
Adaptable Software Reuse:

Binding Time Aware Modelling Language to Support Variations

of Feature Binding Time in Software Product Line Engineering

by

Armaya’u Zango Umar

Supervisor:

Dr. Jaejoon Lee

Thesis submitted for the

degree of Ph.D in Computer Science

September 2019

Acknowledgement

All praises are to Allah whose divine destiny made it possible for me to earn a

Ph.D.. Special thanks to my parents for nurturing me and supporting me with prayers

and unconditional love through thick and thin. May Almighty reward them in abundance.

I most sincerely thank the National Information Technology Development Agency

(NITDA) for providing me with three-year funding. NITDA staff have been very helpful

and responsive to my incessant demands. Thank you NITDA and God bless the federal

republic of Nigeria.

I am ever grateful to my supervisor, Dr. Jaejoon Lee, for being there for me

throughout my Ph.D. journey. Jaejoon has been exceptionally patient, supportive and

provided me with invaluable guides all along. I am also sincerely grateful to panel mem-

bers of my Ph.D. appraisals - Prof. Pete Sawyer, Dr. Geral Kotanya, and Dr. Ioannis

Chatzigeorgiou. Their regular and constructive feedbacks were instrumental to my Ph.D.

success.

I also appreciate the support of my siblings for their prayers and words of encour-

agement. My special regards to my wife, Barira Hamisu, and my two daughters, Maryam

and Asiya for their patience of my absence and my aloofness during the intense period of

my research.

I will also like to appreciate my colleagues at Infolab. These include Mus’ab, Yusuf,

Bruno, Ono, Assyl, Sunday, Juliana to mention but few. It has been a nice feeling being

in their midst as ‘co-travellers’ and knowing fully there were always ready to help.

Abstract

Software product line engineering (SPLE) is a paradigm for developing a family of
software products from the same reusable assets rather than developing individual products
from scratch. In many SPLE approaches, a feature is often used as the key abstraction
to distinguish between the members of the product family. Thus, the sets of products
in the product line are said to have ’common’ features and differ in ’variable’ features.
Consequently, reusable assets are developed with variation points where variant features
may be bound for each of the diverse products.

Emerging deployment environments and market segments have been fuelling de-
mands for adaptable reusable assets to support additional variations that may be required
to increase the usage-context of the products of a product line. Similarly, feature binding
time - when a feature is included in a product and made available for use - may vary
between the products because of uncertain market conditions or diverse deployment en-
vironments. Hence, variations of feature binding time should also be supported to cover
the wide-range of usage-contexts.

Through the execution of action research, this thesis has established the following:
Language-based implementation techniques, that are specifically proposed to implement
variations in the form of features, have better modularity but are not better than the ex-
isting classical technique in terms of modifiability and do not support variations in feature
binding time. Similarly, through a systematic literature review, this thesis has established
the following: The different engineering approaches that are proposed to support vari-
ations of feature binding time are limited in one of the following ways: a feature may
have to be represented/implemented multiple time, each for a specific binding time; The
support is only to execution context and therefore limited in scope; The support focuses
on too fine-grained model elements or too low-level of abstraction at source-codes.

Given the limitations of the existing approaches, this thesis presents binding time
aware modelling language that supports variations of feature binding time by design and
improves the modifiability of reusable assets of a product line.

Declaration

I declare that the work in this thesis is my own work and has not been submitted

either in whole or in part for the award of a higher degree elsewhere. Any sections of the

thesis, which have been published, are clearly identified.

...............................

Armaya’u Zango Umar

i

0.1 List of Acronyms

AOP Aspect Oriented Programming
ATL Atlas Transformation Language
DOP Delta Oriented Programming
FOP Feature Oriented Programming
JEE Java Enterprise Edition
MDA Model-Driven Architecture
MDD Model-Driven Development
M2M Model to Model
M2T Model to text
MOF Meta Object Facility
NATO North Atlantic Treaty Organization
OCL Object Constraint Language
OMG Object Management Group
OOP Object-Oriented Programming
OOSE Object-Oriented Software Engineering
PIM Platform Indipendent Model
PP Pre-processing PSM Platform Specific Model
RV Repetitive Viscosity
RBSE Reuse Based Software Engineering
SPLE Software Product Line Engineering
XML eXtensible Markup Language
XMI Interchangeable eXtensible Markup Language

ii

Contents

0.1 List of Acronyms . ii

1 Overview . 1
1.1 Software reuse . 2
1.2 Domain engineering as a scoped reuse . 2
1.3 Software Product Line Engineering as a form of systematic reuse 3
1.4 Motivation . 3
1.5 About this thesis . 5

1.5.1 Research Objectives . 5
1.5.2 Research Questions . 6
1.5.3 Contributions . 7

1.6 Research methods . 7
1.7 Chapter summary . 9

2 Background . 10
2.1 Feature-oriented Software Product Line (SPLE) 10
2.2 Feature-oriented domain engineering . 11

2.2.1 Feature-oriented domain analysis 12
2.2.2 Domain analysis example . 16
2.2.3 Domain design . 21
2.2.4 Domain design example . 23
2.2.5 Domain Implementation . 26

2.3 Feature-oriented application engineering 30
2.3.1 Product requirement elicitation . 31
2.3.2 Product instantiation . 32
2.3.3 Application engineering example . 33

2.4 Research focus . 35
2.4.1 Adaptable reusable assets . 36
2.4.2 Feature binding . 37
2.4.3 Feature binding time . 38
2.4.4 Variation of feature binding time 39
2.4.5 Justifications for managing variations of feature binding time 40

2.5 Specific research challenges . 42
2.5.1 Research challenge on adaptable reusable assets 42
2.5.2 Research challenge on variations of feature binding time 42

iii

2.6 Chapter summary . 43

3 Language-based approaches to flexible variations: Action research . . . 44
3.0.1 Definition of terms . 45

3.1 Study settings . 45
3.1.1 Evaluation criteria: flexibility . 45
3.1.2 Feature modularity and support for multiple binding time 46
3.1.3 The case study: Oracle Berkeley Database Engine (BDE) 47
3.1.4 Case study exploration . 48

3.2 Study execution . 51
3.2.1 Pre-processing with Antenna tool 53
3.2.2 Feature-Oriented Programming (FOP) with Jak language 56
3.2.3 Aspect Oriented Programming (AOP) with AspectJ 62
3.2.4 Delta Oriented Programming (DOP) with DeltaJ 1.5 67
3.2.5 Comparison between the implementation techniques 73

3.3 Custom annotations . 75
3.3.1 Custom annotation definition . 75
3.3.2 Custom annotation application and processing 77

3.4 Comparison with similar action researches 81
3.5 Chapter Summary and perspective . 82

4 Approaches for supporting variations of feature binding time: A sys-
tematic study . 84
4.1 Introduction . 85

4.1.1 Review questions . 85
4.1.2 Review protocol . 86
4.1.3 Search terms . 86
4.1.4 Search databases . 86
4.1.5 Selection strategy . 87
4.1.6 Data extractions . 89

4.2 Overview of the publications . 89
4.3 Narrative summary of the proposed approaches 92

4.3.1 Delegation of binding to aspect weaver 93
4.3.2 Language extension . 98
4.3.3 Metadata interpretation . 101
4.3.4 Abstracting the binding time at the model level 103
4.3.5 Model composition . 105
4.3.6 Delegation to deployment platform 106

4.4 Summary of the proposed approaches . 109

5 Binding time aware modelling language: design and implementation . 111
5.0.1 Process overview to supporting variations of feature binding time . 112

5.1 Supporting variations of feature binding time at domain engineering phase 115

iv

5.1.1 Supporting variations of feature binding time at domain analysis . . 116
5.1.2 Supporting variations of feature binding time at domain design . . 117
5.1.3 Supporting flexible feature binding at the domain implementation . 120
5.1.4 PIM to PSM mapping . 129

5.2 Application engineering with feature binding time 131
5.2.1 Product requirement elicitation . 131
5.2.2 Product design . 132
5.2.3 Consistency checking and PIM to PSM transformation 133
5.2.4 Product instantiation . 136

5.3 Tool Support . 136
5.3.1 PIM implementation and instantiation 136
5.3.2 Consistency checking . 137
5.3.3 PIM to JEE model transformation and code generation 138

5.4 Evaluation an discussion . 140
5.4.1 Performance . 140
5.4.2 Modifiability . 142

5.5 Chapter summary . 143

6 Conclusion . 144
6.1 Thesis summary . 144
6.2 Revisiting the Contributions . 145
6.3 Limitations . 147
6.4 Future research directions . 148
6.5 Closing remarks . 149

Bibliography . 150

Appendices . 163
A Platform Indipendent Model with OCL Embedded 164
B JEE Platform Specific Model in XMI with Ecore Schema 168
C PIM to JEEE transformations . 173
D Code generation with Xtend . 178

List of Figures

1.1 High-level outline of the thesis . 8

v

2.1 Relationship between feature space (top right) on one hand and the deliv-
erables of both domain engineering (top left) and application engineering
(bottom) on the other hand . 11

2.2 key engineering activities in feature-oriented SPLE 13
2.3 A partial feature model of Automative product line 14
2.4 A partial feature model of Education Software Product Line (EduPL), an

enterprise product line for universities . 17
2.5 subsystem overview of EduPL(an enterprise product line for universities) . 19
2.6 A use case model for Account Management subsystem of EduPL 20
2.7 roles for layered components in N-tier architecture pattern 22
2.8 a domain object model (DOM) for Account Management subsystem 23
2.9 Activity diagram showing (a) process flow for account creation and (b)

process flow for account update . 24
2.10 components and connectors PLA model that is derived from the gradual

refinements of DOM. In the figure, dotted outlines represent variable archi-
tectural elements . 25

2.11 use case models (left) in consistent with the feature selections from the
configuration interface (right) . 34

2.13 Variation of feature binding time between 40

3.1 Selected BDE variations transformed into features. 47
3.2 Iterative process for study of features in code assets 49
3.3 Union an intersection of feature modules in code-asset 49
3.4 Research execution steps . 50
3.5 Part of BDE code-asset before injecting variation. Statistics source-codes

to be decoupled are shaded grey . 52
3.6 Injection of variation to the part of BDE code-asset with pre-processing . . 54
3.7 UML package representing part of BDE code-asset before injecting variation

with FOP . 56
3.8 Injection of variation with to part of BDE code-asset with FOP 57
3.9 Containment hierarchies for Base and Statistics in Jak language 59
3.10 Decoupling of program elements that are exclusive to Statistics in the

DatabaseImpl class with FOP . 59
3.11 decoupling intersection within a method in FOP 61
3.12 decoupling intersection within a constructor with FOP 61
3.13 Modularity with FOP . 62
3.14 injection of variation w with AOP . 63
3.15 Decoupling of exclusive program elements with AOP 65
3.16 Decoupling intersection within a method with AOP 66
3.17 Decoupling intersection within a constructor with AOP 67
3.18 Modularity with AOP . 67
3.19 Delta specifications of Base before variability injection with DOP 68
3.20 Injection of variation with with DOP . 69

vi

3.21 Decoupling of exclusive program elements with DOP 70
3.22 Modularity in DOP . 71
3.23 Decoupling intersection within a method with DOP 72
3.24 Constructor modification with DOP . 72
3.25 Modularity with DOP . 73
3.26 Spread of exclusive and intersection from 11 features 78
3.27 RV for each of the techniques on exclusive program elements 79
3.28 Example of intersecting features . 80

4.1 Paper selection process . 88
4.2 Publications by (a) affiliations and (b) paper categories 90
4.3 Publication venues . 90
4.4 Publication trend . 91
4.5 Various research goals of the proposed papers vs research approaches . . . 92
4.6 Application domains . 94

5.1 Overview of supporting variations of feature binding time 113
5.2 Grouping features into units that most be bound together for the correct

function of the product . 116
5.3 Architectural elements (right) organized based on binding unit graph(left) 118
5.4 isValidated as fine-grained model element moved to Validation Controller

from Account Controller. 118
5.5 crtlDeleteAccount(user: User) and deleteAccount (user: User) as fine-grained

model elements aggregated into aspectual component of the same binding
unit. 119

5.6 Switching connection mode between components 121
5.7 Lifecycle activities for supporting variations of feature binding time in

Model-Drive domain implementation . 122
5.8 A simplifed view of the platform independent metamodel 123
5.9 Type view of the PIM metamodel . 124
5.10 A simplifed metamodel of Java Enterpriese Edition (JEE) 127
5.11 Java Enterpriese Edition (JEE) Invocation metamodel 128
5.12 Java Persistence API (JPA) metamodel . 128
5.13 Architecture of Account Management sub-system when Advance child fea-

ture of User Notification is selected. 131
5.14 Instance of PIM representing partial architecture of Account Management

sub-system when Advance child feature of User Notification is selected . . 132
5.15 JEE platform specific instance model in which the binding time of Advacnce

(User Notification feature is set to pre-deployment 134
5.16 JEE platform specific instance model in which the binding time of Advacnce

(User Notification feature is set to pre-deployment 135
5.17 Components modelled with the eclipse-based plugin for PIM modelling . . 137
5.18 OCL implementation . 138

vii

5.19 PIM to JEE transformation . 139
5.20 PSM to source code transformation . 139
5.21 Comparison between Direct and Platform in synchronous mode 141
5.22 Comparison between Direct and Platform in asynchronous mode 142

viii

Chapter 1

Overview

Software product line engineering (SPLE) is a paradigm for developing a family
of software products from the same reusable assets rather than developing individual
products from scratch. The driver of SPLE is pre-planned software reuse and within a
specific problem area known as a domain.

In many SPLE approaches, a feature is often used as the key abstraction to distin-
guish between the members of the family. Thus, the sets of products in the product line
are said to have ’common’ features and differ in ’variable’ features. Consequently, reusable
assets are developed with variation points where variant features may be bound for each
of the diverse products.

Variations in usage-context, a contextual setting in which the software product
from a product line is deployed or supplied to, have been fuelling demands for adaptable
reusable assets to support additional variations that may be required to increase the usage-
context of the product line as a result of expanding markets.

Furthermore, feature binding time - when a feature is included in a product and
made available for use - may vary between the products of a product line because of
the different usage-contexts. Hence, variations of feature binding time should also be
supported to cater for the diverse usage-contexts.

This chapter presents a general overview of the thesis. The chapter begins from
the background theory of the thesis, which is reuse from the perspective of software en-
gineering, and progressed to the focal theory, which is adaptable variations and feature
binding time in software product line engineering. The chapter, also, highlights the re-
search motivation; introduces the research challenges; outlines the research objectives;
and enumerated the research questions. In addition, the chapter highlights the research
contributions and presented an overview of the research methods that bound the research
processes. Finally, the chapter presents a brief overview of the remaining chapters.

2

1.1 Software reuse

In the late 1960s, the committee on NATO Working Conference coined the term
’software crisis’ to describe the lack of successes in developing reliable, large, and complex
software[Nau68]. Software projects were either overrunning their budgeted costs, were
being delivered behind schedule or were not adequately trustworthy. Appalling statis-
tics, attributed to the United State General Accounting Office, were widely circulated
as evidence of the ‘software crises’. These statistics were later disputed on the premise
that the prior studies only analysed failed projects and ignored successful ones [Gla94].
Nonetheless, conservative results estimated that a typical software project was exceeding
its budget with an increase of 33-36% and was being completed with a delay of about 22%
behind schedule[VG91].

In response to the ’software crisis’, new ’software engineering’ techniques and meth-
ods were developed. In this context, Reuse-Based Software Engineering (RBSE) was con-
ceived as an engineering practice to reduce time-to-market, to reduce production costs,
and to improve software quality. Intuitively, instead of developing software from scratch,
each time, reusing existing artefacts results in speed gain. In addition, the reuse of ex-
isting artefacts reduces the efforts required to develop the new software and thus reduces
the production costs. Similarly, the reuse of previously tested and trusted artefacts pro-
vides some quality assurance of the new system. Reusable artefacts were increasingly
becoming available in different forms: a program library, an entire product or an abstract
concept [Som11]. As hypothesized, RBSE recorded successes in reducing time-to-market
and improving product quality [AE92, BBM96, FT96, PCH93].

1.2 Domain engineering as a scoped reuse

A pattern began to emerge on factors contributing to the success of software reuse.
One of the factors is confining the reuse within a narrow and a special domain[Big98] A
domain is a problem area and knowledge on how to develop software products in that
area [CE00]. Example of a domain is a mobile telephone software domain and automotive
software domain. Successful reuse was reported in a printer firmware domain [Big98] and
in the network domain [Nei84]. Software reuse was also demonstrated to be effective in
data structure component library [BST+94, CE00].

Consequently, both industry and academia begin to recognize that software reuse is
more effective when it is deliberate rather than speculative; scoped rather than open-ended.
This is due to the fact that software products in a specialized domain share substantial
characteristics and differ in little distinctiveness. Thus, researchers increased focused
on domain engineering as a systematic and planned software reuse paradigm[FPF+98,

3

KKL+98, Nei84]. Reuse within a specialized domain is in contrast to other established
reuse based practices. For example, even though object-oriented software engineering
(OOSE) targets software reuse and has been largely successful[LHKS92], OOSE approach
to reuse is speculative. That is, the objective is to produce designs (both abstract and
concrete) that may be reused ’as is’ or modifiable to fit in an unforeseeable software system
[BBM96, BD95].

1.3 Software Product Line Engineering as a form of

systematic reuse

In the 1990s, Software Product Line (SPLE) researches emerged as a genre of
systematic and planned software reuse[ABM00, BFK+99a, GKS+96, KKL+98]. SPLE is
intended to address the two phases of reuse-driven software engineering systematically:
i) engineering for reuse and ii) engineering with reuse. Engineering for reuse, known as
Domain Engineering (DE) in SPLE, is the process for the analysis, design, and implemen-
tation of reusable assets. Engineering with reuse, known as Application Engineering (AE)
in SPLE, is the process of product-specific analysis, design, and implementation using the
reusable assets earlier developed.

Essentially, a domain is analysed, design and implemented in cognisance of common
and variable characteristics of the products in the domain. The common and variable
characteristics of the domain are often described as product features [GKS+96, KKL+98].
Subsequently, reusable assets are developed with pre-defined variation points. Pluggable
options and variant assets are also developed to fit into the pre-defined variation points.

In order to derive individualised software product from the reusable assets, a valid
combination of desired features are selected, a process known as product configuration.
In most researches and industrial projects, a product configuration process triggers the
selection and activation of specific variants assets for the specific product[ABM00, AK09].

1.4 Motivation

The adaptability of reusable assets is critical to the success of software reuse. Ide-
ally, reusable assets should be adaptable with less effort. The following form the bases
of this thesis findings on adaptability of reusable assets: a) an exploration of feature
characteristics, in the source-codes, that have impacts on adding variations; b) investiga-
tion of the impact of language-based implementation techniques on the modifiability of
source-codes to add variations.

4

Modifiable assets are needed to support additional variations that were not planned
beforehand in order to increase the usage context of SPL as a result of expanding markets.
For example, Kastner [KAB07] observed that, in Berkeley Database Engine (BDE) product
line[Coo17], features such as Statistics and Transactions were implemented as mandatory.
However, such features will have to be made optional to make BDE configurable to other
usage-contexts such as smartcard products because the product cannot afford the footprint
of the extraneous feature. Therefore, to increase the usage context of BDE, its source-
codes must be modified to make Statistics and Transactions optional. Failure to inject
additional variations may lead to the delivery of product with extraneous source-codes
- which is not desirable for lean memory applications and may also cause a problem
especially if the product is to be integrated within other software product[GAO95].

Furthermore, in SPLE where a feature is used as the key design abstraction, feature
binding is a physical inclusion of the feature in a product configuration and making it
available for use. Consequently, Feature binding time is when the feature is included in
the product configuration and made available for use[ARR+16, CRE08, DFV03, VdH04,
LK03, RSAS11]. i.e. when the variable assets are selected and activated for the specific
product.

Feature binding time for some features may vary between product configurations
because of uncertain market conditions or diverse deployment environments. For example,
a binding decision of a Power Saving feature of a wireless protocol in a smart device
may be made in advance if the deployment environment is known beforehand. While a
battery-powered device, deployed in the field, certainly requires the Power Saving feature,
a device in a residential environment with access to energy would not. However, if the
deployment environment is not known until at deployment time, the binding decision about
the same Power Saving feature would have to be delayed. In some cases, the deployment
environment may change after initial deployment (e.g. a device may require additional
security settings of a Security feature because of a change in the deployment environment).
A wireless protocol supplier that covers the different deployment environments faces a
challenge of variations of feature binding time. The supplier cannot simply deploy all the
features in a device and leave it to the discretion of a final user to activate the ones needed
because the device may be overwhelmed, revenues may be lost, and the device may also
misbehave due to possible feature interaction[AABZ14, AKS+13, KK98]. Had it been the
revenue loss is the only concern, the supplier can deploy all the features and provides
license keys to activate the paid features.

In addition to managing variations of products of a product line, supporting varia-
tions of feature binding time is equally important. Without supporting variations of feature
binding time, a product line assets have to go through an ad-hoc adaptation (often through
clone-and-own)– which may affect time-to-market, product quality, and production costs
[DRB+13, RK12]. – to support the change of binding times. Conventional approaches
suggest narrowing and fixing the scope of a domain in order to have more commonality

5

and less variability or dividing the domain into multiple product lines[LKL02, PBvDL05];
the former constraints product line companies from expanding their products and the lat-
ter implies that the company has to maintain parallel assets for the different categories of
customers which increase maintenance and production costs.

After circa three decades of SPLE researches, new implementation techniques have
emerged to support product line variations. These implementation techniques have differ-
ent mechanisms for decoupling of implementation modules in the source codes. However,
not much is known about modifiability of source codes these techniques are used to im-
plement and update reusable assets.

Similarly, much-needed attention was not adequately given to supporting variations
of feature binding time. Most of the current approaches share one more of the following
limitations: multiple representations/implementations of the same set of features, each
for a specific binding time; are interventions targeted at fine-grained model/ program
elements; are at low-level of abstraction; are limited in scope [ARR+16, CRE08, WJE+09].

1.5 About this thesis

This thesis focuses on the technological aspects of capturing and implementing vari-
ability in terms of products’ features as well as the binding times of those features. Thus,
certain processes such as domain scoping, organizational issues, and other managerial
frameworks are out of the scope of this thesis.

The overall goal of the thesis is to make contributions that minimize the following
challenges:

Ch1. The challenge of adapting software product line assets to accommodate emerging
variations that were not planned beforehand. This challenge arises when a new
usage context of software product line emerges and the product line company has
reusable assets to enter the market but additional variations have to be injected in
the existing assets.

Ch2. The challenge of managing variations of binding times to cater for different binding
time requirements for the different categories of customers.

1.5.1 Research Objectives

In order to address the research challenges (Ch1 and Ch2) we set out the following
objectives:

6

O1. To explore the properties of features, in the code-asset, that affect modifiability of
injecting additional variations.

O2. To evaluate modifiability of language-based implementation techniques when inject-
ing additional variations.

O3. To systematically investigate the current support for a flexible binding time.

O4. To propose and validate an improved approach to support variations of feature bind-
ing time and injection of additional variations.

Achieving the first objective (O1) is the first step to addressing the first research challenge
(Ch1) and perhaps to triggering of subsequent researches to further understand the chal-
lenges and to propose alternatives solutions. Achieving the second objective (O2) has a
two-fold benefit: a) to take a cue on the generally missing support, if any, for addressing
the first (Ch1), and b) to expose the pros and cons of the relatively new language-based
implementation techniques proposed or adapted to support flexible variations.

We set out the third objective (O3) for two purposes: a) to systematically consoli-
date the identification of research gap, and 2) to position our contributions in the context
of the existing body of knowledge in a less partial manner. We set the fourth objective
(O4) to simultaneously address Ch1 and Ch2 in a unified approach.

1.5.2 Research Questions

We re-structure the research objective into the following research questions:

RQ1. What are the characteristics of feature in the code-asset that affect the modifiability
of injecting additional variations?

RQ2. How flexible are the new language-based implementation techniques on the injection
of additional variations?

RQ3. What are the current approaches supporting variations of feature binding time?

RQ4. How can we simultaneously and uniformly improve the support for variations of
feature binding time and injection of additional variations?

Answers to the above research questions will determine the extent we achieve the
set out objectives.

7

1.5.3 Contributions

C1. We explored the properties of features at the implementation-level and contributed
with the description of the properties that affect the flexibility of reusable assets. We
experimented with prominent language-based implementation techniques that are
proposed or adapted to support flexible variations; we evaluated their modifiability
when injecting of additional variations and contribute with the exposition of their
pros and cons. This contribution is the fulfilment of the first and second research
objectives (O1 and O2).

C2. We conducted a systematic literature review (SLR) on current approaches proposed
to support variations of feature binding time. We contribute to the field by shedding
lights in terms of where the proposed interventions are desirable and where they may
be limited. This contribution is the fulfilment of the third research objective (O3).

C3. We developed binding time aware modelling language, in a model-driven approach, to
abstract-away the actual binding mechanisms used at the implementation level and,
thus, raised the level of abstraction of binding time management. This contribution
is a partial fulfilment of the fourth research objective (O4).

C4. We contribute with toolsets to encode binding time and check consistency at ar-
chitecture model level. The toolsets have embedded capability to decide a model
element, representing an executable artefact, to instantiate based on binding time
decision. This contribution is also a partial fulfilment of the fourth research objective
(O4).

1.6 Research methods

Adrion cited by Glass [Gla94] proposed four methods of software engineering re-
searches. Two of the proposed methods are a) Empirical method and b) Engineering
method. In the Empirical method, researchers do ”propose a model, develop statistical or
other methods, apply to case studies, measure and analyse, validate the model, and repeat”.
In the Engineering method, researchers do ”observe existing solutions, propose better so-
lutions, build or develop measure and analyse, and repeat until no further improvements
are possible”. Observe that each of the above methods consists of a series of research
activities. To form a research lifecycle, the series of research activities are executed in a
particular order and within a defined research boundary[Fli09].

In this thesis, we executed the research activities in two separate research lifecycles.
The second and the third boxes of Fig.1.1, labelled as Research life cycle 1 and Research
life cycle 2 respectively, highlight the research methods of this thesis. The first research
life cycle is action research in which an open-source version of Oracle Berkeley Database

8

Figure 1.1: High-level outline of the thesis

9

Engine (BDE) was selected as a case study. Three, distinctive, modern language-based
and one classical tool-based implementation techniques were also selected. We transformed
some of the variations, from the case study, into features using the different techniques to
understand the properties of a feature that have impacts on adding variations and effects
of the techniques on the modifiability of product line source codes. The details of the
lifecycle activities and the results are presented in Chapter three (indicated with the Ch3
in the figure).

The second research lifecycle is based on an engineering research method and com-
prises the two research activities: (i) A systematic review of the current approaches to
managing variations of feature binding time the details of which are presented in Chapter
four (Ch4)). (ii) Development and validation of binding time aware architecture modelling
language as an improved approach. The details are presented in Chapter five (Ch5).

Also presented in Fig.1.1 are the outlines of the thesis’s chapters. The topmost box
contains the outline of the current chapter, Chapter one, and that of Chapter two. Chapter
two elaborates on the concepts introduced in this chapter. Central to these concepts is the
feature-oriented approach to SPLE. Thus, the chapter illustrates the feature-oriented ap-
proach to the lifecycle activities of both domain engineering and application engineering.
The chapter also elaborates on the concepts of adaptable variations, feature binding time
in software product line engineering, and the research challenges associated with both.
Chapter three presents the details of the first research lifecycle. Chapter four presents
the systematic literature review on approaches of supporting variations of binding time.
Chapter five presents the detail design and validation of our approach to supporting vari-
ations of feature binding time. In Chapter six we present the summary of the thesis,
revisit the contributions and discussed limitation and future research directions.

1.7 Chapter summary

This chapter provides a general overview of the thesis. The chapter highlights the
background theory of the thesis, which is software reuse from the perspective of software
engineering. The chapter, also, highlights the focal theory of the thesis, which is adaptable
variations and feature binding time in software product line engineering. Further, the
chapter highlights the research motivation, the research objectives, and the formulated
research questions. Finally, the chapter outlines the research contributions and presents
an overview of the research methods that bound the research processes.

Chapter 2

Background

This chapter explains the background concepts of the feature-oriented software
product line. The chapter discusses the feature-oriented approach to capturing and imple-
menting variations in SPLE by illustrating the lifecycle activities of domain engineering
and application engineering with concrete examples. The chapter also explains the con-
cept of feature binding time and its possible variations that may arise between different
products. Lastly, we elaborate on the research challenges introduced earlier in Chapter
one

2.1 Feature-oriented Software Product Line (SPLE)

Throughout the history of software engineering, X-oriented may be used to describe
an engineering activity if X is the dominant technique, concept or an abstraction used
throughout the activity.

In feature-oriented SPLE, a feature is used as the key design abstraction to differen-
tiate between the products of the same family. The motivation behind feature-orientation
is because a feature is recognized by different stakeholders. For example, customers recog-
nized a feature as a service or capability of a product that satisfies their need. Requirement
engineers can use a feature to describe functions that need to be developed. Developers
can also use a feature to describe a unit of functionality that needs to be designed, de-
veloped, tested and maintained. Marketers can use a feature to promote a product to
potential customers[LKL02].

As introduced in Chapter one, software product line approach to reuse is by means
of two engineering phases: (i) domain engineering (DE) and, (ii) application engineering
(AE). At the domain engineering phase, reusable assets are developed based on the analysis
of common and variable characteristics of the products in the domain. At the application
engineering phase, individual products are developed from the reusable assets.

In feature-oriented approach, the common and variable characteristics of the prod-
ucts are expressed in terms of features. Fig.2.1 summarizes the relationship between

10

11

Figure 2.1: Relationship between feature space (top right) on one hand and the deliverables
of both domain engineering (top left) and application engineering (bottom) on the other hand

feature space an the outputs of both domain engineering and the application engineering
activities. As shown in Fig.2.1, features in the feature space are mapped to the reusable
assets (deliverable of the domain engineering activities). Similarly, each product or partial
product, as the case may be, is derived from the reusable asset based on feature config-
urations from the feature space (i.e. valid selection of features). Lastly, product-specific
artefact may be fed-back into the reusable assets in the form of feedback.

In the next section, we discuss feature-oriented approach to domain engineering
in more details. We also discuss feature-oriented approach to application engineering in
Feature-oriented application engineering section.

2.2 Feature-oriented domain engineering

The term ’domain engineering’ is attributed to neighbour’s work of engineering
reusable assets for a group of similar software products in a particular problem domain as
oppose to developing individual products from scratch[Nei84]. Thus, domain engineering
is also known as family engineering as the group of the products can be considered as
members of the same family. In some approaches [BFK+99b], domain engineering is also
referred to as infrastructure construction phase because the activities at the phase are

12

geared toward creating an infrastructure from which individual products in the domain
can be created. Infrastructure usage phase (aka application engineering) is used to describe
the phase in which the individual products are created.

Domain engineering in SPLE may have a narrower focus than in traditional do-
main engineering due to considerations of current market opportunities of the potential
products. For example, smart elderly care product line, with focus on elderly people liv-
ing in care homes, may be created from a smart living domain - the generic domain of
interconnected smart devices. Similarly, a domain in SPLE often combines (part of) sev-
eral horizontal technical domains into a single vertical application domain. For example,
a banking information system product line is a vertical application domain that com-
bines other technical horizontal domains such as database management systems (DBMS),
network protocol, and user interface (UI).

The key activity in domain engineering, and which covers all the lifecycles, is ad-
vance planning for the commonality and variability (C & V) of the potential products in
the chosen domain. Lifecycle activities at the domain engineering phase include: domain
analysis, domain design, and domain implementation. Fig.2.2 highlights the key engi-
neering activities in feature-oriented SPLE. The high-level activities which also constitute
other sub-activities are domain analysis, domain design, and domain implementation.

Domain analysis activity is a systematic identification and organization of product
features and the outputs from this activity are the analysis models. Domain design activity
is the construction of the product line architecture that accommodates the diversities of
the products in the domain and the outputs are various domain design models. Domain
implementations are the conversion of the product line architecture into executable and
the outputs are the implementation artefacts. The outputs are deposited into repository
of reusable assets.

We present the details of the sub-activities of the three high-level activities and in
the subsequent sections.

2.2.1 Feature-oriented domain analysis

Kang et al [KCH+90] introduced the idea of eliciting, designing, and implementing
the common and variable characteristics of products in terms of ”product feature”. The
product features may be identified from four viewpoints as follows [LKL02]:

• Product capability: A feature from the viewpoint of product capability describes
a service provided by the product, a means to operate the product or how the
information is presented to the product user. It may also be a representation of a
certain quality attribute.

13

Figure 2.2: key engineering activities in feature-oriented SPLE

• Product operating environment: A Feature from this viewpoint represents an
environmental constraint in which the product is deployed or used.

• Domain technology: A Feature from this viewpoint represents a way of imple-
menting services or operations that are specific to the domain.

• Implementation technique: Features from the viewpoint of implementation tech-
nique are the available implementation decisions.

To analyse a domain, a good starting point is to use a set of exemplar products in
the domain. In some domains, a group of products portfolio, such as basic and advance,
can be identified. For example, a manual car without air-condition and sunroof may be
consider a basic while the advance one will have full options (automatic, sunroof, air
conditioned, cruise control, etc.).

Beginning from the small set of products, common and variable features should
be identified. However, feature identification may not be completed by analysing small
number of products in the domain. The followings sources should also be consulted:

• Domain terminologies: In a matured and standard domain, terminologies are
already understood by the domain experts. Examples of domain terminologies are
navigation in avionics domain, method of transfer in banking domain, cumulative
grade point average (CGPA) in the information system of higher institutions of
learning. In an immature domain, domain terminologies need to be clarified and
standardized to have consistent meaning to all stakeholders.

14

Figure 2.3: A partial feature model of Automative product line

• Stakeholders: Stakeholders such as domain expert, end users, product marketers,
system designers are potential sources of information about products’ features that
need to be developed.

• Existing documentation: documentation such as user manual, design documents,
and existing laws in the domain are also useful for feature identification.

Domain engineers should create a domain dictionary. The domain engineers should
also define, precisely, each of the identified features, and the definitions should be added
to the domain dictionary. Identified features should then be organized in a feature model.
We discuss feature modelling in the next section.

2.2.1.1 Feature model

A Feature Model (FM) has been widely used to organize commonality and vari-
ability (C &V) information of a product line[MPH+07]. A feature model is a graphical
tree structure in which product features of a product line are organized with their types
and their relationships. Feature type is one of the following broad categories:

• a mandatory type: a feature of this type is a common feature that is manifested
in all the products of a product line.

• a variable type: a feature of this type is either an optional, is part of an alternative
group (only one feature in the group can be selected) or is part of inclusive OR
group feature (more than one feature can be selected from the group). Unlike the
alternative group, the OR group features are not mutually exclusive and can either
contain all optional features or at least one of the features must be selected.

15

Fig.2.3 depicts a hypothetical feature model of an automotive product line adapted
from Kang et al [KCH+90]. In the feature model, Powertrain and Transmission features
are mandatory because they must be available in every car. Comfort and Advanced Driver
Assistance (ADAS) are optional features because they do not have to be fit in every vehicle.
Automatic and Manual are alternative features since the two features cannot co-exist in
the same car. Air Conditioning and Sunroof are OR group features because a car can
have zero or more of the features.

Relationships between features can be hierarchical or horizontal (aka cross-tree con-
straints). The major hierarchical relationship is a composed-of relationship. The feature
on top of the composed-of hierarchy, the parent feature, represents an abstraction over
the constituent features (children-features) beneath the hierarchy (e.g. Transmission in
Fig.2.3). Features in a composed-of relationship may also exhibit a generalization/spe-
cialization association. In this case, the main feature is the generic feature that represents
a suppression of detail differences of the children’s features. Each child feature is a spe-
cialization of the generalized feature. For example, in Fig.2.3, Manual and Automatic are
specialization of Transmission feature.

In contrast to the hierarchical relationship, horizontal relationships are usually
presented separately from the feature model as a series of dependency rules. These are
also called composition rules because the rules are specifications of how features should be
composed. For example, in Fig.2.3, Air Conditioning requires Horsepower >100 represents
a composition rule. In other words, a dependency constraint from Air conditioning to
Horsepower.

A selection of a valid combination of features is known as as product configuration.
For example, the following is a valid configuration of features from Fig.2.3: Horsepower
150, Powertrain, Automatic, Air conditioning.

Features organized in the feature model may be validated with a use case model.
Beginning from the feature modelling and then the use case modelling is recommended
when the domain is familiar and significant expertise exists. In an unfamiliar domain, it
might be more effective to start with use case modelling before feature modelling.

We discuss use case modelling in the next section.

2.2.1.2 Use case model

A use case model describes a software product from the user’s perspective. In
feature-oriented domain analysis, a use case model can be used to support the identification
of variations in the features of a product line. Thus, variant model elements such as
actors, systems, and use cases should be identified by exploring user-level semantics of the

16

collective products. Occasionally, the product line has to be explored at a sub-function
level to clarify variation.

To validate the identified features using the use case model, the domain engineers
should do the following checks:

• Check if each use case can be mapped to a feature. If not, there may be a feature
that is missing from the feature model.

• Check if all the features are addressed by the use cases. If not, there may be use
cases that are missing.

• Check if variations of use cases and variations of features are consistent.

• Check if the use cases are consistent with the semantics of the features defined in
the dictionary.

.

In the next section, we demonstrate an example of domain analysis with the feature
and use case models.

2.2.2 Domain analysis example

To present a concrete example of the domain analysis, we introduce Education
Software Product Line (EduPL), an enterprise product line for universities initiated by
a partner university from a developing country. In that country, in which EduPL was
conceived, a common regulatory body dictates most of the critical operations of the uni-
versities. Hence, the product line approach is expected to be beneficial.

We begin with an example of feature modelling of EduPL in the next section.

2.2.2.1 Feature modelling example

Fig.2.4 shows a partial feature model of EduPL. As shown in the figure, we iden-
tified the following features as some of the services of the products: User Account, User
Notification, Admission, Registration, and Result Computation. The User Account fea-
ture provides services for maintaining an account with the institution’s portal when the
product is deployed. Since validating the user while creating an account is available only
for some products, User Validation is an optional child feature of User Account.

17

Figure 2.4: A partial feature model of Education Software Product Line (EduPL), an
enterprise product line for universities

User Notification is a service feature and is decomposed into Basic and Advance.
Basic provides display services of status messages on a user’s screen. Advance provides
services for sending messages to a user via email or telephone or both. Hence, Text Message
and Email are modelled as OR group features. Email and SMS are two methods of im-
plementing user notification - hence they were identified from implementation technology
perspective.

Admission feature provides services for application into various programmes of
an institution and it is decomposed into three children: (1) Under Graduate - provides
services for admission into under graduate programmes; (2) Graduate - provides services
for admission into post-graduate programmes; Sub-degree - provides services for admission
into sub-degree programmes.

Registration feature provides services for enrolling accepted applicants and thereby
changing their status from applicants to students. One of the children features of Registra-
tion feature is Module Registration which provides services for students to select modules
and appropriate staff to validate the selections. The registered modules would later be
retrieved and assigned marks, after several assessments and semester examination.

Result Computation feature provides service for evaluating students’ academic per-
formance based on the marks they score from the registered modules. One of the perfor-
mance indicators is cumulative grade point average (CGPA) which is used to determine
students current standing using aggregate score of all examined modules do date. CGPA
Scale and Fail Count are some of the children feature of Result Computation and they

18

represent features from domain methods.

Different institutions adopt varying scale for computing CGPA; hence CGPA Scale
represents an alternative feature group. Fail Count represents how a repeatedly failed
module would affect student’s CGPA. With the Once child feature of Fail Count, the
weight of a failed module is added to the denominator part of computing the average
only once, no matter how many time a student failed the module, hence less impact on
student CGPA. With the Continuous count, weight for the repeatedly failed module would
continue to be added to the denominator part of computing the average until the failed
module is passed in the subsequent attempt, hence negatively affects CGPA of students
who repeatedly failed modules.

Record Management is a feature identified from the perspective of products oper-
ation and represents one of the critical operations in EduPL. The feature is decomposed
into Create, Update and Delete for record creation, record updates and records removal
operations respectively. Delete is an optional child feature of Record Management because
some institutions have a policy to not remove a stored record. However, that policy may
change with an increasing concern about users’ lack of control on their private data. For
instance, European General Data Protection Regulation (GDPR) [Uni18] mandated that
data controllers must remove a private data of their subject within a specified duration
upon request.

It may be counter-intuitive as to why Record management is a root feature. One
may ask why not as a child feature of User Account, Application, and Registration features
since each of the mentioned features requires records to be managed. However, it is
important to note that features in a feature model should not be organized as functional
dependencies or call hierarchies; features should be organized so that commonalities and
variabilities can be recognized easily. The functional dependencies should be analysed
later during domain design. Thus, feature that is related to many other features should
also be moved to the root.

As with a single product development, sometimes it is useful to decompose the
overall product line into subsystems for further analysis and design. The next paragraph
presents the high-level subsystems of EduPL.

EduPL Subsystem Overview
Fig.2.5 presents the package diagram of EduPL subsystems. Note, however, without do-
main knowledge it may not be possible to break the product line into subsystems without
further exploration. In Fig.2.5, Account Management subsystem encapsulates User Ac-
count, User Notification, and Record Management aspect of the User Account feature. The
Admission Management subsystem encapsulates Admission feature and its related record
operations. Admission Management is dependent upon Account Management because
having an account is a pre-requisite to starting an application for admission. Similarly,
Enrolment Management depends on Account Management and Admission Management.

19

Figure 2.5: subsystem overview of EduPL(an enterprise product line for universities)

Lastly, Results Management depends on Enrolment Management.

in the subsequent illustrations, we focus on the User Account Management subsys-
tem for brevity. In the next section, we present an exploration of Account Management
with use case to validate the identified features from the feature model of Fig.2.4.

2.2.2.2 Use case modelling example

Fig. 2.6. depicts the use case model of the Account Management subsystem.
Gomaa et al [Gom05] illustrate a variant model element of a use case model with UML
stereotype. However, to avoid cluttering the model, we represent a variant model element
with dotted outlines.

In the model of Fig.2.6, the use case Create Account represents an interaction
between a new user and the system (the software product) to create an account and the
use case is mandatory. While creating an account, the system can optionally validate
the new user. Thus, Validate Account use case optionally extend Create Account use
case. Similarly, Validate Account use case uses Send Notification use case to complete its
role. Send Notification is an optional use case and represents sending notification via text
message or email. Display Status is a mandatory use case and it represents basic user
notification. The Update Account is a mandatory use case and corresponds to the update
operation of an account. Lastly, Delete Account is an optional use case that corresponds
to the optional delete operation of an account.

20

Figure 2.6: A use case model for Account Management subsystem of EduPL

Table 2.1: Feature to use case mapping

Feature Use Case
Create Create Account
Validate User Validate Account
Advance Notification Send Notification
Update Update Account
Basic Notification Display Status
Delete Display Status

21

Table 2.1 presents the mapping from features to use cases. In the table, Create,
Update, and Delete features are mapped to Create Account, Update Account, and Delete
Account use cases respectively. User Validation feature is mapped to Validate Account
use case, Advance Notification feature is mapped to Send Notification use case. Lastly,
Basic Notification is mapped to Display Status use case.

When variations are fully captured and (partially) validated with the use case, we
transition into domain design.

2.2.3 Domain design

Domain design is the activity of crafting the domain architecture, or more specifi-
cally, a product line architecture (PLA). Architecture is a ”principle design decision about
a software product” [TMD10]. A PLA, therefore, is an embodiment of ”principal design
decisions” about all potential products of a product line. As with the architecture of a
single software product [Ran98, Kru95], PLA may have several representations and each
of the representations should accommodate diversities of the products.

In feature-oriented domain design, PLA model can be obtained through gradual
refinements of domain objects that should be identified from the products’ features. In the
refinement process, we construct other models to understand both the static and dynamic
structure of the domain. We also consider the dominant architectural style of the intending
products. In this thesis, we refer to the component and architecture model as the terminal
PLA while the various models leading the terminal PLA as intermediary design models.
In the subsequent paragraphs, we discuss the refinement process and the required models.
We begin with a model that is formed by the objects in the domain.

A domain object model (DOM) represents the domain structure in terms of objects
and their relationships. To design DOM, we identify candidate objects from the feature
model. Not every feature can be mapped to a domain object though. Some features
manifest as operations on domain objects or parameters on a generic object and therefore
are not candidate objects themselves.

After identifying candidate domain objects, we then construct the domain object
model by adding the semantic relationship between the objects. A relationship between
features can also be directly translated into the relationship between objects. The domain
object model should then be refined by exploring detail interaction between the domain
objects.

Interactions between the domain objects must be explored with one or more dy-
namic models. The level of detail exploration varies from domain to domain. It may be
sufficient to explore the flow of execution of operations to identify key components and

22

Figure 2.7: roles for layered components in N-tier architecture pattern

their connections. In that case, the fine-grained details are further explored by developers.
In the cases of fluid domains, such as predominantly state-based, details interaction could
be explored in great detail. So, also, in domains that are highly sensitive to business rules
such as insurance.

Part of domain design is consideration of architectural pattern and style of the
intending software products. An architectural pattern is a generic solution to a reoccurring
architectural problem that can be adapted to suit many contexts. For example, multi-
tier architecture is a pattern to solve the problem of logical separation between data,
computation, and control. The architectural style is a class of architecture that is found
repeatedly in practice and often dictates the topological arrangements of architectural
components. However, the two (architectural style and architectural patterns) are not
strictly different[TMD10]. Generally, patterns and styles facilitate some quality attributes
such as maintainability and ease of evolution. An architectural pattern or style may
have a significant influence on how domain objects interact and how they are refined into
components and connectors. Therefore, we should decide on the architectural pattern or
style we wish to enforce. For example, when Adopting an N-tier architecture pattern, to
separate data, computation, and control, we may assign roles to layered components as
indicated in Fig.2.7.

In Fig.2.7, UI is a component that interacts with user to convey system status
and forward user command/request to Control component. Control is a component that
coordinates or control steps of operations or other components. Service is a component
that provides services to other components by performing some computation, process-
ing or transformation. The domain objects should then be refined into components and
connectors based on the dynamic exploration and the adopted architectural pattern.

23

Figure 2.8: a domain object model (DOM) for Account Management subsystem

In the next section, we illustrate an example of PLA model that is derived from
the gradual refinements domain objects.

2.2.4 Domain design example

This section illustrates an example of domain object model and its gradual refine-
ments to component and connector architecture model. Along the line, we briefly illustrate
the role of architecture style and domain exploration with a dynamic model.

Domain object model
Fig.2.8 depicts the domain object model of User Account Management subsystem. The fig-
ure shows the following domain objects as identified from the product features: User, Ac-
count, Notification, System, Basic (Notification), Text Message (Notification), and Email
(Notification). In the same Fig.2.8, the following are the relationships between objects:
A User ’manages’ Account ; System ’validates’ User and also ’sends’ Notification to User;
User ’receives’ Notification. The ’manages’ relationship is a combination of ’creates’, ’up-
dates’ and ’deletes’ relationships that are between the User and the Account objects.
In addition, the Generalization/ Specialization relationship between Notification and its
children features in the feature model of Fig.2.4 are translated into Generalization/ Spe-
cialization between Notification object and its sub-types.

Next, we explore the flow of operations between the domain objects using an ac-
tivity diagram.

Activity diagram
Activity diagram is one of the dynamic models that can be used to explore concise domain

24

Figure 2.9: Activity diagram showing (a) process flow for account creation and (b) process
flow for account update

operations by showing the flow of executions from one activity to another. In domain en-
gineering, it suffices to explore the domain only at a high-level and not the detail messages
transfer between activities. One of the goals is to identify key operations that must be re-
alized by the intending components and connectors. Another goal is to identify variations
of activities between products of a product line.

Fig.2.9 illustrates the key operations in Account Management subsystem with a
UML activity diagram. In the figure, unlike in UML, we use dotted outlines to depict a
variable activity and the decision branch to depict a variation point. Fig.2.9a shows the
flow of activities in the process of account creation while that of Fig.2.9b shows the flow of
activities in the process of account update. The flow of activities in the process of account
deletion (not shown in the figure) follows a similar pattern with that of Fig.2.9b.

Subsequently, we refined the domain objects into components and connectors based
on the dynamic flow of the activity diagram of Fig.2.9 and the N-tier architecture pattern
of Fig.2.7.

Components and connectors PLA model
Fig 2.10 depicts component and connector model of the Account Management subsystem.
We use UML notations of component and connector but with slight modifications. We
used dotted outlines to represent the variants architectural elements rather than the usual
stereotype. However, we retained the usual ball to denote providing connection (provided
interface) and the socket to denote requiring connection (require interface).

25

Figure 2.10: components and connectors PLA model that is derived from the gradual
refinements of DOM. In the figure, dotted outlines represent variable architectural elements

Objects that are playing a system role in the domain object model should be anal-
ysed further. If the role is global, the object should be refined into the overall product
control component. For example, a component that coordinates the overall operations
of other components in a mobile telephone domain may be refined into Phone Controller
component. Similarly, the component coordinating the overall Account Management sub-
system may be refined into Account Controller component. However, if the role is local, it
should be refined into a control component that is controlling the local activities. For ex-
ample, in the DOM of Fig.2.7, System plays the local role of coordinating user validation,
hence we refined it into Validation Controller component to coordinate User Validator,
Email, and Text Message service components.

We refined the domain objects, based on the N-tier architecture and the activity
diagram, into two control components, one data component and four service components.
The control components areAccount Controller and Validation Controller. The data com-
ponent is the DBMS. finally the service components are Account Manager, User Validator,
Email, and Text Message (Fig.2.10).

From the top-left to top-right of Fig.2.10, the Account Controller Control com-
ponent receives a request to manage an account and forward the same to its required
connection to Account Manager service component. In addition, Account Controller op-
tionally requires connection to Validation Controller. The top-right component, Account
Manager service component, manages the account related records in the persistent storage.
Hence, it requires a connection to the DBMS component.

From the middle of Fig.2.10, Validation Controller is connected to the conditional

26

required end of the Account Controller. That is, Validation Controller receives request to
validate user, from Account Controller, and forward the same to its required connection
to User Validator service component. In addition, the component also required connec-
tion to components providing notification services(i.e Email and Text Message service
components). The User Validator component generates token to be sent to the user to
be validated and record the same token in the persistent storage. Hence, it also requires
connection to DBMS.

Before implementing the domain, further exploration is still needed for the nature of
communications between components. Also, internal components implementation should
be explored by the developers. Preferably, each implementation details of a component
should remain local to it and not cross over to other components.

When domain design is completed. The next step is domain implementation. We
discuss popular approaches to domain implementation in the next section.

2.2.5 Domain Implementation

Domain implementation is the activity of converting the domain design into exe-
cutables. The domain may be implemented beforehand as part of the domain engineering,
or maybe deferred until a product, from the product line, is requested. In the latter case,
the domain is implemented in concurrence with application engineering.

In this section, we discuss the implementation as part of domain engineering. We
also discuss the domain implementation in concurrence with the application engineering
in Feature-oriented application engineering section.

At the implementation level, a feature manifests as one of the following:

a. one or more major units of implementation (e.g. modules, components, classes)
exclusive for the realization of the feature;

b. many fragmented minor units of implementation (e.g. functions, attributes, clauses)
scattered in other major units;

c. a combination of (a) and (b).

Kästner et al [KAK08], in an exploratory study, refer to the manifestations of
feature in the implementation artefacts as granularity of variations. In summary, a feature
may be traced to many parts of the implementation artefacts and the parts may be coarse-
grained or fine-grained implementation units[KAK08]. Conversely, an implementation
artefact can (in parts) implement more than one feature.

27

There are different, non-mutually exclusive, techniques to implement the domain
design. Below are four of the most popular techniques:

Annotative techniques
In the annotative approach, source-codes fragments for variable features are annotated to
be conditionally compiled. That is, source-codes of variable features are only compiled if
the feature is included in the product configuration. Consequently, the technique is also
called conditional compilation. A simple implementation of a conditional compilation is to
have an additional facility, in the development environment, that pre-processes the source-
codes before compilation and comments-out the part of which the corresponding variable
features are not in the product configuration. The approach is also called pre-processing
because the annotated source-codes fragments are pre-processed before compilation.

Listing 2.1 shows an example of annotations (pre-processor directives in this case)
that are used to mark features. In the source-codes snippet, the //#ifdef//#endif in
line 7-9 annotated code fragment of the User Validation feature. If the feature is not
included in a given product configuration, the annotated source-codes will not be compiled.
Likewise //#ifdef//#endif in line 11-15 annotated source-codes fragments of Delete
feature. The portion of the annotated source-codes would be commented out if the Delete
feature is not in the product configuration.

Annotative approaches have been heavily criticized for source-codes obfuscation,
difficult to understand and maintain the source-codes especially when the #ifdefs are
heavily nested[MP02, ZBP+13, LAL+10]. The nesting of #ifdefs is necessary when a
parent feature is optional and also some of its child features are optional. It is also
difficult to reason about individual features because the annotations may span several
places in several physical files. Thus, the annotative technique lacks traceability between
a feature and its source-codes implementation. To remedy some of its shortcomings,
Kästner et al [KA09] proposed an approach to simulate feature traceability in the pre-
processing technique, through assigning of unique background colour to source codes of
the same feature [KA09]. In the approach, a developer can also view or query program
source codes of a particular feature of interest and thereby improving modularity.

Annotative approaches can be used to implement a feature of any level of granular-
ity because the technique is insensitive to the syntax of the target programming language.
Pre-processing of annotations has been popular with the developers [LAL+10, HZS+16]
and has been in existence even before the emergence of SPLE researches.

Listing 2.1: Examples of pre-processor directives used to implement vari-
ations

1

2 public class AccountController {

3

28

4 public String createAccount (....){

5 //forward request to Account Manager Service

6 // component to actually create the account

7 #ifdef User Validation

8 //forward request to Validation Controller component

9 #endif

10 }

11 #ifdef Delete

12 public String DeleteAccount (....){

12 //forward request to Account Manager Service

13 // component to actually remove the account

14 }

15 #endif

16

17 }

Compositional techniques
In the compositional technique, a domain is implemented as combinable implementation
units. Approaches in this class of technique can be language-based or tool-based. In
the language-based category, the technique depends on programming language support.
Various strategies, such as interface-implementation separation, are used to decouple im-
plementation units. Example of language-based composition approaches includes compo-
nent/service composition, plugin composition, and independent module linking. In the
tool-based category, the technique does not depend on programming language support
but rather a tooling facility that is external to the programming language used. Examples
of a tool based composition approaches are physical file inclusion to the build path and
version control system.

A common limitation of the compositional technique is an inability to separate
fine-grained source-codes of a feature. However, In the language-based approaches, con-
figuration parameters can be used to tailor coarse-grained components and therefore taking
care of fine-grained variations.

Activation/deactivation techniques
In the activation/deactivation approach, variable features are simply turned off or on
depending on the product configuration. In this approach, source-codes for all the variant
features that may be used have to be compiled and shipped with the product. If a feature
is deactivated its various execution paths in the source-codes are sidestepped. That is,
feature execution is controlled with conditional statements such as if.. else and switch.
Feature activation conditions may be read from an external source and stored as global
variables and the conditional statements test the values stored in the global variable.
Depending on the property of variation point, the global variable may be set once-and-

29

for-all or it may be changeable. A license key, for activating product features, can be
regarded as a sophisticated implementation of activation/deactivation technique.

Listing 2.2: Examples of global variables used used to implement variations

1

2 public class AccountController {

3 static boolean USER_VALIDATION = false;

4 static boolean DELETE= false;

5

6 public String createAccount (....){

7 //forward request to Account Manager Service

8 // component to actually create the account

9 if (USER_VALIDATION){

10 //forward request to ValidationController component

11 }

12 }

13 if (DELETE)

14 public String DeleteAccount (....){

15 //forward request to Account Manager Service

16 // component to actually remove the account

17 }

18 }

19

20 }

Listing 2.2 depicts an example of the activation/deactivation technique in the
source-codes snippet. In the snippet, the feature activation is controlled using a combina-
tion of global variables and conditional statements. In line 3-4 of the listing, USER VALIDATION
and DELETE are Boolean global variables that take the value of true or false. The global
variables are used in line 9 and 13 to activate part of User Validation and Delete fea-
tures respectively. Subsequently, source-codes segments of the corresponding feature are
only executed when the corresponding global variable is set to true (i.e. the feature is
activated).

The activation/deactivation technique can be used to implement a feature at all
levels of granularity at different phases of the product lifecycle. However, the technique is
associated with an over-bloated product because of the variable features must be delivered
even if they would never be used. Similar to annotative technique, It is also difficult to
reason about individual features because several conditional statements may have to be
used to activate/deactivate a single feature. In practice, this technique is often used in
combination with other techniques such as the compositional approach.

30

Model Driven Development (MDD)
Model Driven Development (MDD) is a superset of Model Driven Architecture (MDA)
- an Object Management Group (OMG) initiative for raising the level of abstraction of
software development [Fra03]. One of the benefits of MDA is gaining more value from a
model in the sense that implementation artefacts such as executable can be generated from
the model. Similarly, proven practices such as design patterns, architectural patterns, and
architectural styles can be codified and enforced in the models. Thus, a model is not only
a design artefacts but also part of implementation artefactss.

Recently, MDD is gaining popularity for the domain implementation and the tech-
nique is orthogonal to the many other techniques including the compositional, the annota-
tive, and the activation/deactivational approaches. MDD can be used to model combinable
components as in compositional technique [VV11]. Model elements can also be filtered
in consistent with a product configuration similar to annotative technique[VV11, CA05,
WG18, BW14]. Global variables can also be modelled on model-driven components. Con-
figuration files may then be generated from the model elements and those values are fed
into conditional statements to activate/deactivate desired features.

Other techniques such as generative [CE00], frame technology[MP02], and language-
based [Bat05a, SBB+10] initiatives can also be used for the domain implementation.

We have so far discussed the lifecycle activities of domain engineering phase - the
phase to create reusable assets for a family of products. In the next section, we discuss the
lifecycle activities of feature-oriented application engineering phase - the phase to create
individual products from the reusable assets produced at the domain engineering phase.

2.3 Feature-oriented application engineering

Application engineering is a phase in which the specific products are derived from
the reusable assets that were developed earlier at the domain engineering phase. Ideally,
application engineering should be less stressful. Some enthusiastic of automated pro-
duction of software advocate for eliminating the logical separation between the domain
engineering and the application engineering by reducing the later to simple selections of
features and then ’push-button’ to create the product [Kru06]. In reality, however, the re-
quired efforts in application engineering can range from a thorough analysis and complete
implementation of tailored abstract models to the push-button activity.

In the through analysis and complete implementation scenario, an application en-
gineer receives high-level requirements of the products; matches the requirements into
features; derived, from the reusable assets, abstract models (both analysis and design)
that are specific to the product. The terminal architecture model would then have to be

31

implemented entirely. This is the case when the domain is implemented in concurrence
with the application engineering.

Simple feature selections and then ’push-button’ to create a product can be achieved
in the case of a specialized and narrow technical domain such as database and network
protocols. It is also possible in a portfolio of products, such as a microwave oven product
line where the features to be selected are limited to those pre-planned (i.e. the product
line company is no willing to offer product-specific extensions). Usually, the domain has
been implemented with annotative, MDD, or generative techniques. To derive a product
in that scenario, an application engineer selects the desired features and then push the
button to, automatically, generate/assemble implementation artefactss in consistent with
the feature selections. In that case, analysis and design models that are specific to the
product may also be created through the push-button activity.

Somewhat in the middle of the two extremes is to reuse the analysis and implemen-
tation of a similar product already created, rather than to develop the terminal abstract
model from scratch. Similarly, product-specific extensions may have to be developed.

Recall, also, various techniques can be used as a stand-alone or in combination
to implement the domain. Regardless of the magnitude of the efforts required and the
techniques used, the following activities can be identified as part of application engineering
lifecycles: product requirement elicitation and product instantiation. We explain the two
activities in the next two sections.

2.3.1 Product requirement elicitation

Product requirement elicitation begins when a customer made initial contact and
specify his requirement. The customer’s requirements should be matched to the pre-
planned features. The application engineer should explain, to the customer, each of the
variable features and its implication to the overall product. The application engineer
should also guide the customer to resolve the variations by selecting/deselecting optional
features and choosing between the alternatives. If all the requirements match the pre-
planned features then no further analysis is required.

If, however, the customer requirements or part of the requirements differ from the
pre-planned features, the application engineer should still match the extraneous require-
ments with respect to the pre-planned features. Therefore, the requirements should be
compared to closely related features and the difference may be modelled either as an ex-
tension or alternative to an existing feature. In that case, a new node has to be created
on the feature model; both the analysis and the design models have to be updated to
accommodate the new feature.

32

The extraneous requirements may be modelled as a product-specific extension if
there is no existing feature to be compared with. In that case, the domain models should
not be updated but the feature may still be suggested to similar customers. In some cases,
the customer may negotiate with the product line company to hide the specific extension
as it may be the customer’s secret advantage over their competitors [HKM+13].

To complete the product requirement elicitation, the product analysis models such
as the use case model should be derived from the use case model produced from the
domain analysis activity. The customer specific-extensions, if any, have to be reflected in
the use case model of the product. Deriving the use case for the specific product can be
done manually or with the assistance of a tool. In the manual approach, the domain use
case model would be documented but without the model elements that correspond to the
deselected features. In other words, the model elements of the use case model are filtered
in consistent with the feature selection. In the tool approach, the use case model could be
filtered automatically in consistent with the feature selections.

When requirement elicitation for the specific product is completed, the next activity
is product instantiation.

2.3.2 Product instantiation

To instantiate a specific product, specific artefactss realizing all of the product’s
features have to be included in the specific configuration. At this stage, all the design
models, including that of product-specific extensions, must have been completed. Conse-
quently, a product can be instantiated through one or more of the following activities:

• Manual tailoring and implementation of an abstract terminal model;

• Automatic derivation of source-codes from the reusable assets;

• Automatic generation of source-codes from the design models.

In the manual tailoring and implementation of the abstract terminal model, inter-
mediate models such as the domain object model and the activity diagram are filtered in
consistent with the feature selections and then documented for future references. Simi-
larly, the terminal architecture model is filtered in consistent with the feature selections.
The filtered terminal model will then have to be fully implemented if no product has been
instantiated already (i.e. the product is the first to be instantiated from the product line).
However, in the case of instantiating the subsequent products, prior source-codes should
be reused.

Automatic derivation of source-codes, from the usable assets, is one of the button-
push approaches to product instantiation. This is the case when the domain is fully

33

implemented (source-codes exist in its entirety) and in which the feature selections are
connected to the source-codes. Similarly, product-specific extensions, if any, must also have
been implemented. The design models, both the intermediate and the terminal models (if
they exist) are filtered in consistent with the feature selection and then documented for
future references.

In the automatic generation of implementation artefacts from the architecture mod-
els, a product is instantiated through the generation of source-codes from the tailored ter-
minal model. This is the case when the domain is implemented with MDD or generative
technique. Intermediate models such as the domain object model and the activity diagram
can either be abstract or concrete and should also be tailored in consistent with the feature
selection and then documented for future references. Unlike the automatic derivation from
the reusable assets, in this approach, source-codes do not exist in its entirety but can be
generated, either fully or partially, from the design model.

It may be possible to select architecture configuration as a part of the product in-
stantiation if the quality attributes were not already captured as features. For example, in
EduPL, we may have a quality attributed related feature called Users Load with children
features as <Five Thousand and > Five Thousand as alternative and the choice between
the alternatives determines the connection mechanism to be used between architectural
components and whether or not the application and the persistent storage would be dis-
tributed on separate servers. In the absence of quality attributes related features from the
selectable features, separate selections of architecture configurations are required.

In the next section, we illustrate an example of feature-oriented application engi-
neering.

2.3.3 Application engineering example

In this section, we illustrate an example of feature-oriented application engineer-
ing using the Account Management subsystem of EduPL. We begin with an example of
requirements elicitation of a specific product in the next section.

2.3.3.1 Product requirements elicitation example

Assuming management information (MIS) Officer, from a potential customer uni-
versity, has established a contact with the EduPL company for a software product and
explained that one of their high-level requirements is to manage accounts of their portal
users. The application engineer should match the requirements of managing accounts of
the portal users to the features of Account Management subsystem and explain, to the MIS
officer, the variable features and their implications. The application engineer should then

34

Figure 2.11: use case models (left) in consistent with the feature selections from the
configuration interface (right)

help the MIS officer to resolve the variations by selecting/deselecting from the variable
features. Variations resolution decisions are usually presented in a configuration interface.
Example of a configuration interface is feature configurator depicted at the right hand side
of Fig.2.11a and Fig.2.11b.

After resolving the variations, the application engineer will then has to filter the
use case model, and any other analysis model, in consistent with the selected features. The
left hand side of Fig.2.11a and Fig.11b shows examples of two instances of use case models.
In each of the figures, the variable model elements of the use cases have been filtered in
consistent with the features selected from feature configurator depicted at the right hand
side of the figure. In the Fig.2.11a, the customer selected none of the variable features.
i.e. the customer is happy with the basic features of Account Management subsystem. On
the other hand, in Fig.2.11b, the customer selected Email and Text Message as variable
features. Recall that Email and Text Message are OR children feature of Advance, which
is also a child feature of User Notification. Hence, the Send Notification use case in the
use case model corresponds to the Advance feature in the feature model (refer to Table
2.1).

35

The example so far assume that customer requirements match the pre-planned
features of the Account Management subsystem. In reality, that is not always the case.
Consider, for example, a case of highly exclusive university where a user has to pay a
certain fee to create an account. Such university would require a Payment feature as
their specific extension. The reusable assets of EduPL will have to be updated with
the extension if many other exclusive universities are also likely to require the Payment
feature.

When the requirements of the specific product are captured and documented, the
next activity is product instantiation. We illustrate an example of product instantiation
in the next section.

2.3.3.2 Product instantiation example

Assuming the application engineer wants to instantiate the products based on the
filtered use cases of Fig.11a and Fig.11b. The application engineer should filter the com-
ponents and connectors architecture model to be consistent with the use cases and by
extension to be consistent with the feature selections. The model will then have to be
implemented.

Fig.2.12a and Fig.2.12b depict components and connectors model corresponding to
the use cases of Fig.11a and Fig.11b respectively. In this example, the implementation
of the first product depicted in Fig.2.12a should be reused in the implementation of the
second product represented by the model in Fig.2.12b.

We have so far discussed the background concepts of feature-oriented software
product line engineering. The focus of the discussion has been on the feature-oriented
approach to capturing and implementing variations. Moving forward, we shall elaborate
on the key focus of this thesis. In the next section, we begin with the adaptability of
reusable assets to accommodate emerging variable features.

2.4 Research focus

Recall, in Chapter one, we introduced the adaptability of reusable assets and vari-
ations in feature binding time as the focus of this thesis. In this section, we elaborate on
both beginning from the adaptability of reusable assets.

36

2.4.1 Adaptable reusable assets

Usage-context is any contextual setting in which software product is deployed or
supplied to[LK10, HT08]. For example, the Berkeley Database Engine (BDE)[Coo17],
introduced in Chapter one, is deployable into many usage-contexts: due to its small foot-
print, it suits embedded devices such as smartphones and smart cards; it appeals to mes-
saging servers and directory servers applications because of its high concurrency; its fast
front-end cache can as well make it desirable for e-commerce applications. Similarly, some
products of a product line are supplied to many other product lines. For example, vehicle
infotainment products are often supplied to different car product lines in an automotive
domain. Application domains such as smart home, as discussed in Chapter two, also have
wide-range of usage-contexts and multiple chains of product lines[HT08, HMT09].

Variations in usage-contexts, for products of a product line, have been fuelling
demands for adaptable reusable assets. The reusable assets should be flexible to ad-
dress variations that may emerge with additional usage-contexts. This is the case when
some mandatory features that were hardcoded to manifest in all the products have to be-
come optional in other products[HMT09]. More specifically, product line assets, especially
source-codes, have to be retrofitted to inject the emerging variations.

Injecting additional variations to existing reusable assets is not the only way to
address the emerging variations though. The main assets may be cloned and extended
with the specific variation requirements [SB99]. The clone can be created by either physi-
cally copying the original assets to a new location, or by using configuration management
branches. However, cloning introduces additional maintenance overhead because some
tasks, such as testing and bug fixing, need to be performed on each of the duplicated
copies[DRB+13].

In software engineering literature, changes to inject additional variations may be
classified under adaptive maintenance, which is crucial to software development life-cycle.
Adaptive maintenance, of single product development, roughly consumes about 60 percent
of total maintenance costs[Gla01]. The maintenance cost of a product line is intuitively
higher than that of single product development because of the likelihood to modify the
assets is relatively higher in the product line development. In addition, the assets modi-
fications in the product line development propagate changes to many parts of the assets
due to dependencies between features[CCG+16].

In addition to the adaptability of reusable assets to accommodate wide-ranging
and emerging variable features, binding time of the features and their possible variations
that may arise between products is another focal point of this thesis and we elaborate on
that in the next section.

37

2.4.2 Feature binding

Feature binding is a physical inclusion of the feature in the product configuration
and making it available for use. Our view of feature binding is consistent with the view
articulated in the current literature[LK03, Lee, VdH04]. More specifically, and in this
thesis, feature binding means the binding of a feature to a product in contrast to the
binding of a feature to the product execution context. This section explains the two forms
of feature bindings.:

Feature binding to a product
Feature binding to a product is about a physical inclusion of both the variable structure
and the variable behaviour in the product configuration. For example, assuming the
following are access control features of a smart home product line: Keypad, Finger Print,
and Remote Control. From the variation type point of view, these features belong to OR
group and each of the three is a specialization of the Access Control feature. Hence, all
the three features can be included and made available to use in a specific smart home.
However, even though all the three features can be bound to the smart home product (i.e.
included and made available for use), only one of the three features would be executed at
a time because they represent different forms of the same thing: access control.

At any given time, a feature in operation is said to be bound to the execution
context of the product and that is our next explanation.

Feature binding to the execution context of a product
Feature binding to execution context is about the product exhibiting the specific variable
behaviour at a given time. For example, the access control handler of the smart home
product, in the smart home example, has to be given a reference to one of the three features
at a time and that is the variable feature in the execution context at that moment. In the
implementation, there are two modes of binding a feature to the execution context of a
product[CE00]:

i Static feature binding mode: the feature in the current execution context can be
determined by looking at the static structure of the source code. For example, if a
reference to the Keypad feature is hard-wired in all the places where access control
is required, the Keypad feature is said to be statically bound.

ii Dynamic feature binding mode: The feature in execution context is not known
until at invocation time because one of several variants features may be invoked
at execution time[BLL+14, TSCS16]. That is, the feature in the current execution
context cannot be determined by looking at the static structure of the source codes.
For example, if more than one features are included for the access control, any of
the included features may be used (bound to execution context) to access the smart
home.

38

Distinguishing between the two forms of bindings (binding to product and binding to ex-
ecution context) is important to avoid limiting the scope of feature binding to only the
binding to a product execution context. In most cases, a discussion/technique with a
limited scope of binding a feature to execution context focuses only on the existence of al-
ternative execution path or absence of it (e.g. if..else for the dynamic feature binding mode
and absence of if..else for the static feature binding mode). Limiting the scope of feature
binding to execution context may result in one or more of the following consequences:

• Limiting post-deployment variations to only those affecting behaviour (i.e. runtime
variations) of the product and thereby losing sight of features that may need to be
bound after product deployment but their binding to execution context is static such
as in software upgrade.

• Taking engineering decisions that complicate upgrading a product with prior-deselected
features. For example, by closing down a variation point using a static reference of
a fixed feature where binding alternative variants may also be possible in the future.

• Impede effective communication between separate groups of researchers or practi-
tioners which affects sharing of knowledge, sharing of best practices, making com-
parisons between alternative approaches, and advancements of the state-of-the-art.

2.4.3 Feature binding time

Feature binding time is a phase in the product lifecycle in which the feature is
included and made available for use. In this thesis, we propose to abstract away the actual
binding techniques used. The logic being, for the product line customer, the technique
used should not matter but rather when the feature is bound. Thus we consider the
following binding time as an abstraction over various underlying binding techniques:

Pre-deployment time:
A feature is bound to a product before the product is shipped to the customer site. Binding
techniques that may be used at this phase include pre-processing and product builds. For
example, when building a special Linux distribution for a firewall router, all features that
are irrelevant to routing and security should be stripped off at this phase. Similarly,
features that are needed to optimize routing and security should be bound at this phase.

Deployment time:
A feature is bound at installation time at the customer site before the product is put to
use. Binding techniques that may be used at this phase include activation/deactivation
of features, plugin registration. Configuration interfaces that may be used at this phase
include installation wizards and configuration files. For example, binding of a Language
feature to an operating system product may be decided at this phase.

39

Post-deployment time:
A feature is bound when the product is already in operation at the customer site. For
example, a new device driver of an operating system may be downloaded and bound when
a new device is plugged. Field-programmability in embedded domain, where a customer
downloads and activates a new feature is a form of feature binding at post-deployment
time.

Some features may be required to support multiple binding times for different
customers and this requires variations in feature binding times. For example, when a
product line should support other product lines as customers [HMT09](i.e., a product line
of product lines). We discuss this in the next section.

2.4.4 Variation of feature binding time

In this section, we elaborate on the variation of feature binding time introduced
earlier in chapter one.

Traditionally, decisions about the feature binding time are fixed during the analysis
and design of product line assets, because binding time is viewed as a property of a varia-
tion point [CB13]. However, when a product line targets various categories of customers,
there may be a demand for variable binding time for some of the features. In the example
of a smart home, a decision to bound some features may be made when ordering the smart
home for some customers (if the deployment environment is known). For other customers,
the decision may not be made until at a point of installation. In addition, a previously
deployed smart home may be upgraded with additional features. In this case, the supplier
of smart home products is faced with variations of feature binding time.

Another example is EduPL introduced in Feature-oriented domain analysis section.
EduPL provides software products to various market segments including universities and
Enterprise Resource Planning (ERP) vendors. In this example, consider the following two
partial configurations for two different categories of customers:

(i) A configuration for a customer from a market segment of ERP vendors (Fig.2.12a)
who requests the binding of Email at pre-deployment time, but requests the defer-
ments of binding decision on Delete and Text Message to the deployment phase to
allow their salesman to negotiate with their respective customer over the price of a
product.

(ii) The second configuration is for a customer university; the customer requests the
binding of the Text Message at the pre-deployment phase (Fig.2.12b), whereas the
Delete feature was not included because their current policy prohibits the deletion
of stored records. However, they ask the Delete feature to be purchasable at a later

40

(a) Feature binding time decision for an ERP
vendor

(b) Feature binding time decision for a customer
university an ERP vendor and a university

Figure 2.13: Variation of feature binding time between

time, because they expect to update the policy to allow the deletion of the stored
record in the near future.

The example of the enterprise software product line also illustrates a variation of
feature binding time between the two configurations (i) and (ii): That is, the binding of
Delete is at deployment phase in the configuration (i), but at the post-deployment phase
in the configuration (ii); the binding of Text Message is at the deployment phase in the
configuration (i), but at pre-deployment phase in the configuration (ii).

So far we elaborated on feature binding time and its possible variations between
products of a product line. In the next section, we briefly discuss why variations in feature
binding time need to be managed.

2.4.5 Justifications for managing variations of feature binding
time

There are several overlapping justifications for the demands of variations of feature
binding time. These are related to agility in responding to customer demands, costs
and efforts saving to the product line company, and non-functional requirements of the
products. This section briefly explains some of these justifications.

Customer request to upgrade already deployed product with prior-deselected
features
The ability to deliver diverse products means that prior-deselected features may be re-
quested later. This may be due to an increase in customer operating capacity or improve
financial status. Customers may also change their mind and request the forgone alter-
native feature. This is because the alternative features may be as a result of alternative
domain rules and the customers of the product line can be at liberty to choose/change
between the alternative rules. For example, in EduPL the children of the Fail Count
feature represent alternative domain rules of computing CGPA. In this example, one of
the institutions was using the Continuous alternative feature, later the University senate
voted in favour of Once alternative feature and requested for the changeover. The request

41

that ought to be served with a simple change of binding the alternative feature ended up
triggering the whole application engineering lifecycle activities.

A product line company should be able to serve the request to replace the alter-
native or to offer a prior-deselected feature within acceptable costs, efforts, and within a
reasonable amount of time. managing variations of feature binding time by making the
feature binding flexible would make the product upgrade less time consuming and main-
tain product quality because ad-hoc changes to the product are minimised. Minimising
delay in the product upgrade also benefits customers since they can put the requested
feature into operation without unnecessary delay.

Diverse usage-contexts
A usage-context - a contextual setting in which software product is deployed or supplied
to- is one of the key determinants of feature binding time. As mentioned earlier, Alter-
native domain rules often manifest as alternative features and not knowing which of the
alternatives domain rules a customer uses means that binding the relevant features would
have to be delayed. This case is aggravated if orders come from different suppliers in the
middle of a software supply chain as in the case of EduPL and many consumer electronics
[HKM+13]. It is also the case if the products in the product line have diverse deployment
environments.

Loss of revenue, security, resource consumption
Loss of revenues, security, and resource consumption are also significant drivers for the
flexible binding requirement. Ideally, a product line company should be able to deliver
what customer has paid for and no more so that the production effort is proportional to the
revenue accrued. Recall, from the domain implementation techniques, with the activation
oriented technique the whole features may be included in the product and license keys can
be provided to activate the paid features. In that approach, customers only get values in
what they paid for. However, that does not address resource consumption and security
concerns.

The ability to deliver both low and high-end products from the same reusable assets
means that the source-codes for the selected features have to be totally removed from the
low-end products. Simply deactivating deselected features and making them unavailable
while their corresponding source-codes remain in the product is unacceptable because the
product memory would be overwhelmed. Where resource consumption and loss of revenue
are not concerns, security can be a concern since the extraneous features may increase the
vulnerability for attacks. Thus, managing variations of binding time by making feature
binding flexible would address the revenue, security, and resource consumption concerns.

In the next section, we further elaborate on the specific challenges the thesis aim
to address.

42

2.5 Specific research challenges

This section revisits the specific challenges associated with both the adaptability of
reusable assets and the variations of feature binding time. Although these challenges may
be relevant to many application domains, we focus on embedded database and information
system domains.

2.5.1 Research challenge on adaptable reusable assets

Over the years, SPLE researchers proposed new language-based implementation
techniques to support flexible variations. Existing languages for advanced separation of
concerns were also adapted for product line development. The alternative techniques
represent different mechanisms for decoupling and synthesis of implementation units in
the code-asset.

The research challenge is to unravel the adaptability of reusable assets when the
modern language based implementation techniques are used to implement and update
reusable assets. Existing studies are limited in one or more of the following ways:

• No exploration of feature property in the source-codes that affects the modifiability.

• Limited coverage of the modern-language based implementation techniques and
thereby living-out the key techniques that were designed mainly to implement vari-
ations.

• No evaluation of modifiability with respect to adding variations

2.5.2 Research challenge on variations of feature binding time

The challenge to support variations of feature binding time stems from the fact
that domain implementation techniques and their associated feature binding mechanisms
either deliver a fixed target binding time with no option to defer or to advance the binding
time or deliver flexible binding time but with certain limitations. For example, some of
the annotative approaches such as a pre-processing technique [HZS+16] can be used to
implement features at all levels of granularity, but features can only be bound before
compilation. That is, at pre-deployment time. On the other hand, some compositional
approaches such as plugin architecture [CEM04] can be used to bind features at different
binding time (through the plugin registration at the different phases) but cannot be used
to implement fine-grained variations [KAK08]. Similarly, although MDD is a flexible

43

implementation technique, current researches [BW09, SE08] are limited to supporting
variations between static and dynamic modes.

Other researches to circumvent the limitations of feature binding techniques tend
to follow one of the following ways:

• Employs different sets of techniques for the different binding times[VdH04]

• Flexible composition of fine-grained model slices [WJE+09]

• Implementing each feature with a specific binding time as a separate concern[ARR+16,
CRE08].

Most of these approaches do not consider explicit variation points at the archi-
tecture level. In addition, they are either too fine-grain or too low-level. Where the
approaches consider variation points at the architecture level, they are limited to the
scope of binding a feature to execution context [BW09, SE08].

2.6 Chapter summary

We discussed the background concepts that are related to the feature-oriented ap-
proach to capturing and implementing variations in SPLE. We also elaborated on the focus
and the research challenges of this thesis: Adaptability of reusable assets to accommodate
emerging variations and the associated research challenge; feature binding time and its
possible variations that may arise between different products and the associated research
challenge.

In the next chapter, Chapter three, we discuss the detail processes and outcomes of
our action research to investigate the flexibility of language-based implementation tech-
niques that are proposed to support flexible variations.

Chapter 3

Language-based approaches to flexi-
ble variations: Action research

This chapter presents the details of the action research that was executed to inves-
tigate the adaptability of reusable assets when adding variations. Part of the investigation
is an exploration of the properties of features, in the code-asset, that affect modifiability
when injecting additional variations. In the exploration, we observed that an intersec-
tion between program elements of different features negatively affects the modifiability of
code-assets when injecting additional variations.

In addition to the exploration, we selected and compared the following three
language-based implementation techniques: (i) Feature-Oriented Programming (FOP),
(ii) Aspect-Oriented Programming (AOP), and (iii) Delta-Oriented Programming (DOP).
We compared the techniques relative to Pre-Processing (PP) of annotations (a classical
variability implementation technique) using modifiability metrics. Furthermore, we dis-
cussed the techniques with respect to supports for modularity and multiple binding time.

The results showed that DOP in its current implementation is the steepest in mod-
ifiability because it lacks the necessary semantics to support flexibility. AOP is the second
steepest because of the high number of language constructs that have to be used to un-
tangle a feature in the code-assets. FOP has moderate modifiability and the best form
of modularity. Overall, none of the language-based implementation techniques is better
than pre-processing in terms of modifiability. Similarly, language-based implementation
techniques specifically proposed to implement features in SPLE (Feature-Oriented Pro-
gramming and Delta-Oriented Programming) have better modularity but do not support
variations in feature binding time.

The action research fulfills our first and second research objectives (O1 and O2).
Hence, the findings provide answers to our first and second research questions (RQ1 and
RQ2).

Before we go into the details of the action research, in the next section, we clarify
the meaning of the key terms that appear repeatedly in the chapter.

45

3.0.1 Definition of terms

Definition 1 (Code-asset, program element)
Code-asset (CA) is a pair 〈E,R〉 where E represents the set of program elements of CA,
and R is the set of relationships between the program elements. A program element e can
be an attribute, an operation or declaration. Let Att be the set of attributes of CA, Op be
the set of operations of CA and Dec be the set of declarations of CA. The set E of program
elements of CA is defined as E = Att ∪ Op ∪ Dec

Definition 2 (Feature module)
A feature module f1 consists of a set of program elements, Ef1, such that Ef1 ⊂ E.

Definition 3 (Exclusivity)
Program element ef1 is said to be exclusive to a feature f1 if it satisfies a disjoint union
relationship with other features in the code-asset CA. i.e.ef1 ∩ ef2 ∩ ef3 ∩ ef3 ∩ · · · efn
= ∅

Definition 4 (Intersection) An intersection between programs elements of differ-
ent features ef1 and ef2 is defined as ef1#ef2, which is a modification and or integration
of ef1 and eF2 so that they work correctly together [BHK11].1

Next section presents the settings of the action research.

3.1 Study settings

This section explains the action research settings which include the criteria for
assessing the flexibility of reusable assets and the selected case study. The section also
demonstrates the mechanisms of the selected implementation techniques when used to
decouple features in the code-asset using a small example of injecting additional variation
to the case study.

3.1.1 Evaluation criteria: flexibility

In this work, we used modifiability and modularity as constituents of flexibility
as suggested by Sturm et al [SDS10]. In addition, we propose to include the support
for multiple binding times as one of the constituents of flexibility because it is being

1Batory and Kim [BHK11] refer to this as feature interaction in the original definition. We use the
term intersection to distinguish it from the interaction as a problem of unexpected side effects when two
or more features are combined to work together [AABZ14]

46

recognized as an important aspect of SPLE [DFV03, VdH04, CRE08, RSAS11]. The
three constituents of flexibility (modifiability, modularity, and support for multiple binding
time) are potential indicators to maintainability, time-to-market and production costs. We
further elaborate on these constituents of flexibility in the following:

3.1.1.1 Modifiability

Modifiability is the ease of accommodating changes. In this work, we adopted repet-
itive viscosity (RV) measure[RKS00] to compare the modifiability of the implementation
techniques. RV is regarded as immediate efforts required to make the changes with the
technique in observation. The lower the value of viscosity obtained from using a technique
to modify program elements, the better the technique.

We instantiate the repetitive viscosity with three sub-metrics: #C: number of
fragments created - this is the case when some fragments should be newly added to inject
the variation (e.g. new delta in DOP or new aspect in AOP). #M: number of program
elements moved - these elements are removed from their original location and inserted at
a different place (e.g., an attribute declaration is moved to the new fragment created).
#V: number of mechanisms added to implement variations - these elements solely belong
to a variation mechanism (e.g., #ifdef for the pre-processing technique).

Where it is not possible or it does not make sense to derive the RV interms of
#C, #M, and #V, we qualify the RV of each of the techniques as low, moderate or high.
For example it does not make sense to quantify RV of intersection within a method an a
constructor and in which the values can be reasonably generalizable due to variations in
parameters/signatures, line of codes and scattering of intersections.

3.1.2 Feature modularity and support for multiple binding time

In general, modularity is a desired property of an implementation technique because
it minimises complexity and enables separation of concerns[BOVH17]. In this work, we
consider modularity from two different perspectives: horizontal and vertical modularity.

The horizontal modularity is used to evaluate whether a technique provides a mech-
anism to modularize implementation artefacts at the same level of abstraction with a fea-
ture (i.e., decomposing a product line assets into feature modules providing traceability
from an abstract feature in the analysis to feature module in the implementation). Sim-
ilarly, the vertical modularity means a sub-hierarchical organization of program elements
within the feature module.

In addition to modularity, an implementation technique is said to support multiple

47

Figure 3.1: Selected BDE variations transformed into features.

binding times if it can be used to bind a feature at more than one phase of the product’s
lifecycle.

3.1.3 The case study: Oracle Berkeley Database Engine (BDE)

Oracle Berkeley Database Engine (BDE), Java Edition, is an embedded storage
engine designed to support integrations of functionalities and storage requirements of
an application in a single binary installation. It is specific for applications targeting
Java Virtual Machine (JVM) and where no separate installation of a database server is
required. Hence, the BDE runs in the same memory address space with the integrated
application and thereby eliminating the overhead of process switching. As highlighted in
the Introduction section, BDE products can be embedded in a wide range of applications.

BDE has many features that are extraneous to the requirements of some applica-
tions in the domain. For example, features for concurrent access and atomic transaction
are not required in an application with single access and simple data requirements. Simi-
larly, by default, BDE gathers statistics of almost every operation of the database such as
tree traversal and memory usage. The implementation of the statistics collection adds a
significant footprint that may become a burden to some applications that do not require
the collection of statistics. Therefore, those features should be variable and the code-asset
should reflect their variability.

We selected the BDE as a case study because its legacy code-asset requires ad-
ditional variations to derive customized products for the different applications and has
been used in previous researchers related to flexible variations and binding times[KAB07,
ARR+16].

Fig.3.1 depicts the partial feature model of BDE in which 11 features there were

48

Table 3.1: List of 11 variations selected for transformation into features

Feature name explanation

Checksum
Feature for calculating checksum for every database en-
try to be written to the log file and using the same for
validation while reading back the entry.

Delete Feature implementing delete operation of the database.
Environment
Lock

Feature responsible for locking the database to preserve
its integrity on concurrent access.

Evictor
Feature responsible for maintaining memory consump-
tion within certain threshold specified in the database
configuration.

Incompressor Removes delete entries and empty nodes from the tree

IO
A variant implementation of database input and output
operation.

Look ahead
cache

Feature for maintaining cache on log files that are line-
up for cleaning.

Memory budget
Feature for monitoring overall memory usage of the
database.

NIO
A variant implementation of database input and output
operation.

Truncate Feature for deleting the database and creating new one.

Statistics
Feature responsible for gathering statistics about several
operations of the database.

not variables will have to be made variable to increase its usage-context. All the features
were identified from previous studies [KAB07, ARR+16] and vary in size of line of codes.
We limited our selection to 11 features because the retrofitting of variations into features
is tediously repetitive. Table 3.1 presents a brief explanation of the selected features.

3.1.4 Case study exploration

To study how features are implemented in the code-asset, we followed an iterative
process depicted in Fig.3.2. We started with consulting BDE documentations [Coo17, Tec]
to have reasonable domain knowledge. We then checked the features already identified
from the previous studies[ARR+16, KAB07]. We then searched through the code-asset to
trace the identified features. With the support of a tool, we marked program elements of
the traced features with annotations. In the process of marking the BDE code-asset, we
made the following observation: the code-asset of BDE is a union of feature modules and
the program elements in the feature modules intersect with each other. Fig.3.3 depicts
this observation in a Venn diagram.

49

Figure 3.2: Iterative process for study of features in code assets

Figure 3.3: Union an intersection of feature modules in code-asset

In Fig.3.3, each of the feature modules, represented by F1...Fn, internally contains
program elements (attributes, declarations, and operations) that are only for the contain-
ing feature as well as program elements that are shared with other features. We refer to
the program elements that are not shared with any other feature as exclusive elements
to the given feature, and the shared part as an intersection between features. We define
exclusivity and intersection (semi-formally) in definition 3 and definition 4 respectively at
Definition of terms section.

Consequently, injection of additional variations requires decoupling of unions be-
tween features in the code-asset: The program elements of the feature to be made variant
(both the exclusive and the intersection parts) have to be traced in the code-asset; Both
the exclusive and the intersection parts have to be separated; The separated parts should
be added to a product configuration only if the variant feature is selected.

50

Figure 3.4: Research execution steps

We noticed this observation to be true in other implementation techniques. The
following are examples: using various design patterns in OOP[GHJ+95, SSS17], one should
be able to encapsulate features to some extent. For example, Keypad, Finger print, Re-
mote control as OR group sub-features of Access Control feature in a smart home can be
implemented using Strategy pattern. In that case, a developer implements each feature as
a separate strategy for accessing the smart home, and each of the strategies only contains
program elements exclusive to one of the features. At the point of invocation, however, a
request to access the smart home has to be resolved to one of the concrete strategies, and
that is the point of intersection.

Similarly, when using class inheritance, as a form of polymorphism, to implement
an optional feature as a subclass of one of the mandatory classes, the sub-class is the
exclusive program element to the optional feature. In that case, intersection points are
places where references are made to the subclass.

Thus, thinking in terms of exclusiveness and intersection may be beneficial in the
evaluation of other implementation techniques. Intuitively, an implementation technique
that limits the number of intersections may be better for a product line that is not stable
and with the tendency of the emergence of new usage-contexts. Of particular note, Factory
pattern encapsulates a specific form of intersection- a point to create one of the variant
objects.

Following the observation about the exclusiveness and the intersection, we adopted
a reductionism strategy and focus on a small representation of both the exclusivity and the
intersection. Reductionism is a scientific approach to understanding complex phenomena
by focusing on a thorough investigation of part of the phenomena in order to understand
the whole[ESSD08]. While the reductionism approach is not normally reported explicitly
in software engineering researches, it has been applied to several software engineering
researches implicitly [BOVH17, RKS00, MLWR01, DSW14].

Figure 3.4 depicts how the rest of the study was executed. As shown in Fig.3.4,
after the exploration of features in the code-asset, the next step (step 1 in Fig.3.4) of
the study is the injection of additional variation to the small representation with each of
the selected techniques. In the same step 1, we discussed the flexibility of each of the
techniques using modifiability metrics. We discuss the details activities of step 1 in the

51

next section (Study execution).

In step 2, we compared the three techniques relative to pre-processing of annota-
tions. Our hypothesis is that: ’new’ language-based implementation techniques proposed
to support flexible variations are also better in modifiability when injecting additional vari-
ations than the classical implementation technique.

In step 3, we defined custom annotations based on various categories of exclusive-
ness as well as the intersections. We marked program elements of the selected features,
from BDE code-asset, with the custom annotation and implemented a custom annotation
pre-processor. We collect statistics about the eleven features at compile-time and extrap-
olated the results obtained from the small representation (from step 2). We discuss the
activities of step 2 through step 3 in the Custom annotations section.

3.2 Study execution

From SPLE literature, we selected four distinctive variability implementation tech-
niques for the study: (i) Pre-processing (PP) of annotations (ii) Aspect-Oriented Pro-
gramming (AOP) (iii) Feature-Oriented Programming (FOP) and (iv) Delta-Oriented
Programming (DOP). PP is not a language-based implementation technique but is widely
used in practice[HZS+16, LAL+10] and therefore we used it as a benchmark. AOP aug-
ment Object-Oriented Programming (OOP) with mechanisms to separate crosscutting
concerns. The last two (FOP and DOP) are specifically designed to implement feature
modules in SPLE. These techniques differ in how they can be used to decouple and syn-
thesize implementation modules. They also differ in how they deal with the binding time
of features.

The main focus of this chapter is the comparison of language-based implementation
techniques when we have to refactor variations of a legacy code-asset into features. We,
therefore, illustrate each of the techniques with a simple case of untangling part of the
Statistics features of BDE to change the type of Statistics from mandatory to optional

Note that, the legacy implementation of BDE has no embedded variation mecha-
nism. The following sections merely illustrate how the respective techniques might be used
to inject additional variations to the existing code-asset (i.e. to transform some variations
into features) assuming BDE has been developed with the respective techniques.

Fig.3.5 illustrates the code-asset in which the Statistics is still mandatory. In the
figure, there are four Java classes: Cleaner, LongStat, FileSelector, and DatabaseImpl.
Within the classes, the program elements of Statistics are shaded in grey.

In the Cleaner class at the top-left of Fig.3.5, there are two attributes, stats an

52

Figure 3.5: Part of BDE code-asset before injecting variation. Statistics source-codes to be
decoupled are shaded grey

53

nCleanerRuns (line 4-5) that are exclusive to Statistics. In addition, there is an intersection
within the class constrcutor (line 9). The entire LongStat class, at the middle-left of
Fig.3.5, is exclusive to Statistics. In the FileSelector class, at the bottom-left of Fig.3.5,
the method loadStat() (line 7-9) is also exclusive to Statistics.

In the DatabaseImpl class at the right hand side of the Fig.3.5, the attribute, stats
(line 7) and the method, getEmptyStat()(line 9-11), and the static inner class StatsAccu-
mulator(line 35-36) are exclusive to Statistics . In addition, intersections can be observed
within the walkDatabaseTree method (line 25-26, line 31-32, and even within its parame-
ters on line 20). The method has thirty-seven (37) lines of statements that are not part
of the intersection (not shown in Fig.3.5).

The DatabaseImpl class is an interesting one because it has program elements that
are exclusive to Statistics as well intersections. In the subsequent discussions about the
implementation techniques, we use the DatabaseImpl class to illustrate the modifiability
metrics when decoupling exclusive elements and intersection within a method. We also
use the Cleaner class to illustrate the decoupling of an intersection within a constructor.

In each of the techniques, we discuss the case of decoupling the program elements
exclusive to Statistics using the DatabaseImpl class and we present the discussion as
(Modifiability Case 1: decoupling of program elements exclusive to a feature). We discuss
the intersection of program elements using the walkDatabaseTree method and we present
the discussion as Modifiability Case 2: decoupling intersection within a method. Lastly, we
discuss the case of decoupling an intersection within a class constructor using the Cleaner
class and present the discussion as Modifiability Case 3: decoupling intersection within a
constructor

We begin with the pre-processing of annotations in the next section.

3.2.1 Pre-processing with Antenna tool

In Chapter two, we illustrated how pre-processing of annotations (pre-processing
in short) can be used to implement a domain. To be consistent with the presentation of
other techniques to be discussed in this section, we repeat the pre-processing here with
the example of changing the feature type of Statistics from mandatory to optional.

54

Figure 3.6: Injection of variation to the part of BDE code-asset with pre-processing

Fig.3.6, illustrates the use of pre-processing to inject variation in the code-assets
depicted in Fig.3.5 and make Statistics optional. In the figure, program elements of
Statistics are annotated with //#ifdef Statistics.... //#endif. For the annotations, we
used Antenna, a non-native pre-processing facility introduced in Java and integrated with
a SPL implementation tool-suite[TKB+14].

Of particular note in Fig.3.6 is that the annotations were used to mark program
elements of different levels of granularity[KAK08]. For example, in the Cleaner class,
the top box at the left-hand side in the figure, the two attributes that are exclusive to
Statistics are annotated (line 4-7). These attributes are some of the fine-grained variations.
In addition, object instantiation which represents an intersection within the constructor

55

Table 3.2: Repetitive Viscosity of (Virtual)decoupling of program elements that are exclusive
to the Statistics feature in the DatabaseImpl class with PP

Technique #C #M #V Total
PP 0 0 3 3

Table 3.3: Repetitive Viscosity of (Virtual)decoupling intersections between the base-program
and Statistics within the walkDatabaseTree method and within the constructor of the Cleaner

class with the PP technique.

Decoupling scenario RV Remarks
intersections within a method low simple annotations are required.
intersections within a constructor low simple annotations are required

of the Cleaner class (line 10-13) is also annotated. In contrast, the LongStat class, at the
middle box in the same left-hand side, is annotated in its entirety. It means that the whole
LongStat class is only included in a product configuration when the Statistics feature is
selected (The class is exclusive to Statistics and at coarse-grained level). Similarly, in
FileSelector class at the bottom box in the left hand side of the Fig.3.6, the method that
is exclusive to Statistics, loadStat(), is entirely annotated (line 6-10).

So far we illustrate how the code-assets can be annotated to introduce variations,
next we demonstrate the modifiability metrics when the pre-processing is used to inject
variations. We also briefly discuss modularity and the support for variations in feature
binding time when the technique is used to implement variations.

Modifiability Case 1: decoupling program elements exclusive to feature
with PP
To decouple program elements that are exclusive to Statistics in the DatabaseImpl class
with PP, no #C or #M is required because PP is not sensitive to the semantic of the
underlying programming language. However, #V is required in the form of annotations.
In this example, three annotations are required (see lines 7-9, 11-15,and 47-50 in the
DatabaseImplclass of Fig.3.6). Thus, Table 3.2 represents the modifability of program
elements that are exclusive to Statistics and within the DatabaseImpl class.

Modifiability Case 2: decoupling intersection within a method with PP
To decouple the intersections within the walkDatabaseTree method with PP, simple anno-
tations are required to virtually decouple the intersections. The annotations required in
this case are three in total (see Fig.3.6). One of the annotations is used to surround the
parameter, statsAcc, of the type TreewalketStatsAccumulator (line 26-28 in fig 3.6). Other
annotations are in lines 34-35 and lines 42-43. Thus we rate the PP low in this regard as
depicted in the first row of Table 3.3.

56

Modifiability Case 3: decoupling intersection within a constructor with
PP
To decouple the intersection within the constructor of the Cleaner class with PP, single
annotation suffices since the 35 Statistics related attributes (not shown in Fig.3.6) are
adjacent to each other as one block of code. Hence, we rate the RV of PP low (see the
second row of Table 3.3).

Modularity and support for variations in feature binding time in PP
As a classical tool-based technique, PP has no support for modularity. As such, varia-
tion mechanisms are scattered in the code-assets with no support for feature traceability
[KA09].

With respect to support of flexible binding time, with PP, a feature has to be
bound before compilation at pre-deployment time and not at any other binding time.
Hence, pre-processing has no support for multiple binding time.

3.2.2 Feature-Oriented Programming (FOP) with Jak language

Figure 3.7: UML package representing part of BDE code-asset before injecting variation with
FOP

57

Figure 3.8: Injection of variation with to part of BDE code-asset with FOP

Proponents of Feature-Oriented Programming (FOP) are of the view that a feature
is an increment in software functionality. As such, a feature module can be implemented as
a refinements to a base-program (a basic implementation of a product line)[SB02, Bat05b,
Pre97]. The refinements can be pure addition of new program elements or modification of
existing ones. The concept of refining the base-program is in line with SPLE approaches
in which mandatory features are implemented as monolithic program and variable features
are implemented as extensions to the mandatory features of the base-program. Terms such
as kernel [Gom05], core-module [SBB+10] are also used to describe the representation of
all mandatory features, with which variable features may extend.

Fig.3.7 depicts a UML package containing program elements, representing the base-
program, as in Fig.3.5, and in which the Statistics feature is still mandatory. Thus, the
package contains the same classes as that of Fig.3.5. In Fig.3.7, the program elements
of Statistics are shaded in grey. The callout shape, placed beneath the LongStat class,
illustrates an object instantiation (stats = new StatGroup) within the constructor of the
Cleaner class.

Fig.3.8 illustrates conceptual injection of variation with FOP. In the figure, the
base-program and the Statistics feature occupy separate packages (illustrated with the
UML package diagram and 〈〈feature〉〉 stereotype). On one hand, all the program ele-
ments related to Statistics feature are removed from the package of Base (see the left-hand

58

side of Fig.3.8). On the other hand, Statistics, as a variable feature, modifies program el-
ements of the Base using a series of refinements (see the right-hand side of Fig.3.8). The
refinements are illustrated with 〈〈refined〉〉 stereotype and include the addition of the
following program elements that were removed from the base-program: the method, load-
Stats(), in the FileSelector class (the top class in the Statistics package); the attributes
(stats and nCleanerRuns) in the Cleaner class; the static inner class StatAccumulator in
the DatabaseImpl class. The refinements also include constructor modification of the same
Cleaner class;

Other forms of the refinements is overriding a method which is of two forms: (i)
overriding an existing method to introduce the source-codes removed from the original
method and (ii) introducing empty method in the base-program and overriding it in the
decoupled feature - this is the case when a hook has to be introduced in the base-program
and in which the variant feature extends. For example, in Fig.38, Statistics related source-
codes are removed from the walkDatabase method of the DatabaseImpl class of the Base
(i.e base-program). Thus, the method is overridden in the DatabaseImpl class of Statistics
to re-introduced the removed source-codes that are relevant only to Statistics. This is the
case of override (i) above. In contrast, setTreeandCursorStat(...) and resetTreeandCur-
sorStat(...) methods in the DatabaseImpl of Base were introduced mainly as hooks to be
extendend by their counterparts in the same DatabaseImpl of Statistics. This is the case
of ovverride (ii) above.

In summary, Statistics refines Base when the feature is selected but everything in
the Statistics package is not included in the product configuration if the corresponding
feature is not selected.

Jak is a Java language extension designed to reify FOP in the implementation.
With the Jak language, each feature module is confined to a separate directory structure
known as containment hierarchy. For example, Fig.3.9a and Fig.3.9b depict the contain-
ment hierarchies for Base and the Statistics respectively. The duplicated classes, Cleaner,
FileSelector, and DatabaseImpl, in the Statistics containment hierarchy contain only the
modifications of the original classes of the Base.

FOP is one of the prominent techniques proposed to implement flexible variation
in SPLE[SB02, Pre97, Bat05b]. In this study, we used FeatureIDE[TKB+14], an eclipse
plugin that integrated the Jak language compiler and the tools for the synthesis and the
translation from Jak to Java. From the domain implementation technique perspective,
FOP approach is compositional. Thus, the composition of program elements of the selected
features is gradual refinements of the base-program and the composed program elements
are then transformed into target programming language (Java in our example). Next, we
discuss the three cases of modifiability.

59

(a) Containment hierarchy of Base in which
program elements of Statistics are removed from the

3 classes

(b) Containment hierarchy of Statistics in which LongStat class
is created and other 3 classes refined to form program elements

of Statistics

Figure 3.9: Containment hierarchies for Base and Statistics in Jak language

Table 3.4: Repetitive Viscosity of decoupling of program elements that are exclusive to the
Statistics feature in the DatabaseImpl class with FOP.

Technique #C #M #V Total
FOP 1 3 1 5

Figure 3.10: Decoupling of program elements that are exclusive to Statistics in the
DatabaseImpl class with FOP

Modifiability Case 1: Decoupling program elements exclusive to feature
with FOP
To decouple program elements that are exclusive to Statistics, in the DatabaseImpl class,
with FOP, the class has to be re-created in the Statistics ’ containment hierarchy, which

60

Table 3.5: Repetitive Viscosity of decoupling intersections between the base-program and
Statistics within the walkDatabaseTree method and within the constructor of the Cleaner class

with the FOP technique.

Decoupling scenario RV Remarks

intersections within a method moderate
requires the creation of extension
points.

intersections within a constructor
moderate
-

block move operations and simple re-
finements

makes #C to be one (1). One (1) #V is required, to refine the DatabaseImpl class
in Statistics’ containment hierarchy. The three program elements that are exclusive to
Statistics have to be removed from the base-program and moved to the refined class (see
Fig.3.10): this makes #M to be three (3). Thus, the total RV of decoupling program
elements that are exclusive to Statistics in DatabaseImpl class is five (5) (see Table 3.4).

Modifiability Case 2:decoupling intersection within a method with FOP
To decouple intersection within a method with FOP and when the intersections are neither
at the beginning nor at the end of the method, but in the middle as in the walkDatabaseTree
method of the DatabaseImpl class (see Fig.3.11a), the points of intersections have to be
extracted into empty methods, known as hooks or hotspots [KAB07]. Fig.3.11a shows two
hooks created (C1 and C2) and two placeholders for the hooks are also created (C3 and
C4).

The C5 in Fig.3.11b denotes the re-creation of the walkDatabaseTree in the new
containment hierarchy. In addition, the lines of statements that are for Statistics are moved
from the base-program to the newly created walkDatabaseTree(see M1-M3 in Fig.3.11b).
The mechanisms used are the overriding of the walkDatabaseTree method, using the con-
struct Super() (V1 in Fig.3.11b) and overriding of the two hook methods (V2 and V3 in
Fig.3.11b). Thus we rate the RV of FOP for decoupling intersection within a method as
moderate (see the first row of Table 3.5).

Modifiability Case 3: decoupling intersection within a constructor with
FOP
To decouple intersection within the constructor of the Cleaner class with FOP, the Cleaner
class has to be re-created, in the Statistics’ containment hierarchy (Fig.3.12), which makes
the #C to be one (1). The program elements that are related to Statistics have to be
removed from the legacy base-program and moved to the new class as one block operation
(M1 in Fig.3.12). Only two (2) #Vs are required, in form of modification, to the Cleaner
class itself (V1 in Fig.3.12a) and its constructor(V2 in Fig.3.12). Thus, we rate RV of
FOP moderate -. The minus (-) means that the moderation is closer to low due to the
few number of move and refine operations (see the second row of Table 3.5).

61

(a) re-organized walkDatabaseTree method in which
program elements of Statistics are removed in

preparation for refinement with FOP

(b) the walkDatabaseTree method in which the
removed program elements of Statistics are

re-introduced with FOP refinement

Figure 3.11: decoupling intersection within a method in FOP

Figure 3.12: decoupling intersection within a constructor with FOP

62

Figure 3.13: Modularity with FOP

Modularity and support for variations in feature binding time in FOP

FOP support both the horizontal and the vertical modularity as conceptually de-
picted in Fig.3.13. In the figure, program elements of each feature are confined to a ded-
icated containment hierarchy. As such, the horizontal modularity is strictly enforced(see
Fig.3.13). In addition, the typed program elements, donated with letters in Fig.3.13, are
also strictly bounded in separate files. Thus, vertical modularity is also strictly enforced.
For example, in Fig.3.13, program element D’ is a refinement of program element D of the
base-program; it is only for feature A and is traced to a separate file under the containment
hierarchy of feature A. Likewise, a separate refinement of program element D, denoted as
D”, is only for feature B and is traced to a separate file under the containment hierarchy
of feature B [Bat05b].

With respect to support for flexible binding time, FOP supports the two modes of
feature binding to executing context: (i) static binding mode and (ii) dynamic binding
mode. With static binding mode, program elements and their refinements are statically
composed. With dynamic mode, the mixin inheritance style is used to compose program
elements with their refinements. The two different binding modes are supported in Jak
with two separate tools: jampack for the static binding mode and mixin for the dynamic
binding mode. However, from the perspective of feature binding to a product, the vari-
ability has to be resolved before compilation at pre-deployment time[Bat05b]. That is,
FOP does not support feature binding after compilation at either deployment or post-
deployment time.

3.2.3 Aspect Oriented Programming (AOP) with AspectJ

Aspect Oriented Programming (AOP) is a programming paradigm for modulariza-
tion of crosscutting concerns. A concern is a specific requirement of a software product.
In SPLE, variable features can be implemented as concerns that are separable from the
base-program [CLK08, FCS+08, KAB07, ARR+16]. Thus, the set of mandatory features

63

Figure 3.14: injection of variation w with AOP

64

Table 3.6: Repetitive Viscosity of decoupling of program elements that are exclusive to the
Statistics feature in the DatabaseImpl class with FOP.

Technique #C #M #V Total
AOP 1 3 3 7

are implemented as a base-program.

AOP construct, aspect, is used to encapsulate a concern, which may be a feature
in SPLE. Aspect extends (advice) the behaviour of a base-program at some points (join
points). Similarly, an AOP construct, pointcut, is used to define the specific join points
where the aspect extends (advice) in the base-program. In addition, an aspect may in-
troduce new program elements or new inheritance hierarchies to program elements in the
base-program using the intertype declaration mechanism.

For AOP, we do not show the structure of program elements, representing the base-
program, where the Statistics feature is still mandatory because it is the same with the
structure depicted in Fig.3.8 in the FOP discussion.

Fig.3.14 shows the use of AOP to inject variation and make Statistics optional.
In the figure, StatisticsAspect (the grey box at the right-hand side of the figure) injects
additional attributes (stats and nCleanerRuns) to the Cleaner class and the method,
loadStats, to the FileSelector class. Similarly, StatisticsAspect2 at the bottom left of the
figure injects the attribute stats, the method getEmptyStat(), and the static inner class
StatAccumulator to the DatabaseImpl class. The injection of attributes and methods
is achieved through the intertype declaration mechanism (represented as the 〈〈ITD〉〉
stereotype in Fig.3.14).

Furthermore, StatisticsAspect modifies the construction of the Cleaner object (illus-
trated using 〈〈advice〉〉 stereotype) through the joint point captured by the pointcut (illus-
trated using 〈〈pointcut〉〉stereotype), exeCleaner. Similarly, the StatisticsAspect2 modifies
the two empty methods introduced to the DatabaseImpl class hooks using two point cut
declarations and two around advices. In this work, we use AspectJ [Lad03], one of the
popular Java-based AOP.

When selected, the separated feature (Statistics in this example) is composed with
the base-program using aspect weaving mechanism. The actual weaving may be done at
different phases of the product lifecycle. From the feature binding perspective, the AOP
approach is also compositional. The original intention of AOP was not to separate features
in SPLE. However, there is increasing interest in using AOP to support flexible variations
and binding times [KAB07, ARR+16, CRE08, AM04].

65

Table 3.7: Repetitive Viscosity of decoupling intersections between the base-program and
Statistics within the walkDatabaseTree method and within the constructor of the Cleaner class

with the AOP technique.

Decoupling scenario RV Remarks

intersections within a method
moderate
+

requires the creation of extension
points and several language constructs.

intersections within a constructor
moderate
+

aspect has to have several references to
targeting type in intertype declaration.

Figure 3.15: Decoupling of exclusive program elements with AOP

Modifiability Case 1: decoupling program elements exclusive to feature
with AOP
To decouple program elements that are exclusive to Statistics, in the DatabaseImpl class,
With AOP, a new aspect has to be created which makes #C to be one (1). The three
program elements that are exclusive to Statistics have to be removed from the base-
program and moved to the new aspect: this makes #M to be three (3) (see Fig.3.15).
The new aspect of the Statistics feature injects (through intertype declaration) each of
the moved program elements to the DatabaseImpl class using the prefix of the class (e.g.
DatabaseImpl.stats), which makes #V to be three (3) (see Table 3.6).

Modifiability Case 2: decoupling program intersection within a method
with AOP
To decouple intersections with a method with AOP and when the intersections are in the
middle of the method, the same extractions of hooks that are required in FOP are also
required in AOP. In addition, several language mechanisms have to be used. Fig.3.16 shows
the mechanisms used in AOP: two pointcut declarations (V1 and V2 - not always needed
when anonymous advices are used); two advices (V5 and V6); movement of program
elements related to Statistics from the base-program to the new aspect (M1, M2, and
M3); reference to DatabaseImpl (V3 and V4). Further, 6 additional language constructs
are required (pointcut, execution, target, within, around and proceed). Thus, similar to

66

Figure 3.16: Decoupling intersection within a method with AOP

FOP, we rate the RV of FOP for decoupling intersection within a method as moderate +.
The + sign means that the moderation is tending towards high (see the first row of Table
3.7 for the summary).

Modifiability Case 3: decoupling intersection within a constructor with
AOP
To decouple intersection within the constructor of the Cleaner class with AOP, a pointcut
and advice have to be created in the new aspect. The program elements that are related
to Statistics have to be removed from the legacy base-program and moved to the Statistics
aspect (M1-M.. in Fig.3.17). The aspect of the Statistics feature uses the reference to the
Cleaner object severally (V1-V.. in Fig.3,17) in the intertype declaration. Thus, we rate
RV of AOP moderate because of the several uses of the reference to the Cleaner class.
The plus (+) means that the moderation is closer to high (see the second row of Table 3.7
for the summary).

Modularity and support for variations in feature binding time in AOP

AOP supports vertical modularity, the horizontal modularity can be achieved but
it is not strictly enforced (depicted as the dotted-triangle in Fig.3.18). For example, a
package system in Java can be used to organize program elements that are exclusive to

67

Figure 3.17: Decoupling intersection within a constructor with AOP

Figure 3.18: Modularity with AOP

feature. Aspects will then have to be used to encapsulate program elements intersecting
with other features.

AOP supports binding of feature to a product at two phases: The first phase,
compile-time weaving phase, corresponds to the binding of a feature at pre-deployment
time. The second phase, load-time weaving phase, roughly corresponds to the binding of a
feature at a deployment phase. Similarly, the binding can also be delayed by externalizing
the feature configuration (e.g.using XML file).

3.2.4 Delta Oriented Programming (DOP) with DeltaJ 1.5

Delta Oriented Programming (DOP) is also a language-based implementation tech-
nique proposed to support flexible variations[SBB+10]. In DOP, a basic implementation
of a software system is known as a core, and features are implemented as deltas to the
core program. We stick with the term base-program for consistency. A delta is a unit of
specification on how the based-program should be changed. Fig.3.19 depicts delta specifi-
cations representing the base-program, as in Fig.3.5 and Fig.3.7, and in which theStatistics
feature is still mandatory. In the figure, the program elements of Statistics are shaded in
grey.

68

Figure 3.19: Delta specifications of Base before variability injection with DOP

69

Figure 3.20: Injection of variation with with DOP

To inject variation in DOP, a feature implementation is specified in a separate
delta. The left box of the Fig.3.20 depicts specification of Base in DOP, with program
elements of Statistics removed. The right box of the Fig.3.20 depicts specification of a
delta (changes) to Base in the implementation of Statistics.

Similar to FOP, the composition of program elements of the selected features is
gradual modifications of the base-program and the composed program elements are then
transformed into target programming language (Java in this case).

DOP is an emerging variability implementation technique that supports changes
to a based-program and the changes are not only additions of program elements but also
the removal of program elements (positive and negative variability). In this work, we used
DeltaJ [Del17] implemented in Xtext - a language implementation framework [Xte17].

70

Table 3.8: Repetitive Viscosity of decoupling of program elements that are exclusive to the
Statistics feature in the DatabaseImpl class with DOP.

Technique #C #M #V Total
DOP 1 3 3 7

Figure 3.21: Decoupling of exclusive program elements with DOP

Modifiability Case 1: decoupling program elements exclusive to feature
with DOP
To decouple program elements that are exclusive to Statistics in the DatabaseImpl class
with DOP, a new delta specification has to be created, which makes the #C to be one (1).
The three program elements that are exclusive to Statistics have to be removed from the
base-program and moved to the new delta: this makes #M to be three (3) (see Fig.3.21). A
separate adds specification is required for each of the three program elements which makes
#V to be three (3) (current DOP implementation does not support the addition of a block
of program elements as a single operation). Table 3.8 summarises the RV of decoupling
program elements that are exclusive to the Statistics feature in the DatabaseImpl class.

Modifiability Case 2: decoupling program intersection within a method
with DOP
DOP has limited language semantics for decoupling intersections within a method. The
technique supports wrapping of an existing method only when both the wrapper and
the wrapped methods have the same number of parameters. This is because DOP has
only two constructs for modifying a method: (i) the modifies keyword to specify the
full signature of the method to be changed and (ii) the original construct to reuse the

71

Figure 3.22: Modularity in DOP

Table 3.9: Repetitive Viscosity of decoupling intersections between the base-program and
Statistics within the walkDatabaseTree method and within the constructor of the Cleaner class

with the DOP technique.

Decoupling scenario RV Remarks

intersections within a method high

two separate methods have to be cre-
ated one without Statistics in the base-
program and one with Statistics in a
separate delta specification.

intersections within a constructor high

two separate constructors have to be
created one without Statistics in the
base-program and one with Statistics in
a separate delta specification.

72

(a) Re-specified method without intersection
in DOP

(b) Re-specified method with the intersection
in DOP

Figure 3.23: Decoupling intersection within a method with DOP

Figure 3.24: Constructor modification with DOP

specification of the old method. Consequently, if a method modification involves changing
a parameter in DOP, as in our example, two separate methods have to be created: one
without Statistics (Fig.23a), in the base-program, and one with Statistics (Fig.23b) in a
separate delta specification. Consequently, we rate the repetitive viscosity of decoupling
intersections within a method with DOP as high(see the first row of Table 3.9)

3.2.4.1 Modifiability Case 3: decoupling interaction within a constructor with
DOP

DOP does not support the direct modification of a constructor, and therefore, two
separate constructors have to be created: one without Statistics in the base-program, and
one with Statistics in a separate delta specification. Again, we rate the RV of DOP high
because two separate constructors have to be specified(see the second row of Table 3.9).

Modularity and support for variations in feature binding time with DOP

73

Figure 3.25: Modularity with DOP

DOP supports horizontal modularity as each feature can be traced directly to a separate
delta specification. However, there is no hierarchical modularity in the sense that the type
elements are flatly organized in a possibly large file of delta specification. The modularity
in DOP is conceptually depicted in Fig.3.25. There is no hierarchical modularity because
there is no boundary between program elements of different types within the same delta.
The lack of hierarchical modularization may be detrimental to maintaining sizable fea-
ture specification. For example, when a feature module has more than 10 Kilo Lines of
Code (KLOC), it is difficult to navigate to individual program elements of interest as we
experienced during refactoring of Statistics feature.

On the support of flexible binding time, DOP is similar to PP. That is, feature
binding has to be decided at pre-deployment time before the product code is generated
but not at any time.

3.2.5 Comparison between the implementation techniques

Table 3.10: Comparison between the 4 techniques on decoupling of exclusive program
elements

Technique #C #M #V Total
PP 0 0 3 3
FOP 1 3 1 5
AOP 1 3 3 7
DOP 1 3 3 7

Table 3.10 presents the Repetitive Viscosity of each of the techniques for decoupling
the three program elements that are exclusive to the Statistics in the DatabaseImpl class.
In this context, none of the language-based techniques beats PP in terms of modifiability.

74

Table 3.11: Pattern of RV of implementation techniques on program elements exclusive to a
feature

Technique
Program element
Type

RV Total

PP
exclusive class single annotation (#V = 1). RV =1

exclusive attribute
single annotation (#V = 1) or becomes part
of block annotation (#V = 1/x).

1/x ≤ RV
≤ 1

exclusive method
single annotation (#V = 1) or becomes part
of block annotation (#V = 1/x).

1/x ≤ RV
≤ 1

FOP
exclusive class move (#M =1) + create (#C=1). RV =2

exclusive attribute
move + refined (#M =1, #V =1) or move
only(#M =1).

1 ≤ RV ≤
2

exclusive method
move + refined (#M =1, #V =1) or move
only(#M =1).

1 ≤ RV ≤
2

AOP
exclusive class move (#M =1) + create (#C=1). RV =2

exclusive attribute
move + inject + create (#M =1, #V =1,
#C=1) or move + inject only (#M =1, #C
=1).

2 ≤ RV ≤
3

exclusive method
move + inject + create (#M =1, #V =1,
#C=1) or move + inject only (#M =1, #C
=1)(#M =1).

2 ≤ RV ≤
3

DOP
exclusive class move (#M =1) + create (#C=1). RV =2

exclusive attribute
move + adds + create (#M =1, #V =1,
#C=1) or move + adds only (#M =1, #C
=1).

2 ≤ RV ≤
3

exclusive method
move + adds + create (#M =1, #V =1,
#C=1) or move + adds only (#M =1, #C
=1).

2 ≤ RV ≤
3

FOP has moderate modifiability compared to the other techniques while AOP and DOP
have the lowest modifiability index.

Through this analysis, we observe a generic pattern of RV of each of the tech-
niques on three types of exclusive program elements (exclusive class, exclusive method,
and exclusive attributes). We present this pattern in Table 3.11.

For PP, referring to Table 3.11, the RV for decoupling exclusive class is one (1) (#V
= 1). The RV for decoupling exclusive method and exclusive attribute can either be one
(1) (#V = 1) or a fraction of one (#V = 1/x). It is one when no two program elements
to be annotated are adjacent in the code-assets (i.e. each of the program elements has to
have a separate annotation) and a fraction of one when program elements to be annotated
are adjacent in the code-assets (i.e. a single annotation covers more than one program

75

elements).

For FOP, the RV for decoupling exclusive class is two (2): one RV for moving the
class from the base program (#M = 1) and one RV for re-creating the class in the target
containment hierarchy. The RV for decoupling exclusive method and exclusive attribute in
FOP can either be two (2) or one (1). It is two when each of the methods or attributes is
in a separate container class - there has to be move operation (#M =1) and the refinement
of the container class (#V =1) for each of the program elements. It is one (1) when an
element is only moved but no refinement is required(see Table 3.11).

Still on Table 3.11, the RV for decoupling exclusive class with AOP and DOP is
two (2): one RV for moving the class from the base program (#M = 1) and one RV for
re-creating the class, aspect or delta as the case may be. The RV for decoupling exclusive
method and exclusive attribute in both AOP and DOP can either be three (3) or two (2).
It is three when each of the methods or attributes is to be moved into a new aspect or
delta - there has to be move operation (#M =1); intertype declaration in aspect or adds
specification in delta (#V =1); the creation of aspect or delta container (#C=1). It is
two when no new aspect or delta is to be created as a result of the decoupling.

We will return to the RV for decoupling exclusive program elements when we have
an idea about the number of exclusive program elements for the Statistics feature in
Custom annotation section (next section).

3.3 Custom annotations

In this section, we present the definition and application of custom annotations to
make sense about the results of the repetitive viscosity discussed in the previous section.
We defined custom annotations to use as metadata on program elements. We refer to
the annotations as custom to distinguish them from the pre-existing reusable annotations
(eg. #ifdef annotations). The custom annotations are used to indicate whether a program
element is exclusive to a given feature or it is shared with one or more features (involved in
an intersection). Program elements that may be annotated exclusively to a feature can be
class, method or attribute. The intersection between one or more features can be marked
on a class constructor or on a method.

3.3.1 Custom annotation definition

Listing 3.1: List of features marked with custom annotations

1: public enum FeatureSet {

76

2: BASE, STATISTICS,

3: }

Listing 3.1 depicts the list of pre-defined features specified as Java enumerated
list. A program element can be marked as exclusive to one of the features in the list (see
the full list in Table 3.1). We can also mark intersection, on program element, between
two or more features in the list. The “BASE” at the beginning of the list represents the
base-program.

Listing 3.2: Types of program elements marked with custom annotations

1: public enum ProgramEType {

2: EXCLUSIVE_CLASS, INTERSECTION_METHOD,..

3: }

Listing 3.2 is also Java enumerated list in which each entry indicates the type
of program element and its relation with the feature being annotated. For example,
EXCLUSIVE CLASS indicates that the program element being annotated is a class and
is exclusive to a particular feature.

Listing 3.3 depicts the definition of the custom annotation where the attributes
are references to the enumerations from listing 3.1 and 3.2: The name attribute in line
3 takes one of the predefined features from listing 3.1; The elementType attribute in line
4 takes one of the pre-defined types of program elements from listing 3.2; The intersect-
ingFeatures attribute in line 5 is an array that takes one or more features defined in listing
3.1 as elements. The default value of intersectingFeatures attribute is base-program (i.e.
FeatureSet.BASE). That is, a feature intersects with at least the base-program.

Listing 4.3: Specification of the custom annotation

1: ...

2: public @interface Feature {

3: FeatureSet name();

4: ProgramEType elementType ();

5: FeatureSet [] intersectingFeatures ()

6: default {FeatureSet .BASE};

7: String [] descriptions() default {};

}

Listing 3.4 is an example of marking a program element with the custom annotation.
In the listing of 3.4, the constructor of Cleaner class is marked as one of the intersection
points between Statistics feature and the base-program.

77

Table 3.12: Exclusive and intersections of program elements fro 11 features selected from BDE

Feature name
exclusive
class

exclusive
method

exclusive
at-
tribute

intersection
in con-
structor

intersection
in
method

Total

Checksum 6 0 16 6 16 44
Delete 0 14 18 8 18 48
Environment
Lock

0 2 6 2 2 12

Evictor 4 28 4 0 10 46
Incompressor 2 12 8 0 8 30
IO 1 0 0 1 0 2
Loook ahead
cache

1 0 0 0 3 4

Memory budget 2 38 14 2 40 96
NIO 1 0 0 1 0 2
Statistics 20 70 154 64 2 310
Truncate 0 8 0 0 0 8
Total 37 172 210 84 99 602

Listing 3.4: Example of marking a program element with the custom an-
notation

1: @Feature(name= FeatureSet.STATISTICS,elementType

2: =ProgramEType.INTESECTION_CONSTRUCTOR)

3: public Cleaner(.){..}

3.3.2 Custom annotation application and processing

We marked the eleven (11) features from BDE, summarised in Table 3.1, with the
custom annotations.

We implemented a pre-processor for the custom annotations and collected statistics
about the annotated code-asset at compile time. We sought to have an idea about the
spread of exclusiveness and intersections to make sense of the results of the evaluations
obtained from Study execution section. Table 3.12 presents the spreads of exclusiveness
and intersections about the 11 annotated features. Each row in the table represents an
entry for a single feature. Note that the exclusive program elements made-up the first
three columns (i.e. exclusive class, exclusive method, and exclusive attribute).

From Table 3.12, observe that Statistics feature has the highest number of anno-

78

Figure 3.26: Spread of exclusive and intersection from 11 features

tated program elements with a total of 310, constituting about 52% of the total annotated
program elements, while IO and NIO jointly have the least number of program elements,
having a total of 2 each. This suggests that a feature in the implementation can be both
small and large. Fig.3.26 depicts this information graphically.

Referring to the columns of Table 3.12, exclusive attributes constitute the major
part of the annotated program elements with a total of 210, representing 35% of the total
program elements annotated. On the other hand, exclusive classes (being the coarse-
grained implementation units in OOP) are 37 in total, constituting only 6% of the total
program elements in the 11 features annotated. This means that most parts of the features
are traced to fine-grained program elements than coarse-grained program elements.

Extrapolating the generic pattern of RV presented in Table 3.11 to the exclusive
program elements of the 11 features, we obtain the results of Table 3.13 which are also
depicted graphically in Fig.3.27a. Recall that the RV of methods and attributes of all the
techniques is not fixed. The RV of these program elements depend on some factors such
as whether or not a block of methods or attributes can be annotated at once with PP. The
other techniques also have their peculiar factors. This explains the use of less-or-equal
sign (≤) to reflect on the patterns presented in Table 3.13.

The same general pattern of RV can also be extrapolated to individual features. For
example, Table 3.14 represents the estimated RV of each of the techniques on program
elements exclusive to the Statistics feature and Fig.3.27b depicts the same information
graphically.

Apart from the extrapolation of exclusiveness, we can also obtain information about
intersections between various features. This information can be useful in determining the
order of precedence of applying aspects in AOP, for example, or order of refinements and
modifications in FOP and delta respectively.

79

Table 3.13: RV for each of implementation techniques on exclusive program elements of 11
features

exclusive class
exclusive
method

exclusive at-
tribute

Tota PE 37 172 210
RV (PP) 37 ≤ 172 ≤210
RV (FOP) 74 ≤ 344 ≤ 420
RV (AOP) 74 ≤ 516 ≤ 630
RV (DOP) 74 ≤ 516 ≤ 630

Table 3.14: RV for each of the techniques on exclusive program elements of Statistics feature

exclusive class
exclusive
method

exclusive at-
tribute

Tota PE 20 70 154
RV (PP) 20 ≤ 70 ≤154
RV (FOP) 40 ≤ 140 ≤ 308
RV (AOP) 40 ≤ 210 ≤ 462
RV (DOP) 40 ≤ 210 ≤ 462

(a) RV for each of implementation techniques
on exclusive program elements of 11 features

(b) RV for each of the techniques on exclusive
program elements of Statistics feature

Figure 3.27: RV for each of the techniques on exclusive program elements

80

Table 3.15: Intersecting features

Feature Intersections
Delete Transaction, Cleaner
Environmental
Lock

IO, NIO

Evictor Incompressor
Memory Budget Transaction, Evictor

Statitistics
Transaction, Evictor, Incompressor,
Cleaner, Log, Cache, Checkpointer

Figure 3.28: Example of intersecting features

Table 3.15 shows the summary of intersecting features. Note, some of the inter-
secting features in Table 3.15 are not among the 11 selected features but were picked while
annotating the 11 features. Also, note that the intersection is reflexive, i.e. if feature A in-
tersects feature B, implies feature B also intersects feature A. Fig.3.28 depicts an example
of 7 features intersecting the Statistics feature.

Taken the extrapolated results together with the qualitative assessments for the in-
tersection within a method and within a constructor, we can estimate the modifiability of
each of the techniques. We can also conclude that none of the language-based implemen-
tations techniques is better than PP in terms of modifiability when injecting additional
variations. In the same context, the code-asset of DOP is the least modifiable to inject
additional variations. This is because, in addition to being comparable to AOP in most
respects, it falls short on certain critical language semantics.

81

To conclude the discussion about the action research, in the next section, we com-
pare our approach with similar action researches from the literature.

3.4 Comparison with similar action researches

In this section, we present similar action researches from the literature to highlight
the novelty of our approach.

In an exploratory study, Murphy et al [MLWR01] investigated the flexibility of
three language-based techniques when used to untangle features from a code-asset. All
the three techniques, Hyper/J[TO], AspectJ[Lad03], and the authors’ own technique, were
designed for advanced separation of concern. The authors qualitatively characterized the
effect the different techniques had on the structure of the code-asset and also character-
ized how to restructure the code-asset to untangle features with each of the techniques.
Except for the AspectJ, the other techniques were not reported to be used for product
line implementation. In addition, they did not use constituents of flexibility as criteria for
the evaluation and did not consider programming languages specifically designed for the
product line implementation.

Similarly, previous researchers that analysed features of Berkeley DB [KAB07,
ARR+16] focused on the aspect-oriented refactoring of the features and they made no
comparison with any other technique. For example, Chakravarthyet al [CRE08] proposed
a combination of design patterns[GHJ+95] and aspect-oriented programming to achieve
the flexibility of feature binding time. In their approach, a pattern encapsulates a varia-
tion point; variants features are implemented with a separate set of aspects, each set for
a specific binding time.

In programmable logic controller domain, Bayrak et al [BOVH17] evaluated flex-
ibility and maintainability of three process-oriented programming notations. The three
different programming notations are Activity diagram, Statechart diagram, and Sequen-
tial function chart. Although they used a wide-range of criteria, including modifiability,
none of the programming notations is used for product line implementation.

In summary, we differ with the previous approaches in the following ways: 1) we
studied the properties of feature in the source -codes; 2) we covered more implementation
techniques two of which were proposed to implement features in SPLE exclusively ; 3) we
compared the modifiability of the techniques when injecting additional variations.

82

3.5 Chapter Summary and perspective

In this chapter, we explored properties features in the code-asset using Berkeley
Database Engine (Java edition), as a case study. In the exploration, we observed that an
intersection between program elements of different features is the major property of code-
asset that affects the modifiability of injecting additional variations. Another property
of a feature in a code-asset is exclusivity. That is, certain program elements exist for
implementation of a certain feature exclusively.

The implication of this observation to practice is that, an unstable product line and
with the tendency of emerging usage-contexts, should aim for implementation technique
that limits the number of intersections between program elements of different features.
Similarly, the implication of the observation to research is that, there should be subsequent
investigations using multiple case studies in different software domains in order to improve
the understanding of our findings.

Also, in this chapter, we report the selection and the evaluation of the flexibility
of implementation techniques when injecting additional variations. Two of the selected
techniques, FOP and DOP, were specifically designed for product line implementation.

Modifiability of DOP, in its current form, is consistently high because the technique
lacks the necessary language semantics to support flexibility. In addition, although it sup-
ports horizontal modularity, program elements are flatly organized in a delta specification
(no vertical modularity).

AOP trails DOP on modifiability mainly because of the high number of language
constructs that have to be used to untangle a feature. Achieving horizontal modularity in
AOP depends on the discipline of the developers because the technique does not enforce it.
Modifiability of FOP is consistently moderate because few operations are involved when
untangling a feature from a code-asset. Similarly, FOP has the best form of modularity
because it supports both horizontal as well as vertical modularity.

Reflecting on our hypothesis, none of the techniques is better than PP in terms
of modifiability but the approach has no form of modularity. Note, we are not claiming
that PP is a better technique for product line implementation but hypothesized that,
new techniques that are proposed to support flexible variations should also be better
in modifiability when injecting additional variations than the PP - which is a classical
implementation technique.

Except for FOP, the language-based initiative for flexible variations and binding
time fall short when it comes to adapting code-asset to add additional variations. Another
limitation of language-based approaches is the assumption that the variable features always
extend a monolithic base-program. A variable feature may extend (intersect) other variable

83

features, and when only some of the variable features from the intersection are selected,
the separation becomes a problem[KAR+09].

The next chapter (Chapter four) presents a systematic review of approaches pro-
posed to directly or remotely support variations of feature binding time.

Chapter 4

Approaches for supporting variations
of feature binding time: A systematic
study

From the results of the action research in the previous chapter (Chapter three),
we found that the modern language-based implementation techniques are not better than
the classical technique in terms of modifiability. Similarly, even the techniques that were
specifically proposed to implement features in SPLE (Feature-Oriented Programming and
Delta-Oriented Programming) do not support variations in feature binding time even
though they have improved modularity.

Given the limitations of the language-based implementation techniques with respect
to the adaptability of reusable assets and the support for variations of feature binding time,
we expanded our search with a systematic literature review to include approaches that
directly or remotely support the variations of feature binding time.

Consequently, we used theories on conducting Systematic Mapping Study (SMS)
and Systematic Literature Review (SLR) as guides. From the review, we found that the
current support is limited in one of the following ways:

i A feature may have to be implemented more than once, each implementation for
a specific binding time. Similarly, where model elements are used to represent a
feature, more than one representation may have to be used, each representation for
a specific binding time;

ii A product may have to be composed from too fine-grained model slices or source-
codes implemented with aspects at a low-level of abstraction. In the former case, the
model slices will have different target transformation depending on the target binding
time. In the latter case, a separate set of aspects, in aspect-oriented programming,
are used to implement a feature and each set is for a specific binding time;

iii Abstracting the two binding modes (static and dynamic) at the model level in model-
driven development. The abstraction is limited to supporting only the existence of

85

alternative execution paths for possible binding of any of the variant features at
runtime or absence of it to support static binding of only one of the variant features.

In the next section, we introduce the systematic review in relation to our research question.
Subsequently, we discuss the review protocols and provide a broad overview and an in-
depth narrative summary of the reviewed works. We end the chapter with the highlights
of research gaps that form part of the basis of our research contributions.

4.1 Introduction

Systematic Mapping Study (SMS) is a secondary research aimed at investigating
primary studies in a specific topic and broadly categorizing and summarizing the findings
with the help of visual charts - otherwise known as maps. The maps highlight different
facets of interest such as frequencies of publications, trends of publication over time and
other information that help to elucidate the overall overview of the research area [K+07,
PFMM08]. A Systematic Literature Review (SLR) is also a secondary study. However,
a SLR is a step further when compared to the SMS. With SLR, a researcher provides
an in-depth analysis and interpretations of the review findings, in addition to the broad
overview. In this thesis, we use both the SMS and the SLR to complement each other as
suggested by Petersen et al [PFMM08].

The systematic study fulfills our third research objective (O3). The findings from
the study are significant for the identification of the research gap, and for the positioning
of our contributions in a less partial manner. Equally important, in this chapter, is critical
discussions of the pros and cons of the approaches and on what might need to be adjusted
to improve them. The discussions can serve as a guide to intending practitioners who
wish to select an approach appropriate to their setting. It is also useful to established
practitioners who want an objective appraisal to fine-tune their approach.

More specifically, we decompose our third research question (RQ3) into the follow-
ing review question:

4.1.1 Review questions

RVQ1. How much researches on variations of binding time are available from 1990 to date?

a. In what software domain?

RVQ2. What approaches do the existing researches proposed to manage variations of binding
time

86

a. What outcome they seek to achieve?

b. What are the major limitations of the approaches?

In the next section, we discuss the review protocol.

4.1.2 Review protocol

As a scientific approach, both SMS and SLR have to have a prescribed protocol
to aid replication of the study. Without the protocol, it would be impossible to replicate
the review. Study replication is encouraged to either consolidate the existing finding or
to dispute it. If the results from the repeated study are consistent with the results from
the earlier study, then the results from the earlier study are validated. If, however, the
results from the repeated study contradict the existing results, another investigation is
necessary to attain a certain level of (no) confidence about the contentious results. Next,
we describe our review protocol in line with the review questions.

4.1.3 Search terms

We derived the search terms from the review questions; from preliminary random
searches into scholarly publications; and from the researcher’s prior exposure to the lit-
erature that are relevant to supporting variations of binding time. We grouped similar
search terms and joined them with logical OR while we joined the groups of dissimilar
terms with logical AND to form a search query as follows:

(feature OR variability OR variation*) AND (”binding time*” OR ”configuration
time”) AND (”product line*” OR ”product family” OR ”system family”)

The choice of the search terms in the first group (feature OR variability OR vari-
ation*) is to capture papers reporting both feature-oriented and non-feature oriented ap-
proaches to supporting variations of feature binding time. Similarly, the search terms in
the second group (”binding time*” OR ”configuration time”) and third group (”product
line*” OR ”product family” OR ”system family”) is to reflect the interchangeable terms
used in the literature for binding time and product line respectively.

4.1.4 Search databases

We adapted the search query, based on specific database search format, and exe-
cuted on the following resources:

87

Table 4.1: Inclusion/exclusion criteria

Inclusion criteria Exclusion criteria
- The paper is written in English - The paper is not written in English
- The paper is peer-reviewed and pub-
lished as article in journals, conferences
or workshops

- The paper is not peer-reviewed

- The paper is published between 1990-
2019

- The paper focuses on behavioural
variations at runtime exclusively (no
pre-runtime considerations) or the pa-
per focuses on design time variations
exclusively.

- The paper discusses some aspects of
binding time

- The paper does not discuss binding
time

• ACM Digital Library;

• IEEE Xplore Digital Library;

• Science Direct

• Scopus

The four databases listed in this section are repositories of research papers from major
workshops, conferences and journals articles of software engineering in general, and of
software product line engineering in particular. Search through the databases returned
voluminous research papers, as expected, with the majority of the papers irrelevant to
the review questions. In the next section, we explain how we filtered the most irrelevant
papers.

4.1.5 Selection strategy

We applied the criteria in Table 4.1 for the actual selection. We did the selections
in three steps. In each step, we applied the inclusion/exclusion criteria. In the first
step, we only read the abstract and sometimes the keywords and then decide whether to
include or to exclude the paper for another screening in the second step. The first step is
mainly meant to reduce the volume of irrelevant papers. In the second step, we applied an
adaptive reading strategy [PFMM08](i.e., the scope of reading depends on the clarity of
the paper’s presentation and, therefore, differs from one paper to another). In the second
step, a decision is made on whether to include or to exclude a paper mostly based on
re-reading the abstract, reading the introduction and reading the conclusion section of
the paper. However, sometimes we had to read other sections of the paper to make the

88

Figure 4.1: Paper selection process

Table 4.2: Papers selection per database

Database 1st phase 2nd phase 3rd phase
ACM Digital Library 15 10 4
IEEE Xplore 211 27 9
Science Direct 73 7 1
Springer 292 18 4
Scopus 92 11 4
Snowballed 10 6 2
Manually added - - 2
Total 693 79 26

decision. In the last and final step, we read the selected papers thoroughly, often several
times, and prototyped with the proposed approach whenever possible. Fig.4.1 depicts the
process of paper selection.

In Fig.4.1, each box represents a step in the selection process and the texts in the
box describe the basis for including or excluding a paper to the next step. Also depicted in
the figure is the total number of papers included/excluded at each step. Table 4.2 presents
the breakdown of the papers selected from each of the sources.

In Table 4.2, each row represents the source of papers included in the review.
The 1st phase column represents the number of papers found in the first execution of
the search query before the screenings; the 2nd phase column represents the number of
papers included in the second step of the paper selection; the 3rd phase column represents
the number of papers selected for the final selection step. In addition, we sourced the
snowballed papers by following-up with references or citations of the paper under review.
In case the snowballed paper is either an earlier or an updated version of the paper under
review, we included only the latest version. In one case, the later version [TLSPS09] has a
different first author and the research was in the context of a different application domain
from that of the earlier version[SPLS+06]. In that case, we included both versions of the
papers in the review.

We also manually added two (2) papers we know of but the papers were not returned
from any of the searches. This is because the papers were published under research themes
that are different from SPLE and their keywords and abstracts contain no pointer to
variations. Nevertheless, the contents of the papers are relevant to variations of feature

89

binding time.

4.1.6 Data extractions

We extracted the data fields based on existing review templates and in consideration
of the review questions. The following are the fields derived from the review template
[PFMM08]: research approach, contributions proposed in the paper; and other auxiliary
fields such as publication venues and publishers. Similarly, we derived the following fields
from the review questions: proposed approaches; software domain in which the approaches
were validated or evaluated; and the goals of the research. In total, we included twenty-six
(26) papers for the final review.

We end this section with an attempt to answer the first review question (RVQ1):

We were able to find only twenty-six (26) published papers related to supporting
variations of feature binding time.

4.2 Overview of the publications

Six (6) papers are journals articles, fifteen (15) are conference papers and the
remaining five (5) are workshop papers (see Fig.4.2b). The papers appear in twenty-one
(21) publication venues (workshops, conferences, and journals). In this context, Software
Product Line Conference (SPLC) attracted the highest number of publications with a total
of five (5) papers; International Workshop on Variability Modelling of Software-Intensive
Systems (VaMoS) and Journal of Science of computer programming has two (2) papers
each. All the other venues have only one (1) paper each (see Fig 4.3).

Based on SCImago Journal Rank (SJR) indicator [GPGBMA10], one of the journals
has reputation for being in the top 25% (first Quartile) of its subject category and the
remaining journals are in the top 50%(second Quartile). In the conference category, among
the 15 papers, 5 were presented at SPLC- the premier conference of SPLE researches; one
(1) paper was presented at the top-tier Aspect-Oriented Development conference; four
(4) papers were presented at second-tier conference; two (2) papers were presented at
the bottom 50% (third Quartile) conference venues; three (3) papers were presented at
the bottom 25% (fourth Quartile) conference venues. From the five (5) workshop papers,
two (2) papers were presented at the VaMoS, the premier workshop for SPLE; 2 were
published in Springer Lecture Note in Computer Science (LNCS) – a second-tier book
series for computing; one paper (1) has a reputation of being third tier publication.

90

(a) authors’ affiliation (b) paper categories

Figure 4.2: Publications by (a) affiliations and (b) paper categories

Figure 4.3: Publication venues

The graph in Fig.4.4 shows the publication trends over a period of two decades. Two
interesting revelations from the graph are: 1) SPLE community recognized the challenge
of variations of binding time long enough. 2) There are sparse publications despite the
recognition of the problem. For example, no paper was published in the year 2000, 2003,
2005 and 2010. 2009 is the year with the highest number of published papers (with a
total of 5 papers). 2016 is the year with the second-highest published papers (a total of 4
papers).

Using the research categories proposed in[WMMR06], each of the papers reflects
one or more of the research approaches in Table 4.3.

Each of the papers reviewed pursues one or more research goals (horizontal axis of
Fig.4.5). Fourteen (14) papers share the goal of supporting flexibility of feature binding

91

Figure 4.4: Publication trend

Table 4.3: Research approaches

Research approach Description
Experience report Research describing personal experience of using a par-

ticular technique, often by practitioners in the industry.
Evaluation research Researches describing detail investigation of a particular

technique or groups of techniques and reporting the pros
and cons.

Philosophical view Researches describing a new conceptual framework or
new way of looking at existing things.

Solution proposal Researches proposing a novel or an incremented solution
to a particular problem.

Validation research Validation research may be a solution proposal research
but with a detail implementation and demonstration
with small example (e.g. work done in the lab).

92

Figure 4.5: Various research goals of the proposed papers vs research approaches

and with eight (8) of the papers reflecting the validation research approach (first clus-
tered bars in Fig.4.5). Next, six (6) papers share the goal of minimising the footprint
of executable and two (2) out of the six papers are experience reports, other two (2)
are validation research and the remaining two (2) papers are evaluation research (second
clustered bars in Fig.4.5). Two (2) papers, one (1) validation research paper and one
(1) philosophical research paper, share the goal of increasing the execution speed of the
software product (third clustered bars in Fig.4.5). Lastly, the research goals of managing
complexity, increasing scalability and reduction of source-codes redundancy were pursued
by one paper each.

Thus, the following is the summarized answer to RVQ2a:

The researches on variations aimed to influence the following outcomes: flexible bind-
ing, minimizing footprint, increasing execution speed, managing complexity, increasing
scalability and reducing source code redundancy.

In the next section, we present a narrative summary of the proposed techniques

4.3 Narrative summary of the proposed approaches

This section presents a narrative summary of the proposed approaches in the lit-
erature to support variations of feature binding time. Narrative summary is a type of
interpretive synthesis in qualitative research for aggregating theories[DWAJ+05]. We used
narrative summary here in its simple form to guide the description of approaches proposed
to support variations of feature binding time.

93

We derived initial classifications of the approaches from the second step of pa-
per selection. After a thorough reading of the papers in the final step, we refined the
classifications with the addition of new approaches and merging of similar ones.

The following is the list of the refined approaches and also a partial answer to the
review question 2 (RVQ2):

• Delegation of binding to aspect weaver

• Programming language extension

• Metadata interpretation

• Model composition

• Delegation of binding to deployment platform

• Abstracting the binding time at model level

Note that the classification is not a hard one as an approach may subsume other
approaches. For example, some implementations of aspect weaving use metadata inter-
pretation and the actual binding may be delegated to a deployment platform. Simi-
larly, aspect-oriented implementation is also considered as a form of language extension.
Nonetheless, we consider the characteristic of the approach that was primarily utilized in
the research paper in focus. The proposed approaches were used in different application
domains as depicted in Fig.4.6.

Fig.4.6 presents a taxonomy of application domains in which the approaches were
either validated or evaluated. Thus, Fig.4.6 stands as an answer to the review question
RQ1a.

In the subsequent sections, we provide a brief overview of each of the approaches
and then followed with a summary of the research contributions of papers in that category.
We also assess each of the approaches based on the criteria in Table 4.4.

4.3.1 Delegation of binding to aspect weaver

Aspect Orientation (AO) is an engineering approach for separation of cross-cutting
concerns - concerns that would normally be scattered across other concerns. Each of
the separated concerns is implemented as one or more aspects. Aspect weaver is a tool
that intertwines the separated concerns with the rest of other concerns. Depending on the
weaver, the intertwining of the separated concern (aspect weaving) can be done at different
phases. Thus, the delegation of the binding decision to aspect weaver is handing over the
actual binding to the intertwining process.

94

Table 4.4: Assessment criteria of proposed approaches

Criterion Explanation
Binding phases How the technique support binding at the different

phases and whether or not the technique supports both
inclusion and activation of new artefacts, realizing a fea-
ture, or it simply supports activation/deactivation of a
pre-included artefact.

Granularity Whether the approach supports fine-grained variations
(e.g., variation at the level of functions, methods, at-
tributes, and clauses) or coarse-grained variations (e.g.,
variation at the level of modules, packages, classes, and
files) or both.

Level of abstraction The level of detail in which the product line asset to-
gether with the variation is expressed. High-level of
abstraction represents less detail representation of the
system of which further translation is required to ar-
rive at low-level details (executable source codes). On
the other hand, a low-level of abstraction represents a
more detail representation of the system and of which
no further translation is required.

Figure 4.6: Application domains

95

A feature in SPLE can also be a separable concern to some extent[KAB07, CLK08,
FCS+08]. The fundamental assumption is that, variable features are implemented with
aspect-oriented mechanisms to extend a monolithic base-program. Other program elements
(interfaces and classes) may be provided to support aspects of a variable feature. Ideally,
none of the supporting program elements would be referenced from anywhere in the base-
program or in any other feature. To manage variations of feature binding time, the binding
decision of the variable feature (a feature implemented as aspect) can be made at either
of the weaving phases supported by the target aspect-based implementation.

4.3.1.1 Existing research contributions

Aspect-oriented related techniques constitute the largest interventions proposed to
support variations of feature binding time. We begin with three aspect-oriented design
idioms proposed to support flexibility of feature binding time. A design idiom is a style of
solving a specific implementation challenge in a specific environment. Chakravarthy et al
[CRE08] proposed the first idiom- Edict. Andrade et al [ARR+16] proposed the other two
idioms: Pointcut redefinition and Layered aspect. All three idioms were evaluated with
the earlier version of AspectJ1 (a Java-based aspect-oriented programming language) but
the evaluations were carried out in different application domains.

Edict idiom: with this idiom, a developer separates source codes of a variable
feature from the base-program and implements the separated source-codes in one or more
aspects. A catalogue of design patterns [GHJ+95] is used to aid the separation. A variable
feature is then implementation as aspect in a two-step process. In the first step, one
or more abstract aspects are implemented with the necessary intertype declarations and
pointcuts definitions. The intertype declarations are additional structural codes to support
the aspect while the pointcut definitions are specifications to capture places in the base-
program where the variable feature extends. In the second step, two sets of concrete
aspects are implemented: 1) aspects for binding feature to execution context statically,
and 2) aspects for binding of a feature to the execution context dynamically. Both sets
of concrete aspects are subtypes of their corresponding super abstract aspects. The two
sets of aspects differ in the code snippet to enforce either of the two binding modes. The
choice of the sets of aspects to include in the product configuration depends on the choice
of binding of a feature.

Because of the granularity of variations, using Edict idiom to implement a variable
feature may require several abstract aspects and each having multiple concrete subtypes.
Since the multiple concrete subtypes of the same abstract aspect differ only in few codes
snippets, most of the same source codes have to be duplicated across the multiple sub-
types. Hence, using the Edict idiom can breed too much code duplication. Andrade et

1https://www.eclipse.org/aspectj/

96

al [ARR+16] proposed to minimise the code duplication and we discuss their approach in
the following paragraphs.

Andrade et al, [ARR+16]proposed two design idioms to improve on the utility of
Edict idiom. Specifically, they aimed to minimize the following shortcomings of Edict:
code duplication, code tangling, and code size. The two design idioms share the same
philosophy with the Edict: different sets of aspects for the different binding modes. We
present the summary of the two idioms in the following paragraphs.

Pointcut redefinition idiom: in this idiom, a developer implements intertype
declarations and pointcut definitions in the super abstract aspect(s), as in Edict. Unlike in
Edict, the super abstract aspect(s) should also contain a complete implementation of the
feature code. In addition, a developer should also implement two separate sets of concrete
aspects: 1) an empty concrete subtype for each of the abstract aspect to instantiate the
super abstract aspect ’as is’. 2) A concrete subtype for each of the abstract aspect and
each concrete aspect overrides all the pointcuts of its super abstract aspect. The only
reason for the overriding is to link every pointcut with activation condition so that the
pointcuts are only advised when the feature is activated (through a configuration file
or similar techniques). A piece of advice, in aspect-oriented programming, is a unit of
implementation for adding behaviour to the base-program. If a binding time is decided
before compilation, a developer includes the abstract aspects as well as the set of empty
concrete aspects in the product configuration (1 above). Otherwise, a developer includes,
in the product configuration, the abstract aspects as well as the set of concrete aspects
with the overridden pointcuts (2 above).

Since the concrete aspects for the early binding are empty, the code duplication
is significantly reduced in comparison to Edict idiom. In addition, the concrete aspect
for the late binding contains only the pointcuts with the additional link to the activation
conditions and thus reduces the code duplication of Edict. Andrade et al [ARR+16] further
proposed to improve this idiom with another idiom as explained in the next paragraph.

Layered aspects idiom: In layered aspects idiom [ARR+16], rather than applying
activation condition for every pointcuts, as in pointcut redefinition, a single activation
condition is applied to all pointcuts collectively. Technically, the condition is applied
to all pointcuts at once using AspectJ special construct, adviceexcution. However, the
pointcuts intercepted with around advices need to be overridden to prevent skipping a
code in the base-program when the feature is deactivated.

Similar to the contribution with design idioms, Lee et al [LKKP06, CLK08], pro-
posed patterns of aspect-oriented design to implement features and manage their depen-
dencies in order to support flexible binding time. Likewise, Vranić et al [VBMD08, MV09,
BVD07] proposed patterns for addition and removal of functionality to a web application
to implement change requests. The approach may be used to control feature binding
by mapping feature implementation patterns to the proposed implementation patterns of

97

change requests.

The approaches discussed so far, under the delegation of binding to aspect weaver,
were reported in the context of a static weaver. Static weaver intertwines aspects to
physical artefacts such as source codes and binary and that limits the support of feature
binding at post-deployment time. On the other hand, dynamic weaver modifies a program
in execution at runtime and that facilitates feature binding at post-deployment time. For
the dynamic weaving, the actual binding is often specified as a metadata and interpreted
by the deployment platform. To fully support binding time, Tartler et al [TLSPS09,
SPLS+06] integrated the two modes of weaving: static weaving and dynamic weaving in
a single aspect weaver. However, the integration had to compromise with fine-grained
separation of concerns. This is similar to the compromise made when AspectJ[Lad03] (a
Java-based aspect-oriented language with static weaving) was merged with AspectWerkz2

(also a Java-based aspect-oriented language but with dynamic weaving) and thereby giving
up some dynamic capability of AspectWerkz.

Binding phases
The approach in [CRE08] and [ARR+16] support binding of feature to a product in two
phases: The first phase, compile-time weaving phase, corresponds to the binding of a
feature at pre-deployment time. The second phase, load-time weaving phase, roughly
corresponds to the binding of a feature at a deployment phase. Conversely, they do not
support the inclusion of a new feature at post-deployment time. However, a feature can be
included at an earlier phase and then supported with activation/deactivation mechanism
for post-deployment binding time decision. In other words, approaches in this category
have limited support for feature binding at post-deployment time. In contrast, the ap-
proach proposed in [TLSPS09, SPLS+06] provides a technical support to include a feature
at post-deployment time albeit at a coarse-grained level.

Granularity
Using the design idioms proposed in [CRE08] and [ARR+16], variations at all levels of
granularity can be encapsulated as aspect. Generally, an aspect-oriented language with
a static weaving provides support for separation of concern at a fine granular level. On
the other hand, the integrated weaving in [TLSPS09, SPLS+06] does not support the
separation of fine-grained variations.

Level of abstraction
All of the approaches discussed, under Delegation of binding to aspect weaver, support
specification of product line assets only at low-level of abstraction - at the source code
level.

Discussion
Generally, implementing a feature as a separable concern, in terms of aspect of aspect-

2https://www.eclipse.org/aspectj/aj5announce.html

98

oriented programming, requires non-trivial efforts. This is because implementation of
a feature in SPL was not the initial intention of aspect-orientation. Specifically, the
power and utility of aspect is more apparent when applied to separate a homogeneous
cross-cutting concern - a single concern that appears uniformly in multiple places in the
base-program (e.g. logging). However, a feature in SPL often manifests as heterogeneous
cross-cutting concern at the source code level. In other words, a single feature may affect
several places in the base-program differently. Consequently, several aspects may have to
be used to effectively separate a single feature of moderate to large size [KAK08].

We notice that the two authors [CRE08] and [ARR+16] aimed at reduction in foot-
print. Accordingly, in [CRE08], aspects for the static binding (the aspects to be included if
the binding decision is decided at pre-deployment time before compilation) are optimised
to make the implementation of deselected feature unreachable and then removed by an
optimisation tool. We recommend that the optimisation should be applied in considera-
tion of the overall domain knowledge. For example, it is reasonable to optimise a low-end
product with memory constraint and which is unsuitable for an upgrade with a prior
deselected feature. However, that type of optimisation may have negative consequences
on an optional variation point that may be transformed into an inclusive OR group in
the course of product line evolution in which the additional feature would be bound at
post-deployment time.

Lastly, the notion of binding time in all but in [TLSPS09, SPLS+06] is limited to
binding of a feature to product execution context (i.e. static vs dynamic binding mode)
as against binding a feature to a product.

4.3.2 Language extension

Language extension is additions of new constructs or new notations to an existing
programming language. There are two broad categories of language extensions. The
first category is extending a language with additional constructs that are similar to the
constructs of the target language. In this case, a specification with the extension represents
the same level of abstraction with the specification in the target language. The second
category is extending a language with constructs or notations that are entirely different
from that of a target language. In this case, a specification with the extension represents
a different level of abstraction from the specification in the target language. What is
common among the two categories is that the design specifications with the extended
languages are eventually transformed into the target language being extended. The next
section presents the research contributions in this category.

Existing research contributions
Philip Consumer Electronics [VO98] developed a purposeful language, Component De-
scription Language (CDL), and used it to describe a family architecture of electronics

99

software. CDL is an architecture description language (ADL) with its own constructs.
However, the language is compiled to C as the target language. The CDL constructs
support architectural specification at a high level of abstraction than what is possible
with the C programming language. The configuration information and the binding deci-
sions are separated from the component architecture specifications and delegated to the
CDL compiler. The compiler evaluates the binding decision expressions and replaces them
with the appropriate constructs for the desired binding in the C language. The collective
techniques were integrated into a special component model known as Koala.

Similarly, Rosumuller et al [RSAS11] extended C++ programming language to
support step-wise refinements (SWR)- a development approach promoted in GenVoca[BST+94].
GenVoca is an approach to gradually modify program elements such as classes and func-
tions. The extension supports implementing a feature as a series of fragmented modifica-
tions of C++ classes and functions. A specific product is generated through composition
of the refinements corresponding to the selected features. On one hand, an optimised
product is generated from inlined refinements (i.e. static binding of feature to execution
context). On the other hand, they framed the refinements as decorations, as in the deco-
rator pattern[GHJ+95], to support delaying of feature binding to execution context until
at runtime.

Binding phases
With Koala [VO98], it is possible to generate binding mechanism that facilitates delay of
binding time up to deployment time. However, there is no explicit support for feature
binding at post-deployment time. Similarly, the approach of Rosumuller et al [RSAS11]
is limited to the selection of how a feature would be bound to execution context- static
or dynamic – and the decision has to be made before compilation. The research goal
of Rosumuller et al [RSAS11] is to optimise source codes (using function inlining and
hardwiring of implementation components), if the binding time of feature can be decided
before compilation (i.e. before deployment).

Granularity
Since the approach of Rosumuller et al [RSAS11] is a code-level specification, it is appli-
cable to both fine-grained and coarse-grained variations. Likewise, not only the approach
in Koala [VO98] supports variations at different level of granularities but also they do so
in an interesting way. We summarized how Koala supports variation at three levels of
granularity:

• Component property level: Fine-grained variations (called component internal
diversity in Koala) are represented as variable properties on components and are
exposed to configuration interface as diversity interface. When a constant value is
assigned to a variable property, Koala compiler completely removed the alternative
clauses (alternative execution paths) in the source codes. As a principle in Koala, a
variable property should not have Set and Get operations because one end up with

100

two more functions getX() and SetX() for each property even if the functions will
never be used because the property is set as a constant. With this approach, a prob-
lem of bloating component with various alternative execution paths is minimised.

• Component interface level: A component in Koala can have optional required or
provided interface. Koala compiler generates a stub, as in null object pattern[GHJ+95],
for each optional provided interface. Similarly, Koala compiler generates Boolean
presence condition to guard each optional required interface.

• Component level: A connection from one component may be rerouted to one of the
several alternative components using an architectural construct called switch. The
actual rerouting decision can be fixed to one of the several alternatives components
at configuration time (i.e static binding to execution context) or can be decided at
runtime (i.e. dynamic binding to execution context).

Level of abstraction
Koala supports product line specification at high-level of abstraction using components
as building blocks. In contrast, the approach in [RSAS11]supports specification only at
low-level of abstraction.

Discussion
The Koala component model is one of the earliest approaches (at least in the public
domain) of product line practice. One of its powers is optimisation techniques incorporated
in the Koala compiler. For example, in component connection rerouting, if the connection
is fixed to one component at compile time, the Koala compiler replaces the connection with
a direct function call and the unreachable component is removed from the configuration to
reduce footprint. Another example is the removal of alternative clauses when a property
is assigned constant value in the diversity interface.

The comment on optimisation in the previous section also applies here. However,
of note is, application engineers using Koala are also expert in the product they build.

Binding a feature at post-deployment time may be supported in Koala as one
of the configuration decisions. In this case, the decision of feature binding at post-
deployment time at CDL level should be replaced with C language constructs supporting
field-programmability.

Overall, the approach in Koala may be valuable if a significant investment can
be made both in tooling and human resources. This is because even the component
composition itself is technically-oriented.

The approach proposed in [RSAS11] introduced development processes that may
not be consistent with software engineering practices. The utility of the approach may be

101

supported through a model at a higher level of abstraction to shield engineers using the
approach from the low-level manipulations.

4.3.3 Metadata interpretation

Metadata is a secondary data that describes a primary data. In the context of
SPLE, a metadata is often used to specify product configuration. For example, business
rules such as insurance policy may be stored in a table or as an XML file as a form of
metadata and different set of rules distinguish one insurance application from the other.
Similarly, data about variations as well as their binding times can also be stored as a
metadata [SE08]. In this case, products of a product line do not differ only on features
but also on feature binding times.

Existing research contributions
Yoder et al [YBJ01] advocate that, whenever possible, the semantics of a domain should be
abstracted and modelled as a set of ’supertypes’. For example, a domain may be modelled
as a state machine consisting of a set of ’State’, ’Transition’, ’Action’ as ’supertypes’.
The meta relationships between the ’supertypes’ are explicitly specified. For example,
’State’ has one or more ’Transition’ to another ’State’ and each ’Transition’ is triggered
by an ’Action’. Different products in the domain would differ in the concrete ’subtypes’
of the ’supertypes’. Thus, a software configuration is the specification of the required
’subtypes’ as a metadata. While the authors called this approach ’Adaptive Object Model’,
Fowler called it a ’Semantic Model’ style[Fow10]. In this thesis, we go with the ’semantic
Model’ as the approach has more to do with the logic of the domain than any specific
implementation technique. We consider this approach in the review because it may be
used to support variations of products of a product line. The specification of the metadata,
which is comparable to feature selection, is a decision on whether or not to include a
specific ’subtype’ such as an optional ’State’ a system may assume and can be done at
the different phases of binding. Bugerili et al [BMF09] adapted this approach to model
satellite launcher product line using sensors, actuators, control, etc as the ’supertype’ in
that domain.

Capilla and Bosch [BC12] discussed ideas on how to manage variations of feature
binding time. In a separate work, they mapped the ideas to reconfigurations processes in
a power plant control product line [CB16]. Subsequently, and in a more concrete work
[CVD16], they illustrated the binding of features to a feature model at a post-deployment
time. In the implementation, they used a database to store feature with its ’supertype’ as
a metadata. a feature can then be added or removed to a feature model by updating the
database. The updates are then interpreted and reflected on the feature model using a
matching algorithm that compares the root of the new feature to pre-existing ’supertypes’.
The root of the new feature may match an existing ’supertype’ and, therefore, a feature
can be added as a child of the ’supertype’. Otherwise, the new feature may have to be

102

added as a new ’supertype’.

Khediri et al [KK15], proposed an approach to modelling database using delta-
oriented technique[SBB+10] to specify deltas in data description language (DDL) of Struc-
tured Query Language (SQL). Each delta is a specification to change the structure of the
database to reflect the binding of a specific feature of a database management system. Al-
though this approach is specific to database management domain, we envision the transfer
of the concept to product line domains that are implementable in scripting languages such
as Hypertext Preprocessor (PHP), Python, Perl.

Binding phases
In Yoder et al [YBJ01] and [BMF09], all the features are conceptually included in the
product configuration (although variant of this approach exist). The specifications in the
metadata, possibly at the different binding time, are merely for activation/ deactivation of
pre-included features. In the case of the approach in[CVD16], the feature binding is neither
to the execution context nor to the product but the binding is to a feature model. Since a
feature model is not executable, we can only imagine that the feature model is supported
with a repository of implementation components as in [VdH04]. In this case, the updates
on the feature model are interpreted to activate or deactivate implementation component
realizing the features. Therefore, these approaches offer limited support for binding time
even though they support binding a feature at multiple phases. The approach in[KK15]
supports the binding of a feature at all phases, subject to the availability of interpretive
support at the binding phase.

Granularity
In [YBJ01] and [BMF09], variations are supported only in terms of the semantics of the
domain and therefore limited. In the example of the state machine, although different
products may be composed with different states and different transitions, an internal vari-
ation within a state, for instance, is not explicitly exposed. There is no enough information
to assess the approach proposed in [CVD16] with respect to the granularity of variations.
Delta modelling, as proposed in [KK15], can be used to specify changes of a database in
terms of field, record, database table or the complete database schema. Hence it supports
both fine-grained and coarse-grained variations.

Level of abstraction
Both approaches to specifications of product line assets proposed in [YBJ01] and that of
[KK15] are at low-level of abstraction. Binding specification proposed in [CVD16] is at the
level of feature, and a feature can represent both high-level and low-level of abstraction.

Discussion
The ’semantic model’ approach is only applicable to specific classes of system. Fowler, M.
[Fow10] provided guidelines on where the approach may be applicable. A variant of this
approach is to use the metadata to guide code generation or to implement the ’supertype’
and only use the metadata to specify configuration and reconfigurations.

103

The search strategy to locate the appropriate position of the new feature in the
existing feature model proposed in [CVD16] may be resource-intensive. Nonetheless, the
major skeptic about this approach, at least what the concrete implementation demon-
strates, is their focus on the feature model exclusively.

4.3.4 Abstracting the binding time at the model level

Abstracting the binding time at a model level is to provide special model properties
to represent binding time at a model level in model-driven development. This approach is
similar to language extension in the sense that the model and the properties representing
the binding times are ultimately transformed into source-codes of the target programming
language.

Existing research contributions
Beuche1, D. and Weiland, J. [BW09] extended Simulink -modelling tool3 with constructs
for modelling variation points and parametrization of the variation points with binding
modes. Each of the binding modes, represented as a property at the model level, is
transformed into an appropriate snippet at source code level using a model to code trans-
formation. Similar to this approach, Schmid and Eichelberger [SE08] propose to store the
binding time properties as part of decision-based variability model.

Hartmann et al [HKM+13] proposed an approach to generate a glue component
to adapt binding interfaces of components that might have been developed by different
organizations. The approach has the potential to support abstracting the binding time and
presenting it at the model level. That is, the glue component may embed a parameterized
binding time property and the binding time decision can be exposed to a configuration
interface.

The work of Andre Vanda hoek [VdH04] is one of the earliest to address variations
of feature binding time at the architecture level. In his approach, architectural repre-
sentation is used as a configuration interface and is mapped to concrete implementation
artifacts. Feature binding at pre-deployment time is a selection of architectural elements to
form an architectural representation for the desired product; the implementation compo-
nents for the architectural representation are then activated. At deployment time, a prior
configured architecture representation may be updated with additional architectural ele-
ments to reflect the binding of additional features. A new architecture representation may
as well be formed if no one exists (i.e., no binding decision was made at pre-deployment
time). In this case, the architecture representation is translated into calls to concrete
implementation components. At post-deployment time, features are bounded to the prod-
uct in operation by comparing a model of the desired architecture representation with

3https://www.mathworks.com/products/simulink.html

104

the model architecture representation of the deployed product. The difference between
the two architecture representations is then applied to the existing product through the
activation or deactivation of implementation artifacts.

Binding phases
The Simulink tool extension [BW09] does not include the support for feature binding at
post-deployment time. On the other hand, the extended support of the model in [SE08]
includes properties for generating aspect code to activate or deactivate a feature at post-
deployment time and thereby partially supporting feature binding at post-deployment
time. The glue code generation proposed by Hartmann et al [HKM+13] supports the
binding decision at the code generation time (before deployment) or the binding decision
may be pass-on to be resolved at deployment time - no support for feature binding at
post-deployment. In Andre Vanda hoek[VdH04], apart from the pre-deployment binding
time, the architecture model only facilitates activation and deactivation of implementation
components at the different binding time.

Granularity
Both the Simulink extension[BW09] and the glue generation approaches[HKM+13] do not
explicitly manage internal component diversity. Hence, they do not support fine-grained
variations. In contrast, in [SE08], variations are implemented at both fine-grained and
coarse-grained levels as in traditional variability management (e.g. using pre-processing)
and then mapped to the decision points at the level of the variability model. In [VdH04],
the variations are only explicitly supported at the level of component and interface. How-
ever, the approach supports different versions of architectural components and versions
may differ in fine-grained variations.

Level of Abstraction
The Simulink tool in itself provides model elements (e.g. subsystems, signal routing, and
switch block) for modelling a single system at a high-level of abstraction. Thus, the
additional support for variation and binding time proposed in [BW09] supports modelling
product line at a high-level of abstraction. Similarly, a glue code generation proposed
by Hartmann et al [HKM+13] is to bridge the differences between high-level components
and hence it is at a high-level of abstraction. The decision-based variability model and
the binding time representation in [SE08] abstracts away the low-level implementation
details and exposed binding decisions as interactive questions. However, a developer has
to implement the low-level implementation details and mapped them with the variability
model. The approach in [VdH04] supports specification at architecture which is relatively
a high-level of abstraction although the architecture has to be manually mapped to low-
level implementation details.

Discussion
Embedded software is the target domain for the glue code generation proposed in [HKM+13].
Support for feature binding at post-deployment time in an embedded system is to support

105

field-programmability and which may be represented as a model property at the level of
glue modelling. The scope of the Simulink tool extension proposed in [BW09] is limited
to providing support for binding a feature to the execution context. Consequently, it
is difficult to extend the approach to support binding a feature at post-deployment time.
Different architectural representations for the different binding time as proposed by Vanda
Hoek [VdH04] may hinder the utility of the approach.

4.3.5 Model composition

Model composition is a process of combining two or more model slices to form a
single model. In SPLE, a model slice represents an implementation of a specific feature,
and the composed model represents an implementation of a specific product. A model or
other artefacts generated from the model can be composed either at pre or post-deployment
time.

Existing research contributions
Zdun, U. and Strembeck, M. [ZS06] proposed a metamodel for modelling introduction of
additional structure and interaction of model elements into an existing model (or possibly
an empty model). Although the approach was not meant specifically for modelling varia-
tions of feature binding time, it could be adapted to model program elements that would
be composed to form a product as a result of feature selection. It can also be used to add
a feature to an existing product at the different binding time.

Whittle et al [WJE+09], proposed the use of graph transformation to specify model
slices and to use aspect-oriented techniques to compose the individual slices. Model el-
ements for specific concerns (a concern may be a feature) are separated and composed
when needed. In this approach, a modeller slices models such as UML class, sequence,
and state diagrams according to requirements for implementing a specific feature. The
model slices, for selected features, are then composed to derive a custom model. Each
model slice, for the specific feature, is a specification of fine-grained model elements to be
added or to be removed from the base-model or another model slice. For example, a model
slice to implement a feature may be a specification to add ’states’, ’events’, ’transitions’,
and ’regions’ to the base state diagram or another model slice. In this approach, feature
binding is a selection of the fine-grained model elements to realize features as a model
slices and using separate target transformation based on binding time requirement: At
pre-deployment, the selected model slices, representing a custom product, is transformed
into source-codes for compilation. At deployment and post-deployment time, the selected
model slices are transformed into dynamic script/aspect to adapt the product.

Binding phases
The assessment of binding phases does not apply to the approach proposed by Zdun
and Strembeck [ZS06], because it is an abstract modelling of features with no concrete

106

implementation. The approach proposed by Whittle et al [WJE+09] supports feature
binding at two phases: at pre-deployment time, model slices representing selected features
are composed and transformed into executable. At post-deployment binding time, model
slices are transformed into AspectWerkz code - an AOP for dynamic weaving.

Granularity
Both the approach in [ZS06] and [WJE+09] support modelling variations at both fine-
grained and coarse-grained level.

Level of abstraction
In both [ZS06] and [WJE+09] the models or model fragments, as the case may be, are
specified in terms of low-level model elements.

Discussion
Model composition approach proposed by Whittle et al [WJE+09] is a powerful approach
to support feature binding at pre-deployment and post-deployment times. feature binding
at the deployment phase can be supported as well through the generation of a configuration
interface, from the model, to control the inclusion and activation of a variable feature at
the deployment time. The downside of the approach is the focus on fine-grained model
elements which may affect the practical scalability of the technique. Imagine several
features, some of which are of moderate to large size, have to be modelled as slices of
classes, sequences diagram and so on. The focus on fine-grained model elements also
impedes reasoning of the product line at the architecture level.

4.3.6 Delegation to deployment platform

The term software platform, as used in this thesis, may be a middleware that
provides support services or an architectural framework that is designed to decouple com-
ponent interaction. Delegating a feature binding to a deployment platform is to use the
support of the target environment to decouple dependency between features such that
they could be bound, unbound and rebound. The actual binding is often managed with
dynamic loading/linking with the support of metadata interpretation. A typical example
of a deployment platform, for Java-based enterprise application, is Java Enterprise Edition
(JEE)[Tec]. JEE platform supports light-weight messaging (event-driven, point-to-point,
and publish-subscribe) to decouple component interaction.

Although many platforms, including those in real system domain [sm118], facili-
tate feature binding, not many pieces of research are available on this class of technique.
This may not be unconnected with the fact that existing platforms mainly support single
product development, are hard to adapt to product line development and are costly to
be developed from scratch. For example, although JEE supports the decoupling of imple-
mentation components, mapping components to features is not straight-forward because

107

of the granularity of variations.

Existing research contributions
Goedicke et al [GPZ02], proposed an architectural framework, ’Central Message Redi-
rector’, to support customization of generic components for products of a product line.
Specific features of a product are specified as configuration scripts to tailor the generic
components to specific product requirements. The framework hides requests and responses
between the client and the server components. Both the client and the server components
can be customized using interpretive script or XML. The ’generic components’ in this
approach is what the ’supertypes’ is to the ’semantic model’.

Binding phases
Feature binding, in the approach of [GPZ02], is a customisation of the generic components
to derive a specific product and the customization may be specified at the different binding
phases. However, most or all of the ’generic components’ have to be included in each of
the products. Hence, the approach supports partial feature binding at multiple phases.

Granularity
Generic component implementations do not normally accommodate fine-grained varia-
tions. In the specific case proposed by [GPZ02], lots of configuration parameters have to
be supplied as part of the configuration scripts.

Level of abstraction
The component level specification is relatively a high-level of abstraction.

Discussion
One limitation of the approach in [GPZ02] is generic component implementation leads to
an over-bloated component with many alternative execution paths to accommodate the
different usage of the component within possibly many dissimilar products in the product
line. Consequently, excessive dynamic scripts have to be used, as part of configuration
parameters, to accommodate fine-grained variations within coarse-grained components.
Part of the limitations reported by the author is the performance penalty of the approach
which makes it unsuitable for other domains such as real-time systems.

108

T
a
b
le

4
.5
:

S
u

m
m

ar
y

of
p
ro

s
an

d
co

n
s

of
th

e
p

ro
p

os
ed

ap
p

ro
a
ch

es

A
p
p
ro

a
ch

P
ro

s
C

o
n
s

D
e
le

g
a
ti

o
n

o
f

b
in

d
-

in
g

to
a
sp

e
ct

w
e
a
v
e
r

-
V

ar
ia

ti
on

at
al

l
le

ve
ls

of
gr

an
u
la

ri
ti

es
ca

n
b

e
im

p
le

m
en

te
d

as
a

fe
at

u
re

w
h
en

a
st

at
ic

w
ea

ve
r

is
u
se

d
.

-
S
u
p
p

or
ts

p
os

t-
d
ep

lo
y
m

en
t

b
in

d
in

g
ti

m
e

w
h
en

a
d
y
n
am

ic
w

ea
ve

r
is

u
se

d
.

-
S
ep

ar
at

e
se

ts
of

as
p

ec
ts

m
ay

h
av

e
to

b
e

u
se

d
,

ea
ch

fo
r

a
sp

ec
ifi

c
b
in

d
in

g
ti

m
e.

-
L

im
it

ed
su

p
p

or
t

of
fi
n
e-

gr
ai

n
ed

va
ri

at
io

n
s

at
p

os
t-

d
ep

lo
y
m

en
t

ti
m

e.
A

fe
at

u
re

w
il
l

h
av

e
to

b
e

in
cl

u
d
ed

in
th

e
p
ro

d
u
ct

co
n
fi
gu

ra
ti

on
p
ri

or
to

d
ep

lo
y
m

en
t.

-
T

h
e

su
p
p

or
t

is
at

lo
w

-l
ev

el
of

ab
st

ra
ct

io
n
.

P
ro

g
ra

m
m

in
g

la
n
-

g
u
a
g
e

e
x
te

n
si

o
n

-
S
u
p
p

or
ts

th
e

tw
o

b
in

d
in

g
m

o
d
es

(s
ta

ti
c

an
d

d
y
n
am

ic
)

-
C

om
p
le

x
it

y
ca

n
b

e
re

d
u
ce

d
b
y

in
tr

o
d
u
ci

n
g

d
om

ai
n

ab
st

ra
ct

io
n
s

in
th

e
la

n
-

gu
ag

e
ex

te
n
si

on
.

-
N

o
su

p
p

or
t

fo
r

fe
at

u
re

b
in

d
in

g
at

p
os

t-
d
ep

lo
y
m

en
t

ti
m

e.
-

R
eq

u
ir

es
d
iff

er
en

t
ex

p
er

ti
se

in
la

n
gu

ag
e

an
d

to
ol

d
es

ig
n
.

M
e
ta

d
a
ta

in
te

rp
re

-
ta

ti
o
n

-
D

iff
er

en
t

p
ro

d
u
ct

s,
w

it
h

ar
b
it

ra
ry

va
ri

a-
ti

on
s

in
fe

at
u
re

s
an

d
w

or
k
fl
ow

s,
ca

n
b

e
cr

e-
at

ed
.

-
L

im
it

ed
su

p
p

or
t

fo
r

fi
n
e-

gr
ai

n
ed

va
ri

at
io

n
s.

-
T

h
e

su
p
p

or
t

is
li
m

it
ed

to
so

m
e

sp
ec

ia
li
ze

d
d
o-

m
ai

n
s.

-
L

im
it

ed
su

p
p

or
t

fo
r

fe
at

u
re

b
in

d
in

g
at

p
os

t-
d
ep

lo
y
m

en
t

ti
m

e.
A

fe
at

u
re

w
il
l

h
av

e
to

b
e

in
cl

u
d
ed

in
th

e
p
ro

d
u
ct

co
n
fi
gu

ra
ti

on
p
ri

or
to

d
e-

p
lo

y
m

en
t.

A
b
st

ra
ct

in
g

th
e

b
in

d
in

g
ti

m
e

a
t

m
o
d
e
l

le
v
e
l

-
S
u
p
p

or
ts

b
ot

h
fi
n
e-

gr
ai

n
ed

an
d

co
ar

se
-

gr
ai

n
ed

va
ri

at
io

n
s

an
d

at
a

h
ig

h
-l

ev
el

of
ab

-
st

ra
ct

io
n
.

-
C

om
p
le

x
it

y
ca

n
b

e
re

d
u
ce

d
b
y

in
tr

o
d
u
ci

n
g

d
om

ai
n

ab
st

ra
ct

io
n
s

as
m

o
d
el

el
-

em
en

ts
or

p
ro

p
er

ti
es

of
m

o
d
el

el
em

en
ts

.

-
C

u
rr

en
t

su
p
p

or
ts

ar
e

li
m

it
ed

to
su

p
p

or
ti

n
g

on
ly

d
y
n
am

ic
an

d
st

at
ic

b
in

d
in

g
m

o
d
es

.
-

M
o
d
el

li
n
g

in
fr

as
tr

u
ct

u
re

h
as

to
b

e
cr

ea
te

d
an

d
m

ai
n
ta

in
ed

.

M
o
d
e
l

co
m

p
o
si

ti
o
n

-
S
u
p
p

or
ts

fl
ex

ib
le

b
in

d
in

g
at

b
ot

h
p
re

-
d
ep

lo
y
m

en
t

an
d

p
os

t-
d
ep

lo
y
m

en
t

ti
m

e.
-

S
u
p
p

or
ts

b
ot

h
fi
n
e-

gr
ai

n
ed

an
d

co
ar

se
-

gr
ai

n
ed

va
ri

at
io

n
s.

-
C

u
rr

en
t

su
p
p

or
t

fo
cu

se
s

on
to

o
fi
n
e-

gr
ai

n
ed

m
o
d
el

el
em

en
ts

,
h
en

ce
,

th
e

ap
p
ro

ac
h

m
ay

n
ot

sc
al

e
in

p
ra

ct
ic

e
an

d
m

ay
b

e
d
iffi

cu
lt

to
re

as
on

ab
ou

t
th

e
ar

ch
it

ec
tu

re
of

th
e

p
ro

d
u
ct

.
D

e
le

g
a
ti

o
n

o
f

b
in

d
-

in
g

to
d
e
p
lo

y
m

e
n
t

p
la

tf
o
rm

-
S
u
p
p

or
ts

fl
ex

ib
le

b
in

d
in

g
at

b
ot

h
p
re

-
d
ep

lo
y
m

en
t

an
d

p
os

t-
d
ep

lo
y
m

en
t

ti
m

e
an

d
at

h
ig

h
er

le
ve

l
of

ab
st

ra
ct

io
n

-
L

im
it

ed
su

p
p

or
t

fo
r

fi
n
e-

gr
ai

n
ed

va
ri

at
io

n
s.

-
E

x
-

ce
ss

iv
e

d
y
n
am

ic
sc

ri
p
ts

m
ay

h
av

e
to

b
e

u
se

d
to

b
in

d
a

fe
at

u
re

at
p

os
t-

d
ep

lo
y
m

en
t

ti
m

e.

109

4.4 Summary of the proposed approaches

In this section, we present a summary of the pros and cons of each of the approaches
as depicted in Table 4.5. We also present the overall summary in the following paragraphs.

In the category of approaches proposed around the delegation of binding to aspect
weaver, in all but two cases, the support of variations of feature binding time stopped at
the deployment time. At post-deployment time, feature binding is limited to activation or
deactivation of the pre-included feature. In the two cases of [TLSPS09] and [SPLS+06],
both inclusion and activation of a feature at post-deployment time are supported but only
at a coarse-grained unit of implementation. Similarly, since the aspect-orientation, as
proposed in the approaches, focus on the source-codes level exclusively, all the approaches
in this category of approaches are only applicable at low-level of abstraction.

In the category of approaches proposed based on the language extension, none
support feature binding at post-deployment time. Similarly, in one of the two proposed
approaches to the language extension [RSAS11], the notion of feature binding is limited
to the scope of binding to the execution context. All the approaches proposed under
the metadata interpretation are only applicable to specific classes of systems (database
management system[KK15], graph[CVD16], and domains whose semantic can be precisely
captured as a semantic model [YBJ01, BMF09]).

Although the approaches proposed under abstraction of binding time at the model
level are at high-level of abstraction, only one approach [BW09] explicitly supports vari-
ations of feature binding and only in a limited scope of binding to the execution context.
In the category of model composition approaches, Whittle et al [WJE+09] supports fea-
ture binding at both pre and post-deployment time but only at low-level of abstraction
(through the support of flexible composition of fine-grained model elements).

Other papers only discussed the pros and cons of feature binding techniques based
on experience (e.g. [BC12, CB16] .)

Overall, apart from approaches that remotely support variations of feature binding
time (metadata interpretation and language extension), current support for variations
in feature binding times is through one of the following:

i using separate architectural representations for the different binding time;

ii composition of fine-grained model elements to realize a feature as a model slice,
and using separate target transformation based on binding time requirement;

iii implementing separate set of aspects, in aspect-oriented programming, each set
for a specific binding time;

110

iv abstracting the different binding modes at model level.

All the approaches share one or more of the following limitations:
multiple representations/implementations (i, ii, iii);
composition of too fine-grained model/program elements(ii, iii);
low-level of abstraction (iii);
limited in scope (iv).

In this thesis, we proposed PLA modeling language, that is aware of binding time,
to overcome some of the existing limitations in the following ways:

• To abstract the feature binding to a product, as against feature binding to the
execution context of a product, at a model level, and, thus, increase the scope of
support for feature binding.

• To use architectural elements as the dominant representation, as against fine-grained
model elements. Hence we raise the level of abstraction of which the binding time
is supported.

• To take binding time requirement into account when transforming architectural el-
ements into executable, thereby abolishing the need for multiple implementation-
s/representations.

We present the details of our approach in the next chapter (Chapter five).

Chapter 5

Binding time aware modelling language:
design and implementation

This chapter discusses the design and implementation of binding time aware mod-
elling language as an improved approach to supporting variations of feature binding time.
Our approach also contributes to supporting the modifiability of reusable assets.

Recall, from Chapter three, language-based implementation techniques specifically
proposed to implement features in SPLE (Feature-Oriented Programming and Delta-
Oriented Programming) might have better modularity but do not support variations in
feature binding time. Although Aspect-Oriented Programming, as an adapted language-
based approach for product line implementation, has better support for variations of fea-
ture binding time, the support is only at a low-level of abstraction.

Also, recall from the systematic study in Chapter four, we classified approaches that
are proposed to support variations of feature binding time into four: 1) using separate ar-
chitectural representations for the different binding time; 2) composition of fine-grained
model elements to realize a feature as a model slice, and using separate target trans-
formation based on binding time requirement; 3)implementing a separate set of aspects,
in aspect-oriented programming, each set for the different binding time; 4)abstracting
different binding modes at a model level in model-driven Development.

We argue that using different architectural representations, that are separately
managed, for the different binding time hinders adoption by practitioners because dif-
ferent expertise and different tools are required. This particular approach [VdH04] was
introduced long-enough but has not been traced to the industry yet.

For the composition of model slices, unless the code-asset would be fully generated
from the model - which is hardly the case, except for few specialized domains - we argue
that the approach is too fine-grained and may not scale in practice.

For the aspect weaving category, at a low-level of abstraction, it would have been
a normalized practice if only a few features and few products are to be produced from
the reusable assets. However, if the feature and product spaces of a product line are

111

112

substantially large, implementing every feature with multiple aspect-weaving, based on
binding time requirement, will lead to a combinatorial explosion.

For the abstracting of binding time at the model level, current support is limited
to variations of feature binding to execution context - which is limited in scope.

Given the limitations of the existing approaches, we proposed a binding time aware
modelling language as a new approach to abstract the binding time at the architecture
model level in model-driven development. The approach is a novel in the sense that
existing approaches to abstract the binding time at the model level are limited in scope
(i.e. restricted to the two modes of feature binding to execution context). We do not
claim, however, that each of the constituents of our techniques is novel. We present an
overview of our approach in the next section.

5.0.1 Process overview to supporting variations of feature bind-
ing time

To support variations of feature binding time, we pre-plan for it as we pre-plan for
the variations of features. Thus, we tackle all binding time by design. We also provide
tool support for the key aspects of the support. Fig.5.1 highlights the main activities of
supporting variations of feature binding time at both domain engineering and application
engineering as proposed in this thesis. In the figure, the activities supported by our tool
suite are shaded in grey.

At the top of Fig.5.1, from left to right, the first two outer boxes illustrate the usual
high-level activities at the domain engineering phase: Domain analysis and domain design.
Domain analysis activity, the first outer box, is a systematic identification and organization
of product features. We discussed domain analysis in details in Feature-oriented domain
analysis section of Chapter two. Supporting variations of feature binding time at the
domain analysis level is to analyse, further, the identified features and group them into
units that must be bound together for the correct function of the product (depicted as
sub-activity beneath use case modelling in the domain analysis box). We elaborate on the
grouping of features into units as the extension of domain analysis in Supporting variations
of feature binding time at domain analysis section.

Domain design activity, the middle outer box at the top of Fig.5.1, is the con-
struction of the product line architecture that accommodates diversities of the products
in the domain. We also discussed this in details in Domain design section of Chapter two.
However, since a feature manifests as major or minor implementation units, it follows
that, at the design level, a feature may translate into one or more coarse-grained exclu-
sive architectural elements(e.g. component or connector). A feature may also translate
into many fine-grained architectural elements (e.g attribute or operation on architectural

113

F
ig
u
re

5
.1
:

O
ve

rv
ie

w
of

su
p

p
or

ti
n

g
va

ri
at

io
n

s
of

fe
at

u
re

b
in

d
in

g
ti

m
e

114

component). As discussed in Chapter two, granularities of variations affect how a feature
is bound to a product. To support variations of feature binding time at the domain design
level, we propose, to re-organize the architecture model so that architectural elements of
the fine-grained variations are attached to coarse-grained elements that are in the same
binding unit. Fine-grained variations may also be aggregated into an aspectual compo-
nent. Hence, as illustrated in Fig.5.1, with the arrow from domain analysis to domain
design, feature binding units (FBUs) should be taken into account when designing prod-
uct line architecture. We elaborate on this in Supporting variations of feature binding time
at domain design section.

The right-most outer box at the top of Fig.5.1, at the domain engineering phase,
represents model-driven domain implementation which is one of the approaches to im-
plement a domain as introduced in Chapter two. We adapted model-driven because of
its flexibility. In our approach, the specific output that comes from domain design and
goes to the model-driven domain implementation is the abstract design of PLA (see the
arrow from the Domain design to model-driven Domain Implimentation. As with the
OMG recommendation we, specify and implement a platform-independent model(PIM)
(the top sub-activity in the model-driven domain implementation box) separate from the
platform-specific model(PSM) (the bottom sub-activity in the model-driven domain im-
plementation box). PIM is a model that is independent of platform technology and PSM
is a model that is specific to particular platform technology.

To manage variations of feature binding time at the PIM level, we assign binding
time properties to the model elements. We then define one-way transformation mapping
from the PIM to PSM. To manage variations of feature binding time at the PSM level,
a model element of the PIM is transformed into its corresponding model element of the
PSM based on its value of binding time (see details in PIM to PSM mapping section). At
this stage, the transformation is only implemented but the model elements of the PSM
are not instantiated until at application engineering phase. The details of these activities
are presented in Supporting flexible feature binding at the implementation level section.

So far we have been outlining engineering activities at the domain engineering phase
- the top boxes of Fig.5.1. We also present the high-level overview of the engineering activ-
ities at the application engineering phase (the bottom boxes of Fig.5.1) in the subsequent
paragraphs beginning from product requirement elicitation.

Product requirement elicitation in our approach is depicted at the left bottom
of Fig.5.1 and in the application engineering phase. The first activity in requirement
elicitation is matching the product requirements to the pre-planned features (the top
sub-activity of requirement elicitation). Desired binding time of the variable features are
also determined at this stage (the middle sub-activity of requirement elicitation). The
product analysis model may also be derived in our approach (the bottom sub-activity of
the requirement elicitation).

115

As in the traditional approach, specific product requirement may have to be sub-
mitted to the reusable assets as the form of feedback. The derived PLA is then instantiated
with the desired binding times at the product design phase.

After gathering requirement of the specific product, corresponding abstract PLA,
implementing the matched features and the derive analysis model, is then derived from
reusable assets and passed-one to product design activity.

Product design in our approach is depicted in the middlebox of the Application
engineering phase and constitutes the following sub-activities: instantiation of platform
independent PLA and assigning binding time properties to the model elements (the top
sub-activity of Product design in Fig.5.1). Since many model elements may contribute to
implement a single feature their aggregate binding times have to be checked for consistency
with the desired binding time of the feature (middle sub-activity of product design). Bind-
ing time consistency should also be checked accross multiple features. Thus, the model
elements are subjected to binding time consistency checking.

If the instantiated PIM elements are well-formed with respect to the binding time
requirement (i.e. they have passed have binding time consistency checking), the elements
are then transformed into elements of another model that is specific to the target plat-
form technology (the bottom sub-activity of product design). The product design is then
completed. The next activity is to generate source-codes from the product-specific PSM
model.

The last stage in the application engineering is product instantiation (the rightmost
outer box at the bottom of Fig.5.1). At this state, a skeletal product is generated from the
PSM model of the specific product is generated which will then have to be implemented
or to reuse the implementation of the already developed product (the bottom sub-activity
of product instantiation at the bottom of Fig.5.1). The key design decisions (architectural
pattern/style and the binding time) are enforced in the skeletal product.

In the next sections, we present the details of our approach to supporting variations
of feature binding time at the domain engineering phase.

5.1 Supporting variations of feature binding time at

domain engineering phase

This section presents details of our approach to supporting variations of feature
binding time at the lifecycle activities of domain engineering. Part of the activities is
model-driven domain implementation -an approach to implement adaptable infrastructure
for a product line.

116

Figure 5.2: Grouping features into units that most be bound together for the correct function
of the product

5.1.1 Supporting variations of feature binding time at domain
analysis

Recall in the feature-oriented domain analysis section of Chapter two, we discussed
the traditional approach to domain analysis in which product features are systematically
identified and organized based on their types and relationship. To support feature binding
time, domain analysis should be extended with binding unit analysis which is an idea
conceived by Lee and Kang [LK03]. based on the observation that rather than a single
feature, a group of features is often bound together for meaningful service.

A feature binding unit (FBU) is a set of features that share the same binding time.
All the features in the same binding unit must be bound together for the correct behaviour
of the product [LK03]. Feature binding unit identification starts with the identification of
a service feature. Each service feature represents a major functionality of the system that
may be added/removed as a service unit.

To derive feature binding units, a domain designer should identify service features.
Beginning from the service feature, the designer should trace the constituents of a binding
unit by traversing the feature model along the feature relationships and its composition
rules (i.e., cross-tree constraints such as require/mutual exclusion). Each binding unit
should be assigned a name, in a capital letter, similar to the name of the major feature
in the unit. Fig.5.2 illustrates the derivation of feature binding units from EduPL feature
model. In the figure, ACCOUNT and VALIDATION are the names assigned to the bind-
ing units containing service features User Account and User Validation respectively (see
Fig.5.2a). Within a feature binding unit, there may exist optional or alternative features
that should be selected based on customer’s needs. These features impose variations on
the component design and, therefore, they have to be identified as separate feature binding

117

units [LK03].

Feature binding units and the relationship between them constitute nodes and
edges, respectively, of a binding unit graph. For example, Fig.5.2b depicts a feature bind-
ing unit graph with ACCOUNT, VALIDATION, MESSAGE, and DELETE as binding
units. For the scope of this thesis, a binding relation between binding units can be fixed
or variable. A fixed relation denotes non-varying binding relation while a variable relation
represents a binding relation that may differ from one configuration to another. For exam-
ple, in Fig.5.2b, the connection between VALIDATION and MESSAGE is fixed because
the units must always be bound together, while the connection between ACCOUNT and
VALIDATION may vary from one product configuration to other product configuration.

Binding unit graph serves as an input to components and connectors product line
architecture. In the next section, we discuss the engineering activities of supporting vari-
ations of feature binding time at the domain design.

5.1.2 Supporting variations of feature binding time at domain
design

To support variations of feature binding time at the domain design level, architec-
tural elements should be organized based on the feature binding unit graph obtained at
the domain analysis phase. For coarse-grained variations, it is often a straight forward
if the architectural elements have been derived from the gradual refinements of the do-
main object model. For example, in the Account Management sub-system of EduPL, User
Validation is an optional feature that may be used to validate an applicant as the initial
realization of the mandatory User Account feature. As such, to organize architectural
elements based on the feature binding unit graph, the variable components, Validation
Controller and User Validator should be created separate from the Account Controller
and the Account Manager (see Fig.5.3).

For the fine-grained variations, depending on whether the fine-grained model ele-
ment is exclusive or is part of an intersection between features, the relevant model elements
can be organized in two ways :

i Moving the model element of the fine-grained variation to a coarse-grained model
element of the same binding unit. This is the case of a fine-grained model element
that is exclusive to a feature but falls into a coarse-grained model element of a
different feature.

ii Aggregation of the model elements of the fine-grained variation into an aspectual
component. This is often the case of the points of intersection between features but

118

Figure 5.3: Architectural elements (right) organized based on binding unit graph(left)

Figure 5.4: isValidated as fine-grained model element moved to Validation Controller from
Account Controller.

can also be the case of a fine-grained model element that is exclusive to a feature as
in (i) above.

To illustrate (re-)organizing model elements based on the feature binding unit graph
obtained at the domain analysis phase, we have to open some of the coarse-grained com-
ponents (see Fig.5.4 and Fig.5.5).

Fig.5.4 depicts the case of variable Boolean attribute, isValidated, which is an
element of a fine-grained model elements exclusive to the User Validation feature and that
could be on User object in the implementation of Account Controller component in the
ACCOUNT binding unit but should be move to Validation object in the implementation
of Validation Controller component of the VALIDATION binding unit.

Fig.5.5 depicts the case of variable operations, crtlDeleteAccount(user: User) and

119

Figure 5.5: crtlDeleteAccount(user: User) and deleteAccount (user: User) as fine-grained
model elements aggregated into aspectual component of the same binding unit.

deleteAccount (user: User) that could have been on Account Controller and Account
Manager respectively. These operations should be aggregated and assigned to aspectual
component since there is no coarse-grained model element to attach them in the DELETE
binding unit.

Even though architectural elements are re-organized based on the feature binding
unit graphs, relationships from features to architectural elements is in most cases one-to-
many. Thus, each individual model element should be assigned variation type and binding
time corresponding to that of its feature. Consequently, the variation type and binding
time of a feature should be reflected on the corresponding architectural elements of PLA.
At the end of the domain design, abstract PLA should be produced and pass on to domain
implementation.

In the next section, we discuss the engineering activities of supporting variations
of feature binding time at the domain implementation level.

120

5.1.3 Supporting flexible feature binding at the domain imple-
mentation

Our concept of supporting variations of feature binding time at the implementation
level is to switch connection modes between components (SCMBC): The components are
connected directly when the binding time is decided before compilation at pre-deployment
time (Fig.5.6a). In that case, components should support compile-time and build time
composition, do not have to follow separation between implementation and interface and
may be followed with a static optimization using a specialized tool. If, however, the
binding time cannot be decided at pre-deployment time, dependencies from mandatory
components to variable components are removed. The components are connected dynam-
ically, if needed, via a deployment platform(Fig.5.6b). We can think of the deployment
platform as a concrete mediator of a mediator pattern[GHJ+95].

To realize the concept of switching connection modes between components, model
elements at the PIM level will have to have binding time as properties and should be
transformed into model elements of PSM based on the values of the binding time. Con-
sequently, the removal of the dependencies between mandatory and variable components,
if the binding time of the variable component is later than pre-deployment, is delegated
to model transformation engine as part of MDD process. Specifically, the transformation
engine selects target model elements, specific to the deployment platform, based on the
binding time decision. Therefore, the final source-codes of a specific product is generated
with the binding time decision enforced.

Fig.5.7 depicts the overview of the lifecycle activities to realize the concept of
switching connection modes between components. The topmost box in the figure repre-
sents metamodelling stage which has abstract PLA as input. Ordinarily, metamodelling is
the specification of the abstract PLA. In our approach, metamodelling is extended with a
specification of binding time properties as well as binding time constraints. At the meta-
modelling stage (topmost box of Fig.5.7), a metamodel of Platform Independent Model
(PIM) is developed. Binding time and binding time constraints are inputs to PIM meta-
modelling. PIM is a model that is ’independent’ of specific implementation technology.
The metamodel of a Platform Specific Model (PSM) is also developed at the metamodelling
stage. PSM is a model that is specific to a particular implementation technology.

The middle box in Fig.5.7 represents the modelling stage which comprises the
activity of instantiating elements of PIM and that of PSM. A modeler does not need to
instantiate the elements of PSM metamodel manually but the PSM model elements are
instantiated using model-to-model (M2M) transformation. The transformation takes into
account the binding time properties of PIM model elements when selecting elements to be
instantiated in the target PSM model.

The bottommost box, in Fig.5.7, contains a single activity: code generation. That

121

Figure 5.6: Switching connection mode between components

122

Figure 5.7: Lifecycle activities for supporting variations of feature binding time in
Model-Drive domain implementation

is, generating executable and other artifacts from the PSM using model-to-text (M2T)
transformation.

The following sections present the details of the MDD processes beginning from
platform independent metamodelling.

5.1.3.1 Platform independent metamodelling with binding time

Fig.5.3 is a simplified Component and Port view of the metamodel for the proposed
modelling language. From the top right of Fig.5.3, a model of PLA is composed of many
elements of ArchitecturalElement.

To manage variations of feature binding time, the metaclass ArchitecturalElements
has two enumerated properties: BindingTime and ElementType. BindingTime takes one
of five possible values: asset dev, pre-deployment, deployment, post-deployment or un-
decided. If an architectural element is assigned binding time properties of asset dev or
pre-deployment, then it has to be transformed into PSM elements that have to be in-
cluded in the build path for compilation. In other words, other architectural elements
can safely depend on program elements with binding time properties of asset-dev or pre-
deployment because their final transformation into source codes has to support the static

123

Figure 5.8: A simplifed view of the platform independent metamodel

connection between components.

If, however, an architectural element is assigned binding time property that is differ-
ent from asset dev and pre-deployment (including undecided), then no other architectural
element should depend on it. The final transformation of dependencies with architectural
elements in this category has to support putting and getting data or control from the
deployment platform (i.e., the dynamic connection between components with no explicit
dependencies). The binding time properties of deployment and post-deployment are used
for generation of configuration interfaces for the deployment and post-deployment binding
respectively.

ArchitecturalElement also has a Boolean property, isatVP, for checking whether or
not an element is at a variation point. EString and EBoolean represent String and Boolean
values, respectively, in ECore Language (the language we used to specify the metamodel).
Component and Port extend ArchitecturalElement to inherit the BindingTime and Ele-
mentType as their properties.

Since at the domain design, the N-Tier architecture pattern have been adopted
and passed on to the domain implementation as part of abstract PLA, Component has
subtypes: Control and Service for modelling different kinds of components. Service is for
modelling business logic captured from the analysis of the domain[LKCC00]. Control is for

124

Figure 5.9: Type view of the PIM metamodel

modelling interaction between Service components and what will otherwise be component
composition or gluing in non SPLE component-based development.

The metaclass Port is for modelling architectural ports on Component [WM98]. A
Port is a gateway to a request either coming in or going out of component; encapsulates
Interfaces and their Operations ; can have additional properties such as synchronous or
asynchronous. The Port in our model is a logical one; it is transformed into concrete
port (or similar logic) in the target chosen platform based on its value of binding time.
We introduced a ResourcePort as a subtype of Port for modelling connection to other
resources such as connection to a file or a database.

Still on Fig.5.8, a metaclass Connector is for modelling connection between (com-
patible) ports[WM98]. Not shown in the model, to prevent cluttered diagram, is the in-
heritance relation from the metaclass Connector, to the metaclass ArchitecturalElement.
According to Mehta et al [MMP00], a connector transfers, to other component(s), data
or control or both. Hence, although not shown in Fig.5.8, Component has properties such
as sink which is type of Operation to which the control or the data is passed to; source,
which is also a type of Operation passing the data or the control; and datapass which is a
data type (see Fig.5.9 for the type view of the PIM metamodel). A connector is defined
from OutPort to INPort.

For completeness, we present the type view of the PIM in Fig.5.9. In the figure,
Type is an abstract super type which has ComplexDataType and SimpleDataType as sub-
types. ComplexDataType is a data type that either contains SimpleDataDype as attributes

125

or other ComplexDataType as references; has enumerated property, Durable, which indi-
cates whether or not an instance will be stored for the application lifetime (represented as
durable and non-durable respectively). Reference also has enumerated property, Reffer-
enceType, representing cardinality of the instances being referenced.

Since each model elements has the variation type and binding time of its feature,
assigning arbitrary values to the BindingTime properties of model elements may result in
an ill-formed model. In the next section, we discuss how the consistency of binding time
can be maintained on the architectural model.

5.1.3.2 Binding time constraints on PIM metamodel

Consistency constraints, to enforce valid combinations of features, can be specified
on a feature model using prepositional formula [Bat05a]. Binding time consistency may
also be added on a features using the same approach of propositional formula, and then
propagated to architectural elements. However, we choose to add the binding time con-
straints on architectural elements to allow independent testing of the architecture model
without depending on consistency constraints from the variability model. The Listings
from Listing 5.1 through Listing 5.4 are examples of pseudo codes, representing constraints
that are relevant to the binding time of architectural elements.

Listing 5.1: Restriction of changing binding time on mandatory Architec-
turalElement

1: self : ArchitecturalElement

2: invariant btRestriction :

3: if self.elemenType = mandatory

4: self .bindingTime = readOnly

6: end if

Listing 5.1 is a specification to prevent changing the binding time of a mandatory
architectural element. A binding time of an architectural element can only be changed
when the variation type of its corresponding feature is changed from mandatory to variable.

Listing 5.2: Connected ports must have the same binding time

1: self : Connector

2: invariant btRCompatible :

3: self.bindingTime =

4: self.source.bindingTime

5: = self.target.bindingTime

126

Listing 5.2 is a constraint defined on Connector to enforce the same binding time on its
source and target Ports. This, to prevent a situation where the source codes, eventually
generated from the model, fail compilation because certain program elements that should
be in the build path are not included.

Listing 5.3: OutPort must have reference to Connector

1: self : OutPort

2: invariant btmustHavewire:

3: self.connector != null and

4: self.bindingTime =

5: connector.bindingTime

Listing 5.3 is a constraint defined on OutPort to enforce the presence of a reference to
Connector. Since OutPort encapsulates an interface requirement, it must have a reference
to a provided interface. However, the reference can represent a direct static connection or
putting data/control to the deployment platform.

Listing 5.4: Port should not have binding time earlier than its owner Com-
ponent.

1: self : Port

2: invariant notEalierthanOwner:

3: if self.isVariable() and

4: self.owner.isVariable() then

5: if self.bindingTime =

6: ’product_dev’ then

7: owner.bindingTime <> ’undecided’ and

8: owner.bindingTime <> ’deployment’ and

9: ...

Listing 4.4 is a constraint on Port not to assume binding time earlier than its owner
Component. If a Port is variable while its owner Component is mandatory, there should
be no problem of binding time inconsistency because a binding time of a mandatory
architectural element is fixed by default. However, if a Port is variable and its owner
component is also variable, binding time consistency will have to be enforced to ensure
that the binding time of the port is not earlier than that of its owner component.

Next section presents the specification of platform-specific model.

127

Figure 5.10: A simplifed metamodel of Java Enterpriese Edition (JEE)

5.1.3.3 Platform specifc (PSM) metamodelling with Java Enterprise Edition
(JEE)

We selected Java Enterprise Edition (JEE)[Tec], a platform for developing dis-
tributed server-side applications as an example of a specific platform. JEE offers infras-
tructure, in the form of Application Programming Interfaces (APIs), to simplify enterprise
system development. JEE ’container’ manages components and provides commonly used
services such as multi-threading, resource pooling, and security. Recently, the support
for light-weight event-driven messaging is one of the services added to the JEE container.
As there is no official Unified Modelling Language (UML) profile for the recent version of
JEE, we used a subset of the JEE APIs that are sufficient to illustrate the binding concept
in the PSM metamodel.

Fig.5.10 depicts a simplified Component and Interface view of JEE metamodel.
From the top right of Fig.5.10, PLA consists of elements of ArchELement. Component
and Interface extend ArchElement. Component implements 0 or more Interfaces and each
Interface has 1 or more Operations. CDIBean is a subtype of Component used for mod-
elling control component that can either be coupled with the user interface (UI) or other
client components. Scope on CDIBean is specific to a web application lifecycle: a state of
request to a web component may last only a single request (request scope), spans across
multiple requests for a single user session (session scope), maintains conversation across
multiple requests (conversation scope) or lasts for the entire application scope (application
scope). EJB is for modelling business logic that runs on the application server. Message-
Bean is for modelling component that creates and process messages in a loosely coupled
and asynchronous manner.

As JEE components have no notion of Port, we introduced InterfaceKind as a prop-

128

Figure 5.11: Java Enterpriese Edition (JEE) Invocation metamodel

Figure 5.12: Java Persistence API (JPA) metamodel

erty of Interface, with three enumerated values: EVENT, PC, and Message. EVENT is
for modelling even driven invocation, PC is for modelling invocation using procedure call,
and Message for modelling message processing. The distinguishing properties are propa-
gated down to the operations contained within an interface. For example, if InterfaceKind
= EVENT, its operations will only support event-driven invocations. Synchronous or
asynchronous property may be modelled in a similar manner.

A connection model among JEE components is either through procedure call (re-
mote or local) or messaging (event, or message). As such, we model connection as Invo-
cation (see Fig.5.11). Invocation has Operation as its source and Reference as its target.
SimpleRefence and EventReference are subtypes of Reference. SimpleReference is a refer-
ence to an interface upon which an operation will be invoked in the case of a procedure
call. EventReference is a reference to an event that will be fired by the invocation in the
case of event invocation. EVentReference has an additional property, eventdata, which
may hold data to be emitted when the event is fired.

Again, for completeness, the metamodel of JEE datatype is depicted in Fig.12.
This view is compliant with the Java Persistence API (JPA) - an API for persisting data
of Java application into a permanent storage using object-relational mapping technology.

129

Table 5.1: PIM Port to JEE Interface mapping

PIM JEE Condition
INPort Interface, InterfaceKind =

PC
binding time is decided and no later
than pre-deployment

INPort Interface, InterfaceKind =
EVENT

binding time is either undecided or
later than pre-deploymentt

OutPort SimpleReference binding time is decided and no later
than pre-deployment

OutPort EventReference binding time is either undecided or
later than pre-deployment

A JPA Entity is a data object that is persisted to permanent storage. In our model, we
introduced DataTransfer as a type of an entity that holds data to be transferred between
components(see Fig.5.12).

The full specification of JEE metamodel in XMI can be found in Appendix B.

5.1.4 PIM to PSM mapping

As mention earlier, instances of PSM are not instantiated manually but by model-
to-model (M2M) transformation that takes an instance of PIM as input and produces an
instance of PSM as output. Table 5.1 through Table 5.3 present the mapping from PIM
model elements to JEE model elements. We mapped each model element of PIM to model
element in PSM in consideration of its binding time property. In general, a mandatory
Component is not made to depend on a variable Component if the binding time of the
variable Component is later than pre-deployment time. This translates into support for
independent compilation if the binding time is later than product development time.

Table 5.1 presents the mapping from PIM Port to JEE Interface. Each instance
of InPort in PIM is transformed into an instance of Interface in JEE. The IntefaceKind
attribute is set to PC if the binding time is decided and its value is not later than pre-
deployment (first row in Table 5.1), otherwise, the InterfaceKind is set to EVENT (second
row in Table 5.1). Similarly, each instance of OutPort in PIM is transformed to an instance
of SimpleReference in JEE if the binding time is decided and its value is not later than pre-
deployment (3rd row in Table 5.1), otherwise the instance of the OutPort is transformed
into EventRefence (last row in Table 5.1)

Table 5.2 represents a straight-forward mapping transformation, without any con-
dition, from Control in PIM to CDIBean in JEE, Operation in PIM to Operation in JEE,
and OperationData in PIM to Parameter in JEE. In addition, an instance of Connector
in PIM is transformed to an instance of PCInvokation in JEE if the binding time is de-

130

Table 5.2: PIM Component to JEE Component mapping

Control CDIBean None
Connector PCInvokation Connector binding time no later than

pre-deployment
Connector EventInvokation Connector binding time is either un-

decided or later than pre-deployment
Operation Operation None
OperationData Parameter None

Table 5.3: PIM Type to JEE DataType

PIM JEE Condition
SimpleDataType PrimitiveType None
ComplexDataType PersistenEntity Durability is durable
ComplexDataType DataTransfer Durability is nondurable
Attribute Attribute None
Reference Association, Multiplicity =

ONETOONE
Reference type is one

Reference Association, Multiplicity =
ONETOMANY

Reference type is many

cided and its value is not later than pre-deployment (2nd row in Table 5.2), otherwise the
instance of the Connector is transformed to EventInvokation (3rd row in Table 5.2).

Table 5.3 presents mapping from Type in PIM to DataType in JEE. An instance of
SimpleDataType in PIM is transformed into an instance of PrimitiveDataType in JEE; an
instance of ComplexDataType in PIM is transformed to an instance of PersistentEnitity
in JEE if its Durability = durable, otherwise it is transformed to DataTransfer in JEE;
instance of Attribute in PIM is transformed to instance of Attribute in JEE; instance of
Reference in PIM is transformed to Association in JEE. The Multiplicity of Association is
set to ONETOONE if the corresponding ReferenceType is one and is set to ONETOMANY
if the corresponding reference is many.

So far we have been discussing the detail approach to supporting variations of
feature binding time at domain engineering phase. In the next section, we briefly explain
the application engineering with the choice of feature binding time.

131

Figure 5.13: Architecture of Account Management sub-system when Advance child feature of
User Notification is selected.

5.2 Application engineering with feature binding time

This section briefly highlights the feature binding time activities while deriving a
specific product of a product line at the application engineering phase. We begin with the
requirement elicitation in the next section.

5.2.1 Product requirement elicitation

To elicit requirements of a specific product, in feature-oriented SPLE, is to match
the user-requirements to the pre-planned features and to derive analysis model based on the
selected features. We illustrated product requirement elicitation in detail in Application
engineering example section of Chapter two and, therefore, we omit the examples of how
to derive the analysis models here.

In our approach, in addition to matching the user requirements to features, the
binding time requirements of the selected variable features will have to be determined at
this stage in consideration with the product usage-context. If the binding time of some
variable features cannot be determined, pre-deployment binding time is eliminated from
the possible binding time.

The abstract product architecture is then derived based on the matched features.
Recall using the example of Account Management sub-system where the user selected
Email and Text Message as variable features, we obtain the abstract product architecture
depicted in Fig.5.13. The specification of the binding time together with the derived
product architecture becomes part of product specification which will then be passed-on
to Product design activity.

132

Figure 5.14: Instance of PIM representing partial architecture of Account Management
sub-system when Advance child feature of User Notification is selected

5.2.2 Product design

Product design in our approach is comprised of three activities: (i) Instantiation of
the abstract architecture, derived from the requirement analysis, using the implemented
PIM. (ii) Checking binding time consistencies of the instantiated PIM model elements.
(iii) Transformation of the well-formed PIM to PSM.

To instantiate the product architecture of Fig.5.13 using the PIM we specified in
the PIM metamodelling section, we obtain the instance of PIM architecture model in
Fig.5.14. In the figure, each box represents a model element. The text before the colon in
the top compartment of each model element is the name of the model element as assigned
by the engineer; the text after the column is the name of PIM class from which the model
element is instantiated.

In Fig.5.14 the middle model element at the top of the figure, AccountController,
represents Account Controller component and its associated model elements at its left and
right represent instances of INPort and OutPort respectively. Note that the instance of
the service component Account Manager is omitted in the figure.

The model element beneath AccountController represents the optional OutPort of

133

the Account Controller and the port is one of the points of intersection between the User
Account feature and the Advance (User Notification) feature. In this case, no need to
remove the optional OutPort because it suffices to remove the dependency between the
intersecting features by making the port a gateway to putting and getting data but not
tightly coupled connection should the binding time be later than pre-deployment time.
Had it been it is an operation or attribute, it may have to be re-align or becomes part of
an aspectual component.

The bottom two model elements and from left to right, TextMessageNotifier and
EmailNotifier represent Text Message Notifier and Email Notifier service components
respectively and both of which provides the AdVNotification instance of INPort. The Ad-
vNotification instance of OutPort, that is on AccountController, is connected to AdvNo-
tification INPort, that may be on TextMessageNotifier or EmailNotifier, using AdvNotifi-
cationOut2AdvNotificationIN connector. That is, AdvNotificationOut2AdvNotificationIN
is an instance of Connector that joins Account Controller with either Message Notifier or
Email Notifier or both.

In our approach, the binding time of the variable features will have to be reflected
on the model elements representing the architectural model. As indicated earlier, this
often means that a binding time of a single feature has to be reflected on many model
elements. For example, all three model elements at the top of the figure are exclusive to
the User Account feature. Thus, binding time property of the User Account feature is
reflected on each of the three model elements at the top of the figure.

The instantiated model elements are then subjected to binding time consistency
checking and we discuss this in the next section.

5.2.3 Consistency checking and PIM to PSM transformation

Consistency checking is a check for well-formedness of model elements with respect
to binding time. The checking can be in relation to the aggregate binding time of model
elements of a single feature. For example, in the simple example of product architecture
of Fig.5.14, we would want to check if none of the mandatory architectural elements, for
the User Account feature, at the top of the figure has been deliberately or accidentally
changed from pre-deployment to something else. The consistency checking can also be
in relation to compatibility of binding time of model elements across multiple features.
For example, the AdvNotification OutPort and AdvNotification INPort must have binding
time that is compatible with the AdvNotificationOut2AdvNotificationIN connector.

The transformation of the PIM architecture into its corresponding PSM architec-
ture in our approach is a simple push-button. The transformation engines selects model
element of the PSM based on the value of binding time properties of the PIM element.

134

Figure 5.15: JEE platform specific instance model in which the binding time of Advacnce
(User Notification feature is set to pre-deployment

Fig.5.15 depicts Java EE instance model as the target platform-specific model of Fig.5.14
platform independent model when the binding time of the Advance(User Notification)
feature is set to pre-deployment. In the middle of the figure, the instance of the Sim-
pleReference, AdvNot, is the result of transforming AdvNotification instance of OutPort of
the model in Fig.14; The Kindof = ”PC” property of AdvNotification instance of Interface
is the result of transforming AdvNotification instance of INPort of the model in Fig.14.
Not shown in the figure is the procedure call invocation which is a result of transform-
ingAdvNotificationOut2AdvNotificationIN instance of Connector

Similarly, Fig.5.16 depicts Java EE instance model as the target platform-specific
model of Fig.5.14 platform independent model when the binding time of the Advance(User
Notification) feature is later than pre-deployment or left undecided. In the middle of the
figure, the instance of the EventReference, AccEvent, is the result of transforming AdvNo-
tification instance of OutPort of the model in Fig.14; The Kindof = ”Event” property of
AdvNotification instance of Interface is the result of transforming AdvNotification instance
of INPort of the model in Fig.14. Not shown in the figure is the event firing as a result of
transformingAdvNotificationOut2AdvNotificationIN instance of Connector.

At this stage, the PSM should be well-formed and with the binding time decisions
reflected (both the selected binding time and the ones that are left open).

135

Figure 5.16: JEE platform specific instance model in which the binding time of Advacnce
(User Notification feature is set to pre-deployment

136

5.2.4 Product instantiation

At the product instantiation stage, the skeletal product is generated from the well-
formed platform specific model of the specific product. The key design decisions, including
the architectural pattern/style and the binding time, are enforced in the skeletal product.
The product will then have to be implemented manually or reuse from an existing im-
plementation of similar products. The manual implementation may also be incorporated
in the specification of the code generation and preserve against loss in the subsequent
re-generation[GHK+15]. Similarly, product-specific extensions that are not fed back to
the reusable asset are also implemented and integrated.

In the generated skeletal product, connection modes between the generated com-
ponents depend on the values of the binding time. The components are connected directly
when the binding time is decided before compilation at pre-deployment time. In that case,
components should support compile-time and build time composition, do not have to fol-
low separation between implementation and interface and may be followed with a static
optimization using a specialized tool. If, however, the binding time cannot be decided at
pre-deployment time, dependencies from mandatory components to variable components
are removed. The components are connected dynamically, if needed, via a deployment
platform.

The process of supporting variations of feature binding time in our approach should
be supported with a tool suite. In the next section, we discuss the tooling aspect of our
approach.

5.3 Tool Support

Supporting variations of feature binding time in model-driven development has
some inherent exigencies that should be supported with tool for greate utility of the
approach. In this section, we highlight the implementation and the utility of tooling
aspect of our approach.

5.3.1 PIM implementation and instantiation

We used ECore, a simplified implementation of meta object facility (MOF)[Gro16]
of Eclipse Modelling Framework1 project, to implement the metamodel as an Eclipse
plugin. Ecore is a metametamodel - a language for creating a metamodel. A light-weight
metamodel can as well be derived from a custom extension of UML metamodel and the

1https://www.eclipse.org/modeling/emf/

137

Figure 5.17: Components modelled with the eclipse-based plugin for PIM modelling

extension is known as UML Profile[LWWC11]. The full specification of the metamodel of
Fig.5.8 in Platform independent metamodelling section with binding time can be found in
Appendix A. Another approach we could have taken is to specify a grammar and implement
a compiler for the binding-time aware modelling language. However, the metamodelling
approach is preferable for interoperability with other tools.

Fig.5.17 is a screenshot of partial PIM architectural elements modelled with the im-
plemented metamodel of which the specification is presented in Appendix A. The graphical
interface is Reflective Ecore Model Diagram Editor which is a plugin from Eclipse Mod-
elling Project (EMP) that provides a graphical editor for any EMF model file, using only
the meta-model such as .ecore and .xsd file. Fig.5.17a, and Fig.5.17b, highlight Account-
Controller and TextMessageNotifier intances of Component. The circled parts show some
of the components’ properties that include BindingTime and ElementType.

5.3.2 Consistency checking

We implemented the binding time consistency specification as constraints in Ob-
ject Constraint Language (OCL)[Gro10] that are embedded in the ECore metamodel. For
example, the code snippet in Fig.5.18a shows an implementation of a Boolean operation
on ArchitecturalElement to check whether an element is variable or not and this operation
is inherited by Component, Port and Connector. Lines 17 to 21 in Fig.5.18a show the
implementation of the constraint in listing 1 (a mandatory ArchitecturalElement should
not have binding time different from core asset development time). Fig.5.18b shows an
example of the validation error when the constraint in listing 1 is violated. Full specifi-
cation of the binding time constraints can be found embedded in the PIM metamodel of
Appendix A.

A successfully validated model is then saved in an exchangeable format(i.e., in

138

Figure 5.18: OCL implementation

XML Metadata Interchange (XMI)) for the next transformation. We illustrate the model
to model transformation in the next section.

5.3.3 PIM to JEE model transformation and code generation

We implemented the model-to-model (M2M) transformation in Atlas Transforma-
tion Language (ATL) [JABK08]. Fig.5.19 shows thespecification for transforming INPort
in PIM, based on the INPort ’s bindingTime property, to either PC or EVENT Interface
in the target JEE PSM. The full transformation definition can be found in Appendix C.
The output of the transformation is JEE model from which we generate the skeletal prod-
uct with the key design decisions such as binding time and architectural style enforced.

PSM to source code transformation :
We implemented the model-to-text transformation (M2T), aka code generation, in Xtend2.
Xtend is a statically-typed programming language optimised for template-based code gen-
eration. The transformation from the PSM to code in Java is a straight-forward and is
illustrated in Fig.5.20.

2https://www.eclipse.org/xtend/

139

Figure 5.19: PIM to JEE transformation

Figure 5.20: PSM to source code transformation

140

5.4 Evaluation an discussion

In this section, we present the evaluation of our approach with respect to perfor-
mance. Also, we discuss the approach with respect to the modifiability of the implemen-
tation artefact.

5.4.1 Performance

Recall that we rely on the deployment platform and the removal of dependencies
between components to delay the binding if it cannot be decided at pre-deployment time.
We can also use the same connection to the deployment platform for the early binding,
at pre-deployment time, but we then lose the opportunity to optimise statically and,
therefore, compromise performance. In other words, we use the direct static connection to
improve performance when the additional flexibility is not required because the binding
can be decided before compilation. Consequently, the evaluation is to test how significant
is the performance gain for the direct connection.

We set up an experimental environment3 to compare the performance of the two
modes of components connection: i) Direct mode and ii) Platform mode. For the platform
mode, we used the JEE event model which supports components communication without
any compile-time dependency. The test case for the experiment is: ”a user requests to
create an account and the server responds with a sign-up form. Once the user fills the
form and submits, the server creates a record in the database for the user. The server also
generates and sends a token to the user, via email and text message, for confirmation”
The test case involves the component implementation of the following features: Applicant
Account (mandatory), Applicant Validation (optional), Message Service (optional), Email
(OR-group) and Text Message(OR-group).

In the result tables, the Users column indicates the number of concurrent users
per request and the Ramp up column represents the time interval (in seconds) between
requests in the case of multi-user. The two Res. columns specify the average response
time (delay) of Direct and Platform modes, also in seconds. The Diff. column represents
the difference response time, in seconds, between the two modes. The %Diff. represents
the percentage differences of response time between the two modes. Note that the lower
values of Res. means less delay- which implies better performance.

Table 5.4 presents the results of the comparison between the Direct mode and the
Platform mode when the components are configured to execute synchronously. Referring

3The components were deployed on Glassfish 4.1, an open-source implementation of the JEE container.
A load test was run with Apache JMeter https://jmeter.apache.org/ testing tool on Dell Computer with
2.9 GHz Intel R© Core TM i7 and 16GB of RAM.

141

Table 5.4: Response time comparison of Direct and Platform modes for synchronous
component implementation

Users Ramp
up(sec)

Res. (Di-
rect)(sec)

Res. (Plat-
form (sec)

Diff.(sec) %Diff.

1 na 1.22 1.01 -0.22 -17.43
20 20 0.95 3.27 2.32 243.23
50 25 4.94 7.44 2.50 50.63
100 30 11.33 16.02 4.682 41.31

Figure 5.21: Comparison between Direct and Platform in synchronous mode

to Table 5.4, the response time increases with the increase in the number of users for both
modes (see Fig.5.21). With a single user (the first row in Table 5.4, the response time
was slightly lower (which means faster response and less delay) for the Platform mode by
0.22 seconds (-17.43%) 4. This is because of the components for sending a text message
and email react to the Platform event simultaneously. In all other cases, the response
time is slightly lower (which means faster and less delay) in the Direct mode because of
the absence of Platform involvement. Fig.5.21 presents the graph of the result of Table
5.4. Overall, the Direct mode offers performance benefit in an execution environment that
requires synchronous component connection.

Next, we configured asynchronous component connections on all ports at the vari-
ation points and this means the components can be executed simultaneously. Table 5.5
presents the result with the asynchronous component connections.

It can be observed, from Table 5.5 and Fig.5.22, that the response time remains
fairly stable with the Platform mode, even with the increase of requests, but increases
drastically from an average of 0.90 sec for one user to an average of 13.04 for 100 users with
the Direct mode. The results show that the Direct mode limits multi-processing capability
in the asynchronous case. Put in another way, when asynchronous communication between
components is configured, the Platform mode offers more multi-threading capability than

4In this case, we averaged the results of 5 test runs to increase the accuracy of testing.

142

Table 5.5: Response time comparison of Direct and Platform modes for asynchronous
component implementation

Users Ramp
up(sec)

Res. (Di-
rect)(sec)

Res. (Plat-
form (sec)

Diff.(sec) %Diff.

1 na 0.90 0.38 -0.52 -57.95
20 20 1.66 0.36 -1.302 -78.56
50 25 6.96 0.40 -6.57 -94.32
100 30 13.04 0.35 -12.69 -97.32

Figure 5.22: Comparison between Direct and Platform in asynchronous mode

the Direct mode.

As such, switching to the Direct mode for the early binding offers benefit only when
the synchronous mode of communication between components is desirable. In contrast, a
complete loose coupling, using the Platform mode offers more flexibility and performance
because the platform-induced delay is compensated with an optimized multi-threading
capability. Thus, usage-contexts should also be parametrized and apply the switching
only where it is needed and go with full flexibility in where it is not needed.

5.4.2 Modifiability

Recall from chapter four (Language-based approaches to flexible variations: Action
research), adapting code-asset to inject additional variations using both the language-
based implementation techniques and the pre-processing of annotations require making
changes to several places in the code-asset. In the case of language-based implementation
techniques, often the code-asset has to be re-organized. In contrast, when binding time
aware modelling language is used to implement a product line based on our proposed
approach, the changes will be made at fewer places (at the level of architectural elements
and in the transformation definition). Therefore, our approach may be more modifiable
than language based variability implementation techniques.

143

In addition, the support for variations of feature binding time with language-based
implementation techniques has been either through several clones of code-asset (in practice
[DRB+13]) or through multiple implementations of features as proposed in academic re-
searches [CRE08, ARR+16].For example, to support variable feature binding time, Chack-
ravathy et al [CRE08] proposed separate implementations of features in aspect-oriented
programming. In their approach, a single variant feature would have multiple imple-
mentations and each of them is the same variant feature with different binding times.
Andrade et al [ARR+16] worked along the same line, in direct comparison to the ap-
proach in [CRE08], and claimed to have reduced only the code redundancy but retained
the multiple implementations of a feature.

In contrast to existing approaches, when binding time aware modelling language is
used to implement a product line based on our proposed approach, each feature has single
representation at the PIM level, the variations of feature binding time only affects how the
PIM is transformed into PSM model elements but no multiple representations of a feature
is required. Rather, the mode of component-interaction mechanisms are interchangeable
based on the chosen binding time and this creates fewer modifiability problems than the
case of [CRE08] and [ARR+16]. Our approach could achieve this as we abstract away the
actual binding mechanism and manages it at the architecture level.

5.5 Chapter summary

In this chapter, we presented the design and implementation of the binding-aware
modelling language to support variations of feature binding time. To demonstrate the fea-
sibility of our approach, we validated the language with a case study of EduPL. However,
more works need to be done to enrich the semantics for the metamodels. For example,
semantics to aggregate the fine-grained variations into aspectual components should be
integrated into the PIM and PSM metamodels. Other architectural concerns should not
only be supported but should also be verifiable for violations.

Chapter 6

Conclusion

This chapter presents a summary of the previous chapters and puts our contribu-
tions in perspective. The chapter also highlights the inherent limitations of the thesis and
discusses grounds for future works.

6.1 Thesis summary

The Chapter one provided a general overview to set the context of the thesis. We
began from the background theory of the thesis, which is a reuse from the perspective
of software engineering, and progressed to the focal theory, which is adaptable variations
and feature binding time in software product line engineering. Also, the chapter high-
lighted the research motivation, spelled out the research objectives, and followed with the
research questions. Finally, the chapter outlined the research contributions and presented
an overview of the research methods that bound the research processes.

Chapter two elaborated on the feature-oriented approach to the lifecycle activities of
both domain engineering and application engineering. The illustrated, with examples, the
concepts of adaptable variations, feature binding time in software product line engineering,
and the research challenges associated with both.

Chapter three presented the details of the action research that was executed to
investigate the adaptability of reusable assets when adding variations. Part of the in-
vestigation is an exploration of the properties of features, in the code-asset, that affect
modifiability when injecting additional variations. In the exploration, we observed that
an intersection between program elements of different features negatively affects the mod-
ifiability of code-assets when injecting additional variations.

In addition to the exploration, the chapter reported the selections and comparison
of the following three language-based implementation techniques: (i) Feature-Oriented
Programming (FOP), (ii) Aspect-Oriented Programming (AOP), and (iii) Delta-Oriented
Programming (DOP). We compared the techniques relative to Pre-Processing (PP) of
annotations (a classical variability implementation technique) using modifiability metrics.

144

145

The summary of the comparison is none of the language-based implementation tech-
niques is better than pre-processing in terms of modifiability. Similarly, language-based
implementation techniques specifically proposed to implement features in SPLE (Feature-
Oriented Programming and Delta-Oriented Programming) have better modularity but do
not support variations in feature binding time.

Chapter four presented a systematic mapping study and systematic literature re-
view on the approaches proposed to support variations of feature binding time. The chap-
ter presented visual maps of published works, from 1999 through 2016, on the proposed
interventions. In the chapter, we also presented the following six categories of approaches
that emerged from the systematic study:

• Delegation of binding to aspect weaver

• Programming language extension

• Metadata interpretation

• Model composition

• Delegation of binding to deployment platform

• Abstracting the binding time at model level

We also presented a narrative summary of each of the approaches in all the categories
and qualitative assessments of the proposed interventions through the lenses of binding
phases, granularity, and level of abstraction.

Chapter five presented the detail design and implementation of our proposed binding-
time aware modelling language. We validated the modelling language with an example of
an enterprise software product line.

6.2 Revisiting the Contributions

In this section, we highlight the significance of our contributions in the context of
the existing body of knowledge.

In the literature, there are two categories of actions researches on transforming
variations into features: 1) the exploration of granularity of program elements forming the
intersection between separate features [KAK08], and 2) exploration on the structure of
code-asset and possible transformations that are required to untangle features, using one
or more language-based techniques for advanced separation of concern [MLWR01, KAB07,

146

CRE08, ARR+16, MP02]. The two categories of studies had resulted in new knowledge
that may be used as an initial benchmark for language semantics that should be consid-
ered when proposing/improving programming languages for implementing variations as
features.

Our first contribution, C1, also emanated from the exploration of properties of
features in the code-asset as one of the aspects of our action research. However, our
contribution provides a new perspective (i.e., modifiability to inject additional variations)
to the previous studies. Hence, the findings from our action research should also be taken
into consideration when proposing or improving languages for SPL implementation. For
example, the lack of modifiability when untangling features from the code-asset using
AOP due to the high number of constructs that have to be used or the lack of support for
method and constructor wrapping in DOP should be useful to designers of programming
languages meant for implementing variations as features.

The second Contribution, C2, stemmed from the systematic study to survey ap-
proaches that are proposed to support variations of feature binding time. The study is a
new addition to SPLE literature since to the best of our knowledge, no similar study ex-
ists. Further, we presented, as a narrative summary, detail insight for each of the surveyed
approaches and highlighted where the proposed intervention is relevant and where it may
be inadequate and in some cases suggested how the approach might be improved. The
narrative summary complements existing knowledge of variability resolution and binding
time [KK16, Kre15, SvGB05].

The third and fourth contributions, C3 and C4, are the binding time aware mod-
elling language and the toolsets to encode the binding time and to check consistency at the
architecture model level. We consider our approach as an improvement over the existing
approaches in one of the following ways:

• Abstracting the binding time at the model level in our approach is wider in scope than
the current approaches because we did not limit the feature binding to only execution
context as in the existing approaches[BW09, HKM+13]. Hence, our approach may
be more applicable in the cases where practitioners have to deal with the wider scope
of binding that what the current approaches support.

• Modelling the binding time at the architecture level, to circumvent scalability con-
cern, as against current approaches where either the binding time is marked on fine-
grained model elements [DRO19] or composition of the fine-grained model elements
to realize a feature as a model slice.

• Using the binding time property as a condition for model transformation and thereby
eliminating the need for multiple implementations attendant to AOP design idioms[ARR+16,
CRE08].

147

Overall, our approach supports variations of feature binding time by design and
improves the modifiability of reusable assets of a product line.

6.3 Limitations

In the action research, the specific cases we considered are by no means generaliza-
tion of every single case of exclusivity and intersection. Inherently, the level of modifiability
differs with the level of tangling between program elements of different features. In ad-
dition, the study is from a single product line domain. Other product lines may have
different structures of code-asset.

Likewise, the evaluated implementation techniques are generally not mutually ex-
clusive to each other. AOP, in particular, is used to support other techniques. However,
in the evaluation, we reduced the feature union into its atomic constituents to enable the
reasoning of individual techniques against these atomic units.

The switching of connection mode between components (SCMBC) in our approach
may not be relevant where a target middleware or platform does not exist. Even if a target
platform exists, it may not support the delegation of binding as proposed in this thesis.
However, many domains, including real-time domain, are increasingly adopting a container
technology or incorporate a special library that can be adapted for the binding [sm118,
ER18]. Likewise, an architectural framework [TMO09] can be developed or adapted to
support the delegation of binding. Similarly, a light-weight component manager may also
be used for the same purpose.

In the implementation of the modelling language, we extended Ecore metamod-
elling language – an approach that is considered as heavyweight [BGD+15]. A lightweight
extension such as UML profiling mechanism might have been easier and could have been
made reusable to other domains[LWWC11, BGD+15].

The approach we proposed is most appropriate in proactive SPLE [Cle02], where
the software product line is developed from scratch since a certain degree of freedom is
required since the support of variations of feature binding time has to be pre-planned.
Overall, the proposed approach mainly demonstrated that it is feasible to manage the
variation of feature binding time at a higher level of abstraction in MDD PLA.

148

6.4 Future research directions

In this section, we outline the future works to either consolidate the findings in this
thesis or to extend our approach to supporting variations of feature binding time. The
following some of the grounds for future work:

• One of the immediate extensions to our proposed binding time aware modelling
language is to add, to the PIM metamodel, a means to aggregate the fine-grained
variations into aspectual components.

• The M2M transformation should also be extended to support parameterization in
many fronts (e.g., parameterize ports with synchronicity property, parameterize com-
ponent interaction mechanisms) and to check product-wide effects of the instantiated
properties (e.g., to check possible violation for coordination requirements of parallel
tasks).

• From the findings in our systematic study on the interventions to support variations
of feature binding time, AOP related techniques where the dominant interventions
proposed. One of the interventions was the integration of static and dynamic weaver
to have the best from the two classes of weavers. Interestingly, the integration
had to sacrifice the inter-type declaration of fine-grained program elements such as
attributes similar to the compromise made when AspectJ and AspectWerkz weavers
were merged. It will be interesting, as future research, to use the two weavers in the
same assets and switch between the two types of weavers depending on the binding
time requested. Again the switching between the two weavers shall be abstracted at
the model level. In this regard, it will also be interesting to compare the integration
and the switching between the two classes of weavers in terms of efforts and practical
utility.

• It will also be interesting to extend our proposed approach to supporting variations
of feature binding time to cloud-based and micro-service deployment platforms such
as Docker container[And15].

• Since we use only a single domain in our exploration of feature in the code-asset,
further investigations are necessary with multiple case studies in different software
domains in order to improve the understanding of our findings.

• When the proposed modelling language attained a certain level of maturity, it imper-
ative to provide empirical evidence when the approach is directly compared to the
composition of fine-grained model elements in terms of modifiability and similarly
to compare with the use of aspect idioms in terms of code duplication.

149

6.5 Closing remarks

This thesis has established that modern language-based implementation techniques,
including those that are specifically proposed to implement variations in the form of fea-
tures, have fallen short in supporting the modifiability of reusable assets and variations
of feature binding time in SPLE. Similarly, the various engineering approaches that are
proposed to support variations of feature binding time have also fallen short in terms of
the scope of their coverage and focus. Given the established limitations of the existing
approaches, this thesis presents binding time aware modelling language that supports vari-
ations of feature binding time by design and improves the modifiability of reusable assets
of a product line.

Bibliography

[AABZ14] Sven Apel, Joanne M. Atlee, Luciano Baresi, and Pamela Zave. Feature
Interactions: The Next Generation (Dagstuhl Seminar 14281). Dagstuhl
Reports, 4(7):1–24, 2014.

[ABM00] Colin Atkinson, Joachim Bayer, and Dirk Muthig. Component-based prod-
uct line development: the kobra approach. In Software Product Lines,
pages 289–309. Springer, 2000.

[AE92] William W. Agresti and William M. Evanco. Projecting software defects
from analyzing ada designs. IEEE Transactions on Software Engineering,
18(11):988–997, 1992.

[AK09] Sven Apel and Christian Kästner. An overview of feature-oriented software
development. Journal of Object Technology, 8(5):49–84, 2009.

[AKS+13] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner, and
Brady Garvin. Exploring feature interactions in the wild: the new feature-
interaction challenge. In Proceedings of the 5th International Workshop on
Feature-Oriented Software Development, pages 1–8. ACM, 2013.

[AM04] Michalis Anastasopoulos and Dirk Muthig. An evaluation of aspect-
oriented programming as a product line implementation technology. In In-
ternational Conference on Software Reuse, pages 141–156. Springer, 2004.

[And15] Charles Anderson. Docker [software engineering]. IEEE Software,
32(3):102–c3, 2015.

[ARR+16] Rodrigo Andrade, Marcio Ribeiro, Henrique Rebelo, Paulo Borba, Vaidas
Gasiunas, and Lucas Satabin. Assessing idioms for a flexible feature bind-
ing time. The Computer Journal, 59(1):1–32, 2016.

[Bat05a] Don Batory. Feature models, grammars, and propositional formulas. In
International Conference on Software Product Lines, pages 7–20. Springer,
2005.

[Bat05b] Don Batory. A tutorial on feature oriented programming and the ahead tool
suite. In International Summer School on Generative and Transformational
Techniques in Software Engineering, pages 3–35. Springer, 2005.

151

[BBM96] Victor R Basili, Lionel C Briand, and Walcélio L Melo. How reuse in-
fluences productivity in object-oriented systems. Communications of the
ACM, 39(10):104–116, 1996.

[BC12] Jan Bosch and Rafael Capilla. Dynamic variability in software-intensive
embedded system families. Computer, 45(10):28–35, 2012.

[BD95] Jean-Marie Burkhardt and Françoise Détienne. An empirical study of soft-
ware reuse by experts in object-oriented design. In Human—Computer
Interaction, pages 133–138. Springer, 1995.

[BFK+99a] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig,
Klaus Schmid, Tanya Widen, and Jean-Marc DeBaud. Pulse: A method-
ology to develop software product lines. SSR, 99:122–131, 1999.

[BFK+99b] Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig,
Klaus Schmid, Tanya Widen, and Jean-Marc DeBaud. Pulse: A method-
ology to develop software product lines. SSR, 99:122–131, 1999.

[BGD+15] Hugo Bruneliere, Jokin Garcia, Philippe Desfray, Djamel Eddine Khelladi,
Regina Hebig, Reda Bendraou, and Jordi Cabot. On lightweight meta-
model extension to support modeling tools agility. In European Conference
on Modelling Foundations and Applications, pages 62–74. Springer, 2015.

[BHK11] Don Batory, Peter Höfner, and Jongwook Kim. Feature interactions, prod-
ucts, and composition. In ACM SIGPLAN Notices, volume 47, pages 13–
22. ACM, 2011.

[Big98] Ted J Biggerstaff. A perspective of generative reuse. Annals of Software
Engineering, 5(1):169, 1998.

[BLL+14] Johannes Bürdek, Sascha Lity, Malte Lochau, Markus Berens, Ursula
Goltz, and Andy Schürr. Staged configuration of dynamic software product
lines with complex binding time constraints. In Proceedings of the Eighth
International Workshop on Variability Modelling of Software-Intensive
Systems, page 16. ACM, 2014.

[BMF09] Luciana Akemi Burgareli, Selma Shin Shimizu Melnikoff, and Mauricio
G Vieira Ferreira. A variation mechanism based on adaptive object model
for software product line of brazilian satellite launcher. In 2009 First IEEE
Eastern European Conference on the Engineering of Computer Based Sys-
tems, pages 24–31. IEEE, 2009.

[BOVH17] Gülden Bayrak, Felix Ocker, and Birgit Vogel-Heuser. Evaluation of se-
lected control programming languages for process engineers by means of
cognitive effectiveness and dimensions. Journal of Software Engineering
and Applications, 10(05):457, 2017.

152

[BST+94] Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and
Marty Sirkin. The genvoca model of software-system generators. IEEE
Software, 11(5):89–94, 1994.

[BVD07] Michal Bebjak, Valentino Vranic, and Peter Dolog. Evolution of web ap-
plications with aspect-oriented design patterns. In AEWSE, 2007.

[BW09] Danilo Beuche and Jens Weiland. Managing flexibility: Modeling binding-
times in simulink. In European Conference on Model Driven Architecture-
Foundations and Applications, pages 289–300. Springer, 2009.

[BW14] Thomas Buchmann and Bernhard Westfechtel. Mapping feature models
onto domain models: ensuring consistency of configured domain models.
Software and Systems Modeling, 13(4):1495—1527, 2014.

[CA05] Krzysztof Czarnecki and Micha l Antkiewicz. Mapping features to models:
A template approach based on superimposed variants. In International
conference on generative programming and component engineering, pages
422–437. Springer, 2005.

[CB13] Rafael Capilla and Jan Bosch. Binding time and evolution. In Systems
and Software Variability Management, pages 57–73. Springer, 2013.

[CB16] Rafael Capilla and Jan Bosch. Dynamic variability management support-
ing operational modes of a power plant product line. In Proceedings of
the Tenth International Workshop on Variability Modelling of Software-
intensive Systems, pages 49–56. ACM, 2016.

[CCG+16] Bruno BP Cafeo, Elder Cirilo, Alessandro Garcia, Francisco Dantas, and
Jaejoon Lee. Feature dependencies as change propagators: an exploratory
study of software product lines. Information and Software Technology,
69:37–49, 2016.

[CE00] K Czarnecki and U Eisenecker. Generative programming: Methods, tools,
and applications., 2000.

[CEM04] Robert Chatley, Susan Eisenbach, and Jeff Magee. Magicbeans: a platform
for deploying plugin components. In International Working Conference on
Component Deployment, pages 97–112. Springer, 2004.

[Cle02] Paul Clements. Being proactive pays off. IEEE Software, 19(4):28, 2002.

[CLK08] Hojin Cho, Kwanwoo Lee, and Kyo C Kang. Feature relation and depen-
dency management: An aspect-oriented approach. In 2008 12th Interna-
tional Software Product Line Conference, pages 3–11. IEEE, 2008.

153

[Coo17] Oracle Coorporation. Oracle berkeley db java edition — oracle berkeley
db, 2017.

[CRE08] Venkat Chakravarthy, John Regehr, and Eric Eide. Edicts: implementing
features with flexible binding times. In Proceedings of the 7th international
conference on Aspect-oriented software development, pages 108–119. ACM,
2008.

[CVD16] Rafael Capilla, Alejandro Valdezate, and Francisco J Dı́az. A runtime
variability mechanism based on supertypes. In 2016 IEEE 1st International
Workshops on Foundations and Applications of Self* Systems (FAS* W),
pages 6–11. IEEE, 2016.

[Del17] DeltaJ. a delta oriented programming language with core and delta mod-
ules, 2017.

[DFV03] Eelco Dolstra, Gert Florijn, and Eelco Visser. Timeline variability: The
variability of binding time of variation points, 2003.

[DRB+13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Mar-
tin Becker, and Krzysztof Czarnecki. An exploratory study of cloning in
industrial software product lines. In 2013 17th European Conference on
Software Maintenance and Reengineering, pages 25–34. IEEE, 2013.

[DRO19] Udo Kelter Dennis Reuling, Christopher Pietsch and Manuel Ohrndorf.
Flexiple - a tool for flexible binding times in annotated modelbased spls.
In In Proceedings of 23rd International Systems and Software Product Line
Conference, Paris, France, 9–13 September, 2019 (SPLC’19), pages 52–67.
ACM, 2019.

[DSW14] Ferruccio Damiani, Ina Schaefer, and Tim Winkelmann. Delta-oriented
multi software product lines. In Proceedings of the 18th International Soft-
ware Product Line Conference-Volume 1, pages 232–236. ACM, 2014.

[DWAJ+05] Mary Dixon-Woods, Shona Agarwal, David Jones, Bridget Young, and
Alex Sutton. Synthesising qualitative and quantitative evidence: a review
of possible methods. Journal of health services research & policy, 10(1):45–
53, 2005.

[ER18] VF Emets and Jan Rogowski. Comparative analysis of event propagation
methods on android platform. In 2018 IEEE 13th International Scientific
and Technical Conference on Computer Sciences and Information Tech-
nologies (CSIT), volume 1, pages 227–230. IEEE, 2018.

[ESSD08] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela
Damian. Selecting empirical methods for software engineering research. In

154

Guide to advanced empirical software engineering, pages 285–311. Springer,
2008.

[FCS+08] Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna, Mario Monteiron,
Uira Kulesza, Alessandro Garcia1, Sergio Soares3, Fabiano Ferrari, Safoora
Khan, Fernando Castor Filho, and Francisco Dantas. Evolving software
product lines with aspects: An empirical study on design stability. In
Proceedings of the 30th international conference on Software engineering,
pages 261 –270, Leipzig, Germany, 2008. ACM.

[Fli09] Shayne Flint. A conceptual model of software engineering research ap-
proaches. In 2009 Australian Software Engineering Conference, pages 229–
236. IEEE, 2009.

[Fow10] Martin Fowler. Alternative computational models. In Domain-specific
languages, pages 113–120. Pearson Education, 2010.

[FPF+98] William Frakes, Ruben Prieto, Christopher Fox, et al. Dare: Domain
analysis and reuse environment. Annals of software engineering, 5(1):125–
141, 1998.

[Fra03] David S Frankel. Model driven architecture applying MDA. John Wiley &
Sons, 2003.

[FT96] William Frakes and Carol Terry. Software reuse: metrics and models. ACM
Computing Surveys (CSUR), 28(2):415–435, 1996.

[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architectural mis-
match: Why reuse is so hard. IEEE software, 12(6):17–26, 1995.

[GHJ+95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Design
Patterns. Elements of reusable object-oriented software. Design Patterns.
massachusetts: Addison-Wesley Publishing Company, 1995.

[GHK+15] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pe-
dram Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri
Plotnikov, Dirk Reiss, Alexander Roth, et al. A comparison of mecha-
nisms for integrating handwritten and generated code for object-oriented
programming languages. In 2015 3rd International Conference on Model-
Driven Engineering and Software Development (MODELSWARD), pages
74–85. IEEE, 2015.

[GKS+96] Hassan Gomaa, Larry Kerschberg, Vijayan Sugumaran, C Bosch,
I Tavakoli, and L O’Hara. A knowledge-based software engineering envi-
ronment for reusable software requirements and architectures. Automated
Software Engineering, 3(3-4):285–307, 1996.

155

[Gla94] Robert L Glass. The software-research crisis. IEEE Software, 11(6):42–47,
1994.

[Gla01] Robert L. Glass. Frequently forgotten fundamental facts about software
engineering. IEEE SOFTWARE, 18(3):36–44, May/June 2001.

[Gom05] Hassan Gomaa. Designing software product lines with UML. IEEE, 2005.

[GPGBMA10] Borja González-Pereira, Vicente P Guerrero-Bote, and Félix Moya-Anegón.
A new approach to the metric of journals’ scientific prestige: The sjr indi-
cator. Journal of informetrics, 4(3):379–391, 2010.

[GPZ02] Michael Goedicke, Klaus Pohl, and Uwe Zdun. Domain-specific runtime
variability in product line architectures. In International Conference on
Object-Oriented Information Systems, pages 384–396. Springer, 2002.

[Gro10] Object Management Group. About the Object Constraint Language Speci-
fication Version 2.2. https://www.omg.org/spec/OCL/2.2/About-OCL/,
2010.

[Gro16] Object Management Group. About the Meta Object Facility Specification
Version 2.5.12. https://www.omg.org/mof/, 2016. Accessed: 2018-04-03.

[HKM+13] Herman Hartmann, Mila Keren, Aart Matsinger, Julia Rubin, Tim Trew,
and Tali Yatzkar-Haham. Using mda for integration of heterogeneous com-
ponents in software supply chains. Science of Computer Programming,
78(12):2313–2330, 2013.

[HMT09] Herman Hartmann, Aart Matsinger, and Tim Trew. Supplier independent
feature modelling. In Proceedings of the 13th International Software Prod-
uct Line Conference, pages 191–200, San Francisco, California, USA, 2009.
ACM.

[HT08] Herman Hartmann and Tim Trew. Using feature diagrams with context
variability to model multiple product lines for software supply chains. In
2008 12th International Software Product Line Conference, pages 12–21.
IEEE, 2008.

[HZS+16] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf
Leßenich, Martin Becker, and Sven Apel. Preprocessor-based variabil-
ity in open-source and industrial software systems: An empirical study.
Empirical Software Engineering, 21(2):449–482, 2016.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A
model transformation tool. Science of computer programming, 72(1-2):31–
39, 2008.

https://www.omg.org/spec/OCL/2.2/About-OCL/
https://www.omg.org/mof/

156

[K+07] Staffs Keele et al. Guidelines for performing systematic literature reviews
in software engineering. Technical report, Technical report, Ver. 2.3 EBSE
Technical Report. EBSE, 2007.

[KA09] Christian Kastner and Sven Apel. Virtual separation of concerns – a sec-
ond chance for preprocessors. Journal of Object Technology, 8(6):59–78,
September/October 2009.

[KAB07] Christian Kästner, Sven Apel, and Don Batory. A case study implement-
ing features using aspectj. In 11th International Software Product Line
Conference (SPLC 2007), pages 223–232. IEEE, 2007.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in
software product lines. In Proceedings of the 30th international conference
on Software engineering, pages 311–320. ACM, 2008.

[KAR+09] Christian Kästner, Sven Apel, Marko Rosenmüller, Don Batory, Gunter
Saake, et al. On the impact of the optional feature problem: Analysis and
case studies. In Proceedings of the 13th International Software Product
Line Conference, pages 181–190. Carnegie Mellon University, 2009.

[KCH+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst, 1990.

[KK98] Dirk O Keck and Paul J Kuehn. The feature and service interaction prob-
lem in telecommunications systems: A survey. IEEE Transactions on Soft-
ware Engineering, 24(10):779–796, 1998.

[KK15] Niloofar Khedri and Ramtin Khosravi. Incremental variability management
in conceptual data models of software product lines. In 2015 Asia-Pacific
Software Engineering Conference (APSEC), pages 222–229. IEEE, 2015.

[KK16] Michael Krisper and Christian Kreiner. Describing binding time in software
design patterns. In Proceedings of the 21st European Conference on Pattern
Languages of Programs, page 25. ACM, 2016.

[KKL+98] Kyo C Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and
Moonhang Huh. Form: A feature-; oriented reuse method with domain-;
specific reference architectures. Annals of Software Engineering, 5(1):143,
1998.

[Kre15] Christian Kreiner. A binding time guide to creational patterns. In Proceed-
ings of the 18th European Conference on Pattern Languages of Program,
page 14. ACM, 2015.

157

[Kru95] Philippe B Kruchten. The 4+ 1 view model of architecture. IEEE software,
12(6):42–50, 1995.

[Kru06] Charles W Krueger. New methods in software product line development.
In 10th International Software Product Line Conference (SPLC’06), pages
95–99. IEEE, 2006.

[Lad03] Ramnivas Laddad. AspectJ in action: practical aspect-oriented program-
ming. Dreamtech Press, 2003.

[LAL+10] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and
Michael Schulze. An analysis of the variability in forty preprocessor-based
software product lines. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering-Volume 1, pages 105–114.
ACM, 2010.

[Lee] Kwanwoo Lee. Aspect-oriented patterns for the realization of flexible fea-
ture binding. In 1st International Workshop on Model-Driven Approaches
in Software Product Line Engineering Goetz Botterweck, Iris Groher, An-
dreas Polzer, page 51. Citeseer.

[LHKS92] John A Lewis, Sallie M Henry, Dennis G Kafura, and Robert S Schulman.
On the relationship between the object-oriented paradigm and software
reuse: An empirical investigation. Technical report, Department of Com-
puter Science, Virginia Polytechnic Institute & State . . . , 1992.

[LK03] Jaejoon Lee and Kyo C Kang. Feature binding analysis for product line
component development. In International Workshop on Software Product-
Family Engineering, pages 250–260. Springer, 2003.

[LK10] Kwanwoo Lee and Kyo C Kang. Usage context as key driver for feature
selection. In International Conference on Software Product Lines, pages
32–46. Springer, 2010.

[LKCC00] Kwanwoo Lee, Kyo C Kang, Wonsuk Chae, and Byoung Wook Choi.
Feature-based approach to object-oriented engineering of applications for
reuse. Software: Practice and Experience, 30(9):1025–1046, 2000.

[LKKP06] Kwanwoo Lee, Kyo Chul Kang, Minseong Kim, and Sooyong Park. Com-
bining feature-oriented analysis and aspect-oriented programming for prod-
uct line asset development. In 10th International Software Product Line
Conference (SPLC’06), pages 10–pp. IEEE, 2006.

[LKL02] Kwanwoo Lee, Kyo C Kang, and Jaejoon Lee. Concepts and guidelines
of feature modeling for product line software engineering. In International
Conference on Software Reuse, pages 62–77. Springer, 2002.

158

[LWWC11] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot. From
uml profiles to emf profiles and beyond. In International Conference on
Modelling Techniques and Tools for Computer Performance Evaluation,
pages 52–67. Springer, 2011.

[MLWR01] Gail C. Murphy, Albert Lai, Robert J. Walker, and Martin P. Robillard.
Separating features in source code: An exploratory study. In Proceedings
of the 23rd International Conference on Software Engineering(ICSE 2001),
pages 275– –284, Toronto, Ontario, Canada, 2001. IEE.

[MMP00] Nikunj R Mehta, Nenad Medvidovic, and Sandeep Phadke. Towards a
taxonomy of software connectors. In Proceedings of the 22nd international
conference on Software engineering, pages 178–187. ACM, 2000.

[MP02] Dirk Muthig and Thomas Patzke. Generic implementation of product line
components. In Net. ObjectDays: International Conference on Object-
Oriented and Internet-Based Technologies, Concepts, and Applications for
a Networked World, pages 313–329. Springer, 2002.

[MPH+07] Andreas Metzger, Klaus Pohl, Patrick Heymans, Pierre-Yves Schobbens,
and Germain Saval. Disambiguating the documentation of variability in
software product lines: A separation of concerns, formalization and au-
tomated analysis. In 15th IEEE International Requirements Engineering
Conference (RE 2007), pages 243–253. IEEE, 2007.

[MV09] Radoslav Menkyna and Valentino Vranić. Aspect-oriented change realiza-
tion based on multi-paradigm design with feature modeling. In IFIP Cen-
tral and East European Conference on Software Engineering Techniques,
pages 40–53. Springer, 2009.

[Nau68] Peter Naur. Software engineering-report on a conference sponsored by the
nato science committee garimisch, germany. http://homepages. cs. ncl. ac.
uk/brian. randell/NATO/nato1968. PDF, 1968.

[Nei84] James M Neighbors. The draco approach to constructing software
from reusable components. IEEE Transactions on Software Engineering,
(5):564–574, 1984.

[PBvDL05] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software product
line engineering: foundations, principles and techniques. Springer Science
& Business Media, 2005.

[PCH93] Jeffrey S. Poulin, Joseph M. Caruso, and Debera R. Hancock. The business
case for software reuse. IBM Systems Journal, 32(4):567–594, 1993.

159

[PFMM08] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Sys-
tematic mapping studies in software engineering. In Ease, volume 8, pages
68–77, 2008.

[Pre97] Christian Prehofer. Feature-oriented programming: A fresh look at objects.
In European Conference on Object-Oriented Programming, pages 419–443.
Springer, 1997.

[Ran98] Alexander Ran. Architectural structures and views. In Foundations of
Software Engineering: Proceedings of the third international workshop on
Software architecture, volume 1, pages 117–120, 1998.

[RK12] Baishakhi Ray and Miryung Kim. A case study of cross-system porting in
forked projects. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, page 53. ACM,
2012.

[RKS00] C. R. Roast, B. Khazaei, and J. I. Siddiqi. Formal comparisons of program
modification. In Proceeding 2000 IEEE International Symposium on Visual
Languages, pages 165–171, Seattle, WA, USA, 2000. IEE.

[RSAS11] Marko Rosenmüller, Norbert Siegmund, Sven Apel, and Gunter Saake.
Flexible feature binding in software product lines. Automated Software
Engineering, 18(2):163–197, 2011.

[SB99] Mikael Svahnberg and Jan Bosch. Evolution in software product lines: Two
cases. Journal of Software Maintenance: Research and Practice, 11(6):391–
422, 1999.

[SB02] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based designs.
ACM Transactions on Software Engineering and Methodology (TOSEM),
11(2):215–255, 2002.

[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico
Tanzarella. Delta-oriented programming of software product lines. In In-
ternational Conference on Software Product Lines, pages 77–91. Springer,
2010.

[SDS10] Arnon Sturm, Dov Dori, and Onn Shehory. An object-process-based mod-
eling language for multiagent systems. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews),, 40:227–241,
March 2010.

[SE08] Klaus Schmid and Holger Eichelberger. Model-based implementation of
meta-variability constructs: A case study using aspects. VaMoS, 8:63–71,
2008.

160

[sm118] SmartSoft : SmartSoft-Robotics. https://sourceforge.net/projects/

smart-robotics/, 2018.

[Som11] Ian Sommerville. Software engineering 9th edition. ISBN-10, 137035152,
2011.

[SPLS+06] Wolfgang Schroder-Preikschat, Daniel Lohmann, Fabian Scheler, Wasif Gi-
lani, and Olaf Spinczyk. Static and dynamic weaving in system software
with aspectc++. In Proceedings of the 39th Annual Hawaii International
Conference on System Sciences (HICSS’06), volume 9, pages 214a–214a.
IEEE, 2006.

[SSS17] Christoph Seidl, Sven Schuster, and Ina Schaefer. Generative software
product line development using variability-aware design patterns. Com-
puter Languages, Systems & Structures, 48:89–111, 2017.

[SvGB05] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A taxonomy of variabil-
ity realization techniques. Software: Practice and Experience, 35(8):705–
754, July 2005.

[Tec] Oracle Technology. JavaTM EE at a Glance. https://www.oracle.com/

technetwork/java/javaee/overview/index.html.

[TKB+14] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. Featureide: An extensible framework for
feature-oriented software development. Science of Computer Programming,
79:70–85, 2014.

[TLSPS09] Reinhard Tartler, Daniel Lohmann, Wolfgang Schröder-Preikschat, and
Olaf Spinczyk. Dynamic aspectc++: Generic advice at any time. In
SoMeT, pages 165–186. Citeseer, 2009.

[TMD10] Richard N Taylor, Nenad Medvidovic, and Eric Dashofy. Software archi-
tecture: foundations, theory, and practice. John Wiley & Sons, 2010.

[TMO09] Richard N Taylor, Nenad Medvidovic, and Peyman Oreizy. Architectural
styles for runtime software adaptation. In 2009 Joint Working IEEE/IFIP
Conference on Software Architecture & European Conference on Software
Architecture, pages 171–180. IEEE, 2009.

[TO] Peri Tarr and Harold Ossher. Hyperj user and installation manual. ibm
corporation 2000.

[TSCS16] Nguonly Taing, Thomas Springer, Nicolás Cardozo, and Alexander Schill.
A dynamic instance binding mechanism supporting run-time variability of
role-based software systems. In Companion Proceedings of the 15th Inter-
national Conference on Modularity, pages 137–142. ACM, 2016.

https://sourceforge.net/projects/smart-robotics/
https://sourceforge.net/projects/smart-robotics/
https://www.oracle.com/technetwork/java/javaee/overview/index.html
https://www.oracle.com/technetwork/java/javaee/overview/index.html

161

[Uni18] European Union. The EU General Data Protection Regulation (GDPR).
https://eugdpr.org/, 2018.

[VBMD08] Valentino Vranić, Michal Bebjak, Radoslav Menkyna, and Peter Dolog. De-
veloping applications with aspect-oriented change realization. In IFIP Cen-
tral and East European Conference on Software Engineering Techniques,
pages 192–206. Springer, 2008.

[VdH04] André Van der Hoek. Design-time product line architectures for any-time
variability. Science of computer programming, 53(3):285–304, 2004.

[VG91] Michiel Van Genuchten. Why is software late? an empirical study of
reasons for delay in software development. IEEE Transactions on software
engineering, 17(6):582–590, 1991.

[VO98] ROb Van Ommering. Koala, a component model for consumer electronics
product software. In International Workshop on Architectural Reasoning
for Embedded Systems, pages 76–86. Springer, 1998.

[VV11] Markus Voelter and Eelco Visser. Product line engineering using domain-
specific languages. In 2011 15th International Software Product Line Con-
ference, pages 70–79. IEEE, 2011.

[WG18] Bernhard Westfechtel and Sandra Greiner. From single-to multi-variant
model transformations: Trace-based propagation of variability annota-
tions. In Proceedings of the 21th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, pages 46–56. ACM,
2018.

[WJE+09] Jon Whittle, Praveen Jayaraman, Ahmed Elkhodary, Ana Moreira, and
João Araújo. Mata: A unified approach for composing uml aspect mod-
els based on graph transformation. In Transactions on Aspect-Oriented
Software Development VI, pages 191–237. Springer, 2009.

[WM98] Guijun Wang and H Alan MacLean. Architectural components and object-
oriented implementations. In A position paper presented at the 1998 In-
ternational Workshop on Component-Based Software Engineering, ICSE,
1998.

[WMMR06] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Require-
ments engineering paper classification and evaluation criteria: a proposal
and a discussion. Requirements engineering, 11(1):102–107, 2006.

[Xte17] Xtext. Language engineering for everyone, 2017.

https://eugdpr.org/

162

[YBJ01] Joseph W Yoder, Federico Balaguer, and Ralph Johnson. Architecture
and design of adaptive object-models. ACM Sigplan Notices, 36(12):50–
60, 2001.

[ZBP+13] Bo Zhang, Martin Becker, Thomas Patzke, Krzysztof Sierszecki, and
Juha Erik Savolainen. Variability evolution and erosion in industrial prod-
uct lines: a case study. In Proceedings of the 17th International Software
Product Line Conference, pages 168–177. ACM, 2013.

[ZS06] Uwe Zdun and Mark Strembeck. Modeling composition in dynamic pro-
gramming environments with model transformations. In International
Conference on Software Composition, pages 178–193. Springer, 2006.

Appendices

164

Appendix A Platform Indipendent Model with OCL

Embedded

package PIM : moonlit = ’http://www.moonlit.com/rpim’

{

//product line architecture has many ArchitecturalElements

class PLA

{

property elements : ArchitecturalElement[*|1] { ordered

↪→ composes };

attribute name : String[1];

property datatype : Type[+|1] { composes };

}

//ArchitecturalElement

abstract class ArchitecturalElement

{

//reusable Boolean operation to check whether or not an element

↪→ is mandatory

operation isVariable() : Boolean[1]

{

body: if self.elementType <> ’mandatory’ then true

else false endif;

}

//attributes of ArchitecturalElement

attribute name : String[1];

attribute elementType : String[1];

attribute bindingTime : String[1];

attribute isAtVP : Boolean[1];

//OCL constraint to restric changing binding time of

↪→ mandatory element

invariant btRestriction:

self.elementType = ’mandatory’ implies

self.bindingTime <> ’pre_deployment’ and self.bindingTime <>

’deployment’ and self.bindingTime <> ’post_deployment’

and self.bindingTime <> ’undecided’;

}

enum BindingTime { serializable }

{

literal asset_dev = 1;

literal pre_deployment;

literal deployment;

165

literal post_deployment;

literal undecided;

}

enum ElementType { serializable }

{

literal mandatory = 1;

literal optional;

literal alternative;

literal OR;

}

//Abstract componnent

abstract class Component extends ArchitecturalElement

{

operation notAtPre-Deployment() : Boolean[1]

{

body: inputPorts.incomingConnector.source->forAll(

↪→ bindingTime <> ’’);

}

//ports

property inputPorts : INPort[*|1] { composes };

property outPorts : OutPort[*|1] {composes };

}

//ComplexDataType

class ComplexDataType extends Type

{

property attributes#owner : Attribute[*|1] { composes };

attribute durability : Durability[1];

property references : Reference[*|1] { composes };

}

//Service and Control extend Component

class Service extends Component;

class Control extends Component;

//Operation

class Operation

{

property type : Type[1];

property data#owner : OperationData[1] { composes };

property owner#operations : INPort[1];

attribute name : String[1];

property sourcinTo#passer : Connector[*|1] { };

}

//Port

166

class Port extends ArchitecturalElement

{

property owner : Component[1];

//OCL Constraint prohibing connector have binding time

↪→ earlier than its owner Component

invariant

notEalierthanOwner: if self.isVariable() and self.owner.

↪→ isVariable() then

self.bindingTime = ’pre_deployment’ implies owner.

↪→ bindingTime <> ’undecided’ and owner.

↪→ bindingTime <> ’deployment’ and owner.

↪→ bindingTime <> ’post_deployment’

else

true

endif;

}

class SimpleDataType extends Type;

class OperationData

{

property type : Type[1];

attribute name : String[1];

property owner#data : Operation[1];

}

abstract class Type

{

attribute name : String[1];

}

class Attribute

{

attribute name : String[1];

property type : SimpleDataType[1];

property owner#attributes : ComplexDataType[1];

}

class ResourcePort extends OutPort;

class DataItem

{

attribute name : String[1];

property type : ComplexDataType[1];

property owner : Component[1];

}

enum ReferenceType { serializable }

{

literal one;

167

literal many;

}

enum Durability { serializable }

{

literal durable;

literal nondurable;

}

//Connector

class Connector extends ArchitecturalElement

{

property target#incomingConnector : INPort[1];

property datapass : Type[1];

property sink : Operation[1];

property source#connector : OutPort[1];

property passer#sourcinTo : Operation[1];

//OCL contraint: OutPort must have reference to Connector

invariant

btCompatability: self.bindingTime.toString() = self.source.

↪→ bindingTime.toString() and self.target.bindingTime.

↪→ toString() = self.bindingTime.toString();

}

class Reference

{

attribute name : String[1];

property target : ComplexDataType[1];

attribute referenceType : ReferenceType[1];

}

class INPort extends Port

{

property operations#owner : Operation[*|1] { ordered

↪→ composes };

property incomingConnector#target : Connector[*|1] {

↪→ ordered };

}

class OutPort extends Port

{

property connector#source : Connector[?] { composes };

//OCL constraint: OutPort must have reference to Connector

invariant mustHaveCon: not self.connector.oclIsUndefined()

↪→ and self.connector.bindingTime = self.bindingTime;

}

}

168

Appendix B JEE Platform Specific Model in XMI

with Ecore Schema

<?xml version="1.0" encoding="UTF-8"?>

<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns

↪→ :xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="JEEPSM"

↪→ nsURI="http://www.moonlit.com/rjee" nsPrefix="psm">

<eClassifiers xsi:type="ecore:EClass" name="PLA">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

↪→ lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf

↪→ /2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="elements"

↪→ lowerBound="1"

upperBound="-1" eType="#//ArchElement" containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="primitives"

↪→ upperBound="-1"

eType="#//PrimitiveType" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Entity" eSuperTypes="#//

↪→ DataType">

<eStructuralFeatures xsi:type="ecore:EReference" name="associations"

↪→ upperBound="-1"

eType="#//Association" containment="true" eOpposite="#//

↪→ Association/sourceEntity"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="attributes"

↪→ upperBound="-1"

eType="#//Attribute" containment="true" eOpposite="#//Attribute/

↪→ owner"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="entityType"

↪→ lowerBound="1"

eType="#//EntityType"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Association">

<eStructuralFeatures xsi:type="ecore:EReference" name="targetEntity"

↪→ lowerBound="1"

eType="#//Entity"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="multiplicity"

↪→ lowerBound="1"

eType="#//Multiplicity"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

↪→ lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf

169

↪→ /2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="sourceEntity"

↪→ lowerBound="1"

eType="#//Entity" eOpposite="#//Entity/associations"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EEnum" name="Multiplicity">

<eLiterals name="ONETOONE"/>

<eLiterals name="ONETOMANY"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Component" abstract="true"

↪→ eSuperTypes="#//ArchElement">

<eStructuralFeatures xsi:type="ecore:EReference" name="references"

↪→ upperBound="-1"

eType="#//Reference" containment="true" eOpposite="#//Reference/

↪→ source"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="implements"

↪→ upperBound="-1"

eType="#//Interface" containment="true"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="EJB" eSuperTypes="#//

↪→ Component">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="beanType"

↪→ lowerBound="1"

eType="#//BeanType"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EEnum" name="BeanType">

<eLiterals name="Stateful"/>

<eLiterals name="Stateless"/>

<eLiterals name="Singleton"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="MessageBean" eSuperTypes

↪→ ="#//Component"/>

<eClassifiers xsi:type="ecore:EClass" name="Operation">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

↪→ lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf

↪→ /2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="parameters"

↪→ eType="#//Parameter"

containment="true"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="type" eType

↪→ ="#//DataType"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="owner"

↪→ lowerBound="1" eType="#//Interface"

170

eOpposite="#//Interface/operations"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="invokations"

↪→ upperBound="-1"

eType="#//Invocation" containment="true" eOpposite="#//Invocation/

↪→ source"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="SimpleReference" eSuperTypes

↪→ ="#//Reference"/>

<eClassifiers xsi:type="ecore:EClass" name="ArchElement">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="

↪→ ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString

↪→ "/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="CDIBean" eSuperTypes="#//

↪→ Component">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="scope" eType

↪→ ="#//Scope"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EEnum" name="Scope">

<eLiterals name="Request"/>

<eLiterals name="Session" literal="Session"/>

<eLiterals name="Application"/>

<eLiterals name="Conversation"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="EventReference" eSuperTypes

↪→ ="#//Reference">

<eStructuralFeatures xsi:type="ecore:EReference" name="eventData"

↪→ lowerBound="1"

eType="#//Entity"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Attribute">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

↪→ lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf

↪→ /2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="type"

↪→ lowerBound="1" eType="#//PrimitiveType"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="owner"

↪→ lowerBound="1" eType="#//Entity"

eOpposite="#//Entity/attributes"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Reference">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

↪→ lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf

171

↪→ /2002/Ecore#//EString"

defaultValueLiteral=""/>

<eStructuralFeatures xsi:type="ecore:EReference" name="source" eType

↪→ ="#//Component"

eOpposite="#//Component/references"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="target"

↪→ lowerBound="1"

eType="#//Interface"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EEnum" name="EntityType">

<eLiterals name="Persistent"/>

<eLiterals name="DataTransfer" value="1"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EEnum" name="InterfaceKind">

<eLiterals name="PC"/>

<eLiterals name="EVENT"/>

<eLiterals name="Message"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Parameter">

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name"

↪→ lowerBound="1" eType="ecore:EDataType http://www.eclipse.org/emf

↪→ /2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="type"

↪→ lowerBound="1" eType="#//DataType"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="ReourceReference"

↪→ eSuperTypes="#//Reference"/>

<eClassifiers xsi:type="ecore:EClass" name="PrimitiveType" eSuperTypes

↪→ ="#//DataType"/>

<eClassifiers xsi:type="ecore:EClass" name="DataType" abstract="true">

<eAnnotations source="http://www.obeo.fr/dsl/dnc/archetype">

<details key="archetype" value="MomentInterval"/>

</eAnnotations>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="name" eType="

↪→ ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString

↪→ "/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Interface" eSuperTypes="#//

↪→ ArchElement">

<eStructuralFeatures xsi:type="ecore:EReference" name="operations"

↪→ lowerBound="1"

upperBound="-1" eType="#//Operation" containment="true" eOpposite

↪→ ="#//Operation/owner"/>

172

<eStructuralFeatures xsi:type="ecore:EAttribute" name="kindof" eType

↪→ ="#//InterfaceKind"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="PCInvocation" eSuperTypes

↪→ ="#//Invocation">

<eStructuralFeatures xsi:type="ecore:EReference" name="targetOperation

↪→ " lowerBound="1"

eType="#//Operation"/>

</eClassifiers>

<eClassifiers xsi:type="ecore:EClass" name="Invocation">

<eStructuralFeatures xsi:type="ecore:EReference" name="targetRef"

↪→ lowerBound="1"

eType="#//Reference"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="parameter"

↪→ eType="#//DataType"/>

<eStructuralFeatures xsi:type="ecore:EReference" name="source"

↪→ lowerBound="1"

eType="#//Operation" eOpposite="#//Operation/invokations"/>

</eClassifiers>

</ecore:EPackage>

173

Appendix C PIM to JEEE transformations

----sources of the metamodels

--@nsURI PIM = http://www.moonlit.com/rpim

-- @path PIM=/RefinedPIM2JEE/model/PIM.ecore

-- @path JEE=/RefinedPIM2JEE/model/JEEPSM.ecore

module RefinedPIM2JEE;

create OUT : JEE from IN : PIM;

---- Data type mapping

rule SimpleDataType2Primitive {

from

s: PIM!SimpleDataType

to

p: JEE!PrimitiveType (

name <- s.name

)

}

----complex data type to persitent entity

rule ComplexDataType2PersistentEntity {

from

c: PIM!ComplexDataType (

c.durability.toString() = ’durable’

)

to

j: JEE!Entity (

name <- c.name,

entityType <- ’Persistent’,

attributes <- c.attributes,

associations <- c.references

)

}

----complex data type to data transfer object

rule ComplexDataType2DataTransferObject {

from

c: PIM!ComplexDataType (

c.durability.toString() = ’nondurable’

)

to

j: JEE!Entity (

name <- c.name,

entityType <- ’DataTransfer’,

174

attributes <- c.attributes,

associations <- c.references

)

}

rule Attribute2Attribute {

from

a: PIM!Attribute

to

ja: JEE!Attribute (

name <- a.name,

type <- a.type

)

}

rule Reference2OneAssociation {

from

r: PIM!Reference (

r.referenceType.toString() = ’one’

)

to

a: JEE!Association (

name <- r.name,

targetEntity <- r.target,

multiplicity <- ’ONETOONE’

)

}

rule Reference2ManyAssociation {

from

r: PIM!Reference (

r.referenceType.toString() = ’many’

)

to

a: JEE!Association (

name <- r.name,

targetEntity <- r.target,

multiplicity <- ’ONETOMANY’

)

}

----helper operation to determine binding time of port

helper context PIM!INPort def: isPCPort(): Boolean =

if self.bindingTime = ’asset_dev’ or

175

self.bindingTime = ’pre_deployment’ then

true

else

false

endif;

rule Port2Interface {

from pt: PIM!INPort(pt.isPCPort())

to it: JEE!Interface (name <- pt.name, kindof <- ’PC’,

operations <- pt.operations)

}

rule Port2EventInterface {

from pt: PIM!INPort (not pt.isPCPort())

to it: JEE!Interface (name <- pt.name, kindof <- ’EVENT’,

operations <- pt.operations)

}

rule Operation2PCOperation {

from po: PIM!Operation (not po.owner.oclIsTypeOf(PIM!OutPort))

to op: JEE!Operation (name <- po.name, parameters <- po.data,

↪→ invokations <- po.sourcinTo, type <- po.type)

}

rule OperationData2Parameter {

from pi: PIM!OperationData (not pi.owner.owner.oclIsKindOf(PIM!

↪→ OutPort))

to pj:JEE!Parameter(name <- pi.name, type <- pi.type)

}

helper context PIM!Service def: isStateful(): Boolean =

if self.outPorts -> select(r | r.oclIsTypeOf(PIM!ResourcePort)).

↪→ notEmpty() then

true

else

false

endif;

rule Controller2CDIBean {

from

176

ct: PIM!Control

to

cd: JEE!CDIBean (

name <- ct.name,

implements <- ct.inputPorts, references <- ct.

↪→ outPorts

)

}

rule Service2Stateless {

from

sv: PIM!Service (

not sv.isStateful()

)

to

st: JEE!EJB (

name <- sv.name,

beanType <- ’Stateless’, implements <- sv.inputPorts

↪→ , references <- sv.outPorts

)

}

rule Service2Stateful {

from

sv: PIM!Service (

sv.isStateful()

)

to

st: JEE!EJB (

name <- sv.name,

beanType <- ’Stateful’, implements <- sv.inputPorts,

↪→ references <- sv.outPorts)

}

---- OutPort to SimpleReference

rule OutPort2SimpleReference {

from outpt: PIM!OutPort (not outpt.oclIsTypeOf(PIM!ResourcePort)

↪→ and

(outpt.bindingTime =’asset_dev’ or outpt.bindingTime =’

↪→ pre_deployment’))

to sref:JEE!SimpleReference(name <- outpt.name, target <- outpt.

177

↪→ connector.target)

}

----OutPort to event reference

rule OutPortEventReference {

from outpt: PIM!OutPort (not outpt.oclIsTypeOf(PIM!ResourcePort)

↪→ and

(not(outpt.bindingTime =’asset_dev’ or outpt.bindingTime =’

↪→ pre_deployment’)))

to sref:JEE!EventReference(name <- outpt.name, eventData <- outpt.

↪→ connector.datapass)

}

--

----connection to direct invokation

rule Connection2Invoke{

from cn: PIM!Connector (cn.bindingTime = ’asset_dev’ or cn.

↪→ bindingTime =’pre_deployment’)

to iv:JEE!PCInvocation(parameter <- cn.datapass, targetOperation

↪→ <- cn.sink, targetRef <- cn.source)

}

----connection to event invokation

rule Connection2EventInvoke{

from cn: PIM!Connector (not (cn.bindingTime = ’asset_dev’ or cn.

↪→ bindingTime =’pre_deployment’))

to iv:JEE!Invocation(parameter <- cn.datapass, targetRef <- cn.

↪→ source)

}

--

178

Appendix D Code generation with Xtend

package genetaor

import org.eclipse.emf.ecore.EPackage

import org.eclipse.emf.ecore.resource.Resource

import JEEPSM.JEEPSMPackage

import org.eclipse.emf.ecore.xmi.impl.XMIResourceFactoryImpl

import org.eclipse.xtext.generator.JavaIoFileSystemAccess

import JEEPSM.Entity

import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl

import org.eclipse.emf.common.util.URI

import org.eclipse.xtext.resource.impl.ResourceServiceProviderRegistryImpl

import org.eclipse.xtext.parser.IEncodingProvider

import JEEPSM.Attribute

import JEEPSM.Association

//

class EntityGenerator {

JavaIoFileSystemAccess fsa;

//Generator Workflow calls this method and passed file

//of PSM model in xmi

def generateEntity(String file) {

doEMFSetup

val resourceSet = new ResourceSetImpl

val resource = resourceSet.getResource(URI.createURI(file),

↪→ true)

//Iterate through JEE Entities in the passed file

for (e: resource.allContents.toIterable.filter(Entity)){

fsa = new JavaIoFileSystemAccess(new

↪→ ResourceServiceProviderRegistryImpl(),

new IEncodingProvider.Runtime()

)

//set the absolute path for the generated output

fsa.setOutputPath("C:\\Users\\umar_\\OneDrive\\

↪→ Desktop\\Box Sync\\PHD\\dsl\\RefinedPIM2JEE\\

↪→ gen\\entity")

fsa.generateFile(e.name.toFirstUpper+".java", e.

↪→ compileAttributes)

}

}

def compileAttributes(Entity e) {

’’’

179

 public class e.name.toFirstUpper{

 FOR a: e.attributes

 a.compileAttribute

 ENDFOR

 FOR ass: e.associations

 ass.compileAssociation

 ENDFOR

 }

 ’’’

}

//generate attributes

def compileAttribute (Attribute a){’’’

private a.type.name a.name;

public a.type.name geta.name.toFirstUpper(){

 return a.name;

 }

 public void seta.name.toFirstUpper(a.type.name a.name.toFirstLower

↪→){

 }

’’’

}

//generate associations

def compileAssociation (Association ass){’’’

IF ass.multiplicity.literal == ’ONETOONE’

private ass.targetEntity.name ass.targetEntity.name.toFirstLower;

ENDIF

IF ass.multiplicity.literal == ’ONETOMANY’

private java.util.Collection<ass.targetEntity.name> ass.targetEntity.name

↪→ .toFirstLower;

ENDIF

’’’

180

}

def doEMFSetup() {

EPackage$Registry.INSTANCE.put(JEEPSMPackage.eINSTANCE.

↪→ nsURI, JEEPSMPackage.eINSTANCE)

Resource$Factory.Registry.INSTANCE.extensionToFactoryMap.

↪→ put("xmi", new XMIResourceFactoryImpl);

}

}

package genetaor

import org.eclipse.xtext.generator.JavaIoFileSystemAccess

import org.eclipse.emf.ecore.EPackage

import org.eclipse.emf.ecore.resource.Resource

import org.eclipse.emf.ecore.xmi.impl.XMIResourceFactoryImpl

import JEEPSM.JEEPSMPackage

import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl

import org.eclipse.emf.common.util.URI

import org.eclipse.xtext.parser.IEncodingProvider

import JEEPSM.Interface

import org.eclipse.xtext.resource.impl.ResourceServiceProviderRegistryImpl

import JEEPSM.Operation

class BusinessInterfaceGenerator {

JavaIoFileSystemAccess fsa;

//Generator Workflow calls this method and passed file

//of PSM model in xmi

def generate (String file){

doEMFSetup()

val resourceSet = new ResourceSetImpl

val resource = resourceSet.getResource(URI.createURI(file),

↪→ true)

//Iterate through JEE PSM interfaces in the passed file

for (intf : resource.allContents.toIterable.filter(

↪→ Interface)) {

fsa = new JavaIoFileSystemAccess(

new ResourceServiceProviderRegistryImpl(),

new IEncodingProvider.Runtime()

)

//set the absolute path for the generated output

181

fsa.setOutputPath("C:\\Users\\umar_\\OneDrive\\Desktop\\Box Sync\\PHD\\dsl

↪→ \\RefinedPIM2JEE\\gen\\interface")

fsa.generateFile("I"+intf.name + ".java", intf.compileBusInterface)

}

}

//White space preserving template

def compileBusInterface(Interface intf){’’’

 public interface Iintf.name{

 FOR ops : intf.operations

 public IF ops.type != nullops.type.nameELSE voidENDIF ops.name(IF

↪→ ops.parameters != nullops.parameters.type.name ops.parameters.

↪→ nameENDIF);

 ops.compilOperation

 ENDFOR

 }

 ’’’

}

//this does nothing

def void compilOperation(Operation operation){

}

def doEMFSetup() {

EPackage$Registry.INSTANCE.put(JEEPSMPackage.eINSTANCE.

↪→ nsURI, JEEPSMPackage.eINSTANCE)

Resource$Factory.Registry.INSTANCE.extensionToFactoryMap.

↪→ put("xmi", new XMIResourceFactoryImpl);

}

}

package genetaor

import org.eclipse.xtext.generator.JavaIoFileSystemAccess

import org.eclipse.emf.ecore.EPackage

import JEEPSM.JEEPSMPackage

182

import org.eclipse.emf.ecore.resource.Resource

import org.eclipse.emf.ecore.xmi.impl.XMIResourceFactoryImpl

import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl

import org.eclipse.emf.common.util.URI

import JEEPSM.Component

import org.eclipse.xtext.resource.impl.ResourceServiceProviderRegistryImpl

import org.eclipse.xtext.parser.IEncodingProvider

import JEEPSM.Interface

import JEEPSM.SimpleReference

import JEEPSM.EventReference

import JEEPSM.Operation

import JEEPSM.Invocation

import JEEPSM.PCInvocation

import JEEPSM.InterfaceKind

//component generator

class BusinessComponentGenerator {

JavaIoFileSystemAccess fsa;

//Generator Workflow calls this method and passed file

//of PSM model in xmi

def generateBusinessComponent(String file) {

doEMFSetup

val resourceSet = new ResourceSetImpl

val resource = resourceSet.getResource(URI.createURI(file),

↪→ true)

//Iterate through componenents in the passed file

for (comp : resource.allContents.toIterable.filter(

↪→ Component)) {

fsa = new JavaIoFileSystemAccess(

new ResourceServiceProviderRegistryImpl(),

new IEncodingProvider.Runtime()

)

//set the absolute path for the generated output

fsa.setOutputPath("C:\\Users\\umar_\\OneDrive\\

↪→ Desktop\\Box Sync\\PHD\\dsl\\RefinedPIM2JEE\\

↪→ gen\\session")

fsa.generateFile(comp.name.toFirstUpper + ".java",

↪→ comp.compileComponent)

}

}

def compileComponent(Component comp) {

’’’

183

 public class comp.name.toFirstUpper IF comp.

↪→ implements.size !=0 implementsFOR imp: comp.implements Iimp.name

↪→ ENDFOR ENDIF{

 FOR r : comp.references

 r.compilereference

 ENDFOR

 IF comp.implements != null

 FOR imp: comp.implements imp.

↪→ compiteInterfaceENDFOR

 ENDIF

 }

 ’’’

}

def compiteInterface(Interface intf) {

’’’

 FOR ops : intf.operations

 ops.compilOperation

 ENDFOR

 ’’’

}

//generate operations

def compilOperation(Operation o) {

’’’

public o.type?.name.toFirstUpper ?: ’void’ o.name(o.owner.kindof.

↪→ interfaceType IF o.parameters != null o.parameters.type.name.

↪→ toFirstUpper o.parameters.nameENDIF){

 FOR inv : o.invokations

 inv.compileInvokation

 ENDFOR

 IF o.type != null

 return null;

 ENDIF

 }

 ’’’

}

def String interfaceType(InterfaceKind itf) {

184

if (itf.toString.equals(’EVENT’)) {

’@observes’

} else {

’’

}

}

def dispatch compileInvokation(Invocation invk) {

’’’

invk.targetRef.name.toFirstLower.fire(invk.parameter.name);

’’’

}

def dispatch compileInvokation(PCInvocation pInvk) {

’’’

pInvk.targetRef.name.toFirstLower.pInvk.targetOperation.name(pInvk.

↪→ parameter.name);

’’’

}

def dispatch compilereference(SimpleReference rs) {

’’’

 Irs.target.name rs.name.toFirstLower;

 ’’’

}

def dispatch compilereference(EventReference rs) {

’’’

 Event <rs.eventData.name> rs.name.toFirstLower;

 ’’’

}

def doEMFSetup() {

EPackage$Registry.INSTANCE.put(JEEPSMPackage.eINSTANCE.

↪→ nsURI, JEEPSMPackage.eINSTANCE)

Resource$Factory.Registry.INSTANCE.extensionToFactoryMap.

↪→ put("xmi", new XMIResourceFactoryImpl);

185

}

}

package genetaor

//Generator WorkFlow

class GeneratorWorkFlow {

def static void main (String [] args){

new EntityGenerator().generateEntity("Jee.xmi")

new BusinessInterfaceGenerator().generate("Jee.xmi")

new BusinessComponentGenerator().generateBusinessComponent

↪→ ("Jee.xmi")

}

}

	List of Acronyms
	Overview
	Software reuse
	Domain engineering as a scoped reuse
	Software Product Line Engineering as a form of systematic reuse
	Motivation
	About this thesis
	Research Objectives
	Research Questions
	Contributions

	Research methods
	Chapter summary

	Background
	Feature-oriented Software Product Line (SPLE)
	Feature-oriented domain engineering
	Feature-oriented domain analysis
	Domain analysis example
	Domain design
	Domain design example
	Domain Implementation

	Feature-oriented application engineering
	Product requirement elicitation
	Product instantiation
	Application engineering example

	Research focus
	Adaptable reusable assets
	Feature binding
	Feature binding time
	Variation of feature binding time
	Justifications for managing variations of feature binding time

	Specific research challenges
	Research challenge on adaptable reusable assets
	Research challenge on variations of feature binding time

	Chapter summary

	Language-based approaches to flexible variations: Action research
	Definition of terms
	Study settings
	Evaluation criteria: flexibility
	Feature modularity and support for multiple binding time
	The case study: Oracle Berkeley Database Engine (BDE)
	Case study exploration

	Study execution
	Pre-processing with Antenna tool
	Feature-Oriented Programming (FOP) with Jak language
	Aspect Oriented Programming (AOP) with AspectJ
	Delta Oriented Programming (DOP) with DeltaJ 1.5
	Comparison between the implementation techniques

	Custom annotations
	Custom annotation definition
	Custom annotation application and processing

	Comparison with similar action researches
	Chapter Summary and perspective

	Approaches for supporting variations of feature binding time: A systematic study
	Introduction
	Review questions
	Review protocol
	Search terms
	Search databases
	Selection strategy
	Data extractions

	Overview of the publications
	Narrative summary of the proposed approaches
	Delegation of binding to aspect weaver
	Language extension
	Metadata interpretation
	Abstracting the binding time at the model level
	Model composition
	Delegation to deployment platform

	Summary of the proposed approaches

	Binding time aware modelling language: design and implementation
	Process overview to supporting variations of feature binding time
	Supporting variations of feature binding time at domain engineering phase
	Supporting variations of feature binding time at domain analysis
	Supporting variations of feature binding time at domain design
	Supporting flexible feature binding at the domain implementation
	PIM to PSM mapping

	Application engineering with feature binding time
	Product requirement elicitation
	Product design
	Consistency checking and PIM to PSM transformation
	Product instantiation

	Tool Support
	PIM implementation and instantiation
	Consistency checking
	PIM to JEE model transformation and code generation

	Evaluation an discussion
	Performance
	Modifiability

	Chapter summary

	Conclusion
	Thesis summary
	Revisiting the Contributions
	Limitations
	Future research directions
	Closing remarks

	Bibliography
	Appendices
	Platform Indipendent Model with OCL Embedded
	JEE Platform Specific Model in XMI with Ecore Schema
	PIM to JEEE transformations
	Code generation with Xtend

