer, 2000), and upregulated levels have been 

associated with apoptosis (Singh et al., 2005; Zorov, Juhaszova and Sollott, 2014). CBD has 

been associated with increased levels of ROS, and subsequent induction of apoptosis, in 

several cell lines. In these studies, treatment with ROS scavengers reduced the number of cells 

undergoing apoptosis (Massi et al., 2004; McKallip et al., 2006; Shrivastava et al., 2011), and 

therefore suggested that the generation of ROS are required to induce apoptosis in response 

to CBD. ROS generation was also shown to be required for the induction of autophagy-

mediated cell death in breast cancer cells (Shrivastava et al., 2011). CBD has been shown to 

generate ROS and reduce oxygen consumption rate in Caco-2 cells after 2 hours of incubation, 

leading to cells becoming metabolically incapable of oxygen consumption (Macpherson et al., 
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2014). Our results showed a depletion in the level of ATP in Caco-2 cells after a similar 

incubation time, suggesting mitochondrial dysfunction that could lead to an increased level of 

ROS production that may induce cell death. ROS are also associated with other forms of cell 

death, and have been implicated in the induction of LDCD by damaging the lysosomal 

membrane and leading to membrane permeabilization (Kurz et al., 2008). ROS are also 

thought to contribute to lysosomal membrane permeabilization by activating lysosomal 

calcium channels (Sumoza-Toledo and Penner, 2011). Oxidative stress has also been 

implicated in MPT-driven necrosis. In this type of cell death, the mitochondrial membrane 

becomes impermeable, resulting in the loss of mitochondrial membrane potential and leading 

to a necrotic phenotype (Izzo et al., 2016). Our results indicated that CBD induced oxidative 

stress in Caco-2 cells, but we did not observe a necrotic phenotype, suggesting that MPT-

driven necrosis does not occur in Caco-2 cells exposed to CBD. Similarly, ferroptosis is a form 

of cell death that occurs as a result of severe lipid peroxidation, which relies on the generation 

of ROS and iron availability (Yang and Stockwell, 2016). However, ferroptosis occurs 

independently of caspases and displays necrotic morphology (Dixon et al., 2012), which is 

inconsistent with our results, and suggests that ferroptosis does not occur in Caco-2 cells as a 

result of incubation with CBD.  

In conclusion, we have summarised the numerous pathways of cell death that are currently 

known, and attempted to eliminate them based on the results we have obtained whilst 

studying the effect of CBD on Caco-2 cells. While each cell death pathway is distinct in 

morphology (appearance of dying cells), mechanics (underlying molecular cascades that result 

in cell death) and functionality (how dying cells are perceived by the organism), there is still 

an overlap between different pathways and the molecular machinery that causes cell death. 

This leads to complications when trying to elucidate the exact pathway through which CBD 

causes death in Caco-2 cells. In particular, caspases and oxidative stress, which we have shown 

are induced in response to CBD, are linked to a variety of different pathways. In contrast, the 
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lack of fragmentation and externalisation of nuclear material is not reported to be associated 

with any of the currently accepted forms of cell death, although exosome release has been 

linked to the autophagy pathway. Overall, this makes it extremely difficult to confidently 

assign any pathway to the effect we have observed in these cells in response to CBD. Based 

on the gathered evidence, and by a process of elimination, it seems most likely that CBD-

mediated cell death occurs through either ADCD or LDCD in Caco-2 cells (figure 6.7).  

 

Figure 6.7: A summary of all currently accepted distinct cell death pathways, with eliminated 

pathways in grey, and the pathways CBD may act through in colour. LDCD is lysosome-dependent cell 

death, ADCD is autophagy-dependent cell death, ICT is immunogenic cell death, and MPT-driven 

necrosis is mitochondrial permeability transition-driven necrosis. 
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Chapter 7: Conclusions 

7.1 Summary of work  

The overall aim of the work presented in this thesis was to develop Raman microspectroscopy 

as a tool to study Caco-2 cells and their response to the cannabinoids CBD, AEA, and also to a 

metal rhenium complex. We also wanted to gain a greater understanding of the mechanism 

of action of the cannabinoids, as little is currently known about the cellular response and the 

exact mechanism of action of these drugs. Raman spectroscopy is an emerging imaging 

technique that is advantageous over existing techniques as it is non-invasive, label-free, and 

can be used to image live cells under normal physiological conditions. However, Raman 

spectroscopy is currently not widely used as a routine tool in cell biology due to perceived long 

acquisition times and complex data analysis. We have demonstrated that Raman spectroscopy 

can be used to study cells and give a variety of visual (via Raman mapping) and biochemical 

(via PCA) information about their normal state, and their response to the addition of 

compounds such as cannabinoid drugs and a rhenium metal complex.  

7.1.1 Raman spectroscopy methodology 

There are few existing studies using Raman spectroscopy to study the Caco-2 cell line; the only 

previously reported study in the literature to use confocal Raman spectroscopy to image Caco-

2 cells used Raman imaging to collect only Raman spectra at the specific wavelength of 2800-

3030 cm-1 (Scalfi-Happ et al., 2011). As such, we needed to develop protocols to determine 

the best approach for mapping Caco-2 cells using Raman spectroscopy. These cells do not 

freely adhere and grow on CaF2 windows, so windows were coated with poly-lysine prior to 

the introduction of cells. 4 % PFA was a successful fixative for these cells, but methanol and 

ethanol were not.  
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In addition to methodology for attaching and fixing cells, we also needed to develop methods 

for data processing, and have shown that the data pre-treatments of cosmic ray removal, 

normalisation and noise filtering result in good-quality Raman maps. Based on the available 

literature, there is currently no standard approach for shading Raman maps (Ashton, 

Hollywood and Goodacre, 2015), and as such we have also developed robust shading 

parameters using distribution plots that could be kept consistent across all maps to allow for 

comparison. Distribution plots consist of all the peak area intensity values within the Raman 

map, and can therefore be used as a guide when shading. Most of the values have a very low 

intensity, and can be attributed to background; shading at higher intensities allows us to 

remove this background from the image and to only examine areas of interest. Shading ranges 

were therefore chosen by looking at the distribution plots, and, once selected, these ranges 

were applied to all subsequent maps.  

We have also developed a set of benchmark PC1 loadings that have been used across all PCA 

plots. These were calculated by using spectra from the nucleus and cytoplasm of control cells, 

and therefore account for differences between different cells which may contain different 

levels of cellular components. Using these benchmark loadings allowed us to immediately 

discount any overlapping peaks, as these are likely to contribute to separation between 

individual cells, and not as a result of cell treatment with either the complex or the drugs and 

focus only on those peaks that change as a result of cell treatment. This is a novel technique 

that we have not previously seen in the literature.  

7.1.2 Visualisation of drugs and complexes in cells 

One of the advantages of Raman spectroscopy is that it can be used in order to visualise 

compounds within cells by shading Raman maps to specific peaks within that compound’s 

Raman spectrum. This is particularly useful in drug studies, as drugs can be visualised within 

cells without the introduction of any labels or fluorescent markers. However, we have shown 
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that there are difficulties when shading to specific peaks, particularly in both drug studies. 

While we observed a number of potential peaks in both the CBD and AEA spectra, shading to 

each of these was unsuccessful when trying to visualise the intracellular distribution of the 

drug. Cell spectra are complex and contain many different peaks; drug peaks may therefore 

be overshadowed by these peaks, making shading difficult. For some compounds, it may be 

possible to select peaks that exist outside of the cellular fingerprint region, but depending on 

the wavelength of those peaks, it may be difficult to identify cellular components like the 

nucleus as most DNA peaks exist at lower wavenumbers. The rate of drug metabolism must 

also be considered when trying to spatially observe drugs within cells. For example, AEA is 

rapidly metabolised when it is taken into cells and as such, shading to its peaks may not be 

successful.  

While we were unable to observe the spatial distribution of cannabinoids within Caco-2 cells, 

we had some success with the rhenium complex. We shaded Raman maps of treated and 

untreated cells to each of the peaks we observed in the Raman spectrum of the complex itself, 

and two peaks appeared to be present in treated cells but not in untreated cells. These peaks 

were 785 cm-1 and 1035 cm-1. Shading parameters had to be carefully chosen when shading to 

these peaks, and we demonstrated how the shading range chosen can affect the final image 

and needs to be carefully considered to avoid under or over interpretation of the results. 

When shading live cell Raman maps to these peaks, we observed that the 1035 cm-1 peak 

showed the most consistent shading across all cells and was therefore most likely to 

correspond to the complex. Shading appeared to be consistent with the previously observed 

fluorescence results using this complex (Amoroso et al., 2008). However, there are potential 

issues with using this peak, as 1035 cm-1 can be assigned to phenylalanine (Rehman, 

Movasaghi and Rehman, 2012; Zheng et al., 2014; Charwat et al., 2015; Gebrekidan et al., 

2018). This further demonstrates the difficulties of shading Raman maps to specific peaks that 

fall within the fingerprint region.  
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7.1.3 Short-term response of Caco-2 cells to stimuli 

Cells have evolved mechanisms to adjust their biochemistry in response to intracellular and 

extracellular signals indicating a change in their environment, which is necessary for their 

survival. We have observed a consistent change in Caco-2 cells in response to different stimuli 

that suggests that these cells may have developed a protection mechanism in response to 

changes in their environment. Firstly, when cells were treated with the rhenium complex, we 

observed a separation in the PCA scores plot at 2 hours. This was unexpected as this complex 

was reported to be non-toxic in previous studies (Amoroso et al., 2008), and we expected that 

the complex would therefore not have an effect on cells. However, the observed separation 

was associated with changes in DNA and protein peaks. Average spectra showed an increase 

in the intensity of the DNA peak at 1090 cm-1 and also in the protein peak at 1300 cm-1, 

suggesting an increased level of DNA and protein in cells that had been treated with the 

complex in comparison to control cells. We also observed similar changes in both drug studies 

at the lower concentration. Cells incubated with 1 µM of CBD showed an increased DNA and 

protein content in treated cells when compared to control cells; this also occurred in cells 

incubated with 1 µM of AEA. At low doses, both drugs have previously been said to induce 

proliferation (Watanabe et al., 2005; Takeda et al., 2008; Hofmann et al., 2014), although this 

effect has not been previously reported in Caco-2 cells.  

Increases in DNA and protein levels are associated with proliferation (Short et al., 2005; Swain, 

Jell and Stevens, 2008) due to the induction of transcription. We hypothesise that the 

introduction of the rhenium complex, and the introduction of a 1 µM dose of the cannabinoids 

CBD and AEA, results in transcription. This response would result in increased DNA levels, 

which were observed in the average spectra, and also changes in protein structure, perhaps 

associated with histone acetylation, that would result in changes to the 1300 cm-1 peak (Wang 

et al., 2000). By 4 hours of incubation with the complex or the drugs, this effect no longer 

occurs, suggesting that it is a short-term, initial effect of exogenous substances being 
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introduced into the medium surrounding cells. We suggest that these cells may have evolved 

this as a protection mechanism by increasing cell numbers in case of a negative effect of the 

foreign substance, e.g. the complex or cannabinoids.  

7.1.4 The effect of CBD on Caco-2 cells 

A key objective of this research was to investigate the effect of CBD on Caco-2 cells as very 

little is known about the actual cellular response. We showed that the cellular response to 

CBD is concentration dependent, with different responses observed at 1 and 10 µM. As 

previously discussed, a 1 µM concentration of CBD induces changes in DNA and protein peaks 

associated with the induction of proliferation. A 10 µM concentration of CBD induces cell 

death in Caco-2 cells. Cells that were mapped 24 hours after incubation with 10 µM of CBD 

were shown to undergo cell death, characterised by the lack of DNA and the degradation of 

the cytoplasm visible in the Raman maps. PCA data from 8 hours revealed that the observed 

separation between spectra acquired from treated and control cells was associated with DNA 

(780 cm-1) and protein (1000 cm-1, 1126 cm-1 and 1260 cm-1) peaks. The average spectra 

showed that these peaks were decreased in treated cells, suggesting these cells had a lower 

DNA and protein content than control cells, consistent with the induction of cell death. We 

also observed the presence of a peak at 1375 cm-1 in the spectra of treated cells, which has 

previously been assigned as an apoptotic marker (Brauchle et al., 2015), and a shift from ~1266 

cm-1 to ~1254 cm-1 associated with a transition in protein structure as a result of the activation 

of caspases (Czamara et al., 2016). Caspases are endoproteases that are activated during the 

cell death pathway and result in the degradation of cellular material such as proteins. Live cell 

Raman maps showed changes in the spatial distribution of the DNA within the cell. At 4 hours, 

the DNA of cells appeared to be undergoing a structural change; in maps taken at 18 hours, 

there was no clear nucleus observed in cells, only DNA content that appeared to be localised 

at the edges of the cells. This then appeared to be exported in later timepoints before the 

cytoplasm began to degrade at ~24 hours.  There are no existing studies that have shown this 
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breakdown happening over time in these cells in response to CBD; we are also unaware of any 

studies that have shown the gradual breakdown and externalisation of nucleic acids using 

Raman spectroscopy.  

A number of studies report that the pathway of cell death CBD induces in Caco-2 cells is 

apoptosis (Massi et al., 2004; McKallip et al., 2006; Shrivastava et al., 2011). To investigate 

this, we carried out a number of biological assays. We discovered that CBD does not activate 

apoptosis or necrosis in Caco-2 cells, as we did not observe any phosphatidylserine exposure 

(associated with apoptosis) or loss of membrane integrity (associated with necrosis). CBD 

activated caspases 3/7, consistent with previously recorded literature (Shrivastava et al., 2011; 

Lukhele et al., 2016), although in both of these studies the activation of caspases was 

associated with apoptosis. However, caspases are also known to be activated during other 

mechanisms of cell death (Galluzzi et al., 2018). We did not observe any DNA fragmentation, 

but UVRR spectroscopy detected the presence of nucleic acids in the media. The live cell 

Raman spectroscopy results showed the breakdown and externalisation of nuclear material, 

but the UVVR spectroscopy results confirmed that the nucleic acids had been transported out 

of the cell and into the culture medium. This is the first reported study to detect cell-free DNA 

in the culture medium of cells treated with CBD. Finally, we also observed that CBD may act 

on the mitochondria of Caco-2 cells, as it reduced ATP concentration within treated cells. 

Several distinct pathways of cell death are currently known, but the two that appear to be 

most consistent with our results are autophagy-dependent cell death (ADCD) and lysosomal-

dependent cell death (LDCD). Both of these pathways involve the activation of caspases 3/7, 

are not associated with DNA fragmentation, and have been associated with mitochondrial 

dysfunction. We therefore hypothesise that CBD induces either ADCD or LDCD in Caco-2 cells.  
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7.1.5 The effect of AEA on Caco-2 cells 

We have also investigated the effect of another cannabinoid drug, AEA, in order to see if it 

induced the same or a different response than CBD. Previous studies have investigated the 

effect of these two drugs together (Leweke et al., 2012), but there is little existing research 

comparing the effect of the two separately. As previously discussed, we discovered that it has 

a similar effect on Caco-2 cells at a 1 µM concentration, as after 2 hours of incubation there 

were increases in the intensity of DNA and protein peaks, associated with proliferating cells. 

However, a 10 µM concentration of AEA failed to induce cell death in Caco-2 cells after 24 

hours of incubation, and both live and fixed cells still contained a clear nucleus at this 

timepoint. The PCA results suggested that the drug was having an effect on cells, and this was 

associated with changes in DNA (780 cm-1) and protein (1000 cm-1, 1126 cm-1, 1260 cm-1) 

peaks. These peaks had an increased intensity in treated cells in comparison to control cells, 

suggesting an increased level of DNA and protein in treated cells. This is the opposite of the 

effect we observed with CBD and further suggested that AEA does not induce cell death in 

Caco-2 cells at a 10 µM concentration. Overall, this showed that high doses of the 

cannabinoids CBD and AEA have different effects in Caco-2 cells. Increases in DNA and protein 

intensity is associated with proliferation, but AEA has been reported to have an anti-

proliferative effect on several different cell lines, caused by blocking the completion of the S 

phase of the cell cycle (De Petrocellis et al., 1998; Cencioni et al., 2010; Santoro, 2017). As in 

the prior stage of the cell cycle, cells replicate proteins that are required for DNA synthesis 

(Bertoli, Skotheim and De Bruin, 2013), we hypothesise that we observe increased levels of 

DNA and protein content as cells prepare to divide but are unable to complete the cell cycle 

due to the interference of the drug. The effect of AEA is therefore to inhibit proliferation by 

blocking the cell cycle, which would lead to an increased protein levels within Caco-2 cells, but 

would not cause cell death.  



156 
 

7.2 Future Directions 

While we have successfully demonstrated that Raman spectroscopy can be used to collect 

detailed information about Caco-2 cells, we are still left with some unanswered questions, 

particularly in regards to the effect CBD has on these cells. We have shown that high doses of 

CBD induces cell death in Caco-2 cells and hypothesise that this mechanism is either ADCD or 

LDCD, but further work would need to be carried out in order to establish which mechanism 

CBD activates. ADCD could be confirmed by techniques such as fluorescence microscopy to 

look for the formation of autophagosomes and autolysosomes (Chan et al., 2012), or assays 

that look for the activation of the autophagy machinery, such as the detection of LC3 proteins 

that play an important role in autophagosome biogenesis (Kabeya, 2000; Orhon and Reggiori, 

2017). Fluorescence microscopy can also be used to detect LDCD by using dyes that 

accumulate in the lysosomes; a decrease in the staining with these dyes indicates lysosomal 

membrane permeabilization, which leads to LDCD (Wang, Gómez-Sintes and Boya, 2018). 

We have shown that Raman spectroscopy has a number of different applications for the study 

of both live and fixed cells, including the observation of intracellular organelles, as well as 

monitoring and distinguishing between the cellular response to different drugs. As previously 

discussed, Raman spectroscopy is yet to be used as a routine tool in cell biology due to 

perceived long acquisition times and complex data analysis in comparison to existing 

techniques such as fluorescence microscopy. The advantages of Raman spectroscopy, 

particularly the lack of labels and the ability to collect both biochemical and visual information 

of both live and fixed cells, should make it the forefront of current imaging techniques, 

however, more still needs to be done before Raman spectroscopy can be translated into the 

clinic. Further reductions in acquisition time would make it a more attractive option for cell 

imaging, and there should be a standardised approach to the shading of Raman maps such as 

the use of distribution plots in order to allow for direct comparisons. Despite these challenges, 
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we were able to determine that metal rhenium complexes can be used in conjunction with 

Raman spectroscopy to image cells, and that Caco-2 cells respond differently to CBD and AEA, 

with CBD inducing cell death most likely due to the mechanism of ADCD or LDCD, and 

anandamide having an anti-proliferative effect on cells. In addition, we hypothesise that there 

is an initial response in Caco-2 cells to any added substance that appears to be due to an 

increase in transcription, and may be a potential protection mechanism.  
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Appendix 1 

 

Distribution plots and Raman maps of the 664 cm-1 peak, demonstrating how different shading ranges 

can affect the map. The shading ranges are as follows: minimum to maximum (red box), 5-95% (purple), 

0 to max (blue), highest values (orange) and chosen range for the final image (green). The corresponding 

Raman map is outlined in the same colour. 
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Distribution plots and Raman maps of the 1317 cm-1 peak, demonstrating how different shading 

ranges can affect the map. The shading ranges are as follows: minimum to maximum (red box), 5-95% 

(purple), 0 to max (blue), highest values (orange) and chosen range for the final image (green). The 

corresponding Raman map is outlined in the same colour. 
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Distribution plots and Raman maps of the 1493 cm-1 peak, demonstrating how different shading 

ranges can affect the map. The shading ranges are as follows: minimum to maximum (red box), 5-95% 

(purple), 0 to max (blue), highest values (orange) and chosen range for the final image (green). The 

corresponding Raman map is outlined in the same colour. 
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Distribution plots and Raman maps of the 1604 cm-1 peak, demonstrating how different shading 

ranges can affect the map. The shading ranges are as follows: minimum to maximum (red box), 5-95% 

(purple), 0 to max (blue), highest values (orange) and chosen range for the final image (green). The 

corresponding Raman map is outlined in the same colour. 
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Distribution plots and Raman maps of the 1740 cm-1 peak, demonstrating how different shading 

ranges can affect the map. The shading ranges are as follows: minimum to maximum (red box), 5-95% 

(purple), 0 to max (blue), highest values (orange) and chosen range for the final image (green). The 

corresponding Raman map is outlined in the same colour. 
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Appendix 2 

 

Distribution plots and Raman maps of the 875 cm-1, 1080 cm-1 and 1440 cm-1 peaks, demonstrating 

how different shading ranges can affect the map. The shading ranges are as follows: minimum to 

maximum (red box), 5-95% (purple), 0 to max (blue), highest values (orange) and a narrow shading 

range of the central values (green). The corresponding Raman map is outlined in the same colour. This 

cell was treated with 1 µM of CBD for a period of 4 hours. 
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Distribution plots and Raman maps of the 875 cm-1, 1080 cm-1 and 1440 cm-1 peaks, demonstrating 

how different shading ranges can affect the map. The shading ranges are as follows: minimum to 

maximum (red box), 5-95% (purple), 0 to max (blue), highest values (orange) and a narrow shading 

range of the central values (green). The corresponding Raman map is outlined in the same colour. This 

cell was treated with a 10 µM concentration of CBD for 4 hours. 
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Distribution plots and Raman maps of the 875 cm-1, 1080 cm-1 and 1440 cm-1 peaks, demonstrating 

how different shading ranges can affect the map. The shading ranges are as follows: minimum to 

maximum (red box), 5-95% (purple), 0 to max (blue), highest values (orange) and a narrow shading 

range of the central values (green). The corresponding Raman map is outlined in the same colour. This 

cell was treated with a media control for 4 hours.  
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A comparison of control cells to create benchmark PC1 loadings at 785 nm. For PCA-scores plots of 

PC1 against PC2, spectra were taken from the regions of the cell identified as having a high DNA (A) or 

protein (B) content.  The PC1 loadings for each plot are shown in (C and D). 
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