
P4ID: P4 Enhanced Intrusion Detection
Benjamin Lewis

Computing and Communications
Lancaster University

Lancaster, UK
b.lewis@lancaster.ac.uk

Matthew Broadbent
Computing and Communications

Lancaster University
Lancaster, UK

m.broadbent@lancaster.ac.uk

Nicholas Race
Computing and Communications

Lancaster University
Lancaster, UK

n.race@lancaster.ac.uk

Abstract—The growth in scale and capacity of networks in
recent years leads to challenges of positioning and scalability of
Intrusion Detection Systems (IDS). With the flexibility afforded
by programmable dataplanes, it is now possible to perform a new
level of intrusion detection in switches themselves. We present
P4ID, combining a rule parser, stateless and stateful packet
processing using P4, and evaluate it using publicly available
datasets. We show that using this technique, we can achieve a
significant reduction in traffic being processed by an IDS.

I. INTRODUCTION

With the advent of Software-Defined Networking, both new
opportunities and challenges arise. Since the initial publication
of OpenFlow [1] in 2008, a number of supporting projects have
emerged, eventually leading to P4 [2], a language and set of as-
sociated specifications for programming the behaviour of net-
work devices. Conceptually similar to the Active Networks [3]
of the late 1990s, P4 brings a new level of flexibility into the
packet forwarding process, by programmatically exposing the
data-plane.

In this paper, we present P4ID, an implementation in P4
to reduce the processing power required by an IDS for a
given size of network. To achieve this, we combine rule-
sets designed for traditional Intrusion Detection Systems, such
as Snort [4] and apply pre-filtering in the dataplane. This
technique allows for the handling of packets in the network
itself, without the direct involvement of the IDS. Our results
show that we achieve up to a 75% reduction in the amount of
traffic being processed by the IDS.

II. BACKGROUND AND RELATED WORK

A. Intrusion Detection

Intrusion Detection is a long-studied field [4] [5], with
appliances traditionally situated at ingress into a network. As
networks continue to grow in scale, the amount of traffic an
IDS has to process increases proportionally, as they typically
consume a mirrored copy of network traffic.

Intrusion Detection is usually categorised as using either
signature-based or anomaly-based detection. A signature-
based IDS consumes a list of rules describing various packet
characteristics. These characteristics include IP addresses,
ports, protocols, flow-establishment characteristics, as well
as packet payload contents. Pre-assembled rule sets are of-
ten available, either under a public license or commercially.
Anomaly based detection is used by platforms such as

Zeek [5]. As an alternative to searching against a list of
signatures (as used in a signature-based IDS), anomalies are
detected by comparing traffic statistics to those of previously
seen activities. However, this behaviour would be challenging
to implement in a packet-forwarding environment such as P4.

Intrusion Detection Systems can also act as Intrusion Pre-
vention Systems (IPS). In these instances, traffic is forwarded
via, instead of mirrored to, the IDS. Packets are then inspected
and either forwarded to their original destination, modified in
some way or dropped completely. When acting as an IPS,
there is an inherent overhead in terms of latency, as packets
pass via the IPS to be processed before being forwarded on to
their original destination. P4ID looks to bring some of these
benefits without introducing the same overheads.

B. P4 and the Stateful Dataplane

Whilst OpenFlow provides a means for exposing the control
plane of a network, it focuses on fixed-function data-planes.
As a result, there are a number of versions of OpenFlow, with
functionality differing between versions. This can harm inter-
operability of controllers and applications using OpenFlow.

P4 takes these concepts further by providing a language
and set of specifications for defining the packet forwarding
behaviour of network devices. The language is centred on
the combination of programmable parsers and match-action
tables, with both the structure of the tables and the behaviour
of their actions being programmer-defined. A key part of the
language is that, as used by our implementation, stateful packet
processing can be achieved in the data-plane. In OpenFlow,
stateful processing without controller intervention is minimal.
By using state at this level, it is possible to change forwarding
behaviour without controller intervention, providing a low
latency response and less load on the controller itself.

C. SDN-based Security

Previous work, including OpenSAFE [6] and FRESCO [7],
has aimed to facilitate building new monitoring frameworks,
whilst work including PSI [8] and TENNISON [9] focuses on
providing a security framework and policy management based
around OpenFlow networks. Whilst both offer flexibility and
customisable policy, they are still bound by the capabilities of
OpenFlow switches, relying on a combination with virtualised
network services to achieve the goals of their implementation.



As P4 offers more flexibility in the dataplane, permitting
a rudimentary level of computation, research has also exam-
ined how it can be used from a security perspective. For
example, P4 has been demonstrated as an effective firewall
and filter [10], with the ability to keep track of flows [11];
P4Guard [12] describes work in replacing virtualised network
firewall functions with those implemented in P4.

Work combining P4 and intrusion detection includes work
such as that proposed by Ndonda et al. [13]. The two-layer IDS
focuses on white-listing industrial control system messages,
by means of rules inserted by a controller system running
alongside. Statefit [14] proposes a solution which synchronises
state between a number of switches, and uses this to remediate
and respond to attacks.

III. IMPLEMENTATION OF P4ID

A. Architecture

To realise the benefits of a programmable network for
intrusion detection, we propose P4ID, an architecture to reduce
the processing load on traditional IDS, by placing additional
pre-filtering into network switches. This filtering allows traffic
to bypass an IDS where possible, whilst maintaining adequate
levels of detection. P4ID is comprised of two key components:
the Rule Parser and the P4 implementation. The Rule Parser
consumes rules made for the popular Snort IDS and produces
table entries than can be installed into the P4 pipeline.

Within the P4 implementation, there are two distinguishing
components, namely the stateless and stateful pipeline stages.
Our work and analysis of results from the stateless stage led
us to develop the stateful stage.

B. Rule Parser

The Rule Parser, written in Golang [15], takes rules in
the Snort format and translates them into table entries to be
installed into P4 switches. This is necessary to allow them
to be mapped into match-action tables for the P4 v1model
architecture.

The parser follows a number of stages: the first stage is
searching the rule-set for any rules which cannot be easily
represented in P4 match-action tables, notably those using
logical NOT match criteria. NOTs add processing complexity,
which does not readily map into a P4 pipeline.

The second stage generates a list of individual intermediate
rules: these are generated based on the use of environment
variables, used to represent local networks, service ports
(HTTP) etc. These rules contain fields that are then stripped
out, such as alert messages and payload signatures. These
fields build on the traditional 5-tuple by also taking into
account the state of a flow and TCP flags.

We use this intermediate stage to search for duplicate rules,
as these can cause a table entry conflict when trying to install
the rules into a switch. For the purposes of this work, we
consider a duplicate rule as any rule matching the same 7-
tuple criteria.

P4 Switch

Rule 
Parser

Stateless 
Filter Table Stateful Filter Normal 

Forwarding

Snort 
Rules

Well-Known 
Ports

IDS

Fig. 1. Architecture of P4ID

The final stage of rule generation takes the intermediate
representation and produces individual table entries to be
installed.

C. P4 Pipeline

1) Stateless Stage: The stateless stage of the P4 pipeline
formed the basis for our initial implementation. This
influenced the subsequent stateful stage, which is discussed in
Section IV. We first implemented a layer 2/3 hybrid switch in
P4, capable of parsing as far as the transport layer. Our parser
stores source and destination TCP/UDP ports in metadata
fields, allowing one table to cover both protocols. We then
add an additional table, the rule table. We use guarding logic
to ensure that this table is only applied if the packet is TCP,
ICMP or UDP. This table contains the following fields: Source
IP, Destination IP, Source Port, Destination Port, Protocol
and where relevant, TCP flags. We use ternary matching
with this table, which better maps to switch hardware and
brings other benefits, including allowing a single rule to cover
multiple protocols, specifying IP subnets, ranges of ports and
individual TCP flags. If a packet matches against a rule in
this table, it can either be dropped, forwarded normally or
forwarded to the IDS.

2) Stateful Stage: Our work with the stateless stage high-
lighted some key challenges, which are discussed in detail in
Section IV. One of these challenges was that a significant
proportion of traffic involves well-known or system ports.
This can reduce the efficacy of pre-filtering. We propose that
combining a stateful stage (for well-known ports) with our
stateless stage (for traffic from other ports), allows us to exploit
the benefits of both approaches. To achieve this, we instead
forward the first N packets of new flows to the IDS. N can
be defined on a per-port basis, as well as the timeout that is
used. Three tables are used in order to implement this, along
with two registers.

The first two tables match on source and destination ports
respectively. Each table is populated by the controller with a
list of ports of interest. We use two tables, as the P4 behavioral
model does not support applying the same table twice, and



we wish to capture flows bidirectionally. The third table is
applied if either of the previous matched. It contains the packet
threshold, flow timeout and egress port for packets destined
for the IDS. This third table applies the conditional forward
action. This action is composed of 3 stages: Firstly, we hash
the 5-tuple to generate the flow identifier. This is then used to
read from two registers: the packet counter, and the last seen
register. The latter is used to calculate flow timeouts and is
updated by each packet.

By pushing the handling of flow tracking and timeouts to
the switch itself, we eliminate the need for the controller
to manage idle timeout notifications, which serves to reduce
controller overheads and reduce latency by removing the need
to push traffic via the controller.

IV. EVALUATION

A. Evaluation Architecture

Our evaluation environment is comprised of the P4 behav-
ioral model version 1.12.0-7fd3b395, running on an Ubuntu
18.04 host. To evaluate P4ID, we combine the CICS2017 [16]
dataset with the Emerging Threats [17] ruleset. We chose this
combination as we can then demonstrate our solution beyond
synthetic benchmarks.

We connect the switch to 3 virtual interfaces using veth
pairs (traffic in, default traffic out and IDS output) and then
install the forwarding, filtering and threshold rules. We use the
TCPReplay tool to replay traffic through the switch, via the
traffic in interface. The switch will then apply the installed
rules to the traffic, producing two output streams: packets
destined for the IDS, and packets that have effectively been
white-listed, and thus allowed to bypass intrusion detection.

We then capture the traffic destined for the IDS using
TCPDump. At this stage, we pass the packet capture file
through a custom written pre-processor. The pre-processor
parses the packet captures and restores the temporal spacing
of the traffic, so that we can more accurately compare against
sending all traffic to the IDS.

Finally, we feed this captured traffic into a virtual machine
running SecurityOnion [18], using the included so-import-
pcap tool which supports importing captured traffic, rather
than capturing and analysing in real time. Once this is com-
pleted, we can use SecurityOnion’s own interface to view the
logs created.

We then gather figures in terms of the number of alerts
generated, categorised into severity (low, medium and high),
along with the number of unique signatures detected. The
number of signatures detected being particularly important,
as it demonstrates the range of attacks being detected.

We use the results from running SecurityOnion against the
original CICS2017 captures to form a baseline from which we
can compare P4ID.

B. Results

1) Rule Parser: Table I shows the variation between the
original rulesets and the rules generated for insertion into a
P4 switch. Each rule from the ruleset can unfold into multiple

Ruleset Rules Un-parseable Table Entries
Community 971 63 337
Emerging
Threats

12449 5655 1162

Security Onion 14454 5659 45024
TABLE I

RULE GENERATOR RESULTS

table entries, as they can list a number of IP addresses, ports or
other criteria. This contrast is best expressed when comparing
the Snort community ruleset [19] to the Emerging Threats [17]
set. In the case of the latter, it is possible to generate over
45,000 rules from an original rule-set of 12449. This can
occur due to the range of ports covered by variables such
as HTTP PORTS, which, in our configuration, comprises of
ports 80, 443 and 8080. When the stateful approach is in use,
this reduces significantly, as any rules concerning ports 80 or
443 are monitored on a per-flow basis.

As described previously, the rules described as un-parseable
are those containing logical NOT criteria, or those covering an
excessive range of ports. We deem an excessive range of ports
to be over 512 in this case. Reasons for this are discussed in
the next section.

2) Stateless Filtering: Fig. 2 describes some of our results
when filtering using the stateless packet approach. Datasets
A to E represent the 5 datasets (Monday-Friday) provided by
CICS2017. In the best cases, we achieve up to 99% of alerts
detected with only 70% of the original traffic. However, in
other cases, we ran into some limitations. The limitations from
this stage also guided modifications to the rule parser.

In some cases, rules can be very broad, as they depend
on being combined with Snort’s ability to match on packet
payloads. Some of these rules can cover ranges greater than
60,000 ports. Broad rules such as these result in a significant
proportion of traffic being pushed to the IDS, reducing the
effectiveness of P4ID. To counter this, we have adapted the
rule parser to exclude rules covering larger ranges of ports.

Another issue, causing a similar redirection of a large
proportion of traffic stems from well-known or system ports.
As would be expected from the datasets we are using, rules
covering these well-known ports include a large proportion
of the traffic, again reducing the effectiveness of our stateless
filtering. We propose that we instead implement a mechanism
to send the initial packets of a flow via the IDS, before passing
the rest of the flow through normally.

3) Stateful Filtering: Our results shown by Fig. 3 were
gathered by using both the stateful and stateless filtering in
conjunction. Datasets A to E represent the 5 datasets provided
by CICS2017.

We are applying stateful filtering to the first 100 packets of
each flow on ports 22, 53, 80, 443 and 8080. Our experimen-
tation shows that if the timeout is too low, excessive traffic
is redirected to the IDS, without increasing detection rates,
whereas, if it is too high, detection rate begins to fall again.



A B C D E
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Dataset

Sn
or
t 

Al
er

ts

Snort Alerts P4 Filtered Snort Alerts

Fig. 2. Filtered vs unfiltered: Snort Alerts

A B C D E
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Dataset

% 
vs
 u

nf
il

te
re

d 
da
ta

se
t

% of Unfiltered Size % of Unfiltered Detections

Fig. 3. Stateful filtering percentage of original traffic and detections

For the results shown, we use a timeout of 100ms per flow,
with the first 100 packets being sent to the IDS.

In the best case, with stateful filtering applied, we detect
75% of attack signatures, whilst only requiring 50% of traffic
to be forwarded. In other cases, the minimum we achieve is a
better than 1:1 ratio of detections to traffic.

V. FUTURE WORK AND CONCLUSIONS

In this work, we present a new approach in filtering for
intrusion detection by using a P4 stateful dataplane to proac-
tively determine whether traffic should be forwarded to an
intrusion detection system. We highlight the relative strengths
of our approach in terms of traffic reduction, whilst preserving
fidelity in terms of signatures detected.

Future work includes combining this approach with feed-
back from the IDS. That is, parsing Snort logs to generate
table entries to either allow a high-speed bypass, or to force
traffic in a given flow to continue going via the IDS. This
would allow us to tune the response and flow timeouts based
on network conditions. Another element of future work will be
to rate limiting traffic to the IDS. With the stateful processing
afforded, there are also meters that can be used. In this case,
these could be used to actively prevent overloading of the IDS
in high-traffic situations.

REFERENCES

[1] N. McKeown et al., “Openflow: Enabling innovation in cam-
pus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008, ISSN: 0146-4833. DOI: 10.1145/
1355734.1355746. [Online]. Available: http://doi.acm.org/10.
1145/1355734.1355746.

[2] P. Bosshart et al., “P4: Programming protocol-independent
packet processors,” SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 3, pp. 87–95, Jul. 2014, ISSN: 0146-4833. DOI:
10 .1145/2656877.2656890. [Online]. Available: http : / /doi .
acm.org/10.1145/2656877.2656890.

[3] K. Psounis, “Active networks: Applications, security, safety,
and architectures,” IEEE Communications Surveys & Tutorials,
vol. 2, 1999, ISSN: 1553-877x. DOI: 10 . 1109 / comst . 1999 .
5340509.

[4] M. Roesch et al., “Snort: Lightweight intrusion detection for
networks.,” in Lisa, vol. 99, 1999, pp. 229–238.

[5] V. Paxson, “Bro: A system for detecting network intruders in
real-time,” Computer networks, vol. 31, no. 23-24, pp. 2435–
2463, 1999.

[6] J. R. Ballard et al., “Extensible and scalable network moni-
toring using opensafe.,” in Inm/wren, 2010.

[7] S. W. Shin et al., “Fresco: Modular composable security ser-
vices for software-defined networks,” in 20th Annual Network
& Distributed System Security Symposium, Ndss, 2013.

[8] T. Yu et al., “PSI: Precise Security Instrumentation for Enter-
prise Networks,” 2017. DOI: 10.14722/ndss.2017.23200.

[9] L. Fawcett et al., “Tennison: A Distributed SDN Framework
for Scalable Network Security,” IEEE Journal on Selected
Areas in Communications, vol. 36, pp. 2805–2818, 2018, ISSN:
0733-8716. DOI: 10.1109/jsac.2018.2871313.

[10] P. Vörös et al., “Security middleware programming using p4,”
in International Conference on Human Aspects of Information
Security, Privacy, and Trust, Springer, 2016, pp. 277–287.

[11] C.-H. He et al., “A zero flow entry expiration timeout p4
switch,” in Proceedings of the Symposium on SDN Research,
ACM, 2018, p. 19.

[12] R. Datta et al., “P4guard: Designing p4 based firewall,” in
MILCOM 2018-2018 IEEE Military Communications Confer-
ence (MILCOM), IEEE, 2018, pp. 1–6.

[13] G. K. Ndonda et al., “A two-level intrusion detection system
for industrial control system networks using p4,” in Proceed-
ings of the 5th International Symposium for ICS & SCADA
Cyber Security Research, 2018, pp. 31–40.

[14] R.-H. Hwang et al., pp. 168–173, 2018. DOI: 10.1109/I-SPAN.
2018.00035. [Online]. Available: https://doi.org/10.1109/I-
SPAN.2018.00035.

[15] J. Meyerson, “The go programming language,” IEEE software,
vol. 31, no. 5, pp. 104–104, 2014.

[16] I. Sharafaldin et al., “Toward generating a new intrusion
detection dataset and intrusion traffic characterization.,” in
ICISSP, 2018, pp. 108–116.

[17] Emerging threats ruleset faq. [Online]. Available: https://docs.
emergingthreats.net/bin/view/Main/EmergingFAQ.

[18] S. Onion, Security onion. [Online]. Available: https : / /
securityonion.net/.

[19] Snort rules download. [Online]. Available: https://www.snort.
org/downloads/#rule-downloads.


