
1

The Contingent Role of Interproject Connectedness in Cultivating Open
Source Software Projects

Abstract: The quest for having a good understanding of the key to successful open-source

software (OSS) development continues to motivate research. Aligned with works that build on

the notion that an OSS development is tightly interrelated with its social environment (i.e., the

OSS community), this research examines the relationship between interproject structure and OSS

project success. We conceive OSS project success to be reflected in two forms, namely

popularity (i.e. market success) and knowledge creation (i.e. technical success). We surveyed the

OSS literature and theorized a contingent role of interproject connectedness in cultivating OSS

projects. We posit (1) OSS project with more structural holes achieves higher popularity; (2)

OSS project with fewer structural holes yields higher knowledge creation; and (3) these two

relationships are enhanced with an increase in project maturity. Using a dataset longitudinally

collected from SourceForge.net, we found that OSS projects with sparse connectedness to be

more popular, which was prominent for those OSS projects at the mid-mature stage. Cohesive

connectedness helped the OSS project, irrespective of its maturity, achieves higher knowledge

creation. Findings from the study can provide a structural purview to identify OSS projects that

are more likely to be successful.

Keywords: open source software, interproject connectedness, maturity, popularity, knowledge

creation

1

1 Introduction

Open-source software (OSS) development forges, such as Sourceforge and Github, are an

integral part of software innovation. A recent report estimates that the economic value of OSS

development can exceed US$32 billion by the year 20231. Major technological titans, such as

Amazon, Facebook, Apple, Alibaba, and Microsoft2, have also tapped on the OSS development

forges for their software innovation. Unique to the OSS development forges, such as Sourceforge

and Github, is that OSS projects are formed by globally distributed people. This assumingly

enables the projects to gain access to an unlimited pool of IT talents. Unfortunately, fewer than

desired OSS projects achieve success (Chengalur-Smith and Sidorova 2003; Lin et al. 2017).

OSS project success can be reflected in the forms of popularity (i.e. market success) and

knowledge creation (i.e. technical success) (Crowston et al. 2007; Subramaniam et al. 2009). The

question is then what kind of OSS projects is more likely to be successful?

To gain an understanding of a key to successful open-source software (OSS) development, it

is important to recognize that an OSS project is tightly interrelated with the OSS community

where the supply of IT talents is from. Elaborately, the resources for software development, such

as source codes and developers, are mobilized across projects (von Hippel and von Krogh 2003).

Source codes are freely revealed to the public, which promotes the diffusion of innovation. Such

freely revealed source codes (i.e., knowledge) are circulated through the connectedness of the

OSS projects, i.e., shared developers across projects. Developers can freely contribute to

multiple projects that they like (Grewal et al. 2006; Tan et al. 2007) and they are not required to

1 https://www.marketresearchengine.com/open-source-services-market [Last access 10th Sep 2019]
2 https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/ [Last access 10th Sep 2019]

2

commit themselves exclusively to a single project3. The inter-connected OSS development

projects, made possible by common IT talents, thus facilitate the sharing of knowledge and

expertise thereby leading to OSS project success (Conaldi et al. 2012; Hahn et al. 2008; Singh et

al. 2011a, 2011b; Singh and Tan 2010).

To the best of our knowledge, the structural characteristic of an OSS project (i.e.,

connectedness to other projects) has been less studied despite its importance4. We have found

three studies looking at the connectedness among OSS projects: Grewal et al. (2006) considered

network centrality, Singh (2010) looked at macro-level network attributes (e.g., clustering

coefficients and path lengths), and Singh et al. (2011a) deliberated on repeat ties and Burt’s

network constraint to predict OSS project success. The fundamental argument in these studies is

social capital, more specifically, structural social capital (Grewal et al. 2006; Singh 2010; Singh

et al. 2011a). The structural social capital only implies that information access hinges upon the

configuration of network structure and an OSS project’s connectedness to others give the project

access to a certain type of information. However, how it could translate to project success in

terms of gaining popularity and creating knowledge remains unclear. A primary reason is the

different trajectories of the popularity and knowledge creation.

A popular OSS project (i.e. market success) is able to reach out to more users in the market

by meeting users’ various requirements in OSS features and functionalities. Thus, to attain the

market success, the OSS project needs to enrich its spectrum of generated ideas and have more

heterogeneous contributors who, as a whole, promote creative abrasion (Harrison and Klein

3 Isolated developers (i.e., developers with a single project) exist in the OSS context (Gao and Madey 2007), and developers do
tend to interact only with prominent developers (Shen and Monge 2011). Hence, not all projects are interlinked or intensively
interlinked. In this research, we focus on projects that are interconnected through common contributors.
4 Prior studies have identified several contributing factors for OSS project success, which include project-specific characteristics
such as the types of OSS license, the leader-follower relationship, the availability of company sponsorship, the project activity,
and the popularity of programming language in which an OSS is developed (Jiang et al. 2019).

3

2007; Ren et al. 2016; Van Knippenberg et al. 2004). Different from earning market success, the

knowledge creation (i.e., technical success) depends more upon the homogenous resources.

Elaborately, an OSS project with homogeneous contributors can benefit from consistent beliefs

about its development and innovation priorities (Ren et al. 2016; Van Knippenberg et al. 2004).

From the software development perspective, strong team cohesion is conducive to both the

delivery and the technological quality of software projects (Lindsjørn et al. 2016). In short, the

heterogeneous resource is in favor of market success and the homogeneous resource promotes

technical success.

The proliferation of heterogeneous or homogeneous resources is implicated in the network

structure, which bases on two contesting theories, namely structural holes theory and network

closure theory (Burt 1992; Coleman 1988). The proponents of structural holes theory believe the

vertex at brokerage positions have access to a great variety of information, which brings about

heterogeneity in resources (Burt 1992). However, the network closure theory argues the closed

network can cultivate coherent beliefs and collective actions, which is more liable to foster

homogeneity in research (Gargiulo and Benassi 2000). To this end, applying these two

theoretical contentions into the OSS context, we posit an overarching proposition that the social

network structure (from the OSS project interconnectedness) plays a contingent role in

facilitating OSS project success. Particularly, considering two forms of OSS project success

(Crowston et al. 2007; Subramaniam et al. 2009), we propose:

1. OSS projects with more structural holes can achieve better market success; however,

2. OSS projects with fewer structural holes can achieve better technical success.

We further develop the proposition by recognizing that while the network structure

prioritizes the position of the OSS project for accessing resources like contributors (Zaheer and

4

Soda 2009), how far these network-related benefits can be harnessed to contribute OSS project

success hinges upon the extent to which that OSS project can synthesize (Daniel et al. 2013;

Setia et al. 2012). Previous studies contended that an OSS project’s maturity5 (i.e., whether it is

in a pre-beta, beta, or post-beta phase) was indicative of abundant resource allocation of that

project (Garriga et al. 2011). Thus, we argue the OSS project maturity enhances the main effects

in the preceding paragraphs. That means the maturity of the OSS project could potentially

moderate the relationships between OSS project interconnectedness (as manifested by

structural holes) and OSS performance (as manifested by market success and technical

success).

By empirically analyzing a considerable size of the longitudinal dataset from

Sourceforge.net, this work makes several contributions to the OSS literature, which we introduce

two of them here. First, we productively extend the current OSS literature by conceiving that the

OSS interproject connectedness has a contingent impact on OSS project success, which varies in

terms of market success or technical success. By doing so, this research adds to the few OSS

studies that take a social capital perspective to OSS development (Grewal et al. 2006; Singh

2010; Singh et al. 2011a) by extending the understanding that an OSS project can achieve market

success through gaining more structural holes while another OSS project situated in cohesive

network is more liable to attain technical success. Second, we provide evidence that OSS project

maturity helps to synthesize the external resource, e.g. contributors or their efforts, but not at all

aspects. Only the OSS projects, which progress from very nascent stage to developmental stage

and are saturated with abundant structural holes, can benefit from maturity for market success.

5 OSS project age is an adjacent measure of maturity. Assuming that organizations accumulate innovation capabilities at the same
rate, older organizations should outperform the younger ones (Schoonhoven 2015). However, this assumption has been
challenged by several studies because an organization’s age may not be a reliable proxy for maturity in terms of innovation
capabilities (Coad et al. 2016). We therefore believe that innovation maturity is a more appropriate measurement of OSS project
maturity.

5

This rectifies previous literature that has disproportionately esteemed the positive role of

maturity in promoting OSS project success (Daniel et al. 2013; Setia et al. 2012).

2 Relevant OSS Literature

The OSS research attracts considerable attention due to its intriguing and counterintuitive model

of innovation, in which large numbers of talented developers voluntarily contribute to the

creation, maintenance, and support of a public good (Lerner and Tirole 2002). Inspired by such a

phenomenon, a line of early studies deliberated the individual motivation to participate in or

contribute to the OSS project. These works discussed various participatory motives, such as

enjoyment, self-efficacy, need for competence, community reputation, status, learning

opportunities, and social identity among other motivational factors (Shah 2006; Feller et al.

2006). Leading from and further extending from these works, von Hippel and von Krogh (2003)

proposed a model of innovation to summarily explain individual motives in participating in OSS

innovation activities. The authors found that although innovators do not gain proprietary benefit

from the OSS per se, the free revealing (of source codes) promotes the innovation diffusion and

eventually benefits the innovators from the diffusion of such innovation-related information. In

other words, the return on innovation results from the participation per se.

Another stream of OSS research focuses on the “success factor” of OSS projects

(Subramaniam et al. 2009; Daniel et al. 2013; Garriga et al. 2011; Stewart et al. 2006). Several

software-specific characteristics are attributed to the OSS project success, such as OSS license

(Subramaniam et al. 2009), software type (Daniel et al. 2013), team size (Garriga et al. 2011),

and organizational sponsorship (Stewart et al. 2006). These works have paid primary attention to

the intrinsic characteristics of the OSS project and little on the structural characteristic of it with

the OSS community (interconnectedness) where the supply of IT talents is from.

6

As introduced earlier, OSS development involves orchestrated and collective action among

the contributors who are related through interaction, thereby forming a network of relationships

and ties (Hahn et al. 2008). Prior literature classified these contributors into two groups: the

development group and the management group (Subramaniam et al. 2009). While the

development group consists of individuals who mainly contribute to the software coding, the

management group consists of individuals who created the OSS project and make the decisions

on version releases (also known as product administrators or leaders). The OSS projects are

interconnected through the shared contributors, and meanwhile, the innovation-related resources

are mobilized via such connectedness.

Although the OSS projects are interconnected in nature, not many studies deliberated the

structural characteristic of an OSS project (i.e., inter-connectedness to other projects) and

discussed its impact on OSS project success (exceptions being Grewal et al. 2006; Singh 2010;

Singh 2011a). Grewal et al. (2006) applied network centrality to predict the OSS project success,

which might be unfeasible in practice because individual network centrality heavily depended on

how other vertexes, i.e. OSS projects, connected in the whole network. Singh (2010) applied

macro-level network attributes, e.g. clustering coefficients, path lengths, and their interactions to

examine their impacts on the success of OSS projects. However, this work did not consider the

network structure with respect to the project level, which restrained the implications for

managing an individual OSS project. Singh et al. (2011a) employed repeat ties and Burt’s

network constraint to reflect internal and external cohesion of an OSS project and unveiled an

inverted U-shape between external cohesion and OSS project performance (measured as number

of CVS commits). However, measuring the OSS project success by the number of CVS commits

is controversial because a large number of CVS commits may also imply poor software quality

7

(Bird et al. 2009). To fill these gaps, we (1) analyze an OSS project’s connectedness in an ego

network in lieu of whole network to avoid the interdependency, and (2) measure the OSS project

success via two forms, i.e. market success and technical success. The prospective findings can

inform OSS projects on how to strategically position themselves to achieve success. More details

are given in the subsequent sections.

In addition, as depicted previously, there is room for improvement of the theoretical

backbones of the abovementioned three exceptional works (Grewal et al. 2006; Singh 2010;

Singh 2011). Elaborately, the structural social capital, i.e. their theoretical basis, only accounts

for how network structure affects the variance of information access but not the innovation

outcome (Burt 1992). Thus, we attempt to further theorize the role of interproject connectedness

in OSS project success. We argue the configuration of network structure not only affects the

information access but also, as a consequence, polarizes the nature of the accessible resources,

i.e. heterogeneity vs. homogeneity (Nerkar and Paruchuri 2005; Ahuja 2000). The latter

characterizes the OSS project success, whose theoretical inference is elaborated on the

hypotheses development section.

Besides resource accessibility, how much such resources can be synthesized should also

significantly implicate an OSS project’s success (Daniel et al. 2013; Setia et al. 2012). Previous

literature employed the OSS project maturity as a proxy indicator reflecting the synthesis

capability. More specifically, mature projects with better project governance can effectively raise

the productivity of the OSS development teams (Setia et al. 2012). Compared to the projects at a

nascent stage, the mature projects have established team cognition and shared understanding,

which alleviated the unnecessary misunderstanding and disagreement in the course of OSS

development (He et al. 2007). The advanced code management in mature project is also helpful

8

to internalize the knowledge and information extravagated from the other project (Daniel et al.

2013; Setia et al. 2012). In sum, the maturity of the OSS project facilitates better inoculation of

various resources including the team of contributors, their knowledge, experiences, and ideas.

Thus, OSS project maturity moderates the relationship between the interproject connectedness

and its success. We will give theoretical deduction in detail in the next section.

3 Hypotheses Development
In the OSS community, an OSS project’s connectedness to other projects via common

contributors define its ego network. Visually, an OSS project’s ego network is the central node

(ego), and connected OSS projects (i.e., other OSS projects with ties to the ego) are the

neighboring nodes (Everett and Borgatti 2005). Thus, whether and to what extent an OSS project

has access to resources depends on its position in the network woven by its contributors. To this

end, social network analysis reveals the relationship between the network position and structure

and resident actors’ access to resources (Ahuja 2000; Austin 2003; Balkundi et al. 2007;

Beckman and Haunschild 2002; Harrison and Klein 2007). Among these studies, the concept of a

structural hole, which depicts a network structure without direct contact with or ties between two

or more nodes, is heavily discussed. By applying this concept to the OSS context, we ask

whether the presence of more structural holes in an inter-project network is beneficial to OSS

project success despite the controversy surrounding this concept in the general management

literature.

Applying the structural hole theory in the OSS context, we can infer that OSS projects

connected to other projects via contributors with non-redundant (non-overlapping) external

network ties have access to more variety of resources (Austin 2003; Beckman and Haunschild

2002; Harrison and Klein 2007). This proposition accords to the thesis that socioeconomic

opportunities increase with the number of structural holes in an ego network due to increased

9

access to diversified information (Eagle et al. 2010). Conversely, in the absence of structural

holes, nodes in an ego network are less likely to develop new ideas (Balkundi et al. 2007). When

contributors draw from different pools of resources, they are liable to have conflicting

viewpoints and opinions and can, therefore, deliver more creative products than those who draw

from the same pool of resources (Harrison and Klein 2007; Jackson et al. 1995).

However, on the other hand, Podolny and Baron (1997) argued that “a cohesive network

[network with few structural holes] conveys a clear normative order within which the individual

[OSS project] can optimize performance, whereas a diverse . . . network [network with many

structural holes] exposes the individual to conflicting preferences and allegiances within which is

much harder to optimize” (p. 676). In a network with many structural holes, organizations must

reconcile opposing views by thoroughly processing information that could reduce OSS

innovation performance (Van Knippenberg and Schippers 2007). In other words, an organization

(i.e., an OSS project in our case) with many structural holes faces potential malfeasances (Ahuja

2000), such as coordination difficulty (Balkundi et al. 2007) and decreased production, even

though conflict can contribute to a more complete and careful analysis of the task at hand and

make better decision.

Conversely, interconnected nodes with few structural holes benefit from shared resources

and beliefs about project priorities and how the work should be carried about. This viewpoint

aligns with the premise that OSS contributors are motivated by knowledge creation. Tan et al.

(2007) studied OSS developers’ ego networks and found that OSS developers at brokerage

positions may not benefit more than the rest of the community because they incur the cost of

sharing and relating knowledge across heterogeneous projects. This empirical evidence echoes

arguments in favor of a cohesive network structure (i.e. few structural holes).

10

To reconcile these views, Ahuja (2000) evaluated competing for hypotheses on the

consequences of the number of structural holes on an organization’s innovation performance.

The author observed that for an inter-organizational network that is focused on collaboration,

cohesive networks (i.e., those with few structural holes) are likely beneficial because they foster

the development of the fine-grained resource. However, organizations that rely on diverse

resources likely benefit from many structural holes. The two seemingly contradictory viewpoints

can be reconciled by considering various aspects of OSS project success. OSS project success

cannot be evaluated using a single criterion but must be considered in light of multiple

dimensions representing various stakeholders. For instance, the number of downloads is a widely

adopted index of market success among OSS projects, but this index may be biased due to the

nature of the projects6 (Crowston et al. 2006). Likewise, the number of concurrent versioning

system (CVS) commits also represents OSS performance because it describes the developers’

vitality; however, higher commit numbers may also indicate poorer software quality (Crowston

et al. 2006).

Subramaniam et al. (2009) employed a multidimensional construct to represent OSS project

success. They found the same antecedents exert a different impact on different aspects of OSS

project success. Building on this understanding, we consider OSS project success based on two

indicators: popularity and knowledge creation. The former reflects the interest in the OSS project

by the users at large, which SourceForge.net bases on the number of OSS downloads and OSS

project site and page visits (Setia et al. 2012). The latter reflects contributors’ developmental

intensity, which SourceForge.net bases on the number of CVS commits, the frequency of the

released files (developers’ output), and project administrators’ activity levels (Crowston et al.

6 In most cases, OSS projects designed as end-user applications are downloaded more often than those that serve as
fundamental units, such as game engines or frameworks.

11

2006). In the innovation management literature, these two dimensions are referred to as market

success and technical success respectively (Peng et al. 2013). Next, we will examine these two

performance types and deduce how the configuration of interproject connectedness and OSS

project maturity influence them.

3.1 The Controversy Surrounding Network Theory

OSS projects’ ego networks comprise common contributors’ links and ties, which facilitate

information and resource exchange. As noted previously, we consider OSS projects’ ego

networks based on common administrators and common developers. This approach echoes

previous studies that categorized OSS project participants according to various roles (Crowston

and Howison 2006; Aberdour 2007; Setia et al. 2012; Jiang et al. 2019). As OSS project leaders,

administrators play an essential role in setting up projects, communicating with the OSS

community, and recruiting and managing developers (Heckman et al. 2007). Unlike developers,

who contribute specialized technical knowledge, administrators are often generalists who must

be familiar with projects’ overall development and ability to integrate specialized knowledge.

They govern and motivate developers to achieve a common goal: innovation development (Chen

and Dietrich 2009). Administrators with preexisting developer contacts (e.g., from managing

other projects) are more likely to attract developers to a focal project (Hahn et al. 2008), which

could suggest the importance of administrators’ connection to other projects. As primary

contributors of innovation, developers who participate in multiple projects provide two

knowledge benefits to a focal project: resource sharing and knowledge spillover (Ahuja 2000;

Grewal et al. 2006). Resource sharing allows developers to integrate knowledge within projects,

whereas knowledge spillover provides project participants with information about design

12

problems and experience, failed and successful approaches, breakthroughs, and opportunities

(Ahuja 2000).

An OSS project ego network with many structural holes has greater access to diversified

information, which is an essential resource in information retrieval activities and enables

participants to control information dissemination (Nerkar and Paruchuri 2005). Administrators

perform several vital functions, including communicating information about their projects to the

OSS community (Heckman et al. 2007). Increasing the number of structural holes in an OSS

project’s ego network can enhance project visibility (Shipilov 2009). Administrators understand

the broader interests of other projects’ contributors and make strategic decisions to popularize

particular OSS projects. For instance, administrators can reprioritize tasks in the pipeline because

certain features are popular in other projects. Likewise, developers who participate in multiple

projects have close contact with the diversified demands of various OSS projects’ users.

Consequently, developers implement a variety of demands when developing the focal OSS,

which attracts broader interest in the project. Accordingly, even though resource mobilization

mechanisms vary across projects according to participants’ roles, their consequences should be

convergent. Thus, we present the following hypothesis:

Hypothesis 1: An OSS project with a higher extent of structural holes in its ego networks [i.e.,

constructs based on the focal project’s connections with other projects due to (a) common

administrators or (b) common developers] is associated with higher popularity [i.e. market

success].

OSS project ego networks with many structural holes may face communication and

coordination challenges. Considering patenting frequency in the chemical industry, Ahuja (2000)

observed that networks with many structural holes exhibited decreased innovation output in

13

terms of the number of patents filed. In addition, in a study of workgroups in a global

organization, Cummings and Cross (2003) observed that workgroups with many structural holes

exhibited diminished performance efficiency and schedule and budget adherence. Although

increasing an OSS project’s popularity is a matter of generating a spectrum of ideas based on

shared knowledge and learning from other projects’ failures and successes, OSS project

development involves more than possessing such knowledge. Administrators’ and developers’

experiences working on other projects must be coordinated and integrated during software

development (Tullio and Staples 2013). From the social categorization perspective in the

network closure theory, a cohesive network with interconnected OSS projects (i.e., fewer

structural holes) converges mental models related to how administrators and developers should

work together; this, in turn, may facilitate innovation output (Ren et al. 2016; Van Knippenberg

et al. 2004). In addition, organizations with few structural holes benefit from access to shared

resources and knowledge spillovers, as opportunism is likely to be reduced. This enables

contributors to efficiently leverage shared intellectual property to develop OSS. For these

reasons, we postulate as follows:

Hypothesis 2: An OSS project with the lower extent of structural holes in its ego networks [i.e.,

constructs based on the focal project’s connections with other projects due to (a) common

administrators or (b) common developers] is associated with higher knowledge creation [i.e.

technical success].

3.2 Maturity of the OSS Project

How much resources from the interconnected projects can contribute to an OSS project success

hinges on the internalization capability of the focal project (Zahra and George 2002). It is

recognized that new product teams face the dilemma of limited resources or capital, which

14

restricts their capability to synergize the internal dynamics with external resources (Patel et al.

2015; Schoonhoven 2015). Teams at an early phase need to confront the cost of learning new

rules, the cost of creating new roles (in the workgroup), the social relationship among internal

stakeholders, and the ability to establish robust ties with external stakeholders (Gulati and

Higgins 2003; Li et al. 2008). The accumulated cost restricts the growth of innovation, which

results in the high likelihood of mortality in their early phases of development. If this is so,

participants in immature OSS projects with advantageous resource access may still not be able to

appropriately utilize such resource to boost their innovation output. Conversely, established

teams comprising members with long-standing relationships would outperform “fresh” teams

(Harrison et al. 1998, 2002) because the former can more easily absorb external information into

their innovation output. That is, the dysfunctional situation caused by transformation capability

can be alleviated as the OSS project matures, which aptly resonates with the idea of the product

lifecycle stage.

By referring to prior literature (Daniel et al. 2013; Setia et al. 2012), we employ the three-

phase maturity model (pre-mature phase, mature phase, and post-mature phase) to assess an OSS

project’s maturity. This model not only reflects its history in past collaborations but also

indicates the extent to which the contributions from multiple people have been integrated into the

software itself. In other words, OSS projects at a more mature phase can be inferred to have a

higher capability of knowledge assimilation. Mature projects attract contributors with their

normative governance mechanism, well-written codes, and stable collaboration structure, which

also provide better stages to make their contributions more effective and yield the innovation

output (Setia et al. 2012). These characteristics clearly echo the innovation mechanism in OSS,

where the contributors primarily benefit from the participation of OSS development (von Hippel

15

and von Krogh 2003). Therefore, mature projects can attract more dedicated contributors because

their compensation which results from innovation activities, is higher than that from immature

ones. Therefore, we infer that mature projects can better internalize and apply the resource to the

innovation output. Moreover, this impact can be subsequently accentuated because these

qualified contributors can attract more contributors and resources (Daniel et al. 2013). In other

words, it arouses the network effect.

Operationally, the OSS developmental stages have been employed in several studies to

assess the theoretical boundary between various precursor factors and OSS project success

(Daniel et al. 2013; Setia et al. 2012; Stewart and Gosain 2006; Subramaniam et al. 2009).

Therefore, we argue that the ability to leverage information in an OSS project and facilitate its

success is contingent on its development stage (i.e., maturity level). OSS projects at early

development stages cannot properly transform resources into their project assets. An OSS

project’s development stage, which indicates its maturity, determines whether its participants can

effectively incorporate the resources accessed from the community into innovation activities

(Daniel et al. 2013; Setia et al.2012). Participants in mature OSS projects may successfully

incorporate the resources sourced from various stakeholders into OSS development. On the

contrary, participants in less mature OSS projects may not yet have a well-established process of

knowledge assimilation. In OSS projects with many structural holes, maturity exerts an influence

on their participants’ ability to internalize the diversified resources into the innovation outputs.

Diversified resources could include various user demands, distinctively inspirational ideas, novel

technologies, etc., from other OSS projects (Nerkar and Paruchuri 2005; Shipilov 2009). For

those OSS projects residing in the cohesive network, the maturity grants their participants the

ability to effectively inoculate the resources into project development because of the relatively

16

robust knowledge base (Autio et al. 2000). Jones (2006) argued that mature organizations

emphasized knowledge exploitation rather than exploration. Knowledge exploitation entails the

effective application of resources by emphasizing the “refinement, routinization, production and

elaboration of existing experience” (Holmqvist 2003, page 99). Collectively, we posit:

Hypothesis 3: The positive relationship between the number of structural holes and popularity

will be stronger in projects in mature phases.

Hypothesis 4: The negative relationship between the number of structural holes and knowledge

creation will be stronger in projects in mature phases.

4 Research Methodology

4.1 Background and Ego network

We conducted a longitudinal investigation using the data set available on SourceForge.net. We

collected the data twice in 18 months to separate the antecedents from their outcomes and to

allow for a more extended observation period to determine the effect of brokerage positions on

popularity and knowledge creation. The selection of the 18-month time frame is referred to as the

OSS project’s progressive period suggested in the previous OSS literature (Crowston et al. 2012;

Ghosh 2006; Daniel et al. 2018). Furthermore, we excluded OSS projects with the statuses

“inactive” and “planning” because such projects have not been released to the public or the

participants have made few contributions to the OSS projects.

With the data set obtained, we constructed each OSS project’s ego network to discover each

project’s position in the overarching network. Each OSS project was recorded as a vertex, all of

which were linked to one another through contributors across the various project categories7.

7 18 main project categories were found on SourceForge at the time of data collection: development, games, Internet,
scientific, system, education, desktop, communications, security, editors, multimedia, formats_and_protocols,
database, office, printing, religion, and mobileapps.

17

Such a network is defined as an affiliation network in prior literature (Wasserman and Faust

1994). In our research setting, OSS projects are linked with each other if they have a common

contributor, such as an administrator or developer, in multiple project categories. As previously

mentioned, in previous OSS literature, contributors engaging in OSS projects are sorted into

various roles (Aberdour 2007; Crowston and Howison 2006; Setia et al. 2012). Hence, we

constructed the two networks affiliated with common administrators and developers. In such

networks, the vertexes are OSS projects and are connected because of the shared contributors

(i.e., administrators or developers respectively).

4.2 Dependent Variables

We employed the OSS project’s traffic intensity and development intensity to manifest its

popularity and knowledge creation. These two measurements were developed by referring to

SourceForge.net’s indexes and prior literature. In particular, SourceForge.net employed a

composite index (i.e., “Most Active Projects”) to reflect each OSS project’s latest-7-day vitality8.

Previous OSS literature includes attempts to evaluate the OSS project’s performance via multiple

dimensions (e.g., number of downloads, number of CVS commits, and size of developer team)

(Crowston et al. 2006; Healy and Schussman 2003; Subramaniam et al. 2009). By jointly

considering the practice in SourceForge.net (7-day window) and the proposition in the previous

literature (multidimensional measurements of OSS project success), we developed two

measurements that were composed of three components. Traffic intensity included downloading

intensity (the extent of adoption among the end-users), logo-hitting intensity (the extent of visits

to the project page), and page-view intensity (the depth of visits within the project page).

Development intensity was composed of CVS commits (the extent of contribution from

8 Sourceforge.net changed the whole design at this moment (last accessed April 11, 2019). We relied on
“web.archive.org” to access the historical version of sourceforge.net in June 2009.

18

contributors to the focal OSS project), the history of recently released files (the extent of the

overall contributors’ recent vitality), and administrators’ login information (the extent of

administrators’ activities). The detailed equations are listed below, and the descriptions of the

components are given in Table 1.

𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 =
(ln(𝑃𝑃7𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 + 1)

ln(𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 1)� + ln(𝑃𝑃7𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 + 1)
ln(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 1)� + ln(𝑃𝑃7𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 1)

ln(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 1)�)
3
�

𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 =
(ln(𝑃𝑃7𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 + 1)

ln(𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 + 1)� + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖
100� + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖

100�)
3
�

Table 1. Definitions of intensity components
Components
name

Description

TRFit Traffic intensity of project i at time t. This variable was defined by SourceForge, which
included downloading, logo hitting, and site-hitting traffic.

P7DTit The total downloading counts of project i in the last 7 days since time t
HIDTt The most downloaded counts at time t
P7LTit The total logo hit counts of project i in the last 7 days since time t
HILTt The most logo hit counts at time t
P7STit The total site hit counts of project i in the last 7 days since time t
HISTt The most site hit counts at time t
DEVit Development intensity of project i at time j. This variable was defined by SourceForge, which

included CVS commits, history of most recent file released, and the history of administrator
logins.

P7CTit The total CVS commit counts of project i in the last 7 days since time t
HIPTt The most CVS-committed counts at time t
DALFRit The absolute value of the difference between 100 and the days (maximally 100) of the latest

file released since time t
DADMLit The absolute value of the difference between 100 and the days (maximally 100) of last project

administrator login since time t

Using the above equations, we computed each OSS project’s traffic intensity and

development intensity at t1 and t2. The relative ratio between these two at t2 and t1 was computed

for the lag specification. We used the ratio as our dependent variable to investigate the

incremental or decremental change across the interval. To avoid missing values resulting from

denominators of zero (the intensity at t1 may be zero), we added 1 to all values at t1. Below are

the equations:

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖2 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖2
(𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖1 + 1)�

19

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖2 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖2
(𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖1 + 1)�

4.3 Predictors and Control Variables

We adopted Burt’s constraint index (Burt 1992), which measures the extent of the lack of

brokerage. The resultant value is a reverse indicator of the number of structural holes. In other

words, for any focal OSS project, a high constraint index denotes few structural holes. The

equation for Burt’s constraint index is presented below.

𝐶𝐶𝑖𝑖 = ��𝑃𝑃𝑖𝑖𝑖𝑖 + �𝑃𝑃𝑖𝑖𝑖𝑖𝑃𝑃𝑞𝑞𝑞𝑞
𝑞𝑞

�

2

, 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑞𝑞
𝑗𝑗

where Ci is Burt’s constraint index of vertex i (OSS project i) and Pij is the proportion of OSS

project i’s resources spent on its contact, j.

Suppose vertex i has four direct linkages and the strengths of linkage to vertex j and the

three other vertexes are 2 and 1, respectively. Then the value of Pij is 2/4. In our case, the

strength of the two projects is measured by the number of common contributors, or

administrators or developers. Therefore, we computed Burt’s constraint indexes for each OSS

project at T1, denoted by admin_cit1 (administrator-affiliated network) and developer_cit1

(developer-affiliated network), respectively. To easily obtain the coefficients from the data

analysis, we created two proxy variables, admin_shit1 and developer_shit1, which are computed

as 1 minus admin_cit1 and developer_cit1 (at), to represent the number of structural holes in the

administrator-affiliated network and developer-affiliated network, respectively (Tortoriello

2014).

We determined OSS projects’ maturity by referring to their developmental phases (i.e., Pre-

alpha, Alpha, Beta, Production, and Mature). Referring to previous studies (Daniel et al. 2013;

20

Setia et al. 2012), we categorized the developmental stages into three phases, namely Pre-beta

(including Pre-alpha and Alpha), Beta, and Post-beta (Production and Mature). The maturity of

an OSS project i at T1 was denoted by a categorical variable, Dev_stageit1.

Besides the key predictors, we considered several covariates to control for variance across

the affiliation networks and the OSS projects’ characteristics. We grouped the control variables

into seven main categories: evenness of work distribution, IT-enabled administration, knowledge

control, programming language popularity, team-based characteristics, project license, and

project category.

Evenness of work distribution: In previous literature, the researchers argued that the

uniformity of work distribution among the contributors would have an impact on project success

(Woolley et al. 2010). To measure the extent of work distribution, we employed the idea of the

Gini coefficient and constructed the generalized inequality indicator for our work (Kuk 2006;

Thon 1982), denoted as InEquali. Instead of measuring the work distribution solely by

considering the commitment to the OSS project, we acknowledged contributions more

comprehensively. In other words, the contribution, like a bug report, features improvement

suggestions, and debugging solutions are all included. The equation is as follows:

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 =
∑ �(2𝑚𝑚− 𝑛𝑛 + 1)𝑦𝑦𝑚𝑚�𝑛𝑛
𝑗𝑗=1

𝑛𝑛2𝑦𝑦�

where n is the number of contributors to the OSS project i, ym is the count of developer m

contributions, and 𝑦𝑦� is the average number of contributions expected per contributor.

Notably, the value of ym, m=1 to n, should be indexed in non-descending order (i.e.,

ym<=ym+1). The value of this indicator ranges from 0 to 1: all contributors performing equal

contribution make this indicator approach 0, and only a few contributors to the focal OSS project

21

makes it approach 1. We employed the aforementioned formula to calculate a variable

representing the evenness of work distribution in each OSS project i at T1, denoted by InEqualit1.

IT-enabled administration: SourceForge.net provided several IT artifacts for various

purposes, including communication and assistance. In prior literature, researchers have argued

that the adoption of IT communication tools can not only increase the efficiency of project

teamwork but can also promote quality assurance (Jurison 1999). Accordingly, we checked

whether the sampled OSS projects use the available IT tools. In doing so, we included binary

variables: use_mailit1 to denote whether the e-mail notification was enabled in OSS project i at T1

and use_pmit1 to denote whether the function of personal messaging was enabled for OSS project

i at T1. As depicted previously, whether the focal OSS project enabling the forum is also

controlled by a binary variable, use_forumit1.

Knowledge control: In addition to the IT tools to support the contributors, several IT

artifacts are available to the public from SourceForge.net, from which the end-users can obtain

their desired knowledge about the focal OSS project. For instance, (a) users can receive updates

on their OSS projects when the Project news function (use_newsi) is enabled; (b) the software

screenshots (use_screenshotsi) can provide the users first impressions of the software, which may

be extremely important for some software that relies on graphics (e.g., games or multimedia

software); and (c) the project wiki (use_wikii) provides tutorials or advanced knowledge for end-

users and those who may be interested in engaging in further development. All three IT artifacts

(use_newsit1, use_screenshotsit1, and use_wikiit1) constitute the knowledge controls for project i at

T1.

Programming-Language Popularity: The previous literature demonstrated that programming

languages and project types are important considerations in an OSS project (Zhu and Zhou

22

2012). For example, more developers may have a minimum knowledge base in popular

programming languages such as Java or PHP than in less popular languages. The data set used in

this research comprised 79 programming languages; the categorical variable Langi was used to

denote the programming language for OSS project i. Also, we referred to the TIOBE Index to

control for each language’s popularity in OSS project i at T1, (Lang_Popit1) because more people

are attracted to OSS projects that are written in more popular programming languages. Note that

the TIOBE Index is widely recognized for measuring the popularity of programming languages

(Paulson 2007), and the higher values refer to higher popularity.

Team-Based Characteristics: Each OSS project is developed and maintained by a group of

participants. Therefore, the team-based characteristics may also exert influences on the OSS

project’s innovation process (Singh et al. 2011a). For instance, the tenure of an OSS project team

served as an important representation of the extent of collaborative experiences and relationships

(Hahn et al. 2008; Tan et al. 2007); the network size determined the extent to which the

miscellaneous information, other than work/project-related information, could flow into the team

knowledge base, which could, in turn, affect the innovation output (Hahn et al. 2008; Tan et al.

2007). To this end, we employed two variables, Team_Tenureit1 and Net_Sizeit1, to indicate the

team tenure and network size, respectively, of OSS project i at T1. The former was measured as

the mean value of team member tenure (by years), and the latter was measured as the number of

participants affiliated with a particular OSS project.

OSS License: Various OSS licenses restrain the copyrights, from the permissive licenses

(e.g., MIT or BSD) to the protective licenses (e.g., GPL) (Wen et al. 2013). The restriction on the

use and distribution of covered software may affect the diffusion of the innovation (e.g., code

23

distribution) (Wen et al. 2013). Therefore, we created a categorical control variable, Licensei,

indicating the type of license used in a particular OSS project i.

Project Category: Our sample included 18 categories of OSS projects. Previous researchers

claimed that the nature of OSS projects also affected the innovation output’s evolution. For

instance, the projects creating applications attracted more end-users than the OSS framework

(Dong et al. 2018). Therefore, we created a categorical control variable, Categoryi, indicating the

category of OSS project i.

5 Data Analysis

5.1 Main Results

The unit of analysis is at the OSS-project level. Considering that the dependent variable is a

fractional value (i.e., the value is found between 0 and 1), the generalized linear model (GLM)

with a canonical logit link in a binomial family is employed (Wooldridge 2010). We constructed

two regression models to depict two types of intensity-change ratio, traffic intensity-change ratio,

and development intensity-change ratio. The descriptive data analysis and the description of each

variable are given in Table 2. The correlation table is displayed in Table 3, in which all the

coefficients are less than 0.6. We used a variance inflation factor (VIF) to test for

multicollinearity. According to the rule of thumb, a VIF value that exceeds five is considered

evidence of multicollinearity, and a VIF value that exceeds ten is regarded as serious evidence of

multicollinearity. No multicollinearity concerns were found in our models.

Table 2. Descriptive Statistics
 Projects with common administrators

(13305 observations)
Projects with common developers

(12898 observations)
Continuous Variables Mean. S.D. Min. Max. Mean. S.D. Min. Max.
Traffic intensity-change ratio of OSS
project i at t2 (traffic_ratioit2)

0.093 0.077 0 0.473 0.094 0.079 0 0.473

Development intensity-change ratio
of OSS project i at t2
(development_ratioit2)

0.329 0.118 0 0.737 0.332 0.116 0 0.737

24

Number of structural holes in
common administrator network of
project i at t1 (admin_shit1)

0.280 0.272 0 0.937 -- -- -- --

Number of structural holes in
common developer network of
project i at t1 (developer_shit1)

-- -- -- -- 0.285 0.276 0 0.975

Generalized inequality indicator of
work distribution between all
contributors at t1 (InEqulit1)

0.437 0.143 0 0.954 0.442 0.145 0 0.956

Popularity of programming language
(Lang_Popit1)

0.117 0.068 0.0001 0.205 0.117 0.067 0.0001 0.205

Team tenure (Team_Tenureit1), in
years

5.871 2.330 0.003 9.6 5.961 2.330 0.003 9.6

Team network size (Net_Sizeit1) 3.152 7.336 1 430 3.289 7.678 1 430
Categorical Variables
Developmental Stages (Dev_stageit1)
Dev_stageit1=0 (Pre-beta phase) 7,915 7,542
Dev_stage it1=1 (beta phase) 2,088 2,061
Dev_stage it1=2 (Post-beta phase) 3,302 3,295
Whether project i enables email function (use_maili)
use_maili=0 (Disabled email
function)

2,026 1,935

use_maili=1 (Enabled email function) 11,279 10,963
Whether project i enables internal messages function (use_pmi)
use_pmi=0 (Disabled internal
message function)

2,546 2,479

use_pmi=1 (Enabled internal
message function)

10,759 10,419

Whether project i enables forum function (use_forumi)
use_forumi=0 (Disabled forum
function)

2,766 2,692

use_forumi=1 (Enabled forum
function)

10,539 10,206

Whether project i uses newsletters (use_newsi)
use_newsi=0 (Disabled newsletters
function)

926 901

use_newsi=1 (Enabled newsletters
function)

12,379 11,997

Whether project i uses screenshots (use_screenshotsi)
use_screenshotsi=0 (Disabled
screenshots function)

911 859

use_screenshotsi=1 (Enabled
screenshots function)

12,394 12,039

Whether project i uses project wiki (use_wikii)
use_wikii=0 (Disabled project wiki) 12,162 11,775
use_wikii=1 (Enabled project wiki) 1,143 1,123
Programming languages (Langi): 79 programming languages were considered (Java, PHP, Python, C#, C++, C,
Visual Basic, ASP.NET, Perl, Assembly, Lisp, XSL (XSLT/XPath/XSL-FO), Visual Basic .NET, JavaScript, Unix Shell,
Fortran, S/R, ActionScript, AppleScript, BASIC, Pascal, Tcl, AspectJ, Prolog, Objective C, Ruby, Object Pascal,
Euphoria, Standard ML, Oberon, Smalltalk, PL/SQL, MATLAB, OCaml (Objective Caml), Free Pascal, ASP, Logo,
Delphi/Kylix, APL, IDL, JSP, D, Erlang, Lazarus, XBase/Clipper, VBScript, Visual FoxPro, Emacs-Lisp, MUMPS,
Flex, Scheme, Ada, Groovy, COBOL, Lua, Forth, Mathematica, Eiffel, REALbasic, XBasic, haXe, Haskell, Curl, AWK,
Kaya, Visual Basic for Applications (VBA), Modula, Clean, LPC, Rexx, Common Lisp, LabVIEW, VHDL/Verilog,
PROGRESS, Pike, Cold Fusion, Boo, Oz, other).

OSS licenses (Licensei): 56 OSS licenses were considered (apache, gpl, lgpl, apache2, python, bsd, website, artistic,
zlib, publicdomain, mit, public, ibmcpl, nethack, educom, afl, apsl, eclipselicense, wxwindows, mpl, cddl, psfl,

25

sleepycat, ibm, osl, mpl11, qpl, zope, adaptive, none, sissl, php-license, fair, gplv3, w3c, boostlicense, cpal, rpl15, ncsa,
historical, php, attribut, agpl, iosl, sunpublic, real, opengroup, osi, ms-rl, datagrid, eiffel, jabber, eiffel2, rscpl, rpl,
other).

OSS project categories (Categoryi): 18 categories were considered (development, games, Internet, scientific, system,
education, desktop, communications, security, editors, multimedia, formats_and_protocols, database, office, printing,
religion, mobileapps, other).

26

Table 3. Correlation Matrices and VIFs
Projects with common administrators
 admin_shit

1
InEqulit1 Lang_Popi

t1
use_mai
li

use_p
mi

use_foru
mi

use_new
si

use_screensho
tsi

use_wik
ii

Team_Tenure
it1

Net_Siz
eit1

VIFs

admin_shit1 1 1.04
InEqulit1 0.146 1 1.48
Lang_Popit1 0.008 0.001 1 1.00
use_maili -0.023 0.030 0.023 1 1.44
use_pmi -0.074 -0.062 -0.003 0.505 1 1.81
use_forumi -0.105 -0.089 0.0002 0.434 0.552 1 1.61
use_newsi -0.066 -0.021 -0.001 0.316 0.396 0.378 1 1.27
use_screensho
tsi

-0.036 -0.043 -0.008 0.243 0.369 0.216 0.216 1 1.20

use_wikii -0.004 0.015 -0.026 0.049 0.057 0.066 0.022 0.022 1 1.06
Team_Tenureit

1
0.134 0.0387 0.030 -0.093 -0.122 -0.142 -0.135 -0.012 -0.179 1 1.08

Net_Sizeit1 0.144 0.233 0.014 0.012 -0.107 -0.153 -0.042 -0.087 0.037 -0.013 1 1.10
Projects with common developers
 developer

_shit1
InEqulit1 Lang_Popi

t1
use_mai
li

use_p
mi

use_foru
mi

use_new
si

use_screensho
tsi

use_wik
ii

Team_Tenure
it1

Net_Siz
eit1

developer_shit1 1 1.07
InEqulit1 0.196 1 1.48
Lang_Popit1 0.005 -0.001 1 1.00
use_maili -0.021 0.033 0.028 1 1.42
use_pmi -0.076 -0.059 -0.001 0.495 1 1.80
use_forumi -0.076 -0.0940 -0.0002 0.431 0.547 1 1.61
use_newsi -0.065 -0.022 -0.005 0.299 0.403 0.378 1 1.27
use_screensho
tsi

-0.035 -0.034 -0.012 0.236 0.360 0.274 0.211 1 1.19

use_wikii 0.002 0.018 -0.024 0.050 0.055 0.045 0.066 0.017 1 1.06
Team_Tenureit

1
0.158 0.045 0.028 -0.092 -0.122 -0.145 -0.14 -0.01 -0.182 1 1.09

Net_Sizeit1 0.194 0.256 0.012 0.017 -0.113 -0.151 -0.045 -0.078 0.046 -0.006 1 1.13

27

The findings depicting the change in traffic intensity are summarized in Table 49. Model 1 is

the base model with traffic_ratioit2 as the dependent variable, in which only the control variables

are included. In Model 2, the number of structural holes computed from the affiliated network

with common administrators was entered to test Hypothesis 1a. The significantly positive

coefficient of admin_shit1 supports Hypothesis 1a. In Model 3, the number of structural holes

(developer_shit1) in the network constructed with interconnected developers was positively

significant. Hence, Hypothesis 1b is also supported.

To test the moderating effect in Hypothesis 3, the maturity, Dev_stageit1, and the interaction

terms, admin_shit1XDev_stageit1 and developer _shit1XDev_stageit1, are entered into Model 4

through Model 7. We first tested the moderating effect between maturity and the number of

structural holes computed from the affiliated network with common administrators in Model 4

and Model 5. In Model 4, we set the OSS projects at a pre-beta phase as the base to investigate

whether the positive relationship between the number of structural holes and the traffic intensity

is strengthened in beta projects but not post-beta projects, partially supporting our hypothesis. In

Model 5, we changed the base group from the pre-beta phase to the beta phase to test the

difference in the moderating effect of beta and post-beta projects. The estimated coefficient is

negatively significant in the post-beta phase. Similarly, we conducted the same empirical testing

for the affiliated network with common developers in Model 6 and Model 7 and obtained similar

results. Therefore, we can conclude that Hypothesis 3 is partially supported.

9 We did not include the admin_shit1 and developer_shit1 in the same model because of the multicollinearity. These
two independent variables are highly correlated.

28

Table 4. Results with Change in Traffic Intensity as the Dependent Variable
DV Traffic intensity-change ratio (traffic_ratioit2)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
admin_shit1 -- 0.114***

(0.031)
-- 0.077*

(0.039)
0.287***
(0.063)

-- --

developer_shit1 -- -- 0.149***
(0.035)

-- -- 0.077+
(0.041)

0.282***
(0.063)

Dev_stageit1< Beta -- -- -- -- -0.26***
(0.032)

-- -0.261***
(0.032)

Dev_stageit1= Beta -- -- -- 0.26***
(0.032)

-- 0.261***
(0.032)

--

Dev_stageit1> Beta -- -- -- 0.496***
(0.027)

0.236***
(0.032)

0.468***
(0.027)

0.207***
(0.033)

admin_shit1XDev_stageit1<
Beta

-- -- -- -- -0.21**
(0.072)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- -- 0.21**
(0.072)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- -- 0.013
(0.061)

-0.198**
(0.076)

-- --

developer_shit1XDev_stageit1<
Beta

-- -- -- -- -- -- -0.205**
(0.072)

developer_shit1XDev_stageit1=
Beta

-- -- -- -- -- 0.205**
(0.072)

--

developer_shit1XDev_stageit1>
Beta

-- -- -- -- -- 0.071
(0.062)

-0.134+
(0.076)

InEqulit1 0.932***
(0.082)

0.796***
(0.09)

0.868***
(0.089)

0.644***
(0.076)

0.644***
(0.076)

0.707***
(0.077)

0.707***
(0.077)

use_mailit1 0.158***
(0.026)

0.152***
(0.027)

0.149***
(0.027)

0.143***
(0.026)

0.143***
(0.026)

0.144***
(0.027)

0.144***
(0.027)

use_pmit1 -0.269***
(0.024)

-0.281***
(0.025)

-0.263***
(0.025)

-0.244***
(0.024)

-0.244***
(0.024)

-0.229***
(0.024)

-0.229***
(0.024)

use_forumit1 -0.186***
(0.023)

-0.178***
(0.026)

-0.176***
(0.024)

-0.167***
(0.024)

-0.167***
(0.024)

-0.164***
(0.023)

-0.164***
(0.023)

use_newsit1 0.119***
(0.031)

0.127***
(0.034)

0.107**
(0.034)

0.148***
(0.033)

0.148***
(0.033)

0.124***
(0.033)

0.124***
(0.033)

use_screenshotsit1 -0.134***
(0.029)

-0.118***
(0.032)

-0.116***
(0.031)

-0.132***
(0.031)

-0.132***
(0.031)

-0.124***
(0.031)

-0.124***
(0.031)

use_wikiit1 0.146***
(0.026)

0.134***
(0.029)

0.138***
(0.028)

0.194***
(0.028)

0.194***
(0.028)

0.196***
(0.027)

0.196***
(0.027)

Lang_Popit1
-206.83**
(65.338)

-199.277*
(85.514)

-
206.954**
(76.792)

-170.758*
(73.066)

-170.758*
(73.066)

-
182.183**
(67.321)

-
182.183**
(67.321)

Team_Tenureit1 0.021***
(0.003)

0.02***
(0.004)

0.021***
(0.004)

-0.012**
(0.004)

-0.012**
(0.004)

-0.011*
(0.004)

-0.011*
(0.004)

Net_Sizeit1 0.015***
(0.004)

0.015***
(0.005)

0.015***
(0.004)

0.011**
(0.004)

0.011**
(0.004)

0.011**
(0.004)

0.011**
(0.004)

constant -3.319***
(0.191)

-3.28***
(0.193)

-3.383***
(0.199)

-3.125***
(0.187)

-2.864***
(0.189)

-3.211***
(0.193)

-2.95***
(0.195)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood -3337.346 -3018.902 -2949.184 -2998.722 -2998.722 -2930.249 -2930.249
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

29

In Table 5, the dependent variable was replaced with development_ratioit2, which is the

development intensity-change ratio, to test Hypotheses 2a, 2b, and 4. The estimated coefficients

are listed from Model 8 to Model 14. In a similar vein, Model 8 is the base model, which only

includes the control variables. The number of structural holes from the administrator-affiliated

network was entered in Model 9. The results table shows that the admin_shit1 has significant

negative effects on the change in development intensity. Therefore, Hypothesis 2a is supported.

In Model 10, the estimated coefficient of developer_shit1 is found to be significantly negative, as

well, which supports Hypothesis 2b.

The maturity, Dev_stageit1, and the interaction terms, admin_shit1XDev_stageit1 and

developer_shit1XDev_stageit1, are entered from Model 11 to Model 14. Interestingly, the

estimated coefficients of the interaction terms are insignificant in administrator-affiliated and

developer-affiliated networks regardless of the base group. Therefore, we conclude that

Hypothesis 4 is not supported.

Overall, the results indicate that OSS projects with a greater number of structural holes can

enjoy higher popularity in administrator-affiliated networks (the p-value of the coefficient

[0.114] of admin_shit1 less than 0.001) and developer-affiliated networks (the p-value of the

coefficient [0.149] of developer_shit1 is less than 0.001). However, OSS projects with a greater

number of structural holes suffer from less knowledge creation in the administrator-affiliated

network (coefficient [admin_shit1] = −0.175, p-value < 0.001) and developer-affiliated network

(coefficient [developer_shit1] = −0.170, p-value < 0.001). This finding implies the OSS project

that is tightly connected with the others is more likely to intensify the innovation development by

contributors. Also, the OSS project’s maturity is found to strengthen the positive relationship

between the number of structural holes and traffic intensity in administrator-affiliated and

30

developer-affiliated networks. However, such a positive moderating effect can only be observed

between pre-beta and beta OSS projects. No significant difference emerged in the moderating

effect between projects in the pre-beta phase and those in the post-beta phase. This interesting

finding indicates the externally accessed information could be most effectively assimilated to

popularize the innovation when the OSS project was in the beta phase. Such a conclusion is not

counterintuitive. In the software release life cycle, the beta version was used to gather feedback

on bugs or possible new features (MacCormack 2001). Therefore, more information ought to

intensely flow into those OSS projects through the connected network in the beta phase. Last,

project maturity was not found to enhance the negative relationship between the number of

structural holes and development intensity. To further validate our empirical findings, we plotted

the estimations in Figure 1 below. Figures 1(a) and 1(b) show the results estimated in Table 4,

where the gradient of the red line (beta phase) was steeper than those of the other two lines. The

blue line (pre-beta phase) was almost parallel to the green line (post-beta phase), implying the

positive moderation effect between the beta phase and the two other phases. In addition, all three

lines were almost parallel to each other in Figures 1(c) and 1(d).

31

(a) (b)

(c)

(d)

Figure 1. The Interaction Plot

32

Table 5. Results with Change in Development Intensity as the Dependent Variable
DV Development intensity change ratio (development_ratioit2)

Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14
admin_shit1 -- -0.175***

(0.018)
-- -0.170***

(0.025)
-0.182***
(0.038)

-- --

developer_shit1 -- -- -0.125***
(0.018)

-- -- -0.142***
(0.025)

-0.100**
(0.037)

Dev_stageit1< Beta -- -- -- -- -0.176***
(0.017)

-- -0.166***
(0.017)

Dev_stageit1= Beta -- -- -- 0.176***
(0.017)

-- 0.166***
(0.017)

--

Dev_stageit1> Beta -- -- --
0.176***
(0.015)

0.0003
(0.017)

0.168***
(0.015)

0.002
(0.017)

admin_shit1XDev_stageit1<
Beta

-- -- -- -- 0.011
(0.045)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- -- -0.011
(0.045)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- -- -0.001
(0.038)

0.01
(0.047)

-- --

developer_shit1XDev_stageit

1< Beta
-- -- -- -- -- -- -0.041

(0.044)
developer_shit1XDev_stageit

1= Beta
-- -- -- -- -- 0.041

(0.044)
--

developer_shit1XDev_stageit

1> Beta
-- -- -- -- -- 0.029

(0.038)
-0.013
(0.046)

InEqulit1 -0.128***
(0.031)

-0.117***
(0.032)

-0.098**
(0.032)

-0.15***
(0.032)

-0.15***
(0.032)

-0.136***
(0.033)

-0.136***
(0.033)

use_mailit1 -0.036*
(0.015)

-0.036*
(0.016)

-0.038*
(0.015)

-0.037*
(0.016)

-0.037*
(0.016)

-0.038*
(0.015)

-0.038*
(0.015)

use_pmit1 -0.023
(0.015)

-0.028+
(0.016)

-0.019
(0.016)

-0.017
(0.016)

-0.017
(0.016)

-0.01
(0.016)

-0.01
(0.016)

use_forumit1 0.003
(0.014)

-0.00002
(0.015)

0.002
(0.015)

0.003
(0.015)

0.003
(0.015)

0.005
(0.015)

0.005
(0.015)

use_newsit1 0.01
(0.02)

0.009
(0.021)

0.016
(0.022)

0.021
(0.021)

0.021
(0.021)

0.027
(0.021)

0.027
(0.021)

use_screenshotsit1 0.006
(0.02)

0.002
(0.021)

0.006
(0.021)

-0.005
(0.021)

-0.005
(0.021)

0.002
(0.021)

0.002
(0.021)

use_wikiit1 -0.05**
(0.018)

-0.055**
(0.019)

-0.042*
(0.019)

-0.031
(0.019)

-0.031
(0.019)

-0.018
(0.019)

-0.018
(0.019)

Lang_Popit1 -
382.364**
*
(24.136)

-
385.485**
*
(25.36)

-
390.679**
*
(24.621)

-
362.686**
*
(28.841)

-
362.686**
*
(28.841)

-
370.934**
*
(27.374)

-
370.934**
*
(27.375)

Team_Tenureit1 0.012***
(0.002)

0.012***
(0.002)

0.013***
(0.002)

-0.001
(0.002)

-0.001
(0.002)

0.0002
(0.002)

0.0002
(0.002)

Net_Sizeit1 -0.005***
(0.001)

-0.004***
(0.001)

-0.004***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

constant -0.284+
(0.171)

-0.223
(0.168)

-0.238
(0.169)

-0.18
(0.171)

-0.004
(0.172)

-0.187
(0.173)

-0.021
(0.174)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood -6255.396 -5741.350 -5574.505 -5733.573 -5733.573 -5566.659 -5566.659
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

33

5.2 Post Hoc Investigations

As reviewed earlier, the structural holes theory states that heterogeneous resources or

information can be obtained because of the access to, and bridging of, different clusters of

projects (i.e., structural holes). The OSS projects that contain a greater extent of structural holes

in their resided networks are regarded as those that possess more heterogeneous resources (Ahuja

2000; Xiao and Tsui 2007). However, there could be exceptional cases. For instance, the score of

structural holes within project A is significantly less than that of project B in the developer-

affiliated network, but the developers of project A concurrently work for projects in 10 different

project categories, whereas the developers of the project B only work on projects in two project

categories. In this example, merely associating the extent of structural holes with resource

heterogeneity is not appropriate. Accordingly, validating that resource heterogeneity indeed

relates to the extent of structural holes is imperative. In doing so, Blau’s heterogeneity index

(1997), which has been employed in previous studies (Knight et al. 1999), was introduced to

represent the categorical heterogeneity, which is mathematically expressed below.

Blau Index = 1 −�𝑝𝑝𝑘𝑘2
𝑠𝑠

𝑘𝑘=1

where p is the proportion of connected projects in category k, and s is the number of project

categories (s is 18 in our context).

A higher value for the Blau Index implies a greater extent of resource heterogeneity. For

instance, we suppose that one OSS project (in the Multimedia category) is connected with five

other projects; that is, P1–P5, from five different project categories (Communication, Database,

Desktop, Development, and Editors). In this case, the Blau Index10 is equal to 0.8. In this study,

10 This value is calculated as 1- [(1/5)2 + (1/5)2 + (1/5)2 + (1/5)2 + (1/5)2].

34

two Blau Indexes were computed for OSS project i at T1 from the administrator-affiliated

network (admin_blauit1) and the developer-affiliated network (developer_blauit1). The maximum

values of admin_blauit1 and developer_blauit1 are 0.898 and 0.906, respectively. After that, the

extent of structural holes was regressed on the Blau Indexes in each network with GLM. The

coefficients of both admin_blauit1 (coefficient = 0.390 and standard error = 0.070, p-value =

0.001) and developer_blauit1 (coefficient = 0.142 and standard error = 0.082, p-value = 0.082)

were found to be significantly positive, thereby indicating that the OSS project with higher

categorical heterogeneity in its interconnected projects indeed possessed more structural holes in

both administrator- and developer-affiliated networks. Compared with developers, the

administrators can more easily switch across different types of projects as soon as they have

sharpened their project management or administration skills. In other words, the administrators

can engage in more types of projects than the developers because of the flexibility of their

knowledge. Thus, admin_blauit1 has a stronger significance level than developer_blauit1.

Two methods were used to test the robustness of our analysis results. First, we replaced the

GLMs by Beta regression to validate the robustness of our results. The beta regression can be

used to estimate the proportional values bounded between 0 and 1 but excluding the 0 and 1

(Wooldridge 2010). By referring to the descriptive statistics in Table 2, the minimum value of

two dependent variables is 0. To maintain the consistency of the sample size, we referred to the

transformation proposition by Smithson and Verkuilen (2006) and made the following

transformation.

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′𝑖𝑖𝑖𝑖2 = (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖2 ∗ (𝑁𝑁 − 1) + 0.5)
𝑁𝑁�

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′𝑖𝑖𝑖𝑖2 = (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟′𝑖𝑖𝑖𝑖2 ∗ (𝑁𝑁 − 1) + 0.5)
𝑁𝑁�

35

where N is the total number of observations in the sample

The results are given in Tables 6 and 7. In a similar vein, the estimated coefficients for

traffic_ratio’it2 are presented from Models 1 to 7 in Table 6. The findings agree with those in

Table 4. The results for develop_ratio’it2, as the dependent variable, are presented in Table 7

from Models 8 to 14. There is a minor exception in the estimated coefficients of interactional

terms presented in Model 13, where the maturity alleviated the negative relationship between the

extent of structural holes and development intensity. Such an exceptional difference may result

from the bias introduced by the transformation of dependent variables. By referring to the log-

likelihood, the estimation from GLM (Tables 4 and 5) outperformed those from beta regressions.

To further diagnose the results, we calculated the residuals of Model 13 in Table 5 and Model 13

in Table 7 and visualize their comparison in Figure 2 below. The scatter plot (Figure 2a)

indicates substantial overlap, although the residuals from the GLM estimation have a smaller

projection area, indicating better goodness-of-fit. The box plot confirms the scatter plots.

(a)

(b)

Figure 2. Residual Plots

36

Table 6. Results of Robustness Test (Change in Traffic Intensity as the Dependent Variable, Beta Model)
DV Transformed Traffic intensity change ratio (traffic_ratio’it2)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
admin_shit1 -- 0.079**

(0.029)
-- 0.036

(0.039)
0.212**
(0.071)

-- --

developer_shit1 -- -- 0.083**
(0.03)

-- -- 0.010
(0.040)

0.206**
(0.07)

Dev_stageit1< Beta -- -- -- -- -0.225***
(0.033)

-- -0.216***
(0.034)

Dev_stageit1= Beta -- -- -- 0.225***
(0.033)

-- 0.216***
(0.034)

--

Dev_stageit1> Beta -- -- -- 0.391***
(0.028)

0.166***
(0.036)

0.385***
(0.029)

0.169***
(0.037)

admin_shit1XDev_stageit1<
Beta

-- -- -- -- -0.176*
(0.08)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- -- 0.176*
(0.08)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- -- 0.087
(0.064)

-0.088
(0.087)

-- --

developer_shit1XDev_stageit1<
Beta

-- -- -- -- -- -- -0.196*
(0.08)

developer_shit1XDev_stageit1=
Beta

-- -- -- -- -- 0.196*
(0.08)

--

developer_shit1XDev_stageit1>
Beta

-- -- -- -- -- 0.126*
(0.064)

-0.069
(0.086)

InEqulit1 0.647***
(0.063)

0.484***
(0.066)

0.544***
(0.067)

0.415***
(0.064)

0.415***
(0.064)

0.458***
(0.065)

0.458***
(0.065)

use_mailit1 0.205***
(0.025)

0.192***
(0.027)

0.195***
(0.027)

0.192***
(0.026)

0.192***
(0.026)

0.199***
(0.027)

0.199***
(0.027)

use_pmit1 -0.224***
(0.025)

-0.236***
(0.026)

-0.213***
(0.027)

-0.202***
(0.026)

-0.202***
(0.026)

-0.18***
(0.026)

-0.18***
(0.026)

use_forumit1 -0.134***
(0.023)

-0.106***
(0.025)

-0.128***
(0.025)

-0.107***
(0.025)

-0.107***
(0.025)

-0.128***
(0.025)

-0.128***
(0.025)

use_newsit1 0.269***
(0.032)

0.275***
(0.034)

0.238***
(0.035)

0.303***
(0.034)

0.303***
(0.034)

0.263***
(0.034)

0.263***
(0.034)

use_screenshotsit1 -0.165***
(0.031)

-0.149***
(0.032)

-0.154***
(0.033)

-0.166***
(0.032)

-0.166***
(0.032)

-0.167***
(0.032)

-0.167***
(0.032)

use_wikiit1 0.115***
(0.027)

0.084**
(0.028)

0.125***
(0.028)

0.138***
(0.028)

0.138***
(0.028)

0.181***
(0.028)

0.181***
(0.028)

Lang_Popit1 -234.216
(215.382)

-254.612
(215.209)

-255.455
(215.215)

-208.857
(212.087)

-208.857
(212.087)

-242.765
(208.715)

-242.765
(208.715)

Team_Tenureit1 0.032***
(0.003)

0.03***
(0.004)

0.035***
(0.004)

0.005
(0.004)

0.005
(0.004)

0.01**
(0.004)

0.01**
(0.004)

Net_Sizeit1 0.024***
(0.001)

0.025***
(0.001)

0.024***
(0.001)

0.021***
(0.001)

0.021***
(0.001)

0.02***
(0.001)

0.02***
(0.001)

constant -3.362***
(0.213)

-3.327***
(0.214)

-3.324***
(0.22)

-3.239***
(0.212)

-3.014***
(0.215)

-3.165***
(0.217)

-2.949***
(0.219)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood 21318.134 19896.251 19164.078 20105.381 20105.381 19372.085 19372.085
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

37

Table 7. Results of Robustness Test (Change in Development Intensity as the Dependent Variable, Beta Model)
DV Transformed Development intensity change ratio (development_ratio’it2)

Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14
admin_shit1 -- -0.256***

(0.022)
-- -0.285***

(0.029)
-0.223***
(0.052)

-- --

developer_shit1 -- -- -0.179***
(0.022)

-- -- -0.233***
(0.029)

-0.129*
(0.052)

Dev_stageit1< Beta -- -- -- -- -0.201***
(0.024)

-- -0.195***
(0.024)

Dev_stageit1= Beta -- -- -- 0.201***
(0.024)

-- 0.195***
(0.024)

--

Dev_stageit1> Beta -- -- --
0.213***
(0.021)

0.012
(0.026) 0.199***

(0.021)

0.004
(0.027)

admin_shit1XDev_stageit1<
Beta

-- -- -- -- -0.062
(0.059)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- -- 0.062
(0.059)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- -- 0.088+
(0.049)

0.027
(0.066)

-- --

developer_shit1XDev_stageit1<
Beta

-- -- -- -- -- -- -0.104+
(0.059)

developer_shit1XDev_stageit1=
Beta

-- -- -- -- -- 0.104+
(0.059)

--

developer_shit1XDev_stageit1>
Beta

-- -- -- -- -- 0.131**
(0.048)

0.026
(0.064)

InEqulit1 -0.154***
(0.04)

-0.141***
(0.042)

-0.111**
(0.042)

-0.183***
(0.042)

-0.183***
(0.042)

-0.159***
(0.042)

-0.159***
(0.042)

use_mailit1 -0.033+
(0.018)

-0.032+
(0.019)

-0.046*
(0.019)

-0.033+
(0.019)

-0.033+
(0.019)

-0.046*
(0.019)

-0.046*
(0.019)

use_pmit1 -0.037*
(0.019)

-0.046*
(0.02)

-0.026
(0.02)

-0.033+
(0.019)

-0.033+
(0.019)

-0.014
(0.019)

-0.014
(0.019)

use_forumit1 0.021
(0.017)

0.021
(0.018)

0.024
(0.018)

0.027
(0.018)

0.027
(0.018)

0.03+
(0.018)

0.03+
(0.018)

use_newsit1 0.054*
(0.024)

0.057*
(0.025)

0.061*
(0.025)

0.074**
(0.025)

0.074**
(0.025)

0.078**
(0.025)

0.078**
(0.025)

use_screenshotsit1 0.013
(0.024)

0.007
(0.025)

0.013
(0.025)

0.001
(0.025)

0.001
(0.025)

0.011
(0.025)

0.011
(0.025)

use_wikiit1 -0.066***
(0.02)

-0.08***
(0.021)

-0.066**
(0.021)

-0.05*
(0.021)

-0.05*
(0.021)

-0.035+
(0.021)

-0.035+
(0.021)

Lang_Popit1 -196.529
(248.034)

-215.185
(247.516)

-217.211
(246.111)

-177.077
(246.182)

-177.077
(246.182)

-190.493
(244.696)

-190.493
(244.696)

Team_Tenureit1 0.02***
(0.003)

0.021***
(0.003)

0.022***
(0.003)

0.005+
(0.003)

0.005+
(0.003)

0.005+
(0.003)

0.005+
(0.003)

Net_Sizeit1 -0.006***
(0.001)

-0.005***
(0.001)

-0.004***
(0.001)

-0.008***
(0.001)

-0.008***
(0.001)

-0.008***
(0.001)

-0.008***
(0.001)

constant -0.458**
(0.152)

-0.371*
(0.151)

-0.426**
(0.153)

-0.316*
(0.15)

-0.115
(0.151)

-0.361*
(0.152)

-0.166
(0.154)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood 7848.265 7303.360 7108.576 7449.9903 7449.9903 7257.874 7257.7546
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

38

In addition, we computed the extent of structural holes by each project category to

further confirm that the contingent role of interproject connectedness in influencing the

change in popularity and knowledge creation. In this computation, for each OSS project, its

connected projects that emerge from the other project categories are excluded. Eventually, 36

distinct affiliation networks were constructed based on two roles of contributors, namely,

administrators (admin_intra_shit1) and developers (developer_intra_shit1). Table 8 shows the

overall results for the change in traffic intensity as the dependent variable. In Table 9, the

dependent variable is the change to the development intensity. The base models are not

presented as the results are generally consistent with the previous findings. Interestingly, the

negative relationship between the degree of structural holes and development intensity was

enhanced when comparing projects at the post-beta phase with those at the pre-beta phase

(Model 9 in Table 9). The most mature OSS projects might be reluctant to assimilate

externally sourced information due to the inertia and sunk costs in ongoing developments or

operations (Zahra and Hayton 2008).

39

Table 8. Results of Robustness Test (Extent of structural holes computed from same project category)
DV Traffic intensity change ratio (traffic_ratioit2)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
admin_intra_shit1 0.25***

(0.051)
-- 0.052

(0.043)
0.269***
(0.067)

-- --

developer_intra_shit1 -- 0.235***
(0.058)

-- -- 0.061
(0.045)

0.29***
(0.067)

Dev_stageit1< Beta -- -- -- -0.275***
(0.034)

-- -0.265***
(0.034)

Dev_stageit1= Beta -- -- 0.275***
(0.034)

-- 0.265***
(0.034)

--

Dev_stageit1> Beta -- -- 0.479***
(0.029)

0.204***
(0.035)

0.46***
(0.029)

0.195***
(0.035)

admin_shit1XDev_stageit1<
Beta

-- -- -- -0.217**
(0.078)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- 0.217**
(0.078)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- 0.067
(0.065)

-0.15+
(0.081)

-- --

developer_shit1XDev_stageit1<
Beta

-- -- -- -- -- -0.229**
(0.078)

developer_shit1XDev_stageit1=
Beta

-- -- -- -- 0.229**
(0.078)

--

developer_shit1XDev_stageit1>
Beta

-- -- -- -- 0.085
(0.068)

-0.144+
(0.08)

InEqulit1 0.821***
(0.093)

0.92***
(0.093)

0.678***
(0.079)

0.678***
(0.079)

0.755***
(0.081)

0.755***
(0.081)

use_mailit1 0.155***
(0.03)

0.14***
(0.03)

0.14***
(0.029)

0.14***
(0.029)

0.131***
(0.029)

0.131***
(0.029)

use_pmit1 -0.285***
(0.028)

-0.258***
(0.027)

-0.246***
(0.027)

-0.246***
(0.027)

-0.227***
(0.026)

-0.227***
(0.026)

use_forumit1 -0.168***
(0.028)

-0.171***
(0.026)

-0.156***
(0.026)

-0.156***
(0.026)

-0.161***
(0.026)

-0.161***
(0.026)

use_newsit1 0.108**
(0.037)

0.091*
(0.037)

0.135***
(0.036)

0.135***
(0.036)

0.117***
(0.035)

0.117***
(0.035)

use_screenshotsit1 -0.103**
(0.034)

-0.112***
(0.034)

-0.116***
(0.033)

-0.116***
(0.033)

-0.116***
(0.033)

-0.116***
(0.033)

use_wikiit1 0.157***
(0.031)

0.139***
(0.031)

0.215***
(0.03)

0.215***
(0.03)

0.193***
(0.03)

0.193***
(0.03)

Lang_Popit1 -158.107+
(81.124)

-205.529**
(77.221)

-135.315*
(67.399)

-135.315*
(67.398)

-181.888**
(66.949)

-181.888**
(66.949)

Team_Tenureit1 0.025***
(0.004)

0.025***
(0.004)

-0.01*
(0.004)

-0.01*
(0.004)

-0.01*
(0.005)

-0.01*
(0.005)

Net_Sizeit1 0.013**
(0.004)

0.013**
(0.004)

0.01**
(0.004)

0.01**
(0.004)

0.01**
(0.004)

0.01**
(0.004)

constant -3.288***
(0.226)

-3.265***
(0.227)

-3.16***
(0.224)

-2.885***
(0.226)

-3.12***
(0.225)

-2.855***
(0.227)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood -2507.366 -2497.641 -2490.906 -2490.906 -2481.859 -2481.859
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

40

Table 9. Results of Robustness Test (Extent of structural holes computed from same project category)

DV Development intensity change ratio (development_ratioit2)
Model 7 Model 8 Model 9 Model 10 Model 11 Model 12

admin_intra_shit1 -0.154***
(0.033)

-- -0.098*
(0.046)

-0.193*
(0.077)

-- --

developer_intra_shit1 -- -0.139***
(0.032)

-- -- -0.141**
(0.047)

-0.123+
(0.069)

Dev_stageit1< Beta -- -- -- -0.184***
(0.015)

-- -0.182***
(0.015)

Dev_stageit1= Beta -- -- 0.184***
(0.015)

-- 0.182***
(0.015)

--

Dev_stageit1> Beta -- -- 0.186***
(0.013)

0.002
(0.015)

0.171***
(0.013)

-0.012
(0.015)

admin_shit1XDev_stageit1<
Beta

-- -- -- 0.095
(0.089)

-- --

admin_shit1XDev_stageit1=
Beta

-- -- -0.095
(0.089)

-- -- --

admin_shit1XDev_stageit1>
Beta

-- -- -0.143*
(0.068)

-0.049
(0.09)

-- --

developer_shit1XDev_stageit1<
Beta

-- -- -- -- -- -0.018
(0.082)

developer_shit1XDev_stageit1=
Beta

-- -- -- -- 0.018
(0.082)

--

developer_shit1XDev_stageit1>
Beta

-- -- -- -- -0.004
(0.066)

-0.021
(0.081)

InEqulit1 -0.137***
(0.035)

-0.091**
(0.035)

-0.168***
(0.035)

-0.168***
(0.035)

-0.129***
(0.035)

-0.129***
(0.035)

use_mailit1 -0.045**
(0.017)

-0.055***
(0.017)

-0.047**
(0.017)

-0.047**
(0.017)

-0.056***
(0.017)

-0.056***
(0.017)

use_pmit1 -0.025
(0.017)

-0.019
(0.017)

-0.012
(0.017)

-0.012
(0.017)

-0.01
(0.017)

-0.01
(0.017)

use_forumit1 0.006
(0.016)

0.01
(0.016)

0.008
(0.016)

0.008
(0.016)

0.012
(0.016)

0.012
(0.016)

use_newsit1 0.041+
(0.024)

0.034
(0.023)

0.053*
(0.023)

0.053*
(0.023)

0.047*
(0.023)

0.047*
(0.023)

use_screenshotsit1 -0.002
(0.022)

0.012
(0.022)

-0.01
(0.022)

-0.01
(0.022)

0.007
(0.022)

0.007
(0.022)

use_wikiit1 -0.056**
(0.021)

-0.053*
(0.021)

-0.034
(0.021)

-0.034
(0.021)

-0.03
(0.021)

-0.03
(0.021)

Lang_Popit1 -
378.693***
(26.261)

-
379.869***
(26.382)

-
356.879***
(29.402)

-
356.879***
(29.402)

-
362.038***
(29.016)

-
362.038***
(29.016)

Team_Tenureit1 0.01***
(0.002)

0.013***
(0.003)

-0.003
(0.003)

-0.003
(0.003)

-0.001
(0.003)

-0.001
(0.003)

Net_Sizeit1 -0.004***
(0.001)

-0.004***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

-0.006***
(0.001)

constant -0.322*
(0.159)

-0.362*
(0.159)

-0.285+
(0.164)

-0.101
(0.165)

-0.317+
(0.164)

-0.135
(0.165)

Langi, Licensei, Categoryi: Included but not reported
Log-pseudo likelihood -4747.1604 -4683.228 -4740.445 -4740.445 -4676.736 -4676.736
+p-value < 0.1; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; values are displayed in terms of coefficient (standard error)

41

We conducted several ad hoc tests to rule out other potential alternative explanations to

strengthen the findings. First, we conducted two correlation analyses to rule out the

possibility of interdependency between two dependent variables. This concern arises because

the extent of structural holes in both administrator-affiliated network and the developer-

affiliated network has an opposite impact on the changes in traffic intensity and development

intensity, respectively. We referred to our proposed measurement of traffic intensity (TRFit)

and development intensity (DVPit) in §4.2 to calculate their values at T1, namely TRFit1 and

DVPit1, respectively, and calculated their correlation. Their correlation value is 0.053, which

indicates that there is no interrelation between traffic intensity and development intensity. To

further confirm such a conclusion, we also calculated the correlation between two dependent

variables, namely traffic_ratioit2 and development_ratioit2, used in the preceding analysis.

The low correlation value (0.039) between these two variables reaches a consistent

conclusion.

Second, we calculated the extents of structural holes in the administrator-affiliated

network (admin_shit2) and developer-affiliated network (developer_shit2) at T2 (Dec 2010)

and statistically compared them with those at T1, namely admin_shit1 and developer_shit1.

This approach can rule out the alternative explanation that changes in the dependent variables

were influenced by the phases of the network (i.e., network growth or attenuation). The

results from the paired sample t-test11 indicate that there is no difference in the extent of

structural holes between T1 and T2. Such results are equitable. On the one hand, some

unconnected OSS projects may be bridged by newly affiliated contributors, which reduces

the extent of structural holes and increases the network closure; on the other hand, the

11 We employed the paired sample t-test to statistically validate the difference between two timestamps. In the
administrator-affiliated network, the difference in mean values between two timestamps is -0.184 and the 95%
confidence interval is from -0.191 to -0.176. Thus, the null hypothesis is not rejected. In a similar vein, the
difference in mean values in the developer-affiliated network between the two timestamps is -0.126, which is
also located within the 95% confidence interval (i.e., from -0.131 to -0.121). Thus, the null hypothesis is not
rejected, either.

42

network of a focal OSS project can be expanded with the newly attached ones, which will

increase the extent of the structural holes as well. Both circumstances concurrently exist.

Thus, our focal network does not fluctuate drastically over time.

6 Discussions

6.1 Theoretical and Practical Implications

Compare to previous studies that briefly explained the relationship between network

structure and OSS project success with social capital (Grewal et al. 2006; Singh 2010; Singh

et al. 2011a), we deliberated how network structures characterized OSS project success with

due consideration of OSS innovation mechanisms. This contributed to complementing the

OSS innovation model from a more holistic perspective from two aspects. Firstly, previous

studies have an overwhelming emphasis on the role of motivation or incentives in

constructing the innovation model of OSS (von Hippel and von Krogh 2003). We

acknowledge their importance to account for individual participation in OSS innovation but

further urge institutionalizing interproject connectedness in the theorization of OSS

innovation model. Secondly, rather than following the prior OSS studies that assessed the

success of an OSS project from a single dimension, such as the number of downloads or the

volume of CVS commits and others (Subramaniam et al. 2009; Singh et al. 2011a), we

provided a more holistic investigation to the OSS performance. By considering both network

structure and wholesome assessment of OSS performance, we evidently verified our

overarching proposition that the OSS interproject connectedness has a contingent impact on

OSS project success. To the best of our knowledge, this research is the first work revealing

the contingency of social network structure in the OSS literature. Elaborately, an OSS project

can be strategically attached with more structural holes in its ego-network [constructed

through its shared contributors with other projects] to achieve market success, whereas the

OSS project can be situated in cohesive network to advance its technical achievement. To this

43

end, our finding is instrumental in strategizing the composition of OSS contributors to align

with divergent expectation of OSS success, i.e. reaching out more people or quality of OSS

project, in view of network structure.

Besides contributing to the OSS innovation mechanism, our findings afford evidence on

how OSS project maturity plays a role in facilitating the OSS project's success through

synthesizing the external resource. Elaborately, only the OSS projects, which progress from

very nascent stage to developmental stage and are saturated with abundant structural holes,

can benefit from maturity for market success. This rectifies previous literature that

excessively esteemed the positive role of maturity in promoting OSS project success (Setia et

al. 2012; Daniel et al. 2013). Our findings reveal the extent to which an OSS project can

synthesize the homogenous resource is independent of its developmental stage. A potential

explanation for this finding is this: In a cohesive structure such as the OSS projects, which

are densely connected with each other, the circulated resource and information tend to

become homogeneous and straightforward. In other words, such information can be relatively

easy to assimilate, regardless of the maturity of the OSS project or contributors’ experiences,

which results in the insignificance of the moderation effect of maturity. Alternatively,

although the mature projects with stable governance and collaborative structures might attract

more contributors, those more immature ones might have more learning opportunities and

more spaces for the original creation. This could also attract talented contributors. Either of

these explanations resulted in the insignificant moderation role of maturity on knowledge

creation. This finding is instrumental in guiding the newly established OSS project teams to

the right route of OSS development by cultivating the cohesion in lieu of blind pursuit of the

rate of development.

Besides contributing to the theory, an immediate practical implication of this research is

that OSS project administrators may consider not only recruiting and sharing essential

44

resources, such as the developers with the other projects, but also the extent to which they

manage other projects. They may uncover relationships among the projects and attempt to

develop connectedness with those projects by co-owning an OSS project. By being linked to

or standing at the cleavage of the ego network position, projects could gain a greater diversity

of information flow that, in turn, increases the popularity regarding marketing success. In

considering this statement, whereas OSS projects are supposed to be user-driven, diversity in

the contributors’ mental models of the projects at the brokerage position may not be

beneficial to technical success.

Our findings also have important implications for IT companies. In the IT industry, the

leading IT companies sponsored some OSS projects to maintain a steady stream of

innovation or achieve novel creations (Watson et al. 2008; Chen et al. 2012; Daniel et al.

2018). For example, IBM initiated the foundation for supporting Linux projects or Oracle

invested in MySQL to expand its service lines. In this regard, our findings provided

constructive suggestions for such sponsor companies to leverage the OSS project team

composition to accomplish their desired outputs. In particular, for those firms that expect to

achieve innovative creation by engaging the OSS community, OSS projects whose

contributors (i.e., administrators or developers) coherently work in overlapped projects

should be sponsored. In contrast, those firms that attempt to leverage the OSS project to

promote their products or services should sponsor the OSS projects whose teams are

composed of people who work in heterogeneous OSS projects.

OSS development forges, such as SourceForge.net or Github, could also benefit from our

findings. In our results, the contributors’ collaborative ties resulted in a trade-off between

market success and technical success. In this regard, those projects with significant

innovation creation achievement (i.e., high technical success) may suffer from low

popularity. To resolve such a dilemma, the OSS forge operators should continuously observe

45

and analyze the collaborative ties of each OSS project team and concurrently adjust their

recommendation mechanism, which will effectively prevent the OSS projects with highly

innovative potentials from being submerged in tremendously mediocre ones.

Our findings also shed light on the practice of open innovation in general. Unlike firms

in the IT industry that have highly collaborated with the OSS community to co-create

concrete products or services, the firms in conventional industries mainly leveraged open

innovation for idea generation (King and Lakhani 2013). In other words, achieving an

innovative output is not the main purpose of such open innovation campaigns. To this end,

recruiting external innovators from different backgrounds or diversified online communities

engaged in multiple and intersectional open innovation projects is recommended. Such

participants’ engagement will expose the focal campaign to the public to a greater extent.

6.2 Limitations and Suggestions for Future Research

Like any other research work, this research contains caveats of which readers should be

cautious. First, this research focuses on the network metric of Burt’s constraint index, which

reflects the structural holes of an OSS project. These findings should be viewed cautiously

when integrating them with those from other OSS studies that also adopt the network

perspective but use different network metrics such as direct and indirect ties (Hahn et al.

2008; Tan et al. 2007). An immediate extension of this study is the consideration of

triangulating the findings by adopting different network metrics, such as centrality and tie

strength.

Second, our measurement of popularity and knowledge creation are based on the

marginal differences between two periods of data collection, which enable us to temporally

separate the network instantiations and the performance outcome. Although this method is

the best approach with which to address commonly raised concerns (e.g., endogeneity), the

interval time gap between the two periods of data collection may also raise concerns that

46

relate to the continuous evolvement of the projects. Other than the researchers’ judgment

regarding the time gap, a primary reason is that time is required for people to know (i.e., gain

interest) about a project. Different time gaps could be considered to further test the robustness

of the findings. In addition, future studies could vary the weight of each component

measuring the popularity and knowledge creation. The opportunities are abundant, and

instead of viewing this research as deterministic and conclusive in its insights, researchers

could view it as a suggestion that results in greater research ideas and inquiries.

Third, we chose to anchor our empirical investigation on SourceForge.net to align with

the stream of OSS research, in which many studies use the same data source. In recent years,

other OSS communities, such as Github, have emerged, and future research could consider

extending this study to validate these emerging OSS communities (Medappa and Srivastava

2019). To this end, we encourage future research to verify our findings in other OSS

communities.

7 Concluding Remarks

In nowadays, the open-source projects are more interconnected than before and co-

sharing valuable resources due to the emergence of OSS development forges. The findings

from our analysis reveal the contingent role of the interproject connectedness [of an OSS

projects’ ego network structure] in the OSS project's success. Such an ego network with more

structural holes, regardless of whether they are affiliated with common administrators or

developers, increases the popularity of the focal OSS project. Nevertheless, for better

knowledge creation, the cohesive structure (i.e., with less structural holes) is advocated. Also,

we observed that the positive relationship between structural holes and popularity could be

further influenced by the different maturity of the OSS projects. On the contrary, we did not

observe any moderating effect of the OSS projects’ development stages on the negative

relationship between the extent of structural holes and knowledge creation. Leading from

47

these findings, we discuss both theoretical contributions and practical implications for the

OSS development as well as organizational strategy in investing OSS projects. We

acknowledge the limitations of this study and point out intriguing directions inspiring future

research.

8 References
Aberdour, M. 2007. Achieving quality in open-source software. IEEE Software 24, 58-64.

https://doi.org/10.1109/MS.2007.2
Ahuja, G. 2000. Collaboration networks, structural holes, and innovation: A longitudinal study.

Administrative Science Quarterly 45, 425-455. https://doi.org/10.2307%2F2667105
Austin, J. R. 2003. Transactive memory in organizational groups: the effects of content, consensus,

specialization, and accuracy on group performance. Journal of Applied Psychology 88, 866-878.
http://dx.doi.org/10.1037/0021-9010.88.5.866

Autio, E., Sapienza, H. J., and Almeida, J. G. 2000. Effects of age at entry, knowledge intensity, and
imitability on international growth. Academy of Management Journal 43, 909-924.
https://doi.org/10.5465/1556419

Balkundi, P., Kilduff, M., Barsness, Z. I., and Michael, J. H. 2007. Demographic antecedents and
performance consequences of structural holes in work teams. Journal of Organizational Behavior 28,
241-260. https://doi.org/10.1002/job.428

Beckman, C. M., and Haunschild, P. R. 2002. Network learning: The effects of partners' heterogeneity of
experience on corporate acquisitions. Administrative Science Quarterly 47, 92-124.
https://doi.org/10.2307/3094892

Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., & Devanbu, P. 2009. Fair and
balanced?: bias in bug-fix datasets. In Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations of software
engineering (pp. 121-130). ACM. https://doi.org/10.1145/1595696.1595716

Blau, P. M. 1997. Inequality and heterogeneity: A primitive theory of social structure. New York: Free
Press. https://doi.org/10.1093/sf/58.2.677

Burt, R. S. 1992. Structural hole. Cambridge, MA: Harvard Business School Press.
Chen, X., and Dietrich, G. 2009. Knowledge Location, Differentiation, Credibility and Coordination in

Open Source Software Development Teams, In, 15th Americas Conference on Information Systems
(AMCIS 2009), August 6th-9th, San Francisco, California, US, 2009.

Chen, L., Marsden, J. R., and Zhang, Z. 2012. Theory and analysis of company-sponsored value co-
creation. Journal of Management Information Systems 29, 141-172.
https://doi.org/10.2753/MIS0742-1222290206

Chengalur-Smith, S., and Sidorova, A. 2003. Survival of open-source projects: A population ecology
perspective. In, 24th International Conference on Information Systems (ICIS 2003), December 14th-
17th, Seattle, Washington, US, 2003.

Coad, A., Segarra, A., and Teruel, M. 2016. Innovation and firm growth: Does firm age play a role?.
Research Policy 45, 387-400. https://doi.org/10.1016/j.respol.2015.10.015

Coleman, J. S. 1988. Free riders and zealots: The role of social networks. Sociological Theory, 6, 52-57.
http://doi.org/10.2307/201913

Conaldi, G., Lomi, A., and Tonellato, M. 2012. Dynamic models of affiliation and the network structure of
problem solving in an open source software project. Organizational Research Methods 15, 385-412.
https://doi.org/10.1177/1094428111430541

Crowston, K., and Howison, J. 2006. Hierarchy and centralization in free and open source software team
communications. Knowledge, Technology & Policy 18, 65-85. https://doi.org/10.1007/s12130-006-
1004-8

Crowston, K., Howison, J., and Annabi, H. 2006. Information systems success in free and open source
software development: Theory and measures. Software Process: Improvement and Practice 11, 123-
148. https://doi.org/10.1002/spip.259

https://doi.org/10.1109/MS.2007.2
https://doi.org/10.2307%2F2667105
http://dx.doi.org/10.1037/0021-9010.88.5.866
https://doi.org/10.5465/1556419
https://doi.org/10.1002/job.428
https://doi.org/10.2307/3094892
https://doi.org/10.1145/1595696.1595716
https://doi.org/10.1093/sf/58.2.677
https://doi.org/10.2753/MIS0742-1222290206
https://doi.org/10.1016/j.respol.2015.10.015
http://doi.org/10.2307/201913
https://doi.org/10.1177/1094428111430541
https://doi.org/10.1007/s12130-006-1004-8
https://doi.org/10.1007/s12130-006-1004-8
https://doi.org/10.1002/spip.259

48

Crowston, K., Li, Q., Wei, K., Eseryel, U. Y., and Howison, J. 2007. Self-organization of teams for

free/libre open source software development. Information and Software Technology, 49, 564-575.
https://doi.org/10.1016/j.infsof.2007.02.004

Crowston, K., Wei, K., Howison, J., and Wiggins, A. 2012. Free/Libre open-source software development:
What we know and what we do not know. ACM Computing Surveys 44, Article 7.
https://doi.org/10.1145/2089125.2089127

Cummings, J. N., and Cross, R. 2003. Structural properties of work groups and their consequences for
performance. Social Networks 25, 197-210. https://doi.org/10.1016/S0378-8733(02)00049-7

Daniel, S., Agarwal, R., and Stewart, K. J. 2013. The effects of diversity in global, distributed collectives:
A study of open source project success. Information Systems Research 24, 312-333.
https://doi.org/10.1287/isre.1120.0435

Daniel, S., Midha, V., Bhattacherhjee, A., and Singh, S. P. 2018. Sourcing knowledge in open source
software projects: The impacts of internal and external social capital on project success. The Journal
of Strategic Information Systems, 27, 237-256. https://doi.org/10.1016/j.jsis.2018.04.002

Dong, J. Q., Wu, W., and Zhang, Y. S. 2018. The faster the better? Innovation speed and user interest in
open source software. Information & Management, 56, 669-680.
https://doi.org/10.1016/j.im.2018.11.002

Eagle, N., Macy, M., and Claxton, R. 2010. Network diversity and economic development, Science 328,
1029-1031. https://doi.org/10.1126/science.1186605

Everett, M., and Borgatti, S. P. 2005. Ego network betweenness. Social Networks 27, 31-38.
https://doi.org/10.1016/j.socnet.2004.11.007

Feller, J., Finnegan, P., Fitzgerald, B., and Hayes, J. 2008. From peer production to productization: A
study of socially enabled business exchanges in open source service networks. Information Systems
Research, 19, 475-493. http:// dx.doi.org/10.1287/isre.1080.0207

Gao, Y., and Madey, G., 2007. Network analysis of the SourceForge. net community, In, J. Feller, B.
Fitzgerald, W. Scacchi, A. Sillitti. (eds.), Open Source Development, Adoption and Innovation, US,
Springer US: pp. 187-200. https://doi.org/10.1007/978-0-387-72486-7_15

Garriga, H., Spaeth, S., & Von Krogh, G. (2011, March). Open Source Software Development:
Communities’ Impact on Public Good. In International Conference on Social Computing, Behavioral-
Cultural Modeling, and Prediction (pp. 69-77). Springer, Berlin, Heidelberg.

Ghosh, R. 2006. Collaborative ownership and the digital economy. Cambridge, MA: The MIT Press.
Grewal, R., Lilien, G. L. and Mallapragada, G. 2006. Location, Location, Location: How Network

Embeddedness Affects Project Success in Open Source Systems. Management Science 52, 1043-
1056. https://doi.org/10.1287/mnsc.1060.0550

Gargiulo, M., and Benassi, M. 2000. Trapped in your own net? Network cohesion, structural holes, and the
adaptation of social capital. Organization Science, 11, 183-196.
https://doi.org/10.1287/orsc.11.2.183.12514

Gulati, R., and Higgins, M. C. 2003. Which ties matter when? The contingent effects of interorganizational
partnerships on IPO success. Strategic Management Journal 24, 127-144.
https://www.jstor.org/stable/20060517

Hahn, J., Moon, J. Y., and Zhang, C. 2008. Emergence of new project teams from open source software
developer networks: Impact of prior collaboration ties. Information Systems Research 19, 369-391.
https://doi.org/10.1287/isre.1080.0192

Harrison, D. A., and Klein, K. J. 2007. What's the difference? Diversity constructs as separation, variety,
or disparity in organizations. Academy of Management Review 32, 1199-1228.
https://doi.org/10.5465/amr.2007.26586096

Harrison, D. A., Price, K. H., and Bell, M. P. 1998. Beyond relational demography: Time and the effects of
surface-and deep-level diversity on work group cohesion. Academy of Management Journal 41, 96-
107. https://doi.org/10.5465/256901

Harrison, D. A., Price, K. H., Gavin, J. H., and Florey, A. T. 2002. Time, teams, and task performance:
Changing effects of surface-and deep-level diversity on group functioning. Academy of Management
Journal 45, 1029-1045. https://doi.org/10.5465/3069328

He, J., Butler, B. S., and King, W. R. 2007. Team cognition: Development and evolution in software
project teams. Journal of Management Information Systems, 24, 261-292.
https://doi.org/10.2753/MIS0742-1222240210

https://doi.org/10.1016/j.infsof.2007.02.004
https://doi.org/10.1145/2089125.2089127
https://doi.org/10.1016/S0378-8733(02)00049-7
https://doi.org/10.1287/isre.1120.0435
https://doi.org/10.1016/j.jsis.2018.04.002
https://doi.org/10.1016/j.im.2018.11.002
https://doi.org/10.1126/science.1186605
https://doi.org/10.1016/j.socnet.2004.11.007
https://doi.org/10.1007/978-0-387-72486-7_15
https://doi.org/10.1287/mnsc.1060.0550
https://doi.org/10.1287/orsc.11.2.183.12514
https://www.jstor.org/stable/20060517
https://doi.org/10.1287/isre.1080.0192
https://doi.org/10.5465/amr.2007.26586096
https://doi.org/10.5465/256901
https://doi.org/10.5465/3069328
https://doi.org/10.2753/MIS0742-1222240210

49

Healy, K., and Schussman, A. 2003. The ecology of open-source software development. Technical report,

University of Arizona, USA.
https://pdfs.semanticscholar.org/2c89/092af57b5c4508dd65863df5602c90d7bbb6.pdf

Heckman, R., Crowston, K., Eseryel, U. Y., Howison, J., Allen, E., and Li, Q., Emergent decision-making
practices in free/libre open source software (FLOSS) development teams, In, , J. Feller, B. Fitzgerald,
W. Scacchi, A. Sillitti. (eds.), Open Source Development, Adoption and Innovation, US, Springer US:
2007, pp. 71-84. https://doi.org/10.1007/978-0-387-72486-7_6

Holmqvist, M. 2003. A dynamic model of intra-and interorganizational learning. Organization Studies 24.
95-123. https://doi.org/10.1177/0170840603024001684

Jackson, S. E., May, K. E., and Whitney, K. 1995. Understanding the dynamics of diversity in decision-
making team, In, Guzzo, R.A., Salas, E., and Associates, Team Effectiveness and Decision Making in
Organizations, San Francisco: Jossey-Bass: 1995, 204-261.

Jiang, Q., Tan, C. H., Sia, C. L., & Wei, K. K. 2019. Followership in an Open-Source Software Project and
its Significance in Code Reuse. Mis Quarterly, 43, 1303-1319.
http://doi.org/10.25300/MISQ/2019/14043.

Jones, O. 2006. Developing absorptive capacity in mature organizations: The change agent’s role.
Management Learning 37. 355-376. https://doi.org/10.1177/1350507606067172

Jurison, J. 1999. Software project management: the manager's view. Communications of the AIS 2, article
2. https://doi.org/10.17705/1CAIS.00217

King, A., and Lakhani, K. R. 2013. Using open innovation to identify the best ideas. MIT Sloan
Management Review 55, 41-48.

Knight, D., Pearce, C. L., Smith, K. G., Olian, J. D., Sims, H. P., Smith, K. A., and Flood, P. 1999. Top
management team diversity, group process, and strategic consensus. Strategic Management Journal
20, 445-465. https://doi.org/10.1002/(SICI)1097-0266(199905)20:5<445::AID-SMJ27>3.0.CO;2-V

Kuk, G. 2006. Strategic interaction and knowledge sharing in the KDE developer mailing list.
Management Science 52, 1031-1042. https://doi.org/10.1287/mnsc.1060.0551

Lerner, J., and Tirole, J. 2002. Some simple economics of open source. The Journal of Industrial
Economics, 50, 197-234.

Li, X., Hess, T. J., and Valacich, J. S. 2008. Why do we trust new technology? A study of initial trust
formation with organizational information systems. The Journal of Strategic Information Systems 17.
39-71. https://doi.org/10.1016/j.jsis.2008.01.001

Lin, B., Robles, G., & Serebrenik, A. (2017, May). Developer turnover in global, industrial open source
projects: Insights from applying survival analysis. In 2017 IEEE 12th International Conference on
Global Software Engineering (ICGSE) (pp. 66-75). IEEE.

Lindsjørn, Y., Sjøberg, D. I., Dingsøyr, T., Bergersen, G. R., and Dybå, T. 2016. Teamwork quality and
project success in software development: A survey of agile development teams. Journal of Systems
and Software, 122, 274-286. https://doi.org/10.1016/j.jss.2016.09.028

MacCormack, A. 2001. How internet companies build software. MIT Sloan Management Review 42. 75-
84.

Medappa, P. K., and Srivastava, S. C. 2019. Does Superposition Influence the Success of FLOSS Projects?
An Examination of Open-Source Software Development by Organizations and Individuals.
Information Systems Research, 30, 764-786. https://doi.org/10.1287/isre.2018.0829

Nerkar, A., and Paruchuri, S. 2005. Evolution of R&D Capabilities: The Role of Knowledge Networks
within a Firm, Management Science 5, 771-785. https://doi.org/10.1287/mnsc.1040.0354

Patel, P. C., Kohtamäki, M., Parida, V., and Wincent, J. 2015. Entrepreneurial orientation-as-
experimentation and firm performance: The enabling role of absorptive capacity. Strategic
Management Journal 36, 1739-1749. https://doi.org/10.1002/smj.2310

Paulson, L. D. 2007. Developers shift to dynamic programming languages. Computer 40, 12-15.
https://doi.org/10.1109/MC.2007.53

Peng, G., Wan, Y., and Woodlock, P. 2013. Network ties and the success of open source software
development. The Journal of Strategic Information Systems 22, 269-281.
https://doi.org/10.1016/j.jsis.2013.05.001

Podolny, J. M., and Baron, J. N. 1997. Resources and relationships: Social networks and mobility in the
workplace. American Sociological Review 62, 673-693. http://dx.doi.org/10.2307/2657354

Ren, Y., Chen, J., & Riedl, J. 2016. The impact and evolution of group diversity in online open
collaboration. Management Science 62, 1668-1686. https://doi.org/10.1287/mnsc.2015.2178

https://pdfs.semanticscholar.org/2c89/092af57b5c4508dd65863df5602c90d7bbb6.pdf
https://doi.org/10.1007/978-0-387-72486-7_6
https://doi.org/10.1177/0170840603024001684
http://doi.org/10.25300/MISQ/2019/14043
https://doi.org/10.1177/1350507606067172
https://doi.org/10.17705/1CAIS.00217
https://doi.org/10.1002/(SICI)1097-0266(199905)20:5%3c445::AID-SMJ27%3e3.0.CO;2-V
https://doi.org/10.1287/mnsc.1060.0551
https://doi.org/10.1016/j.jsis.2008.01.001
https://doi.org/10.1016/j.jss.2016.09.028
https://doi.org/10.1287/isre.2018.0829
https://doi.org/10.1287/mnsc.1040.0354
https://doi.org/10.1002/smj.2310
https://doi.org/10.1109/MC.2007.53
https://doi.org/10.1016/j.jsis.2013.05.001
http://dx.doi.org/10.2307/2657354
https://doi.org/10.1287/mnsc.2015.2178

50

Schoonhoven, C. B. Liability of newness, In, Cooper, C., Wiley Encyclopedia of Management, Wiley:

2015, https://doi.org/10.1002/9781118785317.weom030067
Setia, P., Rajagopalan, B., Sambamurthy, V., and Calantone, R. 2012. How peripheral developers

contribute to open-source software development. Information Systems Research 23, 144-163.
https://doi.org/10.1287/isre.1100.0311

Shah, S. K. 2006. Motivation, governance, and the viability of hybrid forms in open source software
development. Management science, 52, 1000-1014. http://dx.doi.org/10.1287/mnsc.1060.0553

Shipilov, A.V. 2009. Firm Scope Experience, Historic Multimarket Contact with Partners, Centrality, and
the Relationship Between Structural Holes and Performance. Organization Science 20, 85-106.
https://doi.org/10.1287/orsc.1080.0365

Singh, P. V. 2010. The small-world effect: The influence of macro-level properties of developer
collaboration networks on open-source project success. ACM Transactions on Software Engineering
and Methodology, 20, Article 6. http://doi.org/10.1145/1824760.1824763

Singh, P. V., Tan, Y., and Mookerjee, V. 2011a. Network effects: the influence of structural capital on
open source project success. Management Information Systems Quarterly 35, 813-830.
http://doi.org/10.2307/41409962

Singh, P. V., Tan, Y., and Youn, N. 2011b. A hidden Markov model of developer learning dynamics in
open source software projects. Information Systems Research 22, 790-807.
https://doi.org/10.1287/isre.1100.0308

Singh, P. V., and Tan, Y. 2010. Developer heterogeneity and formation of communication networks in
open source software projects. Journal of Management Information Systems 27, 179-210.
https://doi.org/10.2753/MIS0742-1222270307

Shen, C., and Monge, P. 2011. Who connects with whom? A social network analysis of an online open
source software community. First Monday 16, 6,
https://www.firstmonday.dk/ojs/index.php/fm/article/view/3551/2991

Smithson, M., and Verkuilen, J. 2006. A better lemon squeezer? Maximum-likelihood regression with
beta-distributed dependent variables. Psychological Methods 11. 54-71.
http://dx.doi.org/10.1037/1082-989X.11.1.54

Stewart, K. J., Ammeter, A. P., and Maruping, L. M. 2006. Impacts of license choice and organizational
sponsorship on user interest and development activity in open source software projects. Information
Systems Research, 17, 126-144. https://doi.org/10.1287/isre.1060.0082

Stewart, K. J., and Gosain, S. 2006. The impact of ideology on effectiveness in open source software
development teams. MIS Quarterly 30, 291-314. http://doi.org/10.2307/25148732

Subramaniam, C., Sen, R., and Nelson, M. L. 2009. Determinants of open source software project success:
A longitudinal study. Decision Support Systems 46, 576-585.
https://doi.org/10.1016/j.dss.2008.10.005

Tan, Y., Mookerjee, V., and Singh, P.V., Social Capital, Structural Holes and Team Composition:
Collaborative Networks of the Open Source Software Community, In, 2007 International Conference
on Information Systems (ICIS 2007), December 9th–12th, Montreal, Quebec, Canada: 2007.

Thon, D. 1982. An axiomatization of the Gini coefficient. Mathematical Social Sciences 2, 131-143.
https://doi.org/10.1016/0165-4896(82)90062-2

Tortoriello, M. 2014. The social underpinnings of absorptive capacity: The moderating effects of structural
holes on innovation generation based on external knowledge. Strategic Management Journal 36, 586-
597. https://doi.org/10.1002/smj.2228

Tullio, D. D., and Staples, D. S. 2013. The Governance and Control of Open Source Software Projects.
Journal of Management Information Systems 30, 49-80. https://doi.org/10.2753/MIS0742-
1222300303

Van Knippenberg, D., De Dreu, C. K. W., and Homan, A. C. 2004. Work group diversity and group
performance: An integrative model and research agenda. Journal of Applied Psychology 89, 1008-
1022. http://doi.org/10.1037/0021-9010.89.6.1008

Van Knippenberg, D., and Schippers, M. C. 2007. Work group diversity. Annu. Rev. Psychol. 58, 515-541.
https://doi.org/10.1146/annurev.psych.58.110405.085546

von Hippel, E., and von Krogh, G. 2003. Open source software and the “private-collective” innovation
model: Issues for organization science. Organization Science 14, 209-223.
https://doi.org/10.1287/orsc.14.2.209.14992

Wasserman, S., and Faust, K. 1994. Social network analysis: Methods and applications (Vol. 8),
Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511815478

https://doi.org/10.1002/9781118785317.weom030067
https://doi.org/10.1287/isre.1100.0311
http://dx.doi.org/10.1287/mnsc.1060.0553
https://doi.org/10.1287/orsc.1080.0365
http://doi.org/10.1145/1824760.1824763
http://doi.org/10.2307/41409962
https://doi.org/10.1287/isre.1100.0308
https://doi.org/10.2753/MIS0742-1222270307
https://www.firstmonday.dk/ojs/index.php/fm/article/view/3551/2991
http://dx.doi.org/10.1037/1082-989X.11.1.54
https://doi.org/10.1287/isre.1060.0082
http://doi.org/10.2307/25148732
https://doi.org/10.1016/j.dss.2008.10.005
https://doi.org/10.1016/0165-4896(82)90062-2
https://doi.org/10.1002/smj.2228
https://doi.org/10.2753/MIS0742-1222300303
https://doi.org/10.2753/MIS0742-1222300303
http://doi.org/10.1037/0021-9010.89.6.1008
https://doi.org/10.1146/annurev.psych.58.110405.085546
https://doi.org/10.1287/orsc.14.2.209.14992
https://doi.org/10.1017/CBO9780511815478

51

Watson, R. T., Boudreau, M. C., York, P. T., Greiner, M. E., and Wynn Jr, D. 2008. The business of open

source. Communications of the ACM 51, 41-46. https://doi.org/10.1145/1330311.1330321
Wen, W., Forman, C., and Graham, S. J. 2013. Research note—The impact of intellectual property rights

enforcement on open source software project success. Information Systems Research 24. 1131-1146.
https://doi.org/10.1287/isre.2013.0479

Wooldridge, J. M. Econometric analysis of cross section and panel data, Cambridge, US: MIT Press,
2010.

Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N., and Malone, T. W. 2010. Evidence for a
Collective Intelligence Factor in the Performance of Human Groups. Science 330, 686-688.
https://doi.org/10.1126/science.1193147

Xiao, Z., and Tsui, A. S. 2007. When brokers may not work: The cultural contingency of social capital in
Chinese high-tech firms. Administrative Science Quarterly 52, 1-31.
https://doi.org/10.2189/asqu.52.1.1

Zaheer, A., and Soda, G. 2009. Network evolution: The origins of structural holes. Administrative Science
Quarterly, 54, 1-31. http://doi.org/10.2189/asqu.2009.54.1.1

Zahra, S. A., and George, G. 2002. Absorptive capacity: A review, reconceptualization, and extension.
Academy of Management Review 27. 185-203. https://doi.org/10.2307/4134351

Zahra, S. A., and Hayton, J. C. 2008. The effect of international venturing on firm performance: The
moderating influence of absorptive capacity. Journal of Business Venturing 23. 195-220.
https://doi.org/10.1016/j.jbusvent.2007.01.001

Zhu, K. X., and Zhou, Z. Z. 2012. Research note—Lock-in strategy in software competition: Open-source
software vs. proprietary software. Information Systems Research 23, 536-545.
https://doi.org/10.1287/isre.1110.0358

https://doi.org/10.1145/1330311.1330321
https://doi.org/10.1287/isre.2013.0479
https://doi.org/10.1126/science.1193147
https://doi.org/10.2189/asqu.52.1.1
http://doi.org/10.2189/asqu.2009.54.1.1
https://doi.org/10.2307/4134351
https://doi.org/10.1016/j.jbusvent.2007.01.001
https://doi.org/10.1287/isre.1110.0358

	1 Introduction
	2 Relevant OSS Literature
	3 Hypotheses Development
	3.1 The Controversy Surrounding Network Theory
	3.2 Maturity of the OSS Project

	4 Research Methodology
	4.1 Background and Ego network
	4.2 Dependent Variables
	4.3 Predictors and Control Variables

	5 Data Analysis
	5.1 Main Results
	5.2 Post Hoc Investigations

	6 Discussions
	6.1 Theoretical and Practical Implications
	6.2 Limitations and Suggestions for Future Research

	7 Concluding Remarks
	8 References

