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Abstract

External beam radiation therapy is a common treatment method for cancer. Radio-

therapy is planned with the aim of achieving conflicting goals: while a sufficiently high

dose of radiation is necessary for tumour control, a low dose of radiation is desirable

to avoid complications in normal, healthy, tissue. This thesis aims to support the ra-

diotherapy treatment planning process for prostate cancer by evaluating the quality

of proposed treatment plans relative to previous plans.

We develop a variable selection technique, autoPCA, to select the most relevant

variables for use in our Data Envelopment Analysis (DEA) models. This allows us

to evaluate how well plans perform in terms of achieving the conflicting goals of

radiotherapy. We develop the uncertain DEA problem (uDEA) for the case of box

uncertainty and show that for small problems this can be solved exactly. This study of

uncertainty is motivated by the inherently uncertain nature of the treatment process.

Robust DEA, uDEA and simulation are applied to prostate cancer treatment plans to

investigate this uncertainty. We identify plans that have the potential to be improved,

which clinicians then replan for us. Small improvements were seen and we discuss the

potential difference this could make to planning cases that are more complex. To aid

this, we develop a prototype software, EvaluatePlan, that assesses the efficiency of a

plan compared to past treatment plans.
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Chapter 1

Motivation

One in every seven deaths worldwide is as a result of cancer; this is more than HIV,

tuberculosis, and malaria combined. Moreover, the global cancer burden continues

to increase with 21.7 million new cancer cases predicted by 2030, resulting in 13

million cancer deaths, largely due to an ageing population (Siegel et al., 2015). With

the ever-increasing number of cancer cases, improvement in treatment techniques is

essential.

With 60% of cancer deaths occurring in low/middle-income countries, lacking the

medical resources and health systems to support the disease burden (Siegel et al.,

2015), it is important that research into cancer treatment improvement reflects the

needs of the larger population.

This thesis addresses the ongoing need for a multidisciplinary approach to cancer

treatment and the potential contribution mathematical and statistical techniques can

have. Optimisation techniques are required throughout the treatment process to aid

in the identification of the treatment objectives and their relationship with clinical

criteria. Improved understanding of this relationship will aid the detection of potential

improvements, or confirm that past performance indicates possible improvements are

unlikely. Data Envelopment Analysis (DEA) techniques are explored and the effect

1



CHAPTER 1. MOTIVATION 2

uncertainty has on the treatment process is discussed and accounted for. Data from

prostate cancer patients at Rosemere Cancer Centre at the Royal Preston Hospital

are analysed and an initial implementation of clinical software is developed to improve

the utility of the outcomes.

1.1 Why prostate cancer?

In 2012 the world health organisation led an extensive project called GLOBOCAN,

with the aim of providing estimates of the prevalence of major types of cancer through-

out the world (Ferlay et al., 2013). This highlighted the increasing number of cases of

many cancers in both developed and third world countries. The study concluded that

prostate cancer is the second most common cancer worldwide for males, accounting

for 15% of all cancer cases and the fourth most common cancer overall, accounting

for 7.9% of cases (Ferlay et al., 2013). The study also highlighted that two thirds of

prostate cancer diagnoses are from more developed regions of the world. Some of this

will be due to more specialised diagnostic equipment and increase in those seeking

medical care. Therefore, these world statistics could in truth be closer to the Euro-

pean data where prostate cancer is the most common type of cancer in men, making

up 25% of all cases in men. With an increase in cases of prostate cancer in Europe of

16% between 2000 and 2011 (Cancer-Research-UK, 2014) it is an important research

area. Prostate cancer treatment is typically a more standard treatment than other

cancers. This is largely due to it having only two main Organs At Risk (OARs), the

bladder and the rectum, and the recurrence of similar shaped and positioned tumours

within the prostate. This research uses prostate cancer as a motivating example with

a view to extending the methods to more complicated cancer sites later.



Chapter 2

Introduction

2.1 Radiotherapy

Alongside surgery and chemotherapy, external beam radiotherapy is one of the major

forms of cancer treatment and about two thirds of all cancer patients undergo a course

of radiotherapy. Radiotherapy exploits a therapeutic advantage whereby cancer cells’

are unable to recover as well as healthy cells from radiation damage. Moreover,

radiotherapy is capable of delivering near conformal dose distributions to tumours

with complex geometries. Further details on the medical physics of radiotherapy can

be found in Bortfeld (2006).

Radiotherapy is a local treatment that uses radiation, either internally or exter-

nally to kill cancer cells. Typically internal radiotherapy treatment is only given to

patients with early-stage cancer whereas external radiation can be used for both ad-

vanced and early-stage cancer. The focus of this thesis is on assessing the treatment

planning process for Intensity Modulated Radiotherapy Treatment (IMRT) patients,

an external radiotherapy treatment.

Radiotherapy can be used as a standalone treatment or in combination with other

treatments. Used before or during other procedures radiation shrinks the tumour to

3



CHAPTER 2. INTRODUCTION 4

make surgery or chemotherapy more effective and used after other treatments it kills

any cancer cells that might remain.

Radiotherapy uses the damaging effects of radiation on tumour cells. As the

radiation passes through tissues it produces ionisation, causing physical and chemical

changes in the cells and damage to their intracellular mechanisms. Cells are most

sensitive to this effect immediately before mitosis, the point in the cell cycle when

the genetic material duplicates prior to cell division. Ionising radiation damages the

deoxyribonucleic acid (DNA) of the cells. Different cells have different length cell

cycles which contributes to the cells’ sensitivity to radiotherapy. Typically cancer

cells replicate and divide a lot faster than healthy cells resulting in increased tumour

growth compared to surrounding normal tissues. For external radiotherapy methods

high energy x-ray beams are used. Currently photon beams, in IMRT, are the most

common type of external radiation but other types of radiation such as particle beams

of protons/electrons or heavy-charged particles can be used. This will usually be

delivered over a number of outpatient sessions during several weeks. In this way the

total dose is divided into smaller doses called fractions. By fractionating the total

dose of radiation this allows healthy cells to recover in between treatment sessions.

The aim is that more cancer cells than normal cells will be irradiated when they are

most sensitive, resulting in selective tumour cell death with relative sparing of the

healthy tissue (HT).

The treatment process

While radiotherapy is generally regarded as a targeted, local therapy, it is not possible

to irradiate only the tumour. Therefore, the challenge in treatment planning is to

deliver a high dose of radiation to the tumour while sparing surrounding organs. The

treatment process for IMRT is illustrated schematically in Figure 2.1, each section of

the process will now be explained.
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Clinical protocol When a patient requires radiotherapy as part of their treatment

a large multidisciplinary team including clinical oncologists, planning dosimetrists,

radiographers and specialist nurses are required. To ensure each patient is treated

appropriately for each cancer type a clinical protocol is used. This documents the

treatment process from the referral process to patient follow up. It includes informa-

tion on patient preparation, required imaging, structures to outline, machine set up

and delivery and prescribed doses. Each hospital has their own clinical protocol for

each cancer type although many hospitals will have similar clinical protocols as they

are derived from clinical trials and medical guidelines. Clinical protocols are regularly

reviewed and updated as techniques improve and treatment processes develop. The

use of a clinical protocol ensures each patient is treated to the same standard regard-

less of the clinical team involved. For this research the use of a standardised treatment

method allows us to compare patients as we know they are clinically comparable due

to them following the same clinical protocol.

Imaging The first step in the treatment process is image acquisition. This is pri-

marily done using a computerised tomography (CT) scan. This uses x-rays to create

a detailed image of the structures inside the patient. CT imaging produces a more

detailed higher resolution 3-dimensional image than standard x-rays which is why CT

is normally used despite the higher risk to HT from increased ionising capabilities

of the CT. CT scans provide a detailed image of the inside of the body so that the

location, size and shape of the tumour and surrounding organs can be determined.

Other imaging techniques that can be used include Magnetic Resonance Imaging

(MRI) and Positron Emission Tomography (PET). When multiple imaging techniques

are used it leads to a series of data sets that must be correctly combined to create the

required 3D data set. This can be particularly challenging as each imaging modality

can result in different alignments in space, different pixel spacing and different displays
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Diagnosis
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Treatment planning Plan verification

Treatment

Figure 2.1: The treatment process for radiotherapy.

of anatomical structures. To overlay the different images correctly image registration

and data fusion is used. This is the process of transforming each set of image data

into the same co-ordinate system.

During image acquisition it is important the patient remains as still as possible

to reduce the motion artefact in the images. Internal organ motion, breathing and

patient fullness can cause blurring, streaks and changes in boundaries on the images.

For prostate cancer patients small external tattoos are drawn on to the patient before

treatment as a marker for patient alignment. Alternatively, metal artefacts or stakes,

can be used as these will be present in each image and can be used to ensure correct

orientation from every angle. For head and neck cancer patients plastic mesh masks

are made to keep the patient still. Moulds can also be used to keep legs and arms

still. It is important to correctly align the patient when the initial images are taken so
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that the target points lie accurately at the isocenter1 of the irradiation device during

both planning and delivery.

Contouring After imaging a clinical oncologist will contour the important organs.

This is the process where the organs are outlined on each of the individual CT scans.

In particular they will identify where the cancer is, the Gross Tumour Volume (GTV)

and the Organs at Risk (OARs). Figure 2.2 shows a CT image from a prostate

cancer patient with the prostate, the GTV and the bladder and rectum, the OARs

outlined. The schematic diagram on the right shows the relative location of the

volumes. Here, CTV stands for Clinical Target Volume, which consists of the GTV

and the estimate of microscopic tumour spread that cannot be detected in the CT

scan. To account for uncertainties, planning target volumes (PTVs), i.e. volumes

which are considered in treatment planning as targets for delivery of radiation dose,

are then defined with additional margins around the CTV. These margins are detailed

in the clinical protocol. Figure 2.2 illustrates that the ability to deliver a high dose

to the PTVs is negatively affected by the OARs, here the bladder and rectum, which

are immediately adjacent or even overlap the PTVs.

Creating the treatment plan The next stage in the treatment process is to create

the treatment plan. Optimisation techniques are used to: 1. select the beam angles

required to deliver treatment, 2. calculate the fluence map and 3. select the delivery

sequence for the MLC. These three optimisation problems are often referred to as the

geometry, intensity and realisation problems. All three of these optimisation problems

cannot be dealt with at once, therefore they must be optimised separately and their

results combined. Some methods incorporate the geometry and intensity or intensity

and realisation problems into a combined optimisation problem. A brief explanation

of each is given below; more detail can be found in Ehrgott et al. (2010).

1The isocenter is the point through which the central beam of radiation passes.
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Figure 2.2: A CT scan with organs contoured and a schematic overview of relevant

volumes for radiotherapy treatment planning.

Geometry: Beam angle selection Here the number of beams and the angles at

which to deliver the beams are decided. The angles are determined by the position

of the couch and gantry. This is particularly difficult in patients with complicated

geometry such as large areas of overlapping tumour and OARs.

Intensity: Inverse treatment planning The correct dose of radiation to admin-

ister to the patient must be calculated. The goal is to find the intensity that results

in a desirable dose distribution. This is regarded as an inverse planning problem as

the clinicians know the desired dose of radiation to the PTV but need to calculate the

corresponding intensity. The calculated intensity is used as the variable in a single-

objective optimisation process to provide a single solution of the dose distribution

that can then be used in further stages of the treatment planning process.

Radiation is measured in Gray2 (Gy). The dose distribution is defined by the

prescription to each area and limits that must be adhered to, e.g. for the prostate,

treat the PTV with 74 Gy and limit the dose to the rectum to 50 Gy. The patient’s

image is divided into voxels and the amount of radiation to be deposited into each

2One Gray is defined to be the absorption of one joule of radiation energy per kg matter.
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voxel is calculated. For details on how the dose deposition matrix is calculated see

Holder (2005).

Realisation: Calculation of leaf positions/trajectories After solutions for the

geometry and intensity problems have been found the leaf positions of the MLC must

be calculated. A MLC is a large metal device comprising individually moving leaves

that modulate the intensity to different areas, Figure 2.3. During treatment these

leaves change position to block different areas of the radiation field. This shapes the

radiation beam to the targeted area, creating a conformal shaping of the beams.

The radiation can be delivered via the step and shoot or dynamic method. In

the step and shoot method the radiation beams are turned off while the MLC leaves

change position. In the dynamic technique the dose is delivered continuously and the

leaf pairs change position during the dose delivery. This results in decreased treatment

time and hence reduces patient discomfort and therefore reduces the risk of patient

movement.

Figure 2.3: A schematic of a MLC showing the pairs of leaves shaped around the

target area.
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Treatment plan optimisation Once an initial treatment plan has been made

planners will try and improve it to ensure prescribed doses are met and OAR tolerances

are not exceeded. It is very difficult to design an optimal treatment plan due to the

large number of parameters involved. For example, Ehrgott et al. (2010) note that for

a five beam coplanar treatment there are 4.9× 1010 possible beam arrangements. A

MLC can have 8000 intensity parameters for each possible beam arrangement leading

to billions of possible MLC leaf pair configurations. Therefore it is currently not

feasible to plan all of the above three phases together.

A plan can be evaluated both through visual inspection and quantitative measures

to check if it meets the required prescribed doses and restrictions on dose to the OARs.

For complex cases it is unlikely to be an acceptable plan the first time round. As a

result, the planner must then change parameters and re-plan until a satisfactory plan

is found. For more details on this process see Schlegel and Mahr (2002). These

methods however, are inefficient and are subject to human error. The trial and error

aspect means the most desirable plan that could be achieved may not be found.

Treatment plan verification It is important that each plan is verified to ensure

that it is feasible and it meets all the clinical criteria. Continuous evaluation of the

treatment planning process is required due to the changes in weight of the patient,

muscle composition and growth of the tumour leading to images becoming outdated.

This makes treatment methods that take a long time to plan and perform unsuit-

able. Time, expertise and the cost of a treatment must be considered throughout the

treatment process.

To aid plan verification a phantom can be used. A phantom is a model of the

body, or a specific part of it that can be used to simulate the effect of radiation

on tissue. In radiotherapy treatment a water phantom is often used because tissue

consists mainly of water. Therefore, by calculating the radiation in the same volume
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Figure 2.4: Treatment couch(bed) with linear accelerator and rotating gantry. Wikipedia

and Narayanese (2011)

of water reasonable estimates of the absorbed dose-distribution can be obtained. The

use of a phantom also means the leaf pair sequence of the MLC can be checked i.e.

the MLC can physically deliver the planned treatment.

Treatment During treatment the patient lies on a rotating couch. Above the couch

a linear accelerator is fixed to a gantry that can rotate around its central axis, Figure

2.4. A linear accelerator forms the beams of radiation which then pass through the

rotating gantry allowing the radiation to be directed at the patient from any angle.

The head of the gantry contains a multileaf collimator (MLC) that shapes the radia-

tion beams via pairs of moving leaves. The rotation of the couch and gantry means

the radiation can be focused onto the patient from nearly every angle. The linear

accelerator accelerates electrons by microwave technology to produce high energy x-

rays. These x-rays then pass into the head of the linear accelerator where they will

be shaped by a MLC before being emitted as the gantry rotates around the patient

(Shepard et al., 1999).

With external treatment the risk to HT in the surrounding areas, particularly

tissues within the path of radiation that have a relatively high cell division rate (e.g.
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bowel and scalp hair follicles) is higher than that of internal radiotherapy. This

can cause toxicity: diarrhoea and hair loss in these examples. Radiation oncologists

endeavour to limit the radiation dose to non-tumour areas to limit toxicity.

Throughout the treatment planning process continual evaluation of the process

itself is required to ensure the best treatment is received by the individual. This

is particularly difficult in the optimisation processes involved in treatment planning

due to the trade-offs between treatment of the tumour and sparing of the OARs.

Treating the tumour can be achieved by using very high radiation doses. However,

this will also effect healthy cells and potentially subject the patient to lethal doses

of radiation. Conversely, by not irradiating at all, the patient may die of cancer.

Neither is desirable. Therefore, a suitable balance must be found between treatment

and sparing.

2.1.1 Prostate cancer

Prostate cancer is the second most common form of cancer in male patients and it

accounts for a large number of radiotherapy patients. The normal prostate is a walnut

sized gland present in males, that sits below the bladder above the penis. It is located

in front of the rectum and the prostatic urethra runs through the centre of the prostate

connecting the bladder and the penile urethra. Prostate cancer is the development of

cancer cells in this gland.

Prostate cancer can be treated by a variety of methods including expectant man-

agement (watchful waiting), surgery, radiation therapy, cryotherapy, hormone therapy,

chemotherapy and occasionally vaccine treatment. In 2012 the prostate cancer study

group performed and published a large comparative effectiveness study to compare

the success rates of all prostate cancer treatment options. They concluded that ra-

diotherapy external beam treatments proved suitable for approximately 80% of the

patients (PCRSG, 2013).



CHAPTER 2. INTRODUCTION 13

2.1.2 Treatment planning: Rosemere

Throughout this thesis we use data from Rosemere Cancer Centre, Royal Preston

Hospital, Lancashire (from now on we refer to it as Rosemere) to motivate the real

life applications of this research. Rosemere is a specialist centre based at the Royal

Preston Hospital that provides care and treatment to patients in Lancashire and

South Cumbria diagnosed with cancer. The radiotherapy department sees over 200

patients each day, treating patients with a wide range of cancer via treatment methods

including chemotherapy, radiotherapy and surgery (Lancashire-Teaching-Hospitals,

2017). Here we focus on radiotherapy at Rosemere.

Rosemere’s clinical protocol for prostate radiotherapy is based upon the CHHiP

clinical trial and guidelines from the Royal College of Radiologists (RCR, 2018), Clin-

ical Oncology Information Network (Mason et al., 1999) and British Association of

Urological surgeons (BAUS, 2019). Throughout Chapters 5 to 7 we use variables that

are extracted from Rosemere’s clinical protocol, i.e. we convert the recommended

prescribed doses to the PTVs and the constraints on the OARs to variables we can

analyse.

In addition to the clinical protocol Rosemere documents guidance on how to plan

IMRT treatment plans using the Pinnacle treatment planning system (Philips, 2009).

This is called the work instruction. This is used to guide medical physicists, clinical

oncologists and planning operators throughout plan creation. The working instruction

details how plans should be made on the treatment planning system. This includes

the structures to be defined based on the PTVs and OARs outlined by the clinicians.

The work instruction also includes advice on how to improve plans and the IMRT

objectives used in the planning software.

Rosemere treats prostate cancer patients with a three-dose level regime. To do

this after the CTVs have been contoured the outlined structures are grown to define

three new structures: PTV 1, PTV 2 and PTV 3, see Figure 2.5b. PTV 1 includes
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(a) Bladder, rectum and prostate (CTV 2).

(b) PTV 1, PTV 2 and PTV 3. (c) PTV 1-2 and PTV 2-3.

Figure 2.5: CT scan showing examples of outlining for a prostate cancer patient at

Rosemere. Image using data from Rosemere with CERR (Deasy et al., 2003).

PTV 2 and 3 inside its defined area and PTV 2 includes PTV 3. The PTVs define

three structures that include the CTVs and additional margins around the prostate

(and seminal vesicles). The prescribed doses are for the PTV 1-2, PTV 2-3 and PTV

3 where PTV 1-2/PTV 2-3 are the structures PTV 1 not in PTV 2 or PTV 3 and

PTV 2 not in PTV 3, see Figure 2.5c.

At Rosemere two schedules for Prostate cancer treatment are used. They are

60Gy in 20 fractions or 74Gy in 37 fractions. These are considered to be clinically

equivalent treatments as a result of the CHHiP clinical trial concluding “using 60 Gy in
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20 fractions is non-inferior to conventional fractionation using 74 Gy in 37 fractions

and is recommended as a new standard of care for external-beam radiotherapy of

localised prostate cancer” (Dearnaley et al., 2016).

If after an initial plan has been created the prescribed doses to the PTVs are not

met or the dose to the OARs are too high, planners must replan. At Rosemere the

work instruction documents the standard methods to employ if the desired prescribed

doses and mandatory OAR tolerances are not met. One method to improve a plan is

to reduce the PTV 1 posterior border to aid rectum sparing. Although this is common

practice, these improved plans cannot be included in our analysis as they are no longer

clinically comparable due to the redefinition of the PTV 1. Other methods Rosemere

employ to improve a plan include adding additional constraints to the rectum or bowel

inside the PTV 1 or adding a skin protector. If plans have these modifications, they

can still be used in our analysis as they are still clinically comparable as no structure

redefinition occurs.

To aid plan evaluation Rosemere examine a Dose Volume Histogram (DVH) (see

Section 2.2.1) analysis spreadsheet to assess the DVH metrics. Plans will be replanned

until all mandatory constraints are met and the clinician is satisfied with the dose

deposition in the PTVs. Plan evaluation and finalisation can also include assessing

the MLC shapes via a video of the leaf positions. This is to check that there are no

large jumps between MLC positions. All treatment plans must be checked and signed

off by the clinical oncologist in charge before treatment can commence.

At Rosemere two different MLC treatment machines are used. The Elekta Beam

Modulator (BM) and the Elekta Agility (AG). A summary of the differences in the

machine specifications can be found in Ruschin et al. (2016) and a more detailed

overview of the MLCs can be found in Patel et al. (2005) and Thompson et al. (2014)

respectively. The main difference between these machines are that the BM has 40

4mm leaf pairs and the AG has 80 5mm leaf pairs. In November 2015 when data
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collection started, the majority of the treatments were delivered on the BM machine.

However, now Rosemere only treat patients on the AG machine. Rosemere consider

the two MLC machines to provide clinically comparable treatments. Literature to

support this conclusion include Ruschin et al. (2016); Zhang et al. (2017) and Kantz

et al. (2015).

When treating prostate cancer, the variability of the volume of the bladder can

be reduced by patients emptying their bladder and then filling it with a set volume

of fluid. Not only does this help with the reproducibility of the treatment but it

helps reduce the small bowel and bladder toxicity (Waddle et al., 2018). However, for

some patients this can be very uncomfortable or not possible. Preston are currently

interested in the affect the volume of the bladder may have on the treatment.

2.2 Plan quality evaluation

During IMRT treatment planning, suboptimal plans are generated consistently. This

has encouraged objective measures of plan quality and the development of software

that can accurately predict if a plan can be improved or not (Moore et al., 2011).

Such decisions occur daily in most radiotherapy clinics, yet there are few, if any,

quantitative metrics to base decisions on when evaluating treatment plans. From a

set of acceptable plans how do you select the best plan for an individual patient?

How do you define best? The best plan can be chosen based on different attributes.

For example, the plan that most effectively protects HT, the least expensive plan or

the shortest delivery time. These different evaluation criteria result in a need for an

additional tool that can aid professionals in their decision making; a tool that includes

both past experience and data from previous successful treatments.

In Section 2.1 the three separate optimisation processes involved in creating a

treatment plan were introduced and the parameters that are involved in it. Many
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of the parameters interact but the nature of this interaction is unclear and it is

hard to verify whether changing one parameter in the selected plan will result in

a better plan. When radiotherapy treatment was first introduced plans were designed

manually and hence the assessment of the plans could be done by the physicians.

The limited capabilities of the radiotherapy equipment meant plans were relatively

straightforward. As medical technology and computer capability has improved so has

the complexity of planning, delivery and evaluation of the treatment. Shepard et al.

(1999) highlighted the need for mathematical optimisation tools to aid treatment

planning and assessment and it has been an active field in operational research since.

This challenge has been addressed in recent years by the development of mathe-

matical models and algorithms that are based on multi-objective optimisation, which

explicitly deals with the conflicting nature of the goals of radiotherapy and enables

the exploration of trade-offs between them. Breedveld et al. (2009); Falkinger et al.

(2012); Jee et al. (2007) and Wilkens et al. (2007) apply multi-objective goal program-

ming, where a sequence of optimisations is conducted to achieve prioritised and rank

ordered treatment goals pre-defined by the planner. The approaches of Bokrantz and

Forsgren (2013); Craft et al. (2006); Lin et al. (2016) and Shao and Ehrgott (2016)

compute a representative set of efficient plans that capture potential trade-offs in

optimisation objectives. These methods are generally complemented by a so-called

navigation method that assists the planner in selecting the best plan for the particular

patient from the representative set. Craft and Monz (2010); Craft and Richter (2013);

Ehrgott and Winz (2008); Lin and Ehrgott (2017) and Monz et al. (2008) are exam-

ples of such methods. Ruotsalainen (2009) proposes an interactive approach, where

the planner iteratively adjusts preferences based on the knowledge learned from the

generated plans and an optimisation run is repeated after each interaction with the

planner.

In practice, however, the vast majority of cancer centres worldwide do not have
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access to multi-objective optimisation based treatment planning systems. Hence,

radiotherapy treatments are usually designed with a planning system that is based

on single objective optimisation methods, often a weighted sum of the conflicting

objectives mentioned before. Ehrgott et al. (2008) provide a review of optimisation

problems in radiotherapy and Romeijn et al. (2004) investigate relationships between

multi-objective and single-objective approaches.

The difficulty surrounding selection of the best treatment arises as human planners

cannot be assumed to be moving toward some optimal solution. A more experienced

planner will have an idea of what constitutes a good solution but they will not be

able to determine whether or not it is truly the best plan that could be achieved in

the current circumstances. It is difficult to compare individual patients against one

another. The achievable doses to PTVs and the sparing of the OARs depends on many

unique factors including the individual’s anatomical geometry, tolerance to radiation

and cancer progression. Although there are IMRT planning objectives which have

been determined from population-based data to give physicians a suggested target,

they are very general and, consequently, unsuitable for more irregular cases such

as when a large overlap between the OAR and PTV exists. Without widespread

IMRT optimisation engines being developed physicians run the risk of “inadvertently

implementing treatment plans in which clinically relevant improvement would have

been possible” (Moore et al., 2011). It would be beneficial to reduce this dependency

on experience and patient variability.

In an ideal world a simple quantitative score could be produced that integrates all

data and objectives, incorporates the relationship between irradiated tumour tissue

and HT and outputs the best overall plan. However with so many parameters, vari-

ables and objectives this is not necessarily realistic. This is an area of the treatment

planning that could offer a great improvement to the quality of patient care and in-

crease the effectiveness and efficiency of the planning and treatment stages. It is for
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these reasons that this area of research has been the subject of many studies and why

it remains a valuable area into which to invest research time.

2.2.1 Existing treatment plan evaluation methods

A common method for comparing treatment plans is via the Dose Volume Histogram,

DVH. This is a histogram that graphically summarises the predicted dose distribution

for regions of interest. DVHs are constructed by binning the dose values for each voxel.

The histogram provides details of the frequency of each dose throughout the volumes

of interest. More commonly the cumulative distribution volume histogram (cDVH)

is used and is referred to as DVH interchangeably. This is calculated by summing

the DVH starting at the dose of interest up to the maximum dose. Both the volume

(vertical) and dose (horizontal) axes can be displayed in terms of gray or in relative %

volume or % dose, the latter making it easy to see if the minimum dose requirement

for a particular PTV has been met by a particular plan. An example of a DVH can

be seen in Chapter 6.

DVHs have the benefit of clearly presenting the uniformity of dose in the PTV.

However, they are not suitable as a stand-alone decision making test. This is because

of the loss of positional information in the volume(s) (Drzymala et al., 1991). DVHs

are also subject to insensitivity in terms of hot and cold spots; they cannot detect small

areas within the PTV(OAR) where the dose is significantly too low(high). This can

have repercussions if it is a fast growing tumour or if an OAR is a serial organ3. Due

to the binning process that creates the histogram care must be taken to pick suitable

sized bins especially when analysing large volumes with DVHs. DVHs are used as the

basis for many treatment plan metrics and assessment methods. For example many

hospitals use Vx and Dx metrics. Vx denotes the percentage of the volume of an OAR

3Serial organs can tolerate low doses of radiation to the whole organ but cannot tolerate high

doses to even a small volume.
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receiving x Gy or more of radiation dose and Dx is the dose received in Gy by x%

of the volume of a PTV. Both of these can be found using the DVH curves for the

associated organ and offer a way of checking clinical criteria are met.

Conformity Indicies (CIs) were introduced by the Radiation Therapy Oncology

Group (RTOG) in Shaw et al. (1993) as a method of comparing the degree of con-

formity between DVHs. CIs assign a score to each treatment plan to allow compar-

ison between different patients or multiple treatment plans from the same patient.

There are many different proposed indices with varying degrees of interpretability.

An overview can be found in Feuvret et al. (2006).

Normal Tissue Complication Probability (NTCP) models estimate the likelihood

of complications to the NT during treatment. They aim to reduce complicated dosime-

try and anatomic information to a single risk measure (Marks et al., 2010). There

are a selection of NTCP models that can be used including DVH reduction, tissue

architecture and multiple-metric models (Marks et al., 2010). NTCP models take into

account the different organ architecture of a patient. In Schlegel and Mahr (2002)

statistical models for NTCP are detailed. However they are rarely used clinically.

A common method of comparing treatment plans is to use decision objectives

(DOs). DOs can be objectives from the inverse planning stages, a mathematical

representation of one of the constraints or a surrogate objective that represents a

criterion that is too hard to represent mathematically. There are a wide range of

parameters that can be used as DOs including standard deviation of the PTV, mean

DVH or Equivalent Uniform Dose (EUD) of the OARs. Plans are ranked according to

how many of the prespecified DOs are met and the highest ranked plan is considered

the best plan. However there is normally a disparity between the inverse planning

objective space and the decision objective space; the objectives used to create the

plan are not the same as those to assess the plan. This makes it difficult to relate

the two stages of the planning process together. Phillips and Holdsworth (2011)
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highlight this by comparing the different objectives used for the two stages in seven

different publications in the International Journal of Radiation Oncology. None of

the publications used the same set of objectives for the inverse planning and the plan

assessment.

A similar concept to DVHs is the overlap volume histogram (OVH), a metric

proposed by Wu et al. (2009) to describe the “spatial configuration of an OAR with

respect to the target”. The OVH distance is signed such that an overlap is represented

by a negative distance. The OVH represents the percentage of the OAR volume

that overlaps the PTV. This produces a curve that characterises the relative spatial

configuration of the two objects. OVHs were also used in Yang et al. (2013) to compare

a new treatment (insertion of hydrogel before radiotherapy) to those plans without.

Bohsung et al. (2005) use a quality score to compare plans from 11 different centres

in Europe. Six objectives based on over and under-dosage to the PTV, over-dosage

to the OAR and over-dosage to the NT were compared by summing the difference

between the planned dose Mj and the delivered dose, Cj for the jth objective. The

quality score was then calculated by

S =
∑
j


|Mj − Cj| if objective is violated

0 otherwise.

In this way a plan that met all six dose objectives would have a score of 0 and plans

could be ranked whereby increasing value in S represents increasing inferiority of

plans.

In Niemierko (1997) the concept of equivalent uniform dose (EUD) was introduced

for tumours to try to combat the “oversimplification made when the dosimetric aspects

of a complex three-dimensional treatment plan are reduced in the patient’s records to

a dose or a few doses at the reference point or points”. Two dose distributions were

considered equivalent if they resulted in the same radiobiological response. In this way

the EUD was defined as “the dose in Gy, which, when distributed uniformly across
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the target volume, causes the survival of the same number of clonogens4” for any

dose distribution (Niemierko, 1997). In Niemierko (1999) the concept was developed

further to include NT. This was termed the generalised Equivalent Uniform Dose

(gEUD). The gEUD penalises over-irradiation of the OAR and under-irradiation of the

PTV, it enables comparison of different fluence maps and therefore can aid treatment

plan selection.

To calculate the gEUD, the total dose deposited into each voxel in each region

must be calculated. The regions refer to whether the voxel is in an OAR, PTV or NT

and therefore require different doses of radiation. To do this, it is assumed that the

total number of beams and the beam angles have already been decided upon. The

dose distribution dRj for voxel j in region R is calculated and the gEUD for each region

can be found,

gEUDR
a (x) =

 1

mR

mR∑
j=1

(dRj )
a

 1
a

.

Here mR is the total number of voxels in region R and a is a region-dependent parame-

ter. By setting a < 0 for the PTV and a > 1 for the OAR the model correctly penalises

under(over)-irradiation in the PTV (OAR). Furthermore by increasing the size of a,

|a|, the sensitivity of the gEUD to less(more) irradiated voxels in the PTV(OARs)

increases. The difference in a also affects the optimisation problem, when a ≥ 1

gEUDR
a (x) is a convex function whereas when a < 0 it is a concave function.

gEUD measures can be used in a multi-objective fluence map optimisation (Cabr-

era et al., 2014). The optimisation problem aims to minimise the gEUD of some

OARs while still delivering the prescribed gEUD to the PTV and ensuring the gEUD

of all the other OAR are below a set bound.

Lin et al. (2013) also use the gEUD to assess treatment plans. They use a DEA

model to evaluate treatment plans for prostate cancer at Auckland Radiation Oncol-

4Clonogens are cells that can form clones of themselves, often but not limited to tumourous cells.
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ogy in New Zealand. They compared 37 plans via the gEUD for the rectum, D95 for

the prostate and overlap of the percentage volume of rectum overlapping the PTV.

After replanning 5 of the plans that they believed could improve they concluded that

“the results confirm that DEA is capable of identifying plan improvement potential

and predicting the best attainable plan in terms of the inputs and outputs”. We will

discuss this study more in Section 5.2.1 where we apply the method to data from

Rosemere.

Another technique for treatment plan evaluation is to use a database of past

successful treatment plans to help inform decisions for new treatment plans. In Wu

et al. (2009) when a new plan is created the geometric configurations of the OAR

and PTV are compared to those in the database via their OVH’s. In Moore et al.

(2014) automatic treatment planning is used to provide planners with a good initial

plan that can be used as the basis for their trial and error optimisation approach.

This is done by comparing the doses to the OARs of the patient to a database of

existing ones via their OVH’s. The system highlights those plans which fail to reach

the objectives met by prior similar patients. The database exists as a separate entity

outside the planning system to achieve optimal interfacing of the software with the

different treatment planning systems. This means centres that use different software

can still benefit from the shared knowledge of previous plans. This is particularly

important for future radiotherapy treatment clinics being set up and new software

being trialled as they will have no prior plans to assist them.

Rapidplan R© software by Varian use a knowledge based system (KBS). Previous

plans are saved in a database to provide an initial starting point for future treatment

plans. This provides a prototype clinical strategy for the treatment of a tumour in a

particular location in the body. By separating knowledge data from the optimisation

programme it allows the knowledge to be adapted to new requirements. As treatment

plans improve the knowledge can be updated further.
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In Moore et al. (2011) a Quality Control (QC) tool was implemented into pre-

existing IMRT planning software. Treatment plans are compared by looking at the

ratio of the mean principal OAR dose (DOAR
mean) to the PTV prescription dose (DPTV

pres )

and comparing this value to the fraction of the OAR overlapping the PTV,
Voverlap
VOAR

.

42 IMRT plans from prostate and head & neck tumours, that have been previously

implemented were used to create a model to predict the achievable mean doses. The

DOAR
mean

DPTV
pres

and
Voverlap
VOAR

were plotted against each other resulting in a function with a lower-

bound, representing the best organ sparing as a function of overlapping volume. The

model’s efficiency was then tested by integrating it directly into the treatment plan-

ning work-flow. The clinical prostate and head & neck IMRT plans generated in the 3

months prior to the introduction of the OC tool were compared with those generated

in the following 4 months to determine the effect of the proposed QC technique. The

study reports significant differences between the mean dose and the prescribed dose

suggesting this is a suitable tool to increase normal tissue sparing and aid quality

control of IMRT plans.

In Chapter 5 we will use some of the evaluation techniques discussed here to

develop a plan evaluation method based on DEA.

2.2.2 Introduction to data envelopment analysis and its ap-

plication to radiotherapy treatment planning

Data envelopment analysis (DEA) is a management science technique to perform

relative performance analysis among a group of comparable “decision-making units”

(DMUs). In the context of the evaluation of radiotherapy treatment plans, DMUs are

the treatment plans and DEA assesses how well the plans perform in “transforming

inputs into outputs”, i.e. delivering the prescribed dose to the tumour while limiting

the dose delivered to OARs. The resulting efficiency score is relative to the set of

plans considered in the study. A mathematical introduction to DEA can be found in
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Chapter 3.1, and a description of its application in radiotherapy treatment planning

is presented in Lin et al. (2013).

Data in the form of inputs and outputs is used to form an efficient frontier. This

comprises of a subset of DMUs that represent the standard of performance that all

DMUs should try to achieve. Only DMUs with inputs (outputs) that cannot be

improved without worsening any other input or output will be on the efficient frontier.

In this way the efficient frontier always represents the current best attainable result

as determined by the dataset.

Efficiency is assessed by comparing a particular DMU to all other DMUs in the

set and searching for possible improvements. To do this the relationship between the

inputs and outputs must be considered. If it is believed that the outputs increase by

the same proportional change as the inputs a constant returns to scale (CRS) model

should be selected. Otherwise if it is believed the change in inputs does not result in

a proportional change in outputs a variable returns to scale (VRS) model should be

used. The chosen economy of scale affects restrictions put on the feasible set. The

orientation of the DEA model must also be considered. This should be done based

on which of the inputs/outputs the decision maker has control over and the desired

objectives.

If we consider the radiation dose to OARs as the “cost” or input necessary to

achieve the “profit” or output of radiation dose to the PTV, we can view the problem

as one of input-output or performance analysis in an economic setting. This approach

was developed by Lin et al. (2013), who use DEA for the evaluation of radiotherapy

treatment plans for prostate cancer at Auckland Radiation Oncology in New Zealand.

In a radiotherapy setting the intensities, which are set by the oncologists can

be thought of as inputs to the model and the dose distribution, which ultimately

determines the medical outcome of the treatment, as the output. In this way a

good treatment plan would minimise the dose to the HT and maximise the dose
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to the PTVs. This lends itself to an input orientation method. DEA aims to assess

treatment plans by comparing each new plan to previous treatment plans to provide a

peer assessed performance measure. Each individual DMU receives an efficiency score

which is an indication of how well it performs compared to other DMUs. Those DMUs

deemed efficient create an efficient frontier that can offer further information on the

relationship between the inputs and outputs and give guidance on realistic targets

for future plans. This provides an enhanced understanding of the set of DMUs as

individuals, instead of relating them to a perceived average.

DEA requires no assumptions to be made about the functional form of the efficient

frontier or a priori weights for the inputs (outputs). Instead the efficient frontier is

based on the best attainable results in a dataset of historical treatment plans. This

ensures that the suggested improvements to plans are attainable with the particular

hospital’s limitations. However, this does mean that the efficient frontier may not

include the best plan if it has not yet been achieved. This will be partially overcome

by the addition of new plans to the database causing the efficient frontier to move

closer to the true optimal frontier. The suboptimal plans are then expressed as changes

that need to be made to the inputs to improve the plan.

Additional benefits to applying DEA to assess treatment plans is DEA’s ability

to handle multiple inputs and outputs. This is particularly important due to the

conflicting nature of treatment objectives. However, care must be taken not to include

too many variables as this can cause the DEA to lose discrimination power on the

performance of the DMUs. DEA can adapt to exogenous variables i.e. variables that

come from outside the model and are unexplained within the model. For example the

overlap between the OAR and PTV or the volume of the patients’ bladder.

In Chapter 3 we introduce the mathematical DEA models we will use and in

Chapters 5 to 7 we apply them to data from Rosemere.
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2.3 Uncertainty

The International Atomic Energy Agency (IAEA) published a report on the accuracy

requirements and uncertainties in radiotherapy (Kurokawa, 2018). Their motivation

for this report was that “there is no measurement (or procedure) in the radiation

treatment process that can be performed perfectly; each step has a corresponding

uncertainty”. They defined this uncertainty to quantitatively be “a parameter that

characterizes the dispersion of values that can be obtained for a particular measure-

ment when it is performed repeatedly”. This report is supported by over 150 countries

including the United Kingdom and New Zealand. A review of the report is given in

van der Merwe et al. (2017). They summarise the report in nine general recommen-

dations of which three are applicable to this thesis.

1. “Each institution should determine uncertainties for their treatment procedures.

Sample data are tabulated for typical clinical scenarios with estimates of the

levels of accuracy that are practically achievable and suggested action levels”.

2. “Comprehensive quality assurance programs should be in place”.

3. “For reporting purposes, uncertainties should be presented”.

Recommendation 1 highlights the need for estimates of the uncertainty present through-

out the treatment planning process. We use published estimates to advise us on suit-

able uncertainty values for our models in Chapter 5. Recommendation 2 expresses

a desire for quality assurance programs. Our methods provide a quantitative eval-

uation of how well a plan compares to previous treatment plans. Recommendation

3 highlights the continual need to research and report findings on uncertainty. This

will aid in further development of our models as more data on the uncertainties in-

volved in the treatment process will allow us to adapt our models. This could be by

calculating suitable allowable uncertainty levels for our simulation in Section 6.1 or
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redefining our uncertainty sets in the robust optimisation model in Section 6.2. The

report Kurokawa (2018) highlights that uncertainty in radiotherapy treatment is still

a vast and growing area of research for both monitoring and determining the amount

of uncertainty, and how to handle it in the treatment planning models.

2.3.1 Sources of uncertainty in radiotherapy

It is well known in radiation oncology that the outcomes of radiotherapy differ from

the plans, i.e. the doses delivered to structures are usually slightly different from those

calculated during treatment planning. This uncertainty in predicting radiation dose

delivered to PTVs and OARs has many sources. The first is the inherent uncertainty

in the computational models for radiation dose. These are mathematical models

of the physical interaction of radiation (photons) with biological tissue representing

the deposition of dose in the body. This process cannot be described with 100%

accuracy. Further factors are the physical design of the treatment machines delivering

the radiation. Small amounts of radiation leakage cannot be prevented due to the

need to modulate intensity of radiation across beams. Many assumptions have to

be made to prevent the dose-computation calculation becoming too complicated and

time consuming. For example it is assumed that adjacent CT scan slices are identical

in tissue composition to the slice in which the dose is being calculated; the lateral

scatter from adjacent slices is negligible because a small enough field is being used

(Khan, 2003) and when calculating the average number of surviving clonogenic cells

the average can be found using a negative-exponential function of the dose (Bentzen,

2009).

Apart from these mathematical and engineering factors, a compounding issue

arises due to the delivery of the treatment over several fractions. Since the patient

returns for treatment over a number of days (37 or 20 in our Prostate case study) it

is inevitable that the positioning of the relevant structures differs slightly from day
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to day. Roeske et al. (1995) found that the prostate volume can change by +
−10%

and the rectal and bladder volumes can change by up to +
−30% and Moiseenko et al.

(2007) saw changes in bladder volume from 419cm3 to 90cm3 during treatment. In

Booth and Zavgorodni (2005) they report that large variations in rectal dose (> 15

Gy) are possible when they evaluate the range of inter-fraction rectal dose variations

for prostate cancer patients. Antolak et al. (1998) investigated changes in prostate

volume throughout treatment and found that averaged over all patients and not in-

cluding set-up errors,the mean displacements were slightly less than 0.5 cm. However

for individuals the range of displacement was 0.03 cm to more than 1.5 cm. Das et al.

(2008) observed high variability among planners and institutions, reporting that the

median dose to the tumour can vary by +
−10% of the prescribed dose across 96% of

the patient population.

When defining the PTVs and OARs there is a large variability in human contour-

ing accuracy (Moore et al., 2012). This is often dependent on the experience of the

planner, the technology and the software used in the hospital. It has been found that

even in organs that have high definition, from high boundary contrast, a CT scan con-

touring reproducibility was limited to 2mm (Moore, 2009). Other inter-institutional

studies report even larger variation than this (Moore et al., 2012). Published expert

gold standards are available for common tumours. However, if a tumour is irregular

or there is a large overlap the variation can increase further. To improve accuracy

the same structures can be repeatedly contoured but this increases the duration of an

already time consuming process. If repeated contouring is used a metric called the

dice coefficient/measure (DC) can be used to compare results (Allozi et al., 2010).

The DC normalises the intersection of two sets, here the area of a contour, with the

sum of constituents. This measures how closely two sets of contours are related to

each other via the following metric

DC =
2|A ∩B|
|A|+ |B|

.
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The DC is available in many commercial treatment planning systems. However,

this metric only looks at the differences in the volumes not the surface variation, a

mathematically more complex task.

Throughout the treatment process images are required, initially as a diagnostic

tool, then to develop a treatment plan and finally in treatment administration to

ensure correct alignment of machinery and the patient (Chowdhury et al., 2010).

Imaging technique errors can take a variety of formats from misalignment of the

patient during imaging to technical and human error in the form of inattention or

inexperience. One significant error that occurs after the imaging process as a result

of poor imaging is that the tumour volume is not clearly defined. This occurs because

of “microscopic extensions, which may or may not exist,” appearing on an image

(Holder, 2005). Treatment planners need to take the irregular appearance of the

tumour shape into account to allow for these microscopic extensions (Kessler, 2006).

One major area of subjectivity in treatment planning is the dependency on the

treatment centre and its corresponding equipment. To understand this further and

to assist in draft guidelines for the verification of IMRT, the QUality ASsurance of

Intensity-MODulated beams in radiation Oncology (QUASIMODO) group set up an

investigation between 11 of their centres throughout Europe (Bohsung et al., 2005).

Each centre was provided with phantoms and pre-contoured CT scans (to remove the

subjectivity of contouring) and detailed instructions on how to perform the treatment

planning. The PTV was chosen to test the limitations of the techniques and methods

of each centre. Specific objectives were set but there were no constraints on how to

perform the treatment planning.

After each centre had completed the treatment planning the results were extracted,

collected and then compared to the original dose objectives. Of the 11 plans only one

plan fulfilled all the objectives. Of the remaining plans 6 failed some objectives but

were still clinically acceptable and the remaining 4 were deemed clinically unaccept-
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able. The plan that fulfilled all the objectives was from the only centre that used

Intensity Modulated Arc Therapy (IMAT) as their treatment technique and IMAT is

recognised to be perfectly adapted to the specific geometric arrangement of the PTV

and OAR that occurred in this setting (Bohsung et al., 2005). The results highlighted

the considerable differences between the DVHs of the PTV and OAR for different

plans. Different centres make different compromises between target coverage, dose

outside the PTV, number of beams and the number of monitor units. Although the

plans did differ the study found that if the planning goals are clearly defined prior to

treatment, comparable dose distributions can be achieved between different planning

programmes.

From this section we conclude that there are many uncertainties associated with

the radiotherapy treatment process. From the mathematical modelling of the dose

distribution and the physical interaction of radiation with the biological tissues, to

the variability in human contouring and treatment equipment alignment. We now

consider how these uncertainties can be modelled.

2.3.2 Handling uncertainty in radiotherapy

We turn our attention to methods for modelling the uncertainties introduced in Sec-

tion 2.3.1. Although we are ultimately concerned with modelling the overall uncer-

tainty in a treatment plan, we need an appreciation of the way uncertainty is handled

throughout the process. Therefore, here we give a brief overview of some of the

methods used to model the uncertainty in radiotherapy treatment planning.

To model the uncertainty arising from the physical interaction of radiation with

biological tissues Kozlovska et al. (2017) develop a physical-mathematical model of the

distribution of optical radiation in biological tissues. This allows them to determine

the change of intensity of optical radiation and investigate the effect of parameters in-

cluding installation angle of the sensor, biological tissue thickness and the wavelength.
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McMahon and Prise (2019) reviews the current mechanistic modelling techniques for

radiation responses. They highlight that “due to the lack of distinction between differ-

ent modelling assumptions there is very large uncertainty in the underlying biological

parameters”, suggesting that methodology for handling these uncertainties is still an

active area of research due to the complexity of the processes they are modelling.

During the planning stages and calculation of the dose distribution, model specifi-

cation and assumptions on the dose calculation lead to many uncertainties. Lian and

Xing (2004) investigate these uncertainties by modelling the inverse planning param-

eters as probability density functions to determine whether or not the final solution

of the inverse planning is dependent on these parameters. They conclude that they

are and highlight the need for accurate methods of modelling the uncertainty in the

parameters. Budiarto et al. (2011) model the uncertainty in some of these parameters

by using average values and variances of the dose distributions from patient-specific

local probability distributions in the inverse treatment planning. They determine the

probability distributions by modelling the uncertainties in the deformations of organs

between treatment fractions.

Booth and Zavgorodni (1999) review the set-up error and organ motion uncertainty

to collate the magnitudes of uncertainty for specific organ sizes and set-up techniques.

However, they point out that often the methods used and the parameters measured to

derive these values of uncertainty can differ greatly between studies. They conclude

with a brief review of methods to account for these uncertainties. Their results indicate

that, “when high confidence levels (e.g. 95%) are reached the total uncertainties in

the dose location become the limiting factors for treatment accuracy”.

Other studies have used different methods to investigate the uncertainty in ra-

diotherapy treatment planning. Booth and Zavgorodni (2001) study the effects of

radiotherapy treatment uncertainties on the delivered dose distribution and tumour

control probability. Whereas, Holloway et al. (2017) develop a method for acquiring
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random range uncertainty probability distributions in proton therapy. Karger (2006)

consider an alternative source of uncertainty when they investigate the biological

models in treatment planning and their associated uncertainties. Additionally, there

are many other methods for modelling these investigated uncertainties. For example,

Smith et al. (2016) develop a multiobjective optimisation method to model the de-

cisions made under uncertainty. This allows them to develop personalised treatment

planning for IMRT prostate cancer patients.

2.3.3 What we regard as uncertainty

This discussion of the numerous sources of uncertainty may cast doubt on the DEA-

based evaluation of treatment plans in Section 5.3. We assume the planning data

to be exact and classify treatment plans as efficient or inefficient based on these

data. However, it is likely that the values for the variables used in the analysis are

imprecise. Hence, it is also possible that an inefficient plan does actually perform

well in practice. In Chapter 6 we take uncertainty into account when evaluating

the quality of treatment plans. We explore this opportunity to leverage uncertainty

in order to identify treatment plans that are only considered inefficient due to the

precise computation of plan data but that would perform well when considering the

uncertainty.

We assume that the variables are in fact realisations from a range, called an

uncertainty set, this will be introduced in Section 3.2. We consider how uncertainties

in treatment planning affect treatment quality, as measured by the efficiency score

from DEA.

In this thesis we assume that each OAR and PTV variable v can take any value

in the interval [v − ε, v + ε], where ε is uniformly distributed in [0, u]. Then we can

sample from these distributions and simulate uncertainty in the treatment plans. The

standard assumption is that uncertainty is proportional to the dose. The International
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Commission on Radiation Units and measurements (Andreo et al., 2004) conclude that

the available evidence for certain types of tumour points to the need for accuracy +
−5%.

Combining the standard uncertainty value for dose determination and the uncertainty

associated with Pinnacle for multileaf collimators, Henŕıquez and Castrillón (2008)

suggest an uncertainty of 3.6% should be used.

The mathematical models we use to handle the uncertainty are drawn from the

robust optimisation, sensitivity analysis and uDEA literature (Section 3.2, 3.3 and

3.4). These are then developed in Chapter 4 where we discuss how we handle uncer-

tainty in the mathematical models and develop the uDEA model for box uncertainty,

as motivated by the radiotherapy uncertainty literature.

Many of the models involved in treatment plan creation involve solving linear opti-

misation problems (see Section 2.1). It is often assumed that a small data uncertainty

(≤ 1%) can be ignored and the resulting solutions can be regarded as exact (Ben-Tal

et al., 2009). However, in Ben-Tal and Nemirovski (2000) 94 NETLIB5 collections

were investigated under random 0.01% perturbations of the data to investigate the

true effect uncertainty can have. It was found that 13 of the 94 NETLIB problems

became severely infeasible (with a non-negligible probability some of the constraints

were violated by at least 50%). This suggests that even small amounts of uncer-

tainty can have a large effect and that a technique is required that accounts for the

uncertainty in the solution.

We conclude that the nature of uncertainty and its effects on modelling require

further research from both a mathematical and radiotherapy point of view.

5Netlib is a collection of mathematical software, papers, and databases.
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2.4 So what is this thesis about?

In this thesis, we determine: ‘how multi-criteria decision making (MCDM) methods

can help support treatment planners, given that the plans are created with commercial

treatment planning systems?’ We evaluate the quality of treatment plans generated

by an existing system and provide recommendations to planners on possible improve-

ments. Due to the conflicting nature of the goals of radiotherapy (tumour control and

sparing of HT) MCDM methods are appropriate tools to deal with this question and

we therefore develop further MCDM models here.

In Chapter 3 we introduce the mathematical background required for this Thesis.

DEA (Section 3.1), a management science technique to perform relative performance

analysis. Robust optimisation (Section 3.2), a method for modelling uncertainty in

optimisation problems. Sensitivity analysis in DEA (Section 3.3), a technique used

to investigate the effect that small local changes in a dataset have on an optimal

solution and hence the decisions being made. uDEA (Section 3.4), a method to

handle uncertainty in DEA and finally, variable selection methods (Section 3.5) with

a focus on principal component analysis are discussed to aid application of our other

methods to our data from Rosemere.

In Chapter 4, unlike other disciplines, we leverage the uncertainty present in the

data such that inefficient DMUs may improve. In Section 4.1 we define preliminary

results and concepts to be used. We consider fixed amounts of uncertainty in Sec-

tion 4.2 to maximise the possible increase in efficiency score for an inefficient DMU.

Building upon Ehrgott et al. (2018) in Section 4.3 we refine the concept of uDEA for

the specific case of box uncertainty. We explore the relationship between the amount

of uncertainty required for an inefficient DMU to be deemed efficient and how this

efficiency is achieved. We address the question ‘when uncertainty is introduced, is it

beneficial for an inefficient DMU to compare itself to a facet of the efficient frontier
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not defined by its nominal peers?’ We determine the minimum amount of uncertainty

required for a DMU to be deemed efficient. For small problems, this value can be

easily calculated but for larger instances, this becomes computationally intensive as it

requires the facets of the Production Possibility Set (PPS) to be known. The theory

from this Chapter is then applied to the data from Rosemere in Chapters 5-7.

In Chapter 5 we present details of our case study which we introduced in Section

2.1.2. In Chapter 5.1 we outline the data we have obtained from Rosemere and

describe the steps we followed in conducting this case study. In Section 5.2 we deal

with the issue of data selection: which of the vast amount of data available for every

single treatment plan is necessary and sufficient for quality evaluation? To do this

we introduce a new method, autoPCA. autoPCA addresses some of the weaknesses

of PCA with respect to the sample being used and the variables being selected. In

Section 5.3 we apply DEA for the evaluation of treatment plan quality. In this way,

we classify plans from Rosemere as efficient or inefficient based on the achieved values

of other comparable plans.

After concluding in Chapter 5 that DEA is a suitable method for treatment plan

quality evaluation, we address the need to account for uncertainty in our data in

Chapter 6. In Section 6.1 we apply simulation techniques to deal with this issue

and show how uncertainty affects the results of DEA. In Section 6.2 we apply robust

DEA to the same dataset so that we can compare the two methods in Section 6.3.

For a small subset of the data, our comparison includes results for the uDEA model.

From these results we select a small subset of plans that we believe could benefit from

replanning. Section 6.4 details the results of replanning by Rosemere.

In Chapter 7 we present a proof of concept for a piece of software, EvaluatePlan,

to be trialled at Rosemere. EvaluatePlan is in the form of an R shiny app (Chang

et al., 2019) and provides assessment of treatment plans to determine whether they are

efficient. EvaluatePlan allows the user to select an amount (or range) of uncertainty
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they wish to see if a plan will be considered efficient for.

In Chapter 8 we summarise our findings and suggest potential future research

directions.



Chapter 3

Mathematical background

We now introduce the mathematical background required for this Thesis. The meth-

ods introduced are Data Envelopment Analysis (DEA) (Section 3.1), robust optimisa-

tion (Section 3.2), Sensitivity Analysis in DEA (Section 3.3), Uncertain DEA (Section

3.4) and finally variable selection methods (Section 3.5).

3.1 Data Envelopment Analysis

Charnes, Cooper and Rhodes (Charnes et al., 1978) first introduced Data Envelop-

ment Analysis, DEA, in 1978. The literature and techniques developed quickly with

400 publications between 1978 and 1992 (Charnes et al., 1994). By 2016 the number

had risen to over 10,300 publications and they continue to rise to this day (Em-

rouznejad and Yang, 2018). DEA has become popular because it combines theory

and practice; practical applications are motivated by theoretical developments in the

field, while the applications highlight downfalls in the theory that researchers need to

address. Operations analysts, management scientists, industrial engineers and many

others have used DEA throughout many different industries.

The original motivation behind DEA was to develop a method for assessing not-

for-profit organisations such as schools and hospitals, corporations that could not

38
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be assessed by the traditional method of comparing profit or stock market indices.

However, since profit is not always a good indication of the potential improvement a

firm can achieve it has also been used to compare profit-making organisations.

DEA calculates a performance measure for each Decision Making Unit, DMU,

relative to all the other DMUs in the observed population.

Definition 3.1.1. A Decision Making Unit, DMU, is defined to be the entity respon-

sible for converting inputs to outputs.

The term DMU was first introduced by Charnes et al. (1978) to highlight the

distinction of DEA from more standard profit based efficiency measures. They in-

troduced the efficiency measure for public programs and hence referred to the term

‘program’ as a collection of DMUs with common inputs and outputs. By introducing

a somewhat vague definition of a DMU, it was hoped that the potential flexibility

of the method would be realised. In this way, DMUs can include departments of or-

ganisations, banks, manufacturing units, universities, students exam results, hospital

wards and many other programs from a wide range of applications.

For a collection of I DMUs, DEA consists of I mathematical programs, one for

each of the individual DMUs. A performance measure is then calculated for each DMU

relative to all the other DMUs in the observed population. This creates an efficient

frontier with each DMU lying on or below it. In this way, DMUs are classified as

efficient or inefficient where we use the Pareto-efficiency (sometimes called Pareto-

koopmans-efficiency) definition from Charnes et al. (1981).

Definition 3.1.2. A DMU is Pareto-efficient if and only if none of its inputs can be

decreased without either (i) decreasing some of its outputs, or (ii) increasing some of

its other inputs, and none of its outputs can be increased without either (i) increasing

one or more of its inputs or (ii) decreasing some of its other outputs.

In this way efficient DMUs will lie on the efficient frontier and inefficient DMUs



CHAPTER 3. MATHEMATICAL BACKGROUND 40

will lie beneath it. Any DMU that falls below the efficient frontier can be scaled

against a linear combination of the DMUs on the frontier. DEA produces relative

efficiency measures from the observed data and hence provides a realistic target for

improvement. DEA focuses on the individual observations of each DMU instead of

an overall average that can easily be distorted by outliers and environmental factors.

DEA is an attractive method because it characterises each DMU by a single summary

relative efficiency score and as Charnes et al. (1994) conclude, “specifying abstract

statistical models and making inferences based on residual and parameter coefficient

analysis is no longer required”.

First, in Section 3.1.1 we discuss the basic concept of efficiency and introduce

Example 1: comparing hospital departments. In Section 3.1.2, we introduce some

important definitions and common DEA models. In Sections 3.1.3 and 3.1.4, we look

at economies of scale and model orientation before concluding in Section 3.1.5 with

some further extensions that can be made to the DEA models. Throughout Section

3.1 we use Example 1 to demonstrate the concepts and methodology introduced.

3.1.1 Basic concept of efficiency

The Oxford English Dictionary defines efficiency as “the ratio of the useful work

performed by a machine or in a process to the total energy expended or heat taken

in”. This definition has been used in physics and engineering for many years and

a natural extension to this definition is the ratio of outputs to inputs. In this way,

efficiency can be thought of as the ratio of total outputs to total inputs in a system,

efficiency =
sum of outputs

sum of inputs
. (3.1)

We wish to consider the efficiency in terms of possible alternatives in the system and

hence we look at the relative efficiency. Considering all DMUs, which has the best

ratio of inputs to outputs? These DMUs are assigned an efficiency score of 1, or
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100%. The method ranks a set of DMUs and indicates which are efficient and those

that have the potential to improve.

Charnes, Cooper and Rhodes coined the phrase DEA and introduced the Charnes

Cooper Rhodes, CCR model, Charnes et al. (1978). Their paper was originally titled

“Exposition, interpretations and extensions of the Farrell efficiency measure” high-

lighting the earlier version of DEA by Farrell (1957). Farrell was motivated by the

need to produce a quantitative measure of “how far a given industry can be expected

to increase its output by simply increasing the efficiency, without absorbing further

resources”. His paper on “The measurement of productive efficiency” was used to

compare agricultural production methods in the United States. In Section 3.1.4, we

see that Farrell’s measure is what is now referred to as output-oriented DEA.

Mr Sturrock, a reviewer of Farrell’s paper, comments on his concern for a “system

which depends on joining up the best results”. He worried that it would result in

“hanging the carrot too high and the donkey will be discouraged” (Winsten, 1957).

However, in DEA the goals are set by the data, rather than arbitrarily picked by expert

opinion or ideal targets. As a result, we argue that DEA produces an attainable,

realistic goal for other DMUs as long as the inputs and outputs are suitably chosen.

Here we define inputs and outputs for a DEA model in the following way.

Definition 3.1.3. An input to a DEA model is a variable such that an increase will

come at a cost either in a financial sense or in terms of resource/time allocation. It

is any variable used to produce something of value for a DMU. Hence, it is a variable

we wish to minimise to improve efficiency.

Definition 3.1.4. An output to a DEA model is any variable which describes the

outcome financially or otherwise, from the resources required and processed in a sys-

tem. Therefore, these variables should be increased as much as possible to increase

the overall efficiency.
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We introduce a simple example with a single input and output in Example 1. Here

we note that this is a simplified version of judging a hospital department efficiency

as in practice there would be many more variables that would need to be considered.

For a more in-depth hospital efficiency application of DEA see Jacobs (2001), where

hospitals are compared against one another using variables such as the proportion

of patients over 60, average available beds and percentage of total revenue spent

on research. Example 1 is provided here to aid understanding of the DEA models

presented in the remainder of this chapter not as a conclusive measure of hospital

departments’ efficiency.

Example 1: One input, one output: Comparing hospital departments

Consider eight different hospital departments, A−H, and data on the number of

patients seen each week and the number of staff employed by the department, Table

3.1. From Definitions 3.1.3 and 3.1.4 the number of staff in each hospital department

is the input (the cost to the system) and the number of patients is the output. The

more patients that can be seen the more efficient the department is. Hence, we wish

to assess which departments are efficient in converting staff time and expertise into

patients attended to. Therefore, the departments A−H are the DMUs.

From (3.1) we can compare the hospital departments by calculating the ratio of

inputs and outputs. How much input is required to produce the desired output? I.e.

the ratio of patients per staff member.

Here a fundamental assumption is that if one department is capable of attending

to y patients with x staff then all other departments should also be able to achieve

this too. For example, Department C can improve its efficiency by reducing its staff

numbers to 15 for the same number of patients or increase the number of patients to

90 for the same number of staff. Here we note that Department H has an efficiency of

zero. This is because it is the Human Resources Department of the hospital and hence

sees no patients. Department H highlights the need to ensure DMUs are comparable.
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Department
Output Input Ratio Relative efficiency

(No. of patients in

tens of thousands)

(No. of staff

in thousands)
(Output

Input
) (100 ∗ Ratio

3.3
)

A 10 3 3.3 100

B 40 12 3.3 100

C 50 27 1.9 55.6

D 50 36 1.4 41.7

E 5 2 2.5 75

F 15 21 0.7 21.4

G 2 2 1 30

H 0 36 0 0

Table 3.1: Hospital departments data, Example 1.

They must be capable of performing the same task, here converting hospital staff

expertise into attending to patients. This suggests Department H should not be

included in the analysis as it is not performing the same tasks and does not have the

same objective.

Department H will not be included in further analysis of this example. This results

in a dataset that is strictly positive. Note, that the end column, Relative efficiency

will be discussed later on in this section when we revisit Example 1.

3.1.2 The mathematical models

We now introduce some important definitions and common DEA models. Throughout

the following notation will be used.

Consider I DMUs, each with M non-negative, non-zero outputs and N non-

negative, non-zero inputs with I > M + N . The inputs and outputs of the ith DMU

are represented by the vectors xi ∈ RN and yi ∈ RM . The input and output data for
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all I DMUs can be arranged in (N × I) and (M × I) matrices respectively,

X =



x11 x12 . . . x1I

x21 x22 . . . x2I

...
...

. . .
...

xN1 xN2 . . . xNI


,

Y =



y11 y12 . . . y1I

y21 y22 . . . y2I

...
...

. . .
...

yM1 yM2 . . . yMI


.

In this way each column of X(Y ) contains the input(output) data for DMU i. DEA

models aim to evaluate the combination of inputs and outputs to maximise the ef-

ficiency for each individual DMU. Let DMU 0 be the DMU under consideration.

Following from (3.1), the efficiency score ξ0 of DMU 0 can be defined as,

ξ0 =
weighted sum of outputs

weighted sum of inputs
=

∑M
m=1

υmym0∑N
n=1

νnxn0

=
υTy0

νTx0

,

where υ = (υ1, υ2, . . . υM , ) and ν = (ν1, ν2, . . . , νN , ) are the output and input weights

for DMU 0. To determine the output and input weights that maximise the efficiency

for DMU 0 the following fractional programming problem (3.2) must be solved

CCRFrac max
υ, ν

ξ0 =
υTy0

νTx0

(3.2a)

s.t
υTY

νTX
≤ 1 (3.2b)

υ, ν ≥ ε, (3.2c)

where ε is an infinitesimal constant. We note that here ε is not a number and hence in

principal can never be approximated or written down. In practice when solving (3.2)

via LP software ε is required to be defined by a very small number predefined in the

solver. When the CCRFrac model was first introduced in Charnes et al. (1978), (3.2c)
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was modelled as the non-negativity constraints υ, ν ≥ 0 for the weights. However,

they modified this in Charnes et al. (1979) to (3.2c) to avoid any input or output

being ignored when calculating the efficiency score. Here constraint (3.2b) ensures

that the efficiency score for all I DMUs is less than or equal to one.

The system of equations (3.2) is the Charnes, Cooper and Rhodes, CCR model

introduced in Charnes et al. (1978). This is a non-convex, nonlinear programming

problem, however, it can be converted to a linear program as follows.

When maximising (3.2a) it is the relative magnitudes of the numerator and de-

nominator that are of interest, not their individual values. Hence, choose weights ν

such that νTx0 = 1. The inputs are strictly positive and following the procedure first

introduced in Dinkelbach (1967), (3.2) can be rewritten,

CCRMult max
υ, ν

Ξ0 = υTy0 (3.3a)

s.t νTx0 = 1 (3.3b)

υTY − νTX ≤ 0 (3.3c)

υ, ν ≥ ε. (3.3d)

Here constraint (3.3b) constrains the weighted sum of the inputs of the DMU

under consideration to be one. The objective in (3.2a) can then be replaced by the

linear objective function in (3.3a). The objective (3.3a) is to maximise the weighted

sum of the outputs and hence (3.3) is an output maximisation DEA program. If we

instead set the weighted sum of outputs to equal one, (3.2) would become an input

minimisation DEA program where the objective is to minimise the weighted sum of

the inputs. The optimal objective function value of (3.3a), the output maximisation

program is the reciprocal of the input minimisation DEA program. See Section 3.1.4

for more details on the input/output orientation of the DEA models.

The proof that (3.2) and (3.3) are equivalent can be found in Cooper et al. (2004).

Model (3.3) is now a linear program so the efficiency score for DMU 0 can be found
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via the simplex method. It is important to note that both (3.2) and (3.3) calculate

the efficiency score for DMU 0 only. To find the efficiency score for all I DMUs, (3.3)

must be solved I times, once for each DMU. In this way, the optimal weights can be

unique for each DMU1. The weights are chosen by the data instead of being restricted

by fixing them in advance. In model (3.3) the weights are often called multipliers and

hence (3.3) is referred to as the CCR multiplier model, CCRMult.

Although (3.3) can be solved by the simplex method, it is often easier to solve

the dual form. Taking the dual of (3.3) gives the CCR envelopment model, CCREnv,

(3.4).

CCREnv min
λ, θ

θ0 (3.4a)

s.t Y λ− y0 ≥ 0 (3.4b)

Xλ− θ0x0 ≤ 0 (3.4c)

λ ≥ 0, (3.4d)

where θ0 is a scalar decision variable which represents the efficiency score for DMU

0. θ0 is the dual variable associated with the constraint (3.3b) that normalises the

weighted sum of the inputs and λ is a decision variable of length I.

Since a dual feasible solution is an upper bound on the optimal primal solution,

if we have primal and dual feasible solutions that have equal objective functions then

they must be optimal solutions. This follows from the weak duality theorem and gives

us the strong duality theorem: if the primal(dual) problem has a finite optimal solution

then the dual(primal) also has a finite optimal solution and these two values are equal.

(For more details on the weak/strong duality properties in linear programming see any

introductory linear programming course e.g. Dantzig and Thapa (1997)).Therefore,

solving (3.4) or (3.3) gives an optimal solution for DMU 0. Hence, we can solve either

to find the efficiency score for DMU 0.

1To ease notation we use υm and νn instead of υm0 and νn0 throughout.
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When solving an LP it is normally the number of constraints as opposed to the

number of variables that affects the computational efficiency. In most DEA models

there are significantly more DMUs being considered than variables and hence solving

the dual problem (3.4) can be beneficial.

Definition 3.1.5. An optimal solution to (3.4) for DMU 0 is the vector (λ∗, θ∗0).

The primal model in (3.3) provides weights υ and ν, which are the optimal multi-

pliers for the inputs and outputs. In contrast, the dual model (3.4) provides weights λ

for the DMUs. The linear optimisation problem (3.4) attempts to identify (Xλ, Y λ)

such that (Xλ, Y λ)T = (x0, y0) in the set spanned by the input and output data given

by existing DMUs and defined by the constraints (3.4b) to (3.4d) that has outputs

greater than or equal to DMU 0, and at the same time inputs less than or equal to

those of DMU 0 multiplied by θ0. Among all such data points, the objective function

(3.4a) alongside the constraint (3.4c) ensures that the point with the smallest input

data is selected.

From (3.4) it can be seen that the solution θ∗0 = 1, λ∗0 = 1, λ∗i = 0 (∀ i 6= 0)

is always feasible. Hence the optimal θ0 is less than or equal to one. From the

assumption that the data are greater than or equal to 0 and at least one variable is

larger than 0, (3.4c) ensures θ0 is greater than zero, hence 0 < θ0 ≤ 1. If the optimal

value θ∗0 is less than one, DMU 0 is considered inefficient and the optimal solution of

the DEA model provides evidence that it should be possible to scale down the input

vector x0 to θ∗0x0 while maintaining the same output level. Furthermore, the nonzero

entries in an optimal vector λ∗ indicate which DMUs this suggestion is derived from.

We note that for all inefficient DMUs, the corresponding zeroth entry in λ∗ must be

zero, λ∗0 = 0. Hence, DMUs with nonzero entries in λ∗ are termed peers in DEA.

Definition 3.1.6. For inefficient DMU 0, a peer is a DMU i such that λ∗i > 0 in the

optimal solution (λ∗, θ∗0) to the DEA problem (3.4).
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Peers are the DMUs an inefficient DMU should be compared to in order to make

suitable improvements. If θ∗0 = 1, then the data set does not contain evidence that

DMU 0 could be improved and DMU 0 is considered efficient.

Consider the CCR envelopment model in (3.4). Let s+
n ≥ 0 (s−m ≥ 0) be the slack in

the nth (mth) input (output) constraint in (3.4) such that s+ = (s+
1 , s

+
2 , . . . , s

+
n ), s− =

(s−1 , s
−
2 , . . . , s

−
m). This results in the following model,

CCRSlack min
λ, θ s+ s−

θ0 (3.5a)

s.t Y λ− y0 − s− = 0 (3.5b)

Xλ− θ0x0 + s+ = 0 (3.5c)

λ, s+, s− ≥ 0. (3.5d)

In this manner, all the inequality constraints in (3.4) are now equalities and solving

(3.5) gives the efficiency score of DMU 0 and the associated slack variables.

Definition 3.1.7. DMU 0 is efficient if and only if θ∗0 = 1 and s+, s− = 0 in (3.5).

Definition 3.1.8. DMU 0 is inefficient if and only if θ∗0 < 1 in (3.5).

From this we define a binding constraint and categorise efficient DMUs as weakly

or strongly efficient.

Definition 3.1.9. A binding constraint is a constraint for the mth(nth) output(input)

such that s−m(s+
n ) = 0.

Definition 3.1.10. A DMU 0 is weakly efficient if and only if θ∗0 = 1 and at least

one slack variable, s−m, s
+
n , is greater than 0 in (3.5).

Definition 3.1.11. A DMU 0 is strongly efficient if and only if θ∗0 = 1 and all slack

variables, s−m, s
+
n , are equal 0 in (3.5).

These definitions of weakly and strongly efficient DMUs can be understood by

considering (3.5). Model (3.5) aims to minimise θ0. From constraint (3.5c) to minimise
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θ0, Xλ must be as small as possible, this occurs when Xλ − θ0x0 = 0 and s+
n = 0.

Similarly, in constraint (3.5b) an increase in Y λ will result in Xλ increasing or staying

the same. Hence, from Definition 3.1.2, θ0 will increase or stay the same. Therefore,

at an optimal solution Y λ is as small as possible, this occurs when Y λ− y0 = 0 and

s−m = 0. This is explored in more detail in Chapter 4 but this brief insight is given

here to give intuition into the role of the slack variables in the definitions of weakly

and strongly efficient DMUs.

Definition 3.1.12. The efficient frontier is the convex hull of the data. It envelops

all the data.

All efficient DMUs will lie on the efficient frontier. We note here that the efficient

frontier is based purely on the current data and therefore DMUs that are deemed

efficient may in fact be able to improve further by increasing their outputs or decreas-

ing their inputs. There are no assumptions made on what may be possible for the

efficient DMUs. In principle, this means when we refer to efficiency, we are in fact

talking about relative efficiency not absolute efficiency.

The efficient frontier forms an envelope around the observed data under the as-

sumption that between feasible input-output pairs interpolation is valid. In this way,

the envelope will be the smallest set containing all input-output relationships ob-

served from the DMUs being assessed. For more details see Thanassoulis (2001). Any

DMUs falling below the envelope are inefficient. Cooper et al. (1996) define efficiency

as stated in Definition 3.1.13.

Definition 3.1.13. The performance of DMU 0 is to be considered fully (100%)

efficient if and only if the performance of other DMUs does not provide evidence that

some of the inputs or outputs of DMU 0 could have been improved without worsening

some of its other inputs or outputs.
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Definition 3.1.14. The production possibility set, PPS, represents all possible input-

output instances. It is enveloped from above by the efficient frontier and is the smallest

convex set containing the observed data points. Formally, the PPS is defined to be

T = {(X, Y )|Y ≥ 0 can be produced from X ≥ 0}.

Definition 3.1.15. The efficient frontier is the subset of points of set T satisfying the

efficiency condition from Definition 3.1.7. It represents the standard of performance

that all DMUs should try to achieve.

Definition 3.1.16. (x0, y0) ∈ T is an extreme point of T if and only if

@ (xi, yi), (xj, yj) ∈ T : x0 = λixi + λjxj, y0 = λiyi + λjyj, λi + λj = 1.

Here we assume the following general axioms of the PPS as defined in Banker

et al. (1984).

• Axiom 1- Convexity: If (xi, yi) ∈ T, i = 1, . . . , I and λi ≥ 0 are non-negative

scalars such that
∑I

i=1
λi = 1 then

(∑I
i=1

λixi,
∑I

i=1
λiyi

)
∈ T

• Axiom 2- Inefficiency: If (X, Y ) ∈ T and X̄ ≥ X then (X̄, Y ) ∈ T . Similarly, if

Ȳ ≤ Y then (X, Ȳ ) ∈ T.

In this way T is the intersection of all T̂ satisfying axiom 1 and 2 above subject to

(xi, yi) ∈ T̂ , i = 1, . . . , I and hence is the smallest set to fulfil the axioms and is a

polyhedral set.

We note that axiom 2 is sometimes called the free disposability of inputs and

outputs axiom and that here we have omitted the ray unboundedness axiom, “if

(X, Y ) ∈ T then (κX, κY ) ∈ T for any κ ≥ 0” as this only applies for constant

returns to scales models and we wish to keep our definition general.

From Definitions 3.1.11, 3.1.14 and 3.1.16 we can define an anchor DMU. Anchor

DMUs were first introduced in Thanassoulis and Allen (1998) to extend the DEA

efficient frontier and were later named in Allen and Thanassoulis (2004).
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Definition 3.1.17. An anchor DMU is a strongly efficient DMU for which an in-

put(output) can be increased(decreased) without entering the interior of the production

possibility set.

An anchor point is therefore an extreme point of the PPS that defines the transition

from the section of the efficient frontier where DMUs are strongly efficient to the

section where they are weakly efficient. For more details on anchor points in DEA see

Bougnol and Dulá (2009).

Example 1 Continued

We now calculate the efficiency scores for the seven hospital departments in Table

3.1 using the DEA model in (3.4). We see that Departments A and B are efficient with

θ∗A = θ∗B = 1 and the remaining departments have θ∗ < 1. Returning to the results in

Table 3.1 we see that the efficiency scores from solving (3.4) are consistent with the

previous results from calculating the ratio of outputs to inputs. Departments A and

B have the highest ratio of 3.3 and are the departments we find to be efficient. In

Table 3.1 after calculating the ratio of outputs to inputs we can calculate the relative

efficiency of each department. This is done by dividing each department ratio by

the maximum achieved ratio, 3.3. This gives the final column in Table 3.1. Here

Departments A and B are 100% efficient and Department F is the least efficient with

relative efficiency 21.4%. We see that these are the same results we obtain in Table

3.2 from solving (3.4). Departments C −G should be able to improve by comparing

themselves to Department A, their peer.

3.1.3 Economies of scale

Both the CCR multiplier model (3.3) and the CCR envelopment model (3.4) act under

the assumption of constant returns to scale, CRS. It is assumed the input and output
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Department
CRS

Efficiency score

A 1

B 1

C 0.56

D 0.42

E 0.75

F 0.21

G 0.30

Table 3.2: Hospital departments CRS efficiency scores, Example 1.

variables change proportionally. A single increase of one unit in an input will lead to

an increase of one unit in output and doubling the inputs will double the outputs.

However, CRS is not always a suitable assumption, this was one of the main

reasons many economists failed to adopt the methodology when it was first introduced

(Ramanathan, 2003). If the inputs and outputs do not proportionally change it is more

appropriate to assume variable returns to scale, VRS. Here the inputs and outputs

are assumed to change at a variable rate (this includes the special cases of increasing

and decreasing returns to scale). This changes both the efficient frontier and the

production possibility set. This can be seen in Figure 3.1 where the efficient frontier

and PPS are plotted for the Hospital Department data from Example 1. Figure 3.1a

shows the CRS model and 3.1b the VRS model. The PPS is shown by the grey area

on both figures. The VRS PPS is a subset of the CRS PPS. The efficient frontiers are

shown by the red lines. The line segment A-B is part of the efficient frontier for both

CRS and VRS otherwise they are different.

To model the VRS assumption the CRS DEA model must be adapted. This

was first done by Banker, Charnes and Cooper and hence is named the BCC-DEA
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(b) Variable returns to scale.

Figure 3.1: CRS and VRS efficient frontier (red) and PPS (grey shaded region),

Example 1.
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Department Efficiency

A 1

B 1

C 1

D 0.75

E 1

F 0.21

G 1

Table 3.3: Hospital departments BCC efficiency scores, Example 1.

model, (Banker et al., 1984). To modify (3.4) to exhibit VRS the following convexity

constraint is added,

eTλ = 1, (3.6)

where e is a vector of ones. DEA models that include (3.6) are called BCC-DEA

models or VRS-DEA models.

We demonstrate the differences between CRS and VRS with the hospital depart-

ment Example 1.

Example 1 Continued

We first calculate the efficiency scores for the seven hospital departments with the

BCC-DEA model. The results are in Table 3.3. Solving the BCC-DEA model for

the hospital departments in Table 3.1 results in five departments being evaluated as

efficient, Departments A, B, C, E and G.

Table 3.4 shows the corresponding slack variables for these five departments. From

the slack variables, we can classify the departments as weakly or strongly efficient.

The input and output data from CCR-DEA Table 3.1 can be plotted, Figure 3.1a.
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Efficient DMU
Slack variables Efficiency

categorisations+ s−

A 0 0 strong

B 0 0 strong

C 0 0 strong

E 0 0 strong

G 0 3 weak

Table 3.4: Hospital departments BCC slack variable values, Example 1.

Inefficient DMU
Peers Efficiency

ScoreA B C E G

D − − 1 − − 0.75

F 0.83 0.17 − − − 0.22

Table 3.5: Hospital departments BCC peers, Example 1.

We assume that if we have zero inputs we can produce zero outputs and if (X, Y ) ∈ T

then (κX, κY ) ∈ T for any κ ≥ 0 where T is the PPS. From Table 3.1, Department A

is efficient. Therefore, joining Department A with a straight line through the origin

we obtain the CRS efficient frontier. This is shown in Figure 3.1a by the red line.

The efficient frontier forms a ray from the origin through efficient Departments A and

B and extends with a constant slope beyond Department B. All other departments

not on the ray are inefficient. The shaded grey area in Figure 3.1a shows the PPS

assuming CRS.

Similarly, from Table 3.3 Departments A, B, C, E and G are efficient under the

BCC-DEA model. Joining these with a series of straight lines, we obtain the VRS

efficient frontier shown in red in Figure 3.1b. The line through A, B , C, E and

G envelopes all the observed input-output relations and is the efficient frontier for
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the VRS model. The shaded grey area shows the PPS assuming VRS. Here we see

that Department E is an anchor point (see Definition 3.1.17). Department E has the

minimum input value of 2 and is strongly efficient whereas, Department G has the

minimum input value of 2 but is weakly efficient so is not an anchor point.

We note here that any departments that are efficient for CRS, Departments A and B,

are also efficient for VRS. However, the opposite is not true; Departments C, E and

G are not efficient under CRS but are under the VRS assumption. The PPS under

VRS is a subset of the CRS PPS.

For the remaining sections, we focus on VRS-DEA models.

3.1.4 Model orientation

The model orientation is dependent on whether we are interested in input conservation

or output expansion as the indication of efficiency. The DEA model (3.3) introduced

in Section 3.1.2 is an input minimisation model. Here we compare the different orien-

tations of DEA models, input-oriented, output-oriented and briefly radial DEA. The

orientation of a DEA model does not affect the classification of a DMU as inefficient

or efficient. However, it does affect the DMUs peers.

The orientation of a DEA model should be chosen according to the application.

For example, consider the following two applications:

• Assessing Schools

Inputs: Number of pupils and total available funding

Outputs: Exam results

• Assessing car manufacturing factories

Inputs: Raw materials, manufacturing cost

Outputs: Number of cars made.

When assessing schools the number of pupils and the funding available are very hard
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to influence, one cannot easily reduce the number of students at a particular school.

Therefore, it is reasonable to treat the inputs as fixed variables and seek to improve

the outputs, that is increase the exam results. Hence, an output-oriented DEA model

is suitable here.

In contrast, when manufacturing cars the factory is likely to have a fixed de-

mand/target number of cars to produce and hence the outputs can be treated as

fixed. We wish to reduce the raw materials and manufacturing costs and hence, an

input-oriented model is suitable here.

Alternatively, to consider both input reduction and output enlargement the ad-

ditive DEA model (also called slack based or radial DEA) can be used, see Charnes

et al. (1985) for more details.

We demonstrate the difference between input and output oriented DEA models

using the Hospital example introduced in Section 3.1.1 with the BCC-DEA model

results from Table 3.3.

Example 1 Continued

To demonstrate the difference between input and output oriented DEA models we

turn our attention to Department F in Table 3.1. Department F is inefficient as it

falls below the efficient frontier in Figure 3.1b and solving (3.4) with the additional

convexity constraint (3.6) gives an efficiency score of 0.21.

Department F is inefficient so we know that it has the potential to improve its

efficiency score by either increasing its outputs while the inputs remain fixed (output-

oriented DEA model) or decreasing its inputs for fixed outputs (input-oriented DEA

model). This is equivalent to Department F being projected to the point J (21, 46)

or I (4.5, 15) in Figure 3.2. For input-oriented DEA Department F is being projected

to the efficient frontier section AB which is also part of the CRS efficient frontier.

Whereas, for output-oriented DEA, Department F is projected to the efficient fron-

tier section BC. From this we see that depending on the model orientation the
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Figure 3.2: Difference between input and output oriented models for Department F

under VRS-DEA model, Example 1.

Department will have different peers. Departments A and B for the input model and

Departments B and C for the output model.

3.1.5 Some extensions to DEA models

Here we mention a few extensions that can be made to the basic DEA models to

increase the modelling capability.

Environmental variables Sometimes there will be variables that cannot be influ-

enced but must be considered when assessing the DMUs. For example, when assessing

schools in Section 3.1.4 it may be that there are schools that require an entrance exam

and those that are located in a socially deprived area. It would be wrong to compare
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these two schools against each other as they are operating in very different conditions.

To make fair comparisons additional variables could be included in the model such as

a social deprivation index. However, this cannot be classified as an input or an output

as we cannot change it, as the schools themselves have no control over the area they

are located in. One way to introduce such variables is to use environmental variables

(also called non-discretionary variables).

Let there be O environmental variables we wish to consider, where the environ-

mental inputs for the ith DMU are represented by the vector zi ∈ RO. To modify

(3.4) to include environmental variables an additional constraint is required for each

environmental variable.

I∑
i=1

λizoi − zo0 ≤ 0 o = 1, . . . , O (3.7)

Here the main difference between (3.7) and the input constraints in (3.4c) is that the

θ0 is omitted. This is so that the environmental inputs play no direct role in the

determination of the optimal value of θ0.

In the schools assessment example discussed above this would mean that if the

social deprivation index was included as an input, only schools with the same or lower

social deprivation index would be compared against one another to prevent unrealistic

targets being set. Analysis has shown that accounting for these non-discretionary

variables produces more meaningful and applicable results (Charnes et al., 1994).

Super-efficiency Another extension of DEA is the concept of super efficiency in-

troduced by Andersen and Petersen (1993) to provide a framework to rank efficient

DMUs based on parametric methods for the DEA CRS model. Their motivation

stemmed from the weakness of DEA that in some DEA models, (especially if the

number of variables is large relative to the number of observations), a large propor-

tion of DMUs can be classified as efficient. This can be due to the performance in a

single variable and hence may not reflect the true efficient DMUs. One way to over-
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come this as discussed earlier in this Section is to examine the peers of the efficient

DMUs, super-efficiency is an alternative method to provide a ranking of the efficient

DMUs themselves.

Super-efficiency works by removing the efficient DMU under consideration, DMU

0, from the data and comparing DMU 0 to linear combinations of all the remaining

DMUs. In this way DMU 0 is projected to the efficient frontier constructed from the

remaining DMUs. This results in an efficient DMU being able to achieve an efficiency

score greater than one. Seiford and Zhu (1999) extend the super-efficiency model to

include VRS DEA models. However, they note that the super-efficiency model may

become infeasible when applied to VRS DEA models due to the convexity constraint.

The super-efficiency DEA model for VRS as introduced in Seiford and Zhu (1999) is

min
λ, θ

θ0

s.t.
I∑
i=1
i 6=0

λiymi − ym0 ≥ 0 m = 1, . . . ,M

I∑
i=1
i 6=0

λixni − θ0xn0 ≤ 0 n = 1, . . . , N

I∑
i=1
i 6=0

λi = 1

λi ≥ 0 i = 1, . . . , I, i 6= 0.

Seiford and Zhu (1999) show that (3.8) becomes infeasible when at least one output

of DMU 0 is larger than any convex combination of the remaining DMUs. As a

result many of the super-efficiency studies have been focused on how to address this

infeasibility issue in the VRS model. For a detailed introduction to super-efficiency

and a discussion on the VRS infeasibility issue see Chen and Du (2015). We introduce

the basic super-efficiency methodology here in preparation for Section 3.3 where the

concept is used for sensitivity analysis in DEA.
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Other extensions to the DEA models include the use of categorical inputs and

outputs into the DEA model (Banker and Morey, 1986); incorporating judgement

functions and a priori knowledge (Thompson et al., 1986; Brockett et al., 1997) or

time-series analysis when observations for DMUs are available over multiple time

periods (Sueyoshi and Goto, 2001). These extensions to DEA are by no means an

exhaustive set. They are detailed here to demonstrate the increase in the range of

situations that DEA can be applied to by incorporating these techniques.

From a mathematical standpoint, DEA solves a sequence of simple LP’s. The

solutions of these LP’s provide important information which can help quantify ineffi-

ciencies and provide advice on suitable improvements that can be made.

We conclude this section with the complete input-oriented BCC-DEA envelopment

model from (3.4) with constraint (3.6). Solving this I times gives the efficiency score

for each DMU. In the following sections this model is referred to as the nominal DEA

model.

min
λ, θ

θ0

s.t. Y λ− y0 ≥ 0

Xλ− θ0x0 ≤ 0

eTλ = 1,

λ, θ0 ≥ 0.

3.2 Robust optimisation

When modelling real-life optimisation problems it is unlikely that the data will be

known exactly, there will most likely be numerous sources of uncertainty in the data.

This can be from rounding errors, estimates made, lack of knowledge of a parameter,

implementation errors or simply trying to model a complex real-world problem with



CHAPTER 3. MATHEMATICAL BACKGROUND 62

a small subset of parameters. As a result, methods that can account for the inherent

uncertainty in data are required.

Robust optimisation grew out of earlier work on worst-case analysis and Abraham

Wald’s maximin model where the least worst outcome was sought, (Wald, 1945).

However, this school of thought often results in overly pessimistic results. Soyster

(1973) introduced the notion of robust optimisation under the name of inexact linear

programming to solve linear optimisation problems for all data in convex sets. In

contrast to the earlier maximin model, the methodology aimed to balance suboptimal

solutions in the nominal certain data instance to avoid infeasible solutions when the

data are uncertain. However, Soyster’s approach was often still too pessimistic and

too much of the optimality was sacrificed to ensure the problem was feasible. In

the late 1990’s this over-conservatism was addressed independently by Ben-Tal and

Nemirovski (1998, 1999, 2000), EI-Ghaoui and Lebret (1997) and El Ghaoui et al.

(1998). In these papers ellipsoidal uncertainties were introduced and the terminology

of a robust counterpart was first used. After these papers the robust optimisation

literature grew quickly and it is still a growing active area of research.

Robust optimisation favours flexibility; unlike many models the estimated cost

structure and probability distribution are not required. Instead, robust optimisation

assumes the uncertain data resides in an uncertainty set. The uncertainty sets are

chosen based on qualitative information or expert opinion and allow flexibility in the

model. Robust models can be used to reduce the chance of over-optimising and to try

and avoid a non-robust solution that inappropriately exaggerates the weaknesses of the

estimated or sampled uncertainty. Unlike in sensitivity analysis, where uncertainty is

accounted for post optimisation, in robust optimisation the uncertainty is incorporated

into the initial model so that variations in the data are accounted for throughout the

modelling process. In sensitivity analysis, the interest lies in how much the solution

to the nominal problem can differ to that of the optimal solution to the perturbed
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problem. Whereas, in robust optimisation the interest is in how much the nominal

problem’s optimal solution can violate the constraints of the perturbed problem, (Ben-

Tal and Nemirovski, 2000).

In Section 3.2.1 we introduce the basic robust optimisation methodology and some

common uncertainty sets used throughout the robust optimisation literature. In Sec-

tion 3.2.2 we define the robust optimisation DEA problem which will be developed

further in Chapter 4.

We note here that DEA and robust optimisation have different notation conven-

tions. The main focus of this thesis is the application of DEA and hence, we follow

more closely the DEA conventions. In this way some of the derivations for robust

optimisation may not be the conventional robust optimisation textbook derivations

but careful comparison will convince the reader that it is simply different notation.

For example, in robust optimisation ‘x’ usually represents the vector of variables,

whereas, in DEA this is used to represent the input data, therefore here we use ‘η’ to

represent the variable vector.

3.2.1 Method

A linear optimisation (LO) problem can be written in the form

LO :

{
min
η
cTη + d : Aη ≤ b, η ≥ 0

}
,

where η ∈ Rq is a column vector of decision variables and (c, d, A, b) represents the

data of the problem arranged in a (p+ 1)× (q + 1) data matrix cT d

A b

 .

Here the assumption is the data are exactly known. However, in real-life applica-

tions this is seldom true. If there is uncertainty arising in the data matrix then an
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uncertain linear optimisation (u-LO) problem may be a more suitable model. Under

this framework instead of assuming exact data we assume the objective and the con-

straint functions come from user defined uncertainty sets. As a result, by considering

the uncertainty, the decisions made based on the u-LO results should be suitable for

all constraints that can occur rather than a single data instance.

An u-LO problem is of the form

u-LO :

{
min
η
cTη + d : Aη ≤ b, η ≥ 0, ∀ (c, d, A, b) ∈ U

}
, (3.8)

with a given uncertainty set U ∈ R(p+1)×(q+1). The problem in (3.8) is a collection of

LO problems with data varying in a given uncertainty set U , i.e. (3.8) is a family of

problems, not a single problem. Equivalently (3.8) can be written as{
min
η
cTη + d : sup

(c,d,A,b)∈U
ajη ≤ bj, η ≥ 0, j = 1, . . . , p, ∀(c, d, A, b) ∈ U

}
, (3.9)

where aj is the jth row from A and bj is the corresponding RHS for constraint j.

Here we use the supremum instead of a maximisation to ensure the problem is well

defined. We model uncertainty by affine transformations, i.e. small perturbations are

added that can vary over the uncertainty set thus accounting for the variability and

uncertainty in the data. In this way the uncertainty set can be defined by,

U =



 cT d

A b

 =

 (c0)T d0

A0 b0


︸ ︷︷ ︸
Nominal data D0

+
L∑
l=1

ζl

 (cl)T dl

Al bl


︸ ︷︷ ︸
Basic shifts Dl

: ζ ∈ Z ⊂ RL


, (3.10)

where ζ is the perturbation vector varying in a given perturbation set Z,

 (c0)T d0

A0 b0

is

the nominal data and
∑L

l=1 ζl

 (c0)T dl

Al bl

 models the L affine transformations used

to model the uncertainty, here we will refer to the sum of this matrix as the basic

shift matrix.
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Example 1 Continued

If Departments A and B’s patient numbers are only known to within 5% accuracy

the number of patients is actually in the region of 9.5 to 10.5 and 38 to 42 patients

respectively. Then to asses the efficiency of Department C compared to Departments

A and B the nominal data is

D0 =

 (c0)T d0

A0 b0

 =



0 0 0 1 0

−10 −40 −15 0 −15

3 12 21 −21 0

1 1 1 0 1


An example of basic shift matrices that can be applied to the nominal data to model

the 5% uncertainty in Department A and B’s patient numbers is

DA =



0 0 0 0 0

0.5 0 0 0 0

0 0 0 0 0

0 0 0 0 0


DB =



0 0 0 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 0 0


where the perturbation set is Z = {ζ ∈⊂ R2 : −1 ≤ ζ1, ζ2 ≤ 1}. Here this

models the scenario where the only uncertainty present is for the number of patients

for Departments A and B.

The following assumptions will be useful as they allow us to simplify the model pre-

sented in (3.10). W.l.o.g. we briefly consider the main intuition behind the following

assumptions:

1. The objective is certain

2. The constraints RHS’ are certain

3. U is convex and compact

4. The uncertainty is constraint-wise



CHAPTER 3. MATHEMATICAL BACKGROUND 66

For a detailed proof see Ben-Tal et al. (2009).

1. With an uncertain objective

min
η
cTη + d ∀ (c, d) ∈ U

we can introduce a new variable t such that (3.8) becomes{
min
η, t

t : cTη + t ≤ −d,Aη ≤ b η ≥ 0 ∀ (c, d, A, b) ∈ U
}
. (3.11)

Therefore, we can always rewrite an uncertain linear objective as an inequality

constraint.

2. We can assume the RHS of each constraint is equal to 0 and hence certain by

introducing an additional variable for the RHS coefficient. If the objective is

uncertain we can reformulate the objective as above and then introduce a new

variable for d. Hence, from now on we remove the +d in the objective term.

3. Ben-Tal et al. (2009) show that a robust feasible solution to (3.8) remains feasible

when the uncertainty set is extended to its convex hull.

4. From (3.9), because every constraint ajη ≤ bj must be satisfied for all u we can

consider each constraint individually.

We can now rewrite (3.8) as

min
η

cTη (3.12a)

s.t. ajη ≤ bj ∀ aj ∈ Uj j = 1, . . . , p (3.12b)

η ≥ 0, (3.12c)

where Uj is the given uncertainty set, and hence, is a set of p× q real matrices. From

now on we assume uncertainty occurs only in the A matrix.

This now allows us to form the robust counterpart of the u-LO problem.
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Definition 3.2.1. The Robust counterpart of (3.8) is the robust reformulation such

that the robust value of the objective is minimised over all feasible solutions of the

uncertain problem.

To form the robust counterpart and hence, solve (3.8) we

1. Preserve the original certain constraint

2. Replace each of the original constraints ajη ≤ bj with its robust counterpart

ajη ≤ bj ∀ aj ∈ Uj.

The robust counterpart is formed constraint wise. We denote a single constraint j from

the basic shift matrix in (3.10) by a
(l)
j where the bracketed superscript denotes the

shifts l = 1, . . . , L and a
(o)
j represents the jth constraint from the nominal data. Then

the sum of the basic shifts for a single constraint j can be formed by multiplying

ζ by the matrix a
(L′)
j where a

(L′)
j ∈ RL×q is the matrix formed row-wise from each

basic shift for constraint j, a
(L′)
j = (a

(1)
j ; a

(2)
j ; . . . ; a

(L)
j ). We require solutions that are

feasible for any data instance in our uncertainty set. Therefore, to solve 3.8 we apply

robust reformulation techniques to remove the for all, (∀) quantifier in each constraint

(3.12b). This will not always be possible, hence, some robust counterparts are not

tractable and other techniques such as simulation and heuristics are required. When

a tractable reformulation of the uncertain constraint (3.12b) is possible it is derived

by

1. Formulating the worst case reformulation of the constraint,

a
(0)
j η + max

aj∈U
ζa

(L′)
j )η ≤ bj.

2. Taking the dual of the problem, sup(c,d,A,b)∈U ajη ≤ bj, in (3.9).

3. Reformulating the original uncertain constraint to incorporate the dual from

step 2.
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We now demonstrate this process with a common uncertainty set, polyhedral uncer-

tainty and a specific case of this, box uncertainty. There are many different uncer-

tainty sets that can be used and should be selected according to the data. For more

details on selecting the uncertainty set see Ben-Tal et al. (2009).

A polyhedral uncertainty set can be defined as:

Z =
{
ζ : FζT + g ≥ 0

}
, (3.13)

where F ∈ Rp×L, ζ ∈ RL and g ∈ Rp and Z is defined in (3.10). A single constraint

from the u-LO problem, (3.8) is,

(a
(0)
j + ζa

(L′)
j )η ≤ bj ∀ ζ ∈ Z.

The robust counterpart seeks the optimal solution to the worst-case scenario occur-

ring. The inner maximisation problem of the uncertain LP is:

max
ζ

ζa
(L′)
j η (3.14a)

s.t. F ζT + g ≥ 0. (3.14b)

We now take the dual of the inner maximisation problem to obtain,

min
w

gTw (3.15a)

s.t. F Tw = −a(L′)
j η (3.15b)

w ≥ 0.

By strong duality, the optimal value of the primal inner maximisation problem (3.14) is

the same as the optimal solution to the dual minimisation problem (3.15). Therefore,

we replace the inner maximisation with its dual (3.15). This gives the following robust

counterpart for polyhedral uncertainty,
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min
η,w

cTη

s.t. a
(0)
j η + gTw ≥ bj j = 1, . . . , p

F Tw = −a(L′)
j η j = 1, . . . , p

w ≥ 0

η ≥ 0.

A special case of polyhedral uncertainty is box uncertainty. The unit box uncer-

tainty set can be defined as:

Z = {ζ : ||ζ||∞ ≤ 1} .

This gives the inner maximisation problem:

max
ζ

ζa
(L′)
j η

s.t. ||ζ||∞ ≤ 1.

Taking the dual of the inner maximisation problem and inserting it into (3.12b) gives

the following robust counterpart for box uncertainty,

min
η

cTη

s.t. a
(0)
j η + ||a(L′)

j η||1 ≥ bj j = 1, . . . , p

η ≥ 0.

Throughout this thesis we focus on box uncertainties. They are one of the simplest

uncertainty sets to work with and their robust counterpart is tractable.

Choosing a suitable uncertainty set is a trade-off between the robustness of each

individual realisation of the uncertain parameter and the size of the uncertainty set
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(which should be as small as possible). A box constraint guarantees a constraint is

never violated. However, there is only a small chance that all uncertain parameters

take their worst case scenario so this can often be over-pessimistic. Not all robust

optimisation uncertainty sets result in tractable robust counterparts. Polyhedral un-

certainty sets result in LP robust counterparts, whereas ellipsoidal uncertainty sets

result in a second order cone program.

3.2.2 Robust DEA model

Here we introduce the robust DEA model which will be the basis for the uncertain

DEA, uDEA model introduced in Section 3.4.

In Section 3.1 we introduced the input oriented VRS DEA model which can be

written as,

Ei = min
θ, λ

{
θi : Y λ− yi ≥ 0, Xλ− θixi ≤ 0, eTλ = 1, θi, λ ≥ 0

}
, (3.16)

where e is a vector of ones. Throughout this section we will develop the robust DEA

model for the nominal DEA model, (3.16) but note that the methods discussed are

not confined to the BCC input-oriented DEA model.

Following the reformulation in Ehrgott et al. (2018) we reorganise our input and

output data in the following manner to ease development of the uDEA model.

Ai =

 −Y yi 0

X 0 −xi

 and B =

 eT 0 0

0 1 0

 .
Here the subscript on the A matrix is to show we are considering the data for the ith

DMU. Hence, (3.16) can be rewritten as,

Ei = min
η

{
cTη : Aiη ≤ 0, Bη = e, η ≥ 0

}
, (3.17)

where c = (0, 0, . . . , 0, 1)T and η = (λ, 1, θi)
T . In the notation of Section 3.2 this is

equivalent to p = M + N and q = I + 2, where the two extra variables arise from
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additional variables to model the original RHS of the constraints.

Let (aj)i be the jth row of Ai, j = 1, . . . ,M +N , to ease notation from now on we

will drop the subscript i on the (aj)i. The uncertainty arising in the data X, Y can

then be introduced into the model by replacing each ajη ≤ 0 constraint with the set

of constraints,

ajη ≤ 0 ∀ aj ∈ Uj, (3.18)

where Uj is the uncertainty set for a single input/output j. In this way each in-

put/output can have an individual uncertainty set resulting in maximum model flex-

ibility.

To ensure consistency with DEA methodology two restrictions must be placed

on (3.18) which are not required in more general robust optimisation settings. First

we must assume that all aj ∈ Uj are positive so we must ensure the introduction of

uncertainty does not introduce negative data. Secondly, we assume that the mth(

nth) element of yi(xi) agrees with Ymi(Xni). This ensures a DMU’s data is consistent

throughout the model. Without this restriction a DMU’s input/output value could

be different in the two places of the model it appears. This would not agree with

DEA methodology.

Then we define the robust efficiency score for DMU i, Ei(U), to be the optimal value

of the robust DEA model, Ei(U):= minη
{
cTη : ajη ≤ 0, ∀aj ∈ Uj, ∀j, Bη = e, η ≥ 0

}
.

Unfortunately, the introduction of uncertainty in (3.18) generally results in a non-

linear non-convex problem and hence cannot be solved using standard LP techniques.

However, when we have box uncertainty the problem is tractable. This model will be

developed further in Section 3.4 and Chapter 4.
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3.3 Sensitivity analysis

Sensitivity analysis is used to investigate the effect small local changes in a dataset

have on an optimal solution and hence the decisions being made. Charnes et al. (1984)

regard sensitivity analysis as the mathematical programming equivalent of statistical

significance testing as both consider the allowable range of data variation. In linear

programming the interest is in the allowable changes in the data without a change

in the set of vectors for the optimal basis whereas, in statistical analysis the interest

may be in the hypothesised statistical distribution.

Traditionally, sensitivity analysis is used in linear programming to answer ques-

tions such as: What is the effect of an increase of ε in the RHS? Or if the cost of a

variable y is reduced by ε should more y be produced? It is used to assess the sensitiv-

ity of an optimal solution to a linear program to certain changes in the dataset. This

is done by changing a single objective function coefficient or RHS coefficient of the

linear program at a time and observing the change this has on an optimal solution.

The aim is to find ranges for which the data can change without the optimal solu-

tion value changing. For an example of sensitivity analysis in linear programmes see

Dantzig and Thapa (1997). However, for DEA sensitivity analysis we are interested in

changes in the coefficients of the data matrix and how this affects an optimal solution.

As a result, modified sensitivity analysis techniques are required for DEA sensitivity

analysis.

In the remainder of this section we introduce techniques for sensitivity analysis in

DEA that will be built upon in Chapter 4.

3.3.1 Sensitivity analysis in DEA

In DEA sensitivity analysis we are interested in the changes that occur in the data,

the coefficients of X and Y in (3.8). Changes in the data can change the value of
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(λ, θ0) in an optimal solution for DMU 0. We consider the effect changes to multiple

data points have on an optimal solution.

In DEA the efficient frontier is determined by the extreme points in the dataset,

see Definition 3.1.16. As a result, if the extreme points are themselves outliers wrong

conclusions may be drawn. We confine our attention to the effects occurring from

variations in the data itself as opposed to other variations such as model variations

or variations in the number of DMUs. For an example of this type of variation see

Simar and Wilson (1998) who consider variations in the sampling distributions.

The majority of sensitivity analysis for DEA focuses on the efficient DMUs and

what changes in the nominal data will result in existing efficient DMUs remaining

efficient. There are significantly fewer papers looking at the inefficient DMUs and how

discrepancies in the data may affect them. This was highlighted by Gholam Abri et al.

(2009) and Jahanshahloo et al. (2011) when they noted that “while the sensitivity

analysis of an efficient unit’s classification has been extensively studied, the issue of an

inefficient units estimation and classification seems to be ignored”. Here we provide

an overview of some of the DEA sensitivity analysis literature that will contribute to

the motivation and techniques to be used in the following chapters.

We first define some common terminology that is used throughout the DEA sen-

sitivity analysis literature.

Definition 3.3.1. A DMU’s stability region is defined to be the area of the PPS in

which a DMU’s efficiency classification does not alter.

In some DEA sensitivity analysis papers this is referred to as the radius of sta-

bility. We use these names interchangeably to keep consistency with the paper being

discussed.
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Definition 3.3.2. A DMU 0 is extreme efficient if and only if:

i. it is efficient, θ∗0 = 1 and

ii. it is the only DMU in its reference set, i.e. λ∗0 = 1, λj = 0 ∀ j 6= 0.

We note here that DMUs with θ∗0 > 1 in the super-efficiency model (3.8) are the

set of extreme efficient DMUs.

Throughout this section we denote the DMU under consideration by DMU 0 and

the efficiency score from solving the nominal DEA problem by θ∗0. We use the sub-

script ineff/eff/ex to show the paper considers an inefficient/efficient/extreme efficient

DMU (see Definitions 3.1.8, 3.1.7 and 3.3.2) or no subscript when the paper considers

both inefficient and efficient DMUs. Note that the subscript eff does not distinguish

between efficient and extreme efficient DMUs.

Single changes

A large body of the DEA sensitivity analysis literature focuses on the effect changes

have on a single DMU. This can be useful if there is a specific DMU for which more

information is required. One of the earliest papers to discuss this was Charnes et al.

(1984). By considering changes to a single output of DMU 0eff they characterised

the efficient DMUs by the size, large or small, of admissible data changes that result

in the DMU remaining efficient.

Charnes and Neralic (1991) extended this idea by considering proportionate changes

of all inputs and outputs of a single DMU 0eff while the remaining DMUs’ data are

fixed. They derived sufficient conditions for DMU 0eff to preserve its efficiency score,

i.e. finding its radius of stability. Charnes et al. (1996) showed that when a single

DMU is considered at a time, (all remaining DMUs’ data are fixed), the radius of sta-

bility can be calculated via linear programming techniques for both l1 and l∞ norms.

The method aimed to provide a “measure of the classification’s stability, especially
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with respect to errors in the data”. They applied their method to the input-oriented

ratio model but the methodology can easily be extended to all DEA models. By

changing a single input at a time they computed the largest ball surrounding DMU 0

such that the efficiency classification remained the same. Similar work was done by

Seiford and Zhu (1998b) who sought a stability region for DMU 0eff where a change

in a single input or output does not stop DMU 0eff being classified as efficient. Ner-

alić and Wendell (2015, 2019) built upon this idea to find the largest hypercube such

that DMU 0’s efficiency status remains the same while the remaining DMUs’ data are

fixed. This is equivalent to perturbations within a fixed radius of DMU 0’s nominal

data under the l∞ norm. They calculate the percentage change in DMU 0’s data such

that the efficiency calculation remains the same. This is done via an iterative algo-

rithm that gradually increases the size of the symmetric hyperbox until the efficiency

classification changes.

The previously discussed methods first require the nominal DEA problem to be

solved to identify the efficient DMUs. Jahanshahloo et al. (2005b) developed a method

to determine the radius of stability alongside the nominal efficiency score. The method

is based on super-efficiency (see Section 3.1.5) and calculates a range for which the

classification of DMU 0 holds when the DMU’s input and output data vary and the

other DMUs’ data remain fixed. In this way, only a single linear program is required

for each DMU instead of one for the nominal efficiency score and another to determine

the range of stability. Their sensitivity analysis results agree with previous sensitivity

analysis results but the computation time is significantly reduced.

Jahanshahloo et al. (2005a) also use super-efficiency techniques to investigate the

changes that can be made to DMU 0eff while the remaining DMUs’ data remain fixed.

However, in contrast to previous studies they determine the largest stability region

by considering the three cases i) increase inputs and outputs, ii) increase inputs and

decrease outputs and iii) decrease inputs and outputs; they then select the largest



CHAPTER 3. MATHEMATICAL BACKGROUND 76

of these three. This is done by removing DMU 0eff from the observation set and

forming a new efficient frontier via supporting hyperplanes that are binding at DMU

0eff . The area between the nominal and new frontier is the stability region for DMU

0eff . However, for large problems (in both input and output number and number

of DMUs) this method is computationally intensive as it relies on the method from

Huang et al. (1997) to determine all efficient surfaces of the model passing through

DMU 0eff . This method is not suitable for weakly efficient DMUs as removing them

from the PPS does not change the efficient frontier. This led to Daneshvar et al. (2014)

extending the methodology to include weakly efficient DMUs and anchor DMUs.

Boljunčić (2006) considers how the change in DMUs’ data can affect extreme

efficient DMUs. He notes that the larger the stability region for an extreme DMU the

more reliable the obtained result is as the DMU is less affected by data misspecification

or possible data errors. He assumes simultaneous changes of all inputs and outputs of

DMU 0ex but only allows a decrease of outputs and increase of inputs in the form of

a small constant to each data point. In this way the region of stability is smaller than

that derived in Jahanshahloo et al. (2005a). Boljunčić (2006) determines a region

where DMU 0ex remains efficient using an iterative parametric programming process

to move to adjacent facets of the efficient frontier. Similar to this is the approach taken

by Ghadimia and Ahadzadeh Namin (2009). However, here the inputs/outputs are

multiplied by a small constant instead. They again calculate the region of efficiency

for DMU 0ex. DMU 0ex is removed from the reference set and a linear programming

model is used to determine the projection of DMU 0ex to the facets of the new efficient

frontier. Again the approach moves systematically from one facet to an adjacent one.

They derive sufficient and necessary conditions for DMU 0ex to remain efficient when

iteratively changing each input/output of DMU 0ex. They note that further research

is required into the infeasibility of the linear programming model for all inputs and

outputs.
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Gholam Abri et al. (2009) observe that sometimes the behaviour of inefficient

DMUs is very similar to the efficient DMUs and that although they are classified as

inefficient they are in-fact operating satisfactorily. To overcome this they define a

new efficiency category, ‘quasi-efficient’. Standard DEA models are used to classify

each DMU as efficient when θ∗0 = 1, quasi-efficient when 1 > θ∗0 > α and inefficient

when θ∗0 ≤ α, where α is determined by the conditions of the situation. The paper

uses α = 0.7 in the example but does not provide guidance on how to select this

value. They consider both efficient and quasi-efficient DMUs to belong to the efficient

category (despite not all of the DMUs having an efficiency score of one). The paper

then proceeds to adapt the methodology from Charnes et al. (1992, 1996) to determine

the stability radius for each DMU such that DMU 0’s classification changes from

efficient or quasi-efficient to inefficient or vice versa.

Jahanshahloo et al. (2011) focuses on the inefficient DMUs. The paper considers

methods such that DMU 0ineff can improve to obtain an efficiency score of α as de-

fined by the manager where α is close to one. This is done by finding the ‘necessary

change region’, such that after these changes are made DMU 0ineff will have an effi-

ciency score of α. To do this the set of extreme efficient DMUs is first identified, the

inputs of these DMUs are then multiplied by 1
α

. This creates a new efficient frontier

along which the transformed DMUs have efficiency score of α. The changes in inef-

ficient DMUs to reach this new frontier are then found. DMU 0ineff can improve by

increasing outputs, decreasing inputs or a combination. In the two variable example

given DMU 0ineff follows a perpendicular line, the shortest distance from the nom-

inal data to the transformed efficient frontier. The projection of DMU 0ineff to the

transformed efficient frontier provides the necessary change required for DMU 0ineff ’s

efficiency score to increase to α. DMU 0ineff may move towards the new frontier via

different strategies, this flexibility in the model allows a wide range of applications to

be modelled.
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Multiple changes

The previous DEA sensitivity analysis methods discuss changes to the data of a single

DMU at a time. However, in many applications it is more realistic that all the DMUs’

data suffer from uncertainty and this can affect the classification of the other DMUs.

One of the first DEA sensitivity analysis papers to consider simultaneous changes

was Thompson et al. (1994). Motivated by data from Illinois coal mining and Kansas

farming they believed that only small data changes were likely. Therefore, they con-

sidered changes to the solutions when all the data changed simultaneously in a small

defined region. To implement this they increased(decreased) the efficient DMUs’ in-

puts(outputs) in five percent increments and did the opposite to the inefficient DMUs.

In this way they determined when a change in the efficiency ranking occurred.

Seiford and Zhu (1998a) also consider simultaneous data changes as they believe

that “in reality possible data errors may occur for any DMU”. Here they look at fixed

percentage and absolute changes in a subset of inputs and outputs. Their method

is a worst-case scenario approach where DMU 0eff ’s data changes unfavourably and

all other DMUs’ data changes favourably. Changes to DMU 0eff are made that

decrease the efficiency score (increase inputs and decrease outputs) and the efficiency

score for the remaining DMUs increase (decrease inputs and increase outputs). A

stability range for DMU 0eff is calculated to determine how much change in the data

can occur before it is reclassified as inefficient. They derive bounds on the possible

changes for DMU 0eff . Zhu (2001) continues this work by relaxing the assumption

that the percentage changes of the data are the same for inputs and outputs. The

method is based on super-efficiency, see Section 3.1.5 or Seiford and Zhu (1999). Here

a subset of the inputs and outputs are changed for all DMUs first individually and

then simultaneously.

An alternative approach is taken by Cooper et al. (1999) who consider bounded

data, where the real data are known only within specified bounds or satisfy an ordinal
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relationship. In this way the data are then variables whose exact value are unknown

in advance and therefore must be determined. The bounds on the data form sets

in which the true data vectors reside, similar to the idea of a box uncertainty set

(see Section 3.2). However, this results in a nonlinear, nonconvex problem which is

complicated further by the addition of ordinal relations between DMUs. To address

this they develop a method they term Imprecise DEA, IDEA. Here the problem is

transformed to a linear program equivalent by introducing new variables for products

of data with multiplier variables (υ, ν in (3.3)). These new variables are introduced

such that the ordinal relations are preserved. In this way a linear program can be

solved that allows for exact, ordinal and bounded data. The IDEA model is then

extended to Assurance Region IDEA, AR-IDEA to include assurance regions on the

multiplicative weights. An assurance region defines weights on the inputs and outputs

rather than the data and is known within prescribed lower and/or upper bounds. The

AR-IDEA model is solved by introducing new variables to translate the bounds on

the multiplicative weights into sets of constraints.

Despotis and Smirlis (2002) also consider bounded data and provide an upper and

lower bound on the efficiency score by considering best and worst case scenarios for

DMU 0. The DMUs are classified into three categories: always efficient, efficient at

the upper bound only and never efficient. When data are known to be imprecise but

a bound on the data are not known they consider a single change to a single input of

DMU 0ineff to determine the level by which the input would need to reduce for DMU

0ineff to be deemed efficient. This requires the addition of a non-linear constraint to

the LP. A two-stage process using a bisection search is described that can be used to

solve the nonlinear program in standard linear programming software. This is built

on in He et al. (2016) who again consider bounded uncertainty of the DMUs data but

allow changes in both the DMU under consideration and the remaining DMUs. They

divide the data into sets of inputs and outputs they are interested in and consider
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percentage data perturbations to DMU 0eff and the remaining DMUs in order to

calculate the stability region of each DMU and categorise them as in Despotis and

Smirlis (2002).

Liu and Lai (2006) also consider subsets of inputs and outputs which they simul-

taneously deteriorate to determine the radius of stability for DMU 0eff . The iterative

deterioration is applied to a subset of DMUs including DMU 0eff . This setting is

motivated by determining the efficiency of Taiwan hospitals. Here the deterioration

may only occur in the private hospitals in the north of Taiwan. They assume that the

non-linear programmes which they use to model the data changes are feasible. How-

ever they conclude that this is not necessarily true. They assume that the minimum

uncertainty for particular inputs and outputs can be found but note that this may

not always be the case.

Other DEA sensitivity analysis techniques include the addition of a new DMU

to the set and the effect this has. For example, Zamani and Borzouei (2016) use the

method presented in Jahanshahloo et al. (2007) for finding strong defining hyperplanes

of the production possibility set to determine the consequences of a new DMU being

added to the solution set. The proposed method determines the stability region such

that the new DMU is efficient and the originally efficient DMUs remain efficient.

From single changes in a single output in Charnes et al. (1984) to simultaneous

data changes in all DMUs in all inputs and outputs in Thompson et al. (1994) there are

many sensitivity analyses in DEA papers we have not mentioned here. Other similar

related studies in DEA that contribute to this field of research include determining

the least distance in DEA, (for an overview see Aparicio (2016)), and computational

studies to determine all supporting hyperplanes of the DEA efficient frontier (Huang

et al., 1997). We will build upon some of the methodology introduced in this section

in Chapter 4 where, unlike much of the sensitivity analysis literature, the interest will

be in how inefficient DMUs can change their efficiency status.
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3.4 Uncertain DEA

In Section 3.1 we introduced DEA, a non-parametric method for assessing the effi-

ciency of DMUs based on the dataset. Traditional DEA models assume that the data

are known precisely. However, in many real-world applications the data are inher-

ently uncertain. This could lead to a DMU being misclassified as inefficient when it

is in-fact the imperfect data that is causing the DMU to be evaluated as inefficient.

In this section we consider uncertain data to be the result of imperfect data due to

a lack of accurate data where the ‘true’ amount of uncertainty can be any(or all) of

the following: vague, unknown, obscure and arising from different sources. Ehrgott

et al. (2018) introduced the concept of uncertain DEA, (uDEA) which aims to ad-

dress such data instances. The reliability of the conclusions from a DEA model are

intrinsically linked to the quality of the data used. The DMUs are compared against

each other and assessed on the relationship between their inputs and outputs. Conse-

quently, if not correctly accounted for uncertainties in the data can lead to the wrong

conclusions.

uDEA is closely linked to robust optimisation methods and concepts introduced

in Section 3.2 will be drawn upon. However, unlike in robust DEA, uDEA seeks

to exploit the uncertain nature of the data to express each individual DMU under

consideration in the most favourable way. uDEA aims to find the minimum amount

of uncertainty required for an inefficient DMU to be rendered efficient, i.e. under

what data instances would an inefficient DMU be categorised as efficient.

Here we introduce the general uDEA model, key definitions and configurations of

uncertainty that will then be built upon in Chapter 4. We use similar notation to

Ehrgott et al. (2018) and follow their definitions of uDEA.
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3.4.1 The uDEA model

After solving the nominal DEA problem (3.8) a DMU is classified as efficient or inef-

ficient. We now consider what effect introducing uncertainty has on this classification

system and our perspective is altered as in Ehrgott et al. (2018) where we now classify

DMUs as capable or incapable.

In Section 3.2.2 the robust DEA model was defined in (3.19) to be,

Ei(U) := min
η

{
cTη : ajη ≤ 0, ∀aj ∈ Uj, ∀j, Bη = e, η ≥ 0

}
. (3.20)

We now extend (3.20) further by considering the effect of different uncertainty sets

Uj on the robust efficiency score Ei(U). To aid this we have the following definitions

from Ehrgott et al. (2018).

Definition 3.4.1. The uncertain inputs and outputs are:

1. Uj is an uncertainty set that models the possible values of the data aj. Hence each

aj ∈ Uj is a possible row vector of input/output data for the jth input/output.

2. U = {Uj : j = 1, . . . , N + M} is a collection of uncertainty sets, or more suc-

cinctly, a collection of uncertainty. Hence U contains the totality of uncertainty

across all inputs and outputs.

Definition 3.4.2. Ω is the universe of possible collections of uncertainty.

Definition 3.4.3. An amount of uncertainty is a mapping

m : Ω→ R+ : U 7→ m(U)

such that

i. there is zero uncertainty if and only if there is no uncertainty i.e. m(U) = 0 if

and only if |Uj| = 1 for j = 1, . . . ,M +N , and

ii. m(U) is monotonic, i.e. m(U ′) ≤ m(U ′′) if U ′j ⊆ U ′′j , j = 1, . . . ,M +N .
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This allows comparative evaluations between uncertainty sets as we have a numer-

ical association with U and hence can order the amount of uncertainty in increasing

size. We do not explore this in detail as we focus mainly on box uncertainty where the

notion of increasing uncertainty can easily be seen to be associated with increasing

box size. Ehrgott et al. (2018) showed that as the uncertainty increases the efficiency

of a DMU increases. A specific example of this for box uncertainty is explored in

Section 4.3. As a result, the initial data provides a lower bound for the efficiency

score a DMU can achieve.

In uDEA we search among all robust DEA solutions to find the minimum amount

of uncertainty required to achieve the maximum possible efficiency score. We require

a distinction between the original variables, θk, λi, i = 1, . . . , I, of the DEA model

(4.1) and optimal values, θ∗k, λ
∗
i , i = 1, . . . , I, the variables take when (4.1) has been

solved for the nominal data where the ∗ indicates that these are now realisations of

a variable. In uDEA, we consider how the variable values of θk and λ change when

uncertainty is introduced to (4.1). To distinguish between an initial optimal solution

(λ∗, θ∗k) and an optimal solution when uncertainty is introduced we use the notation

(λ̄∗, θ̄∗k) to show we are considering the values the variables take at an optimal solution

to the uDEA problem.

The uDEA problem for the ith DMU is:

uDEA : θ̄∗i = sup
0≤θi≤1

{θi : min
U∈Ω

{m(U) : Ei(U) ≥ θi}} (3.21a)

= sup
0≤θi≤1

{θi : min
U∈Ω

{m(U) : min
η≥0
{cTη : ajη ≤ 0, ∀aj ∈ Uj,

j = 1, 2, . . . ,M +N, B η = e} ≥ θi}}, (3.21b)

where we again omit the dependence of i on the a terms to ease notation. Solving

(3.21) for DMU i gives an optimal solution (η̄∗i , Ū∗i ) = ( λ̄∗, θ̄∗i , Ū∗i ), where θ̄∗i is the

maximum efficiency score DMU i can achieve within the confines of the permissible

uncertainty Ω; Ū∗i is the collection of uncertainty with the minimum amount m(U)
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of uncertainty required to achieve θ̄∗i and η̄∗i contains the values of λ̄∗i at the optimal

solution and hence the peers for DMU i.

Solving (3.21) equates to finding the supremum, here used in case the maximum

does not exist, of all θi such that the uncertainty is as small as possible, where the

amount of uncertainty is defined in Definition 3.4.3, i.e., the robust efficiency score

must be greater than or equal to θi. In this way by solving the uDEA problem we find

the maximum possible efficiency score that can be obtained with the minimum amount

of uncertainty. Here, as in classical DEA methodology, each DMU has the possibility

of maximising its efficiency score. In addition, due to the uncertainty, each DMU can

also choose the most favourable data instance, the best possible collection of inputs

and outputs. Here the objectives are sequential: increase θi and then minimise m(U).

This is to follow DEA’s underlying methodology of improvement for each individual

DMU.

We note that if the nominal problem (3.8) has θ∗i = 1 then θ̄∗i = 1, Ū∗i = U0
i , η̄

∗
i =

(0, . . . , 1, . . . , 1, 1) where the first one is in the ith position and m(U) = 0 is the optimal

solution. That is a DMU that is efficient in the nominal DEA problem will remain

efficient in the u-DEA problem.

We now wish to distinguish between those DMUs that remain inefficient in the

presence of uncertainty and those that can achieve efficiency. To do this we use the

definition from Ehrgott et al. (2018) of capable and incapable DMUs.

Definition 3.4.4. A DMU i under Ω is:

i. capable if θ̄∗i = Ei(U) = 1 for some U ∈ Ω.

ii. weakly incapable if θ̄∗i = 1 but Ei(U) < 1 for all U ∈ Ω.

iii. strongly incapable if θ̄∗i < 1.

iv. incapable if it is either strongly or weakly incapable.



CHAPTER 3. MATHEMATICAL BACKGROUND 85

In this way a DMU is incapable if it is inefficient for all uncertain data instances,

i.e. even with the ability to select the most favourable data from Ω it has no claim

on efficiency. The only way for an incapable DMU to become capable is if a change

in Ω occurs.

3.5 Principal Component Analysis and other vari-

able reduction techniques

In Section 2.1.2 we introduced Rosemere and the clinical protocol they use. To be

able to use the data from Rosemere we need to be able to select suitable variables that

represent the treatment plans. To do this we require variable selection techniques.

Here we introduce Principal component analysis (PCA), and other techniques that

we apply to the data from Rosemere in Section 5.2.

3.5.1 Principal Component Analysis

PCA is a statistical technique used for dimension reduction. PCA seeks to identify

a basis that allows us to express the data set in the most meaningful fashion, i.e.,

the key information becomes readily apparent. The noise in the data is filtered out

with this new basis and hidden structures are revealed. To do this, the variables are

transformed to a new set of variables called the principal components (PCs). Each

PC is a linear combination of the original variables. The first PC accounts for the

largest proportion of variability in the data, i.e. the direction where there is the most

variance and hence where the data are most spread out. Each following component

will be linearly independent (uncorrelated) from the previous components. PCA is

broadly used for data analysis and its popularity is driven by its simplicity. It is a

non-parametric tool and can efficiently extract important information from complex

data sets without major assumptions on the data.
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We introduce the mathematical background, method and standard techniques for

analysing and using PCA. In section 5.2 this will be used to aid variable selection for

our DEA method. We note here that we do not discuss PCA-DEA, a method that

uses the PCs as variables in the DEA model directly. This is because for our chosen

application a weighted linear combination of variables does not make sense. For a

overview of PCA-DEA see Adler and Golany (2007).

Consider a data set that consists of a sample of n observations on a vector of q

variables x = (x1, x2, . . . , xq). We note here that a, i, j, k, q, z, α and λ are used here

but bear no relation to the use of a, i, j, k, q, z, α, λ notation in other chapters. Then

x is a random vector with q × q sample variance-covariance matrix S whose (i, j)th

element, si,j, is the sample covariance between the ith and jth element of x when i 6= j

and the sample variance of the jth element, sj, when i = j. Note here we use the

sample covariance matrix instead of the population covariance matrix as it is more

realistic that we only have a sample of the whole dataset.

The first PC of this data is given by

z1 = aT1 x =

q∑
i=1

ai1xi,

where the vector of coefficients a1 = (a11, a21, . . . , aq1) is obtained by maximising the

variance of z1 subject to aT1 a1 = 1. This constraint on the maximisation ensures the

answer is unique. This can be solved by using the Lagrange multiplier, λ,

max
a1

[
aT1 Sa1 − λ(aT1 a1 − 1)

]
. (3.22)

Differentiation of (3.22) reveals that a1 is an eigenvector of S with the corresponding

eigenvalue λ1. Since this λ1 maximises the variance of z1, it is the largest eigenvalue

of S as

var(z1) = aT1 Sa1 = aT1 λ1a1 = λ1.

In other words, the first PC z1 retains the greatest amount of data variation, i.e.

information on sample variability.



CHAPTER 3. MATHEMATICAL BACKGROUND 87

Similarly, the kth PC of x is given by the transformation

zk = aTk x ∀ k = 1, . . . , q,

where the vector of coefficients ak = (a1k, a2k, . . . , aqk) is given by

var(zk) = aTk Sak = λk.

This means that the kth largest eigenvalue of S is the variance of the kth PC zk, which

retains the kth greatest fraction of the variation in the data set.

The resulting eigenvalues of the PCs’ can be displayed graphically to highlight

their relative importance. In this fashion, the first component reveals the direction

where the data are most spread out.

PCA works on the basis that there is shared variance amongst variables, i.e., across

the whole sample there is a dependence structure, (Hair Jr et al., 1995). In this way

we must make the following assumptions:

i. there is a linear relationship between the variables,

ii. the mean and variance define the probability distribution of the data and

iii. we have a sufficiently large dataset that it is representative of the true popula-

tion.

Assumption (i) can be checked by calculating the Pearson correlation coefficient or

plotting the variables pairwise if there are few variables. Assumption (ii) means a

large variance in the dataset is meaningful, whereas a small variance is assumed to be

caused by noise in the data. Assumption (iii) can be thought of as requiring sampling

adequacy, i.e. the sample we have is a fair representation of the true population. For

both assumption (ii) and (iii) the larger the sample size the less concerned by these

assumptions we can be due to the central limit theorem.



CHAPTER 3. MATHEMATICAL BACKGROUND 88

In practice it is common to use the correlation matrix C instead of the sample

variance matrix S where,

C(xi, xj) =
si,j
si sj

,

si,j is the covariance between xi and xj and si, sj is the variance of xi and xj.

This overcomes the sensitivity of PCs to units of measurements which is particularly

important if there are variables with largely different scales of magnitude or units.

This ensures the variables with large variances do not dominate the first few PCs

simply because they have a larger measurement scale. In this way, each variable is

given equal weighting in the analysis.

After applying PCA the results must be interpreted. One problem with PCA is

that the raw PCs are hard to interpret and evaluate. From the PC’s coefficients it is

often hard to identify the underlying patterns and relationships between the original

variables and the new coefficients. Jolliffe (2002) note that, ‘when we interpret PCs

it is usually only the general pattern of the coefficients that is really of interest, not

the values to several decimal places which may give a false impression of precision’.

As a result in Jolliffe (2002) a simple +, − notation is used to look at the patterns

occurring in the PCs. For each PC the absolute maximum coefficient is determined.

Then for each PC k = 1, . . . , q, let

αk = max
i=1,...,I

|aik|,

where the ak are the eigenvectors of S. Then, the following representation is used:

If aik ≥
1

2
αk + (3.23a)

1

2
αk > aik ≥

1

4
αk (+) (3.23b)

aik ≤−
1

2
αk − (3.23c)

1

2
αk < aik ≤−

1

4
αk (−) (3.23d)

else aik insignificant. (3.23e)
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In this way patterns in the variables can easily be spotted. For example if the first

PC has a + representation for all coefficients this suggest the first PC is a measure of

overall size. It also shows if there are large positive and negative contributions in the

PCs.

We now discuss some popular criteria that can be used to interpret the PCA results

further. This may be in the form of choosing a number of PCs for further analysis or

making decisions based on the first few PCs.

One popular method is to choose a predetermined percentage of variance the

components must explain. This is an arbitrary number and is normally in the range of

80-95% variance depending on the data. Although this is an ad-hoc rule of thumb and

there is limited formal justification, it is a popular method due to it being intuitively

plausible and because in practice it often works well. An example of this method can

be found in Jolliffe et al. (1982). They classify elderly individuals according to similar

characteristics to provide insight into particular requirements the elderly may need

from social services and other health care providers. From 20 variables they reduced

the sample data to ten PCs that accounted for over 80 percent of the variation.

Another commonly quoted method is Kaiser’s “eigenvalues-greater-than-one” rule

(Kaiser, 1960). Here PCs that have eigenvalues less than one are discarded as they

have less information than using one of the original variables. The motivation behind

this method came from Kuder-Richardson’s reliability of factors formulas (Kuder and

Richardson, 1937) and from observations of the meaningfulness of PCs in terms of

data applications. He concluded that “the number of eigenvalues greater than one

of the observed correlation matrix led to a number of factors corresponding almost

invariably, in a great number of studies, to the number of factors which practicing

psychologists were able to interpret”.

Alternatively, a scree test criterion can be used. The PCs are plotted according

to the percentage variance they explain. A levelling off on the graph is sought, i.e. a
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point where the rate of percentage variance explained vs the number of variables in

the analysis reduces.

Sometimes the next stage of analysis requires whole variables to be selected from

the PCA because weighted linear combinations make no sense in the application.

Simply selecting the variables that have the largest contribution in the first few PCs

is not sufficient (Jolliffe, 1973, 1972). So a number of techniques have been suggested

in the literature.

One method is to look at the least significant PC and find the variable which

contributes to it most. This variable is then removed and PCA is repeated until the

desired number of PCs is reached. The justification behind this method is that the

end PCs will be dominated by variables that explain less in the first PCs and so in

removing them little information is lost, see Jolliffe (2002) for more details. The aim

is that this results in variables which explain more of the variation in the earlier PCs

being kept.

Another method is to compute the correlation between PCs and original variables.

keeping those variables that correlate highly with PCs with larger eigenvalues. An

example of this can be found in Uva et al. (2009) where they use PCA to analyse

human and dog gene expression data from tumour and normal tissue cells. They cal-

culate the correlation between the first few PCs with the original variables. Variables

that correlate highly with the first few PCs are then selected for further analysis.

One downfall of PCA is its sensitiveness to the data currently being used, i.e. in

small samples outliers can have a large influence on the conclusion drawn. This is

particularly problematic when whole variables are being selected as a few outliers can

cause an insignificant variable to be chosen for the further analysis.

Although normalising the data can help remove bias in variables that have largely

different scales it does not prevent data with underlying structures distorting the PCs.

An example of this will be seen in Section 5.2.3 where the first PC divides into two
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distinct groups due to the number of fractions distorting the PCs.

Many of these techniques are subjective and parameters such as the percentage

variance explained should be based on the dataset at hand. Despite the subjectivity

of how to apply and interpret PCA it remains a very popular technique across many

different disciplines.

In Section 5.2.4 we develop a new variable selection method based on PCA that

aims to overcome PCA’s sensitiveness to the current sample and provides a technique

for choosing whole variables from a larger collection.

3.5.2 Partial Covariance

An alternative method for variable selection is based on the proportion of the total

variance retained when conditioning out a subset of variables. This is called the

partial covariance method.

Let x be a q dimensional normally distributed random vector with mean 0 and

sample covariance matrix S. The aim of the partial covariance method is to select

variables that explain as much variation in the data as possible. Therefore, we reorder

the q variables of the data into two groups i = 1, . . . , p are the variables we keep and

i = p+ 1, . . . , q are the variables we remove. The number of variables to keep should

be as small as possible but large enough that it represents the full dataset. For small

values of q it is possible to evaluate all combinations of
(
q
p

)
variables.

First, we partition the covariance matrix such that

S =

S11 S12

S21 S22

 ,

where S11 is the p × p covariance matrix of the 1, . . . , p variables to keep, S22 is the

(q−p×q−p) covariance matrix of the p+1, . . . , q variables to remove and S12 = (S21)T

is the (p×q−p) covariance matrix between the subsets of variables to keep and remove.
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Then the conditional covariance of the i = p + 1, . . . , q variables given the i =

1, . . . , p variables can be calculated. We denote this conditional covariance by S2|1

and calculate it via

S2|1 = S22 − S21S
−1
11 S12,

(Morrison, 1990). This can be repeated for all combinations of variables. The trace2

of S2|1 (Tr(S2|1)) represents the size of the remaining variance in the variables i =

p + 1, . . . , q which have not been accounted for in the i = 1, . . . , p variables that

are kept. By selecting the variable set with the smallest value of Tr(S2|1) for any

given p we retain the most information. By selecting a level of variance we wish to

retain, (Adler and Yazhemsky (2010) suggest 76%) we can find the smallest number

of variables required to explain the set level.

To aid the variable selection process McCabe (1984) suggests calculating the per-

centage of variance explained:

%Explained = 1−
sum of the eigenvalues of S2|1

sum of the eigenvalues of S
. (3.24)

If using normalised data the calculation of (3.24) is simplified to

%Explained = 1−
Tr(S2|1)

q
.

This method will be applied to data from Rosemere in Section 5.2.5.

2The trace of a square matrix is defined to be the sum of the diagonal elements.



Chapter 4

Treating uncertainty

Throughout this Chapter we investigate the relationship between the amount of un-

certainty required for an inefficient DMU to be deemed efficient and the DEA distance

of the DMU under consideration. The DEA distance is defined in Definition 4.1.6 and

can be thought of as the Euclidean distance from a DMU to its projection onto a

facet of the efficient frontier. We consider which facet of the efficient frontier should

be the target of this projection. When uncertainty is introduced is it beneficial for an

inefficient DMU to compare itself to a facet of the efficient frontier not defined by its

nominal peers? We leverage the uncertainty present in the data such that inefficient

DMUs may improve. We wish to determine the minimum amount of uncertainty

required for an inefficient DMU to be evaluated as efficient.

In Section 3.1 we introduced the input-oriented VRS DEA model in matrix no-

tation. We repeat the model here in summation notation to aid development of the

following theorems.

Consider I DMUs, each with M non-negative, non-zero outputs and N non-

negative, non-zero inputs. We assume that the PPS has dimension N + M and

that I > M + N . The inputs and outputs of the ith DMU are represented by the

column vectors xi ∈ RN and yi ∈ RM . The efficiency score θ∗k for DMU k can be

93
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found by solving the linear optimisation problem

min
λ, θ

θk (4.1a)

s.t.

I∑
i=1

λiymi − ymk ≥ 0 m = 1, . . . ,M (4.1b)

I∑
i=1

λixni − θkxnk ≤ 0 n = 1, . . . , N (4.1c)

I∑
i=1

λi = 1 (4.1d)

λi ≥ 0 i = 1, . . . , I. (4.1e)

Here ymi is the mth output and xni is the nth input value for DMU i. λ =

(λ1, λ2, . . . , λI) ∈ RI is a decision variable. From Definition 3.1.5 the solution (λ, θk) =

(0, 0, . . . , 1, . . . , 0, 1), where the first one is in the kth position is feasible. The feasibility

of this solution ensures the maximum value that θk can take is 1, i.e. an optimal value

θ∗k of model (4.1) is less than or equal to one. In this way, we denote an optimal solution

for DMU k by (λ∗, θ∗k). λ
∗ ∈ RI is a vector of weights (not necessarily unique) at an

optimal solution. In this chapter we use the following definition of efficiency.

Definition 4.0.1. DMU k is efficient if and only if θ∗k = 1.

Therefore, if θ∗k < 1 DMU k is inefficient. To find the efficiency scores for the I

DMUs the linear program (4.1) must be solved I times, once for each of the I DMUs.

Model (4.1) assumes that the data xni, ymi are exact and DMUs are classified

as inefficient or efficient based on these data. However, the data of many real-world

applications are inherently uncertain. Hence, it is possible that an inefficient DMU

performs well in practice, i.e. it is the uncertainty in the data that stops it being

classified as efficient. In this chapter, we study the uncertain nature of the data and

the effect this has on an individual DMU’s efficiency score. Building upon Ehrgott

et al. (2018), (see Section 3.4) we refine the concept of uDEA for the specific case where
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we have box uncertainty. This refinement is motivated by the real-world radiotherapy

application as introduced in Section 2.1.

In DEA sensitivity analysis (see Section 3.3), the focus is on how an efficient

DMU can remain efficient. We are instead interested in the inefficient DMUs and

how they can become efficient, i.e. we wish to leverage the uncertainty present in the

data such that inefficient DMUs may improve and determine the minimum amount

of uncertainty required for an inefficient DMU k to be evaluated as efficient.

In Section 4.1 we introduce some important definitions and results to be used

throughout the chapter. In Section 4.2 we start by considering a fixed amount of

uncertainty. In Section 4.3 we examine the effect of a variable amount of uncertainty.

We derive the minimum amount of uncertainty required for an inefficient DMU k

to become efficient both geometrically and via the DEA model (4.1). The section

concludes with a short discussion of future directions to solving the problem.

Throughout this chapter, we borrow the terminology and methodology of robust

optimisation, DEA sensitivity analysis and uDEA from Sections 3.2, 3.3 and 3.4.

As we wish to solve the uncertain model (3.21) for inefficient DMU k (uDEA) as

introduced in Section 3.4, we repeat the uDEA model here to highlight the differences

between the models we use in the following sections.

uDEA : θ̄∗i = sup
0≤θi≤1

{θi : min
U∈Ω

{m(U) : Ei(U) ≥ θi}}. (4.2)

As in Section 3.4 we use the notation ( λ̄∗, θ̄∗i , Ū∗i ), to denote the values the variables

take at an optimal solution to the uDEA problem (4.2).

To aid the development of the next section, we consider a simplified version of the

uDEA problem (4.2) by focusing on the constraints for inefficient DMU k. In Section

4.2, we assume a fixed uncertainty amount, therefore, we omit minU∈Ω in (4.2). In

this way, for fixed u, we obtain a linear programme which is equivalent to solving

the robust DEA model (3.19). We assume that θ̄∗i = 1 ∀ i 6= k holds throughout,

for justification see Theorem 4.1.16 and Corollary 4.1.17. This gives the following
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model, where ∆mi
i 6=k
, ∆ ni

i 6=k
are the uncertainty associated with the efficient DMUs and

∆mk, ∆nk the uncertainty associated with the inefficient DMU.

min
θk,λ,∆

θk (4.3a)

s.t.
I∑
i=1

λi(ymi + ∆mi)− (ymk + ∆mk) ≥ 0 m = 1, . . . ,M (4.3b)

I∑
i=1

λi(xni + ∆ni)− θk(xnk + ∆nk) ≤ 0 n = 1, . . . , N (4.3c)

I∑
i=1

λi = 1 (4.3d)

λi ≥ 0 i = 1, . . . , I (4.3e)

∆mi, ∆ni,∈ [−u,+u] m = 1, . . . ,M n = 1, . . . , N i = 1, . . . , I. (4.3f)

Definition 4.0.2. An optimal solution to (4.3) for DMU k is the vector

(λ̄∗, θ̄∗k,∆
∗
mi,∆

∗
ni), m = 1, . . . ,M, n = 1, . . . , N, i = 1, . . . , I.

This gives the following definition.

Definition 4.0.3. Box uncertainty is defined to be

{
xuni ∈ [xni

+
−u], yumi ∈ [ymi

+
−u], m = 1, . . . ,M, n = 1, . . . , N, i = 1, . . . , I

}
. (4.4)

Where xni and ymi are the nominal data and xuni and yumi are the values the data

takes in the uncertainty set. In this way, the true data for each DMU falls in an interval

of length 2u for each input and output. W.l.o.g. we assume that the possible deviation

from the nominal data value is the same for each input/output. This assumption can

be made without restricting the uncertainty sets of each variable to be equal, in the

following way.

We denote the m(n)th row of Y (X) the output(input) data by Ym(Xn). Then

for the M outputs and N inputs let uy1 , . . . , uyM , ux1 , . . . , uxN be the corresponding

uncertainty. Let U = uy1×uy2× . . . uyM ×ux1×· · ·×uxN . Transform the original data
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DMU X1 X2 Y θ∗

A 140 92 60 1

B 280 115 60 0.800

C 420 161 180 0.857

D 560 230 420 1

Table 4.1: Data and efficiency scores, Example 2.

such that, Y ′1 = Y1∗ U
uy1
, . . . , Y ′M = YM ∗ U

uyM
, X ′1 = X1∗ U

ux1
, . . . , X ′N = XN ∗ U

uxN
. Then

using the transformed data with uncertainty U is equivalent to using the original data

with uy1 , . . . , uyM , ux1 , . . . , uxN . This is because DEA is not affected by scaling, Ali

and Seiford (1990), therefore the inputs/outputs can be scaled so that the amount of

uncertainty is the same. This is demonstrated in the following example.

Example 2: Scaling uncertainty

Consider the four DMUs A −D with inputs X1 and X2 and output Y , the data

for these are presented in Table 4.1. Applying model (4.1) identifies DMU A and

D as efficient and DMUs B and C as inefficient. Their efficiency scores are given

in the last column of Table 4.1. The uncertainty associated with each variable is

ux1 = 3, ux2 = 2, uy = 4. We add uncertainty to each data point as described in Table

4.2, this uncertainty configuration will be explained later in Section 4.2. Here they can

be thought of as realisations from the interval of length 2uj, j ∈ {x1, x2, y} around

each data point. The efficiency scores for the uncertain data are given in Table 4.2.

We now scale the data in Table 4.1 such that Y ′ = Y ∗ U
uy
, X ′1 = X1 ∗ U

ux1
and

X ′2 = X2 ∗ U
ux2

where U = ux1 × ux2 × uy = 3 × 2 × 4 = 24. The data for the scaled

variables Y ′, X
′
1 and X

′
2 are given in Table 4.3 along with the efficiency scores. We

note that as expected, the efficiency score for the scaled data is the same as for the

nominal data in Table 4.1.
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DMU Xu
1 Xu

2 Yu θ̄∗

A 140 + ux1 92 + ux2 60− uy 1

B 280− ux1 115− ux2 60 + uy 0.859

C 420− ux1 161− ux2 180 + uy 0.900

D 560 + ux1 230 + ux2 420− uy 1

Table 4.2: Uncertainty ux1 , ux2 and uy, Example 2.

DMU X′1 X′2 Y′ θ∗

A 1120 1104 360 1

B 2240 1380 360 0.800

C 3360 1932 1080 0.857

D 4480 2760 2520 1

Table 4.3: Data with scaled uncertainty, Example 2.

Due to the scaling in Table 4.3 we can now use the value U for all the data. This

is done in Table 4.4. Again we see that the efficiency scores in Table 4.2 and 4.4 are

the same, thus we can use the scaled data to ease calculations. Examination of the

peers for the DMUs in Table 4.2 and 4.4 are also the same with the same λi values.

Throughout the rest of the chapter we assume this scaling has already occurred.

We drop the ′ notation and use u to denote the amount of uncertainty applied to all

the data. We assume the uncertainty is never larger than the data and hence the

data remains strictly positive. Each data-point takes values in the range xuni ∈ [xni −

ux, xni+u] and yumi ∈ [ymi−uy, ymi+u] i = 1, . . . , I, m = 1, . . . ,M, n = 1, . . . , N where

ux = min(xni, u) and uy = min(ymi, u). W.l.o.g. we will assume that u < xni and

u < ymi ∀i = 1, . . . , I, m = 1, . . . ,M, n = 1, . . . , N . Therefore, xuni ∈ [xni−u, xni+u]

and yumi ∈ [ymi − u, ymi + u] and xni, ymi > 0.
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DMU X′1
u X′2

u Y′u θ̄∗

A 140 + U 92 + U 60− U 1

B 280− U 115− U 60 + U 0.859

C 420− U 161− U 180 + U 0.900

D 560 + U 230 + U 420− U 1

Table 4.4: Uncertainty U , Example 2.

4.1 Preliminary results

To start, we introduce some important definitions and results to be used throughout

this chapter. Throughout this chapter we explore the effect uncertainty in the data

has on the DEA model. This results in us referring to points in the PPS that have not

been observed in the data. Here we will refer to them as artificial DMUs and use the

notion from Thanassoulis and Allen (1998) that these are DMUs that have definite

values for inputs and outputs, but have not been observed in practice, i.e. they are

obtained based on the inputs and outputs of other DMUs. This allows us to refer to

points on the PPS that are defined by uncertain data of existing DMUs. In particular

we define the virtual DMU ku.

Definition 4.1.1. The virtual DMU iu is defined to be the DMU with inputs and

outputs iu = (xi + u, yi − u),∀ i 6= k, iu = (xi − u, yi + u) if i = k.

This allows us to consider projections from the point ku to the efficient frontier.

As introduced in Section 3.1 the PPS of (4.1) is a polyhedron defined by the

intersection of a finite number of half spaces. We have assumed that the PPS has

dimension N+M and hence the facet of the efficient frontier inefficient DMU k is being

projected to can be defined by at most Φ = N + M DMUs. To aid the development

of the following sections we define a Φ− 1 dimensional hyperplane. A hyperplane in
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Φ dimensions can be defined by the parametric equation

α1x1 + α2x2 + · · ·+ αNxN + β1y1 + β2y2 + · · ·+ βMyM = γ. (4.5)

Where α1, . . . , αN , β1, . . . βM and γ are constants.

In vector notation this is

ΠΦ = {r ∈ RΦ : r • ~n1 = γ} (4.6)

where ~n1 = (α1, . . . , αN , β1, . . . , βM) is a normal vector to the plane and the dot

product of two vectors a, b ∈ Rd is defined to be a • b = a1b1 + a2b2 + · · ·+ adbd.

Definition 4.1.2. Ψ is the collection of hyperplanes that define efficient facets.

Definition 4.1.3. An extreme point of the PPS formed by the intersection of several

facets Π ∈ Ψ.

An extreme point will be an existing efficient DMU.

Definition 4.1.4. The shortest (Euclidean) distance from a point P = (x10, . . . , xN0,

y10, . . . , yM0) to a hyperplane (4.5) is

d(P,ΠΦ) =
|α1x10 + · · ·+ αNxN0 + β1y10 + · · ·+ βMyM0 − γ|√

α2
1 + · · ·+ α2

N + β2
1 + · · ·+ β2

M

. (4.7)

We now state a key result of this chapter, the proof of which will be given in

Section 4.3. Here the results are given for the input oriented DEA model.

Result 4.1.5. The DEA distance, D(i,ΠΦ), from DMU i to the hyperplane, ΠΦ

defined by (4.5) is

D(i,ΠΦ) =
|α1x1i + · · ·+ αNxNi + β1y1i + · · ·+ βMyMi − γ|√

α2
1 + · · ·+ α2

N

. (4.8)

Definition 4.1.6. The DEA distance, D(i,Π), is the Euclidean distance from DMU

i to the plane Π given by (4.8).
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Definition 4.1.7. The DEA distance, D(i), is the minimum DEA distance, D(i,Π),

for all hyperplanes Π ∈ Ψ.

It follows from Definition 4.1.7 that DMU i is efficient in the noinal DEA problem

if and only if D(i) = 0. We note that by the nature of the nominal DEA problem

D(i,Πι), where ι is the hyperplane defined by the peers of DMU i will always give

the minimum DEA distance D(i).

Definition 4.1.8. Πu is the plane formed from the translation Π → Πu where the

points x, y of Π are transformed to the points x′, y′ viax′
y′

 =

x
y

+

−u
u

 .
This leads to the following definition of u, the amount of uncertainty.

Definition 4.1.9. uk is the minimum amount of uncertainty required such that

D(ku) = 0.

Here u is the amount of uncertainty m(U) for the specific case of box uncertainty.

From now on we denote this by u. In this way uk is the minimum amount of uncer-

tainty required for DMU k to be deemed efficient. For any DMU i that is efficient in

the nominal DEA problem ui = 0.

In the standard DEA problem, here VRS input oriented model (3.8), each ineffi-

cient DMU k is projected to a point on the efficient frontier along a trajectory of fixed

outputs. The point DMU k is projected to on the efficient frontier can be defined by

a convex combination of its peers. We consider where DMU k would be projected to

if it is projected to an alternative hyperplane of the efficient frontier. We call these

target points and define them here.

Definition 4.1.10. The target point T (k,Π) is defined to be the point on the plane

Π that DMU k is projected to.
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When Π ∈ Ψ is a hyperplane such that D(ku,Π) is minimal, then T (k,Π) is the

projection of DMU k to the facet of the efficient frontier defined by the peers of DMU

k in the nominal DEA problem i.e. it is the standard DEA projection for DMU k.

This is seen in Example 3 where DMU E is projected to the point i on the efficient

frontier. When Π is not the facet of the efficient frontier such that D(ku,Π) is minimal

the projection will be to a virtual point not on the efficient frontier. That is if the

facet of the efficient frontier is extended where would this intercept with DMU k be

when DMU k’s outputs remain fixed but the inputs can vary. This can be seen in

Example 3 where DMU E is projected to the points g and h which are not on the

efficient frontier but are on hyperplanes which define facets of the efficient frontier.

We note that in the standard DEA problem the projection to Π when Π is a facet

of the efficient frontier such that D(k,Π) is minimal is the only projection in the

standard DEA model. This is because in the nominal DEA problem there is only one

point a DMU is projected to, the point that renders the DMU efficient on the nominal

efficient frontier. Hence, our use of projection in the definition of the target point is

not a standard DEA term. To help understand these definitions we demonstrate the

case of a single input and output with the example below.

Example 3: DEA Distance

Consider the six DMUs pictured in Figure 4.1 and whose nominal data are listed in

Table 4.5. In Figure 4.1 the efficient frontier is shown by the red line sections between

the efficient DMUs A − D. By extending the line sections going through pairs of

efficient DMUs inputs and outputs (and through the DMU with the smallest(largest)

x(y) value) we can show the hyperplanes, (here lines as we are in R2) that intersect

with the PPS. These are shown in Figure 4.1 by the dashed lines. This means Ψ =

{ΠA,ΠAB,ΠBC ,ΠCD,ΠD}. Where Πij is the hyperplane going through the points

defined by the data of DMU i, j ∈ {A,B,C,D}, ΠA is the vertical line x = xA and

ΠD is the horizontal line y = yD.
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DMU In Out Efficiency score

A 1 1 1

B 3 4 1

C 7 7 1

D 10 8 1

E 8 5 0.542

F 6 2 0.278

Table 4.5: Nominal data, Example 3.

Π ∈ Ψ T(E,Π) T(F,Π) D(E,Π) D(F,Π)

ΠA g =(1,5) (1,2) 7 5

ΠAB h = (11
3
, 5) (5

3
, 2) 13

3
13
3

ΠBC i = (1
3
, 5) (1

3
, 2) 11

3
17
3

ΠCD g =(1,5) (-8,2) 7 14

ΠD - - ∞ ∞

Table 4.6: DEA Distance for DMUs E and F , Example 3.

Therefore, for inefficient DMUs E and F there are five lines that intersect with

the PPS that we can calculate the DEA distance for. These are shown in Figure 4.1.

We can then calculate the DEA distances for the inefficient DMUs to their target

points on each line in Ψ, these are given in Table 4.6. The target points for DMU E

for each of the lines are shown in Figure 4.1 by the points g− i. We note here that in

the nominal DEA DMUs E and F can never be projected to the line ΠD.

As expected we see that D(E) = 3.66 is obtained when DMU E is projected

to ΠBC as DMU E has peers DMU B and C in the nominal DEA and similarly

D(F ) = 4.33 is obtained when DMU F is projected to ΠAB as DMU F has peers

DMU A and B in the nominal DEA.
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Figure 4.1: The lines that define the PPS, Example 3.

To calculate D(ku,Πu), for inefficient DMUs E and F we transform the data

according to Definitions 4.1.1 and 4.1.8. This gives the data in Table 4.7. The

uncertain DEA distances can then be calculated as in Table 4.8. To find the mini-

mum amount of uncertainty required for DMUs E and F to become efficient we find

min{u, s.t. D(ku,Πu) = 0, Πu ∈ Ψu}. As a result, we calculate the value of u for

each Πu ∈ Ψu. These are shown in Table 4.9. We note that for ΠD in Table 4.8 we

do not have a DEA distance but we do have a minimum amount of uncertainty for

ΠD in Table 4.9. However, the amount of uncertainty for ΠD in Table 4.9 includes ε

as we require uE > 1.5 and uF > 3. This will be explained later in Example 4.

Therefore, the minimum amount of uncertainty required for DMUs E and F to

become efficient are uE = 0.79 and uF = 1.21. Both first become efficient on the line

segment BC.
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DMU In Out

A 1+u 1-u

B 3+u 4-u

C 7+u 7-u

D 10+u 8-u

E 8-u 5+u

F 6-u 2+u

Table 4.7: Uncertain data, Example 3.

Πu ∈ Ψ D(Eu,Πu) D(Fu,Πu)

Πu
A 7-2u 5-2u

Πu
AB |13

3
− 10

3
u| |13

3
− 10

3
u|

Πu
BC |11

3
− 14

3
5u| |17

3
− 14

3
u|

Πu
CD |7− 8u| |14− 8u|

Πu
D - -

Table 4.8: DEA Distance for DMUs Eu and F u, Example 3.

Πu ∈ Ψu uE uF

Πu
A 3.50 2.50

Πu
AB 1.30 1.30

Πu
BC 0.79 1.21

Πu
CD 0.88 1.75

Πu
D 1.50+ε 3+ε

Table 4.9: Minimum amount of uncertainty of u such that DMUs E and F are efficient

on Πu, Example 3.
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Let s−m ≥ 0 (s+
n ≥ 0) be the slack in the mth (nth) output (input) constraint in

(4.1) so that (4.1b) and (4.1c) can be written:

I∑
i=1

λiymi − ymk − s−m = 0 m = 1, . . . ,M (4.9a)

I∑
i=1

λixni − θkxnk + s+
n = 0 n = 1, . . . , N. (4.9b)

Proposition 4.1.11. For an inefficient DMU k and for any optimal solution to (4.1)

there exists at least one binding input constraint.

Proof. Let (θ∗k, λ
∗) be an optimal solution for DMU k to (4.1). Then there is always

at least one binding constraint. Assume this is an output constraint p and there are

no binding input constraints. Then for each input n, n = 1, . . . , N , constraint (4.9b)

can be written as: ∑I
i=1

λ∗ixni

xnk
+

(s+
n )∗

xnk
= θ∗k,

where all the (s+
n )∗ > 0. W.l.o.g. let input q have the largest value of

∑I
i=1 λ∗i xni

xnk
.

Given that xni > 0 ∀ n, i, then∑I
i=1

λ∗ixqi

xqk
≥
∑I

i=1
λ∗ixni

xnk
∀ n 6= q (4.10a)

⇔
(s+
q )∗

xqk
≤(s+

n )∗

xnk
∀ n 6= q. (4.10b)

That means we can reduce (s+
q )∗ to 0 and reduce θ∗k by

s+q
xqk

. Then all remaining (s+n )∗

xnk

must reduce by
(s+q )∗

xqk
which is possible from (4.10b). Because (4.1) is a minimisation

problem, (s+
q )∗ = 0 is feasible, hence this is a contradiction and we must have at least

one binding input constraint.

Therefore, from Proposition 4.1.11 there will always be at least one binding input

constraint. From now on we define Q to be the set of all binding input constraints.
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Select a binding input constraint q, then with uncertainty (4.9) becomes

I∑
i=1

λi(ymi + ∆mi)− (ymk + ∆mk)− s−m = 0 m = 1, . . . ,M (4.11a)

I∑
i=1

λi(xqi + ∆ni)− θk(xqk + ∆nk) = 0 q ∈ Q (4.11b)

I∑
i=1

λi(xni + ∆ni)− θk(xnk + ∆nk) + s+
n = 0 n = 1, . . . , N /∈ Q.

Lemma 4.1.12. For a binding input constraint q, if
∑I

i=1
λ∗i ymi <

∑I
i=1

λ̄∗i ymi, then∑I
i=1

λ∗ixqi ≤
∑I

i=1
λ̄∗ixqi.

Proof. Consider a decrease in a single output, m, of a single DMU r, r 6= k. If the

output ymr decreases by the maximum amount, ∆mr = u, at a new optimal solution

we have
I∑
i=1
i 6=r

λ̄∗i ymi + λ̄∗r(ymr − u)− ymk + ¯(s−m)
∗

= 0, (4.12)

i.e. the LHS of (4.12) decreases by λ̄∗ru compared to (4.1b).

If λ̄∗ru ≤ (s−m)∗, then the slack in (4.12) decreases by λ̄∗ru compared to (4.1b), so

¯(s−m)
∗

= (s−m)∗ − λ̄∗ru and the decrease in output ymr has no effect on the efficiency

score. Hence, we concentrate on the case where λ̄∗ru > (s−m)∗.

If λ̄∗ru > (s−m)∗, then ¯(s−m)
∗

= 0 and
∑I

i=1
λ∗i ymi increases such that

∑I
i=1

λ̄∗i ymi =∑I
i=1

λ∗i ymi + λ̄∗ru− (s−m)∗. This means
∑I

i=1
λ̄∗i ymi >

∑I
i=1

λ∗i ymi, i.e. the weighted

sum of the outputs has increased compared to the nominal constraint in (4.1b).

Constraint q is binding, therefore any change in the value of λ will cause the

weighted sum of the inputs to increase (or stay the same). In this way increasing the

weighted sum of the outputs results in the weighted sum of the inputs increasing (or

staying the same).

Furthermore, an increase in a single output of a single DMU can result in a decrease

in efficiency score.
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Lemma 4.1.13. For a binding input constraint q, if
∑I

i=1
λ∗i ymi >

∑I
i=1

λ̄∗i ymi then∑I
i=1

λ∗ixqi ≥
∑I

i=1
λ̄∗ixqi.

Proof. Analogous to Lemma 4.1.12.

Theorem 4.1.14. For box uncertainty defined in (4.4), there exists an optimal solution,(λ̄∗k, θ̄
∗
k,∆

∗
mi,∆

∗
ni)

to (4.3) such that the data point the DMU picks is an extreme point of the uncertainty

set, i.e.

∆∗mi = +
−u, m = 1, . . . ,M

∆∗ni = +
−u, n = 1, . . . , N.

Proof. This follows from well known results in linear and convex optimisation, (for

example see Bertsimas and Tsitsiklis (1997)). The optimal solution of a linear function

over a feasible region (convex polygon) will exist at an extreme point of the feasible

region. The details of which can be found in Dantzig (1960) where an inductive proof

of the simplex method is provided. This result is analogous for (3.19), that an optimal

solution will exist at an extreme point of the uncertainty set.

We use Theorem 4.1.14 to simplify the results in the rest of this chapter by fo-

cusing only on the extreme points of the box. Therefore, (4.3f) becomes ∆mi, ∆ni,∈

{−u,+u} m = 1, . . . ,M, n = 1, . . . , N, i = 1, . . . , I.

In the following theorem we use the definition of an incapable DMU as introduced

in Ehrgott et al. (2018) and defined in Section 3.4, Definition 3.4.4.

Theorem 4.1.15. For box uncertainty defined in (4.4) there can never be an incapable

DMU when Ω ∈ R+.

Proof. Consider DMU k. If all the input constraints are binding then the DMU k is

efficient and we are done. Otherwise select a non-binding input constraint h. Assume
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DMU k is incapable i.e. there is no finite u such that k becomes efficient. Then,

@ u such that θ̄∗k = 1 and
I∑
i=1

λi(xhi+∆hi)−θk(xhk+∆hk) = 0, ∆mi, ∆ni,∈ {−u,+u}.

For DMU k to be efficient, we require θk = 1. This occurs when

I∑
i=1

λi(xhi + ∆hi) =xhk + ∆hk

⇔ xhk −
I∑
i=1

λixhi =
I∑
i=1

λi∆hi −∆hk.

If xhk−
∑I

i=1
λixhi > 0, set u =

∑I
i=1

λi∆hi, ∆hk = −u and if xhk−
∑I

i=1
λixhi <

0, set u = −
∑I

i=1
λi∆hi, ∆hk = u. Let u = 1

2
(|xhk −

∑I
i=1

λixhi|). Then θ̄∗k = 1.

Therefore, there exists u such that θ̄∗k equals one and
∑I

i=1
λi(xhi + ∆hi)− θk(xhk +

∆hk) = 0 and we can never have an incapable DMU.

An alternative proof to this can be found by adapting the proof of Theorem 4 in

Cooper et al. (2001), that there is always a finite optimum value that establishes a

radius of stability.

Theorem 4.1.16. For inefficient DMUs k and l with box uncertainty defined in (4.4),

there exists an optimal solution to (4.2) for DMU k such that λl = 0.

Proof. Let DMU k be the inefficient DMU under consideration. DMU l is inefficient

with θ∗l < 1. Let u′ be an amount of uncertainty such that DMU l becomes a peer to

DMU k. Then DMU l must be efficient, θ̄∗l = 1.

The value of θl can increase to θ̄∗l = 1 by increasing its outputs and decreasing

its inputs or by efficient DMUs increasing their inputs and decreasing their outputs.

Then DMU l will become part of an existing facet of the efficient frontier or it will be

a new extreme point of the efficient frontier.

If DMU l becomes part of an existing facet of the efficient frontier, it can be

written as a convex combination of other efficient DMUs and hence DMU k’s efficiency
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score does not improve. A new extreme point will lie outside the nominal DEA PPS.

Therefore any facet defined by a new extreme point will be further away (or the same)

DEA distance from DMU k than D(k), the nominal DEA minimum DEA distance.

Therefore, it is not beneficial for DMU k to be compared to the facets containing the

new extreme point and solving the uDEA model for DMU k will select the original

position for DMU l . Therefore, there is an optimal solution for DMU k such that

λl = 0.

In this way, we only need to consider DMUs that are efficient in the nominal DEA

problem (4.1).

Corollary 4.1.17. For DMUs with θ∗i = 1, for any inefficient DMU k with box

uncertainty defined in (4.4), there exists an optimal solution to (4.2) for DMU k such

that θ̄∗i = 1.

Proof. This follows from Theorem 4.1.16.

Consequently, DMUs that are efficient in the nominal problem (4.1) will remain

efficient at least until the point when DMU k becomes efficient when uncertainty is

introduced.

4.2 Fixed Uncertainty

For any DMU k, solving (4.1) gives an optimal solution vector (θ∗k, λ
∗). Where θ∗k

is the efficiency score for DMU k with the nominal data. We are interested in the

change in efficiency score as small changes (i.e. uncertainty) are introduced into the

dataset. Here we consider a fixed amount of uncertainty i.e. in (4.3) ∆mi, ∆ni ∈

{−u,+u} ∀ m, n.

In Section 4.2.1, we consider the introduction of a fixed uncertainty amount to a

single input or output. In Sections 4.2.2 and 4.2.3, simultaneous changes to all inputs
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and outputs with fixed uncertainty are explored. The overall best improvement in

efficiency score for fixed uncertainty is given in Section 4.2.4.

From Theorem 4.1.16, for inefficient DMUs k and l, there exists an optimal solution

to (4.3) for DMU k such that λl = 0. Therefore, we can assume inefficient DMUs do

not become peers to other inefficient DMUs. Consequently, in the following sections

we assume that from the I DMUs, we have I−1 efficient DMUs and a single inefficient

DMU, DMU k. Then θ∗k < 1 and θ∗i = 1 ∀i = 1, . . . , I i, 6= k.

In the rest of this section we show that for fixed uncertainty u the following theorem

holds.

Theorem 4.2.1. To maximise the possible increase in efficiency score for inefficient

DMU k, solving the linear program (4.3) will result in the following uncertainty being

selected:

∆mi = −u, ∆mk = +u i 6= k, m = 1, . . . ,M

∆ni = +u, ∆nk = −u i 6= k, n = 1, . . . , N.

This is similar to the idea introduced in DEA sensitivity analysis in Charnes et al.

(1996) that for inefficient DMUs the northwest corner of a DMU’s uncertainty box

will “dominate every other member of the cell”. We follow a similar process to earlier

DEA sensitivity analysis papers where we first consider a single change to a DMU

and then extend to simultaneous changes in the dataset.

4.2.1 Single changes in DMUs

Consider a single change in the data, i.e. a single xni or ymi changes by +
−u while

the remaining data are fixed. Let DMU r(k) be the efficient(inefficient) DMU under

consideration. The change in efficiency score will be largest when we have a binding

input constraint. This can be seen in Lemma 4.1.12 where the role of the slack

variables and the possible changes in the weighted sum of the inputs and outputs are
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demonstrated. So from now on we consider only binding input constraints. When

choosing a binding input constraint q the possible scenarios are:

• Increase an input of an efficient DMU r by u,

∆qr = +u, ∆ni = ∆mi = 0, i 6= r, n 6= q, ∀m

• Decrease an input of an efficient DMU r by u,

∆qr = −u, ∆ni = ∆mi = 0, i 6= r, n 6= q, ∀m

• Increase an output of an efficient DMU r by u,

∆m′r = +u, ∆ni = ∆mi = 0, i 6= r, m 6= m′, ∀n

• Decrease an output of an efficient DMU r by u,

∆m′r = −u, ∆ni = ∆mi = 0, i 6= r, m 6= m′, ∀n

• Increase an input of the inefficient DMU k by u,

∆qk = +u, ∆ni = ∆mi = 0, i 6= k, n 6= q, ∀m

• Decrease an input of the inefficient DMU k by u,

∆qk = −u, ∆ni = ∆mi = 0, i 6= k, n 6= q, ∀m

• Increase an output of the inefficient DMU k by u,

∆m′k = +u, ∆ni = ∆mi = 0, i 6= k, m 6= m′, ∀n

• Decrease an output of the inefficient DMU k by u,

∆m′k = −u, ∆ni = ∆mi = 0, i 6= k, m 6= m′, ∀n

Change in inputs for efficient DMUs

Lemma 4.2.2. For a single input of an efficient DMU r changed by u, the maximum

increase in θ∗k that can occur is u
xnk

.

Proof. Consider an increase in an efficient DMU r’s input, q. Solving (4.1) gives an

optimal solution (θ∗k, λ
∗), when there is no uncertainty in the data.
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For binding constraint q the LHS of (4.3c) increases by λ̄∗ru compared to (4.1c)

and
∑I

i=1
λ∗ixqi must decrease or θ∗kxnq must increase. However,

∑I
i=1

λ∗ixqi cannot

decrease because the constraint for input q is binding so
∑I

i=1
λ∗ixqi is already as

small as possible. This means
∑I

i=1
λ̄∗ixqi =

∑I
i=1

λ∗ixqi. DMU k’s data are fixed

therefore, θ∗k must increase by

I∑
i=1
i 6=r

λ̄∗ixqi + λ̄∗r(xqr + u)− θ̄∗kxqk =
I∑
i=1

λ∗ixqi − θ∗kxqk

θ̄∗k − θ∗k =

∑I
i=1

λ̄∗ixqi −
∑I

i=1
λ∗ixqi + λ̄∗ru

xqk

=
λ̄∗ru

xqk
.

Therefore, θ∗k must increase by λ̄∗ru
xqk

. This is at it’s maximum when λ̄∗r = 1 and θ∗k

increases by u
xqk

. Similarly, if a single input r decreases by u, θ∗k must stay the same

or decrease by a maximum of λ̄∗ru
xqk

.

Therefore, the maximum increase in θ∗k that can occur when a single input of an

efficient DMU r is changed by u occurs when the input is increased by u.

Change in outputs for efficient DMUs

Consider a decrease in a single output m of an efficient DMU r. When we considered

the change in single inputs it was clear the change could affect θ∗k as all the input

constraints (4.1c) involve the term θkxnk in the nominal problem, (4.1). Although θk

does not appear directly in the output constraints in (4.1b), changing them can still

affect the value of θ∗k.

Lemma 4.2.3. For a single output of an efficient DMU r changed by u, the maximum

increase in θ∗k that can occur is

max
q∈Q

maxi 6=k xqi −mini 6=k xqi
xqk

. (4.13)
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Proof. This follows from Lemmas 4.1.12 and 4.1.13. In Lemma 4.1.12 an increase in

the weighted sum of the outputs compared to the nominal constraint in (4.1b) results

in the weighted sum of the inputs increasing (or staying the same). The maximum

increase that can occur in the weighted sum of the inputs occurs when λî = 0 for

î s.t. xqî = maxi 6=k xqi in the nominal solution and λî = 1 in the solution of the

uncertain problem and λī = 1 for ī s.t. xqī = λimini 6=k xqi in the nominal and λī=0 in

the uncertain model. This results in a change in efficiency score given by (4.13).

Change in inputs for the inefficient DMU

We now assume that the efficient DMUs’ data are fixed and consider what occurs if

a single change is made to the inefficient DMU k’s data.

Lemma 4.2.4. For a single input of the inefficient DMU k changed by u, the maxi-

mum increase in θ∗k that can occur is u
xnk

.

Proof. Choose a binding input constraint, q. If the input value for DMU k, xqk is

increased, ∆nk = +u, the LHS of (4.3c) will decrease by θ̄∗ku compared to the nominal

value in (4.1c). If there are no other binding constraints θ̄∗k will reduce until a binding

constraint occurs. If there is another binding constraint, input constraint q will cease

to be binding and the slack for constraint q will be greater than zero, ¯(s+
q )
∗
> 0 and

the value of the efficiency score will decrease, θ̄∗k ≤ θ∗k.

If the input value for DMU k, xqk is decreased, ∆nk = −u, the LHS of (4.3c)

will increase by θ̄∗ku compared to the nominal value in (4.1c). If there exists another

binding constraint the optimal weights cannot change,
∑I

i=1
λ∗ixqi =

∑I
i=1

λ̄∗ixqi, and

the efficiency score for DMU k must increase,

I∑
i=1

λ∗ixqi − θ∗kxqk =
I∑
i=1

λ̄∗ixqi − θ̄∗k(xqk − u)

θ̄∗k − θ∗k =
uθ̄∗k
xqk

.
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If input constraint q is the only binding constraint the change in efficiency score above

is an upper bound. Therefore, the maximum change in efficiency score occurs when

the input is reduced by u. This results in a change in efficiency score of
uθ̄∗k
xqk
≤ u

xqk
,

because θ̄∗k ≤ 1.

Change in outputs for the inefficient DMU

As noted, when single changes in efficient DMUs are considered, although θk does not

appear directly in the output constraints (4.1b), changing them can still affect the

value of θ∗k. For this case, we have the following two Lemmas.

Lemma 4.2.5. If ∆mk = +u, θ̄∗k ≥ θk.

Lemma 4.2.6. If ∆mk = −u, θ̄∗k ≤ θk.

The proofs of these are very similar to the proof of Lemma 4.1.12.

Therefore, from Lemmas 4.2.2, 4.2.3, 4.2.4 4.2.5 we conclude the following result:

Result 4.2.7. An inefficient DMU k’s efficiency score will not decrease if any or all

of the following occur: DMU k’s inputs decrease or outputs increase or an efficient

DMU r’s inputs increase or outputs decrease.

4.2.2 Multiple changes in inputs and outputs

Now consider multiple changes in the inputs and outputs of the efficient(inefficient)

DMUs with the inefficient(efficient) DMU’s data fixed. From Result 4.2.7 in Sec-

tion 4.2.1 we consider only changes that increase(decrease) the efficient DMUs’ in-

puts(outputs) and decrease(increase) the inefficient DMU’s inputs(outputs).

Proposition 4.2.8. The maximum increase in DMU k’s efficiency score when all

efficient DMU r′s data can change is

max
q∈Q

maxi 6=k xqi −mini 6=k xqi + u

xqk
.
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Proof. The largest changes occur when there is a binding input and output constraint.

Assume the constraint for output p is binding. Then the LHS of (4.11a) decreases by

u compared to (4.1b). Therefore,

I∑
i=1

λ̄∗i ypi ≥
I∑
i=1

λ∗i ypi, (4.14)

and from Lemma 4.1.13 the weighted sum of the inputs can increase. The LHS of

(4.11b) increases by u compared to (4.1c) so
∑I

i=1
λ̄∗i ypi <

∑I
i=1

λ∗i ypi or θ̄∗k > θ∗k.

From (4.14)
∑I

i=1
λ̄∗i ypi <

∑I
i=1

λ∗i ypi cannot occur. Hence the efficiency score must

increase by
I∑
i=1

λ̄∗ixqi −
I∑
i=1

λ∗ixqi + u

xqk
.

The maximum value this can take occurs when
∑I

i=1
λ̄∗ixqi is as large as possible and∑I

i=1
λ∗ixqi is as small as possible, i.e. the maximum increase in efficiency score when

changing efficient DMU r is

max
q∈Q

maxi 6=k xqi −mini 6=k xqi + u

xqk
.

Changing all efficient DMU r’s data in Proposition 4.2.8, results in a maximum

increase in DMU k’s efficiency score, which is larger than changing a single input of

DMU r as in Lemma 4.2.2.

From Result 4.2.7, for the inefficient DMU we decrease the inputs and increase

the outputs, ∆nk = −u, ∆mk = u where ∆mi, ∆ni = 0 i 6= k.

Proposition 4.2.9. The maximum increase in efficiency score when all inefficient

DMU k’s data changes is

max
q∈Q

maxi 6=k xqi −mini 6=k xqi + u

xqk
. (4.15)
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Proof. Consider the pth output constraint

I∑
i=1

λiypi − (ypk + u)− s−m = 0. (4.16)

If u < s−m the LHS of (4.16) decreases by u compared to (4.11a), so ¯(s−m)
∗

= (s−m)∗+u

and the increase in output ymk has no effect on the efficiency score, θ̄∗k = θ∗k.

If u > s−m then ¯(s−m)
∗

= 0 and
∑I

i=1
λ∗i ymi must increase by u− (s−m)∗. As s−m ≤ 0

the largest increase occurs when (s−m)∗ = 0, i.e. output constraint p is binding. We

seek the maximum increase in efficiency score, so, if it exists we select a binding output

constraint p. If no binding output constraint exists (4.15) is an upper bound for the

increase in efficiency score. From Lemma 4.1.12 this means
∑I

i=1
λ∗ixni must increase

or stay the same,
∑I

i=1
λ̄∗ixqi ≥

∑I
i=1

λ∗ixqi. Select a binding input constraint q.

There will always be at least one binding input constraint from Proposition 4.1.11.

Consider multiple changes with s−p = 0, ∆mk = +u and ∆nk = −u in (4.11). The

LHS of (4.11b) increases by
∑I

i=1
λ̄∗ixqi−

∑I
i=1

λ∗ixqi+uθ∗k compared to (4.1c). Then

we have,

I∑
i=1

λ̄∗ixqi − θ̄∗k(xqk − u) =
I∑
i=1

λ∗ixqi − θ∗kxqk

θ̄∗k − θ∗k =

∑I
i=1

λ̄∗ixqi −
∑I

i=1
λ∗ixqi + uθ̄∗k

xqk
.

The maximum value this can take occurs when
∑I

i=1
λ̄∗ixqi is as large as possible and∑I

i=1
λ∗ixqi is as small as possible, i.e. the maximum increase in efficiency score when

DMU k’s data changes is

max
q∈Q

maxi 6=k xqi −mini 6=k xqi + u

xqk
.

Changing all inefficient DMU k’s data in Proposition 4.2.9, results in a maximum

increase in DMU k’s efficiency score, which is not smaller than changing a single input

of DMU k as in Lemma 4.2.4.
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4.2.3 Inefficient and efficient DMUs’ data can change

From Section 4.2.2, by changing only the efficient DMUs data the most improvement

to DMU k’s efficiency score is achieved by increasing the inputs and decreasing the

outputs. By changing only the inefficient DMU’s data the most improvement to DMU

k’s efficiency score is achieved by decreasing the inputs and increasing the outputs.

We now consider the case where both inefficient and efficient DMUs data can change.

First restrict the changes to inputs or outputs only. The possible scenarios are:

1. Increase all inputs, ∆ni = +u

2. Increase all outputs, ∆mi = +u

3. Decrease all inputs, ∆ni = −u

4. Decrease all outputs, ∆mi = u

5. Increase(decrease) efficient(inefficient) DMUs’ inputs,

∆ni = +u, ∆nk = −u, i 6= k

6. Decrease(increase) efficient(inefficient) DMUs’ inputs,

∆ni = −u, ∆nk = +u, i 6= k

7. Increase(decrease) efficient(inefficient) DMUs’ outputs,

∆mi = +u, ∆mk = −u, i 6= k

8. Decrease(increase) efficient(inefficient) DMUs’ outputs,

∆mi = −u, ∆mk = +u, i 6= k

However, from Result 4.2.7, we only want to consider scenarios that increase DMU

k’s efficiency score. Therefore, we only need to consider scenario five and eight in the

above list.



CHAPTER 4. TREATING UNCERTAINTY 119

Proposition 4.2.10. The maximum increase in efficiency score of an inefficient

DMU k when changing the inputs of all DMUs is

max
q∈Q

2u

xqk
.

Proof. From Result 4.2.7, consider the change in efficiency score if the efficient(inefficient)

DMUs’ inputs increase(decrease) i.e. ∆ni = +u, ∆nk = −u, i 6= k. At an optimal

solution (4.1c) becomes,

I∑
i=1

λ̄∗i (xqi + u)− θ̄∗k(xqk − u) = 0. (4.17)

The LHS of (4.17) has increased by u(1 + θ̄∗k) compared to (4.1c) so
∑I

i=1
λ̄∗ixqi −

u(1 + θ̄∗k) =
∑I

i=1
λ∗ixqi or θ̄∗kxqk = θ∗kxqk + u(1 + θ̄∗k) . The qth input constraint is

binding so
∑I

i=1
λ̄∗ixqi =

∑I
i=1

λ∗ixqi. Then the change in efficiency score can be

calculated,

I∑
i=1

λ̄∗i (xqi + u)− θ̄∗k(xqk − u) =
I∑
i=1

λ∗ixqi − θ∗kxqk

θ̄∗k − θ∗k =
u(1 + θ̄∗k)

xqk
.

The maximum value θ̄∗k can take is one. Therefore the maximum increase in efficiency

score of inefficient DMU k when changing the inputs of all DMUs is

max
q∈Q

2u

xqk
.

Similarly for the outputs we have the following proposition. The proof is similar

to the proof of Proposition 4.2.10 and hence is omitted.

Proposition 4.2.11. The maximum increase in efficiency score of inefficient DMU

k when changing the outputs of all DMUs is

max
q∈Q

maxi 6=k xqi −mini 6=k xqi
xqk

.
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We now consider the potential improvement in efficiency score if both the inputs

and outputs can change.

Proposition 4.2.12. The maximum increase in efficiency score when changing all

DMUs is

max
q∈Q

maxi 6=k xqi −mini 6=k xqi + 2u

xqk
.

Proof. From Result 4.2.7 changing the outputs, ∆mi = −u, ∆mk = +u, i 6= k, results

in the efficiency score increasing or remaining the same. When the inputs change, the

largest increase in efficiency score occurs when ∆ni = +u, ∆nk = −u, i 6= k. From

Proposition 4.1.11, at least one of the input constraints must be binding. Choose a

binding input constraint, q. If a binding output constraint p exists, (4.11) becomes,

I∑
i=1
i 6=k

λi(ypi − u)− (ypk + u) = 0 (4.18a)

I∑
i=1
i 6=k

λi(xqi + u)− θk(xqk − u) = 0. (4.18b)

At an optimal solution the LHS of (4.18a) decreases by 2u compared to (4.1b) so∑I
i=1

λ̄∗i ypi =
∑I

i=1
λ∗i ypi + 2u. This means

∑I
i=1

λ̄∗ixqi ≥
∑I

i=1
λ∗ixqi. Additionally,

the LHS of (4.18b) increases by u(1 + θ̄∗k) compared to (4.1c). Therefore, the overall

change in efficiency score can be calculated,

I∑
i=1

λ̄∗i (xqi + u)− θ̄∗k(xqk − u) =
I∑
i=1

λ∗ixqi − θ∗kxqk

θ̄∗k − θ∗k =

∑I
i=1

λ̄∗ixqi −
∑I

i=1
λ∗ixqi + u+ θ̄∗ku

xqk
.

The maximum change in efficiency score occurs when
∑I

i=1
λ̄∗ixqi and θ̄∗k are as large

as possible and
∑I

i=1
λ∗ixqi is as small as possible, i.e. the maximum increase in

efficiency score when changing all DMUs is

max
q∈Q

maxi 6=k xqi −mini 6=k xqi + 2u

xqk
.
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4.2.4 Overall best improvement in efficiency score

Finally, we examine which of the previous scenarios, individual and multiple changes

for both inefficient and efficient DMUs, result in the most improvement in DMU k’s

efficiency score. Table 4.10 summarises the results from Section 4.2. From Table

4.10 we conclude that the maximum improvement to DMU k’s efficiency score is

achieved when the inputs and outputs of all the DMUs data can change with ∆ ni
i 6=k

=

+u, ∆mi
i 6=k

= −u, ∆nk = −u, ∆mk = +u. In particular, for DMU k’s efficiency score

to improve (4.3) becomes,

min
θk, λ

θk (4.19a)

s.t.
I∑
i=1

λi(ymi − u)− (ymk + u) ≥ 0 m = 1, . . . ,M (4.19b)

I∑
i=1

λi(xni + u)− θk(xnk − u) ≤ 0 n = 1, . . . , N (4.19c)

I∑
i=1

λi = 1 (4.19d)

λi ≥ 0 i = 1, . . . , I (4.19e)

u ≥ 0. (4.19f)

This completes the proof of Theorem 4.2.1 and gives the following result.

Result 4.2.13. For fixed uncertainty there is always an optimal solution in which the

inefficient DMU benefits from increased outputs and decreased inputs and the efficient

DMUs’ inputs increase and outputs decrease.
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Scenario Maximum Increase θ̄∗k − θ∗k
Corrresponding

result

Increase efficient

DMU input by u

u
xnk

Lemma 4.2.2

Reduce efficient

DMU output by u
max q∈Q

maxi 6=k xqi−mini 6=k xqi
xqk

Lemma 4.2.3

Reduce inefficient

DMU input by u

u
xnk

Lemma 4.2.4

Increase inefficient

DMU output by u
max q∈Q

maxi 6=k xqi−mini 6=k xqi
xqk

Similar to

Lemma 4.2.3

All efficient DMUs

data can change
max q∈Q

maxi 6=k xqi−mini 6=k xqi+u
xqk

Proposition 4.2.8

All inefficient DMUs

data can change
max q∈Q

maxi 6=k xqi−mini 6=k xqi+u
xqk

Proposition 4.2.9

All inputs can

change
max q∈Q

2u
xqk

Proposition 4.2.10

All outputs can

change
max q∈Q

maxi 6=k xqi−mini 6=k xqi
xqk

Proposition 4.2.11

All DMUs

can change
max q∈Q

maxi 6=k xqi−mini 6=k xqi+2u

xqk
Proposition 4.2.12

Table 4.10: The maximum possible changes to the efficiency score of DMU k.
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4.3 Changing value of u

From Theorem 4.2.1, to maximise the possible increase in efficiency score for inefficient

DMU k, the linear program (4.3) becomes (4.19). We now consider the case where

we have a changing value of u. What is the minimum amount of u required such

that inefficient DMU k becomes efficient? Ehrgott et al. (2018) prove that as the

amount of uncertainty increases the efficiency score must increase. In the case of box

uncertainty this is very intuitive.

Theorem 4.3.1. For inefficient DMU k with uncertainty defined by (4.4), increasing

the value of u increases the efficiency score.

Proof. Solving (4.19) for fixed u gives θk = θ̄∗k. Consider an increase in u such that

û = u + ε. Let θ̂k be the new efficiency score when û and λ̂ are the corresponding

weights. The constraints (4.19b) and (4.19c) become,

I∑
i=1

λ̂i(ymi − u− ε)− (ymk + u+ ε) ≥ 0 m = 1, . . . ,M (4.20a)

I∑
i=1

λ̂i(xni + u+ ε)− θ̂k(xnk − u− ε) ≤ 0 n = 1, . . . , N. (4.20b)

Select a binding input constraint for input q. At optimality the LHS of (4.20b)

has increased by ε(1 + θ̂k) compared to (4.19c). Consequently,
∑I

i=1
λ̄∗i (xqi + u) >∑I

i=1
λ̂i(xqi + u) or θ̄∗k(xqk − u) < θ̂k(xqk − u). However,

∑I
i=1

λ̄∗i (xqi + u) cannot

decrease because the constraint for input q is binding so,
∑I

i=1
λ̄∗i (xqi + u) is already

as small as possible and
∑I

i=1
λ̄∗i (xqi +u) =

∑I
i=1

λ̂i(xqi +u). Then the introduction

of û = u+ ε results in

I∑
i=1

λ̄∗i (xqi + u)− θ̄∗k(xqk − u) =
I∑
i=1

λ̂i(xqi + u+ ε)− θ̂k(xqk − u− ε)

−θ̄∗k(xqk − u) = ε− θ̂k(xqk − u− ε)

θ̂k − θ̄∗k =
ε(1 + θ̂k)

xqk − u
.
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Then, xqk − u > 0 due to the assumption of strictly positive data. As a result

ε(1+θ̂k)
xqk−u

> 0, θ̂k − θ̄∗k > 0 and the efficiency has increased.

In this way θ∗k, the efficiency score when there is no uncertainty, provides a lower

bound for θ̄∗k, DMU k’s efficiency score when uncertainty is present.

4.3.1 Value of u for N +M dimensions

When considering the improvement DMU k can achieve we wish to calculate the

smallest amount of uncertainty to deem DMU k efficient. We must calculate the

DEA distance from DMU k to the efficient frontier. We consider the input-oriented

envelopment DEA model with VRS and hence the outputs are fixed. Therefore we

must project the inefficient DMUs to the efficient frontier while the inefficient DMUs

outputs’ remain fixed. This distance will be greater than or equal to the Euclidean

distance from the inefficient DMU to the efficient frontier.

Result 4.3.2. The DEA distance, D(k,ΠΦ), from an inefficient DMU k to the effi-

cient frontier facet, ΠΦ defined by (4.5) is

D(k,ΠΦ) =
|α1x1k + · · ·+ αNxNk + β1y1k + · · ·+ βMyMk − γ|√

α2
1 + · · ·+ α2

N

. (4.21)

Proof. Let the facet of the efficient frontier inefficient DMU k is projected to be ΠΦ.

The inefficient DMU k has co-ordinates (x1k, . . . , xNk, y1k, . . . , yMk) and does not lie

on the hyperplane ΠΦ. Consider these hyperplanes:

Πy1 :y1 = y1k

Πy2 :y2 = y2k

...

ΠyM :yM = yMk
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Let ΠN be the plane where ΠΦ intersects with Πy1,Πy2, . . . ,ΠyM . Then

ΠN = {r ∈ RN : r • ~n2 = γ − β1y1k − · · · − βMymk},

where ~n2 = (α1, . . . , αN , 0, . . . , 0). Then the DEA distance from DMU k to the hy-

perplane ΠΦ is equivalent to finding the Euclidean distance from DMU k to the plane

ΠN . From (4.7), this is

D(k,ΠΦ) =
|α1x1k + · · ·+ αNxNk + β1y1k + · · ·+ βMyMk − γ|√

α2
1 + · · ·+ α2

N

.

Theorem 4.3.3. For an inefficient DMU k, the minimum amount of uncertainty

required to be projected to the target point T (k,ΠΦ) on ΠΦ as defined in (4.5) is

u =
|α1x1k + · · ·+ αNxNk + β1y1k + · · ·+ βMyMk − γ|

2| − α1 − · · · − αN + β1 + · · ·+ βM |
. (4.22)

Proof. The DEA distance from the point k to the hyperplane ΠΦ is given by (4.21).

From Theorem 4.2.1 we choose the following data instance (x1k − u, . . . , xNk −

u, y1k+u, . . . , yMk+u), and (x1i+u, . . . , xNi+u, y1i−u, . . . , yMi−u) i = 1, . . . , I, i 6= k

and denote it ku. Let Πu
Φ be the hyperplane that goes through the virtual DMUs

i = 1, . . . , I, i 6= k with uncertainty defined by Theorem 4.2.1. Πu
Φ is parallel to ΠΦ

because all the inputs have increased by u and all the outputs have decreased by u.

As a result the normal to the hyperplane will be the same.

Πu
Φ =

{
r ∈ RΦ : r • ~n1 = γu

}
,

where γu = γ + u(α1 + α2 + · · ·+ αN − β1 − β2 − · · · − βM).
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Consider these hyperplanes:

Πu
y1 :y1 = y1k + u

Πu
y2 :y2 = y2k + u

...

Πu
yM :yM = yMk + u.

Let Πu
N be the plane where Πu

Φ intersects with Πu
y1,Π

u
y2, . . . ,Π

u
ym then

Πu
N =

{
r ∈ RN : r • ~n2 = γu − β1y1k − · · · − βMyMk

}
,

and the DEA distance from the point ku to the hyperplane Πu
Φ is found by projecting

the point ku to Πu
Φ along Πu

N :

D(ku,Πu
Φ) =

|α1(x1k − u) + · · ·+ αN(xNk − u) + β1(y1k + u) + · · ·+ βM(yMk + u)− γ|√
α2

1 + · · ·+ α2
N

= D(k,ΠΦ) +
|2u(−α1 − · · · − αN + β1 + · · ·+ βM)|√

α2
1 + · · ·+ α2

N

. (4.23)

Therefore, by introducing an uncertainty of u the proximity of the efficient frontier

to the uncertain box around DMU k reduces by at most |2u(−α1−···−αN+β1+···+βM )|√
α2
1+···+α2

N

. For

DMU k to be on the facet of the efficient frontier defined by ΠΦ we need to introduce

uncertainty such that the DEA distance from the point ku to the hyperplane Πu
Φ is 0

i.e. D(ku,Πu
Φ) = 0. From (4.23) this gives

D(k,ΠΦ) =
|2u(−α1 − · · · − αN + β1 + · · ·+ βM)|√

α2
1 + · · ·+ α2

N

. (4.24)

Substituting (4.21) into (4.24) and rearranging to make u the subject gives

u =
|α1x1k + · · ·+ αNxNk + β1y1k + · · ·+ βMyMk − γ|

2| − α1 − · · · − αN + β1 + · · ·+ βM |
.

Alternatively the value of u can be derived via the equations and inequalities in the

nominal DEA problem (4.1) and the uncertain DEA problem in (4.19). The nominal
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DEA problem for DMU k is

min
θk, λ

θk (4.25a)

s.t. λ1y11 + λ2y12 + · · ·λΦy1Φ − y1k ≥ 0 (4.25b)

...

λ1yM1 + λ2yM2 + · · ·λΦyMΦ − yMk ≥ 0 (4.25c)

λ1x11 + λ2x12 + · · ·λΦx1Φ − θkx1k ≤ 0 (4.25d)

...

λ1xN1 + λ2xN2 + · · ·λΦxNΦ − θkxNk ≤ 0 (4.25e)

λ1 + λ2 + · · ·+ λΦ = 1 (4.25f)

λ1, λ2, · · · , λΦ ≥ 0. (4.25g)

The equality in (4.25f) can be removed by setting λ1 = 1 − λ2 − · · · − λΦ. For

DMU k to become efficient (4.25b:4.25e) must be binding because we are considering

a hyperplane with Φ − 1 dimensions. Hence, they can be replaced with equalities.

Rearranging (4.25b) gives

λ2 =
y1k − y11 + λ3(y11 − y13) + · · ·+ λΦ(y11 − y1Φ)

y12 − y11

.

Then,

λ3 =
(y2k − y21)

ζ
+
λ4((y21 − y24)(y12 − y11)− (y11 − y14)(y22 − y21))

ζ
+ · · ·

+
λΦ((y21 − y2Φ)(y12 − y11)− (y11 − y1Φ)(y22 − y21))

ζ
,

with ζ = (y23−y21)(y12−y11)+(y11−y13)(y22−y21). Repeating this process results in

(4.25e) giving a value for θk with no λ’s present. This process is repeated for the DEA

model in (4.19) to find θ̄∗k. We require the smallest u such that θ̄∗k = 1. Therefore, we

set the expression for θ̄∗k obtained from (4.19) equal to one. We then rearrange the
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equation to make u the subject. This gives

u =
|α1x1k + · · ·+ αNxNk + β1y1k + · · ·+ βMyMk − γ|

2| − α1 − · · · − αN + β1 + · · ·+ βM |
,

where α1, · · · , αN , β1, · · · , βM are defined as in (4.5). This is the same value for u

as derived geometrically in (4.22). We demonstrate the complete process for M =

1, N = 1 and M = 1, N = 2 in Examples 6 and 9.

In this way for each hyperplane in Ψ, the uncertainty required for DMU k to

be projected to its corresponding target point can be calculated. However, as the

size of the problem, N + M and I, increases the number of possible facets on the

efficient frontier increases exponentially (Briec and Leleu, 2003). Therefore, as the

problem size increases, explicitly calculating the value of u for each hyperplane and

then selecting the minimum is not feasible. There are methods to calculate all the

facets see for example, Briec and Leleu (2003); Frei and Harker (1999); Olesen and

Petersen (2015) and Fukuyama and Sekitani (2012).

The following examples are provided to demonstrate the above theorems.

Single input and output With a single input and output the value of u in The-

orem 4.3.3 can easily be found. Furthermore, the facet of the efficient frontier that

requires the least uncertainty for an inefficient DMU to be projected to it can be

found explicitly.

Lemma 4.3.4. Consider a DEA problem (4.1) with three DMUs A,B,C and M = 1

and N = 1. For an inefficient DMU C with peers A and B, and g = yB−yA
xB−xA

the

minimum amount of uncertainty required to be projected to the target point T (C,ΠAB)

on ΠAB defined by the inputs and outputs of DMU A and B is

u =
g(xC − xA)− yC + yA

2(1 + g)
. (4.26)

Proof. This follows directly from Theorem 4.3.3 with M = 1, N = 1.
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Figure 4.2: Calculating the value of uncertainty for facets defined by a single DMU.

Lemma 4.3.4 allows us to calculate the amount of uncertainty required for a DMU

C to become efficient when N = 1, M = 1 and it is being compared to a hyperplane

of the efficient frontier that is defined by two DMUs. However, inefficient DMUs can

also be compared to hyperplanes of the efficient frontier defined by a single DMU,

x = min(xi) and y = max(yi) in the following way.

Example 4: Calculating the value of uncertainty for facets of the efficient

frontier defined by a single DMU

Let x = xA for y ∈ {0 : yA} be a facet of the efficient frontier, vertical red dashed

line in Figure 4.2. Let DMU C have peer DMU A such that xC > xA, yC < yA as in

Figure 4.2. Define a virtual DMU a such that xa = xA − ε and ya = 0 then DMU C

is projected to the line segment aA. Then the gradient of the line aA is
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gaA =
yA − 0

xA − (xA − ε)
=
yA
ε
.

From (4.26),

uaA =
yA
ε

(xC − xA)− yc + yA

2(1 + yA
ε

)

2uaA

(
ε+ yA
ε

)
=
yA(xC − xA) + ε(yA − yC)

ε

uaA =
yA(xC − xA) + ε(yA − yC)

2(ε+ ya)

But ε is an infinitesimally small constant so we take the limit as ε→ 0, then

uaA →
yA(xC − xA)

2ya
=
xC − xA

2
.

Similarly, to compare to the facet of the efficient frontier defined by y = max(yi),

define a virtual DMU b, xb = xB + κ, yb = yB + ε, where κ is a positive constant

such that xB +κ > xD. Then DMU D is projected to the line segment Bb, which has

gradient,

gBb =
yB + ε− yB
xB + κ− xB

=
ε

κ
.

From (4.26),

uBb =
ε
κ
(xD − xB)− yD + yB

2(1 + ε
κ
)

2uBb

(
κ+ ε

κ

)
=
ε(xD − xA) + κ(yB − yD)

κ

uBb =
ε(xD − xA) + κ(yB − yD)

2(κ+ ε)
.

We take the limit as ε→ 0, then

uBb →
κ(yB − yD)

2κ
=
yB − yD

2
.

So for DMU D projected to the line segment y = yB any value of u > yB−yD
2

will

result in DMU D being classified as efficient on the line segment y = yD.

We now provide a detailed example of Theorem 4.3.3 for M = 1 and N = 1.
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Example 5: Calculating the uncertainty geometrically, M = 1, N = 1

Consider the DEA problem introduced in Lemma 4.3.4. DMU A and B are peers

to inefficient DMU C. Therefore, xA ≤ xC and yA ≤ yC ≤ yB. These inequalities

define the shaded region in Figure 4.3a and the efficient frontier is depicted by the red

line AB. For input-oriented envelopment DEA model with VRS, DMU C is projected

to the point D shown in Figure 4.3b. Under box uncertainty each data-point can take

any value in the range{
xi ∈ [xi

+
−u], yi ∈ [yi

+
−u], i = A,B,C

}
. This is illustrated in Figure 4.3c by the blue

boxes around the data of the DMUs and can be thought of as DMU i’s (i = A,B,C)

data being a realisation from anywhere inside the square (including the boundary).

We wish to find which points should be chosen from these boxes to increase the

efficiency score for DMU C. From Theorem 4.2.1 we increase the outputs and decrease

the inputs for DMU C and do the opposite to the remaining DMUs as in (4.19).

This is shown by the points Au = (xA + u, yA − u), Bu = (xB + u, yB − u) and

Cu = (xC − u, yC + u) in Figure 4.3d. The green line AuBu represents the new

efficient frontier for the chosen data. To find the smallest value of u such that DMU

C is considered efficient is equivalent to finding the smallest box size such that Cu

first touches the line AuBu.

The lines AB and AuBu are parallel with the gradient

g =
yB − yA
xB − xA

.

Define points D and E as in Figure 4.3e

D =

(
xA +

(yC − yA)

g
, yC

)
E =

(
xA + u+

(yC + 2u− yA)

g
, yCu

)
=

(
xA + u+

(yC + 2u− yA)

g
, yC + u

)
.
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Figure 4.3: Calculating the uncertainty geometrically, Example 5.
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Before uncertainty is considered, the DEA distance from C to its corresponding pro-

jection onto AB is

D(C,AB) = xC − xD = xC − xA −
yC − yA

g
.

By decreasing DMU C’s input by u and increasing that of DMUs A and B by u the

proximity of the efficient frontier AuBu to Cu is:

D(Cu, AuBu) =xCu − xE

=xC − u− xA − u−
(yC + 2u− yA)

g

=D(C,AB)− 2u

(
1 +

1

g

)
.

When D(Cu, AuBu) = 0 Cu is on the efficient frontier AuBu. To find the minimum

amount of uncertainty and hence where DMU C will be deemed efficient we solve

D(Cu, AuBu) = 0 and rearrange to find the value of u. This gives,

0 =D(Cu, AuBu)

0 =D(C,AB)− 2u

(
1 +

1

g

)
0 =xC − xA −

yc − yA
g

− 2u

(
1 +

1

g

)
u =

g(xC − xA)− yC + yA
2(1 + g)

.

Therefore, DMU C will be deemed efficient when A = (xA + u, yA − u), B =

(xB + u, yB − u) and C(xC − u, yC + u) and u = g(xC−xA)−yC+yA
2(1+g)

.

Alternatively, the minimum amount of uncertainty can be derived from the DEA

model as shown in Example 6.
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Example 6: Calculating the uncertainty from the DEA model, M = N = 1

Recall the DEA model for a single input and output where inefficient DMU C has

peers A and B.

min
θC , λ

θC (4.27a)

s.t. λAyA + λByB − yC ≥ 0 (4.27b)

λAxA + λBxB − θCxC ≤ 0 (4.27c)

λA + λB = 1 (4.27d)

λA, λB ≥ 0. (4.27e)

The equality in (4.27d) can be removed by setting λA = 1 − λB. For DMU C to

be efficient (4.27b) and (4.27c) must be binding, hence they can be replaced with

equalities. Then from (4.27b) and (4.27c) λB and θC are,

λB =
yC − yA
yB − yA

θC =
(1− λB)xA + λBxB

xC
.

Select uncertainty as in Theorem 4.2.1. Consider a change in the data of u, then λB

and θC become λuB and θuC ,

λuB =
(yC + u)− (yA − u)

(yB − u)− (yA − u)
=
yC − yA + 2u

yB − yA
(4.28a)

θuC =
(1− λuB)(xA + u) + λuB(xB + u)

(xC − u)
=
λuB(xB − xA) + xA + u

(xC − u)
. (4.28b)

We wish to calculate the smallest value of u such that θuC = 1. Therefore set (4.28b)

equal to one, substitute in (4.28a) and rearrange to make u the subject,

1 =
λuB(xB − xA) + xA + u

(xC − u)

2u

(
1

g
+ g

)
=(xC − xA)− 1

g
(yC − yA)

u =
g(xC − xA)− yC + yA

2(1 + g)
,

and g = yB−yA
xB−xA

.
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This is the same value for u as derived geometrically in (4.26).

In Example 5 and 6 the amount of uncertainty required for DMU C to become

efficient on the efficient facet defined by DMU A and B is calculated. However, there

may be additional efficient DMUs that are not peers to DMU C that would result in

a smaller value of u if DMU C were compared to them. This leads to the following

important question. When is it beneficial for an inefficient DMU to compare itself to

different facets of the efficient frontier?

With a single input and output the efficient DMUs can be ordered by increasing

input and output. Here each facet has dimension N+M−1 = 1. Therefore, the facets

are line segments and can be defined by two extreme points of the efficient frontier.

Solving the nominal DEA problem (4.1) I times, once for each of the I DMUs, with

N = 1, M = 1 determines all efficient DMUs. There are a finite number, φ, of

efficient DMUs whose inputs and outputs represent an extreme point of the PPS.

These φ points can be ordered x1 < x2 < · · · < xφ and y1 < y2 < · · · < yφ. In this

way each consecutive pair define a facet of the efficient frontier.

In Theorem 4.3.6 we show that for M = N = 1 we can determine the minimum

amount of uncertainty required for a DMU to become efficient by determining the

facet which requires the minimum amount of uncertainty for DMU k to be deemed

efficient. To reach this conclusion we prove the following theorem which demonstrates

that when M = N = 1 as the gradient of the line segments on the efficient frontier

decrease, the amount of uncertainty required for a DMU to become efficient decreases.

Theorem 4.3.5. Consider the nominal DEA problem (4.1) with N = 1 and M = 1.

For inefficient DMUs a DEA distance τ from the efficient frontier, as the rate at

which the outputs change compared to the inputs on the efficient frontier decreases,

the required uncertainty for an inefficient DMU to become efficient when compared to

that line segment decreases.

Proof. Let A, B, C be efficient DMUs such that their inputs and outputs represent
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an extreme point of the PPS, and xA < xB < xC and yA < yB < yC . Then the

efficient frontier contains the line segments AB and BC. The line segments have

gradients g1 and g2 respectively,

g1 =
yB − yA
xB − xA

g2 =
yC − yB
xC − xB

. (4.29)

where g1 > g2. In other words, from the efficient DMU with the smallest input and

output to the efficient DMU with the largest input and output the ine segments have

decreasing gradients. Let

D =(xA + ρ1 + τ, yA + g1ρ1) E = (xB + ρ2 + τ, yB + g2ρ2)

F =(xA + ρ1, yA + g1ρ1) G = (xB + ρ2, yB + g2ρ2),

where ρ1, ρ2 and τ are positive constants as in Figure 4.4. In this way the inefficient

DMUs D and E have peers A,B and B,C, respectively. The point F (G) is the point

on the efficient frontier that DMU D(E) is projected to and D(D,AB) = D(E,BC) =

τ . This is shown in Figure 4.4. From (4.26), the amount of uncertainty required for

DMU D and E to be projected to the line segment AB, BC respectively is

uD =
g1(xD − xA)− yD + yA

2(1 + g1)
=

g1τ

2(1 + g1)
(4.30a)

uE =
g2(xE − xB)− yE + yB

2(1 + g2)
=

g2τ

2(1 + g2)
. (4.30b)

But, g1 > g2 so g1 can be rewritten as g1 = g2 + ε (ε > 0) and (4.30a) becomes

uD =
τ(g2 + ε)

2(1 + g2 + ε)
=
τ

2

(
g2 + ε

1 + g2 + ε

)
.

Then we can show that uD > uE via a contradiction. Assume uD < uE, then

g2

1 + g2

>
g2 + ε

1 + g2 + ε

⇔ g2(1 + g2 + ε) >(g2 + ε)(1 + g2)

⇔ g2 + g2
2 + g2ε >g2 + g2

2 + ε+ g2ε

⇔ 0 >ε.
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Figure 4.4: The effect of a decreasing gradient of efficient line segments on the value

of u.

But this is a contradiction as ε > 0 so

g1τ

2(1 + g1)
>

g2τ

2(1 + g2)
and uD > uE.

Therefore, for inefficient DMUs a DEA distance τ from the efficient frontier, as the

gradient of the line segment on the efficient frontier decreases the required uncer-

tainty for an inefficient DMU to become efficient when compared to that line segment

decreases.

Hence inefficient DMUs will never benefit from being compared to line segments of

the efficient frontier with a larger gradient than the gradient of the peers from solving

the nominal DEA problem (4.1). This gives rise to the following theorem,
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Theorem 4.3.6. For N = 1, M = 1 and φ efficient DMUs, order and label the φ

efficient DMUs by increasing input and output such that x1 < x2 < · · · < xφ−1 < xφ

and y1 < y2 < · · · < yφ−1 < yφ. Then, for any inefficient DMU k, the facet of the

efficient frontier which requires the minimum amount of uncertainty for DMU k to be

projected to its corresponding target point can be determined by:

yk + xk ≤ y1 + x1 efficient frontier is x = x1

y1 + x1 ≤ yk + xk ≤ y2 + x2 efficient frontier is EF1,2

y2 + x2 ≤ yk + xk ≤ y3 + x3 efficient frontier is EF2,3

y3 + x3 ≤ yk + xk ≤ y4 + x4 efficient frontier is EF3,4

...
...

yφ−1 + xφ−1 ≤ yk + xk ≤ yφ + xφ efficient frontier is EFφ−1,φ

yφ + xφ ≤ yk + xk efficient frontier is y = yφ.

Where EFi,j is the straight line formed between (xi, yi) and (xj, yj).

Proof. Choose a subset of consecutive efficient DMUs, for example, A, B, C < φ.

Let DMU k be inefficient with peers A and B where

(xk, yk) = (xB + µ(xC − xB), yB − ε)

0 < µ < 1 and 0 < ε < yB − yA. This ensures DMU k has peers A and B and

xA < xB < xk < xC .

Let the gradient of the line segment defined by AB and BC be g1, g2 as in (4.29).

Let uAB, uBC be the uncertainty required for DMU k to be projected to the line

segment AB, BC respectively. Then from (4.26),

uAB =
g1(xk − xA)− yk + yA

2(1 + g1)
=
g1((xB − xA) + µ(xC − xB))− (yB − yA) + ε

2(1 + g1)

uBC =
g2(xk − xB)− yk + yB

2(1 + g2)
=
g2(µ(xC − xB)) + ε

2(1 + g2)
.
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It is beneficial for DMU k to be compared to BC if uAB > uBC ,

uAB =
g1((xB − xA) + µ(xC − xB))− (yB − yA) + ε

2(1 + g1)
>
g2(µ(xC − xB)) + ε

2(1 + g2)
= uBC .

This occurs when

µ =
ε

xC − xB
.

Therefore, when

yk + xk < yB + xB the peers for DMU k remain the same

yk + xk > yB + xB the peers for DMU k change.

This is because less uncertainty is required for DMU k to be projected to its corre-

sponding target point on the facet defined by BC then AB. Continued application of

the above for increasing A,B,C gives the desired result.

We note the use of less than or equal signs in Theorem 4.3.6. These are used and

overlap because if xk +yk = xi+yi i = 2, . . . , φ then the value of uncertainty required

for DMU k to be projected to its corresponding target point on EFi−1,i and EFi,i+1

are equal. This can be seen in Figure 4.5 where DMU k is on one of the diagonal lines

between colour blocks.

Consequently, it is sometimes beneficial for inefficient DMUs to be compared to

facets of the efficient frontier which they are not compared to in the nominal DEA

problem (4.1). In this way we can determine the minimum amount of uncertainty

required for a DMU to become efficient by determining the facet which requires the

minimum amount of uncertainty for DMU k to be projected to its corresponding

target point for the case with N = 1 and M = 1. The areas in which the minimum

uncertainty is achieved on each facet can be seen in Figure 4.5. Here we note that

inefficient DMUs in the region yk +xk < yA+xA, depicted by the red region in Figure

4.5, will be compared to the facet of the efficient frontier given by x = xA, shown

by a vertical dotted line in Figure 4.5. If a DMU is on the line x = xA, y ∈ (0, yA)
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Figure 4.5: The facet of the efficient frontier inefficient DMUs are compared with.

it would be possible for DMUs to increase their outputs further without increasing

the inputs. However, they are still deemed efficient as we are considering an input

orientation where the outputs must remain fixed. When inefficient DMUs are in the

region yφ + xφ < yk + xk, the yellow region in Figure 4.5, they will be compared to

the facet of the efficient frontier given by y = yφ. Any DMUs on the line y = yφ

after solving the nominal DEA problem will require u = ε to become efficient. That

is because on the dashed line y = yφ any infinitesimally small value for u will result

in yk > yφ.

We demonstrate the case of a single input and output with Example 7.
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DMU In Out
Efficiency

Score

A 1 1 1

B 3 4 1

C 7 7 1

D 10 8 1

E 8 5 0.542

F 6 2 0.278

Table 4.11: Nominal data, Example 7.

Example 7: Numerical: one input, one output

Consider the six DMUs pictured in Figure 4.6a and whose nominal data are listed

in Table 4.11. Solving the nominal DEA problem (4.1) for all six DMUs gives the

efficiency scores in Table 4.11 where DMUs A−D are efficient and DMUs E −F are

inefficient. This can be seen in Figure 4.6a where the efficient DMUs are joined by

the red line to depict the efficient frontier.

From Theorem 4.3.6 the facet of the efficient frontier the inefficient DMUs should

be compared to can be calculated. We have yA + xA = 2, yB + xB = 7, yC + xC =

14, yD + xD = 18, yE + xE = 13 and yF + xF = 8 therefore both DMUs E and

F should be compared to BC. The uncertainty required for DMUs E and F to be

projected to its corresponding target point on each of the hyperplanes which intersect

the efficient frontier can be calculated from (4.26) and is presented in Table 4.12. As

expected, the smallest value for uE and uF occurs when DMUs E and F are compared

to BC.

In this way, for a single input and output we can determine the hyperplane which

requires the minimum amount of uncertainty for DMU k to be projected to its corre-
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Figure 4.6: Diagrams to show the possible facets of the efficient frontier DMU E and

F can be compared to.
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Efficient frontier

section
uE uF

AB 1.3 1.3

BC 0.786 1.214

CD 0.875 1.75

Table 4.12: Value of u for different facets of the efficient frontier, Example 7.

sponding target point and hence the facet on which the DMU will be deemed efficient.

However, for higher dimensions it is much harder to explicitly compute the facets

of the efficient frontier. With three variables the efficient frontier can be visualised

for simple examples. In Examples 8 and 9 we again demonstrate that the value of u

for each hyperplane that intersects the efficient frontier can be derived geometrically

and via the DEA equations. Example 10 is a small example with two inputs and one

output that considers the efficient facets for three efficient DMUs to demonstrate the

increasing complexity.

Example 8: Calculating the uncertainty geometrically, N = 2, M = 1

Let DMUs A−C be efficient and DMU D inefficient with peers A−C. We denote

the two inputs x1i, x2i and the output yi for i ∈ {A,B,C,D}.

When an inefficient DMU has three peers, the facet of the efficient frontier it

is compared with can be calculated. Following the procedure in Section 4.3.1, the

equation of the hyperplane with DMUs A− C, here denoted by ΠABC , is

ΠABC : α1x1 + α2x2 + β1y = γ,
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Figure 4.7: The hyperplane ΠABC , defined by efficient DMUs A, B and C (cross-

hatched), intersecting with the hyperplane y=yD (blue).

α1 = (x2B − x2A)(yC − yA)− (x2C − x2A)(yB − yA) (4.31a)

α2 = −(x1B − x1A)(yC − yA) + (x1C − x1A)(yB − yA) (4.31b)

β1 = (x1B − x1A)(x2C − x2A)− (x1C − x1A)(x2B − x2A) (4.31c)

γ = (α1x1A + α2x2A + β1yA). (4.31d)

In vector notation this is

ΠABC = {r ∈ R3 : r • ~n1 = γ},

where ~n1 = (α1, α2, β1) is a normal vector to the plane and γ is a constant. The

inefficient DMU D has co-ordinates (x1D, x2D, yD). For input oriented DEA an im-

provement in the inputs is sought. Therefore, DMU D is projected to the efficient
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frontier ΠABC along the hyperplane ΠyD : y = yD. This can be seen in Figure 4.7,

where ΠABC , (cross-hatched) intersects with ΠyD , (blue) along, a line. The hyperplane

ΠyD has normal vector ~n2 = (0, 0, 1). The hyperplanes ΠABC and ΠyD intersect along

the line

π = {r ∈ R2 : r • ~n2 = γ − β1yD},

and the DEA distance from DMU D to its projected point on the hyperplane ΠABC

is

D(D,ΠABC) =
|α1x1D + α2x2D + β1yD − γ|√

α2
2 + α2

1

.

Consider the addition of uncertainty and denote the new efficient frontier Πu
ABC

and the DEA distance from Du to Πu
ABC by D(Du,Πu

ABC). From Theorem 4.2.1 the

possible realisation of the uncertain data (x1i+u, x2i+u, yi−u) for i ∈ {A,B.C} and

(x1D − u, x2D − u, yD + u) is selected. We denote these new points Au, Bu, Cu, Du,

and wish to calculate the smallest value of u required for DMU D to become efficient.

From (4.31a)-(4.31c) we note that the u’s will cancel each other out in the equations

for α1, α2, β1 so αu1 = α1, α
u
2 = α2, β

u
1 = β1. This is because the uncertain efficient

frontier is parallel to the original efficient frontier, as seen in Figure 4.8. However, the

γ value for Πu
ABC will change.

γu =− (α1(x1A + u) + α2(x2A + u) + β1(yA − u))

=γ − u(α1 + α2 − β1).

The hyperplanes Πu
ABC and Πu

yD
intersect along the line πu.

πu = {r ∈ R2 : r • ~n2 =γu − β1yD

=γ − β1yD − u(α1 + α2 − β1)},

and the DEA distance from the point Du to the hyperplane Πu
ABC is:

D(Du,Πu
ABC) = D(D,ΠABC) +

2u(−α1 − α2 + β1)√
α2

1 + α2
2

.
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Figure 4.8: The hyperplane ΠABC , defined by efficient DMUs A, B and C (cross-

hatched), and the hyperplane Πu
ABC defined by Au, Bu and Cu (coloured).

By introducing an uncertainty of u, the proximity of the efficient frontier to the

uncertain box around DMU D reduces by at most 2u(−α1−α2+β1)√
α2
1+α2

2

. Before uncertainty

is considered, the required improvement to make DMU D efficient is D(D,ΠABC).

For DMU D to be considered efficient when we consider uncertainty we require

D(Du,Πu
ABC) = 0, i.e.

D(D,ΠABC) =
2u(−α1 − α2 + β1)√

α2
1 + α2

2

. (4.32)

Rearranging (4.32) gives,

u =
|αx1x1D + αx2x2D + αyyD + γ|

2| − αx1 − αx2 + αy|
. (4.33)

This is the same value for u as given by (4.22) with N = 2, M = 1.
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The value of u with two inputs and one output can also be derived from the

nominal DEA problem.

Example 9: Uncertainty from DEA model, two inputs, one output

The nominal DEA problem for DMU D is

min
θD, λ

θD (4.34a)

s.t. λAyA + λByB + λCyC − yD ≥ 0 (4.34b)

λAx1A + λBx1B + λCx1C − θDx1D ≤ 0 (4.34c)

λAx2A + λBx2B + λCx2C − θDx2D ≤ 0 (4.34d)

λA + λB + λC = 1 (4.34e)

λA, λB λC ≥ 0. (4.34f)

The equality in (4.34e) can be removed by setting λA = 1 − λB − λC . For DMU D

to be deemed efficient (4.34b, 4.34c and 4.34d) must be binding, hence they can be

replaced with equalities. Rearranging (4.34b) gives

λB =
yD − λCyC − (1− λC)yA

yB − yA
. (4.35)

Substituting (4.35) into (4.34c) gives,

λC =
(yB − yA)(θDx1D − x1A) + (yA − yD)(x1B − x1A)

(yB − yA)(x1C − x1A) + (yA − yc)(x1B − x1A)
. (4.36)

Then substituting (4.36) into (4.34d) gives

θD =
(yB − yD)(α1x1A + α2x2A) + (yD − yA)(α1x1B + α2x2B)

(yB − yA)(α1x1D + α2x2D)
,

where α1 = (x2B−x2A)(yC − yA)− (x2C −x2A)(yB− yA) and α2 = −(x1B−x1A)(yC −

yA) + (x1C − x1A)(yB − yA). Repeating this with the uDEA model (4.19), gives

θ̄∗D =
(yB − yD − 2u)(α1(x1A + u) + α2(x2A + u))

(yB − yA)(α1(x1D − u) + α2(x2D − u))
+

(yD − yA + 2u)(α1(x1B + u) + α2(x2B + u))

(yB − yA)(α1(x1D − u) + α2(x2D − u))
. (4.37)
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DMU x1 x2 y Efficiency score λi i ∈ {A,B,C,D}

A 1 2 3 1 0.419

B 5 1 6 1 0.324

C 4 4 7 1 0.257

D 7 5 5 0.438 0

Table 4.13: Data, efficiency scores and peers: two inputs, one output, Example 10.

We require the smallest u such that θ̄∗D = 1. Setting (4.37) equal to one and

rearranging gives,

u =
|α1x1D + α2x2D + β1yk + γ|

2| − α1 − α2 + β1|
,

where β1 = ((x1B − x1A)(x2C − x2A) − (x1C − x1A)(x2B − x2A)) and γ = −(α1x1A +

α2x2A + β1yA). This is the same value for u as derived geometrically in (4.33).

We now consider a numerical example to demonstrate the different facets of the

efficient frontier DMU D can be compared with.

Example 10: Two inputs, one output

Consider the four DMUs pictured in Figure 4.7 whose nominal data are listed in

Table 4.13. Solving the nominal DEA problem (4.1) gives the efficiency scores in

Table 4.13. DMUs A−C are efficient and DMU D is inefficient with peers A, B and

C. This can be seen in Figure 4.7 where the efficient DMUs are on the hyperplane

ΠABC : −10x1− 7x2 + 11y− 9 = 0. From (4.33), the minimum amount of uncertainty

required for DMU D to be considered efficient on ΠABC is u = 59
56
≈ 1.05.

Let Πijk denote the plane going through the points defined by the inputs and

outputs of DMU i, j and k, Πz be the plane where the min(max) x(y) value is

fixed and Πij(z) denote the plane going through the points defined by the inputs and

outputs of DMU i and j and taking any value in the z direction. Consider the different

hyperplanes, Π ∈ Ψ, that lie on the efficient frontier as in Table 4.14.
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Plane Equation of plane Value of U

ΠABC −10x1 − 7x2 + 11y − 9 = 0 1.05

ΠBC(x1) −1x2 + 3y − 17 = 0 0.875

Πx1 −10x1 + 10 = 0 3

ΠAC(x2) 4x1 − 3y + 5 = 0 1.286

Πx2 −7x2 + 7 = 0 2

ΠAB(y) 1x1 + 4x2 − 9 = 0 1.8

Πy 11y − 77 = 0 1

Table 4.14: The planes that intersect with the PPS of Example 10 that inefficient

DMU D can be compared to.

In this way, we conclude that the smallest amount of uncertainty required for

DMU D to become efficient is u = 0.875. This occurs when the line BC is moved

freely on the x1 axis and can be seen in Figure 4.9 where Du is now on the hyperplane

Πu
BC(x1) (pale blue hyperplane in Figure 4.9). This agrees with the value calculated

from (4.33).

Therefore, to solve the uDEA problem for box uncertainty, the extreme points of

the PPS must be found and then the facets can be calculated. However, for increasing

numbers of variables, it is not practical to geometrically consider each facet of the

efficient frontier. As Olesen and Petersen (2003) conclude, it is inescapable that “all

facet generating algorithms proposed so far are exponential clearly poses a serious

problem. It is for this reason some times argued that it is simply not practical to

investigate the facial decomposition of a polyhedral DEA production possibility set

until the day when an efficient algorithm is made available”. As in Section 3.3, we

conclude that for large DEA problems it is not currently feasible to explicitly calculate

all possible facets of the efficient frontier as it cannot be done in polynomial time.
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Figure 4.9: The hyperplane ΠBC(x1) (dark blue), Πu
BC(x1) (light blue) and ΠABC (cross-

hatched). The point defined by DMU D’s uncertain data, Du is on the hyperplane

Πu
BC(x1).

4.4 Future research directions

Here we develop a methodology for solving the uDEA model for box uncertainty.

When the facets of the PPS are known the uDEA problem can be solved exactly but

as M +N and I increase this become computationally intensive. Therefore, methods

that do not rely on the full specification of the efficient frontier’s facets would be

beneficial.

Ehrgott et al. (2018) provide a first order algorithm for solving the uDEA problem

when the uncertainty is ellipsoidal. However, an exact method for all uDEA instances,

if it exists, is required. These problems are non-linear and non-convex. Therefore,
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further research into heuristic approaches to allow the problem to be solved in a

sensible time frame will be beneficial.

In model (4.19), when the amount of uncertainty is not fixed nonlinear terms arise

from the λ and θk terms. An alternative approach would be to determine a suitable

simplified model, that captures the properties of the uDEA model, by introducing

binary variables to linearise the nonlinear constraints. This is an area we need to

explore further.



Chapter 5

DEA in radiotherapy

5.1 Introduction

The purpose of this chapter is to discuss how to evaluate treatment plans, i.e., we

want to undertake a comparison among a set of treatment plans to determine how

well they manage to deliver the prescribed dose of radiation to the PTV and how well

they can spare OARs from radiation damage at the same time. If we consider the

radiation dose to OARs as the “cost” or input necessary to achieve the “profit” or

output of radiation dose to the PTV, we can view the problem as one of input-output

or performance analysis in an economic setting. This approach has been pioneered by

Lin et al. (2013), who use DEA for the evaluation of radiotherapy treatment plans for

prostate cancer at Auckland Radiation Oncology, a private radiation therapy centre

in Auckland, New Zealand. In the context of the evaluation of radiotherapy treatment

plans, DMUs are the treatment plans and DEA assesses how well the plans perform in

“transforming inputs into outputs,” i.e., delivering the prescribed dose to the tumour

while limiting the dose delivered to OARs. The resulting efficiency score is relative

to the set of plans considered in the study. The DEA models we use are introduced

in Section 3.1.

152
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Throughout this chapter, we use data from Rosemere. The data consists of

prostate patient treatment plans from Preston hospital delivered to patients between

November 2015 and July 2018. The plans were planned for delivery on either an

AG or BM MLC (see Section 2.1). Due to the continual adaption of the planning

methods, machinery and treatment techniques as the research progressed, we learn

that not all the data provided is suitable for inclusion in the analysis. As a result, we

use three different datasets, Dataset 1, 2a and 2b as the analysis proceeds. Dataset

1 is included in the appendix, Section A. Dataset 1 comprises 51 plans, Dataset 2a

contains 87 plans for patients 1-99 and Dataset 2b is a subset of Dataset 2a consisting

of plans for patients 30-99. Not all the patients plans were suitable for inclusion in

our data analysis hence we have 87 plans for patients 1-99. Similarly there are only

66 comparable plans for patients 30-99.

In Section 5.2 we investigate different methods for variable selection. In Section

5.3 we apply DEA to find the nominal efficiency scores for each treatment plan.

5.2 Variable selection

To be able to apply DEA to our data, and hence, calculate the treatment plans’

efficiency scores, we must first identify suitable variables. As discussed in Section

3.1, DEA is subject to loss of discrimination and hence, we wish to use as small a

subset of variables as possible. In Section 5.2.1 we first adapt the methodology of

Lin et al. (2013) and conclude that the variables used in Lin et al. (2013) are not

suitable for our analysis. As a result, in Section 5.2.2 we identify and explore a subset

of variables extracted from Rosemere’s clinical protocol. In Section 5.2.3 we apply

PCA to Dataset 2a as a variable reduction technique. In Section 5.2.4 we develop an

autoPCA variable selection method to allow the technique to be used for hospitals

with different protocols. In Section 5.2.5 we discuss other variable selection techniques
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before concluding in Section 5.2.6.

In Section 5.2.1 we aim to replicate the study from Lin et al. (2013). Here we use

Dataset 1. The data is for the generalised equivalent uniform dose (gEUD) to the

rectum, DPTV 1
95 and DPTV 3

95 only as these are the variables Lin et al. (2013) consider.

As discussed in Section 5.2.1 it is clear that these variables are not suitable for our

study. As a result, in Section 5.2.2 we identify ten inputs and nine outputs that

clinicians believe influence treatment plan quality along with eight volumes. These

plan variables are listed in Tables 5.1 and 5.2. We note here that when reporting

the results the plan numbers are not sequential due to the removal of plans that

we learn are not comparable due to missing data, incomplete treatments or a non-

standard treatment plan. We use the resulting Dataset 2a for the initial data analysis

in Section 5.2.2 and the development of the autoPCA in Section 5.2.4. However, after

processing these data Rosemere changed their treatment protocol and as a result, all

the BM machines are no longer used for treatment. Although AG and BM plans are

considered clinically comparable, we feel that including BM plans in the dataset when

they are no longer being used clinically is unsuitable. As a result, we remove the BM

plans leaving a dataset of 66 plans that are for patients 30-99 in Dataset 2b. Each

plan in this dataset has been used to treat a patient using an AG treatment machine,

each plan adheres to the same clinical protocol with the same structures outlined and

therefore is considered clinically comparable. As a result, this final dataset is used for

the DEA analysis and further research in Chapter 6.

5.2.1 Previous study

As a first step, we try to adopt the model of Lin et al. (2013) and apply it to the

initial data from Rosemere, Dataset 1, as done in Stubington et al. (2019). The single

input in Lin et al. (2013) is the gEUD rectum, see Section 2.2.1. The input gEUD

for the rectum is an averaging quantity that measures the homogeneity of the dose
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Figure 5.1: gEUD rectum versus D95 for PTV 1 and PTV 3 for the 51 treatment

plans from Rosemere, Dataset 1.

delivered to the rectum. In their DEA model, the single output is D95 for the prostate.

We note that the data in Lin et al. (2013) contain only prostate cases with a single

PTV, in contrast to the data set from Rosemere Cancer Centre where three PTVs

are present. We want to choose a definition of output, and therefore a structure for

which to compute D95 that is as close as possible to what has been used in Lin et al.

(2013). After consultation with clinical staff in charge of the data from Auckland and

Rosemere, it was decided that the single PTV from Auckland plans can be considered

equivalent to (and is similarly defined as) PTV 3 for the Rosemere data set.

In Figure 5.1 we plot the Rosemere data from Table 1 using the variables from the

Auckland study, separately with D95 for either PTV 1 or PTV 3 as the single output,

and gEUD for the rectum as single input to be analyzed by DEA.

From Figure 5.1 it is clear that the plans are not comparable using the data from

Rosemere. There are four distinct clusters, distinguished by the number of fractions

and whether PTV 1 or PTV 3 is considered as planning target volume in the D95
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measure. Hence, it is impossible to carry out DEA using the data shown in Figure 5.1.

We must find a way to control for the two different treatment regimes, and we must

consider which inputs and outputs to select. Here we note that neither gEUD for the

rectum nor D95 for PTV 1 or PTV 3 are recorded according to the Rosemere clinical

protocol. We had to extract this information from the plans specifically to produce

Figure 5.1. This hinders application of the method in routine hospital processes, since

extra effort is needed to extract data. Hence, we are interested in exploring which of

the data that are already reported for the protocol (because constraints are placed

on them) could and should be used for DEA. Here, we need to select OAR data as

inputs and PTV data as outputs in DEA terminology.

5.2.2 Rosemere data exploration

In Section 5.2.1 we have concluded that we cannot perform DEA with the same inputs

and outputs considered in Lin et al. (2013) for our data set. As a result, we extract a

list of variables from the clinical protocol, see Section 2.1.2 for more details. In Table

5.1 we have identified 19 different variables, ten inputs and nine outputs that clinical

staff consider relevant for quality assessment of the radiotherapy plans obtained. Here,

Vx denotes the percentage of the volume of an organ at risk (either rectum or bladder)

receiving x Gray (Gy) or more of radiation dose and Dx is the dose received in Gy

by x% of the volume of a PTV. If we need to refer to these values for a particular

structure, we will use the structure name as a superscript, shortening PTV1-PTV2

and PTV2-PTV3 to PTV1-2 and PTV2-3. In addition to these dose-volume values,

we extracted data on the total volume in cm3 of the rectum, bladder, prostate and

PTVs, Table 5.2. Radiotherapy planners at Rosemere suggested that these might

influence treatment plan quality. Since we only have 87 DMUs (plans), the use of 26

variables is considered excessive (see, e.g. Coelli et al. (2005) for more information)

and will not lead to meaningful results from DEA. Hence, in Section 5.2.3 we attempt
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Figure 5.2: Vx input data, Dataset 2a.

to identify a subset of measures listed in Table 5.1 which account for most of the

variability present in our data set and which allow a sound application of DEA. To

begin with we first explore the variables identified from the clinical protocol listed in

Table 5.1 and the volume variables in Table 5.2.

We obtained 87 distinct treatment plans, 52 of which were 20 fraction treatments

and 35 of which were 37 fraction treatments. We visualise the data in the boxplots of

Figures 5.2 and 5.3. Notice that the output data in Figure 5.3 is dose per fraction to

adjust for the number of treatment fractions, this will be explained further in Section

5.2.3.

Figure 5.2 shows that there is more variability within the lower rectal variables

V30 − V40 than the higher rectal constraints V50 − V70 data suggesting Rosemere pri-
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Structure 37 fractions 20 fractions

Rectum

V30 V24.6

V40 V32.4

V50 V40.8

V60 V48.6

V65 V52.8

V70 V57

Bladder

V50 V40.8

V60 V48.6

V65 V52.7

V70 V56.8

PTV 1-2

D99 D99

D98 D98

D50 D50

PTV 2-3

D99 D99

D98 D98

D50 D50

PTV 3

D99 D99

D98 D98

D50 D50

Table 5.1: Variables obtained from the clinical protocol.
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Structure volume Notation

Rectum V olRec

Bladder V olBla

Prostate V olPros

PTV 1-2 V olPTV 1−2

PTV 2-3 V olPTV 2−3

PTV 3 V olPTV 3

Table 5.2: Total volume in cm3 of structures from the clinical protocol.

oritise meeting the higher rectal constraints consistently. Figure 5.3 shows that there

is more variability within the DY
x data for PTV1-2 than PTV 3, where there is little

variability, suggesting that Rosemere is very good at meeting the higher dose to the

internal PTV 3. The PTV1-2 variables are slightly positively skewed meaning that

the median is typically less than the mean. The range of the PTV1-2 data is also

larger than that of the remaining output variables.

In Figure 5.4 we observe that the largest variability in volume is in the bladder,

this may suggest it is a suitable variable to consider as an environmental variable in

our DEA models. All the prostate and associated PTV volumes are positively skewed

meaning the distribution has a larger mean than median.

To explore the data further and to understand the underlying relationships be-

tween the variables we calculate the Pearson’s correlation coefficient, see Section 3.5.

We then plot the pairwise relationship between each input or output variable to-

gether with the correlation coefficient in Figures 5.5 and 5.6. The diagonal of the

plot shows the distribution of each variable and the off diagonal shows the correlation

between pairs of variables. To determine whether the correlation between variables is

statistically significant we test the hypothesis at the 0.05 significance level that the

correlation coefficient is significantly different from zero. The correlation coefficients
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Figure 5.3: Dx output data, Dataset 2a.

in red in Figures 5.5 and 5.6 indicate the variable pairs that are statistically greater

than zero.

In Figure 5.5 we note that as expected there are no negative correlations between

the input variables. This means we do not have conflicting variables within the input

set and they all behave according to Definition 3.1.3. All four bladder constraints

are highly correlated with correlation coefficients between 0.94 and 0.99 for all pairs.

However, the rectal constraints split into two groups of higher and lower rectal con-

straints: V60 − V70 are strongly correlated with correlation coefficients in the range

0.92-0.97 and V30−V40 are strongly correlated with correlation coefficient 0.85. How-

ever, the correlation between these two groups is weaker, for example, the correlation

between V30 and V70 is only 0.43.
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Figure 5.4: Volume data,Dataset 2a.

Looking at Figure 5.5 it would be natural to look at the correlation between

V Rec
60 , V Rec

65 and V Rec
70 which have pairwise correlation of 0.92, 0.97 and 0.97 and deem

them similar enough that only one of these variables is required. However Dyson

et al. (2001) demonstrate that removing variables based purely on their correlation

can lead to dramatic differences in results. Therefore, less adhoc methods are required

and explored here.

In Figure 5.6 we look at the relationship between the output variables. Here we

notice that for all three PTVs, the D99 and D98 are highly correlated with correlation

coefficients between 0.98 and 0.99. The corresponding D50 for PTV1-2 and PTV2-3

with D99 and D98 are fairly high: 0.63, 0.64, 0.7 and 0.74. However, the correlation

between DPTV 3
99 and DPTV 3

98 with DPTV 3
50 is not significantly different from zero. There
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Figure 5.5: Correlation between the input variables, Dataset 2a
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Figure 5.6: Correlation between the output variables, Dataset 2a
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is also no correlation between PTV 3 and PTV1-2 for all three Dx metrics.

The diagonal plots in both the input and output distributions in Figures 5.5 and

5.6 appear to be fairly normally distributed. With more data, we would expect this

distribution to be more pronounced.

5.2.3 Applying PCA to prostate cancer data

In Section 3.5, we introduced the general PCA model as a data reduction technique.

Here we describe how we have applied it to the data set of plans obtained from

Rosemere before describing the method used to select variables for DEA.

There are some studies that use the derived PCs directly in the DEA model (see

Section 3.5.1). However, this is not suitable in a radiotherapy treatment plan context

as taking a vector of treatment plan metrics does not transcribe to a clinical meaning.

Hence, we wish to use it as a decision making aid to select variables to be used in our

DEA models.

PCA is susceptible to the sample currently being used; depending on the sample

the variables selected can be very different. It is important to make sure we have

accounted for the effect the current sample has on variable selection. Since it is the

OAR and PTV variables that define the quality of a treatment, we first perform PCA

for the OAR and PTV variables and ignore the total volume variables. Throughout

we use the correlation matrix instead of the sample variance matrix to overcome the

sensitivity of PCs to units of measurements, this is explained in more detail in Section

3.5 where PCA is first introduced.

We apply PCA to the output variables and plot the first two PCs against each

other. This is shown in Figure 5.7 where each point represents an observation, i.e., a

treatment plan. The fact that two distinct clusters of plans form in Figure 5.7 suggests

there is some underlying data structure. Looking into which plan corresponds to each

point we realise that the group on the left of Figure 5.7 is all the 20 fraction plans
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Figure 5.7: First two PCs for the output variables, Dataset 2a.

and the 37 fraction plans are on the right. This suggests that we need to account for

the number of fractions in a treatment plan before we can apply our variable selection

methods. We next reproduce the component plot to compare the effect of the number

of fractions by plotting the first two PCs for the 20 and 37 fraction plans separately

in Figure 5.8. The plot in Figure 5.8 shows that the two clear groups in the data do

not exist when we split the data according to the number of fractions.

We repeat this for the input data in Figure 5.9 where the two distinct clusters do

not form and we can see no discernible difference when we plot the 20 and 37 fractions

separately in Figure 5.10.

Figures 5.7 to 5.10 suggest that it is variation within the output data, not the

input data, that causes the two clusters to form in the PCA. This is caused by the
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(a) 20 fraction plans outputs.
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(b) 37 fraction plans outputs.

Figure 5.8: First two PCs for the outputs according to session number, Dataset 2a.
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Figure 5.9: First two PCs for the input variables, Dataset 2a.
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(a) 20 fraction plans inputs.
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Figure 5.10: First two PCs for the inputs according to session number, Dataset 2a.

definition of the OAR and PTV data, i.e. the OAR data are Vx metrics, so that

they are already taking into account the difference in the number of fractions as the

percentage volumes receiving, for example, 50 Gy in 37 fractions and 40 Gy in 20

fractions. The PTV data are Dx metrics measured as the dose in Gy received by

a certain percentage of the volume of a PTV. Due to the different prescribed dose

for 37 and 20 fraction treatments, their values are very different for the two different

treatment regimes.

Furthermore, Figure 5.8 suggests that performing PCA for the sets of plans follow-

ing the two different treatment regimes separately removes the two clusters. Hence,

by accounting for the difference between 20 and 37 fraction plans, the distinct clusters

no longer form in PCA and we can proceed. To account for the difference between

the treatment regimes, we note that the prescribed dose per fraction as well as the

total prescribed dose is different for both treatment regimes. Hence, simply dividing

by the number of fractions will not eliminate the clusters. We therefore divide PTV

Dx data by the prescribed dose to normalise data between the two types of treatment.

This introduces ratio variables which can be problematic for DEA methodology, this

will be discussed in Section 5.3. From now on, we use the normalised PTV data

throughout, however, we will still refer to them with the same variable names.
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Here we consider variable selection techniques for the inputs and outputs sepa-

rately as opposed to all at once. This is because we know that the inputs and outputs

are closely linked, the higher the dose to a PTV the higher the dose to an OAR.

This could cause us to get unmeaningful results if we apply PCA to the variables all

together. This is in part due to us requiring at least one input and output variable

for the DEA model in Section 5.3. Therefore, here we keep the variables separate to

ensure we have considered the main contributor to both the inputs and outputs for

our model.

Simplified + - notation

We now apply the simplified notation of Jolliffe (2002) to look at the patterns occur-

ring in the PCs. As introduced in Section 3.5 the raw PCs are often hard to interpret

and evaluate, therefore,the simplified notation can be a beneficial tool.

The first four PCs from applying PCA to the input data of Dataset 2a are on

the left hand side of Table 5.3 and the simplified notation from Jolliffe (2002) gives

the representation on the right hand side. This data simplification highlights some of

the hidden patterns in the dataset. PC 1 has significant positive coefficients for all

variables; this suggests that the first PC is a measure of overall dose deposition to

the OAR. As discussed in Section 5.2.2 from the correlation matrix Figure 5.5 for the

inputs we can see 3 main groups forming: V30 and V40 rectum, bladder constraints

and the higher rectal constraints V50 − V70. This is reflected in the PCs’ scores. Here

the second PC splits the data into bladder constraints and higher rectal constraints.

From this, it would seem sensible to choose one bladder constraint and one higher

rectal constraint to explain the inputs. The third PC eigenvalue is 0.89, which is less

than one so contributes less than one of the original variables and so could justify

excluding PC 3 according to Kaiser’s rule (see Section 3.5.1).

Repeating the above PC simplification for the output data gives the first four PCs
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Variable PC 1 PC 2 PC 3 PC 4 PC 1 PC 2 PC 3 PC 4

VRec
30 0.30 -0.10 0.67 -0.43 + (-) + (-)

VRec
40 0.35 -0.16 0.50 0.17 + (-) +

VRec
50 0.32 -0.27 0.02 0.76 + - +

VRec
60 0.34 -0.31 -0.24 0.04 + - (-)

VRec
65 0.34 -0.30 -0.29 -0.29 + - (-) (-)

VRec
70 0.32 -0.28 -0.36 -0.33 + - - (-)

VBla
50 0.30 0.38 -0.02 0.00 + +

VBla
60 0.30 0.39 -0.06 0.05 + +

VBla
65 0.30 0.40 -0.07 0.00 + +

VBla
70 0.28 0.41 -0.13 0.00 + +

EigenValues 5.35 3.22 0.89 0.33 5.35 3.22 0.89 0.33

% Explained 53.54 32.19 8.92 3.29 53.54 32.19 8.92 3.29

Table 5.3: First four PCs for the input variables, Dataset 2a.

Variable PC 1 PC 2 PC 3 PC 4 PC 1 PC 2 PC 3 PC 4

DPTV3
99 -0.42 0.05 0.40 -0.36 - + -

DPTV3
98 -0.43 0.06 0.40 -0.34 - + -

DPTV3
50 -0.18 -0.10 -0.69 -0.64 (-) - -

DPTV1−2
99 -0.01 0.60 -0.18 -0.02 + (-)

DPTV1−2
98 0.00 0.59 -0.20 0.00 + (-)

DPTV1−2
50 0.15 0.49 0.20 -0.01 (-) + (-)

DPTV2−3
99 -0.44 -0.03 -0.20 0.42 - (-) +

DPTV2−3
98 -0.45 -0.04 -0.22 0.38 - (-) +

DPTV2−3
50 -0.43 0.18 0.00 0.13 - (+)

EigenValues 3.94 2.60 1.04 0.79 3.94 2.60 1.04 0.79

% Explained 43.82 28.93 11.57 8.83 43.82 28.93 11.57 8.83

Table 5.4: First four PCs for the output variables Dataset 2a.
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in Table 5.4. Here the first two PCs explain 72.7%, the first three 84.3% and the

first four 93.2% of the variation in the data. The simplification on the right hand

side of Table 5.4 suggests the first two PCs distinguish between PTV 3 and PTV2-3

variables in the first PC and PTV1-2 in the second PC. From this and the correlation

matrix Figure 5.6 there appears to be no discernible difference between the PC scores

for D98 vs D99 variables. This may suggest we can use D99 or D98 but both are not

required. To analyse this further we repeat the PCA excluding D99 and D98 values

in turn. This gives the results in Tables 5.5. The same patterns are seen when using

both D98 and D99 so it would suggest it is only necessary to use one of these metrics.

Correlation between variables and PCs

Another method that can be used to identify patterns in the dataset is to compare

the correlation between the original variables and the resulting PCs. For Dataset 2a

the input values are in Table 5.6. The first PC is highly correlated with all the 10

variables again suggesting the first PC is a measure of overall size. The second PC

is positively correlated with the bladder metrics and negatively correlated with the

higher rectal metrics, agreeing with the previous analysis.

This is repeated for the output variables in Table 5.7. Here the first PC is highly

negatively correlated with DPTV 3
99 and DPTV 3

98 and all PTV2-3 metrics. The second

PC is highly correlated with the DPTV 1−2
99 and DPTV 1−2

98 variables, suggesting it is

the higher PTV constraints that are most significant. We note that there is very

little correlation between the final three PCs and the original variables; the largest

correlation is 0.09. In fact, from PC 3 downwards there is no correlation greater than

0.57, suggesting that most of the variation in the data has been accounted for.

The methods discussed in this section are somewhat subjective. We can identify

similar patterns occurring across the different techniques, however, they do not provide

a method for choosing suitable variables without user input. Therefore, we now
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Variable PC 1 PC 2 PC3 PC 1 PC 2 PC 3

DPTV3
99 -0.51 0.12 -0.25 - (-)

DPTV3
50 -0.28 -0.19 0.90 - (-) +

DPTV1−2
99 0.02 0.68 0.31 + (+)

DPTV1−2
50 0.25 0.64 0.04 (+) +

DPTV2−3
99 -0.55 0.01 -0.11 -

DPTV2−3
50 -0.54 0.29 -0.10 - (+)

Eigenvalues 2.45 1.72 0.88 2.45 1.72 0.88

% Explained 40.76 28.64 14.60 40.76 28.64 14.60

(a) Excluding D98 variables.

Variable PC 1 PC 2 PC3 PC 1 PC 2 PC 3

DPTV3
98 -0.50 0.14 -0.27 - (-)

DPTV3
50 -0.28 -0.20 0.89 - (-) +

DPTV1−2
98 0.02 0.67 0.33 + (+)

DPTV1−2
50 0.23 0.64 0.04 (+) +

DPTV2−3
98 -0.57 -0.01 -0.08 -

DPTV2−3
50 -0.54 0.28 -0.11 - (+)

Eigenvalues 2.51 1.73 0.88 2.51 1.73 0.88

% Explained 41.78 28.77 14.60 41.78 28.77 14.60

(b) Excluding D99 variables.

Table 5.5: First three PCs for the output variables, Dataset 2a.
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Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC10

VRec
30 0.69 -0.18 0.64 -0.25 -0.14 0.00 0.04 0.00 0.00 0.00

VRec
40 0.80 -0.29 0.47 0.09 0.21 -0.03 -0.06 0.00 0.00 0.00

VRec
50 0.75 -0.48 0.02 0.44 -0.08 0.01 0.07 0.02 0.00 0.00

VRec
60 0.78 -0.56 -0.23 0.03 -0.10 0.01 -0.11 -0.05 -0.01 0.00

VRec
65 0.78 -0.53 -0.28 -0.17 -0.01 -0.03 -0.05 0.07 0.01 0.00

VRec
70 0.75 -0.51 -0.34 -0.19 0.10 0.03 0.11 -0.03 0.00 0.00

VBla
50 0.70 0.68 -0.02 0.00 0.01 0.18 -0.02 0.02 -0.03 -0.01

VBla
60 0.70 0.71 -0.06 0.03 0.00 0.03 0.00 -0.01 0.04 0.03

VBla
65 0.69 0.72 -0.07 0.00 -0.01 -0.05 0.00 -0.01 0.03 -0.03

VBla
70 0.65 0.73 -0.12 0.00 -0.01 -0.15 0.02 0.00 -0.04 0.01

Table 5.6: Correlation between the original input variables and the PCs, Dataset 2a.

Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9

DPTV3
99 -0.84 0.07 0.41 0.33 -0.07 0.07 0.00 0.03 -0.04

DPTV3
98 -0.85 0.10 0.40 0.30 -0.04 0.08 0.00 -0.03 0.04

DPTV3
50 -0.35 -0.16 -0.71 0.57 0.14 0.02 0.00 0.00 0.00

DPTV1−2
99 -0.01 0.96 -0.19 0.02 -0.20 0.01 0.00 -0.06 -0.03

DPTV1−2
98 0.00 0.96 -0.20 0.00 -0.19 0.04 0.01 0.06 0.03

DPTV1−2
50 0.31 0.80 0.20 0.01 0.47 0.11 0.00 0.00 0.00

DPTV2−3
99 -0.88 -0.05 -0.20 -0.37 0.04 0.19 -0.08 0.00 0.00

DPTV2−3
98 -0.90 -0.07 -0.22 -0.34 0.06 0.10 0.09 -0.01 0.00

DPTV2−3
50 -0.84 0.29 0.00 -0.11 0.12 -0.42 -0.01 0.00 0.00

Table 5.7: Correlation between the original output variables and the PCs, Dataset 2a.
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explore alternative PCA based methods in the following sections.

5.2.4 Automated PCA Variable Selection

We now develop a method of variable selection based on PCA to overcome some

of the problems discussed in Section 3.5 and to strengthen the observations from

Sections 5.2.2 and 5.2.3. We wish to create a process for variable selection that can

be automated. This will allow us to tailor the method to different hospitals where a

different set of variables may accurately explain the protocol. We wish to develop a

method that selects variables as opposed to PCs to use in the DEA model.

In Table 5.3 we noted that the first PC is a measure of overall dose to the OARs.

The coefficients all take values between 0.28 and 0.35 and are considered significant

via the representation in (3.23) as introduced in Jolliffe (2002). We argue that these

suggest that there is very little variability between the PCA coefficients and hence,

selecting a variable based on this PC will not be beneficial. However, this recom-

mendation is based on comparison with the other PCs which have a larger coefficient

range. For example, PC 2 has coefficients between [−0.23, 0.41] and PC 3’s coeffi-

cients are between [−0.36, 0.67]. If these PCs also have very little variation in the

coefficients we do not want to exclude PC 1. In this way, we wish to consider both

the range of the coefficients and the variance between them. Table 5.8 gives the vari-

ance between a PC’s coefficients and the range. To three decimal places PC 1 has

variance 0 whereas, the remaining PCs have a variance of 0.111. This suggests that

there is very little variability in the coefficients for the first PC compared to future

PCs. Whereas, in Table 5.9 we see that the variance for PC 1 is less different to the

other PCs. We need a measure that captures the notion of a small/large variance in

the context of the current data. From this, we can determine whether a PC contains

unique information about the variance in the variables.

Another consideration is the occurrence of +ve and−ve coefficients in the PCs. We
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Principal

component
Variance Mean

Absolute

mean
Max Min

1 0.000 0.316 0.316 0.346 0.282

2 0.111 0.016 0.301 0.407 -0.310

3 0.111 0.001 0.237 0.673 -0.364

4 0.111 -0.003 0.209 0.763 -0.434

5 0.111 -0.007 0.221 0.697 -0.460

6 0.111 -0.003 0.208 0.719 -0.620

7 0.111 0.008 0.246 0.578 -0.567

8 0.111 0.000 0.221 0.728 -0.528

9 0.111 -0.003 0.228 0.539 -0.558

10 0.111 0.000 0.182 0.654 -0.718

Table 5.8: Input PC metrics, Dataset 2a.

Principal

component
Variance Mean

Absolute

mean
Max Min

1 0.058 -0.245 0.279 0.155 -0.453

2 0.080 0.200 0.238 0.595 -0.099

3 0.122 -0.054 0.277 0.403 -0.693

4 0.122 -0.051 0.256 0.417 -0.644

5 0.120 0.064 0.253 0.804 -0.338

6 0.123 0.041 0.229 0.382 -0.846

7 0.125 -0.001 0.188 0.660 -0.737

8 0.125 -0.001 0.231 0.602 -0.601

9 0.125 0.006 0.229 0.596 -0.610

Table 5.9: Output PCs metrics, Dataset 2a.
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cannot simply select the largest +ve contribution as the sign of any PC is completely

arbitrary. Similarly, considering only the absolute largest contribution could result in

us excluding an equally significant variable. For example, in Table 5.4 PC 3 DPTV 1−2
50

has coefficient 0.2 and DPTV 2−3
50 has coefficient -0.2. This means they contribute

equally to PC 3. The occurrence of both + and − in the same PC suggests we need

to consider both as potential variables. In addition to this, we must decide on the

overall percentage variance we wish to explain.

Algorithm 1 provides a framework for variable selection, we will refer to it as

autoPCA. We define three parameters α, β and γ, which are dependent on the data

and application of the problem. They can be thought of as measures of the significance

of the variation in the PCs’ in terms of the variance between PCs, the sign of the

coefficients in an individual PC and the overall percentage variance we wish to explain.

To choose the variables for our DEA model we take samples of size k from our

dataset. For each sample, we consider each PC in turn. For PC j we first determine

whether the variance is statistically significant compared to the variance of the other

PCs. If it is not, we move on to PC j + 1 without selecting a variable. If it is

significant, we identify whether there are significant positive and negative coefficients.

If there are, we choose two variables, the variable with the largest positive contribution

and the variable with the largest negative contribution. Otherwise, we select a single

variable with the highest absolute value. We then calculate the total percentage

variance explained so far from the sum of the eigenvalues of the so far considered

PCs. If the total desired percentage variance has been met then we stop the variable

selection process, otherwise we continue to PC j + 1. This process is repeated for a

total of r repetitions and for each sample the variables selected from each PC and

the eigenvalue of the corresponding PC are recorded. In this way, the number of

times a variable is selected and the mean eigenvalue of each PC is determined. This

will be explored later in this section when we look at the results of Algorithm 1. In
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Algorithm 1 max(PCj)(min(PCj)) are the PC with the largest(smallest) coefficient.

We note here that in both Algorithm 1 and Algorithm 3 we use samples of size k

where k is less than the total dataset. This is to replicate the acquisition of data. The

data from Rosemere is received in groups of 10-30 patients. Therefore, we want to

derive the sampling distribution of the ‘population’ from a smaller sample to ensure

the variables are being selected sensibly and robustly.
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Algorithm 1: AutoPCA variable selection.

Input : Data=Variables to run PCA on, r=number of samples, k = observed

sample size, α =significance level for the variation in PCj, γ = the

total required % variation to be explained by the PCs

Output: Variables selected, mean eigenvalues

for i=1:r do

Select sample of size k

Variance-Explained=eigenvalue(PCj)

while Variance-Explained < γ do

j=1

if V ar(PCj) > α then

if there are significant +ve and −ve variables then

Choose max(PCj) and min(PCj)

else

Choose max|PCj|

end

j=j+1

Variance-Explained=Variance-Explained + eigenvalue(PCj)

else

j=j+1

Variance-Explained=Variance-Explained + eigenvalue(PCj)

end

end

end

We now discuss how to determine the parameters α, β and γ. Here we refer to

them as significance levels.
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Choosing α

To choose a suitable value for α, the significance level for variation in PC j the ex-

pected variation in the data is required. This can be found by taking repeated samples

of size k to determine the sampling distribution of each PCs’ standard deviation. In

this way, we can determine the most likely distribution of the PCs variance. In the

following let s2
j denote the sample variance and sj the sample standard deviation of

the jth PC. We are looking to find the distribution of the sample standard deviation

for PCj here we denote this as Πj(s). This is done via Algorithm 2. Random samples

of size k are taken and PCA is performed. The standard deviation of each PC is

then calculated and stored. This is repeated r times. This is similar to bootstrapping

methodology however here instead of using 66 samples with replacement we here use

samples of size k where k is the observed sample size. The number of repetitions r

should be chosen to be suitably large such that r samples are unlikely to have many

repeated samples.

Algorithm 2: Deriving the sampling distribution of each PCs’ standard devia-

tion

Input : Data=Variables to run the PCA on, r=number of samples,

k=observed sample size

Output: Πj(s) =Distribution of PCj’s standard deviation

for i=1:r do

Randomly select sample of size k from Data

Run PCA on sample

Calculate the standard deviation sj of each PC and store

end
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Figure 5.11: Distribution of the inputs PCs’ standard deviation, Dataset 2a.

We apply Algorithm 2 to the inputs of Dataset 2a with k = 35 and r = 1, 000, 000.

We note that there are over 2.5× 1024 possible unique samples of size 35 from a

dataset of 87. Figure 5.11 shows the inputs PCs’ standard deviation distributions.

Examination of Figure 5.11 suggests that the first PC (red) has a distribution with

lower mean than the other PCs. We can see the distribution is further to the left than

the other PCs’ distribution. We then apply Algorithm 2 to the outputs of Dataset

2a, the results are shown in Figure 5.12. Here the first PC’s standard deviation

distribution (red) is less different than the other PCs standard deviation distribution

compared to Dataset 2a’s inputs. Although we can see this difference by examining

the plots, we require a variable selection technique that does not require user input or

subjectivity. This will allow the process to be implemented easily and automatically

for different subsets of variables from different clinical protocols. Therefore, once
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Figure 5.12: Distribution of the outputs PCs’ standard deviation, Dataset 2a.

Πj(s), the distribution of the sample standard deviation for PC j,+ has been found

for each PC we must compare the first PC to the remaining PCs to look for a significant

difference. To do this we must first define what we consider as a significant difference.

We use the derived distributions for the PCs’ standard deviation from Algorithm 2

to do this

As r, the number of replications, increases the distribution of the standard devia-

tion becomes normally distributed. For the normal distribution, we expect 99.7% of

the values to be within three standard deviations of the mean. Therefore, if there are

a significant number of observations for PC 1 inside this region for each PCj j 6= 1

we conclude that they are not significantly different, otherwise we conclude they are.

This process is explained in Algorithm 3. Here we assume that the distribution of PC

j’s standard deviation has mean µj and standard deviation σj and roughly follows
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Πj ∼ N (µj, σ
2
j ). Therefore, for each PC j we calculate νj = µj − 3σj and then count

the number of times in our r samples σ1 > νj. If this happens in less than 0.05

of the cases then we conclude PC 1 has a standard deviation significantly different

from PC j. If PC 1 has a standard deviation that is statistically different from all

the remaining PCs then we conclude that we should exclude PC 1 from our variable

selection. However, because we are sampling even if the overall dataset has a signifi-

cantly different s1 sometimes a sample may not have a significantly different value of

s1. Hence, we now define α to be used in Algorithm 1 based on the values of νj,

α = min νj j = 2, . . . , N. (5.1)

Therefore, during the autoPCA process if a sample has a PC 1 with σ1 > α for that

sample a variable will be chosen from the first PC. This will be seen later when the

results of PCA are presented for the inputs in Table 5.10 where a variable is selected

from PC 1 only 3.8% of the time.
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Algorithm 3: Determining the value of α

Input : Πj(s) j = 1, . . . , N : the distribution of each PCs standard deviation

Output: Whether or not to include PC 1

for j=2:N do

Calculate: νj = µj − 3σj

κ=number of times σ1 > αj

if κ
R
< 0.05 then

PC 1’s standard deviation is significantly lower than PC j’s

end

end

if PC 1’s standard deviation is significantly lower for all PC j, j = 2, . . . , N

then

Calculate α from (5.1)

Conclude PC 1 has a standard deviation significantly lower than all other

PCs and so should be excluded from variable selection when σ1 < α.

end

Running Algorithm 3 on the inputs of Dataset 2a results in the conclusion that PC

1 has a standard deviation significantly lower than all other PCs and so the first PC

is excluded from the results. However, for the outputs we conclude that the standard

deviation of the first PC’s eigenvalue is not significantly lower than the other PCs’

eigenvalues standard deviation and so variable selection proceeds always using the

first PC.

Choosing β

Next, we determine a suitable value for β that is used to determine if there are

significant +ve and −ve coefficients. From Table 5.3 it can be seen that some PCs
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split into two groups of variables. Some will have a positive coefficient and others

a negative. For example, PC 2 distinguishes between the bladder variables and the

higher rectal coefficients. We need to ensure that we select one from each group if the

largest of each are significant. If we use similar significance levels to Jolliffe’s (2002)

simple +, − notation then we conclude a significant coefficient is one that is half the

size of the maximum absolute coefficient, so β = 0.5. As a result, when the autoPCA

results are presented in Tables 5.10 and 5.11 the total percentage of variables chosen

from an individual PC j can total over 100%.

Algorithm 4: Determining whether there are significant positive and negative

coefficients.

Input : PC j

Output: Number of variables to keep

for PC j do

if max(PCj) ≥ |min(PCj)| then

if |min(PCj)| > β max(PCj) then

Keep two variables

else

Keep one variable

end

else

if max(PCj) > β |min(PCj)| then

Keep two variables

else

Keep one variable

end

end

end
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Choosing γ

The final significance level to decide for Algorithm 1 is the value for γ, the total per-

centage variance we wish to be explained. This is very subjective and many papers

suggest different cut-off values; a review of them can be found in Peres-Neto et al.

(2005). Jolliffe (2002) also offers a review of different methods concluding that most

use a cut-off level between 70 and 90% of variation explained. As a result, we ex-

plore different values of γ and then select a suitable one that balances the number of

variables selected and the total variance explained. This is important as the variables

will be used in our DEA analysis in Section 5.3 and in DEA the more variables there

are, the less discerning the methodology is.

We now apply the autoPCA variable selection technique as described in Algorithm

1 to Dataset 2a. We use samples of size 35 and repeat the method with r = 1, 000, 000.

The results are presented in Tables 5.10 and 5.11.

The values in Tables 5.10 and 5.11 are the percentage of the time the variable

is selected for each PC. However, this does not then take into account the different

weighting PCs have, this could lead to less significant variables being favoured. To

try to account for this the final column of both Tables is a weighted total, which has

been calculated in the following way.

Let wjq be the number of times variable q was chosen for PC j in the r repetitions.

Note that 0 ≤
∑Q

q=1wjq ≤ 2r where Q is the total number of variables because up to

two variables can be chosen from each PC j. Then to calculate the weighted total for

each variable the following formula is used,∑N
j=1 λjwjq∑N

j=1

∑Q
q=1 λjwjq

,

where λj is PC j’s average eigenvalue and
∑N

j=1

∑Q
q=1 λjwjq is the weighted total

number of variables chosen throughout the r repetitions.

From Table 5.10 for all three values of γ, PC 1 and PC 2 select V Rec
60 and V Bla

70 .
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Variable PC 1 PC 2 PC3 Weighted Variable PC 1 PC 2 PC 3 Weighted

DPTV3
99 6.400 0.321 6.669 4.424 DPTV3

98 1.412 0.121 5.034 1.644

DPTV3
50 0.352 19.681 43.381 14.209 DPTV3

50 0.141 21.128 29.511 12.395

DPTV1−2
99 0.224 60.682 0.410 20.430 DPTV1−2

98 0.066 58.320 0.461 19.962

DPTV1−2
50 1.555 34.699 0.058 12.358 DPTV1−2

50 0.470 38.523 0.038 13.360

DPTV2−3
99 49.840 3.417 0.346 25.880 DPTV2−3

98 61.016 3.032 0.031 32.480

DPTV2−3
50 43.323 3.731 0.002 22.698 DPTV2−3

50 37.426 2.560 0.001 20.158

Table 5.12: Output variables selected from autoPCA for γ = 70, r = 1, 000, 000, k =

35,Dataset 2a. Table shows the percentage of times the corresponding PC was se-

lected. Numbers in bold represent the largest contributions to the PC.

These variables also have the highest weighted total and are consistent with the notion

of selecting one bladder and one rectal constraint.

From Table 5.11 if we wish to select a single variable for each value of γ DPTV 2−3
98

would be selected. If a second variable were required, we would choose DPTV 1−2
99 for

γ = [70, 80] or DPTV 3
50 for γ = 90. However, if we look at the results in Table 5.12

where we only consider D99 or D98 variables we see that DPTV 2−3
99 /DPTV 2−3

98 are again

selected as the most significant and the corresponding PTV 1-2 is the next most

significant.
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As mentioned at the beginning of Section 5.2, Rosemere have now changed their

treatment process such that BM machines are no longer used. Therefore, we repeat

the autoPCA variable selection with dataset 2b. This results in V Rec
60 and V Bla

70 being

chosen as the input variables and DPTV 2−3
98 being selected as the output variable.

5.2.5 Other variable selection techniques

With only 66 plans the autoPCA variable selection method could be considered sub-

jective despite the repeated sampling. Therefore, we wish to apply further variable

selection techniques and compare them to results from the autoPCA. If the variables

selected are similar, we can be more confident in our autoPCA method.

We first apply the method introduced in Section 3.5, where we remove the least

significant variable from the final PC. PCA is then rerun without this variable until

all the variables have been removed. The order to remove the variables in are given

in Table 5.13. The last two variables to be removed and hence, the two that arguably

explain the most variation in the data are V Rec
60 and V Bla

70 . This agrees with the

results from the autoPCA method. The last variable to be removed from the outputs

is DPTV 3
50 . DPTV 3

50 was the second most significant output variable for autoPCA on

Dataset 2a with γ = 90.

In Section 3.5 we introduced the partial covariance technique for variable selection.

Here we apply it to Dataset 2b. From the Rosemere data 10 inputs and 9 outputs

were identified from the clinical protocol. We examine how the variables influence the

percentage variance explained by considering all of their possible combinations. For

DEA it is preferred to have as few variables as possible. We seek the smallest subset of

variables that still describes over 76% of the variation in the data (see Section 5.2.5).

For each variable subset size we select the best subset, i.e. the variables which

explain most of the variation. The results for the input and output data can be seen

in Tables 5.14 and 5.16.
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Removal

order

Input

variable

Removal

order

Output

variable

1 V Bla
65 1 DPTV 3

98

2 V Bla
60 2 DPTV 1−2

99

3 V Rec
65 3 DPTV 2−3

98

4 V Rec
60 4 DPTV 2−3

50

5 V Bla
50 5 DPTV 1−2

50

6 V Rec
40 6 DPTV 3

99

7 V Rec
50 7 DPTV 2−3

99

8 V Rec
30 8 DPTV 1−2

98

9 V Bla
70 9 DPTV 3

50

10 V Rec
70

Table 5.13: Order to remove variables, Dataset 2b.
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Number of

Removed

Variables

Removed

Variables

Percentage

Explained

1 9 99.96

2 8,9 99.88

3 5,8,9 99.75

4 5,7,8,10 99.19

5 4,6,7,8,10 98.52

6 2,4,6,7,8,10 97.12

7 1,3,4,6,7,8,10 92.07

8 1,2,3,5,6,7,9,10 80.05

9 1,2,3,4,5,6,7,9,10 41.12

10 1,2,3,4,5,6,7,8,9,10 0

Table 5.14: Table to show the amount of variation explained for the best subset of

input variables using the partial covariance method on Dataset 2b.

Key: 1- V Rec
30 , 2- V Rec

40 ,3- V Rec
50 , 4- V Rec

60 , 5- V Rec
65 , 6- V Rec

70 , 7- V Bla
50 , 8- V Bla

60 , 9- V Bla
65 ,

10- V Bla
70

From Table 5.14 to explain at least 76% of the variation in the input data two

variables are required. Table 5.15 lists all combinations of two variables that explain

over 76% of the variation in the input data. V Rec
60 and V Bla

60 explain the largest

percentage variance when only two variables are used. Each pair in Table 5.15 consists

of a higher rectal constraint and a bladder constraint which is consistent with our

earlier findings. Here, V Rec
60 and V Bla

70 , the variables selected from our autoPCA explain

78.7% of the variation. The single input that explains the most variation is V Bla
60 .

To explain at least 76% of the output variation we require three variables (Ta-

ble 5.16). There are 22 different combinations of these. The most significant is
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Variables
Percentage

explained

V Rec
60 V Bla

50 79.45

V Rec
60 V Bla

60 80.05

V Rec
60 V Bla

65 79.99

V Rec
60 V Bla

70 78.70

V Rec
65 V Bla

50 77.78

V Rec
65 V Bla

60 78.37

V Rec
65 V Bla

65 78.28

V Rec
65 V Bla

70 76.99

V Rec
70 V Bla

60 76.01

Table 5.15: All combinations of two variables that account for over 76% of the varia-

tion of the inputs for Dataset 2b.

DPTV 3
99 , DPTV 1−2

98 and DPTV 2−3
98 . Alternatively, if we wish to choose the best two out-

put variables that explain 70.01% of the variation DPTV 1−2
99 and DPTV 2−3

98 should be

chosen. The single output variables that explain the most variation are DPTV 3
98 and

DPTV 2−3
98 explaining 42.05% and 41.96% respectively.

5.2.6 Conclusion

To conclude Section 5.2 we consider the results from the variable selection processes

used throughout. A summary of these can be found in Table 5.17.

All three methods in Table 5.17 choose V Rec
60 as an input variable. Removing the

least significant variables and autoPCA selects V Bla
70 , whereas the partial covariance

method selects V Bla
60 . These two variables are highly correlated with Pearson’s cor-

relation coefficient 0.98. From Table 5.15 we see that over 76% of the variation is
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Number of

Removed

Variables

Removed

Variables

Percentage

Explained

1 2 99.83

2 2,4 99.64

3 2,4,8 99.41

4 1,5,7,9 96.76

5 1,4,6,7,9 91.85

6 2,3,4,6,7,9 81.71

7 1,2,3,5,6,7,9 70.01

8 1,3,4,5,6,7,8,9 42.05

9 1,2,3,4,5,6,7,8,9 0

Table 5.16: Table to show the amount of variation explained for the best subset of

output variables using the partial covariance method for Dataset 2b.

Key: 1- DPTV 3
99 , 2- DPTV 3

98 , 3- DPTV 3
50 , 4- DPTV 1−2

99 , 5- DPTV 1−2
98 , 6- DPTV 1−2

50 , 7-

DPTV 2−3
99 , 8- DPTV 2−3

98 , 9- DPTV 2−3
50

explained by using V Bla
70 and V Rec

60 and so choose V Bla
70 and V Rec

60 as our input vari-

ables. This is consistent with our preliminary data analysis in Section 5.2.2, where we

find the data splits into two significant groups, higher rectal constraints and bladder

constraints.

We discussed the choice of variables with specialists at Rosemere and they believe

they are suitable for our analysis. At Rosemere they refer to Michalski et al. (2010) as

a general guideline when considering rectal toxicity. Michalski et al. (2010) conclude

that “most dose-volume parameters significantly associated with late rectal toxicity

consider doses greater than or equal to 60Gy”. This justifies the use of V Rec
60 . Michalski

et al. (2010) also conclude that “Vx has not been found to be significantly associated
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Method
Variables Selected

Inputs Outputs

AutoPCA V Bla
70 V Rec

60 DPTV 2−3
98

Remove least

significant
V Bla

70 V Rec
60 DPTV 3

50

Partial

Covariance
V Bla

60 V Rec
60 DPTV 3

98

Table 5.17: Comparison of variables selected for Auto PCA, removing the least sig-

nificant PC and partial covariance, Dataset 2b.

with differences in rectal toxicity for doses less than or equal to 45 Gy”. This confirms

the idea that V30 and V40 behave differently to the other rectal constraints. They are

therefore not as important in plan assessment. Hence, our decision to use a single

higher rectal constraint as an input variable can be clinically justified. Clinicians also

agreed that V Bla
70 was a sensible choice as it is the main bladder constraint they check

during planning.

The output variables’ results were not as conclusive as the input variables’. This

is partly due to the strong correlation between the D98 and D99 variables. Looking

at Table 5.17, from autoPCA we select DPTV 2−3
98 , from removing the least significant

variables method we select DPTV 3
50 and from the partial covariance method we select

DPTV 3
98 . However, in the partial covariance DPTV 3

98 explains 42.05% and DPTV 2−3
98

explains the next highest percentage with 41.96%. When removing the least significant

PC method is applied DPTV 2−3
98 is the third variable removed. At this point for PC

7 DPTV 2−3
98 and DPTV 2−3

99 have eigenvalues 0.73 and 0.67 respectively. PC 7 itself

explains only 0.151% of the total variation. Therefore, if we remove DPTV 2−3
99 instead

of DPTV 2−3
98 at this stage and proceed with the process, we get the order in Table 5.18.

Now DPTV 2−3
98 is the last remaining variable.
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Removal

order

Output

variable

1 DPTV 3
98

2 DPTV 1−2
99

3 DPTV 2−3
99

4 DPTV 2−3
50

5 DPTV 1−2
50

6 DPTV 3
99

7 DPTV 3
50

8 DPTV 1−2
98

9 DPTV 2−3
98

Table 5.18: Order to remove output variables, Dataset 2b. When DPTV 2−3
99 is removed

third instead of DPTV 2−3
98 . Number one is the first to be removed.

Over the years Rosemere have improved their treatment planning such that it is

now unlikely they will not meet the inner PTV, PTV 3, dose constraints. This can

be seen in Figure 5.2 where the range of the PTV 3 variables is smaller than most

other variables. It stands to reason that because Rosemere prioritise obtaining the

desired dose to PTV 3 and succeed, that a different output is more representative of

the variation in the data. Hence using a PTV 2-3 metric is clinically justified. It is

unsurprising that we have not selected a D50 metric, given that we know D98 and D99

metrics are prioritised by clinicians. Hence we conclude DPTV 2−3
98 is a suitable output

variable to use.

Therefore, the final variables we will use for the DEA models are shown in Table

5.19.
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Final variables chosen

Inputs Output

V Bla
70 V Rec

60 DPTV 2−3
98

Table 5.19: Variables selected for our DEA models.

5.3 Nominal DEA

We now wish to apply DEA to the variables selected in Table 5.19. As Lin et al.

(2013) suggest, we use the envelopment form of an input oriented variable returns to

scale model to evaluate treatment plans. As a result of the PCA analyses in Section

5.2 we deal with the two input measures V Bla
70 and V Rec

60 and the one output measure

DPTV 2−3
98 .

As introduced in Section 3.1, (3.8), if we collect all input data for the 66 plans in

a 2 × 66 matrix X, the output data in a 1 × 66 matrix Y , then the DEA model to

assess treatment plan i is the linear optimisation problem

min
θi, λ

θi (5.2a)

s.t. Y λ− yi ≥ 0 (5.2b)

Xλ− θixi ≤ 0 (5.2c)

eTλ = 1 (5.2d)

λ, θ ≥ 0. (5.2e)

In this model, e is a vector of ones of length 66, xi and yi are the ith columns of

matrices X and Y respectively. θi is a scalar decision variable which represents the

efficiency score of treatment plan i and λ is a decision variable of dimension 66.

The linear optimisation problem (5.2) attempts to identify a data point (x, y) =

(X, Y )Tλ in the set spanned by the OAR and PTV data given by the 66 existing plans
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and defined by the constraints (5.2b) to (5.2e) that has output DPTV 2−3
98 higher than

or equal to treatment plan i, and at the same time inputs V Bla
70 and V Rec

60 lower than

or equal to those of plan i. Among all such data points, the objective function (5.2a)

together with constraint (5.2c) makes sure that the point with smallest input data is

selected. If the optimal value θ∗i is less than one, plan (DMU) i is called inefficient and

the optimal solution of the DEA model provides evidence that it should be possible

to scale down the input vector xi to θ∗i xi while maintaining the same output level. In

other words, the data of the 66 plans considered in the study suggest that treatment

plan i could be improved by reducing the percentage volume of the bladder and/or

rectum receiving 70/60 Gy of radiation dose without also reducing the dose delivered

to 98% of PTV 2-3. Moreover, the nonzero entries in an optimal vector λ∗ indicate

from the data of which plans this suggestion is derived. We note that for all inefficient

plans, the corresponding ith entry in λ∗ must be zero. Hence, plans with nonzero

entries in λi are termed peers in DEA. If, on the other hand, θ∗i = 1 then the data

set does not contain evidence that treatment plan i could be improved and plan i is

considered efficient.

We note here the use of ratio data in our DEA model arising from the scaling of

DPTV 2−3
98 as detailed in Section 5.2.3. There is much discussion in the DEA literature

about the validity of DEA models when ratio variables are used. This arises from oc-

currences of the convexity constraints being broken. Hollingsworth and Smith (2003)

note that care must be taken when ratio data are used to ensure that comparison

between DMUs is still valid. Emrouznejad and Amin (2009) suggest two methods for

adjusting the DEA model to allow for ratio variables. Solution one involves treating

the numerator of the variable as an input and the denominator as an output. However

this is not suitable for evaluating treatment plans as it would result in the 37 session

plans being favoured over the 20 session plans as the 37 session plans have a higher

DPTV 2−3
98 value. Additionally, the prescribed dose will be treated as an input variable,
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however, we are not trying to reduce the prescribed dose, this is fixed and we cannot

change it. Therefore this is not a meaningful input variable as defined in Definition

3.1.3. The second solution Emrouznejad and Amin (2009) suggest is using the ratio

variable as a convex combination of the numerator to the denominator. This results

in replacing constraint (5.2b) with

I∑
i=1

λidi − y0

I∑
i=1

λipi,

where y0 is the scaled output value for the plan 0 being evaluated, di is the original

unscaled dose for plan i and pi is the corresponding prescribed dose. However this

again puts undue emphasis on the value of the prescribed dose, favouring a smaller

prescribed dose, hence favouring the 20 session plans. Therefore we believe here that

neither of these solutions are suitable for our radiotherapy application. However, the

variable yi, the proportion of the prescribed dose achieved for plan i is not a standard

DEA ratio variable. Unlike other ratio variables discussed in the DEA literature we

only have a single ratio variable not multiple ones, consequently,interaction of ratio

variables and their meaning is not a concern. In addition, we have a fixed known

denominator that can be one of two values. This is because, the denominator values

occur from the clinical application of two clinically comparable treatments. Therefore,

we argue that the DPTV 2−3
98 is not a ratio variable in the standard DEA sense and

hence, we conclude that using the output variable y in constraint (5.2b) as a standard

output variable is sensible here. This ensures that the constraints we include in our

model and the conclusions we draw from them are clinically as well as mathematically

relevant.

In order to evaluate the quality of all treatment plans, the linear optimisation

problem (5.2) needs to be solved once for each plan. Table 5.20 shows the efficiency

score θ∗i and an optimal solution vector λ∗ for each of the 66 treatment plans. After

running DEA, we find that the five plans 36, 43, 45, 60 and 74 are deemed efficient.
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Plan
Efficiency

score θi

Optimal values λij

for efficient plans j =

36 43 45 60 74

30 0.517 0.65 0 0.35 0 0

31 0.766 0.63 0 0 0.37 0

32 0.720 0.22 0 0 0.78 0

33 0.530 1 0 0 0 0

34 0.781 0 0.33 0.33 0 0.34

35 0.440 0.50 0 0 0.50 0

36 1 1 0 0 0 0

37 0.487 1 0 0 0 0

38 0.888 0.78 0 0 0.22 0

41 0.386 0.94 0 0.06 0 0

42 0.655 0 0.53 0.15 0 0.32

43 1 0 1 0 0 0

44 0.414 0 0 0 0 1

45 1 0 0 1 0 0

46 0.916 0.40 0 0.60 0 0

47 0.604 0 0 0 0 1

48 0.754 0 0 0 0 1

49 0.580 0.59 0 0.41 0 0

50 0.414 0.72 0 0.26 0 0.02

51 0.671 0.70 0 0.10 0 0.20

52 0.418 0.22 0 0 0.78 0

53 0.656 0.63 0 0.37 0 0

54 0.538 0.85 0 0.15 0 0
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Plan
Efficiency

score θi

Optimal values λij

for efficient plans j =

36 43 45 60 74

55 0.472 0.50 0 0 0.50 0

56 0.584 0.63 0 0 0.37 0

57 0.424 0.22 0 0 0.78 0

58 0.831 0.17 0 0.83 0 0

59 0.680 0.67 0 0 0.33 0

60 1 0 0 0 1 0

61 0.863 0.19 0 0.44 0 0.37

62 0.713 0.37 0 0 0.42 0.21

63 0.302 1 0 0 0 0

64 0.689 0.77 0 0 0.23 0

65 0.374 0.67 0 0 0.33 0

66 0.348 0.52 0 0 0.04 0.44

67 0.843 0.69 0 0.29 0 0.02

68 0.790 0.22 0 0 0.78 0

70 0.519 1 0 0 0 0

71 0.496 1 0 0 0 0

72 0.863 0.04 0 0.27 0 0.69

73 0.584 0.42 0 0.24 0 0.34

74 1 0 0 0 0 1

75 0.536 0.77 0 0 0.23 0

76 0.578 0.91 0 0 0.09 0

77 0.800 0.54 0 0.13 0 0.33

78 0.508 0.91 0 0 0.09 0
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Plan
Efficiency

score θi

Optimal values λij

for efficient plans j =

36 43 45 60 74

80 0.581 0.75 0 0.25 0 0

81 0.491 0.86 0 0.14 0 0

82 0.678 0.62 0 0.36 0 0.01

83 0.388 0.22 0 0 0.78 0

84 0.613 1 0 0 0 0

85 0.493 0.95 0 0.05 0 0

86 0.446 0.92 0 0.06 0 0.03

87 0.607 0.45 0 0.55 0 0

88 0.935 0.10 0 0.90 0 0

89 0.407 1 0 0 0 0

90 0.511 0.56 0 0.44 0 0

91 0.486 0.87 0 0.13 0 0

92 0.919 0 0 1 0 0

93 0.749 0.36 0 0 0.64 0

94 0.710 0 0 0 0 1

95 0.764 0.50 0 0 0.50 0

96 0.687 0.34 0 0.63 0 0.02

97 0.403 0.97 0 0.03 0 0

98 0.903 0.44 0 0.56 0 0

99 0.423 0.77 0 0 0.23 0

Table 5.20: Nominal DEA results, Dataset 2b.



CHAPTER 5. DEA IN RADIOTHERAPY 201

Observe that for an efficient plan i, λ∗ is a unit vector with the one in position i.

For each inefficient plan we obtain a list of its peer efficient plans. These peers define

the target input values θ∗i xi for each inefficient plan i. If the plan can be modified

in a way that these target values are achieved without deteriorating the dose to the

tumour, i.e. the DPTV 2−3
98 value, the plan would become efficient. Hence, peers and

target values provide suggestions for improving the plan. For example from Table 5.20

we can see that for plan 30 the data suggest that (via a combination of the data of

plans 36 and 45) there might potentially exist a better plan. This plan would achieve

a DPTV 2−3
98 value not worse than that of plan 30 and it would achieve this despite a

42 % reduction in its V Bla
70 and V Rec

60 values, i.e. 0.65x36 + 0.35x45 ≤ 0.52x30.

Peers also allow us to check the reliability of the efficient plans. If an efficient plan

is only a peer to itself this means it is only efficient because it has the lowest value

for one of the inputs. From Table 5.21 we can see that every efficient plan is a peer

to at least one inefficient plan so we know that they are all strongly efficient.

We can also see that plan 36 is the plan most often featured as a peer of an

inefficient plan: it is a peer to 55 inefficient plans, therefore it is not a peer to only

6 of the 61 inefficient plans. We note that plan 36 is the plan with the lowest V Rec
60 .

The number of times a plan features as a peer gives an indication of which plans are

particularly good ones. This alludes to the idea of gold standard plans defined relative

to the specific hospital. This information is summarised in Table 5.21.

5.3.1 Bladder volume as an environmental variable

In Section 3.1.5 we introduced the use of environmental variables in DEA. We now

consider the use of them for the radiotherapy application. In Table 5.2 we identified six

different possible volume variables. In Figure 5.4 we noted that the largest variability

in the volume of a structure occurred in the bladder. We suggested that this may be

a suitable variable to consider as an environmental variable in our DEA models.



CHAPTER 5. DEA IN RADIOTHERAPY 202

Efficient

plan i

Number of plans

i is a peer to

36 55

43 3

45 30

60 22

74 19

Table 5.21: Nominal DEA results peer frequency.

For the environmental variable selection we consulted with clinicians at Rosemere

to advise us on suitable variables. We relied more on their advice then analytic

methods for choosing our variables. In addition, the volumes are somewhat accounted

for by the nature of the Vx and Dx constraints. These are metrics based on the % of

the volume of an OAR receiving x Gy or the dose received by x% of the volume of

a PTV respectively. After consulting with clinicians at Rosemere we concluded that

in addition to the variables selected in Table 5.19, the total bladder volume should

be considered, (for more details see Section 2.1.2). This is a measure that has an

influence on how well a treatment can meet the constraints set out in the clinical

protocol: a larger bladder volume means that a smaller percentage of the bladder

volume is in close proximity to the prostate. Hence, a larger bladder volume makes it

easier to achieve low values of V Bla
70 for the same DPTV 2−3

98 value or vice versa, a higher

DPTV 2−3
98 value for the same V Bla

70 value. Therefore, treatment plans incorporating a

small bladder volume should not be compared to ones with a large bladder volume,

since they are probably outperformed by the latter. In DEA terminology, bladder

volume is an environmental variable, see Section 3.1.5. Due to the effect of the

environmental variable on treatment plan quality, it can be incorporated in the DEA

model in a similar way as an input variable. We add the environmental data in a
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1× 66 matrix Z to the DEA model (5.2) using the following constraint

Zλ− zi ≤ 0. (5.3)

In this way, (5.2) together with (5.3) attempts to identify a data point (x, y, z) =

(X, Y, Z)Tλ in the set spanned by the OAR, PTV, and volume data given by the 66

existing plans. Constraint (5.3) ensures that this data point would also represent a

plan with bladder volume at most as big as that of plan i. Notice that θi is omitted

in constraint (5.3) so that it plays no direct role in the determination of the optimal

value of θi.

We apply the DEA model (5.2) together with the bladder volume constraint (5.3)

to Dataset 2b. The results are in Table 5.22.

In Table 5.22 we note that there are now ten efficient plans as opposed to five in

Table 5.20. We see that when V olBla is included as a environmental variable plans 37

and 48 are no longer efficient and have peers 36 and 38 and 74 and 94 respectively.

Similarly, plans 31, 45, 92 and 98 are now deemed efficient. We note here that plan

38 has the smallest V olBla and plan 72 has the largest. This means plan 38 is efficient

because it cannot be compared to any other plan in Dataset 2b, although it was

efficient when V olBla was not a variable so we do not need to be concerned by this.

Similarly, plan 72 can be compared to all the plans in Dataset 2b and we see here it

is not deemed efficient.
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Plan
Efficiency

score θi

Optimal values λij for efficient plans j =

31 36 38 43 45 60 74 92 94 98

30 0.517 0 0.65 0 0 0.35 0 0 0 0 0

31 1 1 0 0 0 0 0 0 0 0 0

32 0.890 0 0 0.33 0 0 0 0.26 0 0.41 0

33 0.542 0 0.86 0.14 0 0 0 0 0 0 0

34 0.942 0 0 0 0.46 0.06 0 0.48 0 0 0

35 0.550 0.74 0 0 0 0 0 0.24 0 0 0.02

36 1 0 1 0 0 0 0 0 0 0 0

37 0.552 0 0.18 0.82 0 0 0 0 0 0 0

38 1 0 0 1 0 0 0 0 0 0 0

41 0.386 0 0.94 0 0 0.06 0 0 0 0 0

42 0.655 0 0 0 0.53 0.15 0 0.32 0 0 0

43 1 0 0 0 1 0 0 0 0 0 0

44 0.676 0 0 0 0 0 0 0.14 0 0.86 0

45 1 0 0 0 0 1 0 0 0 0 0

46 0.916 0 0.40 0 0 0.60 0 0 0 0 0

47 0.926 0 0 0 0 0 0 0.34 0 0.66 0

48 0.891 0 0 0 0 0 0 0.56 0 0.44 0

49 0.580 0 0.49 0 0 0.39 0 0.12 0 0 0

50 0.414 0 0.72 0 0 0.26 0 0.02 0 0 0

51 0.671 0 0.70 0 0 0.10 0 0.20 0 0 0

52 0.519 0 0 0.33 0 0 0 0.25 0 0.42 0

53 0.656 0 0.63 0 0 0.37 0 0 0 0 0

54 0.539 0 0.16 0 0 0.06 0 0.77 0 0 0

55 0.541 0.35 0.12 0 0 0 0 0.53 0 0 0

56 0.757 0.88 0 0 0 0 0 0.11 0 0 0.01

57 0.595 0.23 0 0 0 0 0 0.31 0 0.22 0.24
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Plan
Efficiency

score θi

Optimal values λij for efficient plans j =

31 36 38 43 45 60 74 92 94 98

58 0.831 0 0.17 0 0 0.83 0 0 0 0 0

59 0.703 0 0.46 0.27 0 0 0.27 0 0 0 0

60 1 0 0 0 0 0 1 0 0 0 0

61 0.876 0 0 0 0 0.35 0 0.52 0 0 0.13

62 0.713 0 0.37 0 0 0 0.42 0.21 0 0 0

63 0.400 0.83 0.08 0.09 0 0 0 0 0 0 0

64 0.689 0 0.77 0 0 0 0.23 0 0 0 0

65 0.408 0.13 0.35 0 0 0 0 0.52 0 0 0

66 0.360 0.04 0.37 0 0 0 0 0.59 0 0 0

67 0.843 0 0.69 0 0 0.29 0 0.02 0 0 0

68 0.790 0 0.22 0 0 0 0.78 0 0 0 0

70 0.519 0 1 0 0 0 0 0 0 0 0

71 0.496 0 1 0 0 0 0 0 0 0 0

72 0.863 0 0.04 0 0 0.27 0 0.69 0 0 0

73 0.775 0.09 0 0 0 0 0 0.06 0 0.14 0.71

74 1 0 0 0 0 0 0 1 0 0 0

75 0.683 0.50 0 0 0 0 0 0.46 0 0 0.04

76 0.716 0.65 0.30 0 0 0 0 0.04 0 0 0

77 0.800 0 0.52 0 0 0.13 0 0.35 0 0 0

78 0.638 0.68 0.23 0.09 0 0 0 0 0 0 0

80 0.597 0 0 0 0 0.03 0 0.73 0 0 0.24

81 0.491 0 0.86 0 0 0.14 0 0 0 0 0

82 0.717 0 0 0 0 0.01 0 0.47 0 0 0.52

83 0.392 0 0.16 0.08 0 0 0.76 0 0 0 0

84 0.859 0.58 0 0 0 0 0 0.31 0 0 0.11

85 0.493 0 0.95 0 0 0.05 0 0 0 0 0
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Plan
Efficiency

score θi

Optimal values λij for efficient plans j =

31 36 38 43 45 60 74 92 94 98

86 0.446 0 0.92 0 0 0.06 0 0.03 0 0 0

87 0.607 0 0.34 0 0 0.53 0 0.13 0 0 0

88 0.990 0 0 0 0 0.41 0 0 0.37 0 0.22

89 0.507 0.55 0.23 0 0 0 0 0.22 0 0 0

90 0.519 0 0 0 0 0.30 0 0.58 0 0 0.12

91 0.486 0 0.87 0 0 0.13 0 0 0 0 0

92 1 0 0 0 0 0 0 0 1 0 0

93 0.749 0 0.36 0 0 0 0.64 0 0 0 0

94 1 0 0 0 0 0 0 0 0 1 0

95 0.764 0 0.50 0 0 0 0.50 0 0 0 0

96 0.731 0 0 0 0 0.29 0 0.11 0 0 0.60

97 0.403 0 0.92 0 0 0.03 0 0.06 0 0 0

98 1 0 0 0 0 0 0 0 0 0 1

99 0.942 0 0 0.72 0 0 0 0 0 0.28 0

Table 5.22: Nominal DEA results including V olBla, Dataset 2b.
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Efficient

plan i

Number of plans

i is a peer to

31 14

36 37

38 10

43 3

45 27

60 8

74 35

92 2

94 9

98 13

Table 5.23: Nominal DEA results peer frequency including V olBla.

In this chapter we have extended the work of Lin et al. (2013) to apply DEA to

evaluate the quality of radiotherapy treatment plans for prostate cancer. From the

clinical protocol used at Rosemere, we have extracted 25 variables that are relevant

to the decision of whether or not a plan can be approved for treatment or should be

improved via replanning. In Section 5.2, initial data analyses highlighted structural

differences related to two different treatment regimes used at Rosemere. Once these

structural differences were accounted for, we developed a method to select suitable

variables to be used in the DEA model. In Section 5.3 we used our DEA model

to evaluate treatment plan quality using the variables identified by our autoPCA

method. This was done both with and without considering the bladder volume as an

environmental variable. Next we consider the effect of uncertainty on these results.



Chapter 6

Uncertainty in radiotherapy

It is well known in radiation oncology that the outcomes of radiotherapy differ from

the plans, i.e. the doses delivered to structures are usually (slightly) different from

those calculated during treatment planning. This uncertainty in predicting radiation

dose delivered to PTVs and OARs has many sources and is researched well in the

clinical literature, see Section 2.3. This discussion may cast doubt on the DEA based

evaluation of treatment plans in Section 5.3 and reported in Tables 5.20 and 5.22.

Here we assumed the planning data to be exact and classified treatment plans as

efficient or inefficient based on these data. However, it is likely that the values for the

measures listed in Table 5.1 are imprecise. Hence, it is also possible that an inefficient

plan does actually perform well in practice. Thus, we need to take uncertainty into

account when evaluating the quality of treatment plans. In the rest of this section we

explore this opportunity to leverage uncertainty in order to identify treatment plans

that are only considered inefficient due to the precise computation of plan data but

that would perform well when considering the uncertainty.

We therefore assume that the measures listed in Table 5.19 are in fact realisations

from a range, called an uncertainty set. We consider how uncertainties in treatment

planning affect treatment quality as measured by the efficiency score from DEA.

208
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We must first determine a suitable amount of uncertainty, i.e. how uncertain

the data are. In radiotherapy treatment planning the standard assumption is that

uncertainty is proportional to the dose. The international commission on radiation

units and measurements conclude that the available evidence for certain types of

tumour suggests an accuracy of +
−5% is required (Andreo et al., 2004). Combining

the standard uncertainty value for dose determination and the uncertainty associated

with Pinnacle for multileaf collimators, Henŕıquez and Castrillón (2008) suggest an

uncertainty of 3.6% is used. Therefore, we wish to consider uncertainty in the range

of +
−5% with a larger focus on the range +

−3.6%.

To model the uncertainty in the data we must consider the possible changes to

each variable. The amount of uncertainty we consider here is denoted by u. The

two inputs selected in Table 5.19 are Vx metrics. They are the percentage of the

OAR receiving x Gy or more. Therefore, to consider a change in the data of +
−3.6%

we require u = 3.6, where this is an absolute value. The output from Table 5.19 is

DPTV 2−3
98 , this is the dose received by 98% of the PTV 2-3. To account for 20 or 37

fractions we divided the DPTV 2−3
98 by the prescribed dose, here 54.60/67.34 Gy for

20/37 fractions. Therefore, our output, DPTV 2−3
98 is now a measure of the proportion

of the prescribed dose achieved by 98% of the volume and we require u = 0.036 to

model uncertainty of 3.6%. However, DEA is not affected by scaling and hence we

can multiply the DPTV 2−3
98 by 100 and in this way using a value of u = 3.6 will be

equivalent to a 3.6% change for both the inputs and outputs.

Therefore, by using an absolute value of u = 3.6 in our simulations and robust

DEA model we are consistent with the notion of an uncertainty interval in Definition

4.0.3.

Note that we do not consider uncertainty for total bladder volume. Instead, we

consider that the volume of the bladder of a patient has the same effect on treatment

plan quality for each realisation of the data.
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In this chapter, we consider two methods for handling uncertainty. In Section

4.3.1 we concluded that when the value of uncertainty is not fixed the uDEA model

is a non-convex problem. Therefore, alternative techniques such as simulation are

required. In Section 6.1 we simulate changes in the data and calculate the efficiency

score for each set to find the maximum possible efficiency score a DMU can obtain

as done in Stubington et al. (2019). In Section 4.2 we concluded that for fixed values

of uncertainty the overall best improvement in efficiency score is obtained by solving

the robust DEA model (4.19). In Section 6.2 we apply this model for fixed values of

u. In Section 6.3 we then compare the two methods to determine whether or not the

results are the same and apply uDEA to the small subset of the data to see how this

compares. To conclude, in Section 6.4, we identify a set of plans for Preston to replan

and see if they have improved.

6.1 Simulation

First, we use simulation to explore the effect of uncertain data on the DEA results.

To do this we assume that each OAR and PTV variable v can take any value in the

interval [v − ε, v + ε], where ε is uniformly distributed in [0, u]. Then we can sample

from these distributions and simulate uncertainty in the treatment plans. To begin

with we consider u ∈ {0.3, 0.6, . . . , 3.6, 5}. For each plan i and each value of u, we

simulate the DEA data 10,000 times, i.e. we randomly generate the entries of X and Y

uniformly within an interval of the plan value +/−u and compute an efficiency score

every time. We record the largest efficiency score among the 10,000 repetitions, this is

because we are interested in the capability of the DMU. The results are summarised

in Table 6.1.



CHAPTER 6. UNCERTAINTY IN RADIOTHERAPY 211

Plan
Uncertainty

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 5

30 0.52 0.55 0.57 0.59 0.62 0.67 0.71 0.78 0.87 1 1 1 1 1

31 0.77 0.95 1 1 1 1 1 1 1 1 1 1 1 1

32 0.72 1 1 1 1 1 1 1 1 1 1 1 1 1

33 0.53 0.56 0.62 0.73 0.77 0.79 0.85 0.93 1 1 1 1 1 1

34 0.78 1 1 1 1 1 1 1 1 1 1 1 1 1

35 0.44 0.59 1 1 1 1 1 1 1 1 1 1 1 1

36 1 1 1 1 1 1 1 1 1 1 1 1 1 1

37 0.49 0.51 0.57 0.61 0.68 0.74 0.81 0.88 0.93 0.98 1 1 1 1

38 0.89 1 1 1 1 1 1 1 1 1 1 1 1 1

41 0.39 0.41 0.51 0.63 0.72 0.76 0.80 1 1 1 1 1 1 1

42 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1

43 1 1 1 1 1 1 1 1 1 1 1 1 1 1

44 0.41 1 1 1 1 1 1 1 1 1 1 1 1 1

45 1 1 1 1 1 1 1 1 1 1 1 1 1 1

46 0.92 1 1 1 1 1 1 1 1 1 1 1 1 1

47 0.60 1 1 1 1 1 1 1 1 1 1 1 1 1

48 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1

49 0.58 0.62 0.81 1 1 1 1 1 1 1 1 1 1 1

50 0.41 0.44 0.63 1 1 1 1 1 1 1 1 1 1 1

51 0.67 0.76 1 1 1 1 1 1 1 1 1 1 1 1

52 0.42 1 1 1 1 1 1 1 1 1 1 1 1 1

53 0.66 0.70 1 1 1 1 1 1 1 1 1 1 1 1

54 0.54 0.58 0.60 0.65 0.72 0.82 0.88 0.92 0.97 1 1 1 1 1

55 0.47 0.64 0.94 1 1 1 1 1 1 1 1 1 1 1

56 0.58 0.72 1 1 1 1 1 1 1 1 1 1 1 1

57 0.42 1 1 1 1 1 1 1 1 1 1 1 1 1
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Plan
Uncertainty

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 5

58 0.83 0.90 1 1 1 1 1 1 1 1 1 1 1 1

59 0.68 0.82 1 1 1 1 1 1 1 1 1 1 1 1

60 1 1 1 1 1 1 1 1 1 1 1 1 1 1

61 0.86 1 1 1 1 1 1 1 1 1 1 1 1 1

62 0.71 1 1 1 1 1 1 1 1 1 1 1 1 1

63 0.30 0.34 0.40 0.48 0.57 0.66 0.72 1 1 1 1 1 1 1

64 0.69 0.80 1 1 1 1 1 1 1 1 1 1 1 1

65 0.37 0.47 0.60 1 1 1 1 1 1 1 1 1 1 1

66 0.35 0.52 1 1 1 1 1 1 1 1 1 1 1 1

67 0.84 0.91 1 1 1 1 1 1 1 1 1 1 1 1

68 0.79 1 1 1 1 1 1 1 1 1 1 1 1 1

70 0.52 0.59 0.70 0.80 0.91 0.98 1 1 1 1 1 1 1 1

71 0.50 0.54 0.62 0.72 0.83 0.94 0.98 1 1 1 1 1 1 1

72 0.86 1 1 1 1 1 1 1 1 1 1 1 1 1

73 0.58 0.81 1 1 1 1 1 1 1 1 1 1 1 1

74 1 1 1 1 1 1 1 1 1 1 1 1 1 1

75 0.54 0.64 0.87 1 1 1 1 1 1 1 1 1 1 1

76 0.58 0.66 0.79 0.90 1 1 1 1 1 1 1 1 1 1

77 0.80 1 1 1 1 1 1 1 1 1 1 1 1 1

78 0.51 0.58 0.71 0.85 0.98 1 1 1 1 1 1 1 1 1

80 0.58 0.62 0.82 1 1 1 1 1 1 1 1 1 1 1

81 0.49 0.52 0.56 0.65 0.86 1 1 1 1 1 1 1 1 1

82 0.68 0.74 1 1 1 1 1 1 1 1 1 1 1 1

83 0.39 1 1 1 1 1 1 1 1 1 1 1 1 1

84 0.61 0.70 0.85 0.98 1 1 1 1 1 1 1 1 1 1

85 0.49 0.53 0.56 0.65 0.72 0.78 0.85 0.90 0.93 0.96 0.99 1 1 1
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Plan
Uncertainty

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 5

86 0.45 0.47 0.67 0.81 1 1 1 1 1 1 1 1 1 1

87 0.61 0.68 1 1 1 1 1 1 1 1 1 1 1 1

88 0.94 1 1 1 1 1 1 1 1 1 1 1 1 1

89 0.41 0.43 0.45 0.49 0.54 0.57 0.61 0.64 0.67 0.71 0.75 0.78 0.86 1

90 0.51 0.54 0.73 0.87 1 1 1 1 1 1 1 1 1 1

91 0.49 0.51 0.54 0.57 0.62 0.68 0.73 0.79 0.85 0.90 0.95 1 1 1

92 0.92 1 1 1 1 1 1 1 1 1 1 1 1 1

93 0.75 1 1 1 1 1 1 1 1 1 1 1 1 1

94 0.71 1 1 1 1 1 1 1 1 1 1 1 1 1

95 0.76 1 1 1 1 1 1 1 1 1 1 1 1 1

96 0.69 1 1 1 1 1 1 1 1 1 1 1 1 1

97 0.40 0.43 0.45 0.49 0.55 0.60 0.67 0.72 0.77 0.81 0.85 0.89 0.92 1

98 0.90 1 1 1 1 1 1 1 1 1 1 1 1 1

99 0.42 0.50 0.64 0.89 1 1 1 1 1 1 1 1 1 1

Table 6.1: Maximum efficiency score after 10,000 repetitions, u ∈ {0.3, 0.6, . . . , 3.6, 5}.

If an inefficient plan from Table 5.20 can be seen as efficient for some u greater than

zero in Table 6.1 this suggests that the plan was previously deemed inefficient due to the

inherent uncertainty in the data, rather than being a bad treatment plan. In Table 6.1 we

see that with only a very small amount of uncertainty, u = 0.3, 28 plans are efficient and

when we have u = 3.6 this increases to 64 plans being efficient, i.e. only two are classified

as inefficient. When we have u = 5 all the plans are efficient, which is in-line with clinical

plans needing to be within 5% uncertainty. In Table 6.1 the five plans that require the most

uncertainty are plans 37, 85, 89, 91 and 97 with u = 3, 3.3, 5, 3.3 and u = 5 respectively.

Due to the structure of the data set, it is by no means guaranteed that an inefficient plan

with an originally high efficiency score becomes efficient when considering a small amount
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of uncertainty. For example, the efficiency score of plan 91, was θ∗0 = 0.49 but requires a

value of u = 3.3 to be deemed efficient. In contrast, plan 57 has a lower efficiency score

of θ∗0 = 0.42 to begin with but with u = 0.3 becomes efficient. On the other hand, a plan

that has a low efficiency score for certain data and does not reach an efficiency score of one,

even with a large amount of uncertainty, is a good candidate for further improvement as it’s

perceived inefficiency is not due to uncertainty. Hence, improved plan quality by replanning

this treatment is likely to be beneficial. We note that the efficiency scores in Table 6.1 are

consistent with the theoretical finding of Ehrgott et al. (2018) that efficiency scores must

increase with increasing uncertainty.

The efficiency scores for the different values of u in Table 6.1 are for 10,000 repetitions

of the DEA model. In Table 6.2 we compare the number of efficient DMUs at each value

of u with the number of repetitions, r ∈ {1, 10, 100, 1000, 10,000, } in the simulation. We

see that for small values of r, r ∈ {1, 10} the number of efficient plans does not necessarily

increase as the uncertainty increases. For example, with r = 10 and u = 2.1 there are

26 efficient plans but when u = 3.6 there are only 24 efficient plans. Note here that the

reduction in the number of efficient plans is not because a plan stops being efficient when

more uncertainty is introduced but because we have a small number of repetitions. This

means the realisation of the data for an earlier plan resulted in a plan being deemed efficient

but a different realisation was selected when there was more uncertainty that rendered the

plan inefficient. We see that as the number of repetitions increases this does not occur. This

demonstrates the need for a suitably large value of r. As expected there is a large difference

between the number of plans that are efficient when r = 1 and r = 10,000. For example,

for u = 3.6 we go from 9 to 64 efficient plans.

There are an infinite number of scenarios that can occur when we simulate the un-

certainty in this manner. Therefore, we would need an infinite number of repetitions to

guarantee that we have considered all scenarios. However, by increasing the value of r until

the results begin to converge we can be more confident of our results.
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Repetitions
Uncertainty

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 5

1 6 6 6 7 8 8 8 8 9 9 10 9 10

10 12 16 19 21 22 24 26 25 24 24 24 24 29

100 18 27 33 35 36 38 40 44 46 48 48 49 55

1,000 23 32 37 42 48 51 53 55 56 58 60 60 64

10,000 28 41 47 52 54 55 58 59 61 62 63 64 66

Table 6.2: Number of efficient DMUs for u ∈ {0.3, 0.6, . . . , 3.6, 5} for increasing num-

ber of replications.

6.2 Fixed uncertainty: Robust DEA

In Section 4.2 we concluded that for fixed values of uncertainty the overall best improvement

in efficiency score is obtained by solving model (4.19). We wish to determine whether the

plans in Dataset 2b are efficient for the same values of u used in Section 6.1. Solving model

(4.19) gives the results in Table 6.3. With u = 0.6 there are only seven plans that are

inefficient, all of which are efficient at u = 0.9. Therefore, the results for u > 0.9 have been

omitted from Table 6.3. The plans that appear to be very inefficient in the nominal DEA

may require less uncertainty to be deemed efficient, similar to the simulation results. For

example, plan 66 has θ∗0 = 0.35 when u = 0 but is efficient when u = 0.3, whereas, plan 58

has θ∗0 = 0.83 at u = 0 but is not efficient until u = 0.6. This is because different facets of the

efficient frontier have different rates at which their inputs change with their outputs. This

can be easily seen in the case of a single input and output in Theorem 4.3.5. Here as the

rate at which the outputs change compared to the inputs on the efficient frontier decreases,

the required uncertainty for an inefficient DMU to become efficient when compared to that

facet decreases. This can also be caused by plans being projected to sections of the efficient

frontier that are weakly efficient. We note that the amount of uncertainty needed is not

monotonic with the original efficiency score. To find the value of u to two decimal places

required for each plan to become efficient we calculate the efficiency scores from the robust
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DEA model (4.19) for u ∈ {0, 0.01, . . . , 0.9} to determine for what value of u each plan first

becomes efficient. The results are in Table 6.4. There are six plans that require u > 0.65 to

become efficient, they are plans 30, 37, 85, 89, 91 and 97. These six plans include the five

least efficient plans from the simulation results in Table 6.1. Unlike the simulation, for each

value of u these results are very fast to obtain as each requires a single LP to be solved for

each DMU as opposed to r LPs for each DMU in the simulation.

6.3 Comparison

From our simulation results with r = 10, 000 and u = 0.9, only 47 plans are efficient.

However, after applying robust DEA to Dataset 2b we find that all the plans are efficient

when u ≤ 0.9. We wish to determine whether this is because we have simply not run

the simulation for large enough r, or if the results do actually differ. We now repeat the

simulation for r ∈ {100,000, 200,000, 400,000} to see if the number of efficient DMUs

increases. After 100,000 there are 51 plans that are efficient, 200,000 52 plans, 400,000 53

plans. Therefore, with a large enough number of repetitions we believe the results of the

simulation and robust DEA are consistent. The large number of replications required for the

plans to become efficient with u = 0.9 show that these are the plans that may not become

efficient with small amounts of uncertainty. Therefore, they may be more likely to benefit

from replanning.

We now test the hypothesis that with enough repetitions, the robust DEA results agree

with the simulation by using a small subset of the data with a single input and output so

that we can also calculate the exact amount of uncertainty required using methodology from

Section 4.3.
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Plan
Uncertainty

Plan
Uncertainty Plan Uncertainty

0 0.3 0.6 0.9 0 0.3 0.6 0.9 plan 0 0.3 0.6 0.9

30 0.52 0.56 0.60 1 54 0.54 0.58 1 1 77 0.80 1 1 1

31 0.77 1 1 1 55 0.47 1 1 1 78 0.51 0.60 1 1

32 0.72 1 1 1 56 0.58 1 1 1 80 0.58 0.71 1 1

33 0.53 0.58 0.82 1 57 0.42 1 1 1 81 0.49 0.53 1 1

34 0.78 1 1 1 58 0.83 0.91 1 1 82 0.68 1 1 1

35 0.44 1 1 1 59 0.68 1 1 1 83 0.39 1 1 1

36 1 1 1 1 60 1 1 1 1 84 0.61 0.72 1 1

37 0.49 0.52 0.65 1 61 0.86 1 1 1 85 0.49 0.53 0.86 1

38 0.89 1 1 1 62 0.71 1 1 1 86 0.45 0.49 1 1

41 0.39 0.42 1 1 63 0.30 0.36 1 1 87 0.61 1 1 1

42 0.66 1 1 1 64 0.69 0.99 1 1 88 0.94 1 1 1

43 1 1 1 1 65 0.37 0.66 1 1 89 0.41 0.43 0.47 1

44 0.41 1 1 1 66 0.35 1 1 1 90 0.51 0.58 1 1

45 1 1 1 1 67 0.84 1 1 1 91 0.49 0.52 0.57 1

46 0.92 1 1 1 68 0.79 1 1 1 92 0.92 1 1 1

47 0.60 1 1 1 70 0.52 0.61 1 1 93 0.75 1 1 1

48 0.75 1 1 1 71 0.50 0.56 1 1 94 0.71 1 1 1

49 0.58 0.65 1 1 72 0.86 1 1 1 95 0.76 1 1 1

50 0.41 0.65 1 1 73 0.58 1 1 1 96 0.69 1 1 1

51 0.67 1 1 1 74 1 1 1 1 97 0.40 0.43 0.47 1

52 0.42 1 1 1 75 0.54 0.77 1 1 98 0.90 1 1 1

53 0.66 1 1 1 76 0.58 0.69 1 1 99 0.42 0.61 1 1

Table 6.3: Efficiency scores from robust DEA model.
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Plan
First

efficient
Plan

First

efficient
Plan

First

efficient

30 0.69 54 0.58 77 0.21

31 0.25 55 0.28 78 0.40

32 0.13 56 0.29 80 0.35

33 0.64 57 0.19 81 0.51

34 0.03 58 0.44 82 0.27

35 0.28 59 0.28 83 0.19

36 0 60 0 84 0.43

37 0.68 61 0.09 85 0.63

38 0.20 62 0.17 86 0.42

41 0.47 63 0.45 87 0.25

42 0.04 64 0.31 88 0.22

43 0 65 0.34 89 0.90

44 0.10 66 0.28 90 0.35

45 0 67 0.26 91 0.68

46 0.17 68 0.12 92 0.16

47 0.08 70 0.44 93 0.17

48 0.04 71 0.54 94 0.06

49 0.35 72 0.03 95 0.21

50 0.34 73 0.21 96 0.16

51 0.28 74 0 97 0.79

52 0.19 75 0.35 98 0.20

53 0.30 76 0.38 99 0.37

Table 6.4: Uncertainty required for each plan to become efficient from robust DEA

results.
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Plan Input Output
Efficiency

score

41 14.3286 101.4194 0.2461

42 13.4308 102.2660 0.4144

43 12.3384 102.3403 1

44 17.9491 102.1520 0.1964

45 3.5256 102.2463 1

Table 6.5: Data for DPTV 2−3
98 and V Bla

70 , plans 41-45, Example 11.

Example 11: Plans 41-45 Here we use data for plans 41-45 with input V Bla
70 and output

DPTV 2−3
98 . The data for these are in Table 6.5 along with the nominal DEA efficiency scores.

Here plans 43 and 45 are efficient.

First we consider u ∈ {0.3, 0.6, . . . , 3.6, 5}, and simulate the results for r ∈ {10, 100, 1000}.

The results are shown in Table 6.6. From Table 6.6 plan 42 and 44 are efficient when u = 0.1

and plan 41 by u = 0.7.

For robust DEA if we have a fixed value of uncertainty we can calculate whether or not

a DMU is efficient. When u ∈ {0.1, 0.2, . . . , 0.7} we get the results in Table 6.7. In Table

6.7 we find that plan 41 is efficient when u = 0.5. Therefore, we then try robust DEA for

u ∈ {0.4, 0.41, . . . , 0.5} and find plan 41 is first efficient when u = 0.47. Further robust DEA

application gives u = 0.461. However, from the simulation results in Table 6.6 plan 41 is

not efficient until u = 0.7. Therefore, we now repeat the simulations for a larger number

of repetitions with u = 0.461; the results are in Table 6.8. As the number of repetitions

increases the maximum efficiency score for plan 41 with u = 0.461 increases.
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Plan

r=10 r=100 r=1000

Uncertainty Uncertainty Uncertainty

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

41 0.25 0.26 0.32 0.72 1 0.25 0.27 0.38 1 0.25 0.27 0.53 1

42 1 1 1 1 1 1 1 1 1 1 1 1 1

43 1 1 1 1 1 1 1 1 1 1 1 1 1

44 0.40 1 1 1 1 0.48 1 1 1 1 1 1 1

45 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6.6: Maximum efficiency score for u ∈ {0.1, 0.3, . . . , 0.9} and r ∈

{10, 100, 1, 000}, Example 11.

Plan
Uncertainty

0.1 0.2 0.3 0.4 0.5 0.6 0.7

41 0.25 0.26 0.27 0.28 1 1 1

42 1 1 1 1 1 1 1

43 1 1 1 1 1 1 1

44 1 1 1 1 1 1 1

45 1 1 1 1 1 1 1

Table 6.7: Efficiency score robust u ∈ {0.1, 0, 2, . . . , 0.7}, Example 11.
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r Plan 41 efficiency

1 0.2221

10 0.2791

100 0.3028

1000 0.3105

10,000 0.4350

100,000 0.5682

1,000,000 0.6567

10000000 0.8711

Table 6.8: Simulation results, efficiency score for plan 41 with u = 0.461 for increasing

numbers of repetitions, Example 11.

Finally, we wish to compare the robust DEA and simulation results to the exact value

of u from uDEA which we can calculate because we have a single input and output. From

Theorem 4.3.6 plan 41 should be compared to the efficient frontier facet y = y43. Then

from (4.26) the value of u can be calculated to be 0.46045. Therefore, the first time we have

enough uncertainty for plan 41 to be considered efficient to three decimal places is u = 0.461

which agrees with our robust DEA results. Table 6.9 summarises the results of the three

methods.

Although a large number of repetitions of the simulation does give similar results to

the robust DEA and uDEA models, it does not fully capture the effect of uncertainty. The

robust DEA model agrees with the uDEA model and can be used to find the amount of

uncertainty required to the desired precision. However, unlike the uDEA model it does not

give us the exact amount of uncertainty. Although this is not a concern for the current

application, as a suitable precision can be determined, there may be other applications that

require exact solutions. This would require further research into solving the uDEA model

for different uncertainty sets and for methods to solve it exactly as M +N and I increase.
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Plan Simulation robust DEA uDEA

41 0.871 0.461 0.46045

42 1 0.038 0.03715

43 1 0 0

44 1 0.095 0.0941

45 1 0 0

Table 6.9: Maximum efficiency score from simulation, robust DEA and uDEA, Ex-

ample 11.

6.4 Replanning

We now test our method clinically. To do this we select a small subset of plans for Rosemere

to replan. This subset contains plans we believe can be improved and ones we believe are

already efficient. Planners at Rosemere are not aware that some plans are efficient to avoid

bias and check our measure of efficiency is clinically important. We choose a wide selection

of plans including plans 36 and 43 which are efficient for the nominal DEA, plan 89 which

requires the largest amount of uncertainty to become efficient and plan 63 which had the

smallest efficiency score for the nominal DEA (without bladder volume included). All the

plans in the dataset have been used for patient treatment and therefore meet mandatory

tolerances. This means we do not expect to see large improvements as these plans are

already clinically acceptable according to current practice.

When we first requested plans to be replanned, Rosemere started by trying to reduce

rectal doses using the usual methods they employ when a plan’s rectal dose is outside

mandatory tolerances. This involves two steps: reducing the posterior border of PTV 1

from a 1 cm expansion of CTV 1 to a 0.7 cm expansion, (see Section 2.1.2) and outlining

the volume of the rectum that lies outside the PTV1, they call this the ‘rectum remaining’.

They can then apply an additional maximum dose constraint to rectum remaining. Clinically

these two steps would only be taken if the mandatory rectal constraints were not met and
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Figure 6.1: Plan 85 DVH comparing original plan and after replanning.

only with consultation with a clinician. Unfortunately, altering the volume of PTV 1 means

plans are no longer clinically comparable as the structure definitions are not the same.

These plans cannot be used as comparable DMUs. Therefore, Rosemere replanned the

plans without modifying the PTV 1, only applying a rectum remaining constraint. They

pointed out that this replanning method is more akin to what they might attempt if the

rectal doses were within the mandatory tolerances but not achieving the desired tolerances.

This highlights the fact that some plans in our dataset had already had their PTV 1 redefined

and hence should no longer be included. These plans have not been in included in Dataset

2b. After replanning we are hoping that the Vx metrics for the OARs will have decreased

and the Dx metrics for the PTVs will still meet the prescribed doses. Table 6.10 shows the

difference between the replan and the original plan.

We can also plot the DVH curves of the original and replanned plans to see the changes.

An example for plan 85 can be seen in Figure 6.1. The dotted lines show the replanned

versions. Here, an improvement in the plan will be shown by dashed lines lower than the

solid for the rectum and the bladder (purple and green lines) and little change in the PTV
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Figure 6.2: Plan 53 DVH comparing original plan and after replanning.

lines. Many of the replans showed a good reduction in the bladder and rectum DVH curves

for the lower doses, 20-50 Gy, see Figure 6.2. Planners at Rosemere showed the DVH curves

to two clinicians. They said that when comparing two plans they would rarely look at the

DVH curves to determine which was a better plan, instead they would rely on the Vx metrics

as hard limits. As a result, we then asked what change in these hard constraints would be

considered as a significant clinical improvement and hence a better plan for a patient? They

concluded that a 2% change in a Vx metric would be regarded as significant and indicate a

‘better’ plan if the PTV target doses were still met. A 2% change in a V70 metric would be

more significant than a 2% change in other DVH points. This way of reporting significant

changes reinforces our decision to use an input-oriented DEA model as they are interested

in the change in the inputs, Vx metrics, while the outputs remain fixed. In Table 6.10 we

highlight the plans that have improved by over 2%. Here we see that plan 42 has improved

by over 2% for V Rec
60 , V Rec

65 and V Rec
70 , however the trade-off is that the DPTV 1−2

98 has reduced

by 0.9 Gy, the largest decrease in Dx metric. Further consultations are required to determine

which would be preferable here.
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Plan
Variables: difference between replan and original

DPTV 1−2
98 DPTV 2−3

98 DPTV 3
98 V Rec

60 V Rec
65 V Rec

70 V Bla
60 V Bla

65 V Bla
70

30 -0.10 -0.05 -0.05 0.33 -0.25 -0.51 0.10 0.04 0.02

36 -0.05 0.15 -0.05 -0.28 -0.38 -0.63 0.14 0.13 0.12

37 -0.05 0.20 0.05 -1.17 -1.79 -1.86 -0.18 -0.37 -1.71

41 -0.50 -0.30 -0.10 -0.26 -0.24 -1.00 -0.45 -0.36 -1.36

42 -0.90 -0.70 -0.15 -2.29 -2.80 -6.25 -0.73 -0.69 -0.93

43 -0.20 -0.05 0.00 0.02 0.03 0.28 -0.03 -0.08 -0.04

50 -0.45 -0.40 -0.10 -0.22 0.15 -0.07 -0.55 -0.47 -0.49

51 -0.15 -0.10 0.05 -0.10 -0.13 -0.09 0.01 -0.02 0.03

53 -0.30 -0.10 0.05 0.40 -0.41 -0.41 -0.12 -0.10 -0.22

63 0.35 -0.35 -0.55 0.96 1.04 1.07 -3.15 -0.38 0.14

85 0.35 -0.45 -0.45 -4.64 -5.14 -5.84 0.49 1.04 1.25

89 0.20 -0.15 -0.15 -0.69 -0.40 -0.64 -0.18 -0.09 -0.12

91 -0.05 0.10 0.10 0.05 0.14 -0.27 0.04 0.06 -0.05

97 0.05 0.15 0.35 -0.04 0.10 -0.44 0.39 0.17 0.11

Table 6.10: Difference in variables replan-original for selected inputs (%) and outputs

(Gy). Bold numbers represent an improvement of over 2Gy in the Vx metrics.
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Nominal efficiency score After replanning

without bladder with bladderPlan
without bladder with bladder

original replan original replan

30 0.52 0.52 0.52 0.52 0.52 0.52

36 1.00 1.00 1.00 1.00 1.00 1.00

37 0.49 0.55 0.45 0.50 0.55 0.61

41 0.39 0.39 0.39 0.40 0.39 0.40

42 0.66 0.66 0.66 0.45 0.66 0.45

43 1.00 1.00 1.00 0.82 1.00 0.89

50 0.41 0.41 0.41 0.43 0.41 0.43

51 0.67 0.67 0.67 0.67 0.67 0.67

53 0.66 0.66 0.66 0.67 0.66 0.67

63 0.30 0.40 0.28 0.27 0.40 0.42

85 0.49 0.49 0.49 0.60 0.49 0.60

89 0.41 0.51 0.38 0.39 0.50 0.51

91 0.49 0.49 0.49 0.49 0.49 0.49

97 0.40 0.40 0.40 0.40 0.40 0.40

Key Improved Same Worse

Table 6.11: Comparing replans efficiency scores.
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Replanning was undertaken by different staff, each spending varying amounts of time

trying to improve the plan. This is representative of a normal replanning procedure due

to staff shifts, experience level and varying workloads. Planners reported that they found

it impossible to improve two plans in particular, plan 36 and 85. From Table 6.11, plan

36 was efficient in the nominal solution, so this is expected. The other plan we gave to

Rosemere that was efficient in the nominal DEA was plan 43. In trying to improve plan

43 planners have in fact reduced the efficiency score. From Table 5.21, we see that plan 36

was the efficient plan that was a peer to the most plans, 55 plans, whereas plan 43 was a

peer to only 3 plans. This suggests that plan 36 was a particularly good plan, alluding to

the idea of a gold standard plan defined for Rosemere. This highlights that care should be

taken during replanning as it can sometimes reduce a plan’s efficiency. This reinforces the

work we have proposed in this Thesis and the use of EvaluatePlan we introduce in Chapter

7 to ensure the final plan selected for a patient is the most favourable.

The second plan Rosemere struggled to improve was plan 85. However, in Table 6.11 we

identify plan 85 as having improved its efficiency score. In Table 6.10 we see that the V Rec
70

has improved by 5.84%, which would be counted as a clinical improvement. Unfortunately,

this plan is no longer clinically acceptable as the prescribed dose to the DPTV 1−2
98 and

DPTV 2−3
98 are no longer acceptable. This means the plan is no longer comparable as we

currently define our DMUs to be clinically acceptable treatment plans. It will be beneficial

to adapt our methodology to account for plans that do not meet the prescribed doses and

are hence deemed clinically unacceptable. This can be done by adding additional constraints

to the DEA model.

In Table 6.11 the nominal efficiency scores in column two (three) and the efficiency

scores in column four(six) for the same plans when we consider replans may differ in value.

This is because the reference sets are different. Columns two and three only include the

original plans and columns four and six have the additional replans included, which can

change the PPS. The nominal efficiency scores are included as an indication of which plans

were originally efficient, not as a comparison with columns four to seven. However, the

efficiency scores in columns four and five and similarly, six and seven can be compared with
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one another as they are obtained from the same DEA model and hence the same reference

set.

Plan 89 was the plan that required the most uncertainty to be deemed efficient. In Table

6.11 it is one of the plans that the efficiency score improves both with and without bladder

volume. Similarly, plan 63 was the plan that had the lowest efficiency score in the nominal

DEA problem and improves when we include bladder volume.

We conclude that, as expected, there was very little improvement in the plans after

replanning. This reinforces the notion that planners at Rosemere are consistently able to

produce good treatment plans for patients, that are both clinically acceptable and require

very little uncertainty to be deemed efficient. The results highlight the problem that can

occur when planners try and improve an already efficient plan and reinforces the need for a

quantitative tool to evaluate the efficiency of a plan.



Chapter 7

Software

Here we provide details of a simplified proof of concept piece of software, here called Eval-

uatePlan to be used in treatment centres. Developing this is a vital area of further work.

Currently EvaluatePlan utilises results from Chapter 4 on fixed uncertainty and does not

use uDEA methodology. As we improve the heuristics and the exact methods for solving

the uDEA problem, this will allow us to develop EvaluatePlan further.

We have chosen to develop EvaluatePlan using R (R Core Team, 2013) because it has

a number of advantages. Firstly, it is open source so purchasing of software licenses by

Rosemere is not required. This is an important consideration as we wish the research to be

easily adopted and do not wish funding costs to be a barrier. The use of the R shiny package

(Chang et al., 2019) allows the development of a simple GUI that can be interfaced with

Excel R©; Rosemere currently output their plan evaluation data to Excel R©. Furthermore,

the GUI can be packaged on a memory stick with a minimal version of R, again making

uptake of EvaluatePlan as simple as possible. Finally, R has a large statistical package

library allowing further developments to include our autoPCA method. In the remainder

of this chapter, we discuss EvaluatePlan, provide users with simple instructions for its use

and suggest further adaptations to future versions.

229
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7.1 Interfacing with Rosemere

Currently before a treatment plan is finalised the metrics from a plan are exported to an

Excel R© spreadsheet that highlights the constraints that have met preferred/mandatory or

failed mandatory doses with green, orange, red respectively. This allows the clinician in

charge of the plan to quickly assess the plan. Therefore, to interface EvaluatePlan easily

with Rosemere we wish to use the evaluation spreadsheet as the input data.

From Chapter 4 Theorem 4.1.16, for inefficient DMUs, there exists an optimal solution

to the uncertain problem (4.3) such that only DMUs that are efficient in the nominal DEA

problem are peers to the inefficient DMUs. This means we only need to store plans that

are efficient in the nominal DEA problem. This reduces the size of the dataset required,

thus speeding up the computation time and reducing the memory required for the software.

The input data required is a dataset of the nominal efficient plans, from Tables 5.20 and

5.22 they are plans 31, 36, 38, 43, 45, 60, 74, 92, 94 and 98. Here we include those that are

efficient in the nominal solution both with and without the inclusion of the bladder volume

as an environmental variable.

The user input required is to select the evaluation spreadsheet plan they wish to assess

and whether they wish to include the bladder volume as an environmental variable or not.

7.2 Software functionality

The aim of EvaluatePlan is to assess the efficiency of the treatment plan. If it is efficient in

the nominal DEA, EvaluatePlan will notify the user of this and the analysis is complete. If

the plan is inefficient in the nominal DEA problem, EvaluatePlan will produce the following

information:

• The peers of the plan

• The minimum amount of uncertainty to two decimal places required for the plan to

become efficient if u < 3.6.
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The user can also decide if they wish to include Bladder Volume as an environmental variable

or not.

7.3 How to use EvaluatePlan

EvaluatePlan can be run from a memory stick loaded with a small version of R (R Core

Team, 2013) and the R shiny package (Chang et al., 2019). After clicking launch, Eval-

uatePlan loads the screen shown in Figure 7.1a. The user can then select an evaluation

spreadsheet for the plan they wish to assess, which can be stored anywhere on their com-

puter. By clicking on the browse button, in Figure 7.1b, the user selects plan 99.

Once a plan has been uploaded, EvaluatePlan outputs the results from the nominal

DEA (3.8) and the robust DEA model (3.19) with u ∈ {0, 0.01, . . . , 3.6, 5}. If the plan is

not efficient in model (3.8), the nominal efficiency score, the amount of uncertainty required

to become efficient and the peers of the plan are displayed. This can be seen in Figure

7.2a where plan 99 has a nominal efficiency score of 0.423, requires u = 0.37 to become

efficient and has peers plan 53 and 60. The user can also compare the efficiency of the

plan when the bladder volume is included. This is done by selecting the tick box at the

top of EvaluatePlan, highlighted in Figure 7.2b. By selecting (or deselecting) this box,

EvaluatePlan re-evaluates the plan with the bladder volume included(excluded). In Figure

7.2b, we see that by including the bladder volume, plan 99 requires less uncertainty to

become efficient and the plan’s peers change. If a plan is efficient in the nominal DEA

problem, EvaluatePlan will display “This plan is efficient”. This can be seen in Figure 7.3b

where plan 94 is efficient when the bladder volume is included. However, it is not efficient

when the bladder volume is excluded, Figure 7.3a. If a plan is inefficient when u = 5,

EvaluatePlan will output this message and output its peers (see Chapter 6 for justification

of this).

EvaluatePlan is easy to use, and by solving the robust DEA model gives a value of un-

certainty accurate to two decimal places. It allows planners to quickly assess whether a plan

is efficient based on plans achieved previously. EvaluatePlan has the option of including the
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(a) Load EvaluatePlan.

(b) Select the plan to evaluate.

Figure 7.1: Launching and selecting the plan to evaluate in EvaluatePlan.
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(a) No bladder Volume.

(b) Bladder volume included.

Figure 7.2: Results for plan 99 from EvaluatePlan.
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(a) No bladder Volume.

(b) Bladder volume included.

Figure 7.3: Results for plan 94 from EvaluatePlan.
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bladder volume as an environmental variable in the analysis. This is because EvaluatePlan

has been developed specifically for Rosemere. They are interested in assessing the differ-

ence the bladder volume has on plan creation. In future versions different environmental

variables can easily be added for different centres.

7.4 Future software improvements

EvaluatePlan, discussed in this chapter, has the potential to be extended in many directions.

A few improvements we hope to make in the future include:

• User defined inputs and outputs to allow users to explore the effect of certain con-

straints on the efficiency of a plan.

• Added user inputs to include ranges of uncertainty they wish to consider further.

• Exact amounts of uncertainty by incorporating uDEA methodology.

• Batch processing of plans where multiple evaluation forms can be inputted at once.

• Integration with other hospitals evaluation spreadsheet/software.

• Conversion to Python code to allow direct integration into some treatment plan soft-

ware.

Continued feedback and evaluation from users of EvaluatePlan at Rosemere will also help

to develop this further.



Chapter 8

Conclusion and further work

External beam radiotherapy is one of the major forms of cancer treatment. About two

thirds of all cancer patients undergo a course of radiotherapy at some stage of their treat-

ment. Treatment planning involves delivering high doses of radiation to the tumour site

while sparing surrounding organs. Most cancer centres worldwide do not have access to

multi-objective treatment planning systems. Therefore, plans are made on single objec-

tive planning systems many of which use a weighted sum method to incorporate different

conflicting objectives. To improve a plan, multiple iterations of the planning process are

required where practitioners change parameters based on prior knowledge and experience.

As a result, although a plan is deemed acceptable due to it meeting certain clinical criteria

it is very hard for planners to tell if it is in fact the best plan they can achieve for that

patient. We evaluate the quality of treatment plans generated by an existing system and

aim to provide recommendations to planners on possible improvements. This is done using

DEA. We assess how well the plans perform in terms of converting inputs to outputs that

is protecting the OARs while delivering the prescribed dose to the tumour. This study is

motivated by data from Rosemere Cancer Centre, Royal Preston Hospital, Lancashire and

specialist knowledge from clinicians therein. Variables from Rosemere’s clinical protocol

are extracted and a variable selection technique, autoPCA, is developed to alleviate the

dependence of PCA methods on the sample at hand.
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DEA is then applied using the variables selected from autoPCA. On Rosemeres recom-

mendation, DEA is applied without the bladder volume as an environmental variable to

contribute to their ongoing investigation into the effect of bladder volume during treatment.

To account for the inherent uncertainty in the treatment process simulation, Robust DEA

and uDEA techniques are compared. We extend the uDEA methodology for the specific

case of box uncertainty after identifying its suitability from the medical literature. This al-

lows us to assess how well the plans perform in converting inputs to outputs, i.e. protecting

the OAR while delivering the prescribed dose to the tumour. We determine plans that may

benefit from replanning and conclude that the plans for prostate cancer at Rosemere are

consistently good compared to one another. This suggests that prostate cancer planning is

an area in which Rosemere succeed in tailoring plans. Only plans that have been deemed

acceptable for treatment and used on a patient are included in our dataset. Therefore, they

are not necessarily the first plans created on the treatment planning software. By using

our methodology on the first treatment plan created for a patient we can advise planners of

the potential improvement possible and the amount of uncertainty required for a plan to be

deemed efficient. This will allow them to streamline their planning process by prioritising

plans that are able to improve the most.

Previous research focused on prostate cancer, which many hospitals count as their ‘bread

and butter’ due to it being the most common cancer type for men and being relatively

easy to treat. They perform many similar treatments each year and they have seen rapid

improvement in the past few decades. This work was an extension of the method proposed

in Lin et al. (2013). To ensure it is applicable to current treatment planning methods in

the UK, and is suitable for different centres, a large body of this work focused on variable

selection and considering the uncertainties arising throughout the treatment process. Our

findings reinforce the idea that these plans are in fact all good as only minor improvements

were possible. By considering uncertainty in the planning variables, we can account for the

effects of uncertainties present throughout the treatment process.

We conclude by considering the possible areas of further work that are linked to the

research presented throughout this thesis. Many of these areas have been introduced in the
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previous chapters, we discuss them further here.

A multicentre study Throughout this thesis we have used data from a single treat-

ment centre, Rosemere. Their clinical protocol is based on the CHHiP clinical trial and

guidelines from the Royal College of Radiologists (RCR, 2018), Clinical Oncology Informa-

tion Network (Mason et al., 1999) and British Association of Urological surgeons (BAUS,

2019). We would like to extend our methodology to other treatment centres. Initially this

will involve discussions with specialists to identify differences in treatment techniques and

the suitability of our methodology. The correct variables to represent their plans can then

be determined via autoPCA and discussions with the relevant clinicians. These may differ

between treatment centres as they may have different constraints and prescribed doses in

their clinical protocol and different treatment plan creation software.

A subset of northern hospitals are currently in consultation over unifying their clinical

protocols. This would mean that the plans from different treatment sites could be com-

pared as the plans would be clinically comparable. This would highlight differences between

treatment plan quality at different centres and would help identify planning weaknesses.

Linking treatment plan quality with follow up results for prostate cancer

Previously radiotherapy treatment planning assessment has been based on metrics extracted

from the treatment plan and how these relate to clinically prescribed recommended doses.

In the future, we wish to consider the post-treatment prognosis of the patients. Two to three

months after patients are treated with radiotherapy, they will have a follow up appointment

to assess their side effects and treatment success, these appointments continue every three

to six months for at least three years. The follow up appointments may also include blood

tests to check their prostate specific antigen (PSA) level.

There have been many studies on the effectiveness of radiotherapy as a treatment for

prostate cancer using follow up data (see Lane et al. (2010)) but no studies that link the

treatment plan assessment and final outcome. Lambin et al. (2013) discuss how using

the planned dose-distribution is not enough to base treatment assessment on due to the
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deviations from the original plan and the need to create ‘multifactorial decision support

systems’ to assess treatment quality.

The original plans from Rosemere are now over three years old. Rosemere are looking

into obtaining PSA and side effect data for our original patients. In this way it is hoped

that we can link the efficiency scores derived from our DEA methodology with the clinical

outcome. We hope that an efficient plan translates to a better clinical outcome for the

patient.

Extension to head and neck cancer Head and neck tumours are a broad category

of tumours that include several sub-sites. Each sub-site presents its own unique planning

challenges. They are particularly difficult to plan due to the large number of OARs that

surround the tumours. These include the brain-stem, spinal-canal and the parotid arteries.

To begin with we would consider a single subcategory of head and neck tumour, oropharynx,

as it is one of the more common types so data are more widely available. The clinical protocol

for some head and neck types are fairly similar due to the need to irradiate nodes that could

potentially include tumour cells. Involved nodes are hard to identify on medical scans so

often similar areas are identified on each patient to ensure all key areas are irradiated.

We would like to extend the methods developed in this thesis to compare treatment plans

across different head and neck sub-sites. In this way, less common cancer types can borrow

information from other similar types. This would involve adding additional constraints to

the DEA model in the form of modified environmental variables to account for different

head and neck sub-sites.

Proton therapy Throughout this thesis we have used plans from IMRT prostate cancer

patients. However, research into the use of proton therapy is at the forefront of cancer

research. The methodology developed here would be easily extended to proton therapy. To

do this we require comparable plans created from the same clinical protocol. As this is a

growing area of research, the methodology and techniques are not as developed as IMRT for

prostate cancer and hence the potential benefit of a method to selectively compare plans has
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great clinical potential. Mohan and Grosshans (2017) highlight that “treatment planning

and plan evaluation of passively-scattered proton therapy and intensity modulated proton

therapy require special considerations compared to the processes used for photon treatment

planning. The differences in techniques arise from the unique physical properties of pro-

tons but are also necessary because of the greater vulnerability of protons to uncertainties,

especially from inter- and intra-fractional variations in anatomy. These factors must be

considered in designing as well as evaluating treatment plans”.

Develop EvaluatePlan As discussed in Section 7.4, we wish to develop EvaluatePlan

further. In particular, to develop EvaluatePlan to be compatible with different hospitals’

treatment planning software. This will involve adding additional user defined inputs and

outputs, different ranges of uncertainty, batch processing of plans and ultimately incorpo-

rating the variable selection process into the software.

Refine autoPCA Throughout this thesis we have based our DEA analysis on a sample

of 66 treatment plans. Although we were given over 100 plans in total, only 66 were truly

comparable and hence suitable for our study. To help address our small sample size, the

autoPCA method explores repeated sampling and derives the sampling distribution of the

PCs. However, we would like to trial our method on a larger sample of data. This would

increase our confidence in the conclusions we draw by validating our autoPCA method.

If the variables selected represent the true variability of all plans at Rosemere, then the

addition of new plans to our dataset should not change the variables identified. If there is

a large change in the variables selected this may indicate a change in planning procedure:

either a new treatment planning machine, such as the switch from AG to BM, or a change in

the clinical protocol or software that creates the treatment plans. It would be beneficial to

develop methodology that can account for future changes in the planning treatment process

and update the variables accordingly.

uDEA areas of further research Building upon Ehrgott et al. (2018) who considered

ellipsoidal uncertainty, we refined the concept of uDEA for the specific case of box uncer-
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tainty. Ellipsoidal uncertainty is more general than box uncertainty and is less influenced

by the extreme points of the uncertainty set (the corner points). The use of box uncertainty

was motivated by the radiotherapy treatment planning application where uncertainty is as-

sumed to lie in a set interval. Box uncertainty also has the advantage of being one of the

most widely used uncertainty sets and results in tractable solutions to robust optimisation

problems.

We now wish to use historical data from Rosemere to extend this methodology. We

hope to identify if there is another uncertainty set that models the specific uncertainty at

Rosemere, as opposed to the predicted uncertainty across the International Congress of

Radiology network. If we extend the discussed methodology to other cancer sites we may

need to model the uncertainty differently. Therefore, extending the uDEA methodology to

other uncertainty sets would be beneficial.

We have compared the results of uDEA, robust DEA and simulation and conclude

that although simulation results are converging to the results of uDEA, an extremely large

number of replications are required. This makes simulation unsuitable for a clinical setting

as it is too slow. Therefore, further work into fast, exact uDEA methods or a heuristic that

gives results to a suitable degree of accuracy are required.



Appendix A

Plan
37 Session plans

Plan
20 Session plans

gEUDRec DPTV 1
95 DPTV 3

95 gEUDRec DPTV 1
95 DPTV 3

95

1 63.38 60.33 72.13 27 50.38 48.63 58.78

2 59.13 59.13 72.53 28 48.16 49.33 58.73

3 62.78 59.08 72.83 29 50.72 48.03 58.83

4 56.93 59.58 72.73 30 50.80 47.88 58.78

5 60.88 60.43 72.73 31 49.41 47.78 58.88

6 62.78 59.08 72.83 32 46.69 48.53 58.93

7 64.42 61.03 72.28 33 48.74 53.63 58.88

8 53.35 64.08 72.63 34 50.22 48.13 59.23

9 60.72 60.03 72.73 35 50.12 49.93 58.93

10 62.70 66.03 72.78 36 50.17 48.98 59.03

11 60.62 60.53 72.73 37 50.26 48.38 58.88

12 61.04 59.98 72.73 38 49.45 48.13 59.03

13 59.55 58.58 72.53 39 48.35 47.83 58.83

14 59.09 59.18 72.58 40 48.49 48.83 59.03

15 60.91 59.68 72.53 41 48.07 48.33 59.03

16 63.45 59.78 72.48 42 49.65 48.23 58.73

17 59.72 66.18 72.63 43 49.57 48.03 59.08

18 61.68 62.08 72.78 44 50.41 50.28 59.08

19 60.69 64.43 72.68 45 50.37 48.18 59.18

20 61.89 59.83 72.88 46 49.70 48.18 59.28

21 59.96 58.78 72.93 47 48.43 48.48 59.18

22 61.50 59.58 72.88 48 48.71 49.33 59.18

23 63.61 59.78 72.83 49 48.18 48.08 59.18

24 59.97 65.73 73.13 50 49.86 47.93 59.08

25 62.21 62.33 73.03 51 49.83 47.38 59.28

26 61.05 64.13 72.73

Table 1: Dataset 1. published in Stubington et al. (2019)
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L. Feuvret, G. Noël, J.-J. Mazeron, and P. Bey. Conformity index: A review. Int. Journal

of Radiation Oncology.biology.physics, 64(2):333–342, 2006.

F. Frei and P. Harker. Projections onto efficient frontiers: theoretical and computational

extensions to DEA. Journal of Productivity Analysis, 11(3):275–300, 1999.

H. Fukuyama and K. Sekitani. Decomposing the efficient frontier of the DEA production

possibility set into a smallest number of convex polyhedrons by mixed integer program-

ming. European Journal of Operational Research, 221(1):165–174, 2012.

M. Ghadimia and M. Ahadzadeh Namin. New approach in sensitivity analysis and identi-

fication of the region of efficiency for an efficient DMU. Mathematical Sciences, 2009.

A. Gholam Abri, N. Shoja, and M. Fallah Jelodar. Sensitivity and stability radius in data

envelopment analysis. International Journal of Industrial Mathematics, 1(3):227–234,

2009.

J. F. Hair Jr, R. E. Anderson, R. L. Tatham, and C. William. Black (1995), multivariate

data analysis with readings. New Jersy: Prentice Hall, 1995.

F. He, X. Xu, R. Chen, and N. Zhang. Sensitivity and stability analysis in DEA with

bounded uncertainty. Optimization Letters, 10(4):737–752, 2016.



BIBLIOGRAPHY 251
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