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I NOMENCLATURE 
 

AM – Additive manufacturing 

ASCII – American Standard Code for Information Interchange 

CPU – Central Processing Unit 

CSV – Comma Separated Variable 

HMI – Human Machine Interface 

IR – Infrared 

LHS – Left Hand Side 

LED – Light Emitting Diode 

LS – Laser Sintering 

PA-12 – Polyamide 12 [Also known as Nylon12] 

PC – Personal Computer 

PID – Proportional, Integral, Derivative 

PLC – Programmable Logic Controller 

RHS – Right Hand Side 

RPM – Revolutions per Minute 

RS232 – Recommended Standard 232 

SCR – Silicon Controller Rectifier 
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SLS – Selective Laser Sintering 

SPLS – Selective Polymer Laser Sintering 

TRIAC – Triode for Alternating Current 
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II ABSTRACT 
 

Designing electronic control systems specific to additive manufacturing machines is a fast 

evolving practice, developments in which spur continual performance improvements, 

which in turn improve the quality and economic viability of parts produced (Hu & 

Kovacevic, 2003).  

Research methods used for this work comprise of; taking receipt of externally designed 

and built experimental rigs, recording performance data and making incremental changes 

in attempts to improve performance. Focus is given to the automation and speed of the 

processes and research is limited only by the availability of time and funding. 

This work has investigated several potential significant improvements to SLS cycle times 

and part quality, with the wider project continuing beyond the scope of this dissertation. 

Experimentation with serial data transmission protocols using ASCII (American Standard 

Code for Information Interchange) found it could provide a fast, robust link between 

central control system elements, which is critical and can be achieved this way without 

great monetary cost. 

Distribution of temperature across the build area surface can be optimised with a single 

control feedback loop to a level acceptable for the use of PA-12 (Polyamide 12) powder, 

though methods that are more complex may yield better results. 

Rapid deoxygenation of the build chamber at the beginning of each build cycle offers a 

slight improvement in cycle time, and proper loop feedback can assist in mitigating safety 

concerns. 

Current, commercially available stepper motor control systems are capable of greater 

accuracy than is necessary in such applications but are limited by the accuracy of their 

mechanical linkage, which can introduce significant backlash into the system. 

Powder can be loaded into the machine using augers fed from an external hopper in such 

a way as to minimise powder waste through uneven feeding. 



IV 

Separating power systems allows individual control of sections of the machine, improving 

safety, monitoring possibilities and potential for recovering failed builds. 

A removable build platform, comprising the build piston and associated hardware on a 

movable trolley frame, significantly reduces the machine cycle time by allowing part 

removal and cleaning to be performed concurrently with the start of the next build. 

Visibility of the process status via beacon stacks allows for quick human interaction where 

required, potentially reducing failure rates and improving cycle times. 

  



V 

III CONTENTS 
 

I Nomenclature .............................................................................................................. I 

II Abstract ..................................................................................................................... III 

III Contents ..................................................................................................................... V 

IV List of Figures .............................................................................................................. X 

V List of Tables ............................................................................................................ XIV 

VI Acknowledgements ................................................................................................. XVI 

VII Declaration ......................................................................................................... XVII 

1 Introduction ................................................................................................................ 1 

1.1 Background ......................................................................................................... 1 

1.2 Research Focus ................................................................................................... 2 

1.3 Research Value ................................................................................................... 4 

1.4 Research Objectives ........................................................................................... 4 

2 Current Manufacturing Technologies ........................................................................ 6 

2.1 PC – PLC Communication ................................................................................... 6 

2.2 Powder Bed Temperature Distribution .............................................................. 7 

2.3 Flow Control of Inert Gasses .............................................................................. 9 

2.4 ‘Z’ Height Resolution and Accuracy .................................................................... 9 

2.5 Powder Delivery Systems ................................................................................. 10 

2.6 Process Speed and Efficiency ........................................................................... 12 

3 Materials and Methods ............................................................................................ 14 

3.1 Experimental Rack ............................................................................................ 14 

3.2 SLC 500 ............................................................................................................. 17 

3.3 Build Dolly Simulator ........................................................................................ 18 

3.4 Nylon-12 ........................................................................................................... 21 

3.5 Software ........................................................................................................... 21 

3.5.1 RSLogix 500 Pro ........................................................................................ 21 



VI 

3.6 Environmental Chamber................................................................................... 21 

3.7 Powder Delivery Simulator ............................................................................... 25 

3.8 Vibration Simulator .......................................................................................... 27 

4 PLC – PC Communication ......................................................................................... 28 

4.1 Serial Communication Protocol ........................................................................ 28 

4.2 PLC Software ..................................................................................................... 29 

4.3 PC Software ...................................................................................................... 31 

5 Powder Bed Temperature Distribution .................................................................... 32 

5.1 Infrared Lamp Arrangement ............................................................................. 32 

5.1.1 Initial Testing ............................................................................................ 32 

5.1.2 Reflections of infrared heat ...................................................................... 36 

5.1.3 Difference in Thermal Response of two Identical Lamps ......................... 37 

5.1.4 Effects of Moving Lamps Away from Powder Bed ................................... 41 

5.2 Power Consumption of Infrared Lamps ........................................................... 42 

5.3 PID Control Loop ............................................................................................... 45 

6 Nitrogen Flow Control .............................................................................................. 49 

7 Layer Thickness Accuracy ......................................................................................... 54 

7.1 Piston Accuracy ................................................................................................ 54 

7.2 Experiment 1 .................................................................................................... 57 

7.3 Experiment 2 .................................................................................................... 57 

7.4 Experiment 3 .................................................................................................... 58 

7.5 Experiment 4 .................................................................................................... 59 

7.6 Experiment 5 .................................................................................................... 61 

7.7 Conclusion ........................................................................................................ 63 

8 Powder Delivery System ........................................................................................... 64 

8.1 Initial Testing .................................................................................................... 65 

8.2 Baseline Test ..................................................................................................... 66 

8.3 Alternate Operator ........................................................................................... 67 



VII 

8.4 Scraper Alterations ........................................................................................... 68 

8.5 Measuring Front and Rear Halves of Bed Independently ................................ 69 

8.6 Removing Guide ‘Hills’ ...................................................................................... 70 

8.6.1 Baseline Test ............................................................................................. 71 

8.6.2 Measuring Front and Rear Halves of Bed Independently ........................ 71 

8.7 Loosening Augers in Turn ................................................................................. 72 

8.7.1 Auger 1 Loose ........................................................................................... 72 

8.7.2 Auger 2 Loose ........................................................................................... 73 

8.7.3 Auger 3 Loose ........................................................................................... 74 

8.8 Alternate Timing Wheels .................................................................................. 75 

8.8.1 Auger 1 – 20 Teeth ................................................................................... 76 

8.8.2 Auger 1 – 24 Teeth ................................................................................... 77 

8.9 Replacement Output Tray ................................................................................ 78 

8.9.1 Without Hills, Without Baffles .................................................................. 78 

8.9.2 Without Hills, With Baffles ....................................................................... 79 

8.9.3 With Hills, Without Baffles ....................................................................... 80 

8.9.4 With Hills, With Baffles ............................................................................. 81 

8.9.5 Tilting Machine Base ................................................................................ 81 

8.10 Tall Output Tray ................................................................................................ 82 

8.10.1 Baseline Test ............................................................................................. 82 

8.10.2 Front and Rear Halves Measured Independently..................................... 83 

8.11 New Baffle Design ............................................................................................ 84 

8.12 Running Augers Individually ............................................................................. 85 

8.13 Running Auger 3 in Opposite Direction ............................................................ 87 

8.14 Grid Baffle ......................................................................................................... 88 

8.14.1 No plugs .................................................................................................... 89 

8.14.2 Plug Arrangement A ................................................................................. 90 

8.14.3 Plug Arrangement B.................................................................................. 91 



VIII 

8.14.4 Plug Arrangement C .................................................................................. 92 

8.15 Results & Conclusions ....................................................................................... 93 

9 Process Speed & Efficiency ....................................................................................... 96 

9.1 Power Distribution System ............................................................................... 96 

9.2 Removable build cylinder dolly ........................................................................ 98 

9.3 Process Status Visibility .................................................................................... 99 

10 Conclusions ......................................................................................................... 102 

11 Future Project Work ........................................................................................... 105 

11.1 Build Dolly Development ................................................................................ 105 

11.2 Thermal Imaging ............................................................................................. 107 

11.3 Heated Roller .................................................................................................. 108 

12 Appendices ......................................................................................................... 109 

A PID Loop Control Experiment Parameters ......................................................... 109 

B PA-12 Datasheet ................................................................................................. 111 

C Powder Delivery Experiment Photos & Data...................................................... 112 

C.1 Photos ......................................................................................................... 112 

C.2 Baseline Test ............................................................................................... 115 

C.3 Alternative Operator .................................................................................. 115 

C.4 Scraper Alterations ..................................................................................... 116 

C.5 Measuring Front and Rear Halves of Bed Independently .......................... 117 

C.6 Removed Hills Baseline ............................................................................... 117 

C.7 Removed Hills Front & Rear ....................................................................... 118 

C.8 Auger 1 Loose ............................................................................................. 118 

C.9 Auger 2 Loose ............................................................................................. 119 

C.10 Auger 3 Loose ............................................................................................. 119 

C.11 20 Tooth Timing Wheel .............................................................................. 120 

C.12 24 Tooth Timing Wheel .............................................................................. 121 

C.13 New Output Tray – No Hills, No Baffles ...................................................... 121 



IX 

C.14 New Output Tray – No Hills, Baffles ........................................................... 122 

C.15 New Output Tray -  Hills, No Baffles ........................................................... 123 

C.16 New Output Tray – Hills, Baffles ................................................................. 123 

C.17 New Output Tray – Tilted Base ................................................................... 124 

C.18 Tall Output Tray Baseline ........................................................................... 125 

C.19 Tall Output Tray Front & Rear .................................................................... 125 

C.20 New Baffle Design....................................................................................... 126 

C.21 Auger 1 Only ............................................................................................... 126 

C.22 Auger 2 Only ............................................................................................... 127 

C.23 Auger 3 Only ............................................................................................... 128 

C.24 Auger 3 Opposite Direction ........................................................................ 128 

C.25 Grid Baffle No Plugs .................................................................................... 129 

C.26 Grid Baffle A ................................................................................................ 130 

C.27 Grid Baffle B ................................................................................................ 130 

C.28 Grid Baffle C ................................................................................................ 131 

D Power Distribution System Images .................................................................... 132 

13 References .......................................................................................................... 137 

 

  



X 

IV LIST OF FIGURES 
 

Figure 3.1 - Experimental Rack ......................................................................................... 16 

Figure 3.2 - Experimental Rack Rear ................................................................................. 16 

Figure 3.3 - Allen Bradley SLC 500 .................................................................................... 17 

Figure 3.4 - Experimental Build Dolly ............................................................................... 18 

Figure 3.5 - Upper Limit Sensors ...................................................................................... 19 

Figure 3.6 - Gearbox and Lower Limit Sensor .................................................................. 20 

Figure 3.7 - Step Motor and Rotary Encoder .................................................................... 20 

Figure 3.8 - Experimental Heat Chamber ......................................................................... 22 

Figure 3.9 - Zinc Selenide Window ................................................................................... 23 

Figure 3.10 - Pyrometer Control Unit ............................................................................... 23 

Figure 3.11 - Experimental Heat Chamber ....................................................................... 24 

Figure 3.12 - Environmental Chamber Lamp Wiring Diagram ......................................... 24 

Figure 3.13 - Powder Delivery Test System ...................................................................... 25 

Figure 3.14 - Powder Delivery Test System Internal View ............................................... 26 

Figure 3.15 - Powder Delivery Test System Drive Belt and Timing Wheels ..................... 26 

Figure 5.1 - Initial Testing - Room Temperature .............................................................. 33 

Figure 5.2 - Initial Testing - 70 Degrees ............................................................................ 34 

Figure 5.3 - Initial Testing - 1 Hour at 70 Degrees ............................................................ 34 

Figure 5.4 - Initial Testing - Stitched Image ...................................................................... 36 

Figure 5.5 - Chamber at 70 degrees, lamps off ................................................................ 37 

Figure 5.6 - Stitched Images - Pyrometer Side Lamp Only ............................................... 38 

Figure 5.7 - Stitched Images - Non-Pyrometer Side Only ................................................. 39 

Figure 5.8 - Lamp connections reversed, pyrometer side only ........................................ 40 

Figure 5.9 - Lamp connections reversed, non-pyrometer side only ................................ 40 

Figure 5.10 - Both lamps, rotated 180° ............................................................................ 41 

Figure 5.11 - Stitched Images - Lamps at Uppermost Position ........................................ 42 

Figure 5.12 - Load Required to Maintain Temperature in 5 Degree Steps ...................... 43 

Figure 5.13 - Chamber at 100°C for 20 Minutes ............................................................... 44 

Figure 5.14 - Chamber at 1% Load for 4 Hours ................................................................ 44 

Figure 5.15 - Chamber at 170°C for 1.5 Hours ................................................................. 45 

Figure 5.16 - Results of Block Heating with Tuned PID Loop ........................................... 47 

Figure 5.17 - PID Loop Configuration from RSLogix 500 software ................................... 48 



XI 

Figure 6.1 - OXYGEN SENSOR CONTROL UNIT .................................................................. 49 

Figure 6.2 - Experimental Oxygen Sensor Chamber ......................................................... 50 

Figure 6.3 - Nitrogen Generator ....................................................................................... 51 

Figure 6.4 - Time taken to inert ETC 13/10 AM ................................................................ 52 

Figure 6.5 - Time taken to inert ETC 13/10 PM ................................................................ 52 

Figure 6.6 - Time taken to inert ETC 14/10 AM ................................................................ 53 

Figure 7.1 - Step Motor Controller ................................................................................... 55 

Figure 7.2 - Build Dolly Simulator Wiring Block Diagram ................................................. 56 

Figure 8.1 - Auger Rig Baseline Test Results Graph 2 ....................................................... 67 

Figure 8.2 - Auger Rig Alternate Operator Test Results Graph 2 ..................................... 68 

Figure 8.3 - Auger Rig Altered Scraper Test Results Graph 2 ........................................... 69 

Figure 8.4 - Auger Rig Front/Rear Test Results Graph 1 ................................................... 70 

Figure 8.5 - Auger Rig Hills Removed Test Results Graph 2 ............................................. 71 

Figure 8.6 - Auger Rig Hills Removed Front/Rear Test Results Graph 1 ........................... 72 

Figure 8.7 - Auger 1 Loose Test Results Graph 2 .............................................................. 73 

Figure 8.8 - Auger 2 Loose Test Results Graph 2 .............................................................. 74 

Figure 8.9 - Auger 3 Loose Test Results Graph 2 .............................................................. 75 

Figure 8.10 - Auger 1 at 5.2 rpm Test Results Graph 2 ..................................................... 76 

Figure 8.11 - Auger 1 at 4.3 rpm Test Results Graph 2 ..................................................... 77 

Figure 8.12 - New Tray No Hills No Baffles Test Results Graph 2 ..................................... 79 

Figure 8.13 - New Tray No Hills Baffles Test Results Graph 2 .......................................... 79 

Figure 8.14 - New Tray Hills No Baffles Test Results Graph 2 .......................................... 80 

Figure 8.15 - New Tray Hills Baffles Test Results Graph 2 ................................................ 81 

Figure 8.16 - Rig Tilted 1 Degree Test Results Graph 2 .................................................... 82 

Figure 8.17 - 300mm Collar Test Results Graph 2 ............................................................ 83 

Figure 8.18 - 300mm Collar Front/Rear Test Results Graph 1 ......................................... 84 

Figure 8.19 - Second Baffle Design Test Results Graph 2 ................................................. 85 

Figure 8.20 - Auger 1 Only Test Results Graph 2 .............................................................. 86 

Figure 8.21 - Auger 2 Only Test Results Graph 2 .............................................................. 86 

Figure 8.22 - Auger 3 Only Test Results Graph 2 .............................................................. 87 

Figure 8.23 - Auger 3 Anti-clockwise Test Results Graph 2 .............................................. 88 

Figure 8.24 - Grid Baffle With Plugs ................................................................................. 89 

Figure 8.25 - Grid Baffle No Plugs Test Results Graph 2 ................................................... 90 

Figure 8.26 - Grid Baffle Plug Arrangement A .................................................................. 90 



XII 

Figure 8.27 - Grid Baffle Plug Arrangement A Test Results Graph 2 ................................ 91 

Figure 8.28 - Grid Baffle Plug Arrangement B .................................................................. 91 

Figure 8.29 - Grid Baffle Plug Arrangement B Test Results Graph 2 ................................ 92 

Figure 8.30 - Grid Baffle Plug Arrangement C .................................................................. 92 

Figure 8.31 - Grid Baffle Plug Arrangement C Test Results Graph 2 ................................ 93 

Figure 9.1 - Lamp Stack................................................................................................... 100 

Figure 12.1 - Powder Delivery Test System Control Electronics .................................... 112 

Figure 12.2 - Filling Powder Delivery Test System 1 ....................................................... 112 

Figure 12.3 - Filling Powder Delivery Test System 2 ....................................................... 113 

Figure 12.4 - Filling Powder Delivery Test System 3 ....................................................... 113 

Figure 12.5 - Powder Delivery Test System Full and Level ............................................. 114 

Figure 12.6 - Powder Delivery Test System Outline of Risen Powder ............................ 114 

Figure 12.7 - Auger Rig Baseline Test Results Graph 1 ................................................... 115 

Figure 12.8 - Auger Rig Alternate Operator Test Results Graph 1 ................................. 116 

Figure 12.9 - Auger Rig Altered Scraper Test Results Graph 1 ....................................... 116 

Figure 12.10 - Auger Rig Hills Removed Test Results Graph 1 ....................................... 117 

Figure 12.11 - Auger 1 Loose Test Results Graph 1 ........................................................ 118 

Figure 12.12 - Auger 2 Loose Test Results Graph 1 ........................................................ 119 

Figure 12.13 - Auger 3 Loose Test Results Graph 1 ........................................................ 120 

Figure 12.14 - Auger 1 at 5.2 rpm Test Results Graph 1................................................. 120 

Figure 12.15 - Auger 1 at 4.3 rpm Test Results Graph 1................................................. 121 

Figure 12.16 - New Tray No Hills No Baffles Test Results Graph 1 ................................. 122 

Figure 12.17 - New Tray No Hills Baffles Test Results Graph 1 ...................................... 122 

Figure 12.18 - New Tray Hills No Baffles Test Results Graph 1 ...................................... 123 

Figure 12.19 - New Tray Hills Baffles Test Results Graph 1 ............................................ 124 

Figure 12.20 - Rig Tilted 1 Degree Test Results Graph 1 ................................................ 124 

Figure 12.21 - 300mm Collar Test Results Graph 1 ........................................................ 125 

Figure 12.22 - Second Baffle Design Test Results Graph 1 ............................................. 126 

Figure 12.23 - Auger 1 Only Test Results Graph 1 .......................................................... 127 

Figure 12.24 - Auger 2 Only Test Results Graph 1 .......................................................... 127 

Figure 12.25 - Auger 3 Only Test Results Graph 1 .......................................................... 128 

Figure 12.26 - Auger 3 Anti-clockwise Test Results Graph 1 .......................................... 129 

Figure 12.27 - Grid Baffle No Plugs Test Results Graph 1 ............................................... 129 

Figure 12.28 - Grid Baffle Plug Arrangement A Test Results Graph 1 ............................ 130 



XIII 

Figure 12.29 - Grid Baffle Plug Arrangement B Test Results Graph 1 ............................ 131 

Figure 12.30 - Grid Baffle Plug Arrangement C Test Results Graph 1 ............................ 131 

Figure 12.31 - Power Distribution Cabinet Input Side (left) ........................................... 132 

Figure 12.32 - Power Distribution Cabinet Output Side (right) ...................................... 132 

Figure 12.33 - Power Distribution Cabinet Interior ........................................................ 133 

Figure 12.34 - Power Distribution Cabinet Output Wiring ............................................. 133 

Figure 12.35 - Power Distribution Cabinet Circuit Breaker and Relay Wiring ................ 134 

Figure 12.36 - Power Distribution Cabinet Input Wiring ................................................ 134 

Figure 12.37 - Control Panel Door Interior ..................................................................... 135 

Figure 12.38 - Control Panel Door Exterior .................................................................... 135 

Figure 12.39 - Control Panel Interior Wiring .................................................................. 136 

  



XIV 

V LIST OF TABLES 
 

Table 7.1 - Results of repeatedly moving build piston 10mm in either direction ............ 57 

Table 7.2 – Results of Moving Build Piston Varying Distances Downwards ..................... 58 

Table 7.3 –moving build dolly simulator repeatedly at varying distances ....................... 59 

Table 7.4 - Second Attempt Moving Piston Downwards Repeatedly At Varying Distances

 .......................................................................................................................................... 60 

Table 7.5 - Repeated Homing Operations At Various Speeds .......................................... 62 

Table 8.1 - Auger Driven Powder Delivery Rig Overall Results ......................................... 94 

Table 9.1 - Machine Power Requirement Calculations .................................................... 97 

Table 12.1 - PLC Parameters ........................................................................................... 110 

Table 12.2 - Auger Rig Baseline Test Results .................................................................. 115 

Table 12.3 - Auger Rig Alternate Operator Test Results ................................................ 115 

Table 12.4 - Auger Rig Altered Scraper Test Results ...................................................... 116 

Table 12.5 - Auger Rig Front/Rear Test Results .............................................................. 117 

Table 12.6 - Auger Rig Hills Removed Test Results ........................................................ 117 

Table 12.7 - Auger Rig Hills Removed Front/Rear Test Results ...................................... 118 

Table 12.8 - Auger 1 Loose Test Results ......................................................................... 118 

Table 12.9 - Auger 2 Loose Test Results ......................................................................... 119 

Table 12.10 - Auger 3 Loose Test Results ....................................................................... 119 

Table 12.11 - Auger 1 at 5.2 rpm Test Results ................................................................ 120 

Table 12.12 - Auger 1 at 4.3 rpm Test Results ................................................................ 121 

Table 12.13 - New Tray No Hills No Baffles Test Results ................................................ 121 

Table 12.14 - New Tray No Hills Baffles Test Results ..................................................... 122 

Table 12.15 - New Tray Hills No Baffles Test Results ..................................................... 123 

Table 12.16 - New Tray Hills Baffles Test Results ........................................................... 123 

Table 12.17 - Rig Tilted 1 Degree Test Results ............................................................... 124 

Table 12.18 - 300mm Collar Test Results ....................................................................... 125 

Table 12.19 - 300mm Collar Front/Rear Test Results..................................................... 125 

Table 12.20 - Second Baffle Design Experiment Results ................................................ 126 

Table 12.21 - Auger 1 Only Test Results ......................................................................... 126 

Table 12.22 - Auger 2 Only Test Results ......................................................................... 127 

Table 12.23 - Auger 3 Only Test Results ......................................................................... 128 

Table 12.24 - Auger 3 Anti-clockwise Test Results ......................................................... 128 



XV 

Table 12.25 - Grid Baffle No Plugs Test Results .............................................................. 129 

Table 12.26 - Grid Baffle Plug Arrangement A Test Results ........................................... 130 

Table 12.27 - Grid Baffle Plug Arrangement B Test Results ........................................... 130 

Table 12.28 - Grid Baffle Plug Arrangement C Test Results ........................................... 131 

  



XVI 

VI ACKNOWLEDGEMENTS 
 

I submit the following dissertation with love and admiration for my amazing wife Hannah 

and our equally amazing children; Elliot, Rosemary & Dorothy. They are my reason for 

being and without them I could not have completed this. I would like to thank them for 

their continued support and wish for their ongoing happiness and prosperity. 

I would like to thank my co-researchers Beth and Sam along with our industry partner 

Graham, for providing an excellent working environment, which has been productive and 

supportive while being sufficiently challenging. 

My supervisor Allan has been a vital resource of grounding and has continually supported 

my work in any way that he could, especially in times when things seemed more difficult 

than they perhaps were. Your calmness is infectious and has saved me from a number of 

breakdowns. 

Finally, I’d like to thank myself, as too often we fail to appreciate ourselves for the work 

we have done, favouring self-deprecation over self-esteem. Well done me.  



XVII 

VII DECLARATION 
 

I hereby declare that this dissertation is my own original work and has not been 

previously submitted for the award of any other degree or diploma at this or any other 

institute of higher education. To the best of my knowledge, it contains no material 

previously written or published by another person except where due acknowledgement 

is made in the text. 



 

1 
 

1 INTRODUCTION 
 

Euriscus Ltd In association with Lancaster University have collaborated in an Innovate UK 

funded project with the aim of examining and improving selected elements of a large-

format selective laser sintering machine’s control system. The work herein comprises a 

number of specific system elements examined as part of the wider project. It was 

predicted that the intellectual property produced could directly or indirectly produce 

monetary return for the project sponsor, while published works could advantage the area 

of research on the topics of additive manufacturing and potentially in some cross-

disciplinary applications. 

1.1 BACKGROUND 
 

Manufacturing of plastic parts is a prolific practice of the last 50 years (Science History 

Institute, 2019) with 400 megatonnes being produced worldwide in 2017 (Qualman, 

2019), a figure which has increased exponentially since the 1950s, hampered only by 

consideration for its impact on the environment. The processes by which plastic parts are 

produced vary depending on the type of part, material, lead time, setup cost, cost per 

part and number of parts to be made. 

Additive manufacturing (AM) is the practice of producing parts additively from a powder 

or filament as opposed to subtractively from billet or melted material. Selective laser 

sintering (SLS) is the practice of partially melting or ‘sintering’ powder, layer by layer, with 

a laser. SLS occupies an area of the market whereby lead time and setup cost is low but 

cost per part is relatively high, making it most suitable for low to mid-volume applications 

(Formlabs, 2019). 

One of the great advantages of SLS is the ability to produce a wide variety of shapes, 

where other plastic manufacturing methods are generally suited to a particular type of 

part, for example rotational moulding, which is best suited for large, hollow parts but is 

not usually cost effective for other types of part (Crawford & Kearns, 2012). SLS allows 

the manufacture of any shape that will fit in the available build volume, with the notable 

exception of enclosed, hollow spaces which by the nature of the SLS process will be filled 
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with unsintered powder. This is a limitation which can generally be addressed by adding 

drainage holes for excess powder, or in some cases it could be left inside the part at the 

expense of weight and material cost. 

Euriscus Ltd in collaboration with Lancaster University, are developing a SLS machine 

capable of producing parts cheaply and consistently at commercially acceptable quality. 

A number of the proposed machines are to be installed in an industrial environment, 

where orders received from a purpose built website are to be prepared, built, finished 

and packaged for shipping. The facility will have a focus on speed, efficiency and 

automation of the production cycle so as to maximise its cost-effectiveness. The research 

herein focusses on a number of specific elements of a SLS machine’s control system, as 

identified to potentially improve process speed and efficiency. 

1.2 RESEARCH FOCUS 
 

The proposed AM machine employs a PLC (Programmable Logic Controller), which is a 

type of computer with many inputs and outputs designed specifically for the task of 

controlling sensors and actuators, generally in an industrial environment. This is used for 

control of most of the system’s sensors and actuators, with a PC (Personal computer, of 

the type with a monitor, mouse & keyboard found in most offices) providing a human 

interface and software interface to the laser and scanner. 

A link between the PLC and PC must be established such that system information and 

instructions can be passed between them. As this connection is critical to the nominal 

operation of the machine, it must be both fast and reliable, and contain enough 

bandwidth to transfer all required data within required timescales. This work examines 

methods by which to establish and maintain this link while keeping time and monetary 

costs to the project as low as possible, so other aspects can be explored more thoroughly. 

It is not believed that the time taken during the machine cycle or part quality could be 

reduced through this, but a robust, reliable link between PLC and PC should assist in 

minimising machine downtime through system failures. 

A much more prevalent factor in the quality of parts produced by sintering is the 

minimisation of temperature differential across the surface of the machine’s build area 
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(Pham, Dotchev, & Yusoff, 2008). Due to the finely controlled amounts of power and 

speed of the scanning laser as it completes a layer of a build, any difference in 

temperature of the powder surface can result in parts which are not fully sintered in 

colder areas of the chamber or melted parts in warmer areas (Bourell, Watt, Leigh, & 

Fulcher, 2014). This research examines a fairly simple mechanism for providing this heat 

as evenly as possible, while again keeping time and monetary cost to a minimum. 

Control of the oxygen content within the build chamber is an element of an SLS system 

which is critical to its safety without which, build media within the chamber could 

potentially ignite, with obvious and terminal consequences. As such, some time is given 

in this dissertation to the creation of a nitrogen flow control system capable of lowering 

the oxygen content of the chamber as quickly as possible (to the benefit of process time), 

monitoring it to maintain an inert atmosphere for the duration of the build, and provide 

safety protocols to prevent damage in the event that the chamber atmosphere becomes 

prematurely oxygenated. 

‘Z height’ resolution of AM machines is a factor which continues to improve over time, 

limited by the accuracy of the mechanical systems used and eventually by the particle 

sizes of the build media used (Turner & Gold, 2015). Any machine which is intended for 

long term use in a commercial or industrial environment would be advantaged to have a 

design capable of later improvement in this area. This project is provided with a prototype 

build piston mechanism and tasked with controlling it through PLC code as accurately as 

possible.  

The majority of the time spent on this dissertation examines a novel mechanism for 

providing powder to the machine through a hopper and augers, rather than using feed 

pistons or similar existing mechanisms. The most significant area of the research is 

ensuring enough powder is consistently delivered by the augers in an even spread, as too 

much powder toward the front or rear of the chamber would create waste, and likewise 

too little powder in any area would cause the build to fail as one layer is sintered directly 

on top of another without the necessary fresh layer of powder (Nan & Ghadiri, 2019). 

An auxiliary aim of this dissertation is to examine the build cycle as a whole, identifying 

any potential elements where improvements could be made to minimise the time taken 

for each build cycle. An example of this being the removable build dolly which hopes to 
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significantly reduce the turnaround time between builds by taking the entire build 

platform away to be replaced by another, pre-prepared build platform. 

1.3 RESEARCH VALUE 
 

AM processes have enjoyed a recent surge in popularity, but have not developed to the 

point of competing with more conventional manufacturing methods (Petrick & Simpson, 

2015). The enhanced design and manufacturing possibilities provided by AM serve as a 

motive for developing the surrounding technologies such that they may one day 

compete. As such, the work herein aims to take steps in this direction, improving the 

process in any way possible with the time and funding provided. 

Perhaps the most significant value attached to this work is to Euriscus Ltd who will own 

the commercial rights to it on completion of the project. It is intended that they will use 

it, in combination with the results of the wider project, in a production environment 

selling custom made parts, rather than the machines themselves. With the rise of AM 

technologies, it is possible that ownership of such bespoke technologies may eventually 

provide significant monetary returns (Weller, Kleer, & Piller, 2015). 

Some of the specific areas of research within this dissertation may have cross disciplinary 

applications, for example auger driven powder feed mechanisms are often employed in 

the areas of agriculture and medicinal production systems and as such may be of some 

benefit therein (Yang & Evans, 2007). There may also be other applications for accurate 

control of stepper motor mechanisms, as these are typically used in fused deposition 

modelling (FDM) variants of AM machines. 

1.4 RESEARCH OBJECTIVES 
 

The objectives of this research, as laid out in the research proposal were as follows: 

1. Altering the arrangement of infrared lamps to create a more even powder bed 

temperature distribution. This will provide a greater consistency of part quality 

and allow the use of materials which require a narrower hysteresis; 
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2. Control of the powder bed temperature distribution by use of a thermal imaging 

camera, where the image is processed to provide feedback values for the control 

loops of each heating element; 

3. Implementation of a removable build ‘dolly’ allowing a much faster build 

turnover by removing the build ‘cake’ and piston (and associated heaters) from 

the machine to be separately processed, replacing it with an identical unit which 

can be prepared during the previous build; 

4. More accurate control of the build and feed pistons will provide better part 

quality by way of layer accuracy and will allow for smaller layer thicknesses where 

the material is fine enough to allow it; 

5. Heating the recoating ‘roller’ to reduce the time required to bring the powder 

bed back up to the desired temperature, thus reducing the process cycle time. 

Unfortunately, due to time and financial restrictions the second and fifth objectives could 

not be completed within the scope of this dissertation. Similarly, the first objective is only 

explored in a preliminary sense. These elements of the research would potentially be 

covered by future work and are discussed in chapter 11. 

  



 

6 
 

2 CURRENT MANUFACTURING TECHNOLOGIES  
 

It is widely believed that AM will constitute a significant portion of the manufacturing 

industry in the years to come (SME, 2019). Developments in these technologies is on the 

rise due to increased interest and investment, and companies are increasingly more able 

to use these processes in commercially viable ways. Current research shows that it may 

soon be possible to additively manufacture tiny, working electronic devices through 

printing of electrically conductive materials (Espalin, Muse, MacDonald, & Wicker, 2014). 

On the opposite end of the spectrum, entire buildings have been built with purpose made 

AM machines (Hager, Golonka, & Putanowicz, 2016). 

Injection moulding is currently a hugely popular manufacturing technology which allows 

for affordable and reliable mass production of plastic parts. The global injection moulding 

industry is predicted to be worth US$496.22 billion by 2025 (Grand View Research, 2019). 

If advances in AM technologies continue, it could be predicted that injection moulding 

may one day be replaced by one or more AM technologies (Kress, 2015). The primary 

candidate for this based on current evidence, would be SLS due to its ability to produce 

large volume, hollow bodied, intricate parts in a range of materials, including some 

metals. 

Current, commercially available SLS systems are capable of reliably producing a vast array 

of small parts, where the tooling cost associated with injection moulding processes is 

replaced by a comparable (often lesser) cost for modelling and post-processing parts 

(Folgado, Peças, & Henriques, 2010). Currently high quantity part orders are best filled 

via injection moulding as the majority of the cost is incurred only once during tooling, low 

quantity part orders can be filled quicker and cheaper by SLS technologies due to only a 

computer aided design (CAD) model being required, which are often produced as part of 

the design process anyway. 

2.1 PC – PLC COMMUNICATION 
 

Every complex machine requires a control system, and every control system requires a 

central controller to operate the system’s sensors and actuators based on its software 
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program. The Allen Bradley SLC 500 PLC (by Rockwell automation of Milwaukee, 

Wisconsin, USA) has been commonly used for industrial control systems since its launch 

in 1991. Testament to its effectiveness for the task is the fact that it is still being sold and 

used widely in 2017, though newer versions are certainly available. Those familiar with a 

range of programmable logic controllers often comment on how the Allen Bradley SLC500 

is still one of the best choices available due to its reliability and ease of programming 

(Fitchett Jr, 2017). 

Most machines also require an interface by which they can be controlled by a human. 

Industrial machines controlled by a PLC often use a human machine interface (HMI), 

which is a very specific kind of small computer with a screen, designed to provide the 

interface between the PLC and the human operating it. In the case of an SLS machine it 

could be argued that an HMI would not be sufficient as the interface may be required to 

handle resource intensive three-dimensional modelling as well as calculations for model 

slicing and laser movement. To this end it would be more appropriate to use a fully-

fledged PC running windows or similar operating system, with a custom written interface 

program on top. This allows the PC to handle all complex, resource intensive calculation 

while the PLC remains focussed on the control system as per its original purpose.  

Using a PC as the human interface for an SLS machine means that it will be required to 

communicate with a PLC by some means. This research has been provided with, and 

therefore uses, an Allen Bradley SLC500 PLC. As such the options for communication are 

limited to using one of Allen Bradley’s proprietary, serial/Ethernet based protocols, or to 

use RS232 serial connection (Rockwell Automation, 2008). With the former, a cost is 

incurred through requiring proprietary hardware, and the need to learn a fairly complex 

networking protocol language. The latter option requires only a commonly available 9 pin 

D-type cable, and knowledge of an extremely common, well trusted serial protocol 

(O'Brien, 2012). 

2.2 POWDER BED TEMPERATURE DISTRIBUTION 
 

During laser sintering (LS) processes the build media being used must be kept at a 

temperature close enough to its melting point that it can be reliably melted using a given 

amount of laser energy for a given amount of time (Bourell, Watt, Leigh, & Fulcher, 2014). 
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The melting point of the polyamide 12 powder used throughout this research was 172-

180°C (CRDM, 2019), however it has been noted that the actual environmental 

temperature varies from machine to machine and from media to media (Goodridge, Tuck, 

& Hague, 2012) and so the required range of temperatures to be maintained by the 

machine have to be found by trial and error, using the material’s data sheet as the starting 

point. 

Due to the nature of the environment in which sintering takes place, radiant heat is the 

only practical method for bringing the build area surface to the correct temperature. 

Heating through conduction is not possible as the area above the build area must be clear 

for the path of the laser, the area immediately below is occupied by the build ‘cake’ and 

piston, and the areas either side of the build area must be clear for the deposition of 

powder between layers. Convection cannot be used because the movement of air 

through the build chamber may cause the powder to become airborne, possibly affecting 

the critically flat profile of the build surface. 

There is a myriad of different types of radiant heater, and most can be discounted for the 

purpose of a sintering machine. The location requirements mean the only available space 

for a surface heater is above the build area, surrounding the laser entry window, and only 

electrical heaters possess the required controllability over gas, water and oil solutions 

(Puravent, 2019). This leaves ceramic or infrared heating elements as the best possible 

solutions for this use case. 

Information on the types of heating systems used in current commercial laser sintering 

systems, and their effectiveness in creating an even temperature profile, is sparse due to 

the commercial nature of these systems. The 3D Systems Sinterstation 2000 (available 

for access by the author, as it is located in Lancaster University Engineering Department’s 

additive manufacturing laboratory) uses a number of different heaters throughout, but 

the radiant surface heating is achieved through infrared lamps, controllable with a single 

pyrometer. 

Recent attempts at maintaining even surface temperature in SLS machines have 

suggested that controlling temperature in a number of ‘zones’, each of which has its own 

designated heater and temperature reading in multiple closed control loops, may provide 

a method by which to improve the consistency of build area temperature profile over 
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current, single ‘zone’ solutions (Statum, 2016) (China Patent No. CN102335741A, 2010) 

(Integra, 2019). 

2.3 FLOW CONTROL OF INERT GASSES 
 

There is a myriad of recently researched methods for super-fast and accurate control of 

gas flow, though this is generally not required for the SLS process, which merely requires 

that the atmosphere within the chamber have approximately 5% or less oxygen content 

to avoid combustion of the build media. The only requirement herein is that this process 

take as little time as possible so as not to delay the start of the build process. To this end 

many current SLS machines use simple solenoid valves controlled either by a PLC or other 

control interface. 

The introduction of an inert gas into the build chamber also serves to keep the chamber 

at a pressure level slightly higher than the atmosphere surrounding the machine. This 

prevents oxygenated air ‘leaking’ into the chamber, another potential cause of build 

media combustion. This means that monitoring chamber pressure is necessary to ensure 

safety, so that heaters can be disabled in the event that oxygen content within the 

chamber reaches unsafe levels. This is generally achieved with readily available pressure 

sensors which continually report their reading to a central PLC or similar controller. 

2.4 ‘Z’ HEIGHT RESOLUTION AND ACCURACY 
 

One of the major limitations to modern AM technologies is the accuracy and resolution 

with which parts can be made (Conner Seepersad, Govett, Kim, Lundin, & Pinero, 2012). 

This is clear when examining AM parts which contain tight curves, as curves have to be 

represented as a set of discretely stepped layers in almost any digital to real world 

transition. Perhaps the most prominent example of this is digital to analogue converters 

for the speakers and headphone jacks in most computers; smartphone or otherwise. 

The prevalence of this phenomenon varies according to the type of process being used; 

laser based systems are typically more accurate, and work at a higher resolution than 

extrusion based systems due to the lack of a need to establish a ‘bead’ of flowing plastic 
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from a nozzle (V.Wong & Hernandez, 2012). This element of the research focusses on 

ensuring the ‘Z’ height or ‘build piston’ stepper motor is as accurate as possible at as high 

a resolution as possible. Stepper motors have been chosen for this application as they are 

much more accurate, powerful and available than the alternative; linear actuators. 

When using stepper motors, near infinite accuracy and resolution can be attained, at the 

expense of speed, using gearboxes and micro stepping. Micro stepping a stepper motor 

gives the highest possible resolution without the use of a gearbox by alternating pulses 

in different coils within the motor, creating a number of steps between the conventional 

steps. Gearboxes, in the context of this project, are used to reduce the number of times 

an output wheel turns with respect to the motor itself. This has the added benefit of 

adding to the available torque, but at the expense of speed, which is relatively 

insignificant over the tiny distance a build piston lowers when moving from one layer to 

the next in an SLS system. 

Stepper motors are generally controlled using one of two methods, usually a stepper 

motor controller will provide facilities for both; absolute moves, where a motor is moved 

to a specific point between its end limits, or relative moves, where a motor is moved by 

a specific number of steps from its current position. A third method known as ‘jogging’ 

also allows a motor to be moved in either direction until it is told to stop. 

2.5 POWDER DELIVERY SYSTEMS 
 

The majority of current SLS solutions utilise a dual feed piston material delivery system 

comprising of two feed pistons and a counter-rotating roller. The feed pistons begin the 

build process at the bottom of their available travel and the cavities above are filled with 

all the material for the build. This method carries the disadvantage that all the build 

medium must be loaded into the machine in advance of the build, restricting the 

possibilities for making changes during a build (Psarommatis Giannakopoulos, 2016). If 

more powder needs to be added, the entire build would have to be stopped and the 

machine cooled before opening. In almost all cases this results in a failed build due to the 

tolerances of the materials involved. Another disadvantage is that SLS machines are 

typically quite large in order to contain both of these feed pistons. 
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Some machines use a hopper driven system whereby material is dropped from a hopper 

using an accurately controller valve, and then moved onto the build area with a counter-

rotating roller. This approach has the disadvantage that dropped powder tends to pile up 

directly below the hopper, and is not efficiently spread across the build area meaning 

more powder has to be fed each layer and consequently more powder is wasted through 

the process. 

This research proposed a novel system whereby a single feed bin is fed powder from an 

external hopper by a set of horizontal augers. The build material is then moved onto the 

build area by a counter-rotating auger as in most current solutions. This allows build 

material to be added to the machine at any time, completely independently of the build 

process. Additionally, a machine using this principle can be much smaller due to the space 

saving from having material fed from only 1 side of the build area. 

There is little research into auger driven powder delivery methods specifically pertaining 

to SLS systems, rather the literature comes mainly from the fields of pharmaceutical 

production and agricultural feed delivery systems. The specific areas of interest which 

transfer cross-discipline, in this case, are those which study even distribution for powder 

delivery systems. This is important in SLS machines as an uneven distribution will mean 

more waste powder due to excesses being discarded into a waste bin by the roller during 

the recoat cycle. 

Previous work at the Queen Mary University of London (Yang & Evans, 2007) describes 

that there has been some success in using auger driven powder delivery systems to mix 

different materials precisely. Implementing such a system in an SLS machine with auger 

driven material feeds would potentially allow ratios of materials used to be gradated by 

layer or potentially for each layer to use a different material entirely, a theory discussed 

later in Chapter 11, Future Project Work. A notable limitation here is that with the system 

proposed in this research, it would not be possible to use different materials or 

composites in different areas of a single layer, rather the entire layer must use the same 

material. This addition would enable SLS technologies to more readily compete with 

newer processes which don’t have this inherent limitation. 
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2.6 PROCESS SPEED AND EFFICIENCY 
 

Advances in AM processes are happening rapidly; build time, turnaround time and level 

of human interaction requirement in the process are all falling as developments continue. 

In the ideal scenario a manufacturing process would be instantaneous, take no time to 

turn-around and require zero human interaction. As this is not currently possible, this can 

only be a theoretical target to aim for. 

Most SLS processes, at time of writing, take an order of hours or days to complete a build, 

hours to turn-round and prepare a machine for its next build, with regular monitoring 

and human intervention required to ensure the successful completion of a build and 

perform all of the turn-round related tasks. These figures are, however beginning to 

improve as control systems become faster and more sophisticated, decreasing the 

human interaction requirement and improving the process speed generally through, for 

example; faster scanning speed and build ‘cartridges’ which can be interchanged in order 

to reduce to process turn-round time. 

Loading powder into a LS machine takes time and with most currently available machines 

can only be performed between builds. Some newer machines have cartridge-based 

systems which mitigate the time taken for cleaning as it can be performed while a build 

is running with a different cartridge, but this still requires the cartridges to be exchanged 

between builds as part of the turn-round process. The external hopper system proposed 

by this research eliminates this need completely, except in the case where a different 

material is to be used in the next build. 

It is in the interest of speed to the overall process that it takes as little time as possible to 

prepare the build chamber for sintering, such that the oxygen content and temperature 

are at suitable levels. Overall this adds little time to the build as compared with tasks such 

as scanning and recoating which are completed many times during a build, but in the 

pursuit of efficiency nothing should be overlooked. Inert gas inlets in the machine must 

move enough air in order to reduce the build chamber’s oxygen content to below 5% 

within a number of minutes of the build starting. Similarly, the build chamber and 

particularly build surface should be able to reach a temperature close to but below the 

build media’s melting point, again within a few minutes of a build starting. Similarly the 
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end of a build process should be as quick as possible from a speed and efficiency 

standpoint, without being so quick as to adversely affect part crystallinity, depending on 

the intended use of the parts (Zarringhalam, 2007). 

It could be said that the bulk of time taken during the machine’s cycle is attributed to 

scan time, recoat time and reheat time as these are repeated up to hundreds of times 

during a single build. As such, a saving of a few seconds per layer in any of these sub-

processes add up to potentially hours of the overall process. 

Most SLS machines use a build area which is fixed inside the machine, which means 

extrication of parts from the build ‘cake’ must be performed in situ, at significant 

detriment to the turnaround time of the machine. This is of particular concern in 

commercial markets, where speed often means the difference between novelty and 

affordability. The removable build ‘dolly’ proposed by this dissertation would effectively 

remove this delay by replacing with an identical (or similar) ‘dolly’, while the original is 

processed elsewhere. 

Once parts have been extricated from the machine and build ‘cake’, the final barrier to 

their delivery and/or use is cleaning. Freshly sintered parts are generally covered in a 

layer of un-sintered and partially sintered powder which must be removed, generally by 

hand. This can take a few minutes per part but is of little consequence to machine 

turnaround time, as it can be performed away from the machine while it performs 

subsequent builds. 
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3 MATERIALS AND METHODS 
 

Approaching the task of designing and building a complex control system is usually 

accomplished by breaking the system down into multiple, simpler control modules. In the 

case of this project the control system was broken down two ways; physically and 

conceptually. Physically the control system was separated into three steel cabinets which 

connected to each other and external sensors/actuators with a number of cables. The 

cabinet’s contents were divided as follows: 

 Power distribution cabinet – Converted 32A 3-phase electricity into switched and 

fused 230VAC for distribution throughout the system. Also housed relays for 

heater power and connected to a physical control panel that determined which 

items were powered at any given time via 2 hardware buttons; 

 Control cabinet – Housed the PLC as the centre of the control system as well as 

AC-DC power supplies and other miscellaneous control hardware such as relays; 

 Motor control cabinet – Contained motor control hardware and scanner power 

supply; items which were too large or produce too much heat to be in either of 

the other cabinets. 

Conceptually the system was broken down according to its functions, many of which were 

repeated multiple times throughout the system: 

 Heating control 

 Stepper motor control 

 Nitrogen flow control 

 Power control 

 Laser/scanner control 

 Safety systems 

3.1 EXPERIMENTAL RACK 
 

In order to better enable the development of the physical systems a framework was 

conceived which held the three cabinets and computer in a way which was convenient 
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for access whilst also being mobile in the event that it needed to be moved to a different 

location. The frame was constructed from 45x45mm aluminium extrusion which was 

commonly available, reasonably priced and allowed easy reconfiguration should it have 

been required. Wheels were added for mobility, and a desk surface for the PC. 

Figures 3.1 and 3.2 show the experimental rack (1) produced to allow wiring to be 

prototyped before the arrival of the machine frame. The power distribution cabinet (2), 

motor control cabinet (3) and control cabinet (6) were removed from the experimental 

rack and fitted directly to the machine frame upon completion. The computer shown (4) 

was used for system development and also as the control PC for the finished machine. 

The lamp stack (5) offered visual and audible indication of the state of the experimental 

rack and was also mounted on the machine frame. The control panel (7) was used to cycle 

through the machine’s power-up stages which are discussed in Chapter 9.1. 
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FIGURE 3.1 - EXPERIMENTAL RACK 

 

FIGURE 3.2 - EXPERIMENTAL RACK REAR 
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3.2 SLC 500 
 

The Allen Bradley SLC 500 was selected as the PLC for the project due to affordability and 

availability. It is shown in Figure 3.3 and consisted of the following removable modules: 

1. Power supply (Allen Bradley 1746-P2) 

2. Processor (Allen Bradley 1746-L532) 

3. Step motor controller x3 (Allan Bradley 1746-HSTP1) 

4. 16 channel digital input x2 (Allen Bradley 1746-IB16) 

5. 8 channel digital output (Allen Bradley 1746-OB8) 

6. 16 channel digital output (Allen Bradley 1746-OB16) 

7. 8 channel thermocouple (Allen Bradley 1746-NT8) 

8. Analogue input and output x2 (Allen Bradley 1746-NIO4I & NIO4V) 

9. Blank panel (Allen Bradley 1746-N2) 

10. TRIAC (Allen Bradley 1746-OA16) 

 

FIGURE 3.3 - ALLEN BRADLEY SLC 500 

This particular unit was removed from a previously decommissioned DTM Sinterstation 

(DTM of Austin, Texas) and as such, it had a selection of modules applicable to its new 

application. A licence was acquired for RSLogix 500 (by Rockwell Automation, Milwaukee, 

Wisconsin, USA) which was the environment required for developing in the SLC 500’s 

proprietary ‘ladder logic’ programming system. 

Due to the SLC 500 processor module’s limited memory (8k user program memory), care 

had to be taken to ensure each sub-section of the code was as small as possible, so that 

all sections would fit into memory. 
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3.3 BUILD DOLLY SIMULATOR 
 

A significant portion of the build turnaround time for an SLS AM machine is in the removal 

of built parts and cleaning of the build cylinder. This dissertation aimed to reduce this 

time by employing a removable build ‘dolly’, which was to be removed from the machine 

as a freshly prepared one took its place for the next build. As the work required a piston 

assembly in order to develop piston control software and test layer height accuracy, it 

was convenient to place such an assembly on a ‘dolly’ so its effects and effectiveness 

could be evaluated simultaneously. Figure 3.4 shows the experiment build dolly built for 

the research & development phase. 

 

FIGURE 3.4 - EXPERIMENTAL BUILD DOLLY 

The dolly consisted of a vertical piston driven by a stepper motor with a rotary encoder 

through a gearbox, and three inductive proximity sensors, all of which was mounted on 

a wheeled frame. The stepper motor was driven by a Parker Digiplan PDS15-2 step motor 

controller which in turn was controlled by one of the PLC’s 1746-HSTP1 step motor 

control modules. The rotary encoder and inductive proximity sensor outputs were 

connected directly to the same PLC module. 
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The two upper limit sensors shown in Figure 3.5 were slightly offset vertically giving 2 

distinct limits for downward travel. The lower limit sensor shown in Figure 3.6 acted as a 

limit for the upward travel of the piston, preventing the end of the central threaded bar 

from entering the gearbox. The higher of the two acted as the main limit for downward 

travel, preventing damage to the mechanism by the piston platform making contact with 

the gearbox. The lower sensor acted as a limit to put the piston in a ‘cleaning position’ 

which allowed it to extend slightly beyond the seal between it and the enclosing cylinder 

so excess powder could be removed from the edges. 

 

FIGURE 3.5 - UPPER LIMIT SENSORS 
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FIGURE 3.6 - GEARBOX AND LOWER LIMIT SENSOR 

 

FIGURE 3.7 - STEP MOTOR AND ROTARY ENCODER 
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3.4 NYLON-12 
 

At the time of undertaking this research, the materials most used in SLS systems were 

nylon-11 and nylon-12 (polyamide or PA-12). PA-12 was chosen for this research due to 

its strength, durability and finishing options (Autonomous Manufacturing Ltd, 2019). The 

wider project sponsor provided the powder which was used for testing and eventually 

part production. The datasheet is included in appendix B. 

3.5 SOFTWARE 

3.5.1  RSLOGIX 500 PRO 
 

Programming of the Allen Bradley SLC 500 PLC uses a proprietary ‘ladder logic’ language, 

which is developed and uploaded to the PLC via their own RSLogix 500 software. For the 

purposes of this research, a copy was purchased, the license for which resided on the 

experimental rig development PC. 

3.6 ENVIRONMENTAL CHAMBER 
 

Due to the SLS process’ requirement of an enclosed environment for purging oxygen and 

heating, it was useful to have an enclosed chamber with which the conditions could be 

replicated in order to test the heating and nitrogen control elements of the system. To 

this end a chamber was produced by the project sponsor and installed with the following 

equipment, shown in figures 3.8, 3.9, 3.10 & 3.11: 

 Two 2kW GIR-2kW-530-SK15 infrared (IR) lamps (Under Control Instruments, 

Birmingham, England) mounted at the top of the chamber running parallel to the 

chamber’s longest horizontal dimension, on threaded rods which allow them to 

be raised or lowered as required; 

 A zinc selenide window through which to view the powder surface and record 

thermal data (1). 

 One Optris CT LT pyrometer (2) (Optris GmbH, Berlin, Germany) pointed at the 

centre of the chamber’s lower internal surface; 
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 Two nitrogen inlets, individually controlled by 230VAC 2 port solenoid valves; 

 A shallow tray for powder heating experiments; 

 

FIGURE 3.8 - EXPERIMENTAL HEAT CHAMBER 

1 

2 



 

23 
 

 

FIGURE 3.9 - ZINC SELENIDE WINDOW 

 

FIGURE 3.10 - PYROMETER CONTROL UNIT 

1 
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FIGURE 3.11 - EXPERIMENTAL HEAT CHAMBER 

The two IR lamps inside the chamber were controlled from the PLC, which switched a pair 

of phase angle fired silicon-controlled rectifiers (SCRs). SCRs were chosen due to their 

suitability for the specific use case (Industrial Heating Equipment Association, 2019) of air 

heating with halogen infrared lamps. The configuration used is shown in Figure 3.12. 

230VAC SCR

Lamp 1

Lamp 2

24VDC

PLC
Enable

Adjust

 

FIGURE 3.12 - ENVIRONMENTAL CHAMBER LAMP WIRING DIAGRAM 
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3.7 POWDER DELIVERY SIMULATOR 
 

Delivering powder into an SLS machine using augers is not a common method and as 

such, a bespoke mechanism had to be designed with which to test its viability. The system 

employed three augers in separate tubes which connected an input hopper to an output 

tray. The augers were each driven by toothed pulleys and a toothed belt, connected to a 

step motor. This ensured the augers would rotate at the same speed which was important 

to create an even powder profile in the output tray. For the purposes of experimentation, 

the powder rising past the surface level of the output tray was moved with a flat plastic 

scraper into five cups, which provided a way to assess how evenly the powder was 

distributed in the dimension parallel with the scraper. 

 

FIGURE 3.13 - POWDER DELIVERY TEST SYSTEM 
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FIGURE 3.14 - POWDER DELIVERY TEST SYSTEM INTERNAL VIEW 

 

FIGURE 3.15 - POWDER DELIVERY TEST SYSTEM DRIVE BELT AND TIMING WHEELS 



 

27 
 

Additional images of the powder delivery experimental rig can be found in appendix C. 

3.8 VIBRATION SIMULATOR 
 

A need was identified to clean parts after production, so it was considered that this may 

occur as part of the build process as a way to improve overall process efficiency. Vibration 

was initially selected as the primary method for removing excess powder from built parts 

as it is perceivably simpler to vibrate a surface than to direct blasts of air or operate a 

tumbling mechanism. This required a large perforated aluminium plate attached to 

rubber mountings on an aluminium extrusion frame. Two pneumatic vibrators were 

attached horizontally to the sides of the plate in such a way that the plate would vibrate 

horizontally, as opposed to vertically which may have caused the parts to bounce and 

break on the plate. The two vibrators were both controlled by a single 230VAC 2 port 

solenoid valve and connected to a compressed air supply. Beneath the plate sat a 

collection hopper which fed excess powder into a bucket for potential re-use later. 

  



 

28 
 

4 PLC – PC COMMUNICATION 

4.1 SERIAL COMMUNICATION PROTOCOL 
 

In order for the PC to communicate system settings to the rest of the machine, a 

communication interface was required between the PC and PLC. The Allen Bradley 

SLC500 had two main communication interfaces located on the CPU module; serial, and 

a proprietary format ‘DF-1’ via an RJ-45 connection. As the DF-1 connection required 

extra proprietary hardware and software, this work used the serial connection. 

As serial was a fairly old protocol and the SLC500 communicated at a maximum of 19200 

baud, serial messages were kept to a minimum in order to maximise the potential 

number of sensors and actuators within the system, minimising use of the limited 

bandwidth. To this end the basic communications required were: 

 PLC sends the current system status and configuration to the PC 

 PC sends new system configuration to the PLC 

The SLC500 limits the number of characters in a serial ‘string’ to 82 including the new line 

character. To account for this, parameters were divided into sections, each beginning 

with a string ‘identifier’ as follows: 

 “C0 par1,par2,par3…” 

 “S0 par1,par2,par3…” 

 “C1 par1,par2,par3…” 

 “S1 par1,par2,par3…” 

…where ‘parX’ was a single parameter of one or more digits in Boolean or integer format. 

“C” stood for configuration; the parameters which could be set by the PC and “S” stood 

for status; the parameters about which the PLC informed the PC. Some parameters 

appeared in both “C” and “S” strings as they could be altered by both the PC and PLC. The 

number at the beginning of each string referred to the section of the machine as follows: 

 0 – Whole system information 

 1 – First heater block 
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 2 – Build piston 

 3 – Recoat roller 

 4 – Second heater block 

 5 – Chamber inert 

This allowed for simple identification of a parameter based on its location within the 

system and meant system logs could be saved as comma separated variable (CSV) files 

with minimum reconfiguration. These messages were sent as a ‘block’ at a regular 

interval, nominally set to 1 second. 

Where the PC needed to know immediately about the change of a safety critical 

parameter (for example; when an interlock was opened) it was sent as a single, separate 

line with the following format: 

PAR parameter_name new_state 

The PC sent parameter changes to the PLC using the following format: 

SET parameter_name new_state 

This protocol allowed for maximised usage of the limited serial bandwidth and ensured 

that safety critical system components were updated in a timely fashion. 

4.2 PLC SOFTWARE 
 

The PLC’s internal code had to be capable of the relatively simple task of interpreting 

input serial data and accessing the correct memory location for return or alteration. It 

must also manage the operation of all inputs and outputs, returning any significant 

operation back to the PC via the serial bus. A basic framework of the program required 

was written using Allen Bradley’s RSLogix 500 software using their proprietary ladder 

logic programming system. It comprised eight ladder logic program files, seven called in 

turn from the eighth ‘main’ file which served as the starting point for the program. The 

operation of each file is as follows. 
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MAIN – Entry point to the program. Called each of the other seven files in turn. Some files 

were only called when certain logic conditions were met, for example PARSE_CMD was 

only called if GET_CMD had returned true, indicating that it had received a serial message 

which needed parsing. Similarly SEND_RPLY was only called when BLD_RPLY had returned 

true, indicating that it had built a reply string to be sent to the serial bus. Additionally, the 

main file performed some initialisation functions during the first program cycle after the 

PLC is powered on and set into run mode. These typically included the resetting of 

counters and timers. 

BIT_CHANGE – Examines certain, usually safety critical parameters and if they have 

changed from their state in the previous program cycle, triggers a message to be sent on 

the serial bus. 

GET_CMD – Once per program cycle, GET_CMD checks the serial input registers for a 

string of characters ending with a line break, which signifies a command which can be 

parsed. If one is found, a flag is set which triggers PARSE_CMD to run next. 

PARSE_CMD – Takes the string found by GET_CMD and separates it into three sections: 

1. Op code – type of instruction to execute. 

2. Parameter name – which parameter should the instruction be executed upon. 

3. Parameter value – In the case of received commands, only SET instructions 

require this. Indicates the new value which should be given to the parameter in 

question. 

If the string found by GET_CMD does not follow the format of 3 distinct ‘words’ separated 

by spaces, it is discarded completely and a message is sent to the serial bus explaining 

that the command could not be parsed. 

LUT – When PARSE_CMD successfully parses a command, LUT compares the parameter 

name against the list of known parameter names, then if one is found its associated 

memory location is either altered in the case of SET commands, or its current value 

converted to a string for passing to the next file, BLD_RPLY, in the case of a GET command. 
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BLD_RPLY – When a GET command is successfully processed by the previous program 

files, BLD_RPLY formats the response string to follow the conventions detailed in Chapter 

4.1. In the case of a SET command, the string sent back contains the opcode “PAR” 

indicating a parameter, and parameter name, with the new value of that parameter, 

which in some cases will not be changed as the command requests, depending on various 

considerations mostly based around safety. For example, if one were to request “SET 

HEATER_LOAD 100” (%), the program would check the register for “HEATER_LOAD_MAX” 

and if this were set to “80” the program would set “HEATER_LOAD” to 80 and return “PAR 

HEATER_LOAD 80” indicating the action ultimately decided upon by the PLC. 

SEND_RPLY – Checks the completed reply string for length (82 characters maximum in a 

single ASCII write operation) and sends it to the serial bus. 

UPDATE_IO – This file forms the layer between the PLC’s internal list of current parameter 

values, and its input/output hardware. Simply put UPDATE_IO checks the value of a 

parameter, determines if its state can and/or should be changed, then alters the relevant 

outputs. Conversely it also takes a reading from a hardware input, compares it against 

the current parameter value and changes it if necessary. 

4.3 PC SOFTWARE 
 

Forming the opposite end of the communication link between the PC and PLC was a piece 

of software which performed much the same function as the PLC code in terms of 

acquiring a message, parsing it and altering its internal parameter list, or the reverse, as 

necessary. A simple program was coded in C# using Microsoft visual studio, a process 

made slightly easier than the PLC code due to availability of code libraries which would 

perform serial and string operations at a single function call. At this stage in the research, 

the parameters were simply stored in an array with their names as one purpose of the 

initial PC program was only to establish synchronisation of parameters between the PC 

and PLC. The other purpose of the initial PC program was to allow an interface to the 

synchronised parameter list via the keyboard, in order to examine current values or set 

new ones, which was accomplished with a simple text box. 
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5 POWDER BED TEMPERATURE DISTRIBUTION 
 

SLS requires temperature at the surface of the build area to be maintained between the 

melting point and crystallisation point of the powder used (Schmid, Amado, & Wegener, 

2015). For PA-12, this occurs between 146.45°C and 184.81°C (Vasquez, Haworth, & 

Hopkinson, 2011) for a maximum build area temperature differential of 38.36°C. 

However, in practice this differential needs to be much smaller due to variance within the 

powder and environmental differences. For this reason, target temperature differentials 

were set as 10°C maximum, 4°C ideal. This also allowed for the possibility for future 

processing of different materials with more stringent thermal requirements. 

5.1 INFRARED LAMP ARRANGEMENT 
 

An experiment was set up to investigate the effect of the position and arrangement of 

the lamps in physical space on the temperature distribution of the powder bed. A shallow 

tray of PA-12 powder with a smoothed surface was inserted into the chamber and the 

effects of various lamp configurations were recorded. 

5.1.1 INITIAL TESTING 
 

A grid of four thin metal bars, with the central opening measuring 50mm x 50mm, was 

laid over the tray of PA-12 powder in order to provide a spatial reference. This was 

necessary because the camera used (an E40, Flir of Wilsonville, Oregon) was fitted with a 

lens whose viewing angle could not capture the entirety of the tray, making spatial 

measurements from the data impractical. 

Figures 5.1, 5.2 & 5.3 use varying temperature scales as specified on the right hand side 

of each figure. Figures 5.4 through 5.11 all use a fixed temperature scale of 65-75°C for 

reasons discussed later in this chapter. 
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Figure 5.1 below shows the thermal image of the centre part of the PA-12 tray at room 

temperature immediately before heating began. The spatial reference grid is not visible 

here because its temperature was not significantly different to the powder around it. 

 

FIGURE 5.1 - INITIAL TESTING - ROOM TEMPERATURE 

Figure 5.2 below shows the tray immediately after the centre reached the target 

temperature of 70°C as measured by the pyrometer. It can be seen that the temperature 

differential between the hottest (Sp1) and coldest (Sp2) points was 2.9°C, ignoring the 

cold blue areas immediately next to the measurement bars. This met the targets set for 

the experiment, however this differential was likely to increase at the much higher 

temperatures required for the sintering process. 
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FIGURE 5.2 - INITIAL TESTING - 70 DEGREES 

Figure 5.3 shows the powder tray after 1 hour maintained at 70°C. This shows the 

maximum differential as 3.1°C (Sp1-Sp3). Although more of the image appears to be 

hotter, it should be noted that this image and the previous one use different colour scales 

and are in fact very similar. 

 

FIGURE 5.3 - INITIAL TESTING - 1 HOUR AT 70 DEGREES 
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At this stage it was considered that the metal grid would have a tangible effect on the 

temperature profile of the powder as the metal would conduct and radiate the heat more 

readily than the surrounding powder. For this reason, the grid was abandoned, and other 

options examined. 

Due to time and resource restrictions it was decided that the only available option was 

to use the Flir E40 with a fixed colour scale, taking multiple pictures and stitching them 

together using image processing software. Unfortunately, the resulting stitched images 

contained some warping and were not spatially accurate, which limited the data 

available. However, the edges of the tray could be seen, and the temperature differential 

could be verified covering the primary aims of the experiment. 

All the remaining thermal images in this chapter (Figure 5.4 onwards) are taken with a 

fixed temperature range of 65-75 °C, even where no scale is shown in the image, due to 

restrictions with the image stitching software used for some images. 

Figure 5.4 shows a stitched image of the chamber at 70 °C, which shows a temperature 

differential of approximately 5°C, which was within the limits for effective sintering, but 

could be improved upon. 
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FIGURE 5.4 - INITIAL TESTING - STITCHED IMAGE 

5.1.2  REFLECTIONS OF INFRARED HEAT 
 

Due to the pulsed method by which the lamps are powered, it was noted that some of 

the images taken within seconds of each other seemed to show a significant difference 

in surface temperature. Specifically, Figure 5.4 and Figure 5.5 were taken within 2 

seconds of each other with lamps on and off respectively. The logical conclusion from this 

was that the lit lamps cause some reflection of heat onto the powder during the ‘on’ 

portion of each cycle, making it appear to be a slightly higher temperature. In this case 

the difference appeared to be approximately 2°C in average surface temperature, while 

the temperature differential in each image remained consistent at approximately 5°C. As 

the aim of this specific test was to examine differentials rather than overall temperature, 

this factor could be ignored, but would need to be considered later when calibrating for 

temperature accuracy. 
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FIGURE 5.5 - CHAMBER AT 70 DEGREES, LAMPS OFF 

5.1.3 DIFFERENCE IN THERMAL RESPONSE OF TWO IDENTICAL LAMPS 
 

The two lamps used in the experimental setup were identical and placed symmetrically 

around the central zinc-selenide chamber window. Tests were performed in order to 

ensure the thermal responses from each lamp were as similar as practicable, as 

differences between the two lamps would have caused variances which would make 

future measurements inaccurate. As such, Figure 5.6 and Figure 5.7 show the thermal 

response with only left and right lamps powered respectively. In both images, chamber 

temperature target was set to 70°C as with previous tests, as measured by the pyrometer 

pointed at the centre of the powder surface. 
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FIGURE 5.6 - STITCHED IMAGES - PYROMETER SIDE LAMP ONLY 
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FIGURE 5.7 - STITCHED IMAGES - NON-PYROMETER SIDE ONLY 

It can be seen in these images that the thermal response from the two lamps has a 

differential of approximately 5°C in some areas of the image, notably the pyrometer side 

lamp heats less in the upper left quarter of the image and the non-pyrometer side lamp 

heats more down the entire right hand edge of the tray. These differences could be 

accounted for by variances in the manufacturing of each lamp, or in the surface of the 

powder itself. Further tests were performed in order to examine this. 

Figure 5.8 and Figure 5.9 show the effect of reversing the power connections to each 

lamp, which is to say that the power to the left lamp was connected to the right lamp and 

vice-versa. This would explore the possibility that the observed thermal asymmetry may 

have been due to differences in the way the lamps were powered. From this test it could 

be seen that, when compared with the previous test, the results were very similar, and 

this possibility could be discounted as the same asymmetrical feature could be seen in 

the top left quarter and right-hand edge. 
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FIGURE 5.8 - LAMP CONNECTIONS REVERSED, PYROMETER SIDE ONLY 

 

FIGURE 5.9 - LAMP CONNECTIONS REVERSED, NON-PYROMETER SIDE ONLY 
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Figure 5.10 shows the effect of rotating both lamps 180° within the chamber. If the lamps 

had had some physical difference from their manufacture, the expected result would 

have been a lower temperature in the lower left quarter, and a higher temperature 

‘stripe’ near the centre of the image. Instead the thermal response in this image appears 

to be fairly symmetrical as with previous tests with both lamps powered. At this point it 

was determined that the asymmetry observed earlier was not significant enough to cause 

issues in achieving an even temperature profile as the experiment required. 

 

FIGURE 5.10 - BOTH LAMPS, ROTATED 180° 

5.1.4  EFFECTS OF MOVING LAMPS AWAY FROM POWDER BED 
 

The final factor examined in the pursuit of an even temperature profile was the distance 

from the lamps to the powder surface. It was theorised that moving the lamps further 

from the powder would spread the heat in such a way as to heat the powder more evenly, 

by diffusing the energy in the space between the two. The two lamps were adjusted to 

sit at the top of the chamber using the long bolts on which they were mounted. This was 

the highest point achievable with the current experimental setup. The chamber target 

was set to 70°C and images taken as previously. 
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FIGURE 5.11 - STITCHED IMAGES - LAMPS AT UPPERMOST POSITION 

The results of this experiment show that in Figure 5.11, as compared with Figure 5.4 

where the temperature target is the same but the lamps are mounted approximately 

100mm lower, the temperature differential had reduced from approximately 5°C to 

approximately 2.5°C, well within the aspirational targets for this experiment. This 

suggests that moving the lamps further from the powder bed ‘defocuses’ the heat & 

provides a lower temperature differential on the surface. The height at which the lamps 

can be mounted is limited by the height of the chamber, though with a taller chamber 

this effect could be examined further. 

5.2 POWER CONSUMPTION OF INFRARED LAMPS 
 

The amount of energy used in heating the experimental chamber is a significant factor in 

that it affects the amount of power required for the machine to run in an industrial 

environment and should be as low as possible for logistical and environmental reasons. 

Several experiments were performed to examine lamp power usage in various situations. 
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Each test was performed three times and their results averaged, giving the data shown 

in the following graphs. 

First, the chamber target temperature was incremented in 5°C steps, waiting at each step 

for the chamber to reach the targeted temperature before incrementing again. Using this 

method, the chamber was increased from room temperature (approximately 20°C) up to 

170°C. It was observed that at each step the heater load determined by the PID control 

loop peaked for a short time to 50% (the maximum allowed by the experimental 

parameters) before quickly settling to much lower values, the averages of which 

continued to lower the more time was spent at each step. 

 

FIGURE 5.12 - LOAD REQUIRED TO MAINTAIN TEMPERATURE IN 5 DEGREE STEPS 

The next experiment sought to answer the question of how long would it take for the 

heater load to settle at a given temperature. The target was set to 100°C and the heaters 

were allowed to run for an extended period. It can be seen from Figure 5.13 that after 

approximately 20 minutes the heater load required to maintain this temperature in the 

chamber settled at approximately 4%: 

(4kW/100)*4 = 160W required to maintain chamber at 100°C. 
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FIGURE 5.13 - CHAMBER AT 100°C FOR 20 MINUTES 

In order to understand the effect of using a constant heater load, the chamber was set to 

heat at 1% load for 20 minutes. Figure 5.14 shows that at 1% load, temperatures 

approaching 85°C could be reached and maintained. This signifies that if time were no 

object, high temperatures could be reached with relatively little power available. 

 

FIGURE 5.14 - CHAMBER AT 1% LOAD FOR 4 HOURS 

In order to determine the approximate power usage of the machine, the chamber was 

set to heat to 170°C and left for 1.5 hours as shown in Figure 5.15. The load required to 

maintain the temperature dropped gradually until it settled at approximately 15%. 
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FIGURE 5.15 - CHAMBER AT 170°C FOR 1.5 HOURS 

A pair of 2kW infrared lamps were used as detailed in Chapter 3.6, and wired in parallel. 

At 100% power the lamps were specified to dissipate a total of 4kW, so at 15%: 

(4000/100)*15 = 600W power dissipated at 15% load. 

However, given that working versions of the build chamber were to be larger and of more 

complicated shape with more heaters, this should not be treated as truly indicative of 

potential future power dissipation. What could be learned from this experiment was that 

4kW would be enough power to heat the area immediately above the build area and build 

surface, leaving enough load overhead to reach the desired temperature within a 

reasonably short amount of time. 

5.3 PID CONTROL LOOP 
 

An experiment was set up to investigate the effect of tuning PID loop parameters on the 

temperature control accuracy of an emulated power bed heater. This was achieved by 

embedding a type T thermocouple and a cartridge heater within an aluminium block. The 

heater was powered by 230VAC via a solid state relay, controlled by the PLC. The 

thermocouple readings were fed into the PLC as feedback for the PID loop. Target 
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temperature and safety cut off values were fed into the PLC from the PC via the serial 

protocol described in Chapter 2.1; these are listed in appendix A. 

The theoretical ideal model for a PID controller can be mathematically defined by the 

following equation: 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖∫ 𝑒(𝜏)𝑑𝜏
𝑡

0

+ 𝑘𝑑
𝑑𝑒

𝑑𝑡
 

The parameters of interest for this experiment were as follows: 

kp – Proportional gain 

ki – Integral gain 

kd – Derivative gain 

Loop Update – Period over which control loop repeats, where time in the PID equation 

can be considered discrete in multiples of PLC processor cycle time. 

A shorter PID loop update period allowed the system to react quicker to changes in 

temperature, but required more processing time from the PLC CPU. For this experiment 

the PID loop period was nominally set to 1 second, which gave a program cycle time of 

20ms including all other parts of the program. 

Figure 5.16 shows the results of tuning the PID loop with the following parameters: 

Kc = 60 

Ti = 0.2 

Td = 0.02 

Loop Update = 1 second 

Target temperature = 55°C 
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Using these figures, the experimental setup was brought up to temperature and allowed 

to cool to room temperature over five separate runs. These results were then averaged 

as shown below. During all five runs the heater overshot the target temperature to 

57.27°C, before settling between 54.94 and 44.35°C. This can be seen in the typical PID 

characteristic curve on Figure 5.16. The detailed loop configuration can be seen in Figure 

5.17. 

 

FIGURE 5.16 - RESULTS OF BLOCK HEATING WITH TUNED PID LOOP 
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FIGURE 5.17 - PID LOOP CONFIGURATION FROM RSLOGIX 500 SOFTWARE 

It is generally expected that any closed loop control system utilising PID will need ‘tuning’ 

to get the most accurate possible results from the setup. However on this occasion the 

parameters chosen for the initial tests achieved the desired temperature within an 

acceptable amount of time and did not suffer significantly from the characteristic 

oscillation which is indicative of a PID loop in need of further turning (Hardy, 2014). For 

this reason, and the fact that any other physical setup would require different tuning 

anyway, the results were accepted, and the test concluded.  
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6 NITROGEN FLOW CONTROL 
 

SLS AM machines require their internal atmosphere to be inert so as to avoid oxidisation 

or combustion of the build medium. To this end the build chamber described in Chapter 

3.6 needed to be flooded with an inert gas; usually argon or nitrogen. This work used 

nitrogen due to its low cost and relative availability. 

Figure 6.1 shows the control board of the Fujikura FCX-MW oxygen sensor which was 

used to measure the percentage of oxygen within the build chamber. This required a 

5VDC power supply and returned a 0-5VDC analog signal representing the current value. 

 

FIGURE 6.1 - OXYGEN SENSOR CONTROL UNIT 

A small chamber was constructed, seen in Figure 6.2 (1), to simulate the setup needed to 

supply nitrogen to the chamber and measure the proportion of oxygen present. The 

oxygen sensor (2) was mounted on the inside of the chamber with its wire protruding 

from a hole and leading to the control board shown in Figure 6.1. Two solenoid operated 

valves (3 and 4) provided nitrogen to the chamber such that both valves open 

represented a ‘fast’ flow and one valve open represents a ‘slow’ or ‘trickle’ flow to the 
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chamber, though it should be noted that both valves had the same amount of gas 

throughput and were allocated names arbitrarily. 

 

FIGURE 6.2 - EXPERIMENTAL OXYGEN SENSOR CHAMBER 

As keeping an inert atmosphere within the build chamber was critical to the viability of a 

build, it was equally as important to have a gas delivery system which could provide the 

chosen gas at a rate faster than it could ‘leak’ from the machine’s various holes and 

seams, effectively maintaining a positive atmospheric pressure within the build chamber. 

Figure 6.3 shows the nitrogen generator used during this project, for testing the nitrogen 

delivery system and deoxygenating the experimental heat chamber. 
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FIGURE 6.3 - NITROGEN GENERATOR 

The two valves and the oxygen sensor worked together in a feedback loop to bring the 

build chamber’s oxygen content down below a user specified threshold (varies by the 

build medium used, but usually around 5%) and keep it there for the duration of the build. 

The valves were controlled by the PLC’s TRIAC module and the oxygen sensor’s output 

signal was fed to one of the PLC’s analog input modules. When a build is started, once 

the door is closed and system safety requirements are met, both valves were opened in 

order to inert the chamber as fast as possible. Once the threshold is reached the ‘fast’ 

valve was closed, leaving the ‘slow’ valve to maintain the current level. If the oxygen level 

reached 0.1%, which is unlikely due to the chamber’s ‘leakage’ factor, the slow valve was 

then closed to allow the oxygen level to rise, because the Fujikura FCX-MW would have 

normally output 0% under failure conditions. This meant the PLC could treat a 0% input 

as a system failure and take the appropriate safety measures, making the system ‘fail 

safe’. Under normal operation if the oxygen level rose toward the threshold, the slow 

valve was simply opened again. 
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FIGURE 6.4 - TIME TAKEN TO INERT ETC 13/10 AM 

 

FIGURE 6.5 - TIME TAKEN TO INERT ETC 13/10 PM 
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FIGURE 6.6 - TIME TAKEN TO INERT ETC 14/10 AM 

Figures 6.4, 6.5 & 6.6 show the time taken to reduce the oxygen content within the 

environmental test chamber to 5%. The runs took approximately 1 hour, 30 minutes and 

1 hour respectively. It was noted that residual nitrogen in the hoses during the second 

test may have caused it to be quicker as the first and third tests were run on a ‘cold’ 

system in the morning, where the second was done shortly after the first. It was also 

noted that the system could have been made significantly faster by employing a ballast 

tank, as the nitrogen generator used was not sufficient for reducing the chamber’s 

oxygen content within an acceptable timeframe. 

With the confirmation that the hardware and software setups had the capability to 

control the chamber oxygen content reliably, and that this could be achieved much faster 

with a better nitrogen source, the experiment was concluded in order to focus on other, 

more significant system elements. 
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7 LAYER THICKNESS ACCURACY 
 

Z-height resolution of AM machines is limited by a number of factors, perhaps the most 

prevalent of which is the repeatable accuracy with which the build platform (or extruder 

head) can be moved up and down. During the work considerable time was spent 

investigating this as a highly accurate build piston may allow future investigation into the 

use of powders with smaller particle sizes, at potentially smaller z-height resolution. 

7.1 PISTON ACCURACY 
 

A number of experiments were performed using the ‘build dolly simulator’ described in 

sub-chapter 3.3. The initial aim was for the build piston to be reliably movable in 10µm 

steps for use with PA12 powder, whose particle sizes range from 10 to 50µm (Sigma-

Aldrich, 2019). 

The ‘build dolly simulator’ was wired into the PLC’s first step motor control module 

through the Parker step motor controller shown in Figure 7.1. The three inductive 

proximity detectors were wired directly into the PLC’s first step motor control module as 

limit switches along with the encoder, which was mounted on the rear shaft of the step 

motor. A full wiring ‘block’ diagram can be seen in Figure 7.2. A digital micrometer was 

mounted to the platform to accurately measure movement down to 1µm. 
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FIGURE 7.1 - STEP MOTOR CONTROLLER 
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FIGURE 7.2 - BUILD DOLLY SIMULATOR WIRING BLOCK DIAGRAM 

The PLC code written for these experiments was initially a simple timed loop to move the 

platform up and down by a fixed number of pulses. Subsequent experiments built on the 

code until it was fully featured and thoroughly tested, at which point it was merged with 

the main project PLC code file. Below are the initial parameters set on the PLC’s step 

motor controller: 

 Starting speed: 100 pulses per second 

 Velocity: 125000 pulses per second 

 Acceleration/deceleration: 2000 pulses per second2 
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7.2 EXPERIMENT 1 
 

The PLC was programmed to move the step motor 149400 pulses (10mm), change the 

direction and repeat. The results can be seen in Table 7.1 below. Note that one 

movement represents one full cycle (up and down).  

TABLE 7.1 - RESULTS OF REPEATEDLY MOVING BUILD PISTON 10MM IN EITHER DIRECTION 

Number of movements Upper measurement (mm) Lower measurement (mm) 

1 0 10 

100 0.03 10 

200 0.02 9.96 

300 0.04 9.96 

400 0.09 9.98 

500 0.03 9.98 

600 0.06 9.97 

700 0.05 9.94 

800 0.07 9.97 

900 0.05 9.97 

1000 0.08 9.99 

 

It can be seen from the results that the piston was relatively accurate, but not sufficient 

to meet the criteria set earlier in this chapter. It should be noted that at this stage the 

encoder was not wired into the system and the ‘build dolly simulator’ suffered from a 

great deal of mechanical backlash, both of which had a considerable effect on accuracy. 

7.3 EXPERIMENT 2 
 

The next experiment performed was similar, but this time concentrated on movements 

of varying distance made in the same direction. All moves performed were downwards 

as this better simulated the build piston during a build. Results are shown in table 7.2 

below. 
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TABLE 7.2 – RESULTS OF MOVING BUILD PISTON VARYING DISTANCES DOWNWARDS 

 Distance measured (by increment distance in mm (pulses)) 
Number 
of 
moves 

1 
(15200) 

2 
(30400) 

3 
(44700) 

4 
(59800) 

5 
(74900) 

6 
(89200) 

7 
(104200) 

8 
(121000) 

9 
(136600) 

10 
(149400) 

1 1.03 1.99 3.00 3.98 5.00 5.98 7.00 8.03 9.01 9.9 

2 1.97 4.04 6.00 7.88 9.88 11.87 13.85 16.07 18.1 19.82 

3 3.00 6.06 8.89 11.87 14.78 17.74 20.68 24.09 n/a n/a 

4 4.02 8.01 11.86 15.81 19.8 23.66 n/a n/a n/a n/a 

5 5.04 10.06 14.74 19.81 24.76 n/a n/a n/a n/a n/a 

6 6.06 12.1 17.75 23.7 n/a n/a n/a n/a n/a n/a 

7 7.07 14.06 20.69 n/a n/a n/a n/a n/a n/a n/a 

8 8.00 16.09 23.67 n/a n/a n/a n/a n/a n/a n/a 

9 9.00 18.18 n/a n/a n/a n/a n/a n/a n/a n/a 

10 10.03 20.17 n/a n/a n/a n/a n/a n/a n/a n/a 

11 11.04 22.15 n/a n/a n/a n/a n/a n/a n/a n/a 

12 12.07 24.23 n/a n/a n/a n/a n/a n/a n/a n/a 

13 13.08 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

14 14.04 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

15 15.04 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

16 16.08 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

17 17.09 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

18 18.12 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

19 19.13 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

20 10.12 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

21 21.06 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

22 22.08 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

23 23.09 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

24 24.11 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

25 25.13 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

 

It can be seen that while the piston was slightly more accurate than the previous 

experiment due to a small improvement in mechanical backlash by moving the piston in 

only one direction, the error produced accumulated over a number of movements 

resulting in a larger error. It should again be noted that the encoder was not present in 

the system for this experiment due to component availability. 

7.4 EXPERIMENT 3 
 

In order to further improve accuracy, an encoder was added to the rear shaft of the 

stepper motor and wired into the PLC stepper motor control module. Detector 1 then 
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became the home proximity sensor and home detection was provided by the marker 

pulse (Z) from the encoder. This provided positional feedback to the PLC which allowed 

for much greater accuracy. A new experiment was performed moving the platform in 

both directions at a distance of 10mm per move in order to assess repeatable accuracy. 

Note that a full up and down cycle = 2 movements of 152500 pulses each. 

TABLE 7.3 –MOVING BUILD DOLLY SIMULATOR REPEATEDLY AT VARYING DISTANCES 

Number of movements Upper measurement 

(mm) 

Lower measurement 

(mm) 

1 0 9.85 

10 0.01 9.85 

20 0 9.85 

30 -0.03 9.84 

40 0 9.85 

50 -0.01 9.86 

60 0.01 9.87 

70 0.01 9.87 

80 0 9.87 

90 0 9.86 

100 0.02 9.87 

 

This shows positional accuracy as being fairly consistent, with the maximum difference 

between measurements being 0.03mm. The mean average error between measurements 

was 0.00909mm or approximately 10 µm. This met the accuracy target required, though 

more testing could be performed to ensure consistency and repeatability, improving it if 

possible. 

7.5 EXPERIMENT 4 
 

Next, experiment 2 was repeated with a few notable changes: 

 The PLC software was changed to use ‘absolute’ moves instead of the ‘relative’ 

moves in previous experiments. These were more accurate in theory as the 

platform could be freely moved to any specific position along its travel rather 

than up or down by a specified amount. 
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 An encoder had been added since the previous attempt and as such the system 

should have been inherently be more accurate. 

 Movement was measured in encoder pulses rather than platform movement, as 

the experimental rig’s mechanical backlash could not be fixed electronically, and 

it could be assumed that a production machine would need to minimise this 

through mechanical design. Pulses were counted using an external pulse 

counting unit. 

 Target distances were in multiples of 4000 pulses, which corresponded to 1 

revolution of the motor, which allowed for easier monitoring of rotation via the 

alignment of a physical mark on the motor rear shaft and encoder casing. 

 The number of moves performed at each distance was limited due to the 25mm 

travel of the digital micrometer used in this setup. 

TABLE 7.4 - SECOND ATTEMPT MOVING PISTON DOWNWARDS REPEATEDLY AT VARYING DISTANCES 

 Distance measured (by increment distance in pulses)) 

No. of 

moves 

16000 32000 48000 64000 80000 96000 112000 128000 144000 160000 

1 16000 32000 48000 64000 80000 96000 112000 128000 144000 160000 

2 16000 32000 48000 64000 80000 96000 112000 128000 144000 160000 

3 16000 32000 48000 64000 80000 96000 112000 128000 n/a n/a 

4 16000 32000 48000 64000 80000 96000 n/a n/a n/a n/a 

5 16000 32000 48000 64000 80000 n/a n/a n/a n/a n/a 

6 16000 32000 48000 64000 n/a n/a n/a n/a n/a n/a 

7 16000 32000 48000 n/a n/a n/a n/a n/a n/a n/a 

8 16000 32000 48000 n/a n/a n/a n/a n/a n/a n/a 

9 16000 32000 n/a n/a n/a n/a n/a n/a n/a n/a 

10 16000 32000 n/a n/a n/a n/a n/a n/a n/a n/a 

11 16000 32000 n/a n/a n/a n/a n/a n/a n/a n/a 

12 16000 32000 n/a n/a n/a n/a n/a n/a n/a n/a 

13 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

14 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

15 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

16 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

17 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

18 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

19 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

20 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

21 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

22 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

23 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

24 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 

25 16000 n/a n/a n/a n/a n/a n/a n/a n/a n/a 
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These results show that the step motor achieved very good accuracy when not 

considering the mechanical backlash introduced by the gearbox and lead screw. This 

meant ultimately the system’s accuracy was primarily defined by its mechanical design, 

as electronically the system was accurate to within +/- 0.06µm movement of the platform 

(a single motor pulse). 

7.6 EXPERIMENT 5 
 

Next a test was performed in order to assess the system’s capability to send the platform 

to the ‘home’ position reliably. This test was measured with a digital micrometer as with 

previous tests, so mechanical backlash could be assessed. Because of the previous test 

results, it could be assumed that the step motor moved by the exact number of pulses 

requested by the PLC software. The home operation was performed in a downward 

direction in every case. 
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TABLE 7.5 - REPEATED HOMING OPERATIONS AT VARIOUS SPEEDS 

Move no. Speed 
(Hz) 

Home 
position 

(mm) 

Move no. Speed 
(Hz) 

Home 
position 

(mm) 

Benchmark N/A 0 31 25000 -0.02 

1 10000 -0.04 32 25000 -0.03 

2 10000 -0.02 33 25000 -0.01 

3 10000 -0.01 34 25000 -0.06 

4 10000 -0.04 35 25000 -0.03 

5 10000 -0.02 36 25000 -0.05 

6 10000 -0.03 37 25000 -0.02 

7 10000 -0.04 38 25000 -0.02 

8 10000 -0.04 39 25000 -0.04 

9 10000 -0.02 40 25000 -0.02 

10 10000 -0.05 41 50000 -0.05 

11 10000 -0.04 42 50000 -0.09 

12 10000 -0.04 43 50000 -0.08 

13 10000 -0.03 44 50000 -0.06 

14 10000 -0.04 45 50000 -0.07 

15 10000 -0.05 46 50000 -0.04 

16 10000 -0.04 47 50000 -0.06 

17 10000 -0.01 48 50000 -0.05 

18 10000 -0.04 49 50000 -0.05 

19 10000 -0.04 50 50000 -0.04 

20 10000 0 51 50000 -0.07 

21 25000 -0.05 52 50000 -0.04 

22 25000 -0.05 53 50000 -0.05 

23 25000 -0.07 54 50000 -0.05 

24 25000 -0.06 55 50000 -0.06 

25 25000 -0.04 56 50000 -0.05 

26 25000 -0.03 57 50000 -0.04 

27 25000 -0.03 58 50000 -0.05 

28 25000 -0.04 59 50000 -0.05 

29 25000 -0.04 60 50000 -0.05 

30 25000 -0.02    

 

These results gave average error results at each speed tested, as follows: 

 Average error at 10000 Hz = 0.032mm 

 Average error at 25000 Hz = 0.0365mm 

 Average error at 50000 Hz = 0.055mm 
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Predictably, the homing accuracy was better as slower speeds. Given that each operation 

was performed downwards it could be said that this was because of a slight overshoot of 

the target position, shown by the small negative value of most of the results. Some of the 

variation in these values could be attributed to the mechanical backlash discussed earlier. 

7.7 CONCLUSION  
 

In conclusion, it was clear that step motor control systems could be made to be extremely 

accurate due to the large number of steps per resolution on modern step motors in 

combination with high resolution rotary encoders and PLCs with high speed processors. 

It was also clear that the majority of inaccuracies in this system were introduced 

mechanically and must be remedied with careful design and highly accurate 

manufacturing methods. 
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8 POWDER DELIVERY SYSTEM 
 

One major drawback of current SLS systems is that all of the required powder must be 

loaded into the machine prior to the build starting. This means that if an operator loads 

an incorrect amount of powder for a build, the build will always have to be stopped and 

restarted from scratch. This wastes much time and usually some powder. In an attempt 

to address this issue, a system was designed such that powder was fed into an internal 

‘feed bin’ (equivalent to a ‘feed piston’ typically used in more established SLS processes) 

via several augers from an external ‘feed hopper’. This meant that any amount of powder 

could be loaded into the machine externally while a build was running and had the added 

benefit that the machine could be made considerably smaller due to the lack of need for 

two separate feed pistons. 

An experimental rig was constructed to emulate this process and assess its effectiveness. 

The rig contained a scaled down version of the mechanism using three augers spaced 

evenly across the output powder bed. A manually operated ‘scraper’ was used to move 

powder from the output bed into five plastic cups, also spaced evenly across the output 

powder bed. After each experiment the cups were individually weighed, and their 

weights recorded. Further details and figures of this setup can be found in Chapter 3.7. 

A number of experiments were then conducted to test the effect of various factors on 

the lateral distribution of powder across the build surface, the unevenness of which 

causes fresh material to be wasted during each ‘recoat’ phase of a build. 

The step motor used to turn the augers at a pre-determined speed was programmed to 

operate at a speed which is deemed acceptable and remained unchanged throughout 

testing, as follows: 

Motor resolution = 1600 pulses per revolution 

Chosen Motor Speed = 1600 pulses per second 

Calculated Motor Output Speed = 60 revolutions per minute 
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Gearbox Ratio = 15:1 

Gearbox output & Auger Speed = 4 revolutions per minute 

8.1 INITIAL TESTING 
 

As with a newly built car, experimental rigs often need a ‘shakedown’ period of running 

in order to discover any potential issues before they become a problem. In this case it 

was used to test the auger mechanism, control software, experimental procedure and to 

propagate powder through the system in such a way as to prepare it for beginning 

experiments proper. 

A significant amount of torque was required to turn the augers under the weight of 

powder when the machine is full. This was made apparent by the fact that initially the 

powder in this machine did not move, despite the auger shafts visibly turning from the 

ends. Dismantling of the system showed that the glue bond between the auger shafts 

and the augers themselves had broken, causing the augers to remain stationary under 

the weight of the powder while the auger shafts spun. This was rectified by drilling 6 holes 

through each auger and shaft and inserting pins to ensure one cannot spin without the 

other. This proved to be an effective method of bonding the auger to its shaft. 

The control software used in this instance was a simple PLC program which set the step 

motor speed and activated it on the change of a bit in the PLC memory. The shakedown 

showed that it was useful for the PLC to run the step motor for a specified number of 

seconds, as this provided more accuracy than a human with a stopwatch. A timer was 

added to the program which fulfils this function and the program was considered suitable 

for the remainder of the experiment. 

The initial experimental procedure was as follows: 

1. Empty, clean and weigh cups 

2. Run machine for 10 seconds 

3. Weigh cups 

4. Repeat from step 2, until cups are full 
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The ‘shakedown’ results showed that this procedure could have been more thorough in 

that it did not take into account powder lost through removing and replacing the cups for 

weighing. In order to rectify this, the machine was levelled using the adjustable feet and 

the following procedure was used for the remainder of the experiment: 

1. Empty and clean cups and funnel 

2. Weigh empty cups 

3. Replace cups 

4. Run machine for n+10 seconds 

5. Scrape powder into cups 

6. Weigh cups with powder 

7. Repeat until cups are full 

Properly propagating powder through the system was an important step; once the 

machine was filled with powder and run for the first time, the powder on the output side 

‘sank’ before rising. This was likely due to air gaps between the blades of the augers filling 

as it began to turn. Once these air gaps were all filled by running the motor for a short 

period, powder began to rise as in normal operation. If this step was not taken, initial 

experimental results would have been significantly different. 

8.2 BASELINE TEST 
 

The first ‘proper’ test used the machine in a so-called ‘default’ state, in order to produce 

a baseline by which any following tests could be compared. The machine was run as 

previously described and produced results as follows: 
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FIGURE 8.1 - AUGER RIG BASELINE TEST RESULTS GRAPH 2 

In order for the auger-driven method of delivering powder to be considered a success, 

the percentage difference of powder delivered to each cup should have been no more 

than 2% ideally. In this test, Figure 8.1 showed an average difference between Cups 1 and 

4 of 4.8%. It could also be seen that Cup 1 on average contained significantly less powder 

than the other four. This was the first observation of an effect which would continue 

throughout all other tests and became the main focus of the experiments. 

8.3 ALTERNATE OPERATOR 
 

It was proposed that the significant difference observed in the baseline test may have 

been due to the technique used to manually scrape powder from the output bed into the 

cups. For this reason, the next test used an alternative operator in order to determine if 

this was a significant factor. 
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FIGURE 8.2 - AUGER RIG ALTERNATE OPERATOR TEST RESULTS GRAPH 2 

The results from this test were extremely similar to the previous baseline test, with the 

maximum difference between average powder levels in each cup being 4.8%, the same 

as before. This suggested that operator ‘technique’ is not a significant factor in the 

results. 

8.4 SCRAPER ALTERATIONS 
 

It was observed at this point that the manual scraper used for previous tests was tight to 

the edges of the output tray, which caused significant friction when moving powder into 

the cups. As it was possible that this is the reason for the observed disparity between 

cups, the scraper was altered such that this friction was eliminated. 
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FIGURE 8.3 - AUGER RIG ALTERED SCRAPER TEST RESULTS GRAPH 2 

Figure 8.3 shows no significant change in the results as compared with the previous two 

tests, with maximum difference between averages at 4.9%. This suggested scraper 

friction was likely not the cause of the irregular powder profile. 

8.5 MEASURING FRONT AND REAR HALVES OF BED INDEPENDENTLY 
 

In order to better understand the profile of powder being produced by the auger rig, the 

powder was next scraped and measured half a bed at a time, as follows: 

1. Empty and clean cups & funnel 

2. Weigh empty cups 

3. Replace cups 

4. Run machine for n+10 seconds 

5. Scrape ‘front’ half of powder (nearest to cups) into cups 

6. Weigh cups with powder 

7. Empty and clean cups 

8. Replace cups 

9. Scrape ‘rear’ half of powder (furthest from cups) into cups 
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10. Weigh cups with powder 

11. Repeat until cups full 

This method meant that it was possible to visualise whether powder was being equally 

distributed across the output tray in the direction of the augers. The alternative 

possibilities were that the powder may have risen as soon as it entered the output tray 

(rear half) or clung to the augers and rose at the opposite side (front half). 

 

FIGURE 8.4 - AUGER RIG FRONT/REAR TEST RESULTS GRAPH 1 

Figure 8.4 indicates that the powder rose through the output tray towards the front edge 

by a significant margin, on average the front half contained 63% of the total powder 

measured. This suggested that the output tray itself could have been made shorter (in 

the front-rear dimension spanning the path of the scraper) in order to save space and 

perhaps reduce the possibility of inconsistency across the cups. 

8.6 REMOVING GUIDE ‘HILLS’ 
 

At the bottom of the output tray were three guiding ‘hills’, shown earlier in Figure 3.14, 

which were intended to guide the powder away from the augers and reduce the total 
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mass of powder required to fill the output tray. As a possible contributor to the observed 

problem, these were removed, and two tests performed; one as normal and one with 

front and rear halves measured independently. 

8.6.1  BASELINE TEST 
 

In this instance removing the hills appeared to exasperate the problem as shown in Figure 

8.5, with notably less powder in Cups 1 and 2, showing a general gradient of powder 

moving towards Cup 5. The maximum difference in this case was 11.8%. 

 

FIGURE 8.5 - AUGER RIG HILLS REMOVED TEST RESULTS GRAPH 2 

8.6.2  MEASURING FRONT AND REAR HALVES OF BED INDEPENDENTLY 
 

The same effect was observed here where there was much less powder in Cups 1 and 2, 

but the front/rear ratio continued to favour the front half with an average of 60%. The 

maximum difference between cups was 10.7%. This can be seen in Figure 8.6. 
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FIGURE 8.6 - AUGER RIG HILLS REMOVED FRONT/REAR TEST RESULTS GRAPH 1 

8.7 LOOSENING AUGERS IN TURN 
 

It was useful to observe the amount of powder delivered by each auger and where on 

the output tray each auger delivered its powder to, because this allowed verification of 

whether or not powder in the output tray rose vertically from the auger, or ‘drifted’ to 

one side of the tray due to the rotation of the auger. It also helped to quantify the 

effectiveness of each auger, ruling out any mechanical inconsistencies reducing powder 

delivery to Cups 1 and 2. To this end, various combinations of augers were mechanically 

loosened so that their timing wheels slipped leaving the shaft and auger stationary, and 

several more experiments were performed. 

8.7.1  AUGER 1 LOOSE 
 

The timing wheel driving auger 1 (LHS, closest to Cup 1) was loosened from its shaft, 

allowing Auger 1 to remain stationary while Augers 2 and 3 turned as normal. Results are 

shown in Figure 8.7. 
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FIGURE 8.7 - AUGER 1 LOOSE TEST RESULTS GRAPH 2 

These results show that the majority of powder from Auger 1 was delivered to Cup 1 and 

to a lesser extent Cup 2. It also shows that some of the powder from the other two augers 

was delivered to Cup 2, though this effect could be symmetrical, with some powder from 

Auger 2 also arriving in Cup 4. 

8.7.2  AUGER 2 LOOSE 
 

The timing wheel driving Auger 2 (centre, closest to Cup 3) was loosened from its shaft, 

allowing Auger 2 to remain stationary whilst Augers 1 and 3 turned as normal. Results are 

shown in Figure 8.8. 
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FIGURE 8.8 - AUGER 2 LOOSE TEST RESULTS GRAPH 2 

These results show a clear reduction in powder delivered to Cups 2, 3 and 4, though 

interestingly the profile was not symmetrical as could be expected; the powder in Cups 1 

and 2 was still much less than the powder in Cups 4 and 5. It also appears that a significant 

amount of powder from Augers 1 and 3 was delivered to Cup 3, which represents the 

section of the output tray directly above the ‘loosened’ Auger 2. This shows that while 

the powder rose in the output tray, it spread to fill any available space. 

8.7.3  AUGER 3 LOOSE 
 

The timing wheel driving Auger 3 (RHS, closest to Cup 5) was loosened from its shaft, 

allowing Auger 3 to remain stationary while Augers 1 and 2 turned as normal. Results are 

shown in Figure 8.9. 
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FIGURE 8.9 - AUGER 3 LOOSE TEST RESULTS GRAPH 2 

These results are the approximate mirror image of those obtained in  Auger 1 Loose, 

though there was notably less powder in Cup 1 than would be expected. If Augers 1 and 

3 were performing symmetrically, it would be expected to see 35% of powder delivered 

to Cup 1 and 35% to Cup 2 as in  Auger 1 Loose. Instead, approximately 21% of powder is 

delivered to Cup 1. This suggests that either there was some mechanical inconsistency 

preventing Auger 1 from functioning properly, or there exists some ‘drift’ phenomenon 

whereby powder ‘flowed’ laterally according to the rotation of the augers. 

A lateral flow phenomenon is the most likely candidate at this stage, because it can be 

observed that the powder delivered to Cup 4 in this experiment was approximately 14%, 

where the powder delivered to Cup 2 in Figure 8.7 is approximately 9%. In both cases the 

powder in these cups is most likely delivered from the centre auger, which was configured 

identically for both tests. 

8.8 ALTERNATE TIMING WHEELS 
 

Working under the assumption that a lateral flow phenomenon has been observed, it 

needed to be determined whether such an effect could be countered such that an equal 
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amount of powder is delivered to each cup to minimise powder wastage were this 

method to be used in a production environment. 

The first potential solution was to alter the speed of the augers such that Auger 1 rotated 

slightly faster, delivering more powder than it otherwise would. Up to this point the 

timing wheels which transfer power to the augers through a toothed belt were all sized 

at 26 teeth, 50mm diameter. Alternative timing wheels with 20 and 24 teeth were 

obtained, and experiments run. 

8.8.1  AUGER 1 – 20 TEETH 
 

The timing wheel from Auger 1 was replaced with a 20-tooth wheel. All other timing 

wheels, including the motor driving timing wheel were 26 teeth. The calculations in 

chapter 8 show all the augers initially spun at 4 rpm, with the new 20 tooth wheel on 

Auger 1 providing a ratio of 1:1.3, Auger 1 would theoretically spin at 5.2 rpm, 30% faster 

than previously, delivering 30% more powder. Results are shown in Figure 8.10. 

 

FIGURE 8.10 - AUGER 1 AT 5.2 RPM TEST RESULTS GRAPH 2 
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As compared with the baseline tests in chapter 8.2 it can be seen here that significantly 

more powder was delivered to Cup 2, though there was still less powder being delivered 

to Cup 1 than all other cups. It could be said that this was due to the continuing lateral 

drift effect as the extra powder from the faster Auger 1 was accounted for but had spread 

towards the higher numbered cups as opposed to Cup 1. 

8.8.2  AUGER 1 – 24 TEETH 
 

The previous experiment in sub-chapter 8.8.1 was repeated with Auger 1 using a 24 tooth 

timing wheel, giving it a speed of 4.3 rpm, 7.5% faster than Augers 2 and 3. Results can 

be seen in Figure 8.11. 

 

FIGURE 8.11 - AUGER 1 AT 4.3 RPM TEST RESULTS GRAPH 2 

Here we see the same result as in the previous sub-chapter, but with a slightly less 

pronounced difference from the baseline. It is clear that this method did not produce the 

desired even profile of powder across the output tray, potentially due to the lateral drift 

phenomenon. 
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8.9 REPLACEMENT OUTPUT TRAY 
 

A new design for the output tray was produced at this stage. As the original was produced 

using AM, it is possible that slight warping could have meant that the tray was not 

perfectly square. The new design also allowed for insertion of a ‘baffle’ arrangement 

which added guiding ‘fins’ to the output tray which, in theory, directed rising powder 

back towards Cup 1, negating the observed lateral drift effect. The new tray was also 

much shallower, allowing observation of what happened to powder immediately above 

the augers. The new tray was produced and on arrival was measured to ensure all 

dimensions are square and as accurate to the initial design as possible. Once this was 

verified, the new tray was fitted and another set of experiments performed, assessing 

the effectiveness of the new tray with and without the baffles and/or ‘hills’ in the base of 

the tray. 

Note the timing wheels were returned to their original configuration of 26 teeth, 4 rpm 

at this stage and for the rest of the work on this rig, as differing auger speeds was 

determined to be an ineffective method of smoothing output powder profile. 

8.9.1  WITHOUT HILLS, WITHOUT BAFFLES 
 

Interestingly the results, shown in Figure 8.12, show the powder profile as being even 

less consistent than in the baseline test with the original output tray. Though the effect 

of the new ‘baffles’ had not been employed yet, this shows that manufacturing 

inaccuracies in the original output tray were likely not the cause of this. This could also 

be explained by the reduced depth of the output tray and would suggest that while rising 

the powder mixes and spreads across the five cups. The effect of output tray height is 

discussed in Chapter 8.10. 
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FIGURE 8.12 - NEW TRAY NO HILLS NO BAFFLES TEST RESULTS GRAPH 2 

8.9.2 WITHOUT HILLS, WITH BAFFLES 
 

The baffles were added to the output tray for the first time. These consisted of four 

equidistant ‘fins’ near the top of the output tray, tilted at 2° such that the tops were closer 

to Cup 1. Results are shown in Figure 8.13. 

 

FIGURE 8.13 - NEW TRAY NO HILLS BAFFLES TEST RESULTS GRAPH 2 
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The immediately obvious effect of the baffles was to make the powder rise in three 

distinct mounds, in the gaps between the fins of the baffle, directly above each auger. 

This appeared to make more powder available at Cup 1, but had the extra undesirable 

effect that Cups 2 and 4 received very little powder in comparison. 

Importantly at this stage, it was identified that adding barriers to the output tray can 

significantly change the output profile. If this could be altered, then in theory a baffle 

could be designed which produces a much more even output profile. This effect is 

investigated further in Chapter 8.14. 

8.9.3  WITH HILLS, WITHOUT BAFFLES 
 

The baffle was removed and the shaped ‘hills’ in the base of the output tray were 

returned to their original position in order to assess their effect on the new output tray. 

Results are shown in Figure 8.14. 

 

FIGURE 8.14 - NEW TRAY HILLS NO BAFFLES TEST RESULTS GRAPH 2 

The same effect of distant mounds can be seen here, though it is less pronounced than 

in the previous experiment with baffles and no hills. It is suggested that, as earlier, the 

reduced depth of the new output tray reduced the powder’s ability to spread into Cups 
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2 and 4. This is an effect which was likely exasperated by the presence of the hills, which 

significantly reduced the space available in the output tray. 

8.9.4  WITH HILLS, WITH BAFFLES 
 

Both the hills and baffles were added to the rig, and the experiment run once again. 

Results are shown in Figure 8.15. 

 

FIGURE 8.15 - NEW TRAY HILLS BAFFLES TEST RESULTS GRAPH 2 

This experiment shows the most pronounced occurrence yet of the effect of the shallow 

tray and baffles. It has been clear from this set of experiments that the powder output 

profile could be manipulated through barriers in the tray, though clearly this particular 

configuration was not ideal for the purpose of creating an even profile. 

8.9.5  TILTING MACHINE BASE 
 

An extremely simple, cheap solution to the problem may have been to use gravity to tip 

powder back towards Cup 1, hopefully evening out the powder profile. To this end the 

entire auger rig was tilted 1° towards Cup 1 and the results recorded as follows. Results 

are shown in Figure 8.16. 
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FIGURE 8.16 - RIG TILTED 1 DEGREE TEST RESULTS GRAPH 2 

As compared with the results from the previous experiment (sub-chapter 8.9.4) it can be 

seen that gravity had indeed evened out the profile, though this would not be a practical 

solution in the case of a powder delivery system for an AM machine as these often require 

a perfectly level surface in order to manufacture parts correctly. 

8.10 TALL OUTPUT TRAY 
 

In sub-chapter 8.9.1 it was suggested that the shallower alternative output tray used may 

have reduced the powder’s ability to mix and spread towards the areas of the tray 

between the augers. In order to investigate this effect, a 300mm collar was produced 

which sat between the machine’s base and the output tray, thus increasing the distance 

by which the powder rose before reaching the surface. 

8.10.1 BASELINE TEST 
 

This experiment was performed using the shallow output tray with hills installed but no 

baffles. Results are shown in Figure 8.17. 

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

1 2 3 4 5

%
 t

o
ta

l m
at

e
ri

al
 s

u
p

p
lie

d
 t

o
 c

u
p

Cup Number

Ratio of material supplied to each cup -
averaged over all runs 



 

83 
 

 

FIGURE 8.17 - 300MM COLLAR TEST RESULTS GRAPH 2 

It can be seen from these results that the collar had negated the effect of the shallow 

tray, allowing powder to spread more freely while rising in the output tray. However, the 

initially observed effect of reduced powder in Cup 1 can still be clearly seen. 

8.10.2  FRONT AND REAR HALVES MEASURED INDEPENDENTLY 
 

This experiment was also repeated for measuring front and rear halves of the tray 

independently. Results are shown in Figure 8.18. 
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FIGURE 8.18 - 300MM COLLAR FRONT/REAR TEST RESULTS GRAPH 1 

Measuring front and rear halves of the tray independently shows that in this case where 

the 300mm collar was present, more powder rose in the rear half of the tray (furthest 

from cups) in contrast to earlier experiments where more powder rose on the front half 

of the tray (closest to cups). This could be attributed to the ‘mixing’ effect of the taller 

output tray with collar, though due to the lack of powder still observed in Cup 1 and the 

fact that moving a much larger mass of powder required much more torque on the 

mechanism, this may not be a practical solution. 

8.11 NEW BAFFLE DESIGN 
 

After the previous baffle design failed to deliver the predicted results, a new baffle was 

designed where the angle of each baffle was adjusted in an attempt to ‘steer’ powder 

towards Cups 2 and 4, thus evening out the powder profile. This experiment was 

performed with the newer output tray, no collar, with hills and new baffle. Results are 

shown in Figure 8.19. 
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FIGURE 8.19 - SECOND BAFFLE DESIGN TEST RESULTS GRAPH 2 

It can be clearly seen that the new baffle design had no significant effect on smoothing 

the powder profile as there is no significant change in the amount of powder in Cups 2 

and 4. This shows that if an output tray baffle is to be used; in order to create an output 

profile which is acceptable for production use it would need to be significantly 

redesigned. 

8.12 RUNNING AUGERS INDIVIDUALLY 
 

In sub-chapter 8.7, each auger’s driving pulley was loosened in turn giving the output 

profile for the other two running augers. This sub-chapter takes the opposite approach 

of running a single auger at a time, locking the other two in place. This gave a much more 

accurate idea of the powder delivered by each auger. 

The results from these experiments are shown in figures 8.20, 8.21 & 8.22. The most 

notable point across the three sets of results was that while running Auger 1 only, Cup 1 

contained 55% of the powder delivered and Cup 2 contained 41%. In contrast when 

running Auger 3, only Cup 5 contained 69% of the powder delivered and Cup 4 contained 

30%. If it were the case that the powder tended to move towards or away from the walls 

of the tray, these results would have been the mirror image of each other, but as it stands 
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it still appeared as though some kind of lateral drift phenomenon was causing all powder 

to move away from Cup 1 and towards Cup 5. 

 

FIGURE 8.20 - AUGER 1 ONLY TEST RESULTS GRAPH 2 

 

FIGURE 8.21 - AUGER 2 ONLY TEST RESULTS GRAPH 2 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

1 2 3 4 5

%
 t

o
ta

l m
at

e
ri

al
 s

u
p

p
lie

d
 t

o
 c

u
p

Cup Number

Ratio of material supplied to each cup -
averaged over all runs 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

1 2 3 4 5

%
 t

o
ta

l m
at

e
ri

al
 s

u
p

p
lie

d
 t

o
 c

u
p

Cup Number

Ratio of material supplied to each cup -
averaged over all runs 



 

87 
 

 

FIGURE 8.22 - AUGER 3 ONLY TEST RESULTS GRAPH 2 

8.13 RUNNING AUGER 3 IN OPPOSITE DIRECTION 
 

Up to this point all experiments had been performed with the augers rotating clockwise 

(when looking from input tray side, with Cup 1 on LHS) because augers by their 

construction cannot be reversed without also reversing the direction of powder travel. 

Once alternative augers were produced, experiments could be performed to determine 

the effect of counter-rotating Auger 3, which was selected due to the theorised drift 

effect moving powder towards this side of the tray. Results are shown in Figure 8.23. 
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FIGURE 8.23 - AUGER 3 ANTI-CLOCKWISE TEST RESULTS GRAPH 2 

The results here were slightly improved on previous experiments, though there was still 

more powder in Cups 3, 4 and 5 than in Cups 1 and 2. This may have been due to the fact 

that two augers were running clockwise and only one anti-clockwise. Unfortunately, due 

to the odd number of augers in the rig, it was not possible to create an entirely 

symmetrical configuration. 

8.14 GRID BAFFLE 
 

As described earlier it was established that adding physical barriers in the output tray had 

the ability to change the powder profile produced, though the four-baffle design 

previously seemed to serve only to divide the powder into three mounds, one above each 

auger. A third baffle design was produced in order to test this theory which took the form 

of a grid of rectangular spaces, into each of which a ‘plug’ could be placed to block or 

redirect the flow of powder depending on if the plug was flat or pointed on the bottom. 

An example of the grid baffle with plugs is shown in Figure 8.24 below. 
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FIGURE 8.24 - GRID BAFFLE WITH PLUGS 

The following describes the most significant stages in developing a level output using 

trial-and-error to determine the most effective arrangements of plug for the grid baffle. 

It is important to note all plug location figures 8.26, 8.28 & 8.30 are viewed from the 

bottom of the grid, where Cup 1 would be on the right and Cup 5 on the left. Plugs marked 

‘1’ are flat bottomed and simply block powder from rising at that spot. Plugs marked ‘2’ 

are angled to send powder to either side depending on their orientation. 

8.14.1 NO PLUGS 
 

The initial results shown in Figure 8.25 seem to show a less pronounced version of the 

original straight baffles’ results where there was more powder in Cups 1, 3 and 5, 

however the difference between those cups and Cups 2 and 4 was significantly less this 

time. This test would serve as a baseline by which different plug combinations could be 

compared and their effect determined. 
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FIGURE 8.25 - GRID BAFFLE NO PLUGS TEST RESULTS GRAPH 2 

8.14.2 PLUG ARRANGEMENT A 
 

In this case, all plugs are angled to send powder towards the centre of the bed. Figure 

8.26 shows the arrangement of plugs for this iteration, results are shown in Figure 8.27. 
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FIGURE 8.26 - GRID BAFFLE PLUG ARRANGEMENT A 
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FIGURE 8.27 - GRID BAFFLE PLUG ARRANGEMENT A TEST RESULTS GRAPH 2 

As compared with the grid baffle baseline test (no plugs), the response here was 

improved but more work was needed. 

8.14.3 PLUG ARRANGEMENT B 
 

Next, a flat plug was introduced in an attempt to limit the powder appearing in cup 4 as 

per the results from plug arrangement A above. Figure 8.28 shows the arrangement of 

plugs for this iteration, results are shown in Figure 8.29. 
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FIGURE 8.28 - GRID BAFFLE PLUG ARRANGEMENT B 
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FIGURE 8.29 - GRID BAFFLE PLUG ARRANGEMENT B TEST RESULTS GRAPH 2 

Once again, the response here was mostly improved from the baseline, with the notable 

exception of Cup 2, where much less powder was observed than would be expected. 

8.14.4 PLUG ARRANGEMENT C 
 

Finally, an extra sloped plug was added to persuade powder from cup one into Cup 2 and 

the experiment repeated. Figure 8.30 shows the arrangement of plugs for this iteration, 

results are shown in Figure 8.31. 

 

                    

 2                 2  

                    

 2                2   

                    

 2    1             2  

                    

FIGURE 8.30 - GRID BAFFLE PLUG ARRANGEMENT C 
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FIGURE 8.31 - GRID BAFFLE PLUG ARRANGEMENT C TEST RESULTS GRAPH 2 

This was the best result achieved for the powder delivery rig and the target value of 

percentage difference of powder mass in each cup was met satisfactorily. Given the time 

spent on the experiment the decision was made to discontinue testing at this point. 

Results and analysis were then used in order to determine viability of the auger driven 

powder delivery system for full scale SLS machine use. 

8.15 RESULTS & CONCLUSIONS 
 

Table 8.1 below shows the summarised results across all of the experiments, showing the 

relative effectiveness of each change to the rig. This shows that many of the techniques 

used had a negative effect on the output powder profile, and the final arrangement of 

plugs in a grid baffle was the best result achieved in these experiments. 

The column “Maximum % Average Difference Between Cups” was calculated as follows: 

1. Find the net powder weight for each cup and each running time length. 

2. Find the mean net weight of powder in each cup, as a percentage of the total net 

powder weight moved for each running time length. 

3. Find the mean percentage for each cup across all running time lengths. 

4. Subtract the smallest percentage cup from the largest. 
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TABLE 8.1 - AUGER DRIVEN POWDER DELIVERY RIG OVERALL RESULTS 

Experiment Sub-
chapter 

Maximum % 
Average Difference 

Between Cups 

Baseline Test 8.2. 4.8 

Alternate Operator 8.3. 4.8 

Scraper Alterations 8.4. 4.9 

Removing ‘Hills’ – Baseline 8.6.1. 11.8 

Auger 1 Loose 8.7.1. 33.3 

Auger 2 Loose 8.7.2. 14.2 

Auger 3 Loose 8.7.3. 30.5 

Auger 1 – 20 Teeth 8.8.1. 5.7 

Auger 1 – 24 Teeth 8.8.2. 7.5 

Replacement Output Tray – No Hills No Baffles 8.9.1. 13.1 

Replacement Output Tray – No Hills With Baffles 8.9.2. 18.1 

Replacement Output Tray – With Hills No Baffles 8.9.3. 11.7 

Replacement Output Tray – With Hills With Baffles 8.9.4. 17.7 

Replacement Output Tray - Tilting Machine Base 8.9.5. 16.2 

Tall Output Tray – Baseline 8.10.1. 14.1 

New Baffle Design 8.11. 18.7 

Auger 1 Only 8.12. 55 

Auger 2 Only 8.12. 56.2 

Auger 3 Only 8.12. 68.6 

Running Auger 3 in Opposite Direction 8.13. 6.7 

Grid Baffle – No Plugs 8.14.1. 7.9 

Grid Baffle – Plug Arrangement A 8.14.2. 4.2 

Grid Baffle – Plug Arrangement B 8.14.3. 3.3 

Grid Baffle – Plug Arrangement C 8.14.4. 2.6 

 

Considerable time and effort was spent in determining the potential effectiveness of an 

auger driver powder delivery system for use in SLS type AM machines. This experiment 

ran for approximately eight months from start to finish and a large number of factors 

were examined in order to produce an even output powder profile.  

The current methods use a pair of feed bins and pistons alternately feeding the roller 

mechanism, or a single feed bin and piston at the expense of build time due to the extra 

roller return time between layers. In either case this adds considerable size, cost and 

complexity to the machine. Additionally, it is not possible to add or remove powder from 

the machine during the build process as the chamber would have to be opened, 
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compromising the inert, heated atmosphere and cooling the unfinished build, which 

affects bonding between layers of a build (Walker Wroe, et al., 2016). 

This novel, auger driven method would eliminate the need to open the machine to add 

powder as it could be fed from a hopper external to the machine. It also simplifies the 

production cycle of the machine by eliminating the need to remove and clean one or both 

feed pistons between builds. If leftover powder in the feed bin could not be used for the 

next build, the augers could be run at higher than usual speed and for an extended period 

so as to remove spent powder quickly and semi-automatically. 

The auger method notably does not improve recoat time due to it still requiring either 

two feed bins or a single feed bin with extra roller travel time, though there is no 

detrimental effect to this either, the auger and feed piston methods both have the same 

recoat times depending on configuration. 

A considerable disadvantage of the auger driven system is the need for calibration of the 

output tray, through a selectively plugged grid baffle as used here, or similar system. 

Comparatively, the feed piston system requires little to no calibration as the piston by its 

nature will raise the powder with an even profile. It is unclear at this time whether a 

selectively plugged grid baffle would need to be calibrated individually for each 

application or if a single plug layout could be used universally, though the variation in 

results from the previous experiments and overall sensitivity of the rig would suggest that 

the former may be more likely. 
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9 PROCESS SPEED & EFFICIENCY 
 

Improving the length of time taken for one full cycle of an SLS machine is critical in making 

the technology commercially viable, as this affects both the cost of the process and the 

speed with which parts could be delivered. This required an examination of the cycle 

itself, in order to identify parts of the process which could be reduced in terms of time 

taken. This cycle was approximately as follows, but varied from machine to machine: 

1. Clean all machine components which are exposed to powder 

2. Load fresh powder into powder bins 

3. Power on the machine 

4. Configure the machine with the required settings and CAD files 

5. Purge oxygen and bring machine up to temperature 

6. Perform build layer by layer 

7. Cool the machine 

8. Power off the machine 

9. Extract the build ‘cake’ 

10. Clean excess powder from parts 

This chapter addresses a selection of these steps, identified as being possible to improve 

while keeping cost to a minimum. These were the machine’s power distribution system, 

the concept of a removable build cylinder and machine-to-operator informational 

feedback method. Other steps in the process were not considered for research due to 

time and funding availability. 

9.1 POWER DISTRIBUTION SYSTEM 
 

The process of switching on an SLS machine could in theory have been a simple as 

activating a single switch. However, this would be unsafe as there would be potential, in 

an error condition, for heaters to be active without nitrogen flow or with the door open. 

It was therefore decided that the machine should power up in steps, requiring verification 

from a human that the next stage of power is safe to activate. In order to simplify this 

process as much as possible, the operator was to be presented with two buttons to power 
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on the machine; green (advance power to next state if safe to do so) and red (stop 

everything/power off). 

Additionally, it was useful to have an idea of how much power the machine would use at 

full load, as the availability of an appropriate electricity supply would partly determine 

which environments such a machine could be used in. 

Initial calculations, based on datasheets of known components and estimates for 

unknown ones as shown in table 9.1, suggested that the machine would require a 32A 3-

phase electricity supply. It would also require that each part of the machine be switched 

on in a sequence in order to avoid surges and maintain a safe working environment as 

the machine is being prepared. As such, a power distribution system was required to 

safely distribute power to all parts of the machine in a specific chronological order as 

follows: 

1. PC and scanner controller 

2. PLC, sensors and laser chiller 

3. Motors, scanner and nitrogen 

4. Heaters and laser 

TABLE 9.1 - MACHINE POWER REQUIREMENT CALCULATIONS 

Item Max current (mA)   

PLC 750   

PC 4000   

Sensors 5000 Estimated 

Laser 4167   

Chiller 4167   

Heaters 25000   

Motors 3750   

Scanner 5000 Estimated 

Total 51834   

Per phase 17278   

 

Each power ‘stage’ was activated by button pushes, between which the user checked 

various safety considerations on the PC’s user interface. If the safety parameters weren’t 

met, the PLC did not allow power to that part of the machine. 
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Stage 1 was active when the machine was applied with power and the main power switch 

closed. This provided power to the PC, monitors and scanner controller card. 

Stage 2 was activated by pressing the green button on the control panel. This provided 

power to the PLC, system sensors via DC power supplies and laser chiller. 

Stage 3 was activated by pressing the green button on the control panel again, if the 

machine’s chamber doors were shut this provided power to all motors including the laser 

scanner and the nitrogen flow control system. 

Stage 4 was activated by pressing the green button on the control panel a third time, if 

the oxygen content within the machine’s chamber was low enough, power was provided 

to all heaters and the laser. This was the fully powered state in which the machine would 

perform a build. Images of a partially constructed power distribution system can be found 

in appendix D. 

9.2 REMOVABLE BUILD CYLINDER DOLLY 
 

Possibly one of the most significant changes investigated by this dissertation in terms of 

minimising build turnaround time, was the removable build cylinder dolly which, upon its 

removal would allow the next to be started almost immediately with a different dolly, 

while the previous build was processed elsewhere. This could save something in the order 

of a few hours of turnaround time, as part extraction and cylinder cleaning could be 

performed concurrently with the start of the next build. 

The first iteration of design and construction of removable build dolly was completed by 

the project sponsor, Euriscus Ltd of Chesham, England in 2016 and comprised simply of a 

trolley with a horizontal platform, driven vertically by a stepper motor via a gearbox. 

Three inductive proximity sensors registered the limits of travel for top, near bottom and 

bottom. These along with the stepper motor were connected to an Allen Bradley 1746-

HSTP1 step motor control module via a Parker PDS15-2 step motor driver, through the 

use of several DIN type plugs, each of which had a different number of pins to prevent 

incorrect connection. More about this build dolly prototype can be found in Chapter 3.3. 
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As this initial version had been produced with only the testing of accurate piston control 

in mind, it was quickly established that another version would have to be constructed to 

include the following extra features: 

 A build cylinder 

 Build cylinder heater 

 Piston heater 

 Single dolly interconnect including trolley type identification pins 

More about potential subsequent versions of the build dolly is discussed in Chapter 11. 

In order for any build dolly to be successfully paired with the SLS machine, great care had 

to be taken to ensure the dolly and its receiving hole met properly aligned, such that the 

piston could be brought flush with the internal base of the machine with as little gap 

around the edges and cylinder top as possible. If the dolly is not aligned properly gas and 

powder could escape through the gap, potentially causing a build to fail completely 

should it have been allowed to start. To this end the machine frame was designed to 

incorporate inductive proximity sensors, to meet with specific metal faces on the build 

dolly. Once these sensors were triggered, a pair of electrically actuated lifting jacks 

engaged either side of the dolly raising it toward the receiving hole in the machine. As 

the dolly rose a number of protruding cones on the top of the dolly met with counterpart 

holes in the underside of the machine, guiding it as accurately as practicable into place. 

9.3 PROCESS STATUS VISIBILITY 
 

A relatively cheap and easy method for ensuring nearby machine operators were aware 

of the machine’s current status was through the use of a beacon stack. These were 

commonly used in an industrial setting and could be configured for a range of different 

colours with solid or flashing lights, and often included an audible alert in the form of a 

buzzer. 

The lamp stack chosen for use in this research was a Kompakt 37 (Werma Signaltechnik, 

Wellingborough, England). It featured three separate LEDs with red, amber and green 

lenses and an audible alert buzzer. Its 24VDC inputs allowed it to be directly driven by 



 

100 
 

four channels from one of the PLC’s 24VDC digital output modules. It can be seen in Figure 

9.1. 

 

FIGURE 9.1 - LAMP STACK 

The indications given by the lamp stack should be as intuitive as possible so as to be easily 

interpretable at a glance. This should help to minimise the time between any error 

occurring and human intervention, resulting in recovery of a build process if possible. As 

such the PLC’s four digital outputs were configured as follows: 

Solid green lamp – Machine idle and ready 

Flashing green lamp – Machine idle and finished 

Solid amber lamp – Machine running and nominal 

Flashing amber lamp – Machine running with warning(s) 

Solid red lamp – Build paused due to error 
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Flashing red lamp – Build stopped due to error 

Buzzer – Immediate attention required/critical error 

This configuration meant that in order for an operator to have an idea of what state a 

machine (or a number of machines) was currently in, they would simply have to look up 

at the lamp(s), which were mounted to the top of the machine(s) for this purpose. Other 

methods such as internet connectivity with mobile phone notifications could have also 

been effective but this would have cost more, been more complicated (and therefore 

more susceptible to failure) and required an operator to remove their phone from their 

pocket which generally took longer than to simply look upwards. 
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10 CONCLUSIONS 
 

The examination of each of the system elements looked at during this dissertation has 

provided a number of insights into potential improvements to the SPLS build process in 

terms of build speed and part integrity. The following is a summary of the findings from 

each set of experiments. 

Using ASCII over RS232 provided an extremely cheap and reliable way to maintain a link 

between PC and PLC, capable of updating hundreds of system parameters every second. 

While other methods could have provided more bandwidth, they also required 

proprietary hardware and software licenses at significant cost. RS232 and ASCII’s well-

established standards, low cost and wide availability mean future maintenance of its 

application in this context should be relatively simple. While unlikely to provide time 

savings in terms of the length of the build cycle, a good link here should reduce the 

likelihood of certain types of breakdown where the PLC is unable to communicate with 

the user and wider system, causing significant machine down time. 

A single PID control loop triggering a number of infrared lamps was sufficient for creating 

a powder bed surface temperature distribution consistent enough with which to 

effectively sinter parts, without the risk of parts being partially un-sintered or melted. 

The experiments showed that moving the heat source upwards in the chamber, away 

from the powder surface appeared to have a defocussing effect which created a more 

consistent temperature profile. In the context of a working machine this would 

hypothetically reduce time spent by decreasing the number of failed or inadequate 

quality builds which require the build cycle to be entirely repeated. 

A closed loop feedback control system utilising a pair of solenoid valves provided an 

effective way to deoxygenate a chamber rapidly and provide fine control for the purpose 

of maintaining a safe atmosphere for the duration of a build process. The oxygen sensor 

feedback mechanism also would have allowed the system to take safety measures in the 

event that the chamber became prematurely re-oxygenated. Improvements here offer 

an opportunity to reduce build times by a number of minutes by de-oxygenating the build 

chamber as rapidly as possible and may reduce the number of failed builds from 

oxygenated air leaking into the chamber. 
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The step motor, controller and encoder combination used in these experiments were 

capable of movement accuracy far greater than that required for sintering PA12 powder. 

However, accuracy of the piston itself was limited by mechanical backlash introduced by 

the gearbox and lead screw comprising the connection between the motor and piston 

surface. Sintering of powders with smaller particle sizes at higher z-height resolution 

would require finely machined parts in order to significantly reduce this backlash. In 

terms of build times using smaller z-heights, while increasing part fine detail, may 

increase the length of a build by increasing the number of layer cycles. 

A set of 4 augers was successfully used, in conjunction with a grid patterned output baffle 

to consistently provide an amount of powder, distributed evenly along the axis parallel 

with the roller of an SLS machine. This meant that powder could be loaded into an SLS 

machine from an external hopper, allowing build media to be added at any point during 

a build process. The grid baffle manufactured for the experiments was also successful in 

mitigating the effects of the spinning augers which appeared to cause the powder to rise 

non-linearly in the output side of the experimental rig. Using this novel technique would 

allow time savings between build cycles at powder can be loaded at any time during a 

build. 

Distributing power to individual components of a complex system was achieved by using 

a staged power-up system, each stage of which was enabled manually for safety reasons. 

This prevented surges on the mains 3-phase circuit from multiple devices activating at 

once and allowed elements such as heaters and motor driven assemblies to be isolated. 

This maintained a safe working environment while allowing some sensors and sub-

systems to remain active for monitoring purposes. This method does not offer direct time 

savings, however isolating machine component’s power from each other means a 

machine could be partially shut down for maintenance, potentially reducing the amount 

of time required to fully re-power it for the next build. 

The ability to remove the entire build cylinder and associated hardware easily from an 

SLS machine was examined as a possibility and it was established that this would reduce 

the turnaround time for such a machine by a number of hours in the event where an 

identical piston trolley were immediately available for the next build. 
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The use of easily visible beacon stacks combined with an easily interpretable system of 

coloured light & sound signals provided a way to rapidly attract the attention of machine 

operators in order to minimise downtime and failed build frequency through waiting for 

required human interaction. This method is also cost effective and does not require the 

use of peripheral hardware such as an HMI or remote interface software via a phone or 

tablet. 

If an SLS machine was built which implemented each of these features, it would have 

significant advantages over currently available machines and would potentially be more 

competitive with other methods of manufacturing with the same materials such as 

injection moulding. While it is often difficult to quantify time savings though system 

improvements due to lack of available information it is clear that certain elements, for 

example the removable build cylinder, offer an opportunity to significantly reduce the 

time taken to prepare the machine for its next cycle. 
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11 FUTURE PROJECT WORK 
 

During the progress of this research, many concepts have been examined for potential 

viability, that may have been used for later parts of the overall machine development. 

This dissertation covers a two-year portion of the collaborative project with the industrial 

sponsor and as such some of this work fell outside of its scope. Some of these concepts 

are examined in the following sub-chapter. 

11.1 BUILD DOLLY DEVELOPMENT 
 

The prototype build dolly constructed, which was discussed in Chapters 3.3 and 9.2, 

required a secondary version to provide necessary functions for the build process as well 

as a more convenient interface to the machine in terms of its physical alignment and 

electronic interconnects. This second iteration fell outside of the scope of this 

dissertation, but its details had been proposed as follows. 

The mechanism on the first prototype dolly consisted of a horizontally mounted motor 

feeding a gearbox, which in turn fed a vertically mounted lead screw. This mechanism, 

while offering a great deal of accuracy through the gearbox’s high ratio, suffered a 

significant amount of backlash as discussed in Chapter 7 which was a major barrier to its 

accuracy. One proposed solution considered that upon the addition of the build piston 

casing, the platform would be effectively locked in the two horizontal dimensions, due to 

the requirement of tight fitment for the platform within the casing to mitigate against 

egress of build media. An amount of mechanical backlash would remain in this case due 

to the imperfect nature of meshing gears, though this is unavoidable save for 

minimisation through the purchase of more expensive mechanical components. If the 

amount of backlash is known and relatively constant, this could theoretically be partially 

compensated for from within control software. 

The addition of heating elements to the build piston surface and casing is typical of 

current generation SLS machines and assists in maintaining the core temperature of the 

build cake (The solid mass of powder and sintered parts comprising the raw output of an 

SLS machine), ensuring it stays within the correct range of temperatures so as to avoid 
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part curling or warping. This would almost certainly be added to newer versions of the 

dolly as without it heat is quickly wicked away from the build cake into the cold metal 

piston and casing. These heaters would likely be each controlled by a closed loop control 

system whereby each heater’s power was switched via a PLC PID loop, informed by 

thermocouples mounted near to the centre of the targeted area of each heater. This 

method affords the best possible control and accuracy of targeted temperatures. 

A method by which to identify the specific build dolly being used in the machine, without 

human input, would be useful as it is possible that alternative versions could be produced, 

with differently sized pistons or differently configured heaters. The proposed method to 

achieve this was to reserve a small number of pins, some of which would be wired to a 

common pin, to received 24VDC from the PLC. This would, depending on the 

configuration of pin connections, create a binary code which could be compared against 

a record within the PLC code to determine the exact specifications of the dolly being used, 

and alter its control accordingly. 

The electrical interconnections between the build dolly and the machine itself are 

numerous and would include the following items assuming all additions proposed in this 

sub-chapter are made: 

 Motor power – 3.4A at 2.1VDC per phase, 8 pins 

 Limit sensors – x3, <200mA at 24VDC, 9 pins total 

 Heater power – Exact number and configuration to be determined 

 Thermocouples – Exact number and configuration to be determined 

 Dolly identification pins – Exact number and configuration to be determined 

It is likely that all of these would share a single connection, as using separate connections 

for each function while mitigating potential interference between power and data pins, 

would increase the amount of time taken in connecting and disconnecting the dolly from 

the machine. As such a connection is required that is capable of carrying enough current 

to drive the step motor while maintaining separation from sensitive control signals. One 

such example of a connector capable of this through its vast configurability, is Harting’s 

‘Han’ modular range, which offer great flexibility but suffer from being relatively 

expensive. 
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A potential improvement for the mid-to-long term future of the research would be 

automation of the build dolly such that it could navigate unassisted between the SLS 

machine, finishing stations and dolly storage locations. The technology currently exists in 

some modern warehouses, where autonomous robots move about the warehouse, and 

sorting inventory according to the command of a central control computer. This would 

require a means of locomotion and steering probably provided by electric motors and 

servos or linear actuators, a means of sensing location achieved perhaps by permanent 

environment markers or otherwise, and a means of communication with the central 

control system for which there are a great number of options. 

11.2 THERMAL IMAGING 
 

Even and consistent heating of the build area surface is critical to the viability of the build 

process as discussed previously in Chapters 2.2 and 5. An idea conceived early in the work 

was determined at the time to be too expensive and time consuming but may be a good 

option for later research. This idea involved the use of a thermal camera mounted above 

the build area, as close to the centre as possible without interfering with the path of the 

laser. The camera would capture images of the build area surface temperature, then 

using some unspecified image processing software determine the effect of each heater, 

assuming there was an array of heaters each heating its own ‘zone’. This data could then 

be fed back to each heater’s control loop in the PLC code, thereby in theory maintaining 

constant temperature across the build area. 

One drawback to this proposed approach was that the areas heated by each lamp would 

not likely have discrete edges, rather they would overlap and bleed into each other as 

the radiation from the lamps diffuses in the distance between the build chamber ceiling 

and the build area. This would make processing the images extremely complicated, likely 

requiring proprietary software and months of testing and refinement. This effect may 

possibly be mitigated by having heater ‘zones’ manually specified to physical areas of the 

build platform and coding to assume there is no crossover in area heating, though the 

effectiveness of this exact approach has not been investigated at time of writing and is 

therefore not known. 
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11.3 HEATED ROLLER 
 

The reheating process, which occurs for the purpose of heating the freshly applied top 

layer of powder up to the desired surface temperature between each layer of a build, 

takes a significant portion of the total build time as it must be performed once for each 

layer of the build. In order to reduce the time taken during this part of the build cycle, SLS 

machine powder feed mechanisms are generally heated near to the desired temperature, 

but not so close as to affect the powder’s ability to be spread evenly across the build area. 

Those machines which use a roller mechanism to apply each layer of powder suffer from 

having an unheated roller which causes the powder surface temperature to drop as it is 

applied and flattened. This work considered two methods by which to heat the roller with 

the hope of mitigating this effect. 

The first method considers using embedded cartridge style heaters inside the roller itself. 

This, while possibly being the simpler solution conceptually, would have required a 

mechanism by which to transfer heater power and thermocouple connections, whose 

wiring is well established to be very sensitive, into the rotating part of the roller. Such 

mechanisms could have included a slip ring, which are generally expensive, have limited 

life span, are temperature limited and current limited. Or this mechanism may have used 

cables on a spool attached to the back end of the roller, feeding the wires to a fixed set 

of glands in the chamber wall at one side. This second mechanism would have potentially 

been cheaper to produce, and perhaps more complicated to implement reliably. 

An alternative to embedded cartridge heaters considered for the research was to use a 

shroud with infrared lamps positioned above the roller, mounted to the roller transit 

carriage. This would not require a slip ring, though would still need a method to get cables 

from the moving roller transit carriage to the side of the build chamber, such that it does 

not become entangled with the moving parts of the roller mechanism. A common 

method to achieve this is with a cable chain, which forces cables to follow a 

predetermined path as dictated by a number of hinged sections, similar to a tank track. 
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12 APPENDICES 

A PID LOOP CONTROL EXPERIMENT PARAMETERS 
 

Table 12.1 defines the control parameters used in the PID loop control experiment. Each 

parameter has an ‘ID’ of format X[y] where X is a character preceding each line of data; 

either “C” for ‘configuration parameters’ or “S” for ‘status parameters’. y defines the 

parameter’s location within that line. The permission column shows which serial interface 

commands can be used with the parameter, the “GET” command was later removed from 

the system in order to preserve memory as is was largely unused. The “Sent on change” 

column shows which parameters were sent immediately via the serial interface when 

their value is changed, as opposed to waiting until the next set of messages to be sent 

through. 

  



 

110 
 

TABLE 12.1 - PLC PARAMETERS 
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B PA-12 DATASHEET 
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C POWDER DELIVERY EXPERIMENT PHOTOS & DATA 

C.1 PHOTOS 

 

FIGURE 12.1 - POWDER DELIVERY TEST SYSTEM CONTROL ELECTRONICS 

 

FIGURE 12.2 - FILLING POWDER DELIVERY TEST SYSTEM 1 
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FIGURE 12.3 - FILLING POWDER DELIVERY TEST SYSTEM 2 

 

FIGURE 12.4 - FILLING POWDER DELIVERY TEST SYSTEM 3 
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FIGURE 12.5 - POWDER DELIVERY TEST SYSTEM FULL AND LEVEL 

 

FIGURE 12.6 - POWDER DELIVERY TEST SYSTEM OUTLINE OF RISEN POWDER 
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C.2  BASELINE TEST 
TABLE 12.2 - AUGER RIG BASELINE TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 3.095 3.774 3.429 4.013 3.986 

20 7.654 9.397 9.175 10.073 9.989 

30 11.706 14.270 13.858 15.509 15.266 

40 16.596 19.714 19.168 20.759 20.607 

50 20.465 24.272 23.368 25.772 25.737 

 

 

FIGURE 12.7 - AUGER RIG BASELINE TEST RESULTS GRAPH 1 

C.3  ALTERNATIVE OPERATOR 
TABLE 12.3 - AUGER RIG ALTERNATE OPERATOR TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 3.832 4.584 4.167 4.822 4.567 

20 7.689 9.728 9.224 10.083 10.215 

30 12.454 14.932 14.082 15.611 15.638 

40 15.944 19.405 18.642 20.638 20.864 

50 19.932 24.803 24.283 26.349 26.787 
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FIGURE 12.8 - AUGER RIG ALTERNATE OPERATOR TEST RESULTS GRAPH 1 

C.4  SCRAPER ALTERATIONS 
TABLE 12.4 - AUGER RIG ALTERED SCRAPER TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 4.046 4.898 4.422 5.140 4.998 

20 7.921 9.881 9.093 10.284 10.020 

30 11.719 14.866 13.872 15.401 15.489 

40 16.464 20.366 19.350 21.140 21.681 

50 20.246 24.738 23.255 25.556 26.759 

 

 

FIGURE 12.9 - AUGER RIG ALTERED SCRAPER TEST RESULTS GRAPH 1 
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C.5  MEASURING FRONT AND REAR HALVES OF BED INDEPENDENTLY 
TABLE 12.5 - AUGER RIG FRONT/REAR TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 front 2.223 2.620 2.201 2.913 3.026 

10 rear 1.314 1.800 1.862 1.613 1.312 

30 front 7.576 9.163 8.001 10.053 10.905 

30 rear 4.088 5.689 5.373 5.364 4.555 

50 front 12.165 14.600 13.206 16.021 17.155 

50 rear 7.305 10.247 10.274 9.596 8.362 

C.6 REMOVED HILLS BASELINE 
TABLE 12.6 - AUGER RIG HILLS REMOVED TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 1.374 2.229 2.690 3.426 3.416 

20 5.763 8.601 9.917 10.679 9.714 

30 8.572 13.315 14.960 15.861 14.981 

40 11.800 17.358 20.167 21.847 21.325 

50 15.232 22.187 25.337 27.472 27.282 

 

 

FIGURE 12.10 - AUGER RIG HILLS REMOVED TEST RESULTS GRAPH 1 
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C.7  REMOVED HILLS FRONT & REAR 
TABLE 12.7 - AUGER RIG HILLS REMOVED FRONT/REAR TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 front 1.713 2.753 3.124 3.766 3.613 

10 rear 1.349 1.912 1.923 2.017 1.830 

30 front 4.783 7.524 8.635 10.018 9.818 

30 rear 3.832 5.702 5.832 6.080 5.240 

50 front 7.529 11.575 13.849 16.309 16.461 

50 rear 7.262 10.684 11.367 11.532 10.168 

C.8 AUGER 1 LOOSE 
TABLE 12.8 - AUGER 1 LOOSE TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 0.006 0.950 2.893 4.542 4.610 

20 0.139 2.798 6.752 9.889 10.192 

30 0.198 4.751 11.317 15.694 15.817 

40 0.303 6.311 14.748 20.375 20.763 

50 0.474 8.297 19.720 26.405 26.675 

 

 

FIGURE 12.11 - AUGER 1 LOOSE TEST RESULTS GRAPH 1 
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C.9  AUGER 2 LOOSE 
TABLE 12.9 - AUGER 2 LOOSE TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 2.114 2.575 1.987 3.095 3.568 

20 4.379 6.083 5.275 7.672 8.493 

30 6.989 8.953 7.628 11.191 14.165 

40 8.886 11.637 9.633 14.677 19.949 

50 11.823 16.000 14.653 20.063 25.367 

 

 

FIGURE 12.12 - AUGER 2 LOOSE TEST RESULTS GRAPH 1 

C.10  AUGER 3 LOOSE 
TABLE 12.10 - AUGER 3 LOOSE TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 2.409 4.128 2.992 1.073 0.069 

20 5.217 9.338 7.766 3.839 0.547 

30 8.644 14.310 12.587 6.883 1.889 

40 13.116 19.485 18.158 10.185 2.092 

50 17.259 24.656 22.789 14.153 3.457 
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FIGURE 12.13 - AUGER 3 LOOSE TEST RESULTS GRAPH 1 

C.11  20 TOOTH TIMING WHEEL 
TABLE 12.11 - AUGER 1 AT 5.2 RPM TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 3.976 5.517 3.798 4.365 4.819 

20 9.621 13.306 10.184 11.324 11.608 

30 13.727 18.656 14.739 15.667 17.179 

40 18.628 23.891 19.270 20.221 22.834 

50 23.570 28.662 25.152 26.623 28.288 

 

 

FIGURE 12.14 - AUGER 1 AT 5.2 RPM TEST RESULTS GRAPH 1 
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C.12  24 TOOTH TIMING WHEEL 
TABLE 12.12 - AUGER 1 AT 4.3 RPM TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 3.488 5.226 4.137 4.631 5.191 

20 6.963 11.253 9.694 10.261 10.573 

30 11.270 16.292 14.232 15.219 16.289 

40 14.620 21.683 19.934 20.220 21.625 

50 18.882 27.306 24.338 25.934 27.427 

 

 

FIGURE 12.15 - AUGER 1 AT 4.3 RPM TEST RESULTS GRAPH 1 

C.13 NEW OUTPUT TRAY – NO HILLS, NO BAFFLES 
TABLE 12.13 - NEW TRAY NO HILLS NO BAFFLES TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 3.769 3.602 5.020 2.875 5.907 

20 6.756 7.151 9.169 8.093 12.884 

30 9.992 11.070 13.895 12.496 19.436 

40 13.178 15.482 18.807 18.604 26.240 
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FIGURE 12.16 - NEW TRAY NO HILLS NO BAFFLES TEST RESULTS GRAPH 1 

C.14 NEW OUTPUT TRAY – NO HILLS, BAFFLES 
TABLE 12.14 - NEW TRAY NO HILLS BAFFLES TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 5.566 1.915 5.515 2.044 6.857 

20 11.670 5.247 10.308 5.292 13.246 

30 17.116 8.608 14.868 8.976 20.456 

40 23.564 12.654 20.155 12.267 27.479 

 

 

FIGURE 12.17 - NEW TRAY NO HILLS BAFFLES TEST RESULTS GRAPH 1 
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C.15 NEW OUTPUT TRAY -  HILLS, NO BAFFLES 
TABLE 12.15 - NEW TRAY HILLS NO BAFFLES TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 4.917 3.206 4.873 2.827 5.797 

20 8.734 6.710 9.678 6.393 11.106 

30 13.127 11.638 14.665 10.210 18.064 

40 16.856 15.863 20.212 14.921 24.602 

 

 

FIGURE 12.18 - NEW TRAY HILLS NO BAFFLES TEST RESULTS GRAPH 1 

C.16 NEW OUTPUT TRAY – HILLS, BAFFLES 
TABLE 12.16 - NEW TRAY HILLS BAFFLES TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 7.014 2.071 5.931 1.902 6.968 

20 12.080 5.403 10.431 4.670 12.983 

30 18.270 9.013 15.883 8.667 19.334 

40 23.779 13.003 21.004 12.422 25.486 
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FIGURE 12.19 - NEW TRAY HILLS BAFFLES TEST RESULTS GRAPH 1 

C.17 NEW OUTPUT TRAY – TILTED BASE 
TABLE 12.17 - RIG TILTED 1 DEGREE TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 6.347 1.939 5.317 1.801 6.373 

20 12.363 5.228 9.904 5.011 12.349 

30 18.314 9.368 15.439 9.071 18.790 

40 25.198 13.214 20.975 12.423 25.606 

 

 

FIGURE 12.20 - RIG TILTED 1 DEGREE TEST RESULTS GRAPH 1 
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C.18 TALL OUTPUT TRAY BASELINE 
TABLE 12.18 - 300MM COLLAR TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 1.428 3.562 3.451 3.313 2.870 

20 3.095 8.592 8.671 8.400 6.800 

30 5.321 12.971 13.198 12.467 10.697 

40 8.626 18.890 19.676 18.381 15.613 

50 11.076 22.972 24.084 22.327 19.380 

 

 

FIGURE 12.21 - 300MM COLLAR TEST RESULTS GRAPH 1 

C.19 TALL OUTPUT TRAY FRONT & REAR 
TABLE 12.19 - 300MM COLLAR FRONT/REAR TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 front 7.6% 27.4% 23.2% 22.7% 19.1% 

10 rear 13.8% 13.9% 28.1% 24.2% 20.1% 

30 front 11.3% 25.3% 23.7% 22.5% 17.2% 

30 rear 9.4% 24.9% 24.5% 22.3% 19.0% 

50 front 14.0% 22.9% 22.5% 21.9% 18.7% 

50 rear 8.3% 23.8% 25.0% 22.9% 19.9% 

Ave 10.7% 23.0% 24.5% 22.8% 19.0% 
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C.20 NEW BAFFLE DESIGN 
TABLE 12.20 - SECOND BAFFLE DESIGN EXPERIMENT RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 5.688 1.321 6.291 1.282 6.354 

20 11.482 4.456 10.619 4.567 13.511 

30 16.087 8.126 14.891 7.453 17.859 

40 23.227 11.284 18.893 10.986 23.454 

 

 

FIGURE 12.22 - SECOND BAFFLE DESIGN TEST RESULTS GRAPH 1 

C.21 AUGER 1 ONLY 
TABLE 12.21 - AUGER 1 ONLY TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 4.750 2.806 0.286 0.292 0.007 

20 8.211 6.327 0.231 0.005 0.011 

30 12.290 10.018 0.699 0.008 0.001 

40 16.339 13.385 1.275 0.011 0.002 
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FIGURE 12.23 - AUGER 1 ONLY TEST RESULTS GRAPH 1 

C.22 AUGER 2 ONLY 
TABLE 12.22 - AUGER 2 ONLY TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 0.005 0.863 5.481 2.791 0.086 

20 0.000 1.438 8.929 4.642 -0.002 

30 0.012 2.436 13.250 7.954 0.164 

40 0.024 3.792 16.082 11.327 0.785 

 

 

FIGURE 12.24 - AUGER 2 ONLY TEST RESULTS GRAPH 1 
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C.23 AUGER 3 ONLY 
TABLE 12.23 - AUGER 3 ONLY TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 0.003 0.081 0.139 1.998 3.315 

20 0.005 0.041 0.070 3.915 9.702 

30 0.032 0.081 0.277 5.907 15.867 

40 0.010 0.025 0.086 8.259 21.689 

 

 

FIGURE 12.25 - AUGER 3 ONLY TEST RESULTS GRAPH 1 

C.24 AUGER 3 OPPOSITE DIRECTION 
TABLE 12.24 - AUGER 3 ANTI-CLOCKWISE TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 4.290 3.313 4.524 5.117 4.707 

20 7.684 7.429 10.954 10.314 10.508 

30 10.751 11.149 14.975 15.422 14.378 

40 14.391 15.692 20.754 21.226 20.023 
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FIGURE 12.26 - AUGER 3 ANTI-CLOCKWISE TEST RESULTS GRAPH 1 

C.25 GRID BAFFLE NO PLUGS 
TABLE 12.25 - GRID BAFFLE NO PLUGS TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 5.559 3.620 4.770 3.663 4.469 

20 7.686 6.239 7.525 6.651 10.674 

30 13.804 10.622 12.229 10.936 15.530 

40 16.199 12.525 14.690 13.209 18.991 

 

 

FIGURE 12.27 - GRID BAFFLE NO PLUGS TEST RESULTS GRAPH 1 
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C.26 GRID BAFFLE A 
TABLE 12.26 - GRID BAFFLE PLUG ARRANGEMENT A TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 5.497 4.644 4.928 5.452 4.590 

20 8.684 7.083 6.095 8.357 8.387 

30 12.157 11.189 10.878 12.063 11.073 

40 16.292 14.388 12.280 13.602 13.068 

 

 

FIGURE 12.28 - GRID BAFFLE PLUG ARRANGEMENT A TEST RESULTS GRAPH 1 

C.27 GRID BAFFLE B 
TABLE 12.27 - GRID BAFFLE PLUG ARRANGEMENT B TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 5.787 4.251 5.470 5.213 4.912 

20 9.393 7.780 8.816 9.273 9.225 

30 13.476 12.192 13.607 14.194 13.665 

40 18.301 16.643 17.978 18.832 18.305 
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FIGURE 12.29 - GRID BAFFLE PLUG ARRANGEMENT B TEST RESULTS GRAPH 1 

C.28 GRID BAFFLE C 
TABLE 12.28 - GRID BAFFLE PLUG ARRANGEMENT C TEST RESULTS 

 
Cup 1 Cup 2 Cup 3 Cup 4 Cup 5 

10 5.224 4.756 5.058 5.691 5.422 

20 8.892 7.729 8.565 9.073 8.893 

30 12.513 12.311 13.129 13.781 13.729 

40 17.643 16.787 17.411 18.083 17.477 

 

 

FIGURE 12.30 - GRID BAFFLE PLUG ARRANGEMENT C TEST RESULTS GRAPH 1 
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D POWER DISTRIBUTION SYSTEM IMAGES 
 

   

FIGURE 12.31 - POWER DISTRIBUTION CABINET INPUT SIDE (LEFT) 

FIGURE 12.32 - POWER DISTRIBUTION CABINET OUTPUT SIDE (RIGHT) 
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FIGURE 12.33 - POWER DISTRIBUTION CABINET INTERIOR 

 

FIGURE 12.34 - POWER DISTRIBUTION CABINET OUTPUT WIRING 



 

134 
 

 

FIGURE 12.35 - POWER DISTRIBUTION CABINET CIRCUIT BREAKER AND RELAY WIRING 

 

FIGURE 12.36 - POWER DISTRIBUTION CABINET INPUT WIRING 
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FIGURE 12.37 - CONTROL PANEL DOOR INTERIOR 

 

FIGURE 12.38 - CONTROL PANEL DOOR EXTERIOR 
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FIGURE 12.39 - CONTROL PANEL INTERIOR WIRING 

 



 

137 
 

13 REFERENCES 
Autonomous Manufacturing Ltd. (2019, January 28). Retrieved from amfg.ai: 

https://amfg.ai/2017/08/14/two-fundamental-types-sls-material/ 

Bourell, D. L., Watt, T. J., Leigh, D. K., & Fulcher, B. (2014). Performance Limitations in 

Polymer Laser Sintering. Physics Procedia, 147-156. 

Conner Seepersad, C., Govett, T., Kim, K., Lundin, M., & Pinero, D. (2012). A designer's 

guide for dimensioning and tolerancing SLS parts. 23rd Annual International 

Solid Freeform Fabrication Symposium (pp. 921-931). Austin: Univeristy of 

Texas. 

Crawford, R. J., & Kearns, M. P. (2012). Practical Guide to Rotational Moulding. 

Shrewsbury: Smithers Rapra Technology Ltd. 

CRDM. (2019, 3 18). Retrieved from crdm.co.uk: http://crdm.co.uk/pdf/LS-PA12.pdf 

Espalin, D., Muse, D. W., MacDonald, E., & Wicker, R. B. (2014). 3D Printing 

multifunctionality: structures with electronics. Int. J. Advanced Manufacturing 

Technology, 963-978. 

Fitchett Jr, D. (2017, November 8). Quora. Retrieved from https://www.quora.com/Is-

the-Allen-Bradley-SLC500-PLC-worth-buying-in-2017 

Folgado, R., Peças, P., & Henriques, E. (2010). Life cycle cost for technology selection: A 

Case study in the manufacturing of injection moulds. Int. J. Production 

Economics, 368-378. 

Formlabs. (2019, 4 8). Guide to Manufacturing Processes for Plastics. Retrieved from 

formlabs.com: https://formlabs.com/blog/guide-to-manufacturing-processes-

for-plastics/ 

Goodridge, R., Tuck, C., & Hague, R. (2012). Laser sintering of polyamides and other 

polymers. Progress in Materials Science, 57(2), 229-267. 



 

138 
 

Grand View Research. (2019, January 24). Retrieved from grandviewresearch.com: 

https://www.grandviewresearch.com/press-release/global-injection-molded-

plastics-market 

Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building 

components as the future of sustainable construction? International Conference 

on Ecology and new Building materials and products (pp. 31-155). Cracow: 

Procedia Engineering. 

Hardy, C. (2014, April 9). The Basics of Tuning PID Loops. Retrieved from Cross Co.: 

https://www.crossco.com/blog/basics-tuning-pid-loops 

Hu, D., & Kovacevic, R. (2003). Sensing, modeling and control for laser-based additive 

manufacturing. International Journal of Machine Tools and Manufacture, 51-60. 

Industrial Heating Equipment Association. (2019, February 5). Retrieved from pro-

therm.com: https://pro-therm.com/infrared_basics.php 

Integra. (2019, 3 18). Retrieved from integra-support.com: http://www.integra-

support.com/docs/MultiZone_flyer_web.pdf 

Kress, C. (2015). An experimental and theoretical analysis of additive manufacturing and 

injection moulding. Toledo: The University of Toledo. 

Nan, W., & Ghadiri, M. (2019). Numerical simulation of powder flow during spreading in 

additive manufacturing. Powder Technology, 801-807. 

O'Brien, M. (2012, August). Retrieved from analog.com: 

https://www.analog.com/media/en/analog-dialogue/volume-46/number-

3/articles/designing-robust-isolated-rs-232-data-interfaces.pdf 

Petrick, I. J., & Simpson, T. W. (2015). 3D Printing Disrupts Manufacturing: How 

Economies of One Create New Rules of Competition. Research-Technology 

Management, 56(6), 12-16. 



 

139 
 

Pham, D. T., Dotchev, K. D., & Yusoff, W. A. (2008). Deterioration of polyamide powder 

properties in the laser sintering process. Proceedings of the Institution of 

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 

222(11), pp. 2163-2176. Cardiff: Insitution of Mechanical Engineers. 

Psarommatis Giannakopoulos, F. (2016). Development of a Powder Management 

Mechanism for an SLS/SLM Machine. (Masters Thesis). Athens: National 

Technical University of Athens. 

Puravent. (2019, 3 18). puravent.co.uk. Retrieved from 

https://www.puravent.co.uk/blog/radiant-heaters/radiant-heating/ 

Qualman, D. (2019, April 4). Global Plastics Production, 1917 to 2050. Retrieved from 

darrinqualman.com: https://www.darrinqualman.com/global-plastics-

production/ 

Rockwell Automation. (2008, June). Retrieved from literature.rockwellautomation.com: 

https://literature.rockwellautomation.com/idc/groups/literature/documents/u

m/1747-um011_-en-p.pdf 

Schmid, M., Amado, A., & Wegener, K. (2015). Polymer Powders for Selective Laser 

Sintering (SLS). AIP. AIC Publishing LLC. 

Science History Institute. (2019, April 4). The History and Future of Plastics. Retrieved 

from sciencehistory.org: https://www.sciencehistory.org/the-history-and-

future-of-plastics 

Sigma-Aldrich. (2019, January 24). Retrieved from sigmaaldrich.com: 

https://www.sigmaaldrich.com/catalog/product/aldrich/gf33201098?lang=en&

region=GB 

SME. (2019, January 24). Retrieved from energy.gov: 

https://www.energy.gov/sites/prod/files/2014/01/f6/sme_man_engineering.p

df 



 

140 
 

Statum, R. (2016). Experimental Determination Of Uniform Heating In The Selective 

Laser Sintering Part Bed. Proceedings of the National Conference On 

Undergraduate Research (pp. 1678-1686). Asheville, North Carolina: The 

University of North Carolina, Asheville. 

Turner, B. N., & Gold, S. A. (2015). A review of melt extrusion additive manufacturing 

processes: II. Materials, dimensional accuracy, and surface roughness. Rapid 

Prototyping Journal, 21(3), 250-261. 

V.Wong, K., & Hernandez, A. (2012). A review of additive manufacturing. ISRN 

Mechanical Engineering, 2012(1). 

Vasquez, M., Haworth, B., & Hopkinson, B. (2011). Optimum Sintering Region for Laser 

Sintered Nylon-12. Proceedings of the Institution of Mechanical Engineers, Part 

B: Journal of Engineering Manufacture. 225(12), pp. 2240-2248. Sage 

Publications Ltd on behalf of the Institution of Mechanical Engineers. 

Walker Wroe, W., Gladstone, J., Phillips, T., Fish, S., Beaman, J., & McElroy, A. (2016). In-

situ thermal image correlation with mechanical properties of nylon-12 in SLS. 

Rapid Prototyping Journal, 22(5), 794-800. 

Weller, C., Kleer, R., & Piller, F. T. (2015). Economic implications of 3D printing: Market 

structure models in light of additive manufacturing revisited. Int. J. Production 

Economics, 164(1), 43-56. 

Yang, S., & Evans, J. (2007). Metering and dispensing of powder; the quest for new solid 

freeforming techniques. Powder Technology, 178(1), 56-72. 

Zarringhalam, H. (2007). Investigation into Crystallinity and Degree of Particle Melt in 

Selective Laser Sintering. (Doctoral Thesis). Loughborough: Loughborough 

University. 

许小曙. (2010). China Patent No. CN102335741A.  

 


