An Urdu Semantic Tagger -

Lexicons, Corpora, Methods, and

Tools

Jawad Shafi

Supervisors: Dr. Paul Rayson (Lancaster University)

Dr. Rao Muhammad Adeel Nawab (COMSATS)

School of Computing and Communications InfoLab21

Lancaster University

This dissertation is submitted for the degree of

Doctor of Philosophy

January 2020






I would like to dedicate this thesis to my loving parents, and wife.






Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
university. This dissertation is my own work and contains nothing which is the
outcome of work done in collaboration with others, except as specified in the text

and Acknowledgements.

Jawad Shafi
January 2020






Acknowledgements

First and foremost I would like to thanks to Allah SWT who is the source of all
the knowledge in this world, and imparts as much as He wishes to any one He
finds suitable. My deepest gratitude and acknowledgement goes to my supervisors,
Dr. Rao Muhammad Adeel Nawab and Dr. Paul Rayson, who have supported me
throughout my work on this dissertation with their patience and knowledge. Without
their guidance, expertise, motivation and support this Ph.D. dissertation would not
have been completed otherwise. One could not wish for more kind, accessible and
friendlier supervisors than them.

My special thanks to Mr. Muhammad Sharjeel, Mr. Hafiz Muhammad Rizwan
Igbal, and Dr. Scott Piao who helped me a lot throughout my work and gave very
useful suggestions regarding it. I offer my sincere thanks to my elders (Hazrat
Muhammad Abdul Qadir Owaise Sb DB, Hazret Abdul Jabbar Khan Sb DB, Mufti
Shahid Muneeb sb DB, Sh. Muhammad Naseem Sb) for their special attention and
prayers. Without their support, motivation and guidance it would not have been
possible to successfully complete this Ph.D. thesis. I am thankful to my parents for
their support, prayers, love and care throughout my life and they have played a vital
role in achieving this milestone, indeed. My wife has always been a wonderful being
to me and extended her whole-hearted support especially during my Ph.D. studies,
which I could not have been completed without her. To my daughters (Mahrosh,

Mashaim) and son (Muhammad Ibrahim); all of you have played your part very



viii

well as your naughtiness always made me relaxed. Acknowledgement goes to my
sisters (Samina Faisal, and Amina Anees: have cheered me up in difficult moments,
celebrated with me for my achievements, and never blamed me for being often far
away from them), brothers, in-laws, grand-mother, relatives, nephews (Subhan
Faisal) as well as nieces, my students for their continuous support and prayers. Also
many thanks to my friends and colleagues; Dr. Touseef Tahir, Dr. S.A. Abid, Dr.
Abdul Waheed, Umer Farooq, Mohsin Hafeez, Mansoor Siddique, Goher Ayoub,
Samiullah, Tayyab, Tanzeel, Bilal, Umer Sheikh, Maj. Sheraz Ikram, Taimoor, Saqib,
Zaheer, Tahir-ul-islam, Haider and Dr. Sarfraz Igbal. Last but not least my special
thanks and gratitude to all those who helped me to complete Ph.D.

I am thankful to COMSATS University Islamabad, Pakistan for funding this
Ph.D. under the Split Site Ph.D. Program and to Lancaster University, UK. for their
tremendous resources and help.

Finally, my Ph.D. was one of the tough but best experiences of my life as it gave
me the possibility to: research, teach, spend balanced life, travel, work with scientists
from top research institutes, get in touch with both far West and far East cultures,

and meet special people who will always be part of my life.

Jawad Shafi; January 2020



Abstract

Extracting and analysing meaning-related information from natural language data
has attracted the attention of researchers in various fields, such as Natural Language
Processing (NLP), corpus linguistics, data sciences, etc. An important aspect of such
automatic information extraction and analysis is the semantic annotation of language
data using semantic annotation tool (a.k.a semantic tagger). Generally, different
semantic annotation tools have been designed to carry out various levels of semantic
annotations, for instance, sentiment analysis, word sense disambiguation, content
analysis, semantic role labelling, etc. These semantic annotation tools identify or
tag partial core semantic information of language data, moreover, they tend to be
applicable only for English and other European languages. A semantic annotation
tool that can annotate semantic senses of all lexical units (words) is still desirable
for the Urdu language based on USAS (the UCREL Semantic Analysis System)
semantic taxonomy, in order to provide comprehensive semantic analysis of Urdu
language text. This research work report on the development of an Urdu semantic
tagging tool and discuss challenging issues which have been faced in this Ph.D.
research work. Since standard NLP pipeline tools are not widely available for Urdu,
alongside the Urdu semantic tagger a suite of newly developed tools have been
created: sentence tokenizer, word tokenizer and part-of-speech tagger. Results for
these proposed tools are as follows: word tokenizer reports Fj of 94.01%, and accuracy

of 97.21%, sentence tokenizer shows F; of 92.59%, and accuracy of 93.15%, whereas,



POS tagger shows an accuracy of 95.14%. The Urdu semantic tagger incorporates
semantic resources (lexicon and corpora) as well as semantic field disambiguation
methods. In terms of novelty, the NLP pre-processing tools are developed either
using rule-based, statistical, or hybrid techniques. Furthermore, all semantic lexicons
have been developed using a novel combination of automatic or semi-automatic
approaches: mapping, crowdsourcing, statistical machine translation, GIZA++,
word embeddings, and named entity. A large multi-target annotated corpus is also
constructed using a semi-automatic approach to test accuracy of the Urdu semantic
tagger, proposed corpusis also used to train and test supervised multi-target Machine
Learning classifiers. The results show that Random k-labEL Disjoint Pruned Sets
and Classifier Chain multi-target classifiers outperform all other classifiers on the
proposed corpus with a Hamming Loss of 0.06% and Accuracy of 0.94%. The best
lexical coverage of 88.59%, 99.63%, 96.71% and 89.63% are obtained on several test
corpora. The developed Urdu semantic tagger shows encouraging precision on the
proposed test corpus of 79.47%.

Despite good results of the proposed tools, methods, lexicons and corpora, how-
ever, the following limitations have been observed. A word tokenization method
did not handle out-of-vocabulary words in morpheme matching process of space
omission problem. Sentence tokenization is rule based and are not able to dealt
with non-sentence boundary markers and period marker used between different
abbreviations. Whereas, the POS tagger did not completely handle unknown words.
Multi-target classifiers did not explore feature extraction approaches and has only
been tested on a small dataset. Finally, future work will need to focus on the creation

of multi-word semantic lexicons.
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Chapter 1

Introduction

This Ph.D. thesis describes the theory, motivation, development, and evaluation
of semantic tagging resources developed for the Urdu language. These resources
provide a framework required for the Urdu semantic tagger pipeline; in other words,
they are natural language processing tools, lexicons, corpora and methods which are
used by a computer to perform semantic tagging. This thesis describes and evaluates
these resources, outline their further development, and suggest applications for them.
The thesis places this work in the context of a new Urdu semantic tagger for the
development of various types of natural language processing and human language

technology applications involving the Urdu language.

1.1 Context and Motivation

Semantic tagging is a dictionary-based process of identifying and labelling the mean-
ing of natural language text. Semantic tagging is useful for the fine-grained anal-
ysis of words, therefore, a relevant task for several research areas and practical
applications, for instance Natural Language Processing (NLP), Human Language

Technology (HLT), data science, machine translation, information retrieval, corpus



2 Introduction

linguistics, sentic computing, bi-lingual/multi-lingual extraction of multi-words,
mono-lingual/cross-lingual information extraction, classification of language, and so
on. In recent research, different types of semantic tagging tools (or semantic taggers)
have been suggested and developed to carry out various levels of semantic analysis.

Some types of semantic tagging tools have been designed to identify topics of a
given text [15]. Others are used to extract specific or partial information, for example,
types of named entities or events [198, 241] or a common sense based framework for
concept level opinion mining/ sentiment analysis [44]. Another type of semantic
tagging tool is designed to identify semantic categories for all lexical units (words
and multi-word expressions) using a predefined semantic taxonomy. In order to
support semantic information extraction and analysis from language data, the latter
types of tools require richer semantic lexical resources and provide a broader level of
sense disambiguation, and thus, are challenging to create. In this research work, main
focus will be on developing the benchmark NLP pre-processing tools, dictionaries,
corpora and methods for a semantically rich text analytical tool.

Several semantically rich lexical resources and annotation tools are available for
monolingual analysis, particularly for English e.g. WordNet [134, 149], but very few
resources or tools exist that can be used to carry out semantic analysis for multilingual
text, such as, EuroWordNet [237], BabelNet [149], and USAS' [180], which have
many applications in the development of intelligent NLP and HLT systems. For
example, the original English USAS semantic annotation tool (or English semantic
tagger) has been applied in numerous research studies such as entrepreneurship
[65], software engineering [227], empirical language analysis [171], requirements
engineering [182], historical semantic analysis via HTST 1.1 [166], to train a Chatbot
[218], and several others [23, 214]. Moreover, USAS [180] has been ported previously

1USAS: the UCREL (University Centre for Computer Corpus Research on Language) Semantic
Analysis System, HTST: the Historical Thesaurus Semantic Tagger
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to cover many other language52 (Arabic, Finnish, Russian, Chinese, Welsh, Italian,
Portuguese, Czech, Dutch and Spanish) with a unified semantic annotation scheme.
Following this established framework i.e. USAS [180] therefore, in this research
work primarily focus will be the development of a coarse-grained all-words semantic
tagging tool rather than annotating fine-grained word senses as in WordNet.

Originally developed for the English semantic tagging task, USAS [180] is a
commonly used semantic field oriented analysis system. Compared to Word Sense
Disambiguation (WSD) systems, it does not disambiguate between fine-grained
word sense definitions, but rather, it assigns a semantic category (or categories) to
each word or phrase by employing a unified semantic annotation taxonomy. USAS is
also different from those systems which extract other types of information (named
entity recognition, semantic role labelling, etc), in that it assigns semantic field tag(s)
to every lexical unit in a running text. The required resources and methods in the
development and evaluation of the USAS [180] system are: (i) a set of semantic
field tags® (see Table 2.4, for major semantic field tags), (ii) single and multi-word
semantic lexicons, (iii) semantic field disambiguation methods, and (iv) a software
framework (for more details on these see Section 2.4.1).

With the web transforming into a multi-lingual hub, the NLP research community
has also diverted its focus to the development of multi-lingual tools. As a conse-
quence, USAS [180] has been ported for various languages (mentioned previously)
based on semantic lexicons using a unified semantic annotation scheme. However,
the focus is primarily towards Western and East Asian languages. Unfortunately,

much less effort has been devoted to South-Asian languages particularly Urdu, and

http:/ /ucrel.lancaster.ac.uk/usas/ - Last visited: 9-October-2018

3The USAS semantic fields are originally based on the Longman Lexicon of Contemporary English
taxonomy, with 21 major semantic fields which expand into 232 sub-fields: http://ucrel.lancaster.
ac.uk/usas/USASSemanticTagset.pdf - Last visited: 29-October-2018
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there is a dearth of semantic resources and annotation tools for Urdu, which is a

common and widely spoken language of the world [216].

1.2 Importance and Characteristics of the Urdu Language

Urdu is one of the most popular languages spoken around the globe and an official
language of Pakistan. There is a dire need to develop basic NLP text annotation and
analysis resources for this highly under-resourced language for several reasons; (i) it
has 400 million speakers around the world [41, 1], (ii) digital text is readily available
through on-line repositories and is rapidly increasing day by day [4], (iii) it has
ethnic and geographically diverse speakers, (iv) a wide South-Asian diaspora [41],
(v) it is a lingua franca for the South-Asian business community in Pakistan and in
the South Asian community in the UK [194], and (vi) one of the widely spoken
language in the United Kingdom [22].

Urdu is an Indo-Aryan? (or Indic) language derived from Sanskrit/Hindustani
language [33], has been heavily influenced by Arabic, Persian [33] and less by
Turkic (Chagatai®) languages for literary and technical vocabulary [216], and is
written from right to left in Nastaliq style [59, 216]. Urdu is a highly inflectional
and morphologically rich language [202], including many multi-word expressions.
Moreover, it is a free word order language [59, 143, 196] and does not use capitalised
letters for upper and lower case discrimination. Moreover, the script is context

sensitive i.e. letters change their shape depending on the adjoining letters.

*https://en.wikipedia.org/wiki/Indo-Aryan_languages#cite_note-ethnologue-4 -
Last visited: 13-April-2019
>https://en.wikipedia.org/wiki/Urdu - Last visited: 20-March-2019
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1.3 Problem and Significance

To develop high-quality large-scale freely available resources for the under-resourced
Urdu language is non-trivial, since it is a challenging, expensive, slow, laborious,
difficult and time-consuming task. Therefore, relatively little research work has been
reported on the development of large scale semantically annotated corpora, NLP
pre-processing tools, and methods for Urdu (see Chapter 2); most of the work in
the field has been done for English. Furthermore, large semantic lexical resources
based on the USAS based semantic classification scheme (see Section 1.1) have not
been attempted before for Urdu. This thesis addresses this gap in the research by
presenting the Urdu Semantic Tagger (hereafter the US Tagger) by incorporating
semantic lexicons (single and multi-word), pre-processing tools (tokenizers, Part-Of-
Speech (POS) tagger, and lemmatizer), and methods (semantic field disambiguation
and multi-target classifiers) which use semantic fields as the organizing principle
and are thus a unique resource created for the Urdu language. Furthermore, the US
Tagger is tested on a newly developed semantically annotated corpus.

In addition to describing and evaluating the US Tagger, semantic resources, and
supporting tools, this thesis will also outline their further development and suggest
new applications for them. The US Tagger can be practically applied in many Urdu
NLP and HLT applications and tailored for various purposes, as will become evident
in this thesis.

The US Tagger is the thirteenth non-English semantic tagger in the UCREL Se-
mantic Analysis System (USAS) (see Section 1.1) framework. At present, there
are equivalent semantic taggers based on semantic lexicons available for twelve
languages, and the framework is continuously being expanded to cover new lan-
guages. The findings of this thesis (see Section 1.5), in regard to both the lexicon

development where different automatic or semi-automatic approaches have been
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used, Urdu natural language processing tools, semantically annotated corpus as well
as multi-target classifiers, the software development of the US Tagger, will benefit
this work, especially when the USAS framework is extended to other languages
which, like Urdu, are highly inflectional and morphologically rich. Moreover, now
that there are equivalent semantic taggers available for many languages, this opens
up exciting possibilities for the development of various multi-lingual applications in

addition to mono-lingual Urdu applications.

1.4 Objective and Research Goals

The aim of this research work is to develop an Urdu semantic tagger (or tagging
tool) which can perform semantic analysis of Urdu text, by investigating whether
and how it is possible to create semantic resources for Urdu semantic tagger which
are compatible with the existing English semantic tagger pipeline. In this regard, the

following research goals can be formulated:

e Explore the in-depth problem of automatic semantic tagging task for Urdu text

in order to see what new methods and frameworks are required.

e Develop efficient algorithms and methods as well as extract rules for automati-
cally detecting word and sentence boundary as well as to assign POS tags to

Urdu language text.

e Develop large-scale supporting resources (e.g. lexicons, word lists, and anno-

tated corpora) for Urdu word, sentence segmentation and POS tagging.

e Develop annotated training and testing corpora for multi-target classifiers and

to evaluate the US Tagger.

e Create an Urdu semantic tagset for Urdu semantic tagging task.
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e Develop Urdu semantic lexicons (single and multi-word) using automatic and
semi-automatic approaches as well as supporting resources and to determine

how extensive are these lexicons in terms of lexical coverage.
e Evaluate new methods for the semantic tag disambiguation task for Urdu text.

e Development of a new software framework for the US Tagger and its evaluation.

1.5 Contributions
The main contributions of this research work are:

1. Development of various Urdu natural language tools for the semantic tag-

ging task along with supporting resources.

The main lexical unit for Urdu semantic tagger is sentence and word/token.
Once properly tokenized, these units are assigned POS tags to remove lexical
and semantic ambiguity. The grammatical tags are assigned to tokenized data.
Urdu text is written in a script which normally has no spaces between words.
The word boundary recognition problem in Urdu text tokenization faces two
main challenges; (i) the space insertion problem, where there is extra space
between two different words (so need to remove space to form a single token)
and (ii) the space omission problem, where there is no space between two

different words (so need to insert space to detect two different tokens).

Contribution: State-of-the-art techniques have been developed for Urdu text
tokenization to solve space omission problem. The one which is adopted
in this thesis is a character bi-gram morpheme match base approach which
generates all possible sequences of tokens of the input text. Then using tri-

gram maximum likelihood estimation (MLE) to select the most optimised list,
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with back-off to bi-gram MLE with a Laplace smoothing estimation to avoid
the data-sparseness. Evaluation is performed on a self-created corpus. Space
insertion is solved using a dictionary look-up approach. Furthermore, the
morphemes and complex words dictionaries are generated either automatically
or semi-automatically. In addition to this, a large training and testing corpus
for word tokenization task has also been presented. On the other hand rule
based techniques have been developed for Urdu sentence tokenization task.
These are rules, dictionary look-up and regular expressions. Furthermore, a
manual sentence annotated dataset has been developed for the evaluation of

Urdu sentence tokenizer.

Contribution: To assign grammatical categories or tags to a tokenized word,
various off-the-shelf Urdu POS taggers (or tagging methods) have been pre-
sented. Therefore, to train and test statistical POS taggers a corpus of 200K
words has been annotated using semi-automatic approach to assign CLE Urdu
POS tags [225]. Furthermore, 80% of the data is used to train two different
statistical models, the tri-gram Hidden Markov Model, and Maximum Entropy
statistical taggers. Furthermore, Laplace and Lidstone smoothing estimation

methods for unknown words have also been explored.

. Creation of Urdu semantic tagset.

Porting a USAS semantic classification scheme into another languages is not
an easy task. The selection of an appropriate semantic classification scheme
will have effects on the quality of semantic lexicons and eventually on semantic

tagger accuracy.

Contribution: Machine translation and bilingual dictionaries have been used

to automatically translate an English semantic tagset into the Urdu language.
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Automatically translated Urdu tagset is further manually verified by two anno-

tators.

3. Development of Urdu semantic lexicons, English-Urdu sentence aligned

parallel corpus and Urdu monolingual corpus.

The US Tagger relies heavily on semantic lexical resources as its knowledge
source. One important task for the US Tagger is to generate similar single-word
and multi-word lexical resources. However, manually creating them is time
consuming, laborious, slow, expensive and may be subject to annotator biases.
A major challenge is to create these resources with less effort and in a short

time-span.

Contribution: In this research various methods for rapidly constructing large-
scale and high-quality Urdu semantic lexicons (single-word and multi-word)
have been proposed. These automatic or semi-automatic approaches for con-
structing semantic lexicons for the Urdu language are: (i) mapping, (ii) crowd-
sourcing, (iii) machine translation, (iv) GIZA++, (v) word embedding, and
(vi) named entities. Four (Crowdsourcing, machine translation, word embed-
ding, and named entities) of these methods have not been used before for the
creation of a semantic tagger in a new language, and in addition their combina-
tion is also novel. In addition to this, a large English-Urdu sentence aligned
parallel corpus and an Urdu monolingual corpus has also been generated for

GIZA++ and word embedding approaches.
4. Development of a multi-target semantically annotated corpus and multi-
target classification methods.

In the final evaluation step in order to test the US Tagger performance and the

lexical coverage, a benchmark semantically annotated corpus is required.
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Contribution: To develop a large scale semantically annotated corpus by col-
lecting text from various domains and then annotated using a semi-automatic
approach. The corpus is annotated at word level with the USAS classification
scheme. A tagged word can have one to nine Urdu semantic field tags asso-
ciated with it. These tags have been used to indicate multiple membership
categories from the USAS semantic taxonomy. i.e. different components of
one sense. Furthermore, an inter-annotator agreement is also calculated on the
proposed multi-target corpus. To demonstrate how a proposed corpus can be
used for the development and evaluation of Urdu semantic tagging methods,
various features are extracted (local, topical and semantic) from the newly
created corpus and applied seven different supervised multi-target classifiers
on them. Furthermore, the same test corpus is used to evaluate the US Tagger

accuracy, precision and lexical coverage.

. Development of the Urdu semantic tagger, semantic tag disambiguation

methods and evaluation.

Based on Urdu semantic lexicons, a semantic annotation tool is required to
provide semantic analysis of Urdu language text. Moreover, as in the case of
grammatical tagging, the task of the US Tagger is subdivided primarily into
two phases, (i) tag assignment — attaching a set of potential semantic tags to
each word or token, and (ii) tag disambiguation — selecting the contextually ap-
propriate from the set provided in the first phase. Evaluation of the annotation

tool and lexicon is also required to measure its performance.

Contribution: The US Tagger has also been developed in this thesis by integrat-
ing Urdu semantic lexicons, NLP tools, and disambiguation rules. Furthermore,
various baseline statistical and knowledge based approaches have been applied

to improve semantic tag disambiguation, i.e. POS and general-likelihood. The
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US Tagger is then used to evaluate Urdu semantic lexicons and annotated text

on various corpora.

1.6 Organization of the Thesis

The remainder of this thesis consists of the following five chapters as follows:

e Chapter 2: Background and Related Work

This chapter describes the background required to establish a semantic tagging
task for Urdu text. To start with, this thesis outlined the general framework
for the field of semantic tagging by introducing the most related concepts.
Thereafter, an overview of the state-of-the-art techniques and resources for
bilingual and multilingual semantic tagging task has been provided. After-
wards, this chapter describes USAS, another semantic tagging tool originally
developed for the English language which is based on the idea of semantic
tields or tags, as a model for the development of the Urdu counterparts. In
addition to this, an overview of existing state-of-the-art lexical resources have
been presented. Moreover, an overview of existing NLP tools, Urdu word and
sentence tokenizers, POS taggers, and corpora and other resources required
to build a framework for the US Tagger has been given. Finally, this chapter
conclude by giving a brief account of measures used to evaluate the tools as

well as tagger and multi-target classifiers.

e Chapter 3: Urdu Natural Language Tools

With the preliminaries dealt with, this chapter begins with an overview of
sentence tokenizer, word tokenizer, and part-of-speech tagger. Following that it
began by looking at the initial phases of the research and development process,

and, subsequently, it provide a brief summary of the development and the
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structure of the Urdu natural language tools to place the work in its immediate
context. Although these tools are not the main focus of the US Tagger, however,
it is essential to develop these pre-processing tools for the Urdu language, since
there are no word or sentence tokenizers and POS taggers which are freely and
publicly available. Furthermore, it is not possible to perform semantic tagging
and the application of various semantic disambiguation methods without the
availability of these pre-processing tools. Thereafter, this chapter provide a
detailed description of the principles and practices which have been followed
when creating these tools. In addition, this chapter also provided the detailed
process of creating the supporting dictionaries and corpora which are required

for these pre-processing tools.

This chapter concludes with an evaluation process for the newly created Urdu
natural language tools. The results have demonstrated that the newly created

Urdu natural language tools performed well on several test corpora.

Chapter 4: Semantically Annotated Corpus and Methods

This chapter reports the development of the semantically annotated corpus
which is developed for the evaluation process of the US Tagger. Each word
or multi-word expression (MWE) in the US Tagger output may appear with
multiple possible semantic field tags to show the different meanings which
can be taken in different contexts, and these are left in the output in rough
likelihood order if disambiguation methods cannot resolve the correct sense.
For such systems, multi-target classifiers can be potentially beneficial, where
the word(s) may be associated with multiple labels or tags. Subsequently,
several features have been extracted and applied various state-of-the-art multi-

target classifiers to the semantic disambiguation task and this can be seen as
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an important step towards more robust wide coverage candidate semantic tag

assignment before any final disambiguation.

Finally, a detailed statistics of different techniques applied on multi-target

classifiers have given.

e Chapter 5: Urdu Semantic Tagset, Lexicons, the US Tagger and its Evaluation

This chapter describes the Urdu semantic tagset, lexical resources and software
framework of an Urdu semantic tagger along with its evaluation process. This
chapter begun by looking at the initial phases of the research and development
process, and, subsequently, it provide a short overview of the development
and the structure of the Urdu semantic tagset in order to place the work in
its immediate context. Thereafter, a detailed description of the principles and
practices is provided which has been followed when creating the Urdu semantic

lexical resources.

This chapter also reports the results of the US Tagger when integrated with six
Urdu semantic lexical resources, disambiguation methods, and with various
natural language tools (see Chapter 3). This chapter also briefly summarizing
the US Tagger framework which is developed for the evaluation process of Urdu
semantic tagging task. This evaluation is carried out on the corpus mentioned
in Chapter 4 as well as on the most frequent words of the Urdu monolingual

corpus (see Chapter 2).

These experiments measure the lexical coverage and accuracy by indicating the
number of words which are covered by the single and multi-word semantic
lexicons as well as by indicating how well these lexicons and tools perform
when they are integrated into the US Tagger, respectively. Finally, this chapter

analysed the errors which occurred in the US Tagger evaluation process.
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e Chapter 6: Conclusions and Further Directions

This chapter provides the conclusions. The first section comprises a summary
of the thesis. Thereafter, research questions have been revisited. Finally, the
chapter concluded by suggesting further work on the semantic lexical resources

and also envisage new applications for the US Tagger.

1.7 Dissemination and Exploitation

1.7.1 Published Work
Publications produced during this research work are as follows:

e “Scott Piao, Paul Rayson, Dawn Archer, Francesca Bianchi, Carmen Dayrell,
Mahmoud El-Haj, Ricardo-Maria Jiménez, Dawn Knight, Michal Kren, Laura
Lofberg, Rao Muhammad Adeel Nawab, Jawad Shafi, Phoey Lee Teh and Olga
Mudraya. (2016) Lexical Coverage Evaluation of Large-scale Multilingual
Semantic Lexicons for Twelve Languages. In proceedings of the 10th edition
of the Language Resources and Evaluation Conference (LREC2016), Portoroz,

Slovenia, pp. 2614-2619.”

1.7.2 Submitted Papers

e “Jawad Shati, RM.A. Nawab, Paul Rayson, H. Rizwan Igbal. Urdu Natural
Language Toolkit (UNLT). Natural Language Engineering (NLE).”

e “Jawad Shafi, RM.A. Nawab, Paul Rayson. Semantic Tagging for the Urdu
Language: Annotated Corpus and Multi-Target Classification Methods. ACM

Transactions on Asian and Low-Resource Language Information Processing

(TALLIP).”



Chapter 2

Background and Related Work

2.1 Introduction

In Chapter 1, various types of semantic annotation tools have been described: (i)
some are designed to identify the topic or themes while others are designed to extract
specific partial information from given texts and (ii) others are designed to identify
semantic categories of all lexical units based on a given classification scheme. An
in-depth discussion of the semantic annotation tools proposed for the first type of
task will be beyond the scope of this chapter. Therefore, this survey is restricted to
the issue of semantically rich text analytical tools, methods, and resources (based
on latter type of task) on a natural language text which is the focus of this research
work.

The rest of this chapter is divided into four parts. In the first part (see Section 2.2)
basic background is given by defining the most important related concepts which are
required to describe an Urdu semantic tagger. In the second part, related work is sub-
divided into eight sub parts (Sections 2.3.1 to 2.3.8), these sub-parts describe corpora
as well as techniques for WSD and semantic tagging tasks, lexical resources, types of

natural language toolkits for English and European languages, Urdu word tokeniza-
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tion, sentence tokenization and POS tagging techniques for Urdu, and characteristics
of datasets developed for several Urdu NLP tasks. The third part (Sections 2.4)
presents USAS as well as the English semantic tagger along with its components
and its further extension. Finally, the last part (see Section 2.5) gives an overview
of the commonly used evaluation measures which have been used to evaluate the

performance of the semantic tagger, multi-target classifiers, and Urdu NLP tools.

2.2 Fundamental Concepts

This part introduces the most important concepts related to the semantic tagging
task. It starts from the most general concept, which is computational linguistics, and

then moves on to more successively specialized ones.

2.2.1 Computational Linguistics

Computational Linguistics (CL) is an interdisciplinary field concerned with the
statistical or rule-based modelling of natural language text from a computational
perspective, as well as the study of appropriate computational approaches to linguis-
tic questions. CL is a relevant task for a wide range of research areas and practical
applications, for instance NLP, Human Computer Interaction (HCI), text mining,

data science etc. However, the focus of this research work is in the field of NLP.

2.2.2 Natural Language Processing

Natural language processing is a sub-field of computer science, and artificial intelli-
gence concerned with the interactions between computers and humans using natural
languages. It deals in particular with how to program computers to process and anal-

yse large amounts of natural language data. The most commonly researched areas
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in the NLP field are syntax annotation (POS tagging, word/sentence tokenization,
stemming, parsing, terminology extraction), semantics (WSD, sentiment analysis,
machine translation, semantic tagging), discourse (text summarization, discourse
analysis, coreference resolution), and speech (speech recognition, speech segmen-
tation, and text-to-speech). However, the focus of this research work will be on

semantic tagging of natural language text rather than speech.

2.2.3 Text Annotation

Text can also be provided with additional linguistic information, called annotation, or
it can be defined as the practice of adding interpretative linguistic information to a
text [111]. There are different types of text annotation. However, this thesis deals
with computational linguistics annotations, which will be discussed in the following
subsections. Other types of annotation are the textual and extra-textual annotation,

orthographical annotation etc.

2.24 Part-Of-Speech Tagging

The most basic type of linguistic annotation is POS tagging which is also known
as grammatical tagging or morpho-syntactic annotation. An annotation program
automatically assigns each lexical unit in a text with a tag that indicates its part of
speech. The information about the part of speech is valuable for a number of NLP
sub-fields, for instance, WSD and semantic tagging, and so on [165]. In this research

work, the POS tagging has been used to resolve semantic tag ambiguity.

2.2.5 Semantic Tagging

Semantic tagging can be defined as a dictionary-based process of identifying and

labelling the coarse-grained meaning of words in a given text. In research [75],
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this process parallels that of grammatical tagging except that it is more abstract
and more difficult to achieve. Semantic tagging has received increasing attention
during recent decades and various tools (semantic taggers) have been developed
for this purpose for different languages. Semantic taggers have several applications
such as terminology extraction, machine translation, bilingual and multilingual
MWE extraction, monolingual and multilingual information extraction, as well as
in automatic generation, interpretation, and classification of language (for more
applications see Section 2.4.1). There are different techniques (see Section 2.3) to
carry out the semantic tagging task. However, in this thesis, approach to carrying
out semantic tagging is based on semantic fields (see Section 2.2.6). Other semantic
tagging and annotation techniques are defined in Section 2.3. Moreover, the main
research focus of this thesis is on creating computational linguistic resources for

semantic tagging and the semantic tagger.

2.2.6 Semantic Fields

Semantic fields can be defined as “a theoretical construct which groups together
words that are related by virtue of their being connected at some level of generality
with the same mental concept” [74]. Words which belong to the same semantic
field can be synonyms, antonyms, hyponyms!, meronyms?, or expressions that are

associated with each other in one way or another. The semantic tagging tool which

have been reported in this thesis is based on semantic fields as tags.

1A word that is more specific than a given word.
2A word that names a part of a larger whole.
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2.2.7 Word and Sentence Tokenization

Tokenization is the act of breaking up a sequence of strings into pieces of words or
sentences that are known as tokens. Tokens can be individual words, multi-words or
even whole sentences. In this work, the tokens become the input for the US Tagger so
that particular words can be tagged with semantic fields or help to resolve semantic

tag ambiguity.

2.3 Related Work

The research field closely related to semantic tagging task is WSD (see Section 2.2.6)
[180]. Therefore, in this section, various corpora and methods developed for WSD
and semantic tagging tasks have been presented. Thereafter, this part will focus
on related work on lexical resources, natural language toolkits, word and sentence
tokenization methods, POS tagging methods and datasets because these have also

been developed in this research.

2.3.1 Corpora and Techniques for Word Sense Disambiguation
2.3.1.1 Corpora

To develop large-scale freely available standard evaluation resources to investigate
the problem of WSD is a non-trivial task. In previous literature, efforts have been
made to develop benchmark corpora for the WSD task. An in depth discussion of all
the WSD corpora will be beyond the scope of this study. Therefore, this subsection
only present some of the most prominent studies.

The most prominent effort in developing standard evaluation resources for WSD

task is a series of SensEval competitions®. The outcome of these competitions is a

3http:/ /www.senseval.org/ - Last visited: 18-February-2019
P 8 Y
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set of benchmark corpora for the WSD task. The SensEval competitions on WSD
task have been organized from 1998 to 2004. The competitions focused on two
main types of WSD: (i) all-words WSD task and (ii) lexical sample WSD task. The
languages for which WSD corpora have been developed are: English, Basque, Italian,
Japanese, Korean, Spanish, Swedish, Chinese and Romanian. The lexical resources
or dictionaries that are used in the development of WSD corpora include WordNet.
SensEval WSD corpora are large and freely available for research purposes [146].
In previous literature, other than SensEval, efforts have been made to develop
WSD corpora for English and other languages such as the SEMCOR WSD Corpus
[104], Google WSD Corpus [251], and DutchSemCor WSD corpus [238]. However,
for the Urdu WSD task, only two corpora have been found in previous research,
an Urdu sense tagged corpus [234] and Urdu Lexical Sample WSD (ULS-WSD-18)
corpus [202]. The Urdu sense tagged corpus [234] is developed for the Urdu all-
words WSD task and contains 17K manually sense annotated sentences with 2,285
unique senses by a single annotator over a period of 10 months. ULS-WSD-18 corpus
has been developed for the lexical sample WSD task and contain 7,185 manually
sense tagged sentences for 50 target words (senses of tagged words are extracted
from a hand crafted dictionary called Urdu Lughat Board [32]) by three different

annotators.

2.3.1.2 Techniques

WSD research is closely related to a work reported here, as a consequence different
WSD techniques have been used to resolve semantic tag ambiguity such as those
mentioned in [180]. Therefore, in this section, an overview of WSD techniques are

provide.



2.3 Related Work 21

Over the years, many different WSD techniques have been proposed, and they
can be classified into the following four categories: (i) Artificial Intelligence (AI)
techniques, (ii) Knowledge-based techniques, (iii) Corpus-based techniques, and
(iv) Hybrid techniques [146, 180].

Prominent efforts to tackle WSD based on Al techniques began in the early 1970s
via large-scale language understanding [ 163, 88]. For example, Wilks [245] described
a “preference semantics” system, using selectional restrictions and lexical semantics
(case frames*) to find a set of senses for a word in a sentence.

Knowledge-based WSD techniques use lexical resources to provide contextual
knowledge which is essential to determining the appropriate sense(s) of polysemous®
words. These resources can be thesauri [199], machine-readable dictionaries [173],
or computational lexicons [134, 180]. A wider survey of these resources can be found
in Section 2.3.3.

Current state-of-the-art techniques for the resolution of word sense ambiguity
stem from the field of Machine Learning (ML). These ML (or corpus-based) WSD
techniques can be primarily classified into: (i) unsupervised, (ii) semi-supervised,
and (iii) supervised.

Unsupervised techniques have the potential to acquire contextual information
directly from knowledge acquisition [72] i.e. senses can be deduced from untagged
raw text using similarity measures® [130] based on the idea that occurrences of the
same sense of a word will have similar neighbouring words. Example techniques
for unsupervised WSD are co-occurrence and spanning tree-based graphs [6], word

clustering [36], and recently developed neural network language models [161].

4These contain information about words, their relation to other words, and their roles in individual
sentences

>Words having many meanings

®Clustering word occurrences and then classifying new occurrences into the induced clusters.
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Semi-supervised ML WSD techniques usually train a classifier with a small set of
labelled examples and then bring further improvements in the process of iterative
learning i.e. a classifier is retrained, and this learning process continues until con-
vergence. There have been a number of studies which have used semi-supervised
ML WSD techniques, for instance, [153] used label propagation algorithm for WSD,
whereas [251 ] used sequence learning neural network to differentiate different senses.

Supervised single-label classification techniques apply where each word is only
associated with a single label or class, that is, they assign the appropriate sense to
a target word. There have been a number of research studies where single-label
ML classification techniques are applied for English and European language WSD
tasks, for example, [5] used decision lists [197], whereas, [137] used C4.5 (decision
tree) and concluded that it outperformed all the other single-label ML techniques,
simple Naive Bayes is applied in [40], [232] (based on neural networks), k-nearest
neighbour [61]. A complete overview and discussion of all single-label classification
techniques will be beyond the scope of this section. Therefore, this section present
the single-label classification studies adopted for Urdu. Only two such studies have
been found in the previous literature: (i) Abid etal. [4], and (ii) Naseer and Hussain
[145].

The authors in [4] developed a lexical-sample based WSD system using single-
label classifiers including, Naive Bayes, Decision Tree, and Support Vector Machines
with POS tags and bag-of-words as features. Twenty named entities are used to
evaluate the system performance. The reported F; scores for Naive Bayes, decision
tree, and support vector machines are: 71%, 34%, and 34% respectively.

Another study is conducted by [145] using Naive Bayes classifiers for the de-

velopment of lexical-sample WSD system. The authors resolved ambiguity on four
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words including three verbs and one noun. Bag-of-words and POS tags are used as
features and the reported highest F; score is 95.15%.

The final of four categories of techniques describe here is hybrid approach, repre-
senting studies using a combination of the various above-mentioned techniques. A
number of research studies have been carried out using hybrid ensemble techniques,
for instance, [222] used LDOCE (Longman Dictionary of Contemporary English
[173]) with information derived from corpora etc.

It can be observed from the above discussion that a number of WSD techniques
have been used for sense resolution. However, these techniques have several short-
comings as follows: (i) Al techniques are tested on a single or only a few sentences,
therefore, their effectiveness on real text is impossible to determine, (ii) knowledge-
based methods are a useful way to represent linguistic or lexicographic knowledge
of word sense ambiguity, and they have produced good results. However, they are
not very robust as natural language is a dynamic phenomenon i.e. new words and
senses are added and old ones become archaic or outdated, thus, they lack complete
coverage as new words or senses may not exist in these resources, (iii) lexical re-
sources are readily available for English and other European languages, but not for
under-resourced Urdu’ language, (iv) semi-supervised ML techniques have a major
drawback in that they lack a method for selecting optimal values for classifiersi.e. the
number of iterations and labelled examples [151]. Further, these types of techniques
are tested on small corpora [146], (v) unsupervised ML techniques automatically
acquire contextual information and are often erroneous and noisy [4], thus degrad-
ing system performance, (vi) hybrid techniques require several resources, which is
difficult for resource-poor languages, and (vii) supervised single-label classifiers

can assign only one tag or label.

7 A recent study [213] involved Urdu semantic lexicons (both single and multi-words) of 2K entries,
however, it is lacking wide lexical coverage.
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2.3.2 Corpora and Techniques for Semantic Tagging
2.3.2.1 Corpora

A number of studies in the literature have devoted a great deal of research effort for
the development of semantic annotation, such as, Semantic Role Labelling, Named
Entity Recognition, Content Analysis, sentiment analysis etc. Usually, these semantic
annotation systems have used annotated corpora and more recently BabelNet® [149]
to induce or cluster different meanings or senses [138]. The most prominent effort
in developing standard evaluation resources for various semantic annotation tasks
are the series of SemEval competitions for English and other languages [146, 147].
The outcome of these competitions (from 2007 to date) are a set of benchmark
corpora with semantic annotations for various NLP tasks, Information Extraction,
Sentiment Analysis and Opinion Mining (a.k.a sentic computing [43]), Textual
Semantic Similarity, Word Semantic Similarity, Question Answering etc. (SemEval-
2012%, SemEval-20131?, SemEval-2014'!, SemEval-2015'2, SemEval-2016'3, SemEval-
2017, and SemEval-2018%) for a variety of languages including English, French,
Italian, Dutch, Chinese, Arabic and several others. Table 2.1 summarizes the corpora

involved in the SemEval workshop series along with their properties.

$Multilingual semantic network created from the algorithmic integration of WordNet and
Wikipedia.

*https://www.cs.york.ac.uk/semeval-2012 /index.html - Last visited: 18-February-2019
Ohttps://www.cs.york.ac.uk/semeval-2013/ - Last visited: 18-February-2019
http://alt.qcri.org/semeval2014/ - Last visited: 18-February-2019
12http://alt.qcri.org/semeval2015/ - Last visited: 18-February-2019
Bhttp://alt.qcri.org/semeval2016/ - Last visited: 18-February-2019
Yhttp://alt.qcri.org/semeval2017/ - Last visited: 18-February-2019
Bhttp://alt.qcri.org/semeval2018/ - Last visited: 18-February-2019
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2.3.2.2 Techniques

Semantic tagging (see Section 2.3.2) is certainly an effective method, but it also faces
the difficulty that the same object or concept can be referred to in a number of ways;
the identification of the meaning of a word is not necessarily an easy task as defined
in [120] (pp. 43-44). By way of illustration, the animal “cat” can also be called kitten,

pussy, and mog. This phenomenon is related to synonymy'®. On the other hand, one

17

7

single word can refer to a number of concepts, such as the polysemous’ noun “bass’
can refer both to a type of fish, tones of low frequency, and to a type of instrument.
Likewise, the homonym!® word “book” can refer to the noun “to read” as well as to
the verb “reservation”. Such kinds of ambiguity can sometimes present difficulty to
human beings. There is no doubt that human can differentiate the various meaning
of such words with the aid of their knowledge of the world. However, this type of task
is non-trivial for computer programs and thus have presented a serious challenge to
NLP research community.

By way of illustration, if someone is using a query on a search-engine to find
information about a certain term and enters into the search field a word “bass”, which
is a polysemous, than s/he may end up with considerable amounts of unnecessary
contents in the search results, such as many information related to the term fish
whereas s/he actually wants contents related to a type of musical instrument. In
NLP the task of selecting the relevant sense for a lexical unit (word) from multiple
senses is referred to as WSD [146]. Semantic tagging (see Section 2.3.2) is another
way of carrying out this task. Similarly, if a search engine is used to search the word

“crane”, it might be the possibility that it would return hits for the word meaning a

bird in it, and the search engine might ignore websites containing text relevant to the

16Two words that can be interchanged relative to that context.

17 A word having many meanings.

Two or more words are homonyms if they are pronounced or spelled the same form but have
different meanings.
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words with a type of construction equipment or to strain out one’s neck. For such
cases, the semantic tagging task can have significant benefits i.e. it can help to find
out all the relevant information and filter out the irrelevant ones.

The approach which have been adopted for the semantic tagging task in this
thesis is based on semantic fields (see Section 2.2.6). Words which belong to the same

semantic field can be synonyms, antonyms, hyponyms'?, meronyms?’

, Or expressions
that are associated with each other in one way or another. Synonymy “near or close”
and antonym “near and far” are relations which exist between two words. The
relations can also be hierarchical, as in the case of hyponyms and meronyms, in
which some words have a more general meaning whereas some have a more specific
meaning, when they are referring to the same entity. Hyponyms is the “kind of”
relation. For example, the most general term “garment” is on the top level of this
hierarchy, and it is referred to as the hypernyms and the more specific terms “coat”
on the level below are referred to as the hyponyms. The second level terms, in turn,
are hypernyms of even more specific terms “parka” on the third level. By comparison,
meronymy is the “part of” relation, where phenomena are analysed into parts. Here
the superordinate term “shirt” refers to the complete entity, whereas the terms on
the lower levels represent its parts “sleeve” on the following level and then “cuff” on

ars /T

the subsequent level. Consequently, the words “garment”,”coat”, “parka”, “shirt”,

“sleeve”, and “cuff” as well as, for instance, the words “attire”, “hem”, “trousers”,
“undress”, “dressed”, “stark naked”, and “haute couture” could all be considered
to belong to the same semantic field. If a semantic tag (label) is attached, to every
word in a text indicating the semantic field into which each falls, it will then be

able to extract all the related words from a text by querying on the specific semantic

field. There is a problem however, in the classification of words, since not all of them

19 A word that is more specific than a given word.
20 A word that names a part of a larger whole.
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always fall conveniently into the predefined semantic fields. The authors in [74] (pp.
58-59) point out with the example word “sportswear”. This word could be classified
in the semantic field of clothing equally well as in the semantic field of sports. These
types of systems are discussed in more detail in Section 2.4.1.1.

A collection of words classified into semantic fields can be designated as a “se-
mantic annotation system or semantic tagging”. Semantic annotation systems are
something of a compromise between, on the one hand, attempting to mirror how
words are believed to be organized into relationships in the human mind, and on the
other hand, the need for usable annotated corpora and reference works by linguists
and other scholars [75] (pp. 54-55). The authors in [74] further observed that the
majority of existing semantic annotation systems consist of very similar basic cat-
egories, but they differ from each other in terms of hierarchy (in other words, the
structure of the categories) and in terms of granularity (in other words, the level
of detail; how many categories the system distinguishes). The semantic tagging
approach which will be describe in the thesis is based on semantic fields.

Texts can be annotated with semantic field information in three different ways
depending on the level of automation [75] (pp. 62). The first option is to attach
all annotations in the text manually. The second option, computer-assisted tag-
ging, represents a semi-automatic form of manual tagging which is supported by a
computer-readable lexicon containing possible semantic fields for given words. Such
systems may also contain a limited amount of automatic WSD mechanisms. In this
case, the computer is used to assign candidate semantic field tags to all the words in
a text on which there is already information, and it leaves for manual treatment only
those words that it does not recognize or which remain ambiguous after the appli-
cation of disambiguation methods. The third option is a fully automatic semantic

tagger. This is a program which assigns the correct semantic fields automatically to



32 Background and Related Work

all the known words in a text without any manual intervention and without leaving
any words ambiguous. The semantic tagging approach dealt with in this thesis
utilizes the third option.

NLP Researchers Rayson and Stevenson (2008) [184] classified semantic tagging
systems (or semantic field annotation) into four types of methods, (i) Artificial
Intelligence (AI) based, (ii) Corpora based, (iii) Knowledge based, and (iv) Hybrid.

The first approach for semantic tagging is based on artificial intelligence approach
and is popular in the 1970s, but declined after the 1980s, when they found to be
impractical for large-scale language understanding [180].

The second approach is based on tagged corpora. Tagged corpora have also been
used to induce or cluster different senses or meanings, aiming to identify and assign
certain types of semantic information required by specific tasks. These types of
semantic annotations have been researched in [54] and [15] identify the topic or
themes of a given text. There are yet further studies [198,241] which are conducted to
extract specific or partial information, such as named entities, categories of relations
between the specific named entities, and/or types of events.

A third approach of semantic tagging is via another group of knowledge-based
sense inventories (WordNet, BabelNet, etc.), and for these semantic annotation can
be used to assign fine-grained word senses [134]. WordNets have been developed
for English, other European, and several Asian languages. These resources have also
been ported to provide multilingual word sense inventories [146] for more detailed
information on these resources see Section 2.3.3.

The fourth approach is based on hybrid based i.e. which are a combination of the
previously mentioned methods (Al corpus based or knowledge based). The seman-
tic tagging system which has been reported in this thesis is based on hybrid approach,

as it uses the knowledge-based and corpus based approaches in combination.
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Other semantic tagging research aims to assign each content word with a seman-
tic category using a component-based semantic classification scheme, for instance,
tagging the word “mother” as [HUMAN, FEMALE, ADULT] and “paprika” as
[NON-HUMAN, VEGETABLE], and so on. A number of research studies based on

this concept have been reported previously, including [119].

2.3.3 Lexical Resources

To develop large-scale freely available lexical resources to investigate the problem of
semantic analysis is a difficult task. However, there has been a number of research
efforts in the past, where researchers have devoted a great deal of attention for
developing benchmark evaluation lexical resources for semantic annotation task,
although most are for the English and European languages. These lexical resources
are thesaurus, machine-readable dictionaries, computational lexicons, and several
others?! [77]. A complete comparison of all these lexical resources used in semantic
annotation task is beyond the scope of this thesis. Therefore, a short overview of
those resources which are more commonly used in the semantic tagging task are as
follow (for more details see [7]).

A thesaurus provides a relationship between words like, synonymy (for instance,
abusisasynonym of coach), antonym (e.g. good is an antonym of bad), and, possibly,
further relations [105]. The thesaurus compiled by [199] (Roget’s International
Thesaurus) is a famous example and the latest addition contains 250,000 word
entries, which are organized in six classes and 1,000 categories. It is most widely
used in WSD semantic annotation task [146] and to calculate semantic similarities
[89].

Zthttps://dkpro.github.io/dkpro-wsd/Isr/ - Last visited: 18-February-2019
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Machine-readable dictionaries have become a popular source of knowledge for
NLP processing since the 1980s. Among others, the LDOCE [173] is among the list of
most widely used manually created machine-readable dictionary before the diffusion
of WordNet [135]. However, LDOCE as a semantic resource is not as widespread?>
[207].

Computational Lexicons (CLex), are divided into two types: (i) fine-grained, and
(ii) coarse-grained CLex. Fine-grained CLex, are often considered one step beyond
commonly available machine-readable dictionaries as they encode rich semantic
networks of concepts, called synsets. Among others, the WordNet [134, 135] manu-
ally created semantic lexicon provides gloss (textual definition of the synset with
usage examples), and lexical and semantic relations (these relations connect pairs
of word senses and synsets) for each synset. Presently, it is most predominant and
considered a de facto standard in computational lexicons for semantic annotation e.g.
WSD, thus, a most-used resource for English [146]. The latest version of WordNet
3.0, contains 155,000 words organized in over 117,000 synsets. Moreover, there has
been a number of attempts where WordNet is developed for several other languages,
EuroWordNet [237] provided an interlingual alignment between national wordnets,
thus make WSD possible in several other languages. However, with the increase
of multi-lingual digital text on the web research community are targeting multi-
lingual settings, as a consequence BabelNet [148] is automatically created by linking
Wikipedia to the most popular English WordNet CLex. Furthermore, BabelNet is
a multi-lingual lexicalized semantic network which provides concepts and named
entities in a multi-lingual setting and connected with large amounts of semantic
relations, i.e. Babel synsets. WordNet [134, 135], EuroWordNet [237], and BabelNet

Zhttp:/ /www.ilc.cnr.it/ EAGLES96 /rep2 /nodel8. htmI#SECTION(03124000000000000000
- Last visited: 18-February-2019
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[148] is used to assign fine-grained semantic concepts, which is often well beyond
what may be needed in many NLP and HLT applications |88, 180, 146].

In contrast to fine-grained CLex, another group of lexicons containing lexical
units classified with a set of predefined coarse-grained semantic fields, these type of
CLex are known as USAS English semantic lexicons [180], created manually by a

group of linguistics experts in the Benedict project®>

. In these lexicons (single-word
and multi-word) each word is assigned with pre-defined semantic categories based
on the lexicographically-informed semantic classification scheme. These lexicons
are different from other CLex, since they do not provide word meaning definitions
or fine-grained word senses, rather, they help to assign semantic fields based on
the LLOCE (Longman Lexicon of Contemporary English) [129]. For the multi-lingual
setting, efforts have been carried out to port semantic lexical resources in numerous
languages such as Finnish [118], Russian [140] by means of manual efforts, however,
manually developing semantic lexical resources for new languages from scratch is a
slow, and expensive task, that may lead to erroneous annotation [213].

There are several other studies where efforts have been carried out to create new
lexical resources from existing resources by finding transitive translation chains
of words across several bilingual dictionaries [34]. In other remarkable attempts
authorsin [243] and [110, 109 ] have extracted dictionaries from corpora and different
algorithms. There exist two main automatic methods to construct WordNets. The
first method translates the synsets of WordNet to any of the target languages [25, 157].
The second method builds target language WordNets, then aligns it with the English
WordNet [208]. In another study the authors in [160] used a metric to automatically
evaluate machine translation and a corpus approach to build a lexical resource.

Directly related to a work which is research here, the growing body of automatic

and semi-automatic approaches to generate USAS multilingual semantic lexicons are

ZUnder the EU funded IST-2001-34237, and two previous UK-funded projects.
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the experiments reported in [165, 68]. The authors in [165] automatically generated
semantic lexicons by transferring semantic tags from the existing USAS English
semantic lexicon entries to their translation equivalents in various European lan-
guages via dictionaries and bilingual lexicons. Authors in [68] used crowdsourcing
approaches by employing native language experts and non-experts, to generate a list
of coarse-grained senses using a USAS based multilingual classification fields, and
have generated coarse-grained semantic lexicons for different European languages.
In [213] word-to-word alignment is performed on parallel corpora to extract Czech
language semantic lexicon. In [213] multilingual WordNet is used to build the bi-
lingual semantic lexicon for the Malay language by porting the semantic lexicons via
synset IDs. For Arabic semantic lexicons, the authors in [136] used a combination of

automatically and manually generated semantic lexicons.

2.3.4 Existing Natural Language Processing Toolkits

In previous studies, a number of NLP toolkits have been developed to solve common
problems in language processing [47, 24, 35]. A complete comparison and discussion
of all available toolkits will be beyond the scope of this study. Therefore, this section
will present the comparison of five most popular, commonly and widely used, large-
scale, multi-functional language processing toolkits that are built and distributed
by academic projects: (i) Natural Language ToolKit (NLTK)?4 [221], (ii) Apache
OpenNLP? [108], (iii) Stanford CoreNLP?® [126], (iv) General Architecture for Text
Engineering (GATE)?) [55] and (v) LingPipe?® [45, 14].

Zhttp://www.nltk.org/ - Last visited: 18-February-2019
Dhttps://opennlp.apache.org/ - Last visited: 18-February-2019

26http:/ /stanfordnlp.github.io/CoreNLP/ - Last visited: 18-February-2019
Y https://gate.ac.uk/ - Last visited: 18-February-2019
Bhttp://alias-i.com/lingpipe/ - Last visited: 18-February-2019



2.3 Related Work 37

NLTK [31] is an open source, general purpose, and widely used NLP toolkit.
This toolkit is written in Python and includes a collection of language analysis
tools for the English language, including sentence tokenizer, word tokenizer, POS
tagger, Named Entity Recognition (NER), text classifier, stemmer, parser, lemmatizer,
coreference tagger, dependency parsing, machine translation, sentiment annotator,
twitter processing etc. NLTK is easy to learn, well documented, with a collection of
statistical, regular expression, rule-based, machine learning and N-gram language
models based techniques. It also supports WordNet as a part of its word analysis.
This toolkit also supports dozens of datasets® and is distributed under the terms of
Apache License Version 2.0%0. NLTK functional tools are used in various applications
such as sentiment analysis [152, 206 ], annotating named entities in Twitter data [69],
grammatical error correction [150] and many more.

Apache OpenNLP [108] is an open source and Java based toolkit which supports
the most common NLP tasks. The pipeline of this toolkit consists of several text
processing tools such as word tokenizer, sentence tokenizer, POS tagger, named
entity extraction, chunker, parser, coreference tagger, lemmatizer, summarization,
translation, feedback annotator and text classifier. This toolkit provides a large
number of pre-built models for different languages. It is a machine learning and
dictionary based toolkit with detailed documentation. In addition to the basic NLP
tasks mentioned previously, the toolkit also has built-in support for various datasets,
required for training/testing of different NLP tools. This NLP toolkit is available
under the Apache License, Version 2.03!. Apache OpenNLP toolkit has been used by
different companies in various applications, such as, for noun phrase coreference
resolution [223], in microbiology and genetics [201], in question answering system

[28] etc.

Phttp://www.nltk.org/nltk_data/ - Last visited: 18-February-2019
http://www.apache.org/licenses/LICENSE-2.0 - Last visited: 18-February-2019
31h’ctp:/ /www.apache.org/licenses/LICENSE-2.0 - Last visited: 18-February-2019
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The Stanford CoreNLP [126] is a robust, high quality, easy to use as well as
domain-specific linguistic analysis toolkit. It also supports text processing for many
languages with the highest quality text analytics. This NLP toolkit is also open source,
well documented and written in Java. Currently, it consists of many natural language
analysis tools such as word tokenizer, sentence tokenizer, POS tagger, lemmatizer,
Named Entity Recognition, parser, coreference tagger, sentiment annotator and text
classifier. The CoreNLP supports several datasets and operates under the GNU
General Public License V3 or later®2. It is worth mentioning here that CoreNLP tools
are trained using supervised machine learning, rule-based, regular expressions based,
deep learning based, maximum entropy based, linear chain conditional random field
based, neural network based, and probability based models. Again, this NLP toolkit
has been used in a wide range of text processing applications e.g. text summarization
[200], semantic parsing [19], sentiment classification [228], sentence embedding
[244], document classification [249] etc.

GATE [55] is also an open source, well documented, stable, robust, scalable, Java
based architecture, development environment and framework for natural language
engineering tasks which has been available since the 1990s. It supports all types
of computational linguistic tools for various human languages from a small start-
up to large corporations, from an undergraduate language processing project to
industrial research projects. GATE includes many tools for various NLP tasks such
as word tokenizer, sentence tokenizer, POS tagger, classifier, stammer, lemmatizer,
parser, chunker, NER, coreference tagger. This toolkit has built-in support for several
datasets and licensed under the GNU Lesser General Public License®®. It is important
to note that GATE tools incorporate machine learning, deep learning, neural network,

probability, rule-based and regular expression based methods. GATE is widely used

3http:/ /www.gnu.org/licenses/gpl.html - Last visited: 29-October-2018
Bhttps:/ /www.gnu.org/licenses/lgpl-3.0.en.html - Last visited: 29-October-2018
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for various research projects including life sciences and in biomedicine [56], topic
and sentiment analysis [128], human computation for knowledge extraction and
evaluation [209], information extraction [49], text processing in the cloud [224] etc.

Finally, LingPipe [14, 45] is a set of coherently organized general as well as do-
main specific tools for processing text using computational linguistics. This toolkit is
also written in Java. The toolkit is stable, scalable, robust, reusable, well documented
and multi-lingual. This toolkit supports the following tools: word tokenizer, sentence
tokenizer, POS tagger, classifier, NER, sentiment analysis, parser, and chunker. Ling-
Pipe is mainly a collection of statistical models and incorporates supervised as well
as unsupervised machine learning techniques. This toolkit supports online training
and also incorporates different datasets for various tasks. It operates under a range
of licenses which range from free>* to perpetual server licenses. LingPipe has been
used to carry out document classification of newspaper articles [123], development
of biomedical ontologies [156 ], document summarization [124], author’s attribution
in legal proceeding of court [162] etc.

In short, the above mentioned toolkits are open source, written mostly in Java,
include capabilities for word and sentence tokenization, POS tagging, parsing, chunk-
ing, identifying named entities, text classification, stemming, lemmatization, corefer-
ence resolution, sentiment analysis etc. These toolkits have built-in support for several
datasets, operate under different licensing schemes and support single/multiple
languages. These toolkits are applied in various domains and applications (see Table

2.2) which summarizes the characteristics of these toolkits.

3http://alias-i.com/lingpipe/web/download.html - Last visited: 29-October-2018
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Table 2.2 Comparison of five widely used NLP toolkits

Features NLTK OpenNLP CoreNLP GATE LingPipe
Sentence Tokenizer Y©® Y Y Y Y
Word Tokenizer Y Y Y Y
POS tagger Y Y Y Y Y
Classifier Y Y Y Y Y
Stemmer Y N©@ N Y N
Lemmatizer Y Y Y Y N
Parser Y Y Y Y Y
Chunker Y Y N Y Y
NER Y Y Y Y Y
Coreference Y Y Y Y N
Sentiment Y Y Y Y Y
Datasets Y Y Y Y Y
Lexicon WordNet POS lexicon N WordNet N
Code Language Python Java Java Java Java
License” alv alv gpl lgpl arfl, 1pl
en,fr,zh,ar,cy
en,de,esnl arzh,en hiro,ru,it,da
Languages™ en da,pt,se fr,de ceb,bg en,zh
st.rb,ml ml,dbme mlistrbre mldl,nn st,dl re
Methods™ reng pml dl,me,crfnn  strb,re ml

# alv: Apache License Version 2.0, gpl: GNU General Public License v3 or later,
lgpl: Lesser General Public License, arfl: Alias-i ROYALTY free license version 1,
Ipl: LingPipe Proprietary License v1.2, © Y: supported , N: not supported

*ISO 639-2 two letter codes: en: English, fr: French, de: German, es: Spanish, pt:
portugues, da: Danish, nl: Dutch, se: Northern Sami, ar: Arabic, zh: Chinese, cy:
Welsh, hi: Hindi, ro: Romanian, ru: Russian, it: Italian, bg: Bulgarian, ceb:
Cebuano, " st: statistical, rb: rule-based, ml: machine learning, re: regular
expression, ng: N-gram, dl: deep learning, me: maximum entropy, crf:
conditional random field, pml: perceptron based ml, db: dictionary based, nn:
neural network

2.3.5 Existing Urdu Word Tokenization Approaches

In the existing literature, only a few studies are found which have addressed the

problem of word tokenization for the Urdu language, these are [177, 66, 113, 190]
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and a recent one [254]. The study in [177] performs Urdu word tokenization in
three phases. First, Urdu words are tokenized based on spaces, thus returning the
cluster(s) of valid (single word) and invalid (merged word(s)%*) Urdu words. Next,
a dictionary is checked against valid and invalid words to assure the robustness of
the word(s). If the word is present in the dictionary then it will be considered as a
valid Urdu word, returning all single words. However, if the word is not matched
in the dictionary then it is considered as a merged word, hence, needing further
segmentation. In the second phase, the merged words are divided into all possible
combinations, to check the validity of each produced combination through dictionary
lookup. If it is present in the dictionary it will be considered as a valid word. The first
two phases solve the problem of space omission (see Section 3.2), the third phase
addresses the space insertion problem by combining two consecutive words and
checking them in the dictionary. If the compound word is found in the dictionary,
then it will be considered as a single word. This technique of word tokenization is
tested on 11,995 words with a reported error rate of 2.8%. However, the efficiency
of this algorithm is totally dependent on the dictionary (used to check whether a
word is valid or not) and it is practically not possible to have a complete dictionary
of Urdu words. Furthermore, if a valid word is not present in the dictionary then
this technique will mark it as invalid, which will be wrong.

Durrani and Hussain (2010) [66] have proposed a hybrid Urdu word tokenizer®
which works in three phases. In the first phase, words are segmented based on
space, thus, returning a set of an orthographic word(s).37 Further, a rule-based
maximum matching technique is used to generate all possible word segmentations of

the orthographic words. In the second phase, the resulting words are ranked using

%5Combination of many words

%available at: http:/ /homepages.inf.ed.ac.uk/dnadir/Urdu-Segmentation.zip - Last
visited: 18-Dec-2019

%One orthographic word may eventually give multiple words and multiple orthographic words
may combine to give a single word.
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minimum word heuristics, uni, and bi-grams based sequence probabilities. In the
first two phases, the authors solved the space omission problem (see Section 3.2). In
the third phase, the space insertion problem is solved to identify compound words
by combining words using different algorithms. The proposed Urdu word tokenizer
is trained on 70K words, whereas it is tested on a very small dataset of 2,367 words
reporting an overall error rate of 4.2%. Although the authors have reported a very
low error rate, this study has some serious limitations: (i) the evaluation is carried
out on a very small dataset, which makes the reported results less reliable in terms of
how good the word tokenizer will perform on real-world data, (ii) using a statistical
n-gram technique which may ultimately lead to data sparseness, and (iii) it does not
tokenize Urdu text correctly even for short texts.

Another online CLE Urdu word tokenizer is available through a website®, which
allows tokenization of up to 100 words. Its implementation details are not provided.
It reports an accuracy of 97.9%. However, the link is not always available, and its
API (Application Programming Interface) is not freely available®’. The CLE online
Urdu work tokenizer is applied on three randomly selected input short texts and
they all are incorrectly tokenized with many mistakes.

The research cited in [113] takes an approach to Urdu word tokenization, based
on the Hindi language. The authors tokenized Urdu words after transliterating them
from Hindi, as the Hindi language uses spaces consistently as compared to its Urdu
counterpart. They also addressed and resolved the space omission problem for Urdu
in two phases. In the first phase, Urdu grammar rules have been applied to decide if
the Urdu adjacent words have to be merged or not. If the grammatical rules analyser
provides a definite answer that two adjacent words can be joined or not, then no

further processing is required. However, if the rule-based analyser is not confident

Bhttp://182.180.102.251:8080/segment/ - Last visited: 24-June-2018
¥http:/ /www.cle.org.pk/clestore/segmentation.htm - Last visited: 24-June-2018
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about two words either it can be joined or not, then the second phase is invoked. In
the second phase, Urdu and Hindi uni-gram and bi-gram bilingual lexical resources
are used to make the final decision i.e. either it need to join the two adjacent words
or not. This technique of Urdu word tokenization used 2.6 million words as training
data, whereas, it is tested on 1.8 million tokens. The results show an error rate of
1.44%. The limitations of this study are: (i) the problem of space insertion has not
been addressed, (ii) this approach requires large bilingual corpus which is difficult
to create particularly for under-resourced languages like Urdu and Hindi.

Rehman et al. (2013) proposed an Urdu word tokenizer by using rule-based
(maximum matching) with n-gram statistical approach. This approach to Urdu
word tokenization uses several different algorithms to solve the problem of space
omission and insertion. Firstly, the forward maximum matching algorithm is used to
return the list of individual tokens of Urdu text. Secondly, the Dynamic Maximum
Matching (DMM) algorithm returns all the possible tokenized sequences of the Urdu
text, segments are ranked and the best one is accepted. Thirdly, DMM is combined
with the bi-gram statistical language model. These three algorithms are used to solve
the space omission problem, whereas, for the space insertion problem, six different
algorithms are used. The authors used 6,400 tokens for training and 57,000 tokens
for testing. This approach has produced up to 95.46% F; score. Furthermore, the
algorithms are based on probabilities which may result in zero probability being
assigned to some unknown words. The authors have not handled such cases with
either back off or other smoothing estimators.

Finally, the most recent and another hybrid word tokenization approach seg-
ment Urdu tokens using Conditional Random Field (CRF) model which combines
orthographic, linguistic and morphological features of Urdu text. For training this

approach has used 90K tokens, whereas, tested on 21K tokens. Reported score are Fj
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of 97% and 85% for space omission and space insertion (see Section 3.2.1) prediction
tasks respectively. This approach has performed well for space omission problem
but unable to predict words of space insertion problem and trained and tested on
small corpora.

From the above discussion, it can be observed that very few studies have been car-
ried out to address the problem of Urdu word tokenization. Also, these approaches
have many limitations which can be summed up as follows: firstly, the developed
tools, training and testing datasets, and resources are not always freely and publicly
available to develop, compare and evaluate new and existing methods. Secondly,
most of the above techniques are based on n-gram statistical models which may as-
sign zero probability to unknown words, thus, leading to a data sparseness. Thirdly,
word tokenization approaches are tested on small test datasets. Fourthly, the space
insertion problem in a few studies has not been tackled. Fifthly, less contextual
uni/bi-grams contextual language models are used. Finally, the two existing Urdu
word tokenizers are tested on three short texts and they failed to properly tokenized

them.

2.3.6 Sentence Tokenization Approaches

The problem of Urdu sentence tokenization has not been thoroughly explored and
only two studies are found [190, 175] which address the issue. Rehman and Anwar
[190] used a hybrid approach that works in two stages. First, a uni-gram statistical
model is trained on annotated data. The trained model is used to identify word
boundaries on a test dataset. In the second step, the authors used heuristic rules to
identify sentence boundaries. This study achieved up to 99.48% precision, 86.35%
recall, 92.45% F;, and 14% error rate, when trained on 3,928 sentences, however, the

authors did not mention any testing data. Although this study reports an acceptable
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score, it has some limitations; (1) the error rate is high (14%), (2) the evaluation is
carried out on a very small dataset, which makes the reported results less reliable
and it is difficult to tell how well the sentence tokenizer will perform on real test data,
and (3) the trained model along with training/testing data are not publicly available.

In another study, Raj et al. [175] used an Artificial Neural Network (ANN) along
with POS tags for sentence tokenization in two stages. In the first phase, a POS
tagged dataset is used to calculate the word-tag probability (P) based on the general
likelihood ranking. Furthermore, the POS tagged dataset along with probabilities
is converted to bipolar descriptor arrays*’, to reduce the error as well as training
time. In the next step, these arrays along with frequencies are then used to train
feed forward ANN using back propagation algorithm and delta learning rules. The
training and testing data used in this study are 2,688 and 1,600 sentences, respectively.
The results show 90.15% precision, 97.29% recall and 95.08% Fi-measure with 0.1
threshold values. The limitations of this study are; the evaluation is carried out on a
small set of test data, and the trained model, as well as the developed resources, are

not publicly available.

2.3.7 Part-Of-Speech Tagging Approaches

Similar to Urdu word (see Section 2.3.5) and sentence tokenization (see Section 2.3.6),
the problem of Urdu POS tagging has not been thoroughly explored. Only six studies
[84, 16, 17, 205, 139, 225] which addressed the issue are found.

A pioneering piece of research on Urdu POS tagging is described in Hardie [84].
This work focused on the development of a uni-rule POS tagger, which consists of
270 manual crafted rules. The author used a POS tagset with 350 tags [83]. The

training data consists of 49K tokens, whereas, testing is carried out on two different

YfP>01 = P=-1,IfP==0.1 = P=0,IfP <0.1 = P=+1.
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datasets containing 42K and 7K tokens. The reported average accuracy for the 42K
tokens is 91.66%, whereas, for the 7K corpus the average accuracy is 89.26% with a
very high ambiguity level (3.09 tags per word). However, the POS tagset used in
this study has several limitations (see Section 3.4), and therefore, cannot be used
for a grammatical tagging task, and having a large number of POS tags with a
relatively small training data will affect the accuracy, and manually deducing rules
is a laborious and expensive task.

The first stochastic POS tagger for the Urdu language is developed in 2007 [17].
They have proposed a POS tagger based on a bi-gram Hidden Markov Model (HMM)
with back off to uni-gram model. Two*! different POS tagsets are used. The reported
average accuracies for the 250 POS tagset and 90 POS tagset are 88.82% and 92.60%
respectively. Both are trained on a dataset of 1,000 words, however, the authors have
not provided any information about the test dataset. As before, this study has several
limitations; the POS tagset of 250 tags has several grammatical deficiencies (see
Section 3.4), the information about the proposed tagset of 90 tags is not available,
the system is trained and tested on a very small dataset, which shows that it is not
feasible for morphological rich and free word order language i.e. Urdu, and used
less contextual bi/uni-gram statistical models.

Anwar et al. [16] have developed an Urdu POS tagger using bi-gram HMM. The
authors proposed six bi-gram Hidden Markov based POS taggers with different
smoothing techniques to resolve data sparseness. The accuracy of these six models
varies from 90% to 96%. For each model, they used a POS tagset of 90 tags. However,
the authors have not mentioned the size of training/test datasets. This study has
several limitations as, like the one in [17] the authors have used a 350 POS tagset,

which has several misclassifications (see Section 3.4), the training/testing data split

4 The first POS tagset contains 250 POS tags [83], whereas, the second one consists of 90 tags
(details are not given)



2.3 Related Work 47

is unknown to readers, and limited smoothing estimators have been used, it used
bi-gram language model (i.e. less contextual), and suffix information has not been
explored.

The authors in [205] trained Trigrams-and-Tag (TnT) [38], Tree Tagger (TT)
[210], Random Forest (RF) [211] and Support Vector Machine (SVM) [78] POS
taggers, using a tagset containing 42 POS tags. All these stochastic Urdu POS taggers
are trained on a 100K word dataset, whereas for testing only 9K words are used. The
reported accuracy for TnT, TT, RF, and SVM are 93.40%, 93.02%, 93.28% and 94.15%
respectively. In terms of limitations, they used a POS tagset of 42 tags which has
several grammatical irregularities (see Section 3.4).

In another study [139], stochastic Urdu POS taggers are presented i.e. TnT and
TT tagger. These taggers are trained and tested on two different datasets with the
following statistics: (i) First dataset consists of 101,428 tokens (4,584 sentences) and,
8,670 tokens (404 sentences) for training and testing respectively, and (ii) the second
dataset consists of 102,454 tokens (3,509 sentences) and 21,181 tokens (755 sentences)
for training and testing respectively. The reported accuracy for the first dataset is
93.01% for TnT tagger, whereas 93.37% for TT tagger. For the second dataset, TnT
tagger produced 88.13% accuracy and TT had 90.49% accuracy. Similar to other
studies, it employed a POS tagset which has several grammatical problems (see
Section 3.4), meaning that it is no longer practical for Urdu text.

The authors in [225] have proposed Urdu POS tagger? which is based on Decision
Trees and smoothing technique of Class Equivalence, using a tagset of 35 POS tags. It
is trained and tested on the CLE Urdu Digest corpus®?, training and test data split is
80K and 20K tokens, respectively. However, this POS tagger is only available through

an online interface, which allows tagging of 100 words. It is trained on a relatively

http://182.180.102.251:8080/tag/ - Last visited: 29-October-2018
Bhttp://www.cle.org.pk/clestore/urdudigestcorpus100k.htm - Last visited: 29-
October-2018
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small dataset that is not freely available. The Decision Tree statistical models are less
accurate for Urdu text as compared to HMM etc. [205] (see Section 3.4.7).

From the above discussion, it can be observed that a number of Urdu POS tag-
gers have been proposed and developed. However, similar to Urdu word (see Sec-
tion 2.3.5) and sentence tokenizers (see Section 2.3.6), the majority of existing Urdu
POS taggers along with their training and testing datasets are not publicly available.
The other limitations of these studies can be summarised as follows: (i) the employed
POS tagsets are either incorrect, or obsolete, which show they will malfunction with
statistical models, (ii) rule-based POS taggers are difficult to adopt as they are devel-
oped for a particular dataset thus, are not easily generalisable across domains, (iii)
less contextual statistical language models have been explored, (iv) other smoothing
approaches have not been researched, (v) other features to handle unknown words
have not been thoroughly explored, (vi) they have been trained/tested either on

small or moderate test datasets.

2.3.8 Datasets

In the related literature, several benchmark datasets have been developed for En-
glish and other European languages. For example MEasuring Text Reuse (METER)
[52], Microsoft N-Grams [240], British National Corpus (BNC*) [112], English
gigaword corpus® [81], AnCora [189] and Deutschen ReferenzKorpus*® (DeReKo)
[107]. However, since Urdu is an under-resourced language, there has been a lack of
standard evaluation resources for it. This section aims to present the Urdu datasets
that have been developed in recent years. These datasets are broadly categorise into

two main types: (i) raw Urdu datasets and (ii) task specific Urdu datasets.

#http:/ /www.natcorp.ox.ac.uk/corpus/index.xml?ID=intro - Last visited: 29-October-2018
https://catalog.ldc.upenn.edu/1dc2003t05 - Last visited: 29-October-2018
#6The Mannheim German Reference Corpus
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For Urdu, three raw datasets have been found in the literature: (i) Becker Riaz
dataset [29] (henceforth BR), (ii) Enabling Minority Language Engineering (EMILLE)
Lancaster [248] dataset, (iii) The Hans Christensen (HC) dataset*’ [50]. Ten task
specific Urdu datasets have been found as: (i) Ali Jjaz dataset (henceforth Alj) [13],
(ii) Muaz [139] dataset (henceforth MD), (iii) The CLE Urdu Digest POS Tagged
Corpus dataset®® (henceforth CLE) , (iv) Urdu Monolingual Corpus*® (UMC) [91],
(v) Urdu Paraphrase Plagiarism Corpus® (UPPC) [142], (vi) COrpus of Urdu News
TExt Reuse®! (COUNTER) [216], (vii) Urdu Named Entity Recognition dataset
(UNER>?) [103], (viii) URDU.KON-TB treebank dataset [2] (henceforth UKTB), (ix)
Urdu Summary Corpus [141] (henceforth USC) and (x) lexical sample (ULS-WSD-
18 [204]) and all word sense (UAW-WSD-18 [203]) annotated datasets®® for WSD
task.

In 2002, Becker and Riaz [29] developed the first Urdu dataset (BR). The BR
dataset includes documents from Web news articles and collected from British Broad-
casting Corporation (BBC). It consists of 7,000 documents with over 50,000 words
(tokens). This dataset is further used to carry out NLP research of NER [195] and
Information Retrieval (IR) [193]. However, this dataset is no longer available on the
Web.

The EMILLE Lancaster corpus [248] is a benchmark dataset for South Asian
languages (e.g. Bengali, Gujarati, Hindi, Punjabi, Urdu etc.) created within the

EMILLE project. The purpose of these datasets are three fold (i) to build a dataset

47h’ctp: / /www.corpora.heliohost.org/ Last visited: 29-October-2018

Bhttp:/ /www.cle.org.pk/clestore/urdudigestcorpus100ktagged.htm - Last visited: 29-October-2018

49https: / /lindat.mff.cuni.cz/repository/xmlui/handle /11858 /00-097C-0000-0023-65A9-5 - Last vis-
ited: 29-October-2018

Ohttp://ucrel.lancs.ac.uk/textreuse/uppc.php - Last visited: 29-October-2018

51h’ctps: //doi.org/10.17635/lancaster /researchdata/96 - Last visited: 23-February-2019

52h’ctp: //ltrc.iiit.ac.in/ner-ssea- 08/index.cgi?topic=>5 - Last visited: 29-October-2018

https://comsatsnlpgroup.wordpress.com/ - Last visited: 20-December-2019
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of South Asian Languages, (ii) to extend the GATE>* language engineering archi-
tecture and (iii) to develop basic language engineering tools. The total size of these
datasets is 67 million tokens (or words) for different languages. However, the Urdu
language dataset is comprised of 300 documents containing 512K and 1,640K tokens
of spoken and written Urdu respectively. The dataset is distributed among five
genres: Education, Housing, Health, Legal and Social Issues. Based on the EMILLE
Lancaster dataset, a parallel English-Urdu dataset of 200K words is also constructed
and manually annotated with morpho-syntactic POS tagset [83, 84]. This dataset is
available for academic research as well as for commercial use®.

The HC raw dataset [50] is also a collection of 60 different languages (e.g. Arabic,
Chinese, Finish, Spanish, Dutch, Urdu, Welsh etc.). The total size of HC dataset is
1,290 million tokens. However, for Urdu, it consists of approximately 7 million words.
Urdu text is collected from three sources including; Blogs, Newspapers, and Twitter.
This dataset is distributed among twenty-eight domains: Politics, Environment,
Food, Arts & Culture, Crime & Law, International News, Local News, Lifestyle &
Fashion, Religion, Business & Economy, Science & Technology, Sport, Entertainment,
Weather, Travel, Education, Health, Family, Holidays, Recipes, Home & Garden,
Transport, Obituaries, Armed Forces, Emergency & Disaster, Leisure Time, and My
Life. In addition, a subset of this dataset (2 million tokens) is used to carry out
lexical coverage of newly developed semantic lexicons for Urdu [213]. However, this
dataset is no longer available on the web for research purposes.

Alietal. [13] constructed a large Urdu dataset (Alj) for the text classification task,
which contains 26K documents with 19.3 million tokens (234K tokens are unique).

The documents in the corpus belong to different genres such as Finance, Culture,

54h’ttps: //gate.ac.uk/ Last visited: 29-October-2018
SShttp://catalog.elra.info/product_info.php?products_id=714 - Last visited: 23-February-2019
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Sports, News, Personal and Consumer Information. However, the Al dataset is not
publicly available.

Another task dependent dataset [139] MD, is a POS tagged corpus for Urdu
language®®. The total size of the corpus is 110K tokens, which belong to various genres
including Politics, Health, Education, International Affairs, Humours, Literature
and Business, and collected from different sources. This dataset operates under the
commercial licensing options.

The CLE POS tagged dataset™ is 100K tokens in size, consisting of 348 documents
with different genres including Politics, Health, Education, International Affairs,
Comedy and Fun, Literature and Business. This is annotated using the Urdu POS
tagset proposed in a recent research [225]. A sub part (40K tokens) of the CLE
dataset is also used to annotate named entity classes in a shared task in a workshop
on NER for South and South East Asian Languages °®. This dataset is also not publicly
available and operates under the commercial licensing options.

The UMC? is a Urdu POS annotated dataset [91]. It consists of 4.5K documents,
which contain 96.4 million tokens from various genres (News, Religion, Blogs, Liter-
ature, Science, Education and numerous others) and sources. The UMC dataset is
licensed under Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA
3.060)

The UPPC®! dataset [142] is developed for detecting paraphrased plagiarism
in Urdu language. Wikipedia articles in Urdu are used to create this corpus. It

contains 160 documents with approximately 46K tokens. This corpus is licensed un-

56http: / /www.cle.org.pk/clestore/index.htm - Last visited: 29-October-2018

Shttp:/ /www.cle.org.pk/clestore/urdudigestcorpus100ktagged.htm - Last visited: 29-October-2018

Bhttp://ltrc.iiit.ac.in/ner-ssea-08 /index.cgi?topic=>5 - Last visited: 29-October-2018

59https: //lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5 - Last vis-
ited: 29-October-2018

60https:/ /creativecommons.org/licenses/by-nc-sa/3.0/ - Last visited: 29-October-2018

61ht’cps: //doi.org/10.17635/lancaster/researchdata/67 - Last visited: 24-February-2019
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der a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
License.

The COUNTER dataset [216] is created to measure text reuse in the Urdu lan-
guage. It contains 1,200 documents, 10,841 sentences and 275,387 tokens. Documents
in this corpus belong to following domains: National, Foreign, Business, Sports and
Showbiz. This dataset is also released under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

Another, task specific Urdu dataset [103] is developed for Urdu NER task. This
dataset consists of 150 documents, with the following statistics: 48,673 tokens, 1,744
sentences, and 4,621 manually tagged name entities. The dataset is collected from
various sources with the following genres: National, Sports, and International. This
annotated dataset is publicly available for non-profit research work under the Creative
Commons License®?.

A dataset, UKTB is constructed for Urdu semi-semantic POS tagging task. This
dataset consists of 1,400 POS annotated sentences. The dataset is collected from
various Web resources including BBC®® and Jang® newspapers, 400 sentences are also
collected from Urdu Wikipedia®®, and contains data from following genres: Local
& International News, Social Stories, Sports, Culture, Finance, History, Religion,
Travelling, etc. This dataset is also not publicly available but the authors intend to
release it publicly in the near future under the Creative Commons Attribution/Share-
Alike License 3.0 or higher license.

Another, task specific dataset, USC [141] is also a task dependent dataset. It is
used for the facilitation and evaluation of single-document summarization task. It

consists of 50 articles (documents), collected from various online sources, mainly

62http: //ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=>5 - Last visited: 29-October-2018
63http: / /www.bbc.com/urdu - Last visited: 29-October-2018

®https:/ /jang.com.pk/ - Last visited: 29-October-2018

®Shttps:/ /ur.wikipedia.org/wiki/ - Last visited: 29-October-2018
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news and blogs, with following statistics: 29,889 (tokens) in original articles, whereas
the summarized dataset just has 11,683 tokens. This dataset has the following genres:
News, Current Affairs, Health, Sports, Science and Technology, Tourism, Religion,
and Miscellaneous. The Urdu summary annotated dataset is publicly available and
operates under the Massachusetts Institute of Technology (MIT) License®.

Finally, two recently released datasets, ULS-WSD-18 [204] and UAW-WSD-18
[203] for all word and lexical word WSD task respectively are worth mentioning
here. The UAW-WSD-18 contains 50 target words constructed manually from a
sense inventory dictionary called Urdu Lughat. Furthermore, four baseline WSD
approaches were applied to the corpus. Whereas, the UAD-WSD-18 dataset contains
5,042 words of Urdu text. However, only 856 ambiguous words are manually tagged
using a Urdu Lughat dictionary. Both datasets contains text of following domains:
news, religion, blogs, literature, science, and education and are freely available to
the research community to under Creative Commons license®’.

Table 2.3 summarizes all Urdu datasets discussed above. As can be observed by
looking at the table these datasets are compiled for assorted Urdu language process-

ing tasks (See Table 2.3) and are to a greater or lesser extent domain specific, task

dependent, not always publicly available with some remaining license constraints.

24 The UCREL Semantic Analysis System

Directly related to a research presented here is the development of coarse-grained
semantic tagging tools, such as USAS [180] and several others cited in [62, 140] and
[27]. USAS is different from other WSD systems as it assigns tags from a pre-defined

coarse-grained semantic field taxonomy rather than fine-grained word meaning.

https://github.com/humsha/USCorpus/blob/master/LICENSE.txt - Last visited:
29-October-2018
https:/ /creativecommons.org/licenses/by-nc-sa/3.0/ - Last visited: 20-January-2020
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Table 2.3 Summary of available Urdu datasets

Name AV Year of Release = Annotation  Documents Tokens
BR X 2002 NER,IR 7K 50K
EMILLE X 2004 POS tagging 300 2,152K
HC X 2012 - 3 7,714K
AJj X 2009 Text classification 26K 19,296K
MD X 2012 POS tagging, NER 348 110K
CLE X 2014 POS tagging 348 100K
UMC v 2014 POS tagging 4.5K 96,400K
urprC v 2016 Plagiarism 160 46K
COUNTER v 2016 Plagiarism 1.2K 275K
UNER X 2008 NER 150 49K
UKTB X 2016 POS tagging ~ Unknown 1.4K*
USsC v 2016 SA™T 50 29.89K
ULS-WSD-18 v 2019 WSD 1 5,042
UAW-WSD-18 v 2018 WSD 1 50

AV:Availability, X: No, v: Yes, * Sentences, 7 SA: Summarization Analysis

Furthermore, USAS is also different from LaSIE (named entity identification system)
[86], in that it does not just focus on one or two specific classes of words, rather,
assigns a tag(s) to every word in a running text. Recently, the systems based on USAS
semantic fields have been ported to support fine-grained semantic annotation [166]
for historic English text. Moreover, the coarse-grained semantic analysis system
has been ported to Finnish [116], Russian [140], and for several other European
and world languages using a predefined semantic taxonomy [213, 165, 68]. It is
a worthwhile task since if similar semantic tagging tools are design for multiple
languages, they can potentially provide a bridge for multilingual Machine Translation
and WSD systems. Hereby, this section presents the English semantic tagger and its
semantic lexicons which have been used as models when developing the US Tagger.
Subsequently, other extensions to the USAS framework will also be briefly introduce,

which has now evolved into a multilingual semantic annotation system.
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2.4.1 English Semantic Tagger

A semantic tagger which performed automatic semantic analysis of English text
is known as an English Semantic Tagger (EST®®) developed at UCREL, Lancaster
University. The EST consists of three main components, (i) semantic tagset, (ii)
semantic lexicons, and (iii) software module which assigns semantic tags to each
lexical unit. The EST assigns semantic tags on the basis of information retrieved
from lexical resources after applying various rules and semantic tag disambiguation
algorithms which are the core of the EST. The EST has been successfully used for
various studies (see Section 1.1 of Chapter 1). In addition, it has been applied to the

following research studies®:

1. For the analysis of interview transcripts in market research [247];

2. For the stylistic analysis of written and spoken English [246] in Automatic Con-
tent Analysis of Spoken Discourse (ACASD) and Automatic Content Analysis
of Market Research Interview Transcripts (ACAMRIT) projects;

3. Used in a pilot study of a large corpus of doctor patient interactions [230];

4. Also EST is utilized in the Requirements Reverse Engineering to Support Busi-
ness Process Change (REVERE) project [181] in research area of software

engineering;

5. In Benedict project’’, where an EST and Finnish semantic tagger have been
used together to built a context-sensitive search tool for a new type of intelligent

electronic dictionary;

68 Available through the Wmatrix [179] and on-line interface: http://ucrel.lancs.ac.uk/usas/
tagger.html - Last visited: 23-February-2019
° A complete list of publications and applications using Wmatrix (in which EST is embedded) can
be found at http://ucrel.lancs.ac.uk/usas/andhttp://ucrel.lancs.ac.uk/wmatrix/ - Last
visited: 19-October-2018
OThe project reference is IST-2001-34237. For more information, see
ftp:/ /ftp.cordis.europa.eu/pub/ist/docs/ic/benedict-ist-results_en.pdf.


http://ucrel.lancs.ac.uk/usas/tagger.html
http://ucrel.lancs.ac.uk/usas/tagger.html
http://ucrel.lancs.ac.uk/usas/ and http://ucrel.lancs.ac.uk/wmatrix/

56 Background and Related Work
6. Used to create historical thesaurus-based semantic tagger for deep semantic
annotation [166];
7. To create a historical semantic tagger for English [12];
8. Analysis of personal weblogs in Singapore English [158];
9. Analysis and standardisation of SMS spelling variation [226];
10. Analysis of the semantic content and persuasive composition of extremist
media [172];
11. Detecting gender and spelling differences in Twitter and SMS [26];
12. Discourse analysis [159, 11];
13. Finding contextual translation equivalents for words in the Russian and English
languages [217];
14. Key domain analysis [183];
15. Metaphors in political discourse [121];
16. Ontology learning [71];
17. Phraseology [82];
18. Political science research [106];
19. Protection of children from paedophiles in on-line social networks [176];
20. Psychological profiling [127];
21. Sentiment analysis [219];
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22. Training chatbots and comparing human-human and human-machine dia-

logues [218], and

23. Deception detection [127].

24.1.1 Semantic Tagset

The categories representing different semantic fields are represented with various
codes known as semantic fields or tags, and together these semantic tags form
a “semantic tagset”. The semantic tagset which USAS framework has adopted is
loosely based on the categorization used in the LLOCE [129]. As it offered the most
appropriate thesaurus-type classification for sense analysis on which the EST has
been developed. Furthermore, the tagset has been expanded and amended based
on the critical analysis of several previous iterations which are encountered in the
course of the research [180].

The USAS semantic tagset has been classified into 21 top level semantic fields/tags
which further expand into 232 sub-fields or tags. With the help of the USAS semantic
tagset, everything can be categorised that exists in the universe or can be imagined,
whether they are concrete entities or abstract concepts i.e. each field contains words
which are related to each other. These words can be antonyms, hyponyms, synonymes,
or meronyms, and they represent all parts of speech. Table 2.4 shows the top level
21 semantic tags of the USAS semantic tagset. A list of all top level categories
and subcategories is presented in Appendix A in English and in Appendix B its
counterpart Urdu. The reader is advised to consult these appendices if semantic tags
are not explained or clear from context.

The authors Archer et al. [18] (pp. 1-2) have described that a semantic tag
consists of various markers. A top level semantic tag always begins with an upper-

case letter which indicates the top level semantic category. This upper-case letter



58 Background and Related Work

Table 2.4 USAS top level semantic tags

Domain Description

General and abstract terms

The body and the individual

Arts and crafts

Emotional actions, states and process
Food and farming

Government and the public domain
Architecture, buildings, housing and the home
Money and commerce

Entertainment, sports and games

Life and living things

Movement, location, travel and transport
Numbers and measurement

Substances, materials, objects and equipment
Education

Linguistic actions, states and process
Social actions, states and processes

Time

The World and our environment
Psychological actions, states and processes
Science and technology

Names and grammatical words

N|=| <[ =8| »n[0]=|0|Z| Z| | R~ T Q| = =) O] =] >

is followed by a digit which indicates the first subdivision in the field. One of the
simplest possible semantic tags can contain one upper case letter and one number.
For instance, the semantic tag for the word “maudlin” is E1 (Emotional Actions,
States and Processes: General) and for word “jasmine” is L3 (Plants). Moreover,
if there are more sub-divisions, one or two more numbers can be added (such as,
the tag for the adjective “exaltation” is E4.1 (Happy/sad: Happy) and the tag for
“yesterday” is T1.1.1 (Time: General: Past). The research cited in [164] has shown
that the depth of semantic hierarchical structure is limited to a maximum of three
layers since this has been proven to be the most feasible approach. Theoretically,

it would be possible to include as many subdivisions of meaning until no further



2.4 The UCREL Semantic Analysis System 59

sub-classification is possible, however, semantic field analysis schemes which are too
complex may cause problems for practical semantic analysis. That said, the existing
semantic categories can be subdivided for a particular task if need be, since the deep
hierarchy structure allows to amend the system easily.

In addition, not all lexical units (words) always fall into only one semantic cat-
egory but rather are fuzzy sets— where one word(s) may belong to more than two
predefined semantic categories. These multiple memberships of categories are in-
dicated in the context of the USAS framework by a “slash tag” (also known as a
"portmanteau tag"). By way of illustration, “classroom” is tagged P1/H2, since it
can be considered to belong both to the category “Education in General” (P1) and to
the category “Parts of Buildings” (H2).

Unlike many other present-day semantic taxonomies, the USAS semantic tagset
is concept-driven rather than content-driven. This means that it aims at providing
a conception of the world that is as general as possible, instead of trying to offer
a semantic network for specific domains [164]. If or when it is necessary to have
a finer-grained taxonomy for a certain task or purpose, it will be relatively easy to
expand the present system simply by adding new levels of subcategories or by using

more specific slash tags.

2.4.1.2 Semantic Lexicons

The English semantic lexical resources are the knowledge base for the EST. These
lexical resources can be divided into two, (i) single word semantic lexicon, and (i)
multi-word semantic lexicon. The single word semantic lexicon stores the information
about single words, whereas, the multi-word semantic lexicon hold the information
about the multi-words (e.g. United States of America (proper noun), stub out (verb),

drop dead (adverb), etc.). These semantic lexical resources are created manually
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by first adding semantic tags to the dictionaries of the CLAWS (the Constituent
Likelihood Automatic Word-tagging System) POS tagger. Thereafter, these semantic
lexicons are expanded by adding words which are collected from large text corpora
[164]. These semantic lexicons contain basic and inflected forms as there is no reliable
lemmatizer’! available for the English language when the development of the English
semantic tagger took place.

The information about the single word semantic lexicon entries can be found
in three columns, (i) the first column indicates the word, (ii) the second column
indicates its POS tag’?, and (iii) the third column indicates the semantic category.
The simplest scenario occurs when the word has just one sense, in which case a
word is given along with its POS tag and with only one semantic tag (have been
attached to the lexicon entry) for instance, for the word “accidental” (see Table 2.5),
where the word is stored in the first column, POS tag (common noun) in second
column and with semantic tag (K2 “Music and Related Activities” stored in third
column). However, if the single word is ambiguous (it has more than one sense)
the different senses are listed in the third column arranged in frequency order, for
example, the word “account” (see Table 2.5) which have two senses a verb and noun
sense. Table 2.5 shows some more exemplary words of the English semantic lexicon
along with its POS and semantic tags.

The information in the multi-word semantic lexicon is presented in two columns.
The first column of the lexicon indicates the Multi-Word Expression (MWE) as well
as the relevant grammatical and syntactic information, whereas, the second column
includes the semantic category. On the other hand, if the MWE is ambiguous, the
semantic tags for the different senses are arranged in frequency order. Likewise

they have stored inside single word semantic lexicon. Furthermore, all the multi-

7L A program which converts input words to its root form.
“2generated by CLAWS POS tagger. The full CLAWS tagset can be found at
http:/ /ucrel.lancs.ac.uk/claws7tags.html.
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Table 2.5 Single word semantic lexicon of the English semantic tagger

Word POS tag® USAS Semantic tags™*
access NN1 M1 A9 Al.1.1

access VVO0 M1 A9 Al1.1.1
accessed VVN M1 A9 A1.1.1
accessibility NN1 M6 A9 51.2.1 A12
accessible JI S1.2.1 A9 A12 M6
accessing NN1 M1 A9 A1.1.1
accession NN1 T2S57.1 A1.8
accessories NN2 02 B5S8 S2
accessorize VVO0 N5 A2.1 B5 N5 A2.1 H5
accidental NN1 K2

accidentally RR Al4

accompanying JJ S3.1

Accord NP1 Z3

account NN1 1111.312.1Q2.2Y2
account VVO0 Q2.2

accounts NN2 1111.312.1 Q2.2Y2

*CLAWS C7- NN2: plural common noun, VVO0: base form of
lexical verb, VVN: past participle of lexical verb, NN1: singular
common noun, JJ: adjective, NP1: singular proper noun, RR:
general adverb, ** for more details see Appendix A

word semantic lexicon entries are written into templates, whereby they consist of
patterns of words and grammatical and syntactic information presented in the first
column. Often they also contain regular expression symbols or “wild cards” that
can represent any character or group of characters. Wild-cards help out to the EST

to recognize MWE'’s which have similar structures. For instance, the template “*_*

* ¥/

shortage would capture the expressions “labour shortage” and “fuel shortages”
(see Table 2.6).

The EST recognizes not only continuous MWEs — expressions in which it is not
possible to add any embedded elements between the constituents (“dope pusher”)

but also discontinuous MWEs — expressions inside which it is possible to add varying

embedded elements ( “double up”). To show it, lets consider the template "doubl*_*
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Np/P*/R* up_RP" (see table 2.6) would capture both the expression “double up the
reward” as well as “double the price up”. As a consequent, the multi-word semantic
lexicon covers many more MWESs than is the number of individual entries. Few more
examples of English semantic lexicon are presented in Table 2.6, in which the first
column shows wild cards and second column depicts semantic tags of the USAS
semantic classification scheme.

Table 2.6 Multi word semantic lexicon of the English semantic tagger

Wild cards USAS Semantic tags**
dope_NN1 pusher* NN* F3 52

dormer_NNI1 bungalow*_NN* H1

doss*_* R* about_RP K1

doss*_* R* around_RP K1

dotted_* R*/Np/PP* about_* M6

dotted_* R*/Np/PP* around_* Mé6

dot_NN1 matrix_NN1 Y2

doubl*_* Np/P*/R* up_RP N5 A2.1 A6.1E4.151.1.2
double-decker_JJ] sandwich* NN* F1

double_* breasted_* B5

double_* check* * X2.4 N6

** for more details see Appendix A

The English semantic tagger has been significantly updated and the researchers
have expanded its lexical resources (single and multi-words) over multiple years.
Now in the present form, they contain 54,953 single words entries, whereas the multi-
word lexicon have 18,921 entries [120] (pp. 98). In addition to this, the resources
include a small auto-tagging lexicon i.e. around 50 fixed patterns which can have
many possible instantiations. Such expressions can be tagged effectively through
the use of wild-cards [180]. For instance, the auto-tagging lexicon entry “*km”
(kilometre) would tag all combination of numbers and abbreviation “km” as tagged

N3.3 which represents the semantic category “Measurement: Distance”.
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2.4.1.3 Semantic Tag Disambiguation Methods

The task of semantic tagging can be broadly divided into two phases, (i) tag assign-
ment and (ii) tag disambiguation. In the first tag assignment phase, all potential
semantic tags are attached to each lexical unit/word. In second tag disambiguation
phase from already assigned potential tags the contextually appropriate semantic tag
is selected. If a word in a running text is included in the semantic lexicons and has
only one sense as well as not a part of a MWE, tagging it correctly is a straightforward
task for an EST. However, the task of semantic tagging becomes difficult, as it has to
recognize that if a word is a single word or a part of a multi-word expression further
to this, have to identify its appropriate sense in a given context if a word has multiple
senses.

The second phase (tag disambiguation) uses different methods to resolve seman-
tic tag ambiguity. The EST utilizes seven different methods for finding the correct
semantic tag for the given sense [180], these are, (i) POS tag, (ii) general likelihood
ranking for single word and MWE tags, (iii) overlapping idiom resolution, (iv)
domain of discourse, (v) text-based disambiguation, (vi) template rules, and (vii)

local probabilistic disambiguation.

24.1.3.1 POS Tag The POS tagging is a baseline method that can be used to
disambiguate different senses of words (see Section 2.2.4). In the EST it is carried out
using CLAWS POS tagger, by way of illustration lets assume a word “match” which
have two senses a common noun (Lighter consisting of a thin piece of wood) and
a verb sense (a game, a contest). These different senses can be defined in English
semantic lexicons as: “match NN1 K5.1 O2 A6.1” and “match VVO0 A6.1”. If EST
determines through CLAWS tagger that the tag NN1 representing (VVO0: a base

form of the lexical verb) is the relevant POS tag, this simplifies the task of the EST by
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selecting it with A6.1 semantic tag (representing a semantic category: Comparing:

Similar/different).

2.4.1.3.2 General Likelihood Ranking The senses in the English semantic lexicon
have been arranged in frequency order according to information obtained from past
tagging experience, intuition, and frequency-based dictionaries. The most frequent
(most likely) semantic tag is placed first, the second most likely semantic tag is placed
second, and so on. Therefore, if a further semantic tag disambiguation method is not
applied, it is advisable to use the first semantic tag, because it represents the most
likely common sense and thus has a high probability to be a correct tag. To show
this let’s assume an entry from English semantic lexicon for word “multimillion”,
i.e. “multimillion JJ N1 I1.3”. The tag ]] is used to indicates an adjective which have
been assigned by CLAWS POS tagger. The very first semantic tag (N1-Numbers)
therefore, first and most common/likely sense is that of a number. The second and
least likely sense is the semantic tag, I1.3, represents the semantic category “Money:

Price”, so here it refers to the dollars, pound etc.

2.4.1.3.3 Overlapping Idiom Resolution In EST multi-word expressions take pri-
ority over single word tagging. In other words, EST first matches the text against the
multi-word expression templates, and if it finds-out words which match a template
and thus together form a MWE, it tags these words together as a unit having the same
sense. However, if no suitable multi-word expression is found, a word is assumed to
be a single word and therefore, tagged individually. But in a few cases, multi-word
expression templates can overlap, in that, some multi-word expression templates
can produce more than one set of possible tagging for the same set of words. To
resolve this, a set of heuristics have been emerged and embedded into the EST. These

heuristics help EST to determine which of the multi-word expression templates is the
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most likely one and should, therefore, be favoured. These heuristics take account of
length and the span of the multi-word expressions and of how much of the template

is matched in each case.

2.4.1.3.4 Domain of Discourse If the topic or domain of discourse in an input
text is known, this information can be used to “weight” semantic tags or to alter the
order of semantic tags in the single and multi-word semantic lexicons for a particular
domain. By way of illustration, taking the noun word “java” (java NN1 F2 Z2 Y2) if
the domain of discourse in the text dealt with computing, rather than geographical
(Z2) or drink (F2), it would be sensible to weight least likelihood semantic category

i.e. “Information technology and computing” over the other two most likely senses.

2.4.1.3.5 Text-Based Disambiguation As described in [73] one sense per discourse,
where a polysemous word appears two or more times in a well-written discourse, it is
extremely likely that they will all share the same sense thus, well-written discourses
tend to avoid multiple senses of polysemous words. One of their tests is a word
“sentence”, and the same sense repeatedly appeared both in texts which deal with
grammar and in texts which deal with the law. If this hypothesis continued to hold
in other cases, it would represent an important addition to the methods for deter-
mining word senses. This semantic tag disambiguation approach has not yet been
implemented in the EST, however, this approach it resembles the above-mentioned
method (domain of discourse) with the exception that, while in a domain of dis-
course method the weighting is adjusted manually, in this approach the weighting

would be determined by the program.

2.4.1.3.6 Template Rules The same type of template rules that are written for the

identification of multi-word expressions can also be used for detecting certain senses
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of words. For example, when the noun “account” occurs in a sequence, such as
“someone’s account of something”, it is very likely to mean “narrative explanation”

and not “bank account”.

2.4.1.3.7 Local Probabilistic Disambiguation It is generally supposed that the
local surrounding context determines the correct semantic tag for a given word.
Thus, the surrounding context can be identified in terms of (i) words themselves, (ii)
grammatical tags, (iii) semantic tags, or (iv) combination of all three. An application
of this method named the “Domain Detection System” [117] is developed in the
Benedict project, where the most probable sense of a word is calculated by making

use of information about the other words in the same sentence.

2.4.1.4 Software Architecture of the EST and Evaluation

The software architecture of the EST is built on four main components, (i) the CLAWS
POS tagger, (ii) the lemmatizer, (iii) semantic tagging component, and (iv) semantic
tag disambiguation methods and small auto-tagging lexicon.

The lemmatizer is incorporated into the EST during its original development for
the dictionary lookup function. The semantic tagging components are the single
word and multi-word semantic lexicons (for more details see Section 2.4.1.2) along
with a software module that implements semantic disambiguation methods (see
Section 2.4.1.3) which then automatically links words in a text to one or more pre-
defined semantic categories. Figure 2.1 illustrates the multi-level structure of the
EST.

The input text is entered into the EST, and the CLAWS POS tagger analyses text
grammatically, thus, assigns each lexical-unit (word) with possible CLAWS C773

POS tag. In the next preprocessing phase, in order of likelihood, the lemmatizer

7http://ucrel.lancs.ac.uk/claws7tags.html - Last visited: 26-October-2018
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Fig. 2.1 Architecture of the English semantic tagger

input: raw text

CLAWS POS tagger

A

lemmatizer

!

semantic tagging < eingle word
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manipulating rules o
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l lexicon

output: grammatically and
semantically tagged text

tinds the basic form of the word. After the lemmatization phase, the semantic
tagging components (single and multi-word semantic lexicons along with contextual
rules) match the patterns of the output against the patterns in semantic lexicons,
utilizing the context rules, and then assigns each word (single or multi-word) with
the semantic tag(s) which denotes its meaning. Furthermore, each word or multi-
word expression in USAS output may appear with multiple possible semantic field
tags to show the different meanings which can be taken in different contexts, and
these are left in the output in rough likelihood order if disambiguation methods
cannot resolve the correct sense. To illustrate the tagging output of the EST, let’s

take a sentence “It was very warm and summery yesterday, and many people sat on
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a park bench to enjoy the warm weather”. A tagged output of the EST have been
shown in Figure 2.2, where the first part represents the unique IDs for each word,
the second column is for CLAWS C7 POS tag, the third column shows the word, and

last and fourth column shows semantic tags.

Fig. 2.2 Tagged output of the English semantic tagger

0000001 002  -==-=  ==-m-

0000003010 PPH1 It Z8

0000003 020 VBDZ was A3 Z5
0000003030 RG very Al13.3

0000003 040 1) warm 04.6 04.2 S1.2.1
0000003050 CC and Z5

0000003060 1) summery T1.3

0000003 070 RT yesterday T1.1.1

0000003 071 ,

0000003080 CC and Z5

0000003 090 DA2 many N5

0000003 100 NN people S2

0000003 110 VVD sat M8 C1P1G1.1G2.1 M6 A9
0000003 120 I on Z5

0000003 130 AT1 a Z5

0000003 140 NN1 park M7/L3

0000003 150 NN1 bench H5 G2.1
0000003160 TO to Z5

0000003 170  VVI enjoy E2 A9 E4.1
0000003 180 AT the Z5

0000003 190 1J warm 04.604.251.2.1
0000003200 NN1  weather w4

0000003 201

As mentioned earlier, the EST has been tested several times with good results. The
latest lexical coverage (see Section 2.5) evaluation of the semantic lexical resources
of the EST are carried out in [167]. It shows how many single or multi-words the

EST recognizes or how many lexical units (single and multi words) are included
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in semantic lexical resources which EST can tag. Moreover, tagging results which
are reported by Piao et al. (2004) are between 98.49% for the modern English on
BNC and for the METER Corpus it shows 95.38%. These results are excellent, which
demonstrates that the semantic lexicons (single and multi-word) are able to deal
with most words. In addition to this, the EST is also tested on six different historical
corpora and its evaluation results ranged between 92.76% to 97.29%. The developers
Rayson et al. [180] have evaluated the overall performance of the EST on a corpus of
125K words and reported accuracy (see Section 2.5) as 91.05%, which is outstanding,
considering the difficulty of a task to identify different senses. In [168] the authors
have used the EST for extracting multi-word expressions on a test corpus, METER,
which consists of more than 250K words, and reported accuracy is 90.39%. These all

results are comparable to the other existing systems.

2.4.2 Extension of the EST Framework for Other Languages

As with the transformation of the web as a multi-lingual hub and the success of the
EST in several research domains (see Section 2.4.1) this encouraged the development
of equivalent semantic taggers for other languages. This equivalent semantic tagger
enables the development of multi-lingual NLP, HLT, text mining, translation, and
other types of information and communication technology systems. In this regard,
efforts have been made in the recent past to develop several equivalent semantic
taggers for several languages. The first effort to develop non-EST based equivalent
semantic tagger is for the Finnish language and carried out by Lofberg (2017) [120],
known as a Finnish Semantic Tagger (FST). After the development of the FST, an-
other non-EST semantic tagger has been developed for the Russian language in the
Automatic Semantic Assistance for Translators (ASSIST) project [217]. The Russian

Semantic Tagger (RST) provides contextual examples of translation equivalents for
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words from the general lexicon between English and Russian languages [140]. The
development of the Finnish and Russian semantic taggers are a relatively similar
process, involving the modification of the software framework originally created for
English to meet the needs of the analysis of Finnish and Russian languages, respec-
tively. However, these two studies have focused the manual construction of semantic
lexical resources (single and multi-word semantic lexicons). These semantic lexi-
cons act as a knowledge base for the semantic tagger, whose creations are indeed a
time-consuming, laborious and expensive tasks.

During the last few years, efforts have been reported to create semantic tagger for
other languages by using automatic methods to develop semantic lexicons much more
rapidly. These methods involve bootstrapping new lexical resources via automatically
translating the English semantic lexicons into other languages [165]. This method
has proved to be a successful way to create equivalents semantic lexicons for several
languages (for more details see Section 2.3.3). Currently, there are twelve non-English
semantic taggers available for Arabic, Chinese, Czech, Dutch, French, Italian, Malaya,
Portuguese, Spanish, Urdu (described in this thesis) and Welsh languages. The
lexical coverage (see Section 2.5) for twelve languages are recently evaluated in
[213]. Moreover, there are further plans to extend the EST framework for Turkish,

Norwegian, and Swedish languages.

2.5 Evaluation Measures

2.5.1 Evaluation Measures for the US Tagger

To evaluate the results of the US Tagger (see Chapter 5), two main evaluation mea-
sures consistent with previous best practice have been used, i.e. lexical coverage, and

annotation precision.
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Lexical coverage can be defined as the proportion of tokens in the running text
that are recognised by semantic annotation system and can be defined as, the total
number of words (N) minus the total number of tagged words (W;geeq) divided the

total number of tagged and untagged words (W,uaggea) (see Equation 2.1).

N — vvtagged
VVtagged + Wum‘agged

(2.1)

Lexical coverage =

Precision is defined as the proportion of the correctly tagged words (Worrectly tagged)

divided by the total number of tagged words (N;qgged words) (see Equation 2.2).

.. W tly tagged
Precision = ——7Y 1988%C (2.2)

tagged words

2.5.2 Evaluation Measures for Multi-Target Classifiers

The performance of a multi-target classifier (see Chapter 4) can be measured using,
(i) Exact Match, (ii) Hamming Loss, and (iii) Accuracy.

Exact match computes the percentage of instances whose predicted set of labels
(9) are exactly the same as their corresponding true set of labels (y), this measure is
also known as 0/1 subset or classification accuracy (see Equation 2.3). Where, I is

the indicator function.

1 & :
S 6() £ () )
Exact match N ; IV #£ yV)) (2.3)

Hamming loss is used to evaluate how many times, on average, an example-label
pair is misclassified (see Equation 2.4). This is a loss function, therefore, lower the

value means higher the performance of the classifier.

1
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Hamming loss =

L
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Accuracy is the proportion of label values correctly classified of the total number
of labels for that instance averaged over all instances (predicted (§) and true (y)),

for a set of N test examples (see Equation 2.5).

$U) A i) ‘

1 N
Accuracy = N Z (2.5)
j:

{50 vy )|
2.5.3 Evaluation Measures for the Urdu Natural Language Tools

The approaches applied for Urdu word tokenization (see Section 3.2 of Chapter 3),
sentence tokenization (see Section 3.3 of Chapter 3) and POS tagging (see Section 3.4
of Chapter 3) tasks are evaluated using Accuracy, Precision, Recall, F; measures,
Error Rate, Variance and Standard Deviation.

Accuracy is defined as the proportion of the total number of predictions that are

correct (see Equation 2.6).

tp+in

tp+itn+fp+fn (2:6)

Accuracy =

Where tp”4,tn”, fp”® and fn’” represent true positive, true negative, false positive
and false negative respectively.
Precision is defined as the proportion of the predicted positive cases that are

correct (see Equation 2.7) .

. p
Precision = (2.7)
tp+fp

Recall is defined as the proportion of positive cases that are correctly identified

(see Equation 2.8).

74 A true positive test result is one that detects the condition when the condition is present.
75 A true negative test result is one that does not detect the condition when the condition is absent.
76 A false positive test result is one that detects the condition when the condition is absent.
77 A false negative test result is one that does not detect the condition when the condition is present.
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Ip
Recall = 2.8
ecd tp+fn (28)

The F| measure is the harmonic mean of precision (P) and recall (R), and it is

calculated by using the following equation.

_ 2xRxP
T R+P

(2.9)

The error rate is defined as the ratio between the predicted and actual values (see

Equation 2.10).

fp+ifn
tp+itn+ fp+ fn

Error rate =

(2.10)

In addition, the standard deviation (o) is a measure of variability that represents
how far members of a group are spread out from their average value (see Equa-

tion 2.11).

N .
G = %_1“)2 (2.11)

Where x; represent result of the i-th measurement, u is arithmetic mean of the N

results, and N is Number of samples.

2.6 Chapter Summary

In this chapter of related work, it first established the background for this Ph.D.
thesis by defining the most important related concepts starting with computational
linguistics and then moving on to successively more specialized concepts, natural
language processing, text annotation, POS tagging, semantic tagging, semantic fields,

and word and sentence tokenization. Semantic tagging is one method of carrying out
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text annotation, and the necessary pre-processing for semantic tagging is provided
by word and sentence tokenization and POS tagging. Thereafter, this chapter briefly
discussed corpora and methods for the WSD task as well as some other less related
systems for semantic tagging task. Furthermore, this chapter described state-of-the-
art lexical resources. After that, an overview of the existing NLP toolkits, Urdu word
and sentence tokenization along with POS tagging is presented. Benchmark corpora
that have been developed for various Urdu NLP tasks are presented.

Following that, this chapter presented the UCREL semantic analysis system,
which this thesis focuses on. The most important undertaking has been the devel-
opment of the English semantic tagger and its applications to various fields and
purposes; they represent the state-of-the-art in the field. In addition to this, key
components and the software framework of EST has also been introduced. After this,
other extensions to the USAS framework which has now evolved into a multilingual
semantic annotation system have been presented. Thereafter, this chapter concluded
with a brief account of the measures commonly used to evaluate the performance of
semantic tagger, multi-target classifiers and Urdu natural language processing tools,
accuracy, precision, recall, F;, lexical coverage, exact match, hamming loss, and error

rate are described.



Chapter 3

Urdu Natural Language Tools

3.1 Introduction

This chapter describes development of Urdu natural language tools. When the
problem of semantic tagging is viewed, the primary unit inside Urdu single or multi-
word semantic lexicons (see Chapter 5) are words. These single or multi-words
are matched and assigned semantic tags (to show different meaning which can be
taken in different context) from the Urdu semantic lexicons. However, to select
one potential semantic tag from several assigned tags it uses several semantic tag
disambiguation methods, for instance, POS tag, where the final selected tag denotes
a true or closely related word sense. Therefore, to match words in the Urdu semantic
lexicons, the text must be split into sentences, words/tokens, and to resolve semantic
tag ambiguity a POS tagger is required. Therefore, the aim in this chapter is to develop
Urdu processing tools which are incorporated into the US Tagger (see Chapter 5).
The rest of this chapter has been divided into four parts as follows. The first part
(see Section 3.2), second part (Section 3.3), and third part i.e. Section 3.4 explain

Urdu word, sentence tokenizers, and POS Taggers respectively along with supporting
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resources and evaluation results. Finally, the final fourth part (see Section 3.5)

presents a chapter summary:.

3.2 Urdu Word Tokenizer

This part presents the challenges of Urdu word tokenization, the proposed Urdu word
tokenizer, training and testing dataset which is developed to train and evaluate the
proposed Urdu word tokenizer, experimental set-up (evaluation measures, results

and their analysis).

3.2.1 Challenges of Urdu Word Tokenization

Word tokenization is a challenging and complex task for the Urdu language due to
three main problems [66]: (i) the space omission problem - Urdu uses Nastalique
writing style and cursive script, in which Urdu text does not often contain spaces
between words, (ii) the space insertion problem - irregular use of spaces within two
or more words and (iii) ambiguity in defining Urdu words - in some cases Urdu
words lead to an ambiguity problem because there is no clear agreement to classify
them as a single word or multiple words.

The first two problems stated above, mostly arise due to the nature of Urdu
characters, which are divided into: (i) joiner (non-separators), and (ii) non-joiner
(separators). Non-joiner characters,! only merge themselves with their preceding
character(s). Therefore, there is no need to insert space or Zero Width Non Joiner
(ZWNJ; an Urdu character which is used to keep the word separate from their

following) if a word ends with such characters. These can form isolated shapes

14 gy Sodd (Transliteration: alif_mad, alif, daal, ddaal, Zaal, ray, zay, rray, jay, wao, bari_ye). All Urdu

characters and word are transliterated as given in [8].
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besides final shape, whereas, joiner characters? can form all shapes (isolated, initial,
medial and final) with respect to their neighbouring letter(s). For instance, the Urdu
character C (khay) is a joiner and has four shapes: (i) isolated C (khay) e.g. C 3=
(KHOKH “peach’) i.e. it can be seen that at the end of a word, if the character is a
joiner and its preceding character is non-joiner, it will form an isolated shape, (ii)
final - (khay) e.g. c,o (MKH ‘brain”), it can be observed that at the end of a word, if
the character is a joiner, it acquires the final shape when leading a joiner, (iii) medial
= (khay) e.g. JLz_; (BKHAR ‘“fever’), in other words, it shows that in the middle of
a word, if the character is a joiner, it will form the medial shape when the preceding
character is a joiner, (iv) initial = (khey) e.g. (2¢= (KHOF ‘fear’), it shows that
at the start of a word, if the character is a joiner, it acquires the initial shape when
following a non-joiner. Furthermore, the Urdu character 3 (zaal) is a non-joiner, thus
has only two shapes: (i) isolated 3 (zaal) e.g. $15 (‘Zakir’), it can be noticed that at
the beginning of a word, if the character is a non-joiner, it acquires isolated shape
when following a joiner, (ii) final i (zaal) e.g.i_i U (LZYZ ‘delicious’), it can be
examined that at the end of a word, if the character is non-joiner, it acquires final
shape when preceding a joiner character. The shapes that these characters (joiner or
non-joiners) acquire totally depend upon the context.

A reader can understand a text if a word which ends on a joiner character is sepa-
rated by a space < ¢4 (OH SHHR, “that city’) or ZWN] character® - N S~
(NYY SAYYKL HE‘, ‘is new bicycle”). Likewise, the dropping of either of them (space
or ZWNJ) will result in a visual incorrect* text, s (OH SHHR, ‘that city”) and

gﬁ": LS (NYY SAYYKL HE, ‘“is new bicycle’), thus being perceived as a single word

2&5 I XIv) o td ﬁju.(u} =] Li(&x.‘b b (P Lye Au./ ‘U ('CAC&G:C(O (G (o Q" (Transliteration: bay’
pay, tay, ttay, say, jeem, chay, hay, khay, seen, sheen, suad, zuaad, tuay, zuay, ain, ghain, fay, qaaf, kaaf, laam, meem, noon,
hay_gol, hamza, hey_dochasmi, chooti-ye) for such characters, it is needed to insert a space between words or ZWNJ at the
end of the first word, otherwise it will join itself with the following word.

3Non-printing character (U+200C) is used for computer writing systems.
“Human readable but words that are merged into a single token.
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even though they are two and three different words, respectively. On the other hand,
a word which ends on a non-joiner character does not merge itself with other words,
for instance, LAl S gueS” (KMPYOTR ANTRNYT, ‘computer internet’) and 3 S3.e
(MDDKRO, ‘help him”), even if we remove space or ZWN] character. Note that the
L) S gueS” (KMPYOTR ANTRNYT, ‘computer internet’) and o 5540 (MDDKRO,
‘do help’) are also incorrect text, each of them is a combination of two words. As,
35320 (MDDKRO, ‘do help’) is sa0 (MDD, ‘help’) and 4 5 (KRO, ‘do’), whereas,
G \Jﬁ' jmf (KMPYOTR ANTRNYT, ‘computer internet’) have Jﬂ' j,»f (KMPYOTR,
‘computer’) and tu5 ! (ANTRNYT, “internet”) words. However, omitted space(s)
between all ambiguous text results in a space omission problem, which can be over-
come by inserting a space at the end of the first word so that two or three distinct
words can be detected. For example, Lsaf&‘j\.w.\fu (NYY SAYYKL HE, ‘is new bicycle)
are three distinct words, written without spaces, in order to tokenize them properly
we need to insert spaces at the end of L;u (NYY, ‘new’) , and kﬂiu (SAYYKL ‘bicy-
cle’) so that three different tokens can be generated: (i) & (NYY, ‘new’), (i) KL
(SAYYKL, ‘bicycle’), and (iii) o (HY, “is”). As can be noted from the above discus-
sion, space omission problems are complex thus making the Urdu word tokenization
task particularly challenging.

In the space insertion problem, if the first word ends either on a joiner or non-
joiner, a space at the end of the first word (see Table 3.1, Correct column- incorrect
multiple tokens with space (-), but correct shape) can be inserted for several reasons:
(i) affixes can be separated from their root, (ii) to keep separate Urdu abbrevi-
ations when transliterated, (iii) increase readability for Urdu proper nouns and
English/foreign words are transliterated, (iv) compound words and reduplication
morphemes do not visually merge and form a correct shape and (v) to avoid making

words written incorrectly or from combining (see Table 3.1, incorrect column- single
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token but incorrect shape). For example, 31 59s (KHOSH AKHLAK, “polite”)
is a compound word of type affixation, however, space was inserted between iq¢=
(KHOSH, ‘happy’) i.e. a prefix (literally ‘happy’) and 3M=!| (AKHLAK, “ethical’)
i.e. root to increase the readability and understandability. To identify (M| ig=
(KHOSH AKHLALK, ‘polite”) as a single word/token the tokenizer will need to ignore
the space between them. This also serves to emphasise the fact that the space insertion

problem is also a very challenging and complex task in Urdu word tokenization.

Table 3.1 Example text for various types of space omission problems

Type Correct Incorrect  Translation
Affixation Ml gex  dsligs  Polite
KHOSH AKHLAK ~ KHOSHAKHLAK

Abbreviations s o L NLE
AYN AYL AY AYNAYLAY

Compound word 0y A& NS Variable
TGHYR PZYR TGHYR PZYR

English word NEPRURT ) g Network

NYT ORK NYTORK

Proper noun PEU RO whliy  West Indies
OYST ANDYZ OYSTANDYZ

Reduplication Y JT o Y] Quickly
AANN FANN AANNEANN

As discussed earlier, in some cases Urdu words are harder to disambiguate.
There is no clear agreement on word boundaries in a few cases (sometimes they are
considered as a single word even by a native speaker). For example the compound
word, Ju-‘ 9 (OZYR AALY, ‘chief minister’), Jl. .. (BHN BHAYY, ‘sibling’,
literally ‘brother sister’). The same is the case for rec{uplications, # 4 (FRFR,
‘fluent’) and affixation, 3M=! & (BD AKLAK, ‘depravedly’). Certain function words

(normally case markers, postpositions, and auxiliaries) can be written jointly e.g.
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ol (ASMYN, ‘herein’), =és, (YHOKT, ‘this time”) or j 5 (Ho GEE). Alternatively,
the same function words can b‘e written separately suchas e ! (ASMYN, ‘herein’),
céy ~ (YH OKT, ‘this time”) and j 5 (HO GEE) (i.e two auxiliaries) respectively.
These distinct forms of the same word(s) are visually correct and may be perceived
as single or multiple words. These types of cases are ambiguous i.e. can be written
with or without spaces and can be treated as a single unit or two different words.
Consequently, this changes the perception of where the word boundary should sit.
A possible solution to handle such words is to use a knowledge base.

To conclude, the space insertion problem, space omission problem and ambiguity
in tokenizing multi-words makes the Urdu word boundary detection a complex and
challenging task. This may be a possible explanation for the fact that no standard effi-
cient Urdu word tokenizer is publicly available. An efficient Urdu word tokenization
system would be needed to deal with these issues and to properly tokenize Urdu

text.

3.2.2 Pilot Study to Find Out Word Tokenization Issues of Urdu

Text:

To analyse and understand the significance of space (omission and insertion) related
problems in Urdu word tokenization, a pilot study is further conducted. Whose
primary aim is to explore the challenges that arise in Urdu word tokenization due to
the irregular use of spaces in writing Urdu text [87].

For this analysis, a subset (6K tokens) of UMC dataset (see Section 2.3.8) is used.
Note that this analysis is carried out manually to identify space related problems

in Urdu text. The UMC dataset contains Urdu text, which is collected from various
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sources (BBC Urdu News?, Express News®, Urdu Library7, Minhaj LibraryS, Awaz-e-
Dost’, Wikipedia'?).

Table 3.2 presents the statistics of space related problems in Urdu text. It can be
observed from the table that a high percentage of space omission (378) and space
insertion errors (1,303) (see Section 3.2.1) are found in Urdu text (total errors are
1,681 which is 33.62% of text). It has been observed that the joiner characters (256)
(see Section 5.1) are the most significant causes for space omission errors, whereas
in space insertion, the most common error causes are affixation (176), MWE (277),
English words (220), and proper noun (386). As far as the reduplication is concerned,
it is the less observed phenomenon (101) in the subset of UMC dataset used in this

study.

Table 3.2 Statistics of space related problems in the subset of UMC dataset

Problem BBC Express Library Minhaj Awaz Wiki Total
Space Omission
Joiner 102 45 23 42 21 23 256
Non-Joiner 22 28 15 23 19 15 122
Space Insertion
Affixation 46 34 29 28 20 19 176
Abbreviations 29 38 17 14 15 30 143
MWE 59 68 39 52 31 28 277
English word 36 24 36 15 07 102 220
Proper noun 70 92 53 67 49 55 386
Reduplication 20 24 19 21 11 06 101
Total 384 353 231 262 173 278 1,681

5h’ctp: //www.bbc.com/urdu - Last visited: 14-November-2018

®http:/ /www.express.pk/ - Last visited: 14-November-2018

"http:/ /www.urdulibrary.org/ - Last visited: 14-November-2018

8http:/ /www.minhajbooks.com/urdu/control/ - Last visited: 14-November-2018
“http:/ /awaz-e-dost.blogspot.co.uk/ - Last visited: 14-November-2018

10h’ctps:/ /ur.wikipedia.org/wiki/ - Last visited: 14-November-2018



82 Urdu Natural Language Tools

To summarize, both space omission and space insertion are serious and common
problems in Urdu text. An efficient Urdu word tokenization system would be needed

to deal with space related issues and to properly tokenize Urdu text.

3.2.3 Generating Supporting Resources for the Urdu Word Tok-

enizer

For the proposed Urdu word tokenizer, two dictionaries are developed: (i) a complex
words dictionary - to address space insertion problem and (ii) a morpheme dictionary

- to address the problem of space omission.

3.2.3.1 Complex Words Dictionary

To address the space insertion problem, a large complex words dictionary was cre-
ated using the UMC Urdu dataset [91], which contains data from various domains
including Sports, Politics, Blogs, Education, Literature, Entertainment, Science, Tech-
nology, Commerce, Health, Law, Business, Showbiz, Fiction and Weather. From
each domain, at least 1,000 sentences were randomly selected and pre-processed to
remove noise (see Section 3.2.6). After noise removal, to speed up the dictionary
creation process a basic space-based tokenization approach was implemented in Java
to split sentences into words. Space based tokenization resulted in some incorrect
word generation, e.g., complex words such as the prefix =<5 | (AN GNT'countless’)
is incorrectly split into a morpheme, ! (AN, literally ‘this’) and a stem, =<8 (GNT,
literally ‘count”), postfix ;‘ L~ (HMLH AAOR, “assailant’) is incorrectly split as
7~ (HMLH, ‘“attack’) i.e. aroot and , ;‘ (AAOR, literally ‘hour”) i.e. a morpheme.
Complex words which can be categorised into three types with respect to their
formation: (i) AB formation—two roots and stems join together, (ii) A-0-B formation—

two stems or roots are linked to each other with the help of ¢ (wao) (a linking
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morpheme), and (iii) A-e-B formation— ‘e’ is the linking morpheme which shows
relation between A and B. (for more detailed discussion see [191]). In this research
all three types have been used without any classification e.g. A-o-B formation type
of compound word s 4 |, & (GHOR O FKR, ‘contemplation’) is incorrectly split
as , 3¢ (GHOR, literally ‘ponder’) a root, 5 (O) a linking morpheme, and a stem G
(FKR, literally ‘worry”). Reduplication which have two types: (i) full reduplicated
word— two duplicate words are used to form a word and (ii) echo reduplication— the
onset of the content word is replaced with another consonant (detailed information
can be found in [33]). Echo reduplication word, H& > (DN BDN, ‘day by day’) is
incorrectly split as (> (DN, literally ‘day”’) i.e. content word and \y. (BDN, literally
‘body’), a consonant. One million space-based tokenized words list (henceforth
UMC-Words) has been used to form a large complex words dictionary containing: (i)
affixes, (ii) reduplications, (iii) proper nouns, (iv) English words, and (v) compound
words.

To collect affixes (prefixes and postfixes) complex words from the UMC-Words
list [91], a two-step approach is used. In the first step, a list of prefixes and postfixes
are manually generated.

In the second step, an automatic routine is used to extract words containing affixes
from the large UMC-Words list. Using prefixes and postfixes, the previous and next
words are extracted respectively from the UMC-Words list.

Reduplications complex words are collected using two methods: (i) full extrac-
tion and (ii) partial extraction. The full extraction method is used to extract the full
reduplicated words such as = > (JYSY JYSY, “as’). To extract such full redu-
plicated words, we compared each word in the UMC-Words list to the next word, if
both are the same then concatenate both to form a full reduplicated compound word.

The partial extraction method is used to collect the words of echo reduplication i.e.
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in which a consonant word is a single edit distance away from the first content word.
The echo reduplication words can be further collected using two methods: (i) one
insertion extraction and (ii) single substitution extraction.

One insertion extraction method extracts the one insertion reduplicated words,
in which the consonant word has one insertion in its content word e.g. H& > (DN
BDN, ‘day by day”’). It can be noted that the consonant word (. (BDN, literally
meaning ‘body”) has one more character (three) as compared to the content word
0> (DN, literally ‘day’) (which have two characters). Furthermore, the last two
characters of the consonant word are identical to the content word. To extract one
insertion reduplicated words, we used the UMC-Words list. The extraction process
works as follows: after excluding the first character, if the remaining characters
of consonant word are identical as well as having the same character count to the
content word, they are one insertion reduplicated word(s) we concatenated them to
form a single word.

The single substitution extraction method extracts the single substituted redupli-
cated word(s) - here the consonant word has single substitution in its content word
e.g. Lkl Lkl= (KHLT MLT, ‘intermixed”). It is worth noting that both words con-
tent lals (KHLT, literally ‘bad”) and consonant leks (transliteration: MLT) has three
characters and the final two characters are overlapping. To extract one substituted
reduplicated word (s) we used automatic routine and applied the following process
over the UMC-Words list as: if the length of the content word is matched with the
length of the consonant word and the length of content word is greater than two'!
characters, and if one character is dissimilar after comparing character by character,

then it will form a single substitution reduplicated complex word.

1To make sure the two character words or auxiliaries could not be erroneously identified as
reduplication such as § _$ (KR KE, literally ‘by doing’)
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To automatically extract abbreviations (91) and proper nouns (2K), regular ex-
pressions are used and further supplemented by manual checking to increase the
size of the proper nouns (3K) and abbreviations lists (187). The remaining 65K
proper noun list was generated in another NLP project and are used in this study for
Urdu word tokenization. In addition to this, manual work!2 was also carried out to
remove noisy affix entries. Moreover, compound words (of formation AB and A-e-B)
and English words are added to increase the size of the complex words dictionary.
However, to collect words of A-o-B formation automatically, a linking morpheme ( ,
O) has been used. While using a linking morpheme both previous and next words
are extracted from the UMC-Words list to form a A-o-B compound words.

The complete statistics of the compound word dictionary are shown in Table 3.3.
There are in total 80,278 compound words (7,820 are affixes, 278 are abbreviations,
10,000 are MWESs, 1,480 are English words, 60,000 are proper nouns and 700 are

reduplication words).

Table 3.3 Statistics of compound words dictionary

Class Tokens
Affixation 7,820
Abbreviations 278
MWE’s 10,000

English words 1,480
Proper nouns 60,000
Reduplication 700
Total 80,278

2Five undergraduate NLP students have been employed to carry out manual tasks, all are native
Urdu speakers and have an interest in Urdu NLP and literature. Furthermore, each student undertook
a practical training session on annotation tasks. Each student was given an annotation assignment
of 80 random sentences from the UPC dataset and requested to extract affixes, compound words,
abbreviations and English words. These assignments were marked and each student was awarded
with a score. Students having scored 85% or above were thus selected for annotation tasks.
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3.2.3.2 Morphemes Segmentation Process

To address the space omission problem (see Section 3.2.4), a large-scale morpheme
dictionary is automatically compiled from the HC dataset [50]. Before we proceed
further towards the approach used to generate the morphemes dictionary, it is worth
describing the morpheme types. Urdu language morphemes can be categorized into:
(i) free and (ii) bound morphemes. Proposed word tokenizer has to rely on both
categories. The bound or functional morphemes such as affixes include prefixes,
e.g., “§ N 5" (GA, LA, KO), linking morphemes, for e.g., ! < 3 (A, O) or suffixes,
€.g., 00 ¢ 03 (transliteration: SHDH, ZDH), can only expose their meanings if they
are attached to other words, i.e. they cannot stand alone. Whereas, free or lexical
morphemes can stand alone, for example, ‘o.ﬁ ( (J-f—a NV J s20 (MKBOL, CHST,
ALM, GHM, ‘grief, knowledge, clever, famous”).

There are two further categories of free morphemes: (i) true free morphemes
and (ii) pseudo-free morphemes. True free morphemes can be either standalone
(fore.g., J» (DL, ‘heart’)) or form part of other words (e.g. J> >,5> (DRD DL, ‘angina
pectoris’) ). Pseudo-free morphemes can be a character, affix or word.

The preceding discussion summarizes the various types of morphemes. However,
from a computational linguistics view, free and bound morphemes play a vital
role in Urdu word formations [102], hence, they will be used without any further
classification in our proposed UNLT word tokenizer module.

In order to generate the morpheme dictionary, the 1,000 most frequent words of
the HC dataset are used [50]; the selected words were split to form a morpheme
dictionary. The whole chopping process is completed in two steps: (i) Crude-
Morphemes (CM) chopping and (ii) Ultra-Crude-Morphemes (UCM) chopping.

In the first step, the first n character(s) of each word are kept while the rest are

discarded. For example, in case of n = 1, we kept only the first character and discarded
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all others, thus words such as c.isly (OAKFYT, ‘awareness’) will return 4 (wao).
Such single character morphemes are helpful to formulate A-o0-B formation type of
complex words, for instance P s Ui (KHSH O KHRM, ‘canty’). Furthermore, we
keep chopping all the words repeatedly with the following values of n = 2,3.4,5,613.
This process returns cusly ¢ 23ly «adly (3lg ¢y (transliterations are: OA, OAK,
OAKF, OAKFY, OAKFYT) morphemes for the word M\j (OAKFYT, ‘awareness’).
There may be a situation where we may lose several valuable morpheme(s), if the
length of n > 6. Nevertheless, this is a rare case. Henceforth, we will call this method
Crude-Morpheme chopping.

To generate entirely different morphemes from the same word, we further applied
amodified version of CM chopping, i.e. UCM. In which, we skipped the first character
and then applied the CM chopping with length n = 2,3,4. Thus, UCM chopping
resulted with these morphemes, cuis! ¢ 28} « 8| ¢3! (transliterations are: AK, AKF,
AKFY, AKFYT) for the word caisly (OAKFYT, ‘awareness’). Furthermore, we iterate
the UCM chopping method by skipping the first two characters (as well as three,
four etc.), until we meet the last two characters. Thus, the following morphemes are
returned by UCM, in the third = LRS- (transliterations are: KF, KFY, KFYT),
in the fourth = ¢ (transliterations are: FY, FYT) and in the last v (transliteration,
YT) iterations.

Repeating CM and UCM chopping on the entire list of words will return all
possible morphemes. The two chopping methods used in this study will result in
erroneous morphemes. However, we manually examined the morpheme dictionary
and removed these. The number of morphemes generated by the CM and UCM
chopping methods were 5,089 and 7,376 respectively.

13 An assumption made by us after analysing Urdu text that a word is formed of a maximum of six
morphemes
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It can be observed from the above discussion that two different large-scale dictio-
nariesi.e. the complex words dictionary and the morphemes dictionary are generated
with distinct approaches and with various statistics. These dictionaries will be used
to solve the space omission and space insertion problems with the word tokenizer
module. To the best of our knowledge, no such large complex words (a study [85]
just proposed a scheme to extract location and person name) and morpheme dictio-
naries have been previously compiled semi-automatically for Urdu, to perform Urdu

word tokenization task.

3.24 Proposed Urdu Word Tokenizer

To investigate an effective approach for Urdu Word Tokenization (henceforth UNLTool
WT approach), the proposed Algorithm 1 is a combination of state-of-the-art ap-
proaches: rule-based maximum matching, dictionary lookup, statistical tri-gram
Maximum Likelihood Estimation (MLE) with backed-off to bi-gram MLE. Further-
more, smoothing is applied to avoid data sparseness. A step by step working example

of the proposed algorithm can be seen in Section 3.2.4.1.

3.2.4.1 Processing Steps with an Example

This section will present a step by step worked example of the proposed Algorithm 1.

First Iteration

1. Initialize flag bit=false, row=1, column=1, word_counter=0;

2. Create array words_list[row ][ column ], array morphemes_list, array compound_words_list,

array input_text;

3. Remove all white spaces and ZWN]J, to form a space free input text.
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Algorithm 1 UNLTool-WT approach

Step 1: Initialize flag_bit=false, row=1, column=1, word_counter=0;

Step 2: Create array words_list[row |[column], array morphemes_list, array
compound_words_list;

Step 3: Remove all white spaces and ZWN]], to form a space free input text.
Step 4: Read bi-gram of input text.

Step 5: Match this bi-gram with each word of morphemes_list

Step 6: Extract all those morphemes from morphemes_list, which matched with
bi-gram.

Step 7: Store each extracted morpheme on a separate row/column of words_list
Step 7.1: For each row, copy the flag_bit, word_counter++

Step 8: If no match is found in morphemes_list, split bi-gram into uni-gram.
Step 8.1: Store the first uni-gram with previous morpheme (column) ex-
cept o (character O) and | (character A) (use in compound words) and

turn the flag_bit=true. For 4 and | store it on separate column of ar-

raywords_list[row |[column] and increment word_counter.

Step 9: Repeat the steps 4 to 8, until sentence ending marker, and for each row
of words_list.

Step 10: Select the row having minimum word_counter value and flag_ bit=false.
Step 11: If multiple rows are qualified in step 10 then

Step 11.1: Calculate tri-gram MLE for each row.

Step 11.1.1: Select the one having highest value of tri-gram MLE.

Step 11.2: If in step 11.1.1, any row having tri-gram MLE value equal to Zero,
then calculate bi-gram MLE for each row.

Step 11.2.1: Select the one having highest value of bi-gram MLE.

Step 11.3: If in step 11.2.1, any row having bi-gram MLE value equal to Zero then,
calculate bi-gram smoothing for each row.

Step 11.3.1: Select the one having highest value of smoothing.

Step 12: For final selected row, read each column and match in the compound
word dictionary.

Step 12.1: If a match is found then read the next column of selected row in step
12 and repeat step 12 for the remaining part of selected row.

Step 12.1.1: If complete match is found then concatenate with the columns in
step 12.1.

Step 12.1.2: Move each element of final selected row in step 12, decrease the
array index.

Step 13: Finally, the list of tokenized words will be produced.

e input_text: - Kg D5 (S 0 (OH SAODY ARB GYA, ‘He went to Saudi
Arabia’).
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e input_text: after removing white spaces and ZWNJ: - L&, = dgmnn g (OHSAOD-
YARBGYA, ‘HewenttoSaudiArabia’).

4. Read first bi-gram of input text.

e input_text: - LK = dgmun g (OHSAODYARBGYA, ‘HewenttoSaudiArabia”)

—bi-gram: ¢ 4 (OH)
5. Match this (¢ 9) bi-gram with each word of morphemes_list.

e morphemes_list: Lf‘j‘%’) (D5 (5 (5D ((5gmm (g (w03 (translit-
eration: OH, SA, SAOD, SAODY, OY, AR, ARB, RB, GY, GYA)

6. Extract all those morphemes from morphemes_list, which matched with the bi-gram.

7. Store each of the extracted morpheme on a separate row/column of words_list. i.e.

words_list[1][1] (see Table 3.4, Row (i) and C1)

7.1. For each row, copy the flag_bit, word_counter++, i.e. flag bit=false and

word_counter=1;

8. Repeat the steps 4 to 8 (see Algorithm 1), until sentence ending marker i.e. the

condition is false.

Second Iteration

1. Read next bi-gram of input text.

o input_text: - LK g g (OHSAODYARBGYA, ‘HewenttoSaudiArabia”)

—bi-gram: = (SA)
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2. Match this ( C«/) bi-gram with each word of morphemes_list.

e morphemes_list: K‘j‘&u (O 5 5 (6D ((§9muw (Dgnu s €939 (translit-
eration: OH, SA, SAOD, SAODY, OY, AR, ARB, RB, GY, GYA))

3. Extract all those morphemes from morphemes_list, which matched with the bi-gram.
1.e. c«:
4. Store each of the extracted morphemes (( ¢3gaw ¢dgau ¢ o~ (transliteration: SA,

SAOD, SAODY)) on a separate row/column of words_list and with previous

columns of words_list[1][1].

e store ( C.ﬂ) on words_list[1][2] (see Table 3.4, Row (i) and C2)
e store (5¢=w) on words_list[2][2] (see Table 3.4, Row (ii) and C2)

e store ( s>s=w) on words_list[3][2] (see Table 3.4, Row (iii) and C2)

4.1. For each row, copy the flag_bit, word_counter++, i.e. flag_bit= false and

word_counter=2;

5. Repeat the steps 4 to 8 (see Algorithm 1), until sentence ending marker i.e. the

condition is false.

Third Iteration

1. Read next bi-gram of input text.

e input_text: - LK o d9aun 9 (OHSAODYARBGYA, ‘HewenttoSaudiArabia”)

—bi-gram: >4 (OD)

2. Match this () bi-gram with each word of morphemes_list.
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e morphemes_list: \.f&jab_u (D5 5 (5D ((SO3mm (dgmu (w03 (translit-
eration: OH, SA, SAOD, SAODY, OY, AR, ARB, RB, GY, GYA)

. Extract all those morphemes from morphemes_list, which matched with the bi-gram.

ie. Dj.

. If no match is found in morphemes_list, split bi-gram into uni-gram.

4.1. Store the first uni-gram with previous morpheme (column) except ¢ (O) and
turn the flag_bit= true. Otherwise, store it on separate column of words_list

and increment word_counter.

e store first uni-gram i.e. yon a separate column of words_list[1][3] (see

table 3.4, Row (i) and C3).
e word_counter++ i.e. word_counter= 3;

e concatenate remaining »> (D) with the next uni-gram of input_textie. ¢

(Y)

. Repeat the steps 4 to 8 (see Algorithm 1), until sentence ending marker i.e. the

condition is false.

Fourth Iteration

. Read next uni-gram of input texti.e. ¢ (Y) and concatenate with > (D)

e input_text: - K€ o d9aun g (OHSAODYARBGYA, ‘HewenttoSaudiArabia”)

—bi-gram: ¢> (DY)

. Match this ( ¢>) bi-gram with each word of morphemes_list.
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e morphemes_list: kf&jzb_u (D5 5 (5D ((S3mm (dgmu (03 (translit-
eration: OH, SA, SAOD, SAODY, OY, AR, ARB, RB, GY, GYA)

3. Extract all those morphemes from morphemes_list, which matched with the bi-gram.
ie. .

4. Store extracted morpheme on a separate column of words_list. i.e. words_list[1][4]

(see Table 3.4, Row (i) and C4)
4.1. word_counter++, i.e. word_counter= 4;

5. Repeat the steps 4 to 8 (see Algorithm 1), until sentence ending marker, and for

each row of words_list i.e. the condition is false.

Fifth Iteration

1. Read next bi-gram of input text.

e input_text: - LK, o d9mun g (OHSAODYARBGYA, ‘HewenttoSaudiArabia”)

—bi-gram: < (AR)
2. Match this (_¢) bi-gram with each word of morphemes_list.

e morphemes_list: K‘j‘%’) (D _E E (8D ((S3mm (Dgmm (s (03 (translit-
eration: OH, SA, SAOD, SAODY, OY, AR, ARB, RB, GY, GYA)

3. Extract all those morphemes from morphemes_list, which matched with the bi-gram.
ie. =

4. Store each of the extracted morphemes (w s ¢ s (AR, ARB)) on a separate

row /column of words_list and with previous columns of words_list[1].
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e store (_s) on words_list[1][5] (see Table 3.4, Row (i) and C5)

e store (w &) on words_list[4][5] (see Table 3.4, Row (ii) and C2)

4.1. For each new row, copy the flag_bit, word_counter++ of words_list[1], i.e.

flag_bit= false and word_counter=5;

5. Repeat the steps 4 to 8 (see Algorithm 1), until sentence ending marker i.e. the

condition is false.

Sixth Iteration

1. Read next bi-gram of input text.

e input_text: - LK g g (OHSAODYARBGYA, ‘HewenttoSaudiArabia”)
—bi-gram: & (BG)

2. Match this () bi-gram with each word of morphemes_list.

e morphemes_list: \.f&jab_u (D5 5 (5D ((SO3mm (dgmu (w03 (translit-
eration: OH, SA, SAOD, SAODY, OY, AR, ARB, RB, GY, GYA)

3. Extract all those morphemes from morphemes_list, which matched with the bi-gram.

ie. f

4. If no match is found in morphemes_list, split bi-gram into uni-gram.

4.1. Store the first uni-gram (o (B)) with previous column of words_list[1][5]

(see table 3.4, Row (i) and C5).

e concatenate remaining J (G) with the next uni-gram of input_text.

o set flag bit= true;
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5. Repeat the steps 4 to 8 (see Algorithm 1), until sentence ending marker i.e. the

condition is false.

Seventh Iteration

1. Read next uni-gram of input texti.e. ¢ (Y) and concatenate with J(G)

e input_text: - LK g g (OHSAODYARBGYA, ‘HewenttoSaudiArabia”)
—bi-gram: j (GY)

2. Match this ( Lf) bi-gram with each word of morphemes_list.

e morphemes_list: Lf4ju7;) CD_F (5 (5D ((5gmm (dgmu (o (03 (translit-
eration: OH, SA, SAOD, SAODY, OY, AR, ARB, RB, GY, GYA)

3. Extract all those morphemes from morphemes_list, which matched with the bi-gram.

ie. §(GY).

4. Store each of the extracted morphemes ( Rgy j (GY, GYA)) on a separate row/column

of words_list and with previous columns of words_list[1].

e store ( ﬁ on words_list[1][6] (see Table 3.4, Row (i) and C6)

e store (L) on words_list[5][6] (see Table 3.4, Row (v) and C6)

4.1. For each new row, copy the flag_bit, word_counter++ of words_list[1], i.e.

flag bit= true and word_counter=6;

5. Repeat the steps 4 to 8 (see Algorithm 1), until sentence ending marker i.e. the

condition is false.

Eighth Iteration
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Table 3.4 Tokenized words using the UNLTool-WT approach

Index Description Flag Tokens
C1 C2 C3 C4 C5 Co6

Row (i) o - 3 $d o ekl §xo 1 6

Transliteration OH SA O DY ARB GY A

Translation ‘He’ — - — ‘Arab’ ‘Went’

Row (i) 0y (5 Syt O erx | $x 1 4
OH SAOD Y ARB GY A
‘He’ ‘Saudi’ ‘Arab’ ‘Went’

Row (i) X SO gmw e ! d/* 1 4
OH SAODY AR B GY A
‘He’ ‘Saudi’ ‘Arab’ ‘Went’

Row (iv) ‘?j Cw E) K- . ‘ j* 1 6
OH SA (@) DY ARB GY A
‘He’ ‘Sa’ ‘Wao’ ‘De’ ‘Arab’ ‘Went’

Row (v) ? k) C..u E) <Ks-? . L{ 1 6
OH SA (@) DY ARB GYA
‘He’ ‘Sa’ ‘Wao’ ‘De’ ‘Arab’ ‘Went’

Row (vi) ?j 529w o ‘ j* 1 4
OH SAODY ARB GY A
‘He’ ‘Saudi’ ‘Arab’ “Went’

Row (vii) ?j LE o F \A{ 1 4
OH SAODY ARB GYA
"He’ ‘Saudi’ ‘Arab’ ‘Went’

Row (viii) 939 LI o s ! d(* 1 4
OH SAODY ARB GY A
‘He’ ‘Saudi’ ‘Arab’ ‘Went’

Row (ix) c‘b 9 S o S \.f 1 4
OH SAODY ARB GYA
‘He’ ‘Saudi’ ‘Arab’ ‘Went’

Row (x) c‘) 9 Cw 9 <Ks? < S L{ 0 6
OH SA O DY ARB GY A
‘He’ ‘Sa’ ‘“Wao’ ‘De’ ‘Arab’ ‘Went’

Row (xi) 0y (S3gmw g X 1 4
‘He’ ‘Saudi’ ‘Arab’ ‘Went’

Row (xii) 0y (S3gmw g L5 0 4
‘He’ ‘Saudi’ ‘Arab’ ‘Went’
‘He’ ‘Saudi Arab’ ‘Went’
‘He’ ‘Saudi Arab’ ‘Went’

*Visibility in the column: LS, #+Visibility in the column: s, #Visibility in the column: (¢5gau
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1. Read next bi-gram of input text.

e input_text: - K€ o d9aun g (OHSAODYARBGYA, ‘HewenttoSaudiArabia”)

—bi-gram: - 1 (A.)
2. As sentence boundary marker is detected.
e store (! (A)) on words_list[1][6] (see Table 3.4, Row (i) and C6)

3. Repeat the steps 4 to 8 (see Algorithm 1), until sentence ending marker, and for

each row of words_list.

4. Select the row having minimum word_counter value (4) and flag_bit= false i.e.

(see Table 3.4, Row (xii)).

5. For selected row, read each column and match in the compound word dictionary.

e selected row: - L& o S 829 09 (OH SAODY ARB GYA, ‘He went to
Saudi Arabia”) (see Table 3.4, Row (xii)).

e compound_word_dictionary: o &  s3¢aw (SAODY ARB, ‘Saudi Arab’).
5.1. If match is found then read the next column of selected row in step 5 and
repeat step 5 for the remaining part of selected row.

e match is found in compound_word_dictionary for ( s>¢=w (SAODY,
‘Saudi’)) i.e. table 3.4, index (iv), C2.

e repeat step 5 for the remaining part of selected row i.e. (o s (ARB,
‘Arab’) i.e. table 3.4, index (iv), C3.

5.1.1. If complete match is found then concatenate with the column in step 5.
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e concatenate with the column in step 5i.e. (o s ($392u SAODY
ARB, ‘Saudi Arab’) (see Table 3.4, index (iv), C2).

6. Move each element of final selected row in step 5, decrease the array index.

e move each element to the left: table 3.4, index (v), C3.

e decrease the array index i.e. column=3;

7. Finally, the list of tokenized words will be produced i.e. Table 3.4, index (V).

3.24.2 Maximum Likelihood and Smoothing Estimation

In the proposed UNLTool-WT approach (see Algorithm 1) at step 11.1, a tri-gram
MLE and smoothing estimations are used, because there can be multiple tokenized
sequences for which flag_bit=false and word_count are equal. For instance, there
are two given texts, (i) 32 g% § b b _s! (transliteration: ASE BAHR JA KE
PRHNE DO, ‘let him go abroad for higher studies’), and (ii) > _¢a% § & J:Q s
(transliteration: ASE BAHR JY KE PRHNE DO, literally meaning ‘let him yes abroad
for higher studies’). Both have six tokens with flag bit= false, but only the first
text is semantically correct and meaningful. For such ambiguous cases, an N-gram
language model is calculated with MLE for parameter and Laplace for smoothing
estimation. The goal of these estimations is to find an optimized segmented sequence
with the highest probability. This can be shown by a given mathematical expression,

a general statistical model of the proposed UNLTool-WT approach.

P(t}) = [T P(alti-1) (3.1)
j=1
Where, [T)_, denotes the probability of a complete word sequence of an input

string i.e. jj jo...j, with ¢ tokens. Theoretically, it is assumed that the n-gram model
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outperforms with a high value of N. However, practically the data sparseness restricts
better performance with high order N. Therefore, in the UNLTool-WT approach, the
chosen value is tri-gram (N = 3) or bi-gram (N = 2) MLE. These have proved to be
successful in several tasks for resolving ambiguity (e.g. POS tagging [38], automatic
speech recognition [3] and word tokenization [70]).

The task of resolving similar sequence ambiguities for the above two texts is

accomplished by using tri-gram MLE [97] as:

C(tj—a,tj—1,t)

C(tj-2:tj-1) (3:2)

P(tjltj-2,tj-1) =

Where t represents the individual token, C is a count of three (¢;_»¢;_17) and two
(tj—2tj—1) consecutive words in the dataset and P is the tri-gram contestant MLE
value of each of the possible segmented sequences. The calculated probability for
the first sequence is 3.2e-08 while for the second it is 0.

As tri-grams take account of more context, if this specific context is not found in
the training data (see Section 3.2.5), we back-off to a narrower contextual bi-gram
language model. Bi-gram cumulative probability values have been calculated as

given by Jurafsky and Martin [97]:

C(tj—1t)
C(tj-1)

P(tjltj1) = (3:3)

Where t represents the individual token, C is a count of two (¢;_1¢) and one (¢;_1)
consecutive word(s) in the dataset and P is the bi-gram contestant MLE value of
each of the possible segmented sequences. The calculated probability for the first
sequence is 2.7e-6 for former sequence and 0 for later one.

These zero probabilities are again an underestimation of the input string, ulti-
mately a cause for the data sparseness. Even if a statistical language model is trained

on a very large dataset, it will remain sparse in some cases. However, there is always
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a possibility that the input text occurs in the test dataset [48], thus assigning them
to zero made this an unstable, frail and specific estimator. Therefore, to overcome
this, different smoothing techniques have been proposed in previous literature [97]
with different characteristics (such as smoothing the probability etc.). Hence, it is
primarily aimed at making a robust and generalize language model by re-evaluating
lower or zero probability upwards and vice-versa for high probabilities.

In this research work, Laplace (a.k.a add-one) smoothing [94] is use, as one of the
oldest, simplest and baseline estimations. This estimation adds one to all frequency
counts, i.e. that all bi-gram probability counts have been seen one more time than

actually exists in the training data as:

14+C(tj-1,1)

V+C(tj—1) (34)

Paaa: (tjltji—1) =

Where v represents the unique words (types), added to the total number of
words C(tj—1) in order to keep the probability normalized [97]. We have used
Laplace smoothing to estimate the parameters required for data sparseness in order
to increase the bi-gram MLE value for ¢5 _gqa% § > J:LJ _sv! (transliteration: ASE
BAHR JY KE PRHNE DO, ‘let him go abroad for higher studies’), from 2.7e-6 to
3.8e-7 and decreased value for ¢35 sa% § b J:L{ _sv! (transliteration: ASE BAHR
JA KE PRHNE DO, literally meaning ‘let him yes abroad for higher studies’), from 0
to 1.9e-14. The latter tokenized sequence has the highest smoothing MLE. Therefore,

it will be selected by UNLTool-WT as the best tokenized sequence, which is correct.

3.2.5 Proposed Datasets for Urdu Word Tokenization Task
3.2.5.1 Testing Data

Another key element of this research is to develop a large benchmark dataset, for the

evaluation of the proposed UNLTool-WT approach (see Section 3.2.4). The process
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of developing a benchmark test dataset is divided into three steps: (i) raw text
collection, (ii) cleaning and (iii) annotation.

In the first phase, raw data is collected from various online sources (BBC Urdu'?,
Express news!®, Urdu Library16, Urdu Point!, Minhaj Libraryls, Awaz-e-Dost!® and
Wikipedia??) by using a Web crawler?!. The collected raw data is free and publicly
available for research purposes, and belongs to following genres: Commerce, En-
tertainment, Health, Weather, Science and Technology, Sports, Politics and Religion.
This collected text contains 61,152 tokens.

In the next phase of the test dataset creation process, the collected raw text is
pre-processed (see Section 3.2.6), which resulted in the removal of 2,152 tokens. The
remaining cleaned data is composed of 59,000 tokens (3,583 sentences).

The quality of evaluation of an Urdu word tokenization approach depends on
the annotation quality of the test dataset because inconsistent and noisy annotations
deteriorate the model’s performance. Thus, the annotations are performed by three
different annotators (D, E and F). All the annotators are native speakers of Urdu. The
annotation process is further divided into three phases: (i) training, (ii) annotation,
and (iii) inter-rater agreement calculation and conflict resolution.

In the training phase, two annotators (D and E) annotated a subset of 58 sen-
tences. After that, the inter-annotator agreement is computed for these sentences and
conflicting tokens are discussed to further improve the annotation quality. In the an-

notation phase, the remaining test dataset comprising of 3,525 sentences is annotated

Yhttp://www.bbc.com/urdu, terms of use: https://www.bbc.com/urdu/
institutional-37588278 - Last visited: 05-April-2019

Bhttp:/ /www.express.pk/ - Last visited: 14-November-2018

6http:/ /www.urdulibrary.org/ - Last visited: 14-November-2018

http:/ /www.urduweb.org/planet/ - Last visited: 14-November-2018

Bhttp:/ /www.minhajbooks.com/urdu/control/ - Last visited: 14-November-2018

Yhttp:/ /awaz-e-dost.blogspot.co.uk/ - Last visited: 14-November-2018

https:/ /ur.wikipedia.org/wiki/ - Last visited: 14-November-2018

Zhttps://lindat.mff.cuni.cz/repository /xmlui/handle/11858/
00-097C-0000-0023-65A9-5 - Last visited: 14-November-2018


http://www.bbc.com/urdu
https://www.bbc.com/urdu/institutional-37588278
https://www.bbc.com/urdu/institutional-37588278
http://www.express.pk/
http://www.urdulibrary.org/
http://www.urduweb.org/planet/
http://www.minhajbooks.com/urdu/control/
http://awaz-e-dost.blogspot.co.uk/
https://ur.wikipedia.org/wiki/
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
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by annotators D and E. After the annotation phase, the inter-rater reliability score is
computed for the entire test dataset of 59,000 tokens. The inter-annotator agreement
of 86.3% is obtained as the annotators had agreement on 50,917 pairs. The Kappa
Coefficient is computed to be 78.09%, which is considered as good, considering the
levels of difficulty for classifying the merge (space omission) and compound words
(space insertion) into single or multiple tokens (see Section 3.2.1). Furthermore, the
conflicting tokens are annotated, and decisions resolved by the third annotator F,
which resulted in a gold standard UNLTool-Word Tokenizer-Test (UNLTool-WT-Test)
dataset.

The Table 3.5 shows the type-token ratio of the UNLTool-WT-Test dataset, that
have a total of 59,000 tokens and 5,849 types. The UNLTool-WT-Test dataset is stored
in the standard “txt” format and is free and publicly available for research purposes

(under the terms of the Creative Commons Attribution 4.0 International License??.).

Table 3.5 Domain statistics of the UNLTool-WT-Test dataset

Domains Tokens Types
Commerce 7,254 663
Entertainment 8,578 937
Health 6,765 651
Weather 6,606 756
Science and Technology 7,749 823
Sports 6,868 691
Politics 9,627 777
Religion 5,553 556
Total 59,000 5,849

3.2.5.2 Training Data

The training dataset for a proposed Urdu word tokenizer is created by using a subset

of the HC Corpus [50] (see Section 2.3.8). To develop a gold standard training

22https:/ /creativecommons.org/licenses/by/4.0/ - Last visited: 11-November-2018
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dataset, two million tokens are randomly selected from the following domains:
Politics, Culture, Crime & Law, Fashion, Religion, Business & Economy, Science &
Technology, Sports, Weather, Education, Health, Entertainment.

After pre-processing (see Section 3.2.6) the collected raw data, the resulting
dataset contained 1.65 million tokens. The pre-processed text is used to create the
gold standard training dataset. In the first step, the text is tokenized on the basis of
space. After that, a human annotator manually corrected the improperly tokenized
words generated in the first step. The final benchmark training dataset (hereafter
called UNLTool-WT-Train dataset) is comprised of 1.65 million tokens.

The UNLTool-WT-Train dataset is used to generate N-grams using the approach
(see Algorithm 2) described in [97]. Furthermore, the occurrences of each unique
N-gram type is counted, resulting in a total 1,335,263 N-gram pairs with the following

statistics: tri-grams: 636,765, bi-grams: 494,988 and uni-grams: 203,510.

Algorithm 2 N-gram model generation algorithm

1: procedure GENERATENGRAMS(int s)
2: Initialize int N (size of n—gram) =s;

3: Initialize List ngramList (to store generated n-grams);
4: Initialize String| | tokens = UNLTool-W T-Train dataset;
5: Initialize int k = 0;
6: for for each k<tokens.length-N+1 do
7: String st = *;
8: int start = k;
9: int end = k+N;
10: J = start;
11: for for each j<end do
12: § =5+ +tokens|j];
13: end for
14: ngramlList.add(s);
15: end for
16: return ngramlList

17: end procedure
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3.2.6 Pre-processing

In this study, various datasets have been used, all these datasets (see Sections 3.2.5, 3.4.5,
and 3.3.3) are pre-processed as follows. Text in a dataset is cleaned by removing
multiple spaces, duplicated text, diacritics as they are optional (only used for altering
pronunciation [143]) and HTML tags. Moreover, noise from the data is removed by
discarding ASCII and invalid UTF-8 characters, emoticons, asterisks, bullets, right
and left arrows [91]. Further, only sentences with three or more words are kept?>. A

124

language detection tool“* is used to discard foreign words and a text normalization

tool?.

3.2.7 Experimental set-up
3.2.7.1 Datasets

For the set of experiments presented in this study, the UNLTool-WT-Train (containing
1.65 million tokens) and UNLTool-WT-Test (containing 59K tokens) datasets are used

for training and testing of the proposed UNLTool-WT approach respectively.

3.2.7.2 Approaches

For this study, four approaches for word tokenization are applied: (i) word tok-

enization on the basis of space (henceforth UNLTool-WT-SP approach), (ii) a hybrid

ZThis is calculated by dividing the total words in dataset by the total number of sentence disam-
biguation markers.

2https://lindat.mff.cuni.cz/repository /xmlui/handle/11858/
00-097C-0000-0023-65A9-5 - Last visited: 14-November-2018

Text normalization tool can be downloaded from http://www.cle.org.pk/software/
langproc/urdunormalization.htm-Lastvisited:14-November-2018 is used to keep the
Unicode of the characters consistent.


https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
http://www.cle.org.pk/software/langproc/urdunormalization.htm - Last visited: 14-November-2018
http://www.cle.org.pk/software/langproc/urdunormalization.htm - Last visited: 14-November-2018
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approach of tokenization [66] (hereafter Durani’s), (iii) CLE’s word tokenization?®,

and (iv) word tokenization using a proposed UNLTool-WT Algorithm 1.

3.2.7.3 Evaluation Measures

The evaluation of the proposed Urdu word tokenizer is carried out using precision,

recall, F{ measure, accuracy, and standard deviation (see Section 2.5.3).

3.2.8 Results and Analysis

Table 3.6 presents precision, recall, F; and accuracy results when training on UNLTool-
WT-Train dataset, and testing on the UNLTool-WT-Test for Urdu word tokenization
task by using various approaches (rule-based maximum matching, dictionary lookup,
statistical tri-gram MLE with backed-off to bi-gram MLE along with smoothing).
The standard deviations (o) associated with the computed results have also been
presented. UNLTool-WT-SP refers to results obtained using space-based tokenization
approach. UNLTool-WT refers to results obtained using the proposed approach for
Urdu word tokenization. Durani’s refers to a hybrid method (see Section 2.3.5 of
Chapter 2). Whereas, CLE’s word tokenizer refer to an online tokenizer (the online
link refers three papers but does not describe which one of them is used for the
creation of CLE Urdu word tokenizer).

Overall, the best results are obtained by using a proposed UNLTool-WT approach
(precision = 0.96, recall = 0.92, F; = 0.94, and accuracy = 0.97). These results show
that UNLTool-WT is the most appropriate method for Urdu word tokenization on the
UNLTool-WT-Test dataset. Furthermore, this also shows that combining maximum
matching, dictionary lookup and statistical N-gram MLE along with smoothing

estimation are helpful in getting good performance on UNLTool-WT-Test dataset

Z6tokenize up-to 100 words at one time and implementation details are not available http:/ /www.
cle.org.pk/clestore/segmentation.htm - Last visited: 18-Dec-2019


http://www.cle.org.pk/clestore/segmentation.htm
http://www.cle.org.pk/clestore/segmentation.htm
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for Urdu word tokenization task. However, the highest F; score of 0.94 for the word
tokenization task indicates that Urdu word tokenization is a challenging task leaving

a room of improvement.

Table 3.6 Results obtained on UNLTool-WT-Test dataset using various techniques

Technique Precision+c Recalltc F;-measuretc Accuracyt+o
UNLTool-WT-SP  0.55+0.27 0.52£0.25 0.54 £0.17 0.61+0.21
UNLTool-WT 0.96£0.08 0.92+0.11 0.94+0.09 0.97+0.06
Durani’s 0.18£0.39 0.20£0.36 0.19+0.29 0.49+0.40
CLE’s 0.58+£0.29 0.56£0.30 0.57+£0.18 0.73£0.28

As expected, the overall results for UNLT-Tool-WT approach are higher as com-
pared to all other baseline approaches (see Figure 3.1): space-based tokenization
UNLTool-WT-SP approach report precision = 0.55, recall = 0.52, F; = 0.54, and ac-
curacy = 0.61, on UNLTool-WT-Test dataset. Durani’s word tokenizer report an
accuracy of 0.49, precision of 0.18, recall of 0.20, and F; = 0.19. Furthermore, the
CLE’s Urdu word tokenizer has show precision = 0.58, recall = 0.56, F; = 0.57, and
accuracy = 0.73. This highlights the fact that the UNLTool-WT-SP, Durrani’s and
CLE’s approaches are not suitable for Urdu word tokenization tasks.

While analysing the errors of the proposed UNLTool-WT approach, its is observed
that it does not explicitly handle unknown words for space omission, and this resulted
in splitting an unknown Urdu morpheme into smaller morphemes. For instance, the
word (LAl (KSYR ALLSAN, ‘multilingual’) erroneously split into _g8” (KSY), |,
(RA)  (LLS), and ! (AN). Likewise, it might be less appropriate when a word
is a combination of known and unknown morphemes, for instance, gisle 55l <
(SHBAZ KO JANE DO, ‘let the Shahbaz go”). For space insertion, some compour;d
words are not found in the compound words dictionary, another major cause of

incorrect word tokenization.
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09 4
0.8
0.7 -
06 -
05 -+
04 4
0.3 -
0.2 -
01 +

B UMLToolWT-5P
B UNLToolWT
W Durani's

B CLE's

Precision Recall F1 Accuracy

Fig. 3.1 Performance comparison of various Urdu word tokenizers on UNLTool-WT-
Test dataset

3.3 Urdu Sentence Tokenizer

This part presents challenges faced in the Urdu sentence tokenization task, the pro-
posed rule based Urdu sentence tokenizer, the test dataset which has been developed
to evaluate the proposed sentence tokenization approach, experimental set-up, and

results along with their analysis.

3.3.1 Challenges Of Urdu Sentence Tokenization

Sentence boundary detection is a non-trivial task for Urdu text because: (i) it does
not use any special distinguishing characters between upper and lower case, (ii)
punctuation markers are not always used as sentence separators and (iii) there
is a lack of standard evaluation and supporting resources. For English and other
languages, the difference in upper and lower case is helpful in identifying sentence
boundaries. Furthermore, in English language there is a convention that if a period
is followed by a word starting with a capital letter then it is more likely to be a

sentence marker, whereas, in Urdu, there are no upper and lower-case distinctions.
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I/'III

Punctuation characters such as and are used as sentence terminators

R
and these can also be used inside the sentence.

Table 3.7 shows example Sentence Boundary Markers (SBM) (such as sentences at
index i, ii, iii, and iv, in all these sentences question, period, exclamation, and double
quotes marker are used at the end of sentences to represent a sentence boundary)
and Non-Sentence Boundary Markers (NSBM) for Urdu text. It can be observed from
these examples that the NSBM are also frequent because they are being used between
dates (such as sentence at index vii, in this sentence a period mark is used with in
a sentence which is actually not a sentence boundary), abbreviations (index v, this
sentence is composed of several period markers, however first two are not indicating
a sentence boundary marker), emphatic declaration (index vi, here exclamation
marker is used with in a sentence i.e. not a sentence boundary mark), names and
range (index viii i.e. a first period and double quote marker is used within a sentence
but both are not a sentence ending marker). Consequently, these kind of examples

makes the sentence tokenization of Urdu text a challenging task.

3.3.2 Proposed Urdu Sentence Tokenization Approach

Two existing broad approaches for sentence tokenization are: (i) rule-based and
(ii) machine learning-based (see Section 2.3.6). To develop supervised machine
learning-based approaches, a large amount of training data is required. Urdu is an
under-resourced language and there is a lack of large annotated datasets, therefore,
a rule-based approach is used for proposed sentence tokenizer. It can be observed
that all existing Urdu sentence tokenizers (see Section 2.3.6) are based on statistical
approaches. Here, previously unexploited rules for Urdu sentence tokenization are

adopted.
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Table 3.7 Examples showing Sentence Boundary Markers (SBM) and Non-Sentence
Boundary Markers (NSBM) for Urdu text

Index Markersx

Text

i

OM-SBM

LS L e 0sS b o8

? GYA DYA JANE KYON BAHR KO MSHRF
‘Why was Musharraf let to go abroad?’

ii

PM-SBM

-AAGHAZ KA 20 TY ORLD SY SY AAYY MY ANDYA
‘Inauguration ceremony of ICC world T 20 held in India.’

iii

EM-SBM

by e P el e
I TO SMJHY NH AOAM BHY PR IS
‘Even then if public do not understand then!”

iv

DQ-SBM

« U‘:L__;:jj{wﬂﬁ =6 s S oo Js ey

"HYN RHY AA KO AGST 21 KHARJH OZYR KE AN MY KHYAL MYRE"
‘In my opinion the foreign minister is visiting on August 21st’

PM-NSBM

- U‘fd‘*"dw\‘d{w&"d"f
HYN BSTE PAKSTANY KAFY MY AY- AE -YO
‘Many Pakistanis are living in U A.E.

Vi

EM-NSBM

- HYN BADSHH KE MLK PORE AAP | OALA HZOR
"My lord! You are the king of this country.

vii

PM-NSBM

- Y -1-ovey gl
- HYN 3-6-2016 AAJ
‘Today is 3rd of May 2015.

viii

PM-NSBM
DQ-NSBM

-g;\p&?.wE- Y«OM\;«
- HE RHA JET SE 3 - 2 PAKSTAN
‘ "Pakistan" is winning by 2-4."

* M: Question Mark, PM: Period Mark, EM: Exclamation Mark, DQ: Double

Quotes

For the proposed rule-based approach, to manually extract rules for the sentence

tokenization task, initially, a subset of the UMC dataset [91] comprised of 13K

sentences are selected, which contains Urdu text from various domains or genres

including News, Religion, Blogs, Literature, Science and Education. After the pre-
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processing (see Section 3.2.6) 10K sentences are retained, which have been used to
extract rules to develop proposed Urdu sentence tokenizer.

The rules are devised to include sentence termination markers (-, ¥, yy and !),
regular expressions and supplementary dictionary lookup?” (henceforth UNLTool-

ST-RB approach). These heuristics are applied as follows:

1. If the current character is a period marker (-) AND the same mark appears
after two or three characters, then consider it as an abbreviation and match it

in the abbreviation list.

2. If within the next 9 characters (from any previous SBM marker), an exclamation

mark (!) is found, then this is not a sentence boundary marker.

3. If the character before a double quote (y) is a period (-) or question (?) mark,

then it is a sentence boundary marker.

4. Apply regular expressions for detecting the date and hyphenated numeric

values.

5. In addition to this all the above rules from 1 to 4, split sentences based on the

question (¥), period (-) and exclamation (!) markers.

Table 3.8 shows an example of Urdu text tokenized into sentences using a pro-
posed UNLTool-ST-RB sentence tokenizer. As can be noted, the raw Urdu text is split
into sentences on the basis of SBMs (see index 1), whereas for NSBMs the raw text

has not been split into sentences (see index 2).

2’Same dictionary compiled for the word tokenization task (see Section 3.2.3) is used.
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Table 3.8 Examples of Urdu text split into sentences using a proposed UNLTool-ST-RB
sentence tokenizer

Sentence Tokenized Text

Index 1
- S bl oy B0l s opil aad gl v Sl o KE
35 people have been killed due to continuous heavy rain in Gilgit-Balitstan.
YJM‘_;J\?WW ,uje?jhf,\.-{;mw‘gwj:\ﬂij
Will he continue to play as a captain after this defeat by West Indies?

Pl ol u\T.' Cwlew \‘f/u} Q).‘V;.? i)’{d"\“f)’l 9:\;5% uuuq;ﬁf“ LV e o
Among them, the one movement in which many people participated was that
whose moto was to save the state not politics!

C o G e i LAy 5 e pl S
“Foreign tourists also call Chitral as a paradise of paragliding”
Index 2
- Blelay - Ay ow bl (Forey Ve v o BT 93
An increase of Furnace oil consumption is recorded by 28-29 percent,
compared to July 2015.

- o S el ) e 0K el 0L F pe s ) T e - Gl -
During this period I.C.A.C faced a reduction of 14% indirectly paid taxes.
S 5 vasaaay ol L K 550 LS
Its head office was founded on 7-9-1985.

- 35 G LSO
Come here and let’s have some fun.

S onle # ol e B Fos P e - e
General-R-Shareef visited the hospital between six and
seven p.m. to inquire the patients after their health.

3.3.3 Test Dataset for Urdu Sentence Tokenization

For the evaluation of the proposed Urdu sentence tokenizer, a benchmark dataset
(hereafter called UNLTool-ST-Test dataset) is created by following three steps: (i)
raw Urdu text collection, (ii) pre-processing of raw data and (iii) annotation.

To construct the UNLTool-ST-Test dataset, in the first step, a Web crawler?8 is used

to extract raw Urdu text of 10K sentences from online sources (see Section 3.2.5)

Zhttps://lindat.mff.cuni.cz/repository/xmlui/handle/11858/
00-097C-0000-0023-65A9-5 - Last visited: 14-November-2018


https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
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including: BBC Urdu, Express news, Urdu Library, Urdu Point, Minhaj Library, Awaz-
e-Dost and Wikipedia. These sources allow their text (content) to be freely used for
research purposes. To make the dataset more realistic, we extracted the raw text of
different domains and genres including Sports, Politics, Blogs, Education, Literature,
Entertainment, Science, Religion, Fashion, Weather, Entertainment, Fiction, Health,
Law and Business. BBC Urdu is the largest source of the text collection, which
contains 3,000 sentences, while the Urdu Point is the smallest one, containing 800
sentences. Statistics of sentences collected from other sources are: Awaze-e-Dost:
1,100, Express news: 1,200, Minhaj library: 1,300, Urdu library: 1,000, and Wikipedia:
1,600 sentences.

In the second step, the raw data has been pre-processed (see Section 3.2.6), which
resulted in the removal of 2,000 sentences. The remainder of the 8,000 clean sentences
are distributed as follows: Awaz-e-Dost: 915, BBC Urdu: 2,316, and Express News:
1,012, Minhaj Library: 1,018, Urdu Library: 834, Urdu Point: 663 and Wikipedia:
1,242 sentences.

In the third step, the pre-processed text containing 8,000 cleaned sentences are
manually tokenized by three annotators (G, H and I). All the annotators are native
speakers of Urdu and have good knowledge about the Urdu sentence tokenization
task. Furthermore, the annotation process was split into three phases: (i) training,
(ii) annotation and (iii) inter-rater agreement and conflict resolution.

During the training phase, two annotators (G and H) annotated 200 sentences.
Subsequently, the inter-annotator agreement has been computed for these sentences
and conflicting sentences are discussed to further improve the annotation quality.
Further, during the annotation phase, the remaining 7,800 sentences are manually
annotated by annotators (G and H). In the third phase, the inter-rater agreement

score is computed for all 8,000 sentences. We achieved an inter-rater agreement of
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92%, as the annotators agreed upon 7,350 sentences. Moreover, the Kappa Coefficient
has been computed to be 83.69% [53]. The conflicting 650 sentences are annotated
by the third annotator (I) for conflict resolution and this judgement is considered as
decisive, resulting in the gold standard UNLTool-ST-Test dataset.

The UNLTool-ST-Test dataset consists of 8,000 sentences (see Table 3.9). In pro-
posed test dataset, 6,469 period markers are SBM, while 536 are NSBM; 531 excla-
mation marks are SBM and 198 are NSBM; 421 question marks are SBM and 17
are NSBM; 203 double quotes, 194 double quotes are SBM and 9 are NSBM,; the
remaining 382 SBM markers are #, @, $, * etc. As can be noted from these statistics,
the proposed UNLTool-ST-Test dataset contains both SBM and NSBM for differ-
ent characters, which makes the dataset much more realistic and challenging. The
UNLTool-ST-Test dataset is saved in standard “txt” format.

Table 3.9 Statistics of UNLTool-SD-Test dataset

Sources Sentence Count
Awaz-e-Dost 915
BBC Urdu 2,316
Express News 1,012
Minhaj Library 1,018
Urdu Library 834
Urdu Point 663
Wikipedia 1,242
Total 8,000

3.3.4 Experimental Set-up
3.3.4.1 Dataset

For the set of experiments presented in this section, the entire UNLTool-ST-Test

dataset is used which contains 8,000 sentences (see Section 3.3.3).
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3.3.4.2 Approaches

For this study, we applied five different approaches for sentence tokenization: (i)
baseline approach- sentence tokenization on the basis of “period”, “question mark”,
“exclamation mark”, and “double quotes” characters (henceforth UNLT-ST-PQEQM
approach), and (ii) rule base proposed approach— sentence tokenization by using a

proposed UNLTool-ST-RB approach.

3.3.4.3 Evaluation Measures

The evaluation of sentence tokenization techniques is carried out using precision,

recall, Fy, error rate and standard deviation measures (see Section 2.5.3).

3.3.5 Results and Analysis

Table 3.10 presents precision, recall, F; and error rate results on the UNLTool-ST-Test
dataset for various Urdu sentence tokenization approaches. The standard deviations

associated with the computed results are also presented.

Table 3.10 Results obtained by using various sentence tokenization approaches on
UNLTool-ST-Test dataset

Technique Precisionto Recall+c Fj-measure+c Errorrate+o

UNLT-ST-PQEQM  0.94£0.10 0.24+£0.21 0.27£0.17 0.79+0.12

UNLTool-ST-RB 0.91£0.12  0.94£0.07 0.93£0.09 0.07+£0.03

Overall, the best results are obtained using the proposed UNLTool-ST-RB ap-
proach (precision = 0.91, recall = 0.94, F; = 0.93, error rate = 0.07). This shows that
combining various heuristics, regular expressions and dictionary lookup is helpful
in producing a good performance on the UNLTool-ST-Test dataset. The highest F;
score of 0.93 for sentence tokenization task indicates that Urdu sentence tokenization

is a challenging task and there is still room for further improvement.
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Other approach (UNLT-ST-PQEQM) which use different characters as a sentence
boundary indicator, shows precision of 0.94 (see Figure 3.2). The likely reason for this
is that the majority of sentences in Urdu text are terminated using several characters
(see Section 3.3.3 for statistics on UNLT-ST-Test dataset). However, other evaluations
measures shows very low results (recall = 0.24, F;= 0.27, error rate = 0.79). This
highlights the fact that these characters alone are not suitable for Urdu sentence
tokenization task.

1 -
09 -
08 -
07 -
06 -
05 - ™ UNLT-ST-PQEQM
0.4 - ™ UNLTool-ST-RB

03 -
0.2 -
0.1 -

D -
Precision Recall F1 Error Rate

Fig. 3.2 Performance comparison of Urdu sentence tokenizers on UNLTool-ST-Test
dataset

While manually analysing the errors of the proposed UNLTool-ST-RB approach,
some scenarios have been observed where the proposed approach failed to accurately
tokenize sentences. It is found that NSBM including: ", ||, ’$’, "*’, '@ and "#  are
the major reasons for incorrect tokenization of sentences. Moreover, the period used

between different abbreviations also caused misclassification.
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3.4 Urdu Part of Speech Tagging

This part presents the challenges faced in the Urdu Part-of-Speech (POS) tagging
task, proposed statistical based Urdu POS taggers, the training and test datasets that
are developed to train and evaluate proposed POS tagging approaches, experimental

set-up and finally, results and analysis.

3.4.1 Challenges of Urdu POS Tagging

POS tagging for the Urdu language is a challenging and difficult task due to four
main problems [143]: (i) free word order (general word order is SOV), (ii) polyse-
mous words, (iii) Urdu is highly inflected and morphologically rich, and (iv) the
unavailability of gold-standard training/testing dataset(s). We briefly discuss these
issues here.

Firstly, Urdu sentences have a relatively complex syntactic structure compared
to English. Table 3.11 shows examples of the free word order and its semantic
meaningfulness in the Urdu language. Secondly, as with other languages, Urdu
also has many polysemous words, where a word changes its meaning according
to its context. For example, the word _wl; (BASY) means ‘stale’ if it is an adjective
and ‘resident’ when it is a noun. Thirdly, Urdu is also a highly inflected and a
morphologically rich language because gender, case, number and forms of verbs
are expressed by the morphology [83, 205]. Moreover, Urdu language represents
case with a separate character after the head noun of the noun phrase [205]. They
are sometimes considered as postpositions in Urdu due to their place of occurrence
and separate occurrence. If we will consider them the case markers, then Urdu has
accusative, dative, instrumental, genitive, locative, nominative, and ergative cases
([95]: Pg 10). Usually, a verb phrase contains, a main verb, a light verb (which use

to describe the aspect) and a tense verb (describes the tense of the phrase) [83, 205].
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Finally, there is a lack of benchmark training/testing datasets that can be used for

the development and evaluation of Urdu POS taggers.

Table 3.11 Free word order example text for Urdu language

Sentence Meaningful Translation
& # & . . .

o Lf S Lé{ jf wj.( N Y Lion is eating the meat
HE RHA KHA KO GOSHT SHAYR
= L: 3 & s 3,( wjf Y Meat is eaten by the lion
HE RHA KHA SHAYR KO GOSHT
jf Ol jf < \7 3 & s Y Lion eating is meat
KO GOSHT HE RHA KHA SHAYR
§5 CdyS Al = L, s Y Eating is lion meat
KO GOSHT SHAYR HE RHA KHA
RECER SNy < \7 g Y Eating lion meat is
KO GOSHT SHAYR KHA HE RHA
RRCv-Rgng L, o Y Lion meat eating is
KO GOSHT KHA RHA HE SHAYR
*: Y: Yes

3.4.2 Existing Urdu POS Tagset

The tagging accuracy of a POS tagger is not only dependent on the quality and
amount of training dataset but also on the POS tagset used for annotation. In the prior
literature, we found three commonly used POS tagsets for the Urdu language: (i)
Hardie’s POS tagset [84], (ii) Sajjad’s POS tagset [205] and (iii) Centre for Language
Engineering (CLE) Urdu POS tagset [225].

Hardie’s POS [84] tagset was an early attempt to resolve the grammatical tag
disambiguation problem for the Urdu language. This tagset follows the EAGLES®
guidelines and consists of 350 morphosyntatic tags, which are divided into 13 main

categories. Some grammarians [169] propose only three main categories whereas

Phttp:/ /www.ilc.cnr.it/EAGLES96 /home.html - Last visited: 07-December-2016


http://www.ilc.cnr.it/EAGLES96/home.html
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[212] used 10 main categories for Urdu text. There were a number of shortcomings
observed in Hardie’s POS tagset [84]. For example, the possessive pronouns like |1s
(MYRA ‘my’), |,l& (TMHARA ‘your’) and \JLQ.: (HMARA ‘our’) are assigned to the
category of possestsive adjective, which is incorrect. Many grammarians marked them
as pronouns [169, 90]. Moreover,the Urdu language has no articles but this tagset
defined articles. Another issue with the tagset is the use of locative and temporal
adverbs such as 4. (YHAN ‘here’), ULT 3 (OHAN ‘there’), and ! (AB ‘now’), which
are treated as pron‘ouns. The locative and temporal nouns such as Ze (SBH ‘morning’),
r\.:b (SHAM ‘evening’), and J@f (GHR ‘home’) appear in a very similar syntactic
context. To conclude, these grammatical misclassifications as well as the large number
of POS tags with relatively small training data will affect the accuracy of POS taggers
developed for the Urdu language.

Another POS tagset (henceforth Sajjad’s POS tagset) [205], consists of 42 POS
tags with finer grained categories for pronouns and demonstratives. However, it is
lacking in terms of Urdu verb, tense and aspect.

A recently released CLE Urdu POS tagset [225] contains 35 tags and addresses
most of the issues reported above. It is based on the critical analysis of several
previous iterations of Urdu POS tagsets. Furthermore, it is built on the guidelines of
the Penn Treebank®® and a POS tagset for common Indian languages®!. In the CLE
Urdu POS tagset, a verb category has multiple tags based on the morphology of the
verbs. Furthermore, it has shown promising results on Urdu text (see Section2.3.7).

For this study, the CLE Urdu POS tagset [225] is selected for following reasons:

(i) it provides correct grammatical classifications, (ii) it provides purely syntactic

https:/ /www.cis.upenn.edu/treebank/ - Last visited: 05-April-2019
Sthttps://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/
108-7013.pdf - Last visited: 11-November-2018


https://www.cis.upenn.edu/treebank/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/I08-7013.pdf
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categories for major word classes and (iii) provides reasonable performance on a

small size test dataset.

3.4.3 Proposed Urdu POS Tagging Approaches

For this study, we applied two stochastic approaches for Urdu POS tagging: (i) tri-
gram Hidden Markov Model and (ii) Maximum Entropy-based model. The reason
for selecting these two methods for Urdu POS tagging is many fold, (a) they have
proven to be effective for POS tagging not just for English [250] but also for other
languages which are closely related to Urdu such as Hindi [96, 58], (b) both are
well established stochastic models for automatic POS tagging task [242], (c) these
methods have been primarily investigated for under resourced or when dealing
with languages with limited resources [20, 67], and (d) these models have not been

previously compared for the Urdu language.

3.4.3.1 Hidden Markov Model (HMM) for POS Tagging

In general, the Urdu POS tagging task can be formulated as: given a sequence of
words wy,...,wy, find the sequence of POS tags t,...,, from a POS tagset 732 using
some statistical model. In this section a HMM stochastic learning model has been
used as described by [174], while [229] redefined it for the POS disambiguation task.
This model is implemented in [76, 31] for POS tagging. For experiments, a third
order HMM learning model is used, also referred to as tri-gram POS tagging. This
model is composed of transitional (contextual) and lexical (emission) probabilities

and using Bayes’ theorem, the HMM 3" order model can be written as:

3235 tags as in CLE Urdu POS tagset: http://www.cle.org.pk/software/langproc/
POStagset.htm - Last visited: 11-November-2018


http://www.cle.org.pk/software/langproc/POStagset.htm
http://www.cle.org.pk/software/langproc/POStagset.htm
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n

il = argmaxHP(t_i\tj_l,tj_z)P(wi]ti) (3.5)
= T~
Transition Lexical

During the training process, the above tri-gram HMM language model (see Equa-
tion 3.5) computes two probability factors for the sequences: (i) lexical probabilities,
aimed at determining the probability of a particular tag conditioned on particular
word, and (ii) transitional probabilities, used to find the probability of a particular
tag on the basis of given preceding tag(s). Given a sentence, the aim of the HMM lan-
guage model is to search the tagging sequence and choose the most likely sequence
that maximises the dot product of lexical and transition probabilities. That can be

computed by using a Viterbi algorithm [236].

3.4.3.1.1 Parameters Estimation The HMM parameters can be estimated by ap-
plying the simplest tri-gram MLE (see Section 3.2.4), used for computing relative
frequencies. A training dataset (see Section 3.4.5) has been used to find tag frequency
counts (C) for two or three consecutive tag pairs (¢j_2,tj_1,t;), (tj—2,tj—1). Where, t; is
the j;;, tag of annotated dataset used during training process. The following equation
requires frequency counts of w;t;, where w; is the word and #; is the tag assigned to i,
word. The tri-gram language model (see Section 3.2.4) and the following equation is

used with these parameter settings, 1 < (i, j) <n.

P(wilt) = 275 (3.6)

3.4.3.1.2 Smoothing The MLE has been used for parameter estimation (see Sec-
tion 3.4.3), consequently, such models may come across a situation where unseen

events do not occur or have quite low frequencies in the trained model. Therefore,
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the zero probability of such occurrences produces problems in the multiplication of
probabilities, eventually, leading to a data sparseness.

To avoid data sparseness, there is a need of some estimators that automatically
assign a part of the probability mass to unknown words and tag sequences, thus
yielding an improvement for unseen events and overall accuracy improvement for
the POS tagger. For this, different smoothing techniques have been cited in the
literature with an objective to decrease the probability of seen events and assigning
appropriate non-zero probability mass to unseen events. In this study, three different
smoothing techniques are adopted including: (i) linear interpolation, (ii) Laplace
and (iii) Lidstone’s estimations. Adopting them with an HMM model thus alleviates

sparse data issues.

3.4.3.1.3 Linear Interpolation: A well-practised smoothing technique consists of

linearly combined estimation for different order n-grams as:

P(tilti—1,ti2) = Mip(ti) + Aap (tiltiz1) + Asp (tilti—1,ti—2) (3.7)

Where P is a valid probability distribution, p are maximum likelihood estimates
of the probabilities and A; + A, + A3 = 1 to normalise the probability. Although, there
are different ways to estimate s, but for the experiments conducted here, a deleted
linear interpolation is adopted as cited in [38].

The deleted linear interpolation successively removes each tri-gram from the
training dataset. Moreover, this technique estimates the best value for the As from
all other n-grams in the dataset, making sure that the value of A does not depend
upon the particular n-gram. Further, it computes the weights depending on the

counts of each i-gram, involved in the interpolation. Thus, the first HMM based
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proposed model is a combination of linear interpolation smoothing technique along

with tri-gram HMM model (henceforth T-HMM-LI).

3.4.3.1.4 Laplace and Lidstone’s Estimation: Laplace estimation (one of the old-
est and simplest smoothing techniques) updates the count by one of each bi-gram
occurrences compared to the actual frequency in training data [97] (see Section 3.2.4).
Lidstone’s smoothing estimation [125] generalizes Laplace, by adding an arbitrary
value to all (seen or unseen) events. Although the values for A can be calculated
using different methods, for experiments presented here, the same value cited in
the research article [125] has been used, i.e. a well-known Expected Likelihood

Estimation (ELE). Thus, Lidstone’s estimation [125] can be calculated as:

A+C(X)

Plidst()ne(x.,/l) = m A =05 (38)

Where V represents the unique words (vocabulary) against the total number
of words N to keep probabilities normalized [97]. The generalized formulation of

Lidstone’s and Laplace estimation in an HMM-based Urdu tagger is as follow:

 Clsi(t=0))+A

" C(tokens) + Viggh (39)
i = C(C;(oske;;; ]+) :/:t/l (3.10)
Plsy) = c<roiiig)):7\2agz (3.11)
Plw) = R A (3.12)

C(tokens) +V,,A
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Here, Vi, is the number of possible tags and V,, is the size of the approximated
vocabulary.

The proposed second POS tagging model is a combination of Laplace and tri-
gram HMM model (henceforth T-HMM-LaE). The third POS tagger makes use of
Lidstone’s estimation and supervised tri-gram HMM model parameters (we shall

call this T-HMM-LIE).

3.4.3.2 Maximum Entropy (MaEn) Markov Model for POS Tagging:

The other adopted stochastic learning model is MaEn, and aimed to compare this
to the above described tri-gram HMM based models, to find the most optimal POS
tagger for Urdu. The MaEn statistical assumption is a simplistic model, it assigns a

probability distribution for every tag, given a word and its context as:

n
T = argmaxHP(t_,-|cj,tj_1) (3.13)
T j=1

Where, ¢ is the individual tag in the set T of all possible tags i.e. t1,...,#, for a
given a sentence, c is defined as the context, usually defined as the sequence of words
Wi, ...,w, and the tag preceding the word. The maximum likelihood tag sequence is
used for assigning probabilities to a string of input words.

The principle of estimating probabilities in MaEn model is to make as few assump-
tions as possible, other than the constraint imposed. Furthermore, these constraints
are learned from the training data, which express some relation between features ex-
tracted and outcome. The probability distribution which satisfies the above property
has the highest entropy, thus, it agrees with the maximum likely-hood distribution,

and has a general form as cited in [178]:

k
Pltle) = e Y afe.) (3.14)
=1
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Where N is the total number of training samples (normalization constant), f;
is feature function on the event (c,r). Feature functions used by MaEn model are
binary valued and defined to capture relevant aspects of language. The o is a model
parameter with k features, which is determined through the Generalize Iterative
Scaling (GIS) algorithm [57]. However, these model values and features, are primary

ingredients of MaEn learning model.

3.4.3.3 Features Selection in MaEn Model

As described previously the MaEn is feature based probabilistic model, to obtain high
accuracy two binary valued features are used that might be helpful for predicting
POS tag, these are determined empirically for Urdu POS tagging along with MaEn
model as: (i) context window, and (ii) word number.

The best context window with five words has been identified, which is comprised
of n-gram (W2, Wi_y, W;, Wii1, Wiy2) and n-POS (#;_», t;_1, and t;) information.

If the current word is a number such as “y 4 . v | ”, another feature can be created:

1 if WordReadlsNumber (w;) = true and t; = CD
file,t) = (3.15)

else 0

Using the above mentioned features with MaEn another Urdu POS tagging model
(henceforth MEn) is formulated. However, these suitable binary valued features are
the same for other languages. This research examines some other important feature

sets for the Urdu language below.

3.4.4 Morphological Information for HMM and MaEn Models:

To improve the tagging accuracy of the above models, an exclusive feature set is
formulated after deep analysis of UNLTool-POS training dataset (see Section 3.4.5).

This feature set is intended to have the capability to capture lexical and morphological
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characteristics (features) of the Urdu language. The captured morphological features
are based on information retrieved from a stemmer>® and dictionary>*, assuming that
information is complete®. Thus, the lexical probability of assigning restricted lexical
(POS) tag to a word is boosted. Consequently, the integrated models are expected to
perform better with such artificial weights (reduced set of possibilities) for a given
word. All the above models (T-HMM-LI, T-HMM-LaE, T-HMM-LiE, and MEn) are
incorporated with such restricted POS tags features, henceforth, -THMM-LI-MA,
T-HMM-LaE-MA, T-HMM-LIE-MA and MEn-MA.

The above mentioned MA information is helpful to restrict the possible choice of
POS tags for a given word, on the other hand, suffix*® information can also help us
to further improve the POS models. For HMM based POS models, suffix information
has been used during the smoothing of emission probabilities. For the MEn model
the suffix and prefix information are used as another type of feature. It is extended
using a prefix and suffixes up to a length of four. It is also important to note, using
prefix and suffixes of length <= 4 for all words in MEn gives better results instead of
using only rare words as described by [178]. The primary reason for much improved
results based on prefix and suffix is that, a significant number of instances are not
found for most of the word of the language vocabulary, with a small amount of
annotated data. HMM based (T-HMM-LI, T-HMM-LaE, and T-HMM-LiE) and MEn
models are incorporated with suffix information, shall be call them T-HMM-LI-Suf,
T-HMM-LaE-Suf, T-HMM-LiE-Suf, and MEn-Suf POS taggers.

The last four POS models represent combinations of various statistical, smoothing

and features as described above. The T-HMM-LI-Suf-MA is a combination of tri-

Bhttp:/ /www.cle.org.pk/software/langproc/UrduStemmer.htm - Last visited: 11-
November-2018

$http://182.180.102.251:8081/oud/default.aspx - Last visited: 11-November-2018

351f a word is unknown then it belongs to one of the open class lexical categories, i.e. all classes of
Noun, Adjective, Verb, Adverb, and Interjection.

3The sequence of the last few characters of a word.
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gram HMM along with Linear interpolation, restricted POS tags feature and suffix
information. T-HMM-LaE-Suf-MA is based on the tri-gram HMM model with further
incorporation of Laplace smoothing, suffix and restricted POS tags. In T-HMM-LiE-
Suf-MA, a tri-gram HMM has been used along with Lidstone’s estimation, with
suffix and restricted POS tags. MEn-Suf-MA POS tagging model is a collection of,
MakEn, contextual window, suffix and restricted POS tags.

Table 3.12 shows an example of the Urdu text annotated with POS tags using the
proposed T-HMM-Suf-MA POS tagger. As can be noted, the raw text is correctly

annotated with POS tags.

Table 3.12 Example of Urdu text annotated using proposed T-HMM-Suf-MA POS
tagger

Tagged Data
PU/. AUXT/, AUXP/., VBE/ s NNP/.~PSP/ . NN/_., Q/«PRP/,,

He is playing cricket for many years.
PU/.AUXT/, AUXP/ ., VBE/ s NN/.; NN/ s J]/ st PSP/ s NN/ NN/ e
Government is providing good opportunities for investment.
PU/: VBF/sRB/..sNN/... PDM/, PSP/ PRP/ . SC/sVBF/ i NEG/.. NN/..
I am unable to understand why he did so?
PU/. VBF/..NN/,,,PSP/ . PSP/, NN/.. PDM/_. PSP/ ; NN/ .
Newspaper insisted on this point.
PU/.VBF/,sPSP/ . J]J/ .. PSP/ s NN/ NN/,

Aeroplane pass over the building.

3.4.5 Training/Testing Dataset for Urdu POS Tagging

This section describes the creation of a large dataset (hereafter called UNLTool-POS
dataset) for the training and testing of the Urdu POS taggers. The dataset creation
process is accomplished in three steps: (i) raw text collection, (ii) cleaning process

and (iii) annotation process.
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To construct a gold-standard Urdu POS tagging dataset, in the first step, a Web
crawler (see Section 3.3.3) is used to extract Urdu text of 239,834 words (14,137 sen-
tences) from various online sources (see Section 3.2.5) including BBC Urdu, Express
news, Urdu library, Urdu point, Minhaj library, Awaz-e-Dost and Wikipedia. To make
the dataset more realistic the raw data is from various domains: Sports (23,153), Pol-
itics (33,944), Blogs (10,976), Education (12,845), Literature (9,045), Entertainment
(13,946), Science and Technology (17,683), Fashion (10,463), Weather (9,459), Busi-
ness (17,328) and Commerce (10,496), Showbiz (19,503), Fictions (8,678), Health
(12,783), Law (8,185), and Religion (21,347).

The raw data is pre-processed (see Section 3.2.6), which resulted in 200,000 words.
The domain and genre distribution of these words is: Sports (20,128), Politics (26,145),
Blogs (9,428), Education (10,742), Literature (8,756), Entertainment (10,560), Science
and Technology (13,143), Fashion (9,758), Weather (8,996), Business (14,418) and
Commerce (9,710), Showbiz (16,228), Fictions (8,084), Health (11,584), Law (6,952),
and Religion (15,368).

The UNLTool-POS dataset was created using a manual approach. In the first step,
a total of 2,000 tokens were POS tagged using the CLE online POS tagger® to train
annotators. Manual inspection of the tagged data showed that a reasonable number
of words are incorrectly tagged, particularly proper nouns, common nouns, verbs,
auxiliaries, pronouns, adjectives, cardinal nominal modifiers, adverbs, conjunctions,
participles, interjections and foreign fragment. In the second training step, three
annotators (A, B and C) manually annotated®® the tagged data i.e annotators A
and B initially annotated same automatically annotated 2,000 tokens. An inter-

annotator agreement was calculated for these tokens and conflicting tagged tokens

http://182.180.102.251:8080/tag/ - Last visited: 06-August-2016

3In the training annotation process, the tag assigned by the CLE online POS tagger is retained if
the annotator determines that it is correct, otherwise the annotator replaces it with the correct POS
tag.
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were discussed to further improve the annotation quality. After the training phase, the
200,000 words was manually annotated by annotators A and B and the inter-annotator
agreement was computed on the entire dataset. An inter-annotator agreement of
85.7% was obtained. The Kappa Coefficient was computed to be 77.41% [53]. The
conflicting tokens were annotated by the third annotator, resulting in a gold-standard
UNLT-POS training/testing dataset saved in “txt” format. As far as we are aware,
our UNLT-POS training/testing dataset is the largest manually POS tagged Urdu
dataset, free and publicly available for research purposes.

For experiments presented in this study, the UNLTool-POST gold-standard dataset
is randomly divided into two different datasets: (i) consisting of 60K training and
20K of test data (henceforth UNLTool-POS-Small training/testing dataset respec-
tively), (ii) consisting of 120K training and 20K for testing (henceforth UNLTool-
POS-Moderate training/testing dataset respectively).

The detailed statistics of different train/test datasets are shown in Table 3.13.
The rows “Unknown Tokens” and “Unknown Types” of the Table 3.13 represent
the count of total tokens and types (unique tokens) respectively, not seen in the
different UNLTool-POS training/testing datasets. It has been observed that each test
dataset holds 9% to 11% words that are unknown with respect to the training data.
These figures are a little higher as compared to the several European languages [64].
However, Table 3.14 shows the detailed statistics of most frequent POS tags of the
UNLTool-POS testing dataset.

3.4.6 Experimental Set-up
3.4.6.1 Datasets

For the set of experiments presented in this study, three datasets are used: UNLTool-

POS-Small, UNLTool-POS-Moderate, and UNLTool-POS datasets. The purpose of
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Table 3.13 Statistics of three different training/testing datasets for evaluating the
performance of Urdu POS taggers

Dataset Training set Testing set

Tokens 180,000 20,000

UNLTool-POS Types 16,742 2,124
Unknown Tokens - 1,948

Unknown Types - 246

Tokens 120,000 20,000

UNLTool-POS-Moderate Types 14,843 2,457
Unknown Tokens - 2,078

Unknown Types - 273

Tokens 60,000 20,000

UNLTool-POS-Small Types 9,538 2,801
Unknown Tokens - 3,024

Unknown Types - 311

Table 3.14 Statistics of most frequent POS tags of UNLTool-POS testing dataset

POS Tag Tokens count Unknown tokens
NN: Common Noun 1,764 123
PSP: Postposition 1,572 0
VBEF: Main Verb Finite 1,129 192
JJ: Adjective 1,315 91
AUXA: Aspectual Auxiliary 1,023 0
NNP: Proper Noun 1,243 398
RB: Common Adverb 826 63
AUXT: Tense Auxiliary 639 3

conducting experiments with three different sizes (60K, 120K, and 180K words) of
the training data is to understand the relative performance of several Urdu POS

tagging models as the size of training data increases.

3.4.6.2 Models

For this study, a total of 18 models are applied for Urdu POS tagging (two baseline
models and sixteen other models (as described in Section 3.4.3)) as: (i) a baseline

POS tagging model, in it each word in the test data will be assigned the POS tag



130 Urdu Natural Language Tools

based on the most frequent POS tag in the training data, (henceforth BL-MFT model),
(ii) another baseline POS tagging model® [225], which uses Decision Trees along
with a smoothing technique of Class Equivalence [225] (henceforth BL-CLE model),
The reason for using the BL-CLE model as a baseline approach is that, currently
this is the only POS tagger is available for Urdu which uses CLE Urdu POS tagset
(see Section 3.4.2). Therefore, the results of CLE Urdu POS tagger can compare
with the proposed UNLTool-POS tagger, (iii) T-HMM-LI model, (iv) T-HMM-LI-Suf
model, (v) T-HMM-LI-MA model, (vi) T-HMM-LI-Suf-MA model, (vii) T-HMM-LaE
model, (viii) T-HMM-LaE-Suf model, (ix) T"THMM-LaE-MA model, (x) T-HMM-
LaE-Suf-MA model, (xi) T-HMM-LiE model, (xii) T-HMM-LiE-Suf model, (xiii)
T-HMM-LiE-MA model, (xiv) T-THMM-LiE-Suf-MA model, (xv) MEn model, (xvi)
MEn-Suf model, (xvii) MEn-MA model, and (xviii) MEn-Suf-MA model.

3.4.6.3 Evaluation Measures

Evaluation of the proposed Urdu POS taggers are carried out using the accuracy and

standard deviation measures as before (see Section 2.5.3).

3.4.7 Results and Analysis

Table 3.15 presents the accuracy results when trained and tested on the UNLTool-
POS-Small (D1), UNLTool-POS-Moderate (D2), UNLTool-POS (D3) test datasets
for the Urdu POS tagging tasks by using different models (see Section 3.4.3). The
standard deviations associated with the computed average accuracy has been also

presented.

%http://182.180.102.251:8080/tag/ - Last visited: 12-November-2018
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It can be observed that overall best results are obtained using T-HMM-LI-Suf-
MA followed by MEn-Suf-MA POS tagging models 95.14% and 94.20% respectively.
This shows that combining various stochastic and smoothing techniques with lan-
guage dependent features are helpful in producing a very good performance on the
UNLTool-POS test dataset. The highest accuracy score of 95.14% indicates that the
Urdu POS tagging task is challenging and there is still room for improvement. It can
also be noted from these results that a proposed POS tagging approach (T-HMM-LI-
Suf-MA) outperforms both baseline approaches BL-MFT (accuracy = 84.72%) and
BL-CLE (accuracy = 88.45%) on UNLTool-POS test dataset (see Figure 3.3).

It can be further observed that the tri-gram HMM based models can produce good
results if incorporated with linear interpolation, suffix as well as Morphological Infor-
mation (MI). Certainly, using MI along with linear interpolation gives better results
as compared to suffix, but what is significant to note, using all information together
improved the accuracy of the models, -HMM-LI-Suf-MA: 95.14, T-HMM-LaE-Suf-
MA: 93.74, and T-HMM-LiE-Suf-MA: 93.97 and MEn-Suf-MA: 94.20. Furthermore, it
can be observed, T-HMM-LI, -HMM-LaE, and T-HMM-LIE produce accuracies of
87.34%, 85.92%, and 86.89 respectively, on the UNLTool-POS dataset. For the case of
MEn, the reported accuracy is 88.31%. One important observation here is that by
using smoothing and language dependent features, the proposed Urdu POS tagging
accuracies can be improved as compared to BL-MFT and BL-CLE models.

It can be observed from the Table 3.15, that T-HMM-LI performs better than other
two models T-HMM-LaE and T-HMM-LiE, on UNLTool-POS, UNLTool-POS-Small,
and UNLTool-POS-Moderate test datasets. Moreover, the accuracy of T-HMM-LaE
model is slightly poorer than the other HMM based models (T-HMM-LI and T-
HMM-LiE), with UNLTool-POS-Small data due to model overfitting. However,
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Fig. 3.3 Performance comparison of several Urdu part-of-speech taggers on different
datasets

such discrepancies are alleviated with the increase of training data (UNLTool-POS-
Moderate and UNLTool-POS training datasets).

It has been further observed that language dependent features increased the ac-
curacy of the models to a certain extent, even if trained on a UNLTool-POS-Moderate
training dataset. However, with different features along with smoothing, the in-
crease in the model accuracy is higher when training data is smaller. For instance,
T-HMM-LI-MA and T-HMM-LI-Suf models improved around 16%, 7% and 4%,
and 21%, 10% and 5% respectively over the T-HMM-LI models, for UNLTool-POS,
UNLToo0l-POS-Small, and UNLTool-POS-Moderate test datasets.

From the above observations, it can be concluded that using MI and suffix, in-
creases in the model accuracy are higher for UNLTool-POS-Small and UNLTool-POS-
Moderate training datasets. It is also important to note, the T-HMM-LI-MA models

give an approximate improvement of around 7%, 5% and 4% over the T-HMM-LI-
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Suf model for UNLTool-POS-Small, UNLTool-POS-Moderate and UNLTool-POS
training dataset respectively. However, integrating all of them, an improvement has
been observed in T-HMM-LI-Suf-MA models which are 5%, 3%, and 1% improved
with respect to T-HMM-LI-Suf model in case of UNLTool-POS-Small, UNLTool-POS-
Moderate and UNLTool-POS training dataset. It can also be noticed that similar
results have been observed for the other two (T-HMM-LaE and T-HMM-LiE) HMM
based models. However, -HMM-LiE performed better than the T-HMM-LaE model,
but with the higher training data, the performance of these models are somewhat
comparable.

MEn models outperform all others with smaller training data but contrasting
results have been observed with large training data (see Figure 3.4). It is worth noting
that MEn along with suffix and morphological information has positive effects with
poor resources. Results show the T-HMM-LI-Suf-MA and MEn-Suf-MA are more
accurate than others, providing support for further analysis based on such models.

Table 3.16 shows cases where the MEn-Suf-MA model performs better than T-
HMM-LI-Suf-MA, by comparing the accuracies of open class tags for known and
unknown words on the UNLTool-POS testing dataset. Result indicate that the T-
HMM-LI-Suf-MA model shows poor accuracy while predicting proper nouns (NNP)
over the MEn-Suf-MA model. Mostly the proper nouns (NNP) in T-HMM-LI-Suf-
MA model are erroneously classified as an adjective (JJ). Furthermore, it is worth
noting again that in Urdu, there is no discrimination between upper and lower-
case characters, also using an adjective as a proper noun is frequent in Urdu e.g.
S (KBYR, ‘big’) and ree (SGHYR, ‘small’). Another reason for misclassification
in tagging of the proper nouns is that many of them end with negation marker

or pronoun e.g. the ‘wf U (‘Nagyna’) end with the 5 (NH, no”) or the NNP 3
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Fig. 3.4 Accuracy of various Urdu part-of-speech taggers on UNLT-POS test dataset

(‘Nazyh’) which end with the ~ (YH, “this’), a pronoun. These errors needs further

investigation.

Table 3.16 Accuracies of open class tags on UNLTool-POS-Large testing dataset using
T-HMM-LI-Suf-MA and MEn-Suf-MA

Tag T-HMM-LI-Suf-MA MEn-Suf-MA
Known Unknown Known Unknown

NN 94.17 80.07 9232  78.23

NNP  74.87 56.18 76.56 70.74

J] 91.42 63.38 89.54 6197

RB 81.78 57.71 84.45 64.33

VBF 92.93 72.67 9247 72.03

Hence, MEn-Suf-MA is disregarded due to the lack of fine-grained POS analysis.

Finally, Table 3.17 shows the confusion matrix of the T-HMM-LI-Suf-MA model

by finding the most frequent confused open as well as closed class tag pairs for
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known and unknown words on the UNLTool-POS testing dataset. The columns and
rows of the matrix represent the POS instances in the actual tags and predicted tags
respectively. Only those tag pairs are considered for discussion which had more
than 12 occurrences. Urdu does not use capitalised letters for upper and lower-case
discrimination, which causes almost half of the NNPs erroneously tagged as common
nouns (NN). In many cases, NNPs are confused with adjectives (JJ) and quantifiers
(Q), particularly when NNPs are used to refer some property, quantity, feature or

state in the context.

Table 3.17 Confusion matrix for most confused tags pairs on UNLTool-POS-Large
testing dataset using T-HMM-LI-Suf-MA POS tagger

Predicted Tags
Actual tags NN NNP VBI VBF J] Q AUXA AUXT RB SC Total
NN - 8 23 22 96 26 - - 24 - 239
NNP 53 - - - 3528 - - - - 256
1] 47 13 - - - 38 - - 21 - 119
VBF 29 - 26 - - - 29 17 - - 101
RB 31 - - - 28 - - - - 23 82
Total 260 101 49 22 15992 29 17 45 23 797

The most prominent causes for Urdu POS tag misclassification are its free word
order which is difficult to classify with a coarse-grained POS tagset, and the highly
inflected nature of Urdu where the grammatical categories of inflections are very

closely related.

3.5 Chapter Summary

This chapter described the design, development, and evaluation of several Urdu
natural language processing tools (word, sentence tokenizers and POS tagger), these
tools are crucial pre-requisites for the Urdu semantic tagger. The Urdu language

has a highly complex and morphological rich structure, yet it is under-resourced,
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and thus less advanced in terms of NLP research activities than other major world
languages. It has been shown that it is possible to develop highly accurate Urdu
NLP processing tools, if formulated using rule-based, dictionary look-up, n-gram
language models and stochastic methods. Results have shown good performance
and thus provided an evidence that these tools can be used for the Urdu semantic
tagging task. In addition, a second set of contributions are the design, collection,
as well as manual annotation of large Urdu datasets, and developing supporting
resources.

Results showed that the proposed Urdu word tokenizer obtained precision of
96.10%, recall of 92.11%, F\ of 94.01%, and accuracy of 97.21%. The proposed Urdu
sentence tokenizer has obtained promising results (precision = 91.08%, recall =
94.14%, F1 = 92.59%, and error rate = 6.85%). Finally, for the Urdu POS tagging task,
the best accuracy (95.14%) is achieved by a tagger which is a combination of tri-gram
HMM, linear interpolation, suffix, and morphological information.

NLP preprocessing resources (for instance, word/sentence tokenizers and POS
taggers) are important for those working on computational methods to analyse and
study natural languages. These resources are very much needed to help advancing
the research in NLP, Al, information retrieval and for general text analysis. Here
in this chapter several useful resources have been proposed and developed, that is
more cheaper but of high quality. For languages which are currently under-supplied

40

in terms of NLP resources,* our research study will provide a case study for the

creation of useful new resources.

%As can be seen from the META-NET whitepaper series (http://www.meta-net.eu/
whitepapers/key-results-and-cross-language-comparison - Last visited: 08-January-2020)
some European languages also suffer either from weak or no support.


http://www.meta-net.eu/whitepapers/key-results-and-cross-language-comparison
http://www.meta-net.eu/whitepapers/key-results-and-cross-language-comparison




Chapter 4

Semantically Annotated Corpus and

Multi-Target Classification Methods

41 Introduction

In Chapter 3 various Urdu NLP tools are proposed, and these are incorporated
in the Urdu semantic tagger. However to test the performance of the semantic
tagger, this chapter describes research on developing and evaluating a benchmark
Urdu semantically annotated corpus. The proposed corpus contains 8,000 semi-
automatically annotated tokens (2,000 each for news, social media, Wikipedia, and
historical text). Each word in the corpus is assigned with one to nine semantic tags.
To demonstrate how the proposed corpus can be used for the development and
evaluation of supervised multi-target classification methods, a feature extraction
approach is used to extract features from the proposed corpus and apply seven
multi-target classifiers on them.

The remainder of the chapter is divided into four parts as follows: the first part
(see Section 4.2) presents the corpus generation process. The second part (Section 4.3)

explains the experimental set-up, dataset as well as semantic annotation methods
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(applied to the proposed corpus), evaluation measures and evaluation methodology.
The third part (Section 4.4) discusses results and their analysis. Finally, the last part

(Section 4.5) concludes the chapter.

4.2 Corpus Creation

In USAS (see Section 2.4) not all words fall into one predefined semantic category,
rather, some words can belong to two or more semantic categories. For instance, a
word “officer” can be tagged with G3/57.1/S2, since it can be considered to belong
to the semantic category “Warfare, defence and the army; Weapons” (G3), as well
as to the category “Power, organizing” (57.1), and to the category “People” (52).
These multiple memberships of categories have been indicated with “slash tag (/)”
separating tags in USAS. Furthermore, USAS is a concept-driven tagging tool rather
than content driven, in that it provides a general conceptual structure of the world,
instead of trying to offer a semantic taxonomy for specific domains [165]. Therefore,
our proposed multi-target Urdu Semantically Annotated Corpus (USA-19 Corpus)
has been annotated with multiple potential semantic tags (up to nine, if required).
This section describes the creation of our proposed gold standard USA-19 Corpus,
including raw data collection, development of an annotation tool, annotation process,

corpus statistics and standardization of the corpus.

4.2.1 Data Collection

To train and test supervised multi-target machine learning algorithms, an Urdu
annotated corpus is required based on the USAS semantic taxonomy. Therefore,
to develop a corpus with realistic examples, we have collected data from different

domains. For example, social media texts are short and informal, whereas, news-
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paper articles are formally written and of moderate length. To develop the USA-19
Corpus, raw data is collected from the following domains: (i) news articles, (ii)
social media (Twitter!, Facebook?, and Blogs), (iii) literary magazines, and (iv)
Wikipedia® articles.

The reasons for collecting data from these domains are, firstly, they contain data
which are significantly different from one another. Secondly, variation in data poses
different types of challenges for the semantic annotation task, which makes our
proposed corpus more realistic and challenging. Thirdly, data from these sources
are free and readily available in digital format for research purposes. Fourthly, to
evaluate semantic annotation tools (or methods) on a variety of writing styles and
publication times. Fifthly, to make sure that our vocabulary inventory is of sufficient
coverage. Finally, to produce a more robust semantic field annotated corpus.

Raw text of news articles is collected from various sources including BBC Urdu?,
Express news®, Urdu Library®, and Minhaj Library” using a Web crawler®. The
newspaper text is useful as it is written in continuous prose and purports to be a
mainly factual report of events which have taken place. The news articles collected
are from different genres including Sports, Politics, Showbiz, Science and Technology,
Business, Health and Religion. There are in total 2,100 word tokens in the collected
text (for each genre there are 250-300 tokens). We call this sub-corpus the USA-19-

raw-news corpus.

thttps://twitter.com/ - Last visited: 11-January-2019

https://facebook.com/ - Last visited: 11-January-2019

Shttps:/ /ur.wikipedia.org/wiki/ - Last visited: 11-January-2019

“BBC terms of use is available at this link:  https://www.bbc.com/urdu/
institutional-37588278 - Last visited: 27-January-2019

>https://www.express.pk/ - Last visited: 11-January-2019

Shttp:/ /www.urdulibrary.org/ - Last visited: 11-January-2019

"http:/ /www.minhajbooks.com/urdu/control/ - Last visited: 11-January-2019

Shttps://lindat.mff.cuni.cz/repository/xmlui/handle/11858/
00-097C-0000-0023-65A9-5 - Last visited: 11-January-2019


https://twitter.com/
https://facebook.com/
https://ur.wikipedia.org/wiki/
https://www.bbc.com/urdu/institutional-37588278
https://www.bbc.com/urdu/institutional-37588278
https://www.express.pk/
http://www.urdulibrary.org/
http://www.minhajbooks.com/urdu/control/
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
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To form a sub-corpus from social media, raw data is collected from the following
four sources: Twitter?, Facebook?, Blogs, and Reviews. These sources monthly serve
around 2,375 million active users!!. We manually collected publicly available data
(user generated content) on different topics to make sure that the collected data is
genuine, realistic, diverse and of high quality. From each source, we collected Urdu
texts of 600 tokens (a total of 2,400 tokens). We call this sub-corpus the USA-19-
raw-smedia corpus. It has been shown [63] that social media text poses additional
challenges to automatic NLP methods, as text from these sources tends to be less
grammatical. Thus, forming a corpus from social media sources provides challenging
text for the Urdu semantic annotation task.

To form a third sub-corpus, Urdu text is collected from the following Wikipedia'
articles: Culture, History, Geography and Areas, Personalities, Science and Tech-
nology. A passage of size 300-350 words is excerpted from each of these Wikipedia
articles (giving a total of around 2,300 words). The sub-corpus is called USA-19-
raw-wiki corpus. The reason for using Wikipedia as a text collection source is that
it is large, reliable, freely available, contains texts on a variety of topics and articles
written by different authors exhibiting language variation.

The last and fourth type of collected Urdu text consists of words from old Urdu
literature (fiction and non-fiction short stories). Raw text of Urdu literature of early
1940s is collected from HamariWeb'3. We collected Urdu text of approximately 2,200
words. This sub-corpus is called the USA-19-raw-historic corpus and contains Urdu

text with a variety of writing styles and time periods.

9To address privacy issues, we asked users for their permission to use the tweets, https://twitter.

com/en/privacy - Last visited, 27-January-2019

19Under its privacy policy we can ask Facebook users to share their data, https:/ /www.facebook.
com/about/privacy/ - Last visited: 27-January-2019.

Uhttps://www.statista.com - Last visited: 11-January-2019

12]ts terms of use are available via this link: https://foundation.wikimedia.org/wiki/
Terms_of_Use/en - Last visited: 27-January-2019

Bhttp://www.hamariweb.com/ - Last visited: 11-January-2019


https://twitter.com/en/privacy
https://twitter.com/en/privacy
https://www.facebook.com/about/privacy/
https://www.facebook.com/about/privacy/
https://www.statista.com
https://foundation.wikimedia.org/wiki/Terms_of_Use/en
https://foundation.wikimedia.org/wiki/Terms_of_Use/en
http://www.hamariweb.com/

4.2 Corpus Creation 143

4.2.2 Pre-processing

In this study, four different raw sub-corpora (USA-19-raw-news, USA-19-raw-smedia,
USA-19-raw-wiki, and USA-19-raw-historic) have been used to form the gold stan-
dard USA-19 Corpus. All the four sub-corpora are pre-processed as follows. Text
in a sub-corpus is cleaned by removing multiple spaces, duplicated text, diacritics
as they are optional (only used for altering pronunciation), HTML tags, hashtags,
and emoticons. Only sentences with five or more words are kept (as our empirical
analysis shows that sentences with a length less than five words are typically incor-
rectly tagged). A language detection tool (see Section 3.2.6) has been used to discard
foreign words, which resulted in the removal of 957 tokens. After pre-processing,
the four cleaned sub-corpora contain raw text of 8,000 tokens (2,000 tokens in each
sub-corpus).

In the next step of pre-processing, the raw text of 8,000 tokens is tokenized,
lemmatized and POS tagged. The tokenization and POS tagging are carried out by
using the UNLTools (see Chapter 3). UNLTools uses an Urdu POS tagset consisting
of 35 tags [225]. This POS tagset is simple but based on the critical analysis of
several previous iterations of Urdu POS tagset!* (see Section 3.4.2). Furthermore,
simplification of POS tagsets generally does not affect USAS semantic annotation
system accuracy [165]. Lemmatization is carried out using an online Urdu tool'.
Finally, the 8,000 tokens with automatically assigned POS tags, and lemmas are
stored in txt files (called USA-19-pp-news, USA-19-pp-smedia, USA-19-pp-wiki, and
USA-19-pp-historic).

Yhttp:/ /www.cle.org.pk/Downloads/langproc/UrduPOStagger /UrduPOStagset.
pdf - Last visited: 11-January-2019
Bhttp://lemmatization.herokuapp.com/ - Last visited: 11-January-2019


http://www.cle.org.pk/Downloads/langproc/UrduPOStagger/UrduPOStagset.pdf
http://www.cle.org.pk/Downloads/langproc/UrduPOStagger/UrduPOStagset.pdf
http://lemmatization.herokuapp.com/
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4.2.3 Annotation Tool for Urdu Semantic Annotations

To facilitate annotation of Urdu text with semantic field tags, we developed a user-
friendly Java based Graphical User Semantic Annotation Interface (henceforth called
GUSALI). Figure 4.1 shows the GUSAI for a sample word & (BAT, ‘Talk’) (see
Label 3) for the sentence { .. &\, LS Ul 201 (AYSHR SYAN KYA BAT HE?, ‘Easher
what’s the matter?”) (see Label 2) along with other information (this information
has been loaded from a file, see Section 4.2.2) including POS tag (see Label 4),
lemma (see Label 5), and semantic field tags'® (see Label 6). Annotators are asked
to attach as many (up to nine and at least one) USAS semantic field tag(s), as they
deem appropriate for all senses of a word and place them in descending order of
importance. We asked annotators to edit the POS tag, lemma, and semantic field
tags(s), if the pre-assigned information is incorrect, inappropriate, or incomplete. For
words whose information is missing, they must add POS tag, lemma and semantic
field tag(s) information using GUSAL

To assign semantic field tag(s) (if the assigned tag(s) is/are incomplete), an
annotator needs to click on the , 5" Ci K& w0 (MZYD TYGZ MNTKHB KRYN,
‘add more tags’) button (see Figure 5.1). Furthermore, to understand appropriate
and common senses of a word, &L (BAT, ‘Talk’) in our case (see Figure 5.1, Label
3), the references (of dictionaries, and thesauri) are displayed alongside the GUSAL
However, annotators are free to use any other resources as they wished.

By clicking 5" it L w i (MZYD TYGZ MNTKHB KRYN, ‘add more
tags’) button (see Figure 5.1), an annotator is directed to sub-GUSAI (see Figure 5.2)
in order to attach more semantic field tag(s) (see Section 2.1) or to remove irrel-

evant, incorrect or inappropriate ones by selecting or deselecting the check-boxes

16For the process of semantic field tags assignment, a word along its POS tag information is looked
up in the Urdu semantic lexicons (see Chapter 5), resulting in 7,461 semantically annotated tokens.
The remaining 539 tokens which are not found in the Urdu semantic lexicons are manually annotated.
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sl Sl oslaal] ple g Ligurlgs 3351

Fig. 4.1 Graphical User Semantic Annotation Interface (GUSAI) developed for the
semantic annotations of our proposed USA-19 Corpus

respectively. Furthermore, by clicking go back, it redirects to the main-GUSAI (see
Figure 5.1), where the annotator may complete the remaining (add/remove rele-
vant/irrelevant tag(s)) annotation process. However, by clicking the submit button it
finalizes the annotation process for a word and then stores annotated information
i.e., word, POS tag, lemma, and semantic field tag(s), in persistent storage. Next
button will load the following word along with its POS tag, lemma, and semantic
field tag(s). When annotations are completed for the entire corpus, an annotator
is prompted with an “annotation completion message” and (s)he can use the Exit

button to close the annotation tool.

4.2.4 Annotation Process

Our proposed USA-19 Corpus (containing 8,000 tokens) has been semi-automatically
annotated by three annotators (A, B and C). All three annotators are Urdu native
speakers and had a very good understanding of the USAS semantic tagset (see
Section 2.1). All the annotators are graduates, experienced in text annotations, and

had a high level of proficiency in Urdu. The USA-19 Corpus has been annotated at the
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Fig. 4.2 Sub-GUSALI to add /remove semantic field tag(s).

tic Annotation Interface (GUSAI)/Lias wlay sl SIS - oo - o X

sass 1 S5 siloall plE S Lipairliss 5351

£ 5 0013 s ol S S o 2
s oty s Lt

word level with 21 major semantic fields and 232 sub domains of the USAS semantic
tagset. The complete annotations are carried out in three phases: (i) training phase,
(ii) annotations, and (iii) conflict resolving.

In the training phase, two annotators (A and B) manually annotated a subset of
62 sentences from the USA-19 Corpus using GUSAI (see Section 4.2.3). Annotators
A and B discussed the annotations (both those agreed and conflicting) on the initial
subset of 62 sentences to further improve the quality of annotations. After that, the
remaining corpus comprising of 461 sentences are manually annotated by annotators
A and B. After the annotation process, the Inter-Annotator Agreement (IAA) is
computed for the entire corpus. In the third and last phase, the conflicting tokens are
annotated by a third annotator (C), which resulted into a gold-standard semantically
annotated corpus for Urdu language.

The Inter-Annotator Agreement (IAA) on the entire USA-19 Corpus is calculated
by using three approaches: (i) first correct — check whether the first semantic field
tag selected by the annotator A matches with the first semantic field tag of annotator
B, (ii) fuzzy-order — check whether semantic field tags selected by an annotator A

are contained within the tags annotated by B in any order, (iii) strict-order — check
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whether annotator A semantic field tag(s) is/are identical to B in terms of semantic
tield tag(s) selection and order.

On the entire USA-19 Corpus, IAA of 79.88% (first-correct) is obtained, 81.61%
(fuzzy-order), and 26.56% (strict-order) (see Table 4.1). It is important to note
that annotators had agreement on 6,390, 6,529, 2,125 words for first-correct, fuzzy-
order, and strict-order approaches, respectively. The IAA scores of first-order and
fuzzy-order are considered as good, considering the difficulty of the Urdu semantic
annotation task. However, strict-order shows low IAA results (26.56%). The Kappa
Coefficient [131] computed for the entire USA-19 Corpus is 77.01%, 74.96%, and
21.07% using first-correct, fuzzy-order, and strict order semantic tagging approaches,
respectively.

The details of IAA for the four domain wise sub-corpora (USA-19-News, USA-
19-SMedia, USA-19-Wiki, and USA-19-Historic) are also shown in Table 4.1. It shows
that the highest IAA score is obtained on the USA-19-News sub-corpus using first-
correct semantic tagging approach (84.65%). IAA scores of 83.76% and 81.05%
are obtained for USA-19-SMedia and USA-19-Wiki sub-corpora respectively. The
lowest IAA score of 70.07% is obtained for the USA-19-Historic sub-corpus. The
possible reason for a low IAA score on the USA-19-Historic sub-corpus is that text
in this sub-corpus is from older Urdu literature and annotators would have faced
difficulty in correctly understanding the meanings of words from old Urdu. For fuzzy-
order semantic tagging approach, the USA-19-News sub-corpus has obtained the
highest IAA score (86.06%), followed by USA-19-Wiki (82.42%), and USA-19-SMedia
(81.97%) sub-corpora. The lowest score is 75.98% for USA-19-Historic sub-corpus.
Finally, for the strict-order semantic tagging approach, the highest IAA score is
obtained by USA-19-News sub-corpus i.e. 31.86%. The USA-19-SMedia, USA-19-
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Wiki, and USA-19-Historic sub-corpora have obtained IAA of 28.78%, 25.95%, and
19.63%, respectively.

The above discussion highlights the fact that in the case of first-order and fuzzy-
order, the annotators are consistent, however for the strict-order annotators have
huge variability. It also shows that the nature of text has an impact on the quality of
semantic annotations as the USA-19-Historic sub-corpus obtained the lowest IAA
compared to the other three sub-corpora on all three semantic tagging approaches
i.e. first-order, fuzzy-order and strict-order. Finally, it is worth noting here that in
the majority of cases, annotators have annotated the first tag correctly, it shows that

on the most important or core tags, annotators have good IAA scores.

Table 4.1 Inter-Annotator Agreement scores for USA-19 corpus and domain wise
sub-corpora.

IAA approach First-correct Fuzzy-order Strict-order
Corpus/Sub-corpus

USA-19 79.88% 81.61% 26.56%
USA-19-News 84.65% 86.06% 31.86%
USA-19-SMedia 83.76% 81.97% 28.78%
USA-19-Wiki 81.05% 82.42% 25.95%
USA-19-Historic 70.07% 75.98% 19.63%

4.2.5 Corpus Statistics

Table 4.2 shows the detailed statistics of the USA-19 Corpus. The gold standard USA-
19 Corpus consists of 8,000 words (tokens), 2,213 unique tokens and 523 sentences.
The average number of words per sentence is approximately 15. In the USA-19
Corpus, there are 2,442 nouns, 1529 verbs, 814 adjective, 636 pronouns, and 161
adverbs.

To characterize the properties of any multi-targeted Corpus (USA-19 in our case),

several useful multi-label indicators have been used in the recent past [253]. The
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primary and natural way to measure the multi-labeledness of the entire USA-19
Corpus is label cardinality. Label cardinality is a standard measure to calculate the
average number of tags or labels per example present in the USA-19 Corpus. For a
given multi-target corpus (USA-19), the label cardinality can be computed using the

following equation.

1 N L
Label cardinality = N Z Z (USA — 19 (4.1)
j: =1

Where, N means number of examples, and L is number of labels. If the label
cardinality score is greater than 1 then it means the corpus is a multi-targeted corpus
(note that when L=1 the corpus is a single-label corpus). On the other hand, a label
cardinality score less than 2 means it is low multi-targeted. On proposed USA-19
Corpus, label cardinality score of 2.09 is obtained. This high number shows that
proposed corpus has a good label frequency.

The USA-19 Corpus contains 16 words with typos (spelling errors), which are
annotated with Foreign Fragment “FF” POS tag and “Z99” (unmatched token) se-
mantic field tag. Note that these typos are carried inherently from sources mentioned
in Section 4.2.1. Typos are not replaced with correct words because it would be inter-
esting to see the behaviour of semantic annotation methods (see Section 2.3.1.2) on

such typographical words.

4.2.6 Corpus Encoding

Our proposed USA-19 Corpus is encoded in XML format. Figure 4.3 shows an
example of a semantically annotated sentence from the USA-19 Corpus in stan-
dard XML format. In this sentence, <contextfile fileno="1" filename="USA-19">,
indicates the beginning of a context file. The fileno and filename attributes show

tile number and file name, respectively. The attribute <s snum=350> indicates the



150 Semantically Annotated Corpus and Multi-Target Classification Methods

Table 4.2 Detailed statistics of USA-19 Corpus

Complete Urdu semantically annotated corpus

Sentence count 434
Word count 8,000
Unique words 2,213
Words with 7299 16
Tagged words 7,477
Punctuations (untagged) 523
Semantic tags 15,624
Named entities 590
Average no of words per sentence 15
Label cardinality 2.09

beginning of a sentence, with unique IDs, i.e. snum. The tag <wf pos="POS_tag”
lemma="Lemma_of_Word" stags="USAS_Semantic_Tags”>, indicates the beginning
of a word in a particular sentence. The pos attribute shows the POS tag for a word,
and lemma represents the lemma of a word (i.e. the dictionary head word), and stags

shows USAS based semantic field tag(s) for a target word.

Fig. 4.3 A semantically annotated sentence in standard XML format from our pro-
posed USA-19 Corpus.

<?xml version="1.0" encoding="utf-8"2>
<contextfile fileno="1" filename="USA-19 Corpus">

5" g /WE>
1 N3.2 T1.2 T3 T1.3">gS5i</we>
1.1.1 T1.3 NB">) 4, </uf>
PO - ="N4 T1 T1.1 T1.1.1 T1.2 T3">dum</wL>
<wf pos="AUXT" lemma="_43" stags="A3 Z5">_g3</wE>
<punc><</punc>
<fs>
</contextfile>
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4.3 Semantic Annotation Methods

In the proposed multi-target USA-19 Corpus, a tagged word can have one to nine
Urdu semantic field tags associated with it. These tags have been used to indicate
multiple membership categories from the USAS semantic taxonomy i.e. different
components of one sense (see Section 4.2). Therefore, the Urdu semantic tagging
problem is treated as a multi-target classification problem. The following sections
will describe the baseline and machine learning based approaches used for the Urdu

semantic tagging task, corpus, evaluation methodology and evaluation measures.

4.3.1 Approaches
4.3.1.1 Most Frequent Sense Approach

The Most Frequent Sense (MFS) heuristic is a simple but primary and the strongest
baseline for any supervised semantic annotation task [202]. To handle multi-target
classification, the most frequent sense has been adapted in a way that it always
predicts the most frequent set of senses (semantic tags - up to nine tags, if available)

in the entire USA-19 Corpus.

4.3.1.2 Machine Learning Approach

For this purpose, three different types of features were extracted from each input

word, (i) local, (ii) topical, and (iii) semantic features.

4.3.1.2.1 Local features These are comprised of word form, POS tags— POS tags
of a word itself “w,”, for two previous words “w,_1, w,_»” and the next two words
“Wpi1, wp2”. However, if there are fewer words (before or after) in the same sentence
I, then the corresponding feature is denote as NIL, and lemmas- the lemma of a

target word.
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4.3.1.2.2 Topical features This consists of abag-of-words. For each training/testing
word, the vocabulary of the surrounding words can be used as feature(s). All sur-
rounding words of a target word in the USA-19 Corpus has been used, within the
same sentence. However, it has been shown [146] that this feature is position in-
sensitive thus we use an unordered set of words based on vocabulary of the corpus
and ignore the position of words. We also use a number of positional features i.e.
collocations. We adopted the same 11 collocations features as cited in [42]ie. C_j _y,
Ci,1,C0,2,C5,C5_1,C_11,C12,C3-1,C_21, C_12, and C; 3. Collocation C;
means the ordered sequence of words and punctuation characters surrounding the
target word. Furthermore, j and k refers to the starting and ending position of the
sequence, respectively, a negative value refers to the word position prior to target

word.

4.3.1.2.3 Semantic feature This type of feature consists of a domain indicator
(cluster of texts regarding similar topics/subjects). In our case, four main domains
have been used i.e. News, Social Media, Wikipedia, and Literature (see Section 4.2.1).
For instance, a word Z (MYCH, ‘match”) belongs to News domain.

All the above mentioned extracted features (word form, POS tags, lemma, bag-of-
words, collocation, and semantic) are used to train different multi-target classifiers.
After extracting the local, topical and semantic set of features from the entire USA-19
Corpus, we applied seven different multi-target classifiers on them. The next section

discusses these multi-target classifiers in more detail.

4.3.1.3 Multi-Target Classifiers

In contrast to single-label ML algorithms (see Section 2.3.1.2), in supervised multi-

target settings, each target variable can take multiple class values. This type of



4.3 Semantic Annotation Methods 153

classification is performed using two main approaches: (i) Problem Transformation,
and (ii) Algorithm Adaptation [253, 233].

Problem Transformation is primarily used for multi-target classifiers — a multi-
target problem is transformed into one or more single-label problems. Doing so,
single-label ML algorithms are employed in such a way, that their single-label pre-
dictions are transformed into multi-label predictions. On the other hand, Algorithm
Adaptation is an alternative to problem transformation, where internal modification
is required in existing classifiers to handle multi-target data directly (off-the-shelf
approaches include Decision Tree [235], MLRF (Multi-Label Random Forest) [115]).
However, Algorithm Adaptation approaches are usually discipline specific, for in-
stance, decision tree is popular in bioinformatics [187]. Consequently, problem
transformation provides flexibility and scalability: any state-of-the-art single-label
ML algorithms (K-Nearest Neighbour [220], etc.) can be used to suit requirements.
Problem transformation can be primarily sub-classified into two categories: (i) Binary
Relevance [233], and (ii) Label Combination [186] classifiers.

Binary Relevance (BR) is the most common and baseline multi-target problem
transformation classifier [233]. It transforms a multi-target problem into multiple
independent binary classification problems, where each binary classifier is trained
to predict the relevance of one of the labels, i.e. it derives a binary training set D,

from the original multi-target training set D in the following manner:

Dj:{(xi,y§)|1§i§m} (4.2)

Each binary classification problem corresponds to one class label in the label space
Y ={A1,A2,...,Aq} which contains g class labels. More precisely, each multi-target
training instance (x',') is transformed into a binary training example based on its

relevance to A;. Where, for each j, a state-of-the-art single-label ML algorithm is
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employed to map a data instance to the relevance of the j;, label to induce a binary
classifier.

There are several families of Binary Relevance classifiers in the literature each
with its own pros and cons. However, an in depth study and comparison of all
these classifiers is beyond the scope of this chapter. Therefore, for the Urdu semantic
tagging task, the four most common and popular classifiers will be used: (i) Bayesian
Classifier Chains, (ii) Classifiers Chains, (iii) Classifiers Probabilities Chains, and
(iv) Class Relevance [185, 46].

Another well-known Problem Transformation approach to handle the supervised
multi-target classification task is Label Combination (LC). It also transforms a multi-
label problem into a multi-class problem by treating all label sets as atomic labels,
that is, each label set is treated as a single label in a single-label multi-class problem.

Label probability in LC can be expressed by:

9= argmax p(ylx), |Y| < 2" (4.3)
yeyY

For this study, three Label Combination algorithms have been selected: (i) Nearest
Set Replacement, (ii) Random -labEL Disjoint Pruned Sets (RAKELd), and (iii) Super
Class Classifiers [187, 185], as these have proven to be effective in literature [231].

These multi-target classifiers have been applied in a number of research studies;
text classification [60], bio-informatics [51], scene classification [37], shape detection
in ultrasound images [252] etc. However, to the best of our knowledge, multi-target
classifiers have never been explored for a semantic tagging task in general and
particularly in the context of the Urdu language. Therefore, another contribution of
this chapter is extraction of various features (see Section 4.3.1.2) from the USA-19

Corpus and the application of seven different multi-target classifiers on them.
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4.3.2 Evaluation Measures

The performance of a multi-target classifier can be measured using two approaches:
(i) label-based — evaluated on a per-label basis, and (ii) instance-based — used to carry
out evaluation on label sets [46]. In this chapter, three evaluation measures are used
to evaluate the performance of our Machine Learning based approaches: (i) Exact
Match (an instance-based evaluation measure), (ii) Hamming Loss (an instance-
based evaluation measure), (iii) Accuracy (a label-based evaluation measure), and

standard deviation (see Section 2.5.2).

4.3.3 Corpus

For the set of experiments presented in this chapter, the entire USA-19 Corpus and
its sub corpora are used (see Section 4.2.5). There are total 8,000 tokens in the USA-
19 Corpus (2,000 for each of the sub corpora i.e. USA-19-News, USA-19-SMedia,
USA-19-Wiki, and USA-19-Historic).

4.3.4 Evaluation Methodology

The task of Urdu semantic tagging is treated as a multi-target classification task, as
one word can have one or more semantic field tags. Features extracted using local,
topical and semantic approaches (see Section 4.3.1.2) are used as input to multi-
target classifiers. Seven different multi-target classifiers have been applied (Bayesian
Classifiers Chain, Classifier Chain, Classifier Chain Probabilities, Class Relevance,
Nearest Set Replacement, Random -labEL Disjoint Pruned Sets (RAKELd), and Super
Class Classifiers). To better evaluate the performance of Machine Learning based

Urdu semantic tagging methods, 10-fold cross validation!” has been applied.

17The MEKA http:/ / waikato.github.io /meka/ [188] implementation of the multi-target
classifiers, with its default parameter settings (except RAKELd — where the following parameters
are selected empirically: subset size is varied from 2 to 5, number of models selected 1 to 100, and


http://waikato.github.io/meka/
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4.4 Results and Analysis

Table 4.3 presents the Exact Match (EM), Hamming Loss (HL) and Accuracy scores
obtained for Urdu semantic annotation tasks using Most Frequent Sense (MFS) and
Machine Learning (ML) based approaches applied on our proposed USA-19 Cor-
pus. The standard deviations associated with the computed multi-target evaluation
masseurs have been also presented. “Classifiers” in the table refers to the Problem
Transformation (PT) based Multi-target classifiers which produced the highest re-
sults among all the three single-label algorithms used in this research. “NB”, and
“RF” means Naive Bayes and Random Forest, respectively. “RAKELd” is used as a
short form of Random k-labEL Disjoint Pruned Sets. “BR” and “LC” refers to Binary
Relevance and Label Combination which are problem transformation classifiers. The
best results obtained overall are presented in bold, whereas, highest results with
respect to each single-label algorithm are presented in italic.

Overall, for Hamming Loss and Accuracy evaluation measures, the best results
are obtained using the Classifier Chain and RAKELd (Hamming Loss = 0.06 and
Accuracy = 0.94). However, for Exact Match measure, highest scores are obtained
using Nearest Set Replacement i.e. 0.77. Thus, we can say that when we consider
all three evaluation measures the Classifier Chain and RAKELd (Exact Match =
0.76, Hamming Loss = 0.06 and Accuracy = 0.94) classifiers outperform all other
multi-target classifiers. Also, these results are significantly higher than the baseline
approach i.e. Most Frequent Sense (Accuracy = 0.52). As can be noted that very
promising results are obtained for Urdu semantic annotation task indicating that the
multi-target classifiers are effective in assigning semantic field tag(s) to Urdu words

in our proposed corpus.

threshold is set to 0.1 to 0.9 with a 0.1 step.), is used for the supervised classification task. Furthermore,
all experiments are run on a 64-bit computing machine, with 8 GB RAM.
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Among the BR and LC sub-classifiers, although best results (based on average) are
obtained using Label Combination considering all three evaluation measures (Exact
Match, Hamming Loss, and Accuracy), however, the difference in performance is
small. The possible reason for this might be its construction style where each member
of the ensemble is considered as a small random subset of labels and thus learned a
single-label classier for the prediction of each element in the powerset of this subset.
This highlights the fact that both BR and LC types of Problem Transformation based
multi-target classifiers are effective in Urdu semantic annotations on our proposed
corpus.

Regarding single-label ML algorithms (Naive Bayes, Random Forest and ]48)
which are used in combination with multi-target classifiers, the best results are
obtained using Random Forest on both BR (Classifier Chain) and LC (RAKELd)
sub-classifiers. The possible reason for obtaining good results using Random Forest
is that it is considered the best ensemble learning algorithm for the single-label
classification task, thus when combined with multi-target classifiers (RAKELd and
Classifier Chain) it constructs multiple single-label training sets from the multi-
targeted USA-19 Corpus.

Table 4.4 presents the Exact Match (EM), Hamming Loss (HL) and Accuracy
scores obtained for Urdu semantic annotation tasks using Machine Learning (ML)
based approaches applied on our various sub corpora (USA-19-News, USA-19-
SMedia, USA-19-Wiki, and USA-19-Historic). For the set of experiments presented
here single-label Random Forest algorithm has been used (selected as this has pro-
duced better results (see Table 4.3) as compared to two others, NB and J48). All
other terms of the table are same as described previously. The best average results
obtained overall on the sub corpus is presented in bold, whereas, the second highest

average results on sub corpus is presented in italic.
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Table 4.4 Results obtained on various sub corpora using Machine Learning ap-
proaches

PT based Multi-target Evaluation Measures

Classifiers
Corpus Type: Name EM HL Accuracy
USA-19-News

BR: Bayesian Classifier Chain 0.71 0.08 093

BR: Classifier Chain 0.71 0.08 0.93

BR: Classifier Chain Probabilities 0.71 0.08 0.92

BR: Class Relevance 0.71 0.07 092

LC: Nearest Set Replacement 0.74 0.07 0.93

LC: RAKELd 0.71 0.07 0.93

LC: Super Class Classifier 0.69 0.08 0.92

Average score of all classifiers 0.71 0.08 0.93
USA-19-SMedia
BR: Bayesian Classifier Chain 0.73 0.07 0.93

BR: Classifier Chain 0.73 0.07 093
BR: Classifier Chain Probabilities 0.73 0.07 0.93
BR: Class Relevance 0.73 0.07 0.93
LC: Nearest Set Replacement 074 0.07 094
LC: RAKELd 0.74 0.06 0.94
LC: Super Class Classifier 0.73 0.07 0.93
Average score of all classifiers 0.73 0.07 0.93
USA-19-Wiki
BR: Bayesian Classifier Chain 0.72 0.08 092
BR: Classifier Chain 0.72 0.08 0.92
BR: Classifier Chain Probabilities 0.72 0.08 0.92
BR: Class Relevance 0.72 0.08 0.92
LC: Nearest Set Replacement 0.73 0.08 0.92
LC: RAKELd 0.72 0.08 0.92
LC: Super Class Classifier 0.66 0.15 0.85

Average score of all classifiers 0.71 0.09 091
USA-19-Historic
BR: Bayesian Classifier Chain 0.78 0.06 094

BR: Classifier Chain 0.78 0.06 0.94
BR: Classifier Chain Probabilities 0.78 0.06 0.94
BR: Class Relevance 0.78 0.06 0.94
LC: Nearest Set Replacement 0.79 0.06 094
LC: RAKELd 0.78 0.06 0.94
LC: Super Class Classifier 049 0.13 0.87

Average score of all classifiers 0.74 0.07 0.93
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It can be observed, the best average results are obtained on USA-19-Historic sub
corpus. Where the average EM, HL, and Accuracy has following scores, 0.74, 0.07
and 0.93, respectively. The lowest average results are observed for USA-19-Wiki sub
corpus (EM = 0.71, HL = 0.09, and Accuracy = 0.91). Average results on USA-19-
SMedia sub corpus has EM score of 0.73, HL score of 0.07, and Accuracy of 0.93. On
USA-19-News sub corpus obtained average results are as, EM: 0.71 HL: 0.08, and

Accuracy: 0.93 (see Figure 4.4).

1 -
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Fig. 4.4 Performance comparison of multi-target classifiers on various sub corpora

Table 4.5 presents some more detailed results (using Exact Match (EM), Ham-
ming Loss (HL) and Accuracy scores) of local, topical and semantic features (see
Section 4.3.1.2) which has been used to train and test different multi-target clas-
sifiers on the proposed USA-19 Corpus. This analysis is also based on Random
Forest single-label algorithm. All others terminologies of table are same as described

previously.
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Table 4.5 Results obtained on the USA-19 Corpus using local, topical and semantic

features

PT based Multi-target Evaluation Measures
Classifiers

Features Type: Name EM HL Accuracy

Local
BR: Bayesian Classifier Chain 0.70 0.12 0.88
BR: Classifier Chain 0.70 0.12 0.88
BR: Classifier Chain Probabilities 0.70 0.12 0.88
BR: Class Relevance 0.70 0.12 0.88
LC: Nearest Set Replacement 071 0.13 0.89
LC: RAKELd 071 0.11 0.89
LC: Super Class Classifier 0.69 0.13 0.88
Average score of all classifiers 0.70 0.12 0.88

Topical
BR: Bayesian Classifier Chain 0.68 0.14 0.87
BR: Classifier Chain 0.68 0.14 0.86
BR: Classifier Chain Probabilities 0.68 0.15 0.87
BR: Class Relevance 0.68 0.14 0.87
LC: Nearest Set Replacement 0.68 0.14 0.87
LC: RAKELd 0.65 0.15 0.86
LC: Super Class Classifier 0.63 0.17 0.84
Average score of all classifiers 0.67 0.15 0.86

Semantic
BR: Bayesian Classifier Chain 0.65 0.17 0.85
BR: Classifier Chain 0.65 0.17 0.85
BR: Classifier Chain Probabilities 0.65 0.17 0.85
BR: Class Relevance 0.65 0.17 0.85
LC: Nearest Set Replacement 0.66 0.16 0.86
LC: RAKELd 0.66 0.15 0.86
LC: Super Class Classifier 0.65 0.17 0.85
Average score of all classifiers 0.65 0.17 0.85
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The average results are as expected. The best average results on the USA-19
Corpus is obtained using Local features (EM = 0.70, HL = 12, and Accuracy = 88).
The lowest results are obtained using Semantic feature i.e. EM = 0.65, HL = 0.17,
and Accuracy = 0.85. However, the last Topical feature has also produced similar
type of results i.e. EM = 0.67, HL = 0.15, and Accuracy = 0.86.

To conclude, the best results on the USA-19 Corpus are obtained using RAKELd
and Classifier Chain, when considering all three evaluation measures. However,
when several sub corpora are evaluated using different ML based techniques the best
results are obtained for the USA-19-Historic sub-corpus, it reflects that for historic
type of text multi-target classifiers are more appropriate. However, the best highest
average weighted features for the USA-19 Corpus are Local whereas, the second
highest feature for Urdu semantic tagging task is Topical. It also shows the semantic

features are less useful for the multi-target semantic tagging task for the Urdu text.

4.5 Chapter Summary

This chapter presents a benchmark corpus for the evaluation of the US Tagger. The
proposed USA-19 Corpus contains 8,000 tokens (2,000 tokens each from News, Social
Media, Wikipedia, and Historic articles). Each word in the USA-19 Corpus is anno-
tated with one to nine semantic fields tag(s) using the USAS semantic taxonomy (21
major semantic fields and 232 sub-fields). To demonstrate how the newly proposed
corpus can be used for the development and evaluation of an Urdu semantic tagging
method(s) another contribution of this chapter is extraction of various features (local
(raw words, POS tags and lemmas), topical (bag-of-words context, bi/tri-grams col-
location) and semantic (domain indicators) ) from USA-19 Corpus and applied seven
multi-target classifiers including Bayesian classifier chain, classifier chain, classifier

chain probabilities, class relevance, nearest set replacement, RAKELd, and super class



4.5 Chapter Summary 163

classifier. Furthermore, all sub corpora has also been evaluated separately to show
which sub-corpus is bringing down the accuracy of the whole experiment. Different
teatures for Urdu semantic tagging task have also been evaluated separately.

Results show that RAKELd and Classifier Chain multi-target classifiers outper-
forms all other classifiers (Hamming Loss = 0.06 and Accuracy = 0.94). Whereas, for
the Exact Match measure, highest scores are obtained using Nearest Set Replacement
i.e. 0.77. To conclude, results show that RAKELd and Classifier Chain multi-target
classifiers outperforms all other classifiers (Exact Match = 0.76, Hamming Loss =
0.06 and Accuracy = 0.94) when combined with Random Forest single-label classifier.
The USA-19-Historic sub corpus has attained highest performance (Exact Match =
0.74, Hamming Loss = 0.07, and Accuracy = 0.93). Local features for Urdu semantic
tagging task are best on the USA-19 Corpus (Exact Match = 0.70, Hamming Loss =
0.12, and Accuracy = 0.88).

NLP resources and methods for the under-resourced Urdu language have been
explored here as follows: (i) to prepare a gold standard corpus and (ii) the first
time application of the multi-target ML classifiers for the semantic tagging task. This
corpus generation process enabled the development of various tools and resources,
thus providing a framework for under resourced languages to follow. Working
with language-independent and state-of-the-art methods (multi-target classifiers)

provides paradigms that can be applied to many languages at once.






Chapter 5

Semantic Tagset, Semantic Lexicons,
Urdu Semantic Tagger and its

Evaluation

5.1 Introduction

Chapter 4 presented an Urdu semantically annotated corpus and multi-target classi-
fication methods. Promising results are obtained with the multi-target classification
methods on the proposed corpus (see Table 4.3). However, the proposed corpus is
not used (as no semantic tagging tool is yet available) for the evaluation process of
the knowledge-based Urdu semantic tagger. Therefore, this chapter describes the
creation of Urdu semantic lexical resources (see Section 5.3) (that act as a knowledge
source for the Urdu semantic tagger) and development as well as evaluation of the
US Tagger on proposed corpus (see Section 5.4). The aim is to provide a detailed
process of automatic or semi-automatic approaches which have been undertaken for
the creation of Urdu semantic lexicons along with supporting resources and the US

Tagger.
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This chapter is divided into six parts. In the first part, the creation process of the
Urdu semantic tagset has been described (see Section 5.2). The second part explains
the methods used for the development of Urdu semantic lexicons (see Section 5.4).
In part three (Section 5.4), similarly to the EST (see Section 2.4.1) the US Tagger
has been described which has functioned as a model for proposed Urdu counter
part. Part four describes semantic field disambiguation methods (see Section 5.5).
The fifth part presents the experimental set-up (Section 5.6). Finally, in the part six
(see Section 5.7) evaluation of the US Tagger is carried out using two benchmark
corpora: (i) Urdu monolingual corpus (see Chapter 2), and (ii) USA-19 Corpus (see

Chapter 4) and we discuss the insights gained from these experiments.

5.2 Creation of the Urdu Semantic Tagset

A two step semi-automatic approach is used to create the Urdu semantic tagset
(see Appendix B). In the first step, each English semantic tag is looked up into two
bilingual dictionaries: (i) Urdu English dictionary! and (ii) online lughat?. If both
dictionaries return the same Urdu translation then that translation is selected. On
the other hand, if there is a conflict in the translation then the prototypical examples
as given in the USAS guidelines® is used to select the most suitable Urdu translation
for that particular English semantic tag i.e. which matches to the nearest prototypical
example meaning. Furthermore, if translations of the English prototypical examples
or English tags are not found in bilingual dictionaries then machine translation

services are used, Google* and Bing®. Finally, an automatically translated Urdu

thttp://www.urduenglishdictionary.org/ - Last visited: 24-February-2019
“http:/ /www.nlpd.gov.pk/lughat/index.php - Last visited: 11-February-2019
Shttp://ucrel.lancs.ac.uk/usas/usas_guide.pdf - Last visited: 11-February-2019
*https:/ /translate.google.com/ - Last visited: 24-February-2019
Shttp://www.bing.com/translator - Last visited: 25-February-2019


http://www.urduenglishdictionary.org/
http://www.nlpd.gov.pk/lughat/index.php
http://ucrel.lancs.ac.uk/usas/usas_guide.pdf
https://translate.google.com/
http://www.bing.com/translator
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semantic tagset is obtained. In the second step, one human expert® are provided
with the automatically translated Urdu semantic tagset. If both human experts are
agreed on a single translation then that one is selected. However, if both experts
are not agreed on a single translation then the translation of the linguistics expert
is preferred. This resulted in an Urdu semantic tagset (see Appendix B, the Urdu

semantic tagset is also be available through the Web”).

5.3 Creation of Urdu Semantic Lexicons

For the development of the US Tagger, Urdu semantic lexicons are needed. In this
research work, a range of automatic and semi-automatic approaches are used for the
creation of Urdu semantic lexicons including mapping, crowd-sourcing, machine
translation, GIZA++, word embedding and named entities. The following sections

discuss these approaches in detail.

5.3.1 Mapping Approach

A two step semi-automatic approach is used to create the Urdu Semantic Lexicons
(single and multi-word). For the mapping approach, existing single word and multi-
word English Semantic Lexicons (ESL) are used. The single word English semantic
lexicon contains 56,318 entries whereas, the multi-word English semantic lexicon
has 16,871 entries. The process of Urdu semantic lexicon creation is as follows.

In the first step, each word in the English semantic lexicon is looked up in a large
bi-lingual dictionary. The choice of using a appropriate bi-lingual dictionary is an

important factor for this mapping approach, as inappropriate dictionary may lead to

® An Urdu linguistic expert teacher in Air Base Inter College Mushaf Sargodha. She has a master
degree in Urdu linguistics and has been teaching since 1997. She has expertise in the USAS semantic
tagset.

’http://ucrel.lancs.ac.uk/usas/ - Last visited: 24-February-2019
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inaccurate translations, thus, it may introduce noise into the mapping process [165].
Therefore, a large En-Ur bi-lingual dictionary® is used, as this dictionary provides
high-quality manually edited word translations. Furthermore, it provides wider
lexical coverage for the Urdu language as it contains 160,897 entries. The mapping
approach mainly involves transferring semantic tags from an English lexeme to its
Urdu translation equivalent. For example, given a pair of word translations (one of
which is English), if the English headword is found in the ESL, its semantic field
tags are passed to its Urdu translation equivalents. It is worth mentioning here,
this way of mapping worked quite well in this experiment, because En-Ur bilingual
dictionary provides accurate translation and explicit POS tag information for most
of the entries. Using this automatic mapping process 37,549 and 6,572 entries of
single and multi-word ESLs respectively are translated into Urdu. Furthermore,
these translated Urdu words along with POS as well as semantic tags information
are stored. For those entries of ESL whose pair translation does not exist in En-Ur
dictionary, such entries are deleted, resulting in a loss of 8,890, and 5,859 entries of
single and multi-words of ESLs respectively.

The remaining 9,879 and 4,440 single and multi-word entries whose POS infor-
mation is not contained in the EN-Ur bilingual dictionary. To make sure that none
of the potential relevant semantic tags are lost, all possible POS tags of each En-
glish headword needs to be considered, and the same applies to their translation.
For instance, the English headword “advance” contains four possible entries in the
single-word ESL (Adjective: JJ, Singular-noun: NN1, base form of verb: VVO0, and
infinitive verb: VVI) with various semantic tags (N4: linear-order, A9: giving, M1:
moving, coming and going, A5.1: evaluation: good/bad, Q2.2: speech acts, A2.1:

affect, modify, change, S8: helping, Q2.1: speech act: communicative), although with

Shttp://www.nlpd.gov.pk/lughat/index.php - Last visited: 11-February-2019
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some overlap see Table 5.1, where, first columns contain word, second contains POS

tags’, and in third USAS semantic tag(s) (see Appendix A).

Table 5.1 Various entries for the word “advance” in the USAS English semantic
lexicon

Word POS tag Semantic tag(s)
Advance ]JJ N4

Advance NNI1 A9 M1 A5.1 A2.1
Advance VVO0 M1 A9 Q2.2 A5.1 A2.1
Advance VVI M1S8 A9 A5.1 A2.1 Q2.1

For those words whose POS information in unavailable, e.g. for word “advance”,
each of its possible translations equivalents for the four types of POS tags and their
corresponding semantic tag(s) need to be assigned to their corresponding Urdu
translation. This process of mapping would lead to passing wrong and redundant
semantic tags to their translation equivalents. However, such noise is bearable to
increase the chances of allocating the correct semantic tags. However, in the manual
annotation task (second step), it would be easier to add missing or remove redundant
or irrelevant semantic tags.

The lexical resources used two different POS tagsets. ESL employed the CLAWS
C7 POS tagset'? whereas, En-Ur bi-lingual dictionary used a simplified common
POS tagset!!. To bridge this gap, CLAWS C7 and En-Ur dictionary POS tags are
mapped into a common CLE Urdu POS tags [225] (consisting of 35 tags). The reason
for selecting the CLE Urdu POS tagset is that it is simple but based on the critical
analysis of several previous iterations of Urdu POS tagsets. Furthermore, it is written
in previous literature conducted by [165] that simplification of POS tagset does not

adversely affect semantic annotation accuracy. After the automatic mapping process,

YCLAWS C7 POS tags. http://ucrel.lancs.ac.uk/claws7tags.html - Last visited: 24-February-
2019
Ohttp://ucrel.lancs.ac.uk/claws/ - Last visited: 14-February-2019
11adjective, adverb, determiner, noun, proper noun, verb, pronoun, conjunction, interjection, prepo-
sition, particle, numeral, auxiliary, adposition
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54,875 entries with the following distribution are obtained: 45,021 entries are for
single-word and 9,854 for multi-word Urdu semantic lexicons.

In the second step, manual improvement of single and multi-word Urdu semantic
lexicons is performed. The 1,000 most frequent words of the Urdu Monolingual
Corpus'? [92] are identified and the semantic tags of these 1,000 frequent words
within the newly created Urdu semantic lexicons are manually corrected. Manual
improvements of Urdu semantic lexicons are as follows: (i) filtering entries that have
the wrong POS tag i.e. 274 entries are filtered-out after the POS filtering process, and
(ii) selecting correct semantic tags and adding missing ones, 726 entries are edited
either by adding correct or missing semantic tags. Finally, Urdu single (44,747) and

multi-words (9,854) are stored in a UTF-8 txt format with following name, Ur_Map.

5.3.2 Crowdsourcing Approach

In this approach, a four step semi automatic crowdsourcing technique is used to
test the wisdom of experts vs non-experts crowd for building single and multi-word
Urdu semantic lexicons. Non-expert crowds are those which are unfamiliar with
USAS semantic fields before the experiments took place. Expert crowds are already
familiar with the USAS semantic fields in advance of the experiments. The process
of Urdu semantic lexicon creation based on crowdsourcing approach is as follows.
In the first step, the 2,000 most frequent words of the British National Corpus
(BNC!3), are selected and automatically translated using Google’s translation ser-
vice4, these translations are verified by three different annotators!®. If two of the

annotators are agreed on a single translation then that translation is selected. How-

2https:/ /lindat.mff.cuni.cz/repository/xmlui/handle/11858/
00-097C-0000-0023-65A9-5 - Last visited: 16-February-2019

Ihttp:/ /ucrel.lancs.ac.uk/bncfreq/ - Last visited: 17-February-2019

Yhttps:/ /translate.google.com/ - Last visited: 17-February-2019

>Two of the annotators are under-graduate NLP students, whereas the third one is a NLP lecturer.
All three annotators are translation experts.


https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
http://ucrel.lancs.ac.uk/bncfreq/
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ever, if both disagree on one translation then a third annotator is asked to provide
the translation of the conflicting word. The decision of the third annotator is consid-
ered as final. This resulted in 1,724 and 276 benchmark translations of single and
multi-words.

In the next step, an annotation interface is designed. As mentioned in the literature
to obtain reliable results from the crowd is still a challenging task [101] that required
a careful pre-selection and experimental interface for crowdsourcers. Therefore, in
our research experiments, to minimize the manual effort required by participants. A
user-friendly Java-based graphical user Semantic Annotation Interface (henceforth
called SAI) is designed. Aside from typing the CLE Urdu POS tags [225], everything
else is performed using mouse clicks to store user annotation, therefore, requiring
less manual effort. More manual effort and poorly design interfaces may negatively
affect the quality of annotations [99, 100].

To test the interface’s ease of use, a small number of volunteer participants are
asked to work through a few example words and provide feedback by answering
these questions: (i) do you find the user interface easy to use (yes or no) and how
easy do you find the interface (very easy, easy, moderate, difficult, very difficult),
(ii) how long you took to read the instruction and complete the tasks? (in minutes,
see Figure 5.1, label 1), (iii) report any error which you may have faced during the
completion of the task. This information helped to improve the interface and provide
more information to make the tasks efficient.

In the third step i.e. the annotation process, experts and non-experts groups are
asked to label each word (in the 2,000 translated words of BNC list) presented to
them using SAI (see Figure 5.1) with a number of USAS semantic fields tags (see
Section 2.4.1.1). This figure shows the SAI for a sample word (“Talk”) (see Label

2) along with its assigned POS tag (see Label 3), and semantic tags (see Label 4).
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Annotators are asked to attach as many (up tonine), or few (at least one) USAS tag(s),
as they deem appropriate for all senses of a word and place them in descending
order of importance. To assign semantic field tag(s), the annotators need to click
on the (“add more tags”) buttons (see Figure 5.2). Furthermore, the references (of
dictionaries, and thesauri) are displayed alongside the main-SAI, to understand its
appropriate and common senses of a given word, however, participants are free to
use any other resources as they wish. To understand CLE Urdu POS tags a link is
also given, where the participant can understand POS tags and example annotated
words.

Fig. 5.1 Semantic interface used in this study for annotation purpose
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Fig. 5.2 Sub-SAI to add or remove sub-fields semantic tag(s).
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By clicking the “add more tags” button (see Figure 5.1), annotators are directed
to sub-SAI (see Figure 5.2) in order to attach sub-field semantic tag(s) (see Sec-
tion 5.1), where participants can select check-boxes. Furthermore, by clicking go back,
it redirects to main-SAI (see Figure 5.1), where an annotator may continue with the
remaining annotation process, however, by clicking the submit button it finalizes
the annotation process for a word and then stores the annotation information i.e,
word, POS tag, and semantic tags, in a persistent storage. The Next button will load
the succeeding word along with its complete information. When the annotation
is completed for 2,000 words, the participants are displayed with an end message,
where annotators may use the exit button to end the semantic annotation process.

For each word, a total of six participants are targeted, three for each expert and non-

expert participant group to allow measurement and comparison of the agreement
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within each group to investigate the variability of task results and participants, rather
than to take a simple weighted combination to produce an agreed list.

In the last step, Urdu semantic lexicons (created by each expert or non-expert
group of annotators using SAI) are evaluated using a gold-standard test lexicon.
It has been analysed and found that non-expert crowd results are comparable with
the expert crowd in terms of accuracy!”. However, it is found that non-experts
crowd chose the correct tags but in a different order than the expert’s ones. In
addition to this, the majority of the non-experts participants got the first-tag (see
Section 5.6.1) incorrect. This is as expected due to the fact that the Urdu language
is highly inflectional and derivational, which increases ambiguity in knowing the
exact sense of an out of context Urdu word as well as presenting a tough challenge
to the interpretation of the words for the non-experts group. It is also worth noting
that in nearly all of the semantic lexicons the expert crowds selected fewer erroneous
(irrelevant) tags than the non-experts ones. Overall, accuracies show that non-
expert crowd achieved comparable results to those of expert crowd when performing
semantic annotation task. Thus, Urdu semantic lexicons with the highest accuracy
are selected (total 4) for each expert (one single and one multi-word) and non-expert
crowd (2, each one for single and multi-word).

Using a crowdsourcing approach, Urdu single and multi-word semantic lexicons
are developed each of which have 1,724 and 276 entries, respectively. We named
them Ur_Crowd_Ex (expert single and multi-word lexicon) and Ur_Crowd_Non-Ex
(non-experts signal and multi-words) and the semantic lexicons are saved in a UTF-8

txt format.

16 A group of three native Urdu speakers and NLP expert are asked, to manually annotate Gold-
standard translations of the most frequent 2,000 words in the BNC with CLE Urdu POS and USAS
semantic tags (to semantically label each word with the most suitable senses).

17 Accuracy of the crowd selection of tags are measured by counting the matching tags between the
annotator’s selection and the gold standards.
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5.3.3 Machine Translation Approach

A two step semi-automatic approach is used whose objective is to create Urdu se-
mantic lexicons (single and multi-word) from the existing English semantic lexicons
by translating its headwords and synonyms using a machine translation system.
The single word and multi-word English semantic lexicons have 56,318 and 16,871
entries respectively. However, only half of the entries (randomly selected) of each
English semantic lexicon are used in this approach in order to minimise the manual
effort required in the second phase of lexicon editing process. The process of Urdu
semantic lexicon generation using this approach is given below.

In the first step, each head word of the English semantic lexicon is used to generate
a list of synonyms using WordNet!® [135]. These head words along with their
synonyms are used to generates translation candidates for Urdu using statistical
machine translation systems (Google!® and Bing?”). The purpose of selecting these
machine translation systems are, that they are previously used in several research
studies [98, 215], and support translation for English text into Urdu. If both generate
the same translation of the head word then that translation is selected. However, it has
been observed that these translation systems mostly generate different translations
for each of the English head word and its synonyms. Therefore, to select the correct
and accurate translation a filter is used. For filtering purposes, only those translations
are considered correct if their rank?! is greater than a threshold value i.e. 0.25, which
is identified through empirical analysis. Each word may have multiple candidates,
so in this case, a translation candidate with a higher rank is more likely to become a

correct translation in the Urdu language.

http://wordnetweb.princeton.edu/perl/webwn - Last visited: 18-February-2019

Yhttps://translate.google.com/ - Last visited: 18-February-2019

2https:/ /www.bing.com/translator - Last visited: 18-February-2019

2IThe rank of a candidate is computed by dividing its occurrence count by the total number of
translation candidates.


http://wordnetweb.princeton.edu/perl/webwn
https://translate.google.com/
https://www.bing.com/translator
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When machine translation systems does not generate any translation, then that
word and its synonyms are skipped. After the filtration, automatically translated
Urdu single and multi-words are either copied into a single or multi-words lexicon
respectively, along with English head word POS tag (same POS tag has been assigned
to its synonym translations) and semantic tag(s). Moreover, the English CLAWS C7
POS tags (used by the single word English semantic lexicon) are mapped into the
CLE Urdu POS tags in a mapping process.

In the second step, Urdu translations are manually verified by one computational
linguistics student to remove the incorrect translations, and this resulted in the
removal of 8,375 entries for the Urdu single word lexicon and 2,187 entries of the
Urdu multi-word semantic lexicon. However, POS and semantic tags have not been
rectified in this manual process. This resulted in 39,873 and 2,098 entries for the
single and multi-word semantic lexicon respectively. These lexicons are named as

Ur_MT and are stored in a UTF-8 txt format.

5.34 GIZA++ Approach

5.3.4.1 Parallel Corpus Creation Process

In the Urdu semantic lexicon creation process, a GIZA++ approach is used (see
Section 5.3.4.2) based on a sentence-aligned parallel corpus. Several parallel corpora
are available in the previous literature for the Urdu language. The Urdu-Nepali-
English Parallel Corpus?? is a sentence-aligned parallel corpus, this corpus contains
documents of the PENN Treebank corpus which is translated and sentence aligned for
the Urdu language. Another English-Urdu parallel corpus (UMC005: English-Urdu)

[93] contains English-Urdu sentence pairs of the Quran, Bible, translation of the

ZZhttp:/ /www.cle.org.pk/software/ling_resources/UrduNepaliEnglishParallelCorpus.
htm - Last visited: 18-February-2019


http://www.cle.org.pk/software/ling_resources/UrduNepaliEnglishParallelCorpus.htm
http://www.cle.org.pk/software/ling_resources/UrduNepaliEnglishParallelCorpus.htm
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PENN Treebank documents, and (manually aligned) Enabling Minority Language
Engineering (EMILLE) corpus [21]. The Indian-parallel-corpora [170] have English-
Urdu parallel sentence pairs, which have been developed from Wikipedia articles
using crowdsourcing.

However, all the above mentioned English-Urdu sentence-aligned parallel corpora
either have licensing issues, thus, they are not always publicly available or either
domain specific, which may affect the lexical coverage of Urdu semantic lexicon or
of poor quality. Therefore, in this thesis, an English-Urdu Sentence Aligned Parallel
Corpus (hereafter called EUSAP-19 Corpus) is developed as a supporting resource
for the Urdu semantic lexicon approach. The corpus is generated using following
steps: (i) raw data collection, (ii) pre-processing, (iii) annotation process, (iv),
corpus statistics, and (v) corpus standardization.

In the first step, to develop a corpus with a realistic examples various Newspaper

sources including The News?3, Pakistan Today24, The Nation?, and Tribune?®

are
used to collect data with a Web crawler?”. The newspaper text is useful as it is written
in continuous prose and purports to be a mainly factual report of events which have
taken place. Collected Newspaper articles are from different genres such as World,
Sports, Politics, Showbiz, Technology, Business, Health, and Religion. A total of 7,875
English sentences are collected.

In the second step of the corpus creation process, the 7,875 Newspaper sentences
are pre-processed as follows. The text of 7,875 sentences are cleaned by removing

multiple spaces, duplicated text, HTML tags, and emoticons. Furthermore, sentences

with five or more words are kept, which resulted in the removal of 657 sentences.

Zhttps:/ /www.thenews.com.pk/ - Last visited: 18-February-2019
Zhttps:/ /www.pakistantoday.com.pk/ - Last visited: 18-February-2019
Zhttps:/ /nation.com.pk/ - Last visited: 18-February-2019
2https://tribune.com.pk/ - Last visited: 18-February-2019
Zhttps://lindat.mff.cuni.cz/repository /xmlui/handle/11858/
00-097C-0000-0023-65A9-5 - Last visited: 18-February-2019


https://www.thenews.com.pk/
https://www.pakistantoday.com.pk/
https://nation.com.pk/
https://tribune.com.pk/
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
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After the pre-processing, the cleaned raw text (7,218 sentences) are stored in a txt
file.

In the third step, the re-processed 7,218 sentences are semi-automatically anno-
tated by three different annotators (A, B, and C). All three annotators are Urdu native
speakers but non-native English speakers and have good translation expertise. The
corpus has been annotated at a sentence level. The annotators are asked to translate
English sentences into Urdu using a machine translation system and then manually
correct them for each English-Urdu sentence pair. The annotation is carried-out in
three phases, (i) training phase, (ii) annotation, and (iii) conflict resolution.

In the training phase, two annotators (A and B) annotated a subset of 218 sen-
tences from the 7,218 pre-processed sentences using Google and Bing (see Sec-
tion 5.3.3) online machine translation tools. Annotators are asked to edit sentence
translations, if the generated one is incorrect, inappropriate, or incomplete. After an-
notating an initial subset of 218 sentences, both annotators discussed the annotations
(both agreed and conflicting pairs) to further improve the quality of annotations.
In the annotation process, the remaining corpus comprising of 7K sentences are
semi-automatically annotated by annotators A and B. After the annotation process,
the inter-annotator agreement is computed for entire corpus is, 76.46% as annotators
have agreement on 5,230 of 7,218 pairs. This score is considered good, considering the
difficulty of the translating English sentences into Urdu. In the third and last phase,
the conflicting sentences are annotated by a third annotator (C), which resulted in a
gold-standard sentence-aligned parallel corpus for the Urdu language.

The Gold-standard EUSAP-19 Corpus is composed of 7,218 English-Urdu sen-
tences pair. In the EUSAP-19 Corpus there are 167,573 tokens for the English language

whereas, Urdu texts have 191,688 tokens. The average sentence word length for En-
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glish and Urdu sentences are 23.21, and 26.56 respectively. For standardization

purposes, the corpus is saved as a txt document.

5.3.4.2 Process of Creating Urdu Semantic Lexicon Using GIZA ++ Tool

Several methods and tools have been proposed to align parallel texts and extract
lexical correspondence from them in computational linguistics. One of these tools
named GIZA++ [155, 154] is used to construct a single word Urdu semantic lexicon
in this research from the parallel corpus. This tool is a freely available implementation
of the IBM models for extracting word alignments. The process of creating the single
word Urdu semantic lexicon is composed of two steps as follows.

In the first step, the EUSAP-19 Corpus (see Section 5.3.4.1) along with the Quran
and Bible English-Urdu sentences?® (34,403 pairs) are used. For preprocessing of the
English sentences, the Natural Language ToolKit (NLTK??) has been used whereas,
for Urdu text our Urdu natural language tools (see Chapter 3) are used, these toolkits
or tools returned English and Urdu tokens (saved in separate two files) respectively.
These tokenized files are given as an input to the GIZA++ tool. This tool is used with
a default IBM model 4 [39] for training purpose of English-Urdu words alignment
on parallel corpora. In training process of word alignment, GIZA++ tool treats
every word in the English language as a possible translation for every word in
the Urdu language and assigns the pairs probabilities indicating the likelihood of
the translations. A word pair with higher probability can be regarded as a correct
translation and a word pair with lower probability as an incorrect translation.

After the training process, GIZA ++ return alexicon (GIZA-En-Ur-Lex) of English-
Urdu word alignments including a probability for each word alignment. In the GIZA-

En-Ur-Lex, each English word has an average of 9 possible Urdu translations. It is

Zhttp:/ /ufal. ms.mff.cuni.cz/umc/005-en-ur/ - Last visited: 18-February-2019
https:/ /www.nltk.org/ - Last visited: 18-February-2019


http://ufal.ms.mff.cuni.cz/umc/005-en-ur/
https://www.nltk.org/
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cited in literature that most of these translations (with high-probability) are of good
quality [144]. However, it has been observed (empirically) that there are several
English-Urdu translation pairs with high-probability but with incorrect translations
and vice versa for low-probability but correct translations pairs. There are several
state-of-the-art methods for cleaning these statistical lexicons such as those men-
tioned in [10, 160]. However, due to the language constraints and poor-resourced
nature of Urdu, this thesis adopted the approach cited in [114, 9] based on a filtering
approach where all dictionary entries below a certain level of probability threshold
value have been deleted. The threshold value for Urdu semantic lexicon filtering
process is set empirically at 0.30.

The filtering process may remove several correct translation equivalents with
low-probability. But such loss is bearable to decrease the manual effort required
for cleaning the GIZA-En-Ur-Lex bi-lingual lexicon. Furthermore, all entries that
contain invalid characters on both languages (En-Ur) are also removed. Those words
with digits, symbols, punctuation markers and white-space are also deleted. After
applying the filtering process, now each word has 4 possible En-Ur translation pairs.

In the next step to convert the Giza-En-Ur-Lex lexicon into an Urdu semantic
lexicon. The 2K most frequent words of the BNC list are used to extract all such
entries of the Giza-En-Ur-Lex lexicon which match with these words. Furthermore,
these extracted translation pairs are matched with the gold-standard translations (see
Section 5.3.2). This resulted in 1,285 correct translation pairs. These English words
along with POS tags (manually assigned CLAWS C7 POS tags to English words) are
then matched with the words and POS tags of single word English semantic lexicon.
If they are identical then semantic tag(s) of the matched word is transferred into the
Urdu semantic lexicon. Finally, CLAWS C7 POS tags are mapped into the CLE Urdu

POS tags (see Section 5.3.1). This resulted in another single word Urdu semantic
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lexicon, containing 1,285 entries (Urdu word, POS tag, and semantic tag(s)), and

saved in a txt file named, Ur_Giza.

5.3.5 Word Embedding Approach

Unsupervised distributed representations of words can capture important semantic
and syntactic information about natural language text [79]. Traditionally, these
representations can be learned by training a neural network language model [30].
Recently, a language model based on a neural network architecture has been intro-
duced, word embeddings — dense real-valued feature vectors. These models have the
property that similar multilingual embedding vectors are learned for similar words
from a large amount of raw text during training time [133]. Word embeddings can
also be induced for different languages pairs i.e. words with similar distributional
semantic and syntactic properties in both languages are represented using similar
vector representations. These have been demonstrated to be effective for a number
of NLP tasks, for instance, document classification, bi-lingual lexicon induction, and
machine-translation [239, 80, 132]. There are several off-the-shelf cross-lingual word
embeddings models but for this study, the adopted model is the one cited in [80],
Bilingual Bag-of-Words without Word Alignments (BilBOWA).

BilBOWA learned bilingual (English-Urdu in this case) word embeddings with a
trivial extension to multilingual embeddings. Furthermore, it does not require any
word or document-level alignment training data (which is not available for poor
resource languages). Rather, it trained and learned directly on monolingual data
(mostly available for under-resourced languages) and extracts the bilingual signal
from a limited amount of sentence-aligned parallel data. Due to its simplicity and
computationally-efficient characteristics, this word embedding model has been used

in this research to create single word Urdu semantic lexicon.
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5.3.5.1 Monolingual Corpus

BilBOWA is a data-driven model, therefore the quality of the learned word repre-
sentation improved as the size of the monolingual training data improves [80]. This
model learns useful features about words from raw text to predict words from the
context in which they appear. Therefore, this required a large monolingual corpus.
To the best of our knowledge, there exists only one large monolingual raw-text corpus
for the Urdu language in the previous literature [92]. This corpus has 5.4 million
sentences (95.4 million tokens). However, to produce better results, another large
monolingual Urdu corpus is developed in this thesis using the following steps.

In the first phase to create another large monolingual Urdu corpus, raw text is
collected from various sources (JANG?®?, BBC Urdu®!, Urdu Web%?, Express news>?,
Dunya®*, Daily Din®, Urdu Library>®, Urdu Point®”, Awaz-e-Dost® and Wikipedia®®,
Irfan-Ul-Quran’, and King James Bible*!) by using a Web crawler (see Section 5.3.4.1).
The genres of the collected text are Commerce, Entertainment, Showbiz, Health,
Weather, Science and Technology, Sports, World, Comedy, Life and Style, Politics,
Blogs, Opinion, Events, Food, and Religion. The collected text consists of 4.9 million
sentences (89.63 million tokens*?).

In the next phase of the monolingual corpus creation process, the collected raw

text is preprocessed. In the preprocessing step, the text is cleaned by removing

%https://jang.com.pk/ - Last visited: 19-February-2019
Sthttp://www.bbc.com/urdu - Last visited: 19-February-2019
3https:/ /www.urduweb.org/planet/ - Last visited: 19-February-2019
3http://www.express.pk/ - Last visited: 19-February-2019
¥https://dunya.com.pk/ - Last visited: 19-February-2019

Shttp:/ /www.dailydinnews.com/home - Last visited: 19-February-2019
$http://www.urdulibrary.org/ - Last visited: 19-February-2019
http:/ /www.urduweb.org/planet/ - Last visited: 19-February-2019
3http://awaz-e-dost.blogspot.co.uk/ - Last visited: 19-February-2019
https:/ /ur.wikipedia.org/wiki/ - Last visited: 19-February-2019
Whttps:/ /www.irfan-ul-quran.com - Last visited: 19-February-2019
“http://www.terakalam.com/ - Last visited: 19-February-2019
#2Tokenized using UNLTool-WT approach, see Chapter 3.


https://jang.com.pk/
http://www.bbc.com/urdu
https://www.urduweb.org/planet/
http://www.express.pk/
https://dunya.com.pk/
http://www.dailydinnews.com/home
http://www.urdulibrary.org/
http://www.urduweb.org/planet/
http://awaz-e-dost.blogspot.co.uk/
https://ur.wikipedia.org/wiki/
https://www.irfan-ul-quran.com
http://www.terakalam.com/
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multiple spaces, duplicated text, and HTML tags. Moreover, noise from the data is
removed by discarding ASCII and invalid UTF-8 characters, emoticons, white stars,

bullets, right and left arrows. A language detection tool*?

is used to discard foreign
words. This resulted in the removal of 1.3 million tokens. The remaining cleaned
data is composed of 4.7 million sentences (88.33 million tokens using the Urdu word

tokenizer, see Section 3.2). For standardisation, cleaned text is saved in a txt format

as the Urdu Mono-Lingual Corpus (UMLI-19 Corpus).

5.3.5.2 Process of Creating Urdu Semantic Lexicon Using BilBOWA

A two step semi-automatic word embedding approach is used to create single word
Urdu semantic lexicon as follows. In the first step, a bilingual word embedding
model has been induced on the word translation task as used by Gouws et al. (see
Section 5.3.5) using the parallel corpus EUSAP-19 (see Section5.3.4.1) as well as
Urdu (both corpora are mentioned in Section 5.3.5.1), and English monolingual
(contains 6.8 million sentences*) corpora. The BiIBOWA used word2vec model
[133] to capture the monolingual embedding with the following parameters setting,
stochastic gradient descent with a default learning rate of 0.025 with linear decay,
negative sampling with 5 samples, and a subsampling rate of value 1e — 5. Moreover,
it is trained for 10 epochs with 200 embedding dimensions and size of the context
window is set to 5. To capture bilingual embedding, the BIBOWA minimizes the
sampled L,-loss between the bag-of-word vectors of English-Urdu parallel corpus.
After the training process, each source word (English) embedding is aligned
with multiple target (Urdu) induced representations. However, to create the Urdu

semantic lexicon, the 2K most frequent words of the BNC list have been used (see

Bhttps://lindat.mff.cuni.cz/repository/xmlui/handle/11858/
00-097C-0000-0023-65A9-5 - Last visited: 19-February-2019

#https:/ /sites.google.com/site/rmyeid /projects/polyglot#
TOC-Download-Wikipedia-Text-Dumps - Last Visited: 19-February-2019


https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0023-65A9-5
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Section 5.3.2). For these words, the top 10 nearest neighbour bilingual embeddings
are induced and distance in the embedded space is used to select word translation
pairs. Only those bilingual embedding translation pairs (each source English word
has 10 translations) are considered correct which are matched with gold-stranded
translations (see Section 5.3.4.2). This process resulted in 760 correct translation
pairs.

In the last phase of the single word Urdu semantic lexicon creation process, 760
English words are assigned CLAWS C7 POS tags by one human annotator (NLP
expert). These English words along with POS tags are looked-up in the single word
English semantic lexicon to assign semantic tags to each Urdu translation pair. These
translated Urdu words, POS and semantic tag(s) are stored in separate txt file and
given a named Ur_Bilbowa. The CLAWS C7 POS in Ur_Bilbowa semantic lexicon
are mapped with CLE Urdu POS tags (see Section 5.3.1). The Ur_Bilbowa contain
760 entries (Urdu words, CLE Urdu POS and semantic tags).

5.3.6 Named Entities Approach

A three step automatic approach is used to create the Urdu Semantic Lexicons (single
and multi-word). For the named entities approach, three existing different named
entities lexicons (developed in another research project [122]) are used. The person
named entity lexicon has 18,150 entries of single and multi-word person names. The
location named entity lexicon has 18,728 location named entities of single and multi-
words. The last organization named entity lexicon has 7,602 mulit-word entities of
different organization names. The process of Urdu semantic lexicon creation is as
follows.

In the first step, each word from the person name lexicon is automatically an-

notated with proper noun POS tag (NNP) and Z1 (personal names) semantic tag,
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which resulted in 18,150 annotated pairs. In the second step, the location name entity
lexicon is used and automatically annotated with NNP POS and Z2 (geographical
names) semantic tag, resulting in 18,728 multi-words. In the last step, the organiza-
tion names of third lexicon are annotated with NNP POS and with semantic tag, Z3
(other proper names), resulting in 7,602 entries. All these annotated words (44,480)
along with POS and semantic tags are stored in a txt file, and this named entity Urdu

semantic lexicon is given a name Ur_NE.

5.4 Proposed Architecture of the Urdu Semantic Tagger

Building on the semantic lexicons (see Section 5.3), the semantic tagger for the Urdu
language (Java based tool) is created, by deploying the lexicons into the software
architecture (see Figure 5.3), which used a set of existing NLP tools developed at
COMSATS and Lancaster Universities. These are the Urdu natural language tools
(see Chapter 3) and Urdu lemmatizer®®, which respectively provide functionalities
of tokenization as well as POS probabilistic annotation and lemmatization of Urdu
text. These annotations are required for preprocessing the input text before the
knowledge-based Urdu semantic annotation can be applied (see Section 2.4.1.4).
These tools may introduce some errors in the pre-processing step, which is inevitable
for automatic NLP tools.

The focus of this chapter is on the performance of the US Tagger, and not to inves-
tigate the performance of the individual NLP tools, as they are reported elsewhere in
the relevant paper*® or in Chapter 3. Currently, the US Tagger produces four layers
of annotations, as shown in Figure 5.3. For example, the word _$ls5 (QAFI, ‘federal’)
of sentence §8” & yl & (v § Olall L £ glsy § Ko PP

©http://lemmatization.herokuapp.com/ - Last visited: 18-February-2019

#6Sharjeel, M. et al. "Developing a Lemmatizer for the Urdu Language" Digital Scholarship in the
Humanities, Submitted.
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= Ls 5 anw d( &fJ"‘ Slas 3y delas § df/ SV VR FE™ skt (KOMY ASM-
BLY KE SPYKR NE PAKSTAN THRYK ANSAF KE CHYYRMAN AMRAN KHAN

KO BTOR HNDO DYOTA PYSH KRNE KA MAAMLH OFAKY THKYKATY ADARE
KE SPRD KR DYA HE. ‘The speaker of national assembly has handover the case of
Pakistan Tehreqge Insaf chairman Imran Khan to be as a Hindu Goddess to Federal
Investigation Agency (FIA).), the US Tagger produces, Lemma i.e. 3y (OFAK,
‘federation’), CLE Urdu POS tag (see Section 3.4.2 of Chapter 3) "J]" (adjective),
multi-word expression (are showed with [MW-, which is not applicable for this

case), and semantic tag (see Appendix A) (S5: Groups and affiliation).

Fig. 5.3 US Tagger graphical user interface

] Semantic Analysis System for Urdu (SASU)/Urdu semantic tagger - u] X
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Figure 5.4 illustrates the pipeline architecture of the US Tagger. The previously
mentioned NLP tools and Urdu semantic lexicons form a pipeline, that are used to
annotate Urdu words in the running text. The knowledge sources of the US Tagger
consist of single and multi-word semantic lexicons (of different sizes) as described

in Section 5.3.
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Fig. 5.4 Architecture of an Urdu semantic annotation tool
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5.5 Semantic Field Disambiguation Methods

The US Tagger employs a combination of two methods to contextually disambiguate

which of the potential semantic tags is correct. A primary method is the grammatical

category of a word, therefore the Urdu text is pre-processed with the Urdu POS tagger

(see Section 3.4). For instance, the word “spring” can be partially disambiguated

if it is known that either it is a verb or a noun, to differentiate semantic meanings

(movement/action, (verb sense)), (metal/coil, season/water-source (common noun

sense) ), or (season (temporal noun sense)). By choosing the noun tags, the POS

tagger can filter out the verb sense (movement/action). Hence the US Tagger task is

simplified to choosing between the noun sense (metal/coil or season).
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The other disambiguation method which has been employed is general likelihood
ranking, derived from frequency information, past tagging experience, and intuition.
In this research, a POS tagged Urdu corpus of 100K words (see Section 2.3.8) has
been used to find the most frequent sense of words*. For instance, ‘spring’ referring

to season is generally more frequent than ‘spring” meaning metal/coil.

5.6 Experimental Set-up

This part describes an evaluation of the Urdu semantic lexicons and the US Tagger,
including test data preparation and evaluation criteria, statistical results of the US
Tagger performance and the impact of the disambiguation methods as currently

implemented (see Section 5.5).

5.6.1 Evaluation Measures

To evaluate results of the US Tagger, two main evaluation measures are used, Lexical
Coverage and Annotation Precision (see Section 2.5.1). The Lexical Coverage is a
useful metric for the evaluation of Urdu semantic lexicons (see Section 5.3), since it
indicates the completeness in terms of vocabulary of the semantic annotation tools.

The US Tagger annotates a word with multiple candidate semantic tags. Therefore,
in addition to Lexical Coverage evaluation measure, this thesis has used two Precision
metrics to indicate quality of tagged words. These are, first-correct Precision— checks
whether the first semantic tag selected by the US Tagger matches with the first tag
in the benchmark test corpus, and partially-correct Precision shows whether other
tags selected by the US Tagger are contained within the tags of the benchmark test

corpus in any order (i.e. shows correct or closely related word senses). In addition

#One undergraduate NLP student has manually verified different senses.
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to this, standard deviation which is a common dispersion metric has also been used

(see Section 2.5).

5.6.2 Test Data

For Lexical Coverage evaluation, as the test data, this thesis has used UMC monolin-
gual corpus [91]. The choice is based upon several important requirements, it is a
large and freely available benchmark corpus, which provides very recent language
data thus, reflects features from the domain of News, Religion, Blogs, Literature,
Science, Education and numerous others. The corpus is pre-processed and free from
noise, which negatively affects the lexical coverage. Subsections of about 500K Urdu
words (randomly selected from different domains) are also extracted from UMC
monolingual corpus and given a name of UMC-500K test corpus. From these 500K
Urdu words, the 1,000 and 2,000 most frequent words are also extracted and given a
name: UMC-1K and UMC-2K test corpus respectively.

For more detailed analysis (first-correct Precision and Error rate) of the US
Tagger, USA-19 Corpus (see Chapter 4) is used. Currently, this is the only large and
available test corpus for the Urdu language which is semi-automatically annotated
with USAS semantic tags/fields (see Appendix A). In it each word has a POS tag,
thus appears with multiple possible semantic tags*® to show multiple memberships
of categories for fine-grained analysis. The USA-19 Corpus has text from Newspaper,
Social Media, Wikipedia, and Historic domains, contains 8K annotated words/tokens.
For the partially-correct Precision metric, the raw text of the USA-19 Corpus (see

Section 4.2.2) is annotated and is manually checked.

48For instance, a word “officer” can be tagged with G3/57.1/S2, since its can be considered to belong
to the semantic category “Warfare, defence and the army; Weapons” (G3), as well as to the category
“Power, organizing” (57.1), and to the category “People” (52).
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5.6.3 Evaluation Methodology

The problem of Urdu semantic tagging is treated as a supervised task. Therefore,
in the experiments performed, the Urdu semantic lexicons (see Section 5.3) have
been used which act as a knowledge base from which to select or derive potential
word level sense annotations. Urdu semantic lexicons created either automatically or
semi-automatically (see Section 5.3) have different statistics. Urdu semantic lexicons
which are created through mapping process Ur_Map have 44,747 (single-word) and
9,854 (multi-words) entries. The expert crowdsourcing lexicons (Ur_Crowd_Ex)
have 1,724 and 276 entries, and the same number of entries exists for the non-expert
crowd lexicon (Ur_Crowd_NonEx). The machine translation Urdu semantic lexicon
(Ur_MT) have 39,873 and 2,098 single and multi-word entries, respectively. The
Ur_Giza lexicon has 1,285 single word entries. The word embedding single word
Urdu semantic lexicon (Ur_Bilbowa) has 760 entries. The named entities Urdu
semantic lexicon (Ur_NE) has 44,480 entries.

To evaluate the newly developed Urdu semantic lexicons, a software tool is built
i.e. the US Tagger (see Section 5.4). The US Tagger used the Urdu semantic lexicons
(each experiment used different Urdu semantic lexicons however, Ur_NE is used
with each Urdu semantic lexicon), a set of existing NLP tools (see Chapter 3), and
semantic field disambiguation algorithms (Section 5.5) to annotate Urdu text at word
level. Lexical Coverage on UMC-500K, UMC-1K, and UMC-2K test corpora (see
Section 5.6.2) is calculated using the US Tagger. For more detail analysis of the US
Tagger, the USA-19 Corpus (see Chapter 4) is used to evaluate lexical coverage and
first-correct Precision evaluation measures (see Section 5.6.1). For partially-correct
Precision (see Section 5.6.1), annotated text (see Section 5.6.2) of the US Tagger is
manually verified by one human expert. Different types of error analysis related

to semantic field disambiguation methods are also performed on the test USA-19
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Corpus. It is important to note that punctuation marks are excluded in system

evaluation process.

5.7 Results and Analysis

Table 5.2 presents the evaluation results of the US Tagger on the UMC-500K, UMC-1K,
UMC-2K, and USA-19 corpora for the semantic tagging task, which employs base-
line POS and general-likelihood disambiguation methods. Ur_Map, Ur_Cro_Exp,
Ur_Cro_Non-Exp, Ur_MT, Ur_Giza, and Ur_Bil means that results are obtained us-
ing Urdu semantic lexicons which are developed using, mapping, crowdsourcing,
machine translation, GIZA++, and word embedding approaches (see Section 5.3),
respectively. TC means test corpus on which the US Tagger is evaluated. LC (Lexical
Coverage) is the estimated percentage of the words in the test texts that can be tagged
with the US Tagger and calculates the percentage of the words that are assigned to the
meaningful semantic tags. FC (First Correct) means an evaluation of the newly build
US Tagger using Precision evaluation measure to check the tagging cases where the
first candidate tag is correct. PC (Partially Correct) means the evaluation (Precision)
of the US Tagger in order to check the cases where the other semantic tags in the list
are correct or closely related to the true word senses. The term ErrPOS in the table
refers to the errors which are generated by the POS disambiguation process. Term
ErrGL means the error which is produced by general-likelihood disambiguation
method. The best results obtained overall are presented in bold. Whereas, the second
highest results are presented in italic.

The results from Table 5.2 are as expected, overall, the best results for the US
Tagger has been achieved using mapping approach based semantic lexicon (LC =
88.59 (UMC-500K), 99.63 (UMC-1K), 96.71 (UMC-2K), 89.63 (USA-19 Corpus), FC=
79.47, PC = 26.96). It demonstrates that the US Tagger obtained encouraging Lexical
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Table 5.2 Evaluation results on different test corpora assessed using the US Tagger

Lexicon TC LC FC PC ErrPOS ErrGL

Ur_Map UMC-500K 88.59 - - - -
UMC-1K  99.63 - - - -
UMC-2K  96.71 - - - -
USA-19 89.63 79.47 26.96 13.56 38.94
Ur_Cro_Exp UMC-500K 21.17 - - - -
UMC-1IK  81.63 - - - -
UMC-2K 7387 - -
USA-19 41.35 71.13 2047 8.42 30.96
Ur_Cro_Non-Exp UMC-500K 18.62 - - - -
UMC-1K  79.65 - - - -
UMC-2K 6725 - - - -
USA-19 34.57 69.87 19.26 15.63 39.94
Ur_MT UMC-500K 8341 - - - -
UMC-1K  96.39 - - - -
UMC-2K 9147 - - - -
USA-19 81.94 76.69 1526 14.98 41.96
Ur_Giza UMC-500K 21.86 - - - -
UMC-1K  68.64 - - - -
UMC-2K  59.13 - - - -
USA-19 46.36 69.13 14.07 10.78 34.09
Ur_Bil UMC-500K 14.53 - - - -
UMC-1IK 4144 - - - -
UMC-2K  27.08 - - - -
USA-19 21.13 63.74 11.53 10.98 32.38

TC: Test Corpus, LC: Lexical Coverage, FC: First Correct, PC: Partially
Correct

Coverage and Precision for Urdu text when tested with the Ur_Map semantic lexicon.
It also shows that the US Tagger has stable Lexical Coverage on different types of text.
Furthermore, Lexical Coverage on UMC-1K and UMC-2K is also encouraging, that
can help us to identify the practical usefulness of the US Tagger for general language
analysis. However, after applying various semantic field disambiguation methods,
overall best results are achieved for Ur_Cro_Exp semantic lexicon i.e. ErrPOS= 8.42

and ErrGL= 30.96. Such type of error analysis helps to identify error occurrences as
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well as used to improve the accuracy of the tool. For all other Urdu semantic lexicons,

the same pattern of differences in the result has been observed (see Figure 5.5).
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Fig. 5.5 Lexical coverage of Urdu semantic lexicons on several test corpora

The performance of the US Tagger using word embedding based semantic lexicon
(Ur_Bil) (LC = 14.53 (UMC-500K), 41.44 (UMC-1K), 27.08 (UMC-2K), 21.13 (USA-
19 Corpus), FC = 63.74, PC = 11.53, ErrPOS = 10.98, ErrGL = 12.38), shows the lowest
results. The main reason of such low lexical coverage is the size of Urdu semantic
lexicon used in the experiment (760 entries) as the cross-lingual word embedding
technique generates accuracy of 55% [80]. However, it is worth mentioning here that
with such small semantic lexicon the results are still comparable.

Integration of crowd sourced Urdu semantic lexicons into the US Tagger produced
reasonable results. Where the annotation tool using Ur_Cro_Exp generates the
following results: LC = 21.17 (UMC-500K), 81.63 (UMC-1K), 73.87 (UMC-2K),
41.35 (USA-19 Corpus), FC = 71.13, PC = 20.47, ErrPOS = 8.42, ErrGL = 10.96.
Ur_Cro_Non_Exp generates an almost similar pattern of results (LC = 18.62 (UMC-
500K), 79.65 (UMC-1K), 67.25 (UMC-2K), 34.57 (USA-19 Corpus), FC = 69.87, PC =
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19.26, ErrPOS = 15.63, ErrGL = 19.94). This demonstrates that the untrained crowd
can produce results that are comparable to those of expert annotators.

The results using the Ur_MT semantic lexicon, achieve Lexical Coverage on UMC-
500, 1K, and 2K of 83,41, 96.39, and 91.47, respectively. Lexical Coverage on USA-19
Corpus is 81.94. The Precision using two different metrics FC and PC is 76.69 and
15.26, respectively (see Figure 5.6). The ErrPOS and ErrGL produce an error of 10.78

and 14.09, respectively on the USA-19 test corpus.

100
ad A
80
70
a0
50
40 A
B USA-19 Corpus
30 A
20
10 A
U T T T T T
A, S
.gr"’q G o = @“9? &
o @ & 3 ¢ &
3 o o 3
3¢ O
&
N

Fig. 5.6 Precision of the US Tagger using several Urdu semantic lexicons on the
USA-19 test corpus

The performance of the US Tagger using Ur_Giza is as follows: Lexical Coverage
on UMC-500, UMC-1K, UMC-2K, and USA-19 Corpora are 21.86, 68.64, 59.13, 46.36
respectively. FC gives a score of 63.74, whereas, PC scores 11.53. The error rate is
10.98 and 12.38 for POS and general likelihood disambiguation methods respectively.
Table 5.3 provides the final comprehensive results of the US Tagger when all previ-
ously mentioned Urdu semantic lexicons (Ur_Map, Ur_Cro_Exp, Ur_Cro_Non-Exp,

Ur_MT, Ur_Giza, and Ur_Bil) have been merged into a single lexicon i.e. Ur_Merged
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(all other terms of this table are same as mentioned previously). It can be seen that
Lexical Coverage on UMC-500K, UMC-1K, UMC-2K (most frequent words*’) and
USA-19 Corpora are 91.37%, 99.89%, 98.01%, 90.37%, respectively. The Precision
obtained on the USA-19 Corpus based on FC and PC factors are 80.97% and 27.37%
respectively. ErrPOS and ErrGL on an annotated test text are 18.91% and 42.06%

respectively.

Table 5.3 Evaluation results on various test corpora assessed using the US Tagger
when all Urdu semantic lexicons are merged

Lexicon TC LC FC PC ErrPOS ErrGL

Ur_Merged UMC-500K 91.37 - - - -
UMC-1IK  99.89 - - - -
UMC-2K  98.01 - - - -
USA-19 90.37 8097 27.37 1891 42.06

TC: Test Corpus, LC: Lexical Coverage, FC: First Correct, PC: Partially
Correct

Given that the US Tagger and lexicons are built over a short period of time,
such Lexical Coverage and Precision is highly encouraging. However, the lower
Precision of partially correct tags scores is expected due to the fact that Urdu is highly
inflectional and derivational, which increases ambiguity and presents challenges to
the interpretations of the words. It is also important to note that the general-likelihood
disambiguation methods are not appropriate for the Urdu semantic disambiguation
task. It can be stated that the proposed approach to developing a prototype semantic
annotation tool using rapidly generated semantic lexicons can be expected to achieve
stable results, and thus, need significant expansion. It is worth mentioning here,
although the Precision is still low and errors are high, however, the US Tagger is
starting to approach the precision of USAS English semantic system at 91% and error

rate at 8.95% [180].

#The lexical coverage of the frequent words can help to assess the practical usefulness of the Urdu
semantic lexicons for general language analysis.
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Finally, to estimate the reliability of evaluation results, the test data of USA-19
Corpus has been further divided into four sub-divisions, USA-19-News, USA-19-
SMedia, USA-19-Wiki, and USA-19-Historic (see Section 4.3.3). For each of the sub-
divisions, lexical coverage and the standard deviation score have been calculated, so
that if the LC (Lexical Coverage) of the individual sub-divisions close to each other,
or have a small statistical variation score, then it would indicate that the US Tagger
and Urdu semantic lexicons have stable LC on different types of text and vice versa.
Table 5.4 shows the lexical coverage (LC) of the each sub-division and the Standard
Deviation (o) scores. It can be observed from the table, the lexical coverage achieved
small variation scores (0.06), which indicates that our Urdu semantic lexicons have
rather stable LC across different sub-divisions of the USA-19 Corpus.

Table 5.4 Lexical coverage standard deviation across four sub-divisions of USA-19
Corpus

Test Corpus LC

USA-19-News 94.83
USA-19-SMedia 92.17
USA-19-Wiki 87.04
USA-19-Historic  79.97

c 0.06

LC: Lexical Coverage
o: Standard Deviation

5.8 Chapter Summary

This chapter investigated the feasibility of rapidly bootstrapping a semantic tagging
tool by automatically generating semantic lexicons and creating a software architec-
ture for the Urdu language. Six different automatic or semi-automatic approaches
are used to construct Urdu semantic lexicons, these are mapping, crowdsourcing,

machine translation, GIZA++, word embedding, and named entity approaches. The
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semantic lexicons which have been developed in this thesis provide the knowledge
base for the US Tagger. Furthermore, a software framework for the Urdu semantic
tagging task (US Tagger) has also been developed. The US Tagger annotates text
at word level with the following information: POS tag, Lemma, multi-words and
semantic tag(s). This chapter concluded by presenting evaluation results, it shows
that it is feasible to rapidly generate a prototype tool and semantic lexicons using
automatic and semi-automatic approaches.

The results demonstrate that the best results for the US Tagger are achieved using
a mapping approach based semantic lexicon (Lexical Coverage = 88.59 (UMC-500K),
99.63 (UMC-1K), 96.71 (UMC-2K), 89.63 (USA-19 Corpus), First Correct = 79.47,
Partially Correct = 26.96). However, for better precision, a certain amount of manual
improvement and cleaning of Urdu semantic lexicons is indispensable.

The performance of the Urdu semantic tagger mainly depends on the richness of
the developed knowledge bases i.e. the Urdu semantic lexicon. Without such types of
comprehensive resources that encodes human knowledge, in fact, it is really difficult
for semantic tagging tools to effectively understand the meaning associated with
natural language text. However, to create such resources manually is an expensive,
laborious and time consuming task. Therefore, several ways to automatically-build
such knowledge bases have been presented to speed up the creation of taggers
particularly for resource-poor languages, since this can help to reduce effort as well

as expense of creating large-scale and high-quality resources and tools.






Chapter 6

Conclusions and Future Directions

Semantic tagging can be defined as a dictionary-based process of identifying and
labelling the meaning of words in a given text. Over the past two decades, various
applications of semantic tagging tools, annotated corpora and resources have been
on the increase, including empirical language studies at the semantic level ([180, 158,
106,171, 166, 213, 165]) and studies in information technology ([227, 71]) amongst
others. Consequently, the research community has explored the development of
semantic tagging tools, corpora and lexical resources that can carry out semantic
analysis of natural languages. However, much of the existing work is for English and
major European languages.

In this thesis, algorithm, techniques, corpora, lexicons, supporting resources, and
tools have been developed that can be used to carry out semantic analysis of Urdu
language text with a unified semantic annotation scheme. Therefore, this thesis aims
to address this issue by extending an existing English semantic tagger [180] to cover

the Urdu language. All resources of this Ph.D. thesis have been made freely available
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for the research community at: http://passdropit.com/8SNGIiT8L! under the terms

of the Creative Commons Attribution 4.0 International License?.

6.1 Summary of the Work

This section presents chapter wise summary of the thesis along with contributions.
However, the overall objective contributes the development of an Urdu semantic
tagger and supporting resources which are required to perform semantic analysis of
Urdu language text.

Chapter 1 of this thesis provided an introduction, by describing the context,
problem, objectives, organization, and significance of this research. Furthermore,
we detailed the importance and characteristics of the Urdu language. Finally, this
chapter ends with several research questions as well as major contributions which
have been undertaken in this research work.

In Chapter 2, the background has been established for this thesis by providing
definitions of the fundamental and related concepts. Thereafter, the related work
of WSD and semantic tagging of corpora as well as techniques, lexical resources,
and NLP tools are given. This chapter also provides a survey of word and sentence
tokenization, POS tagging methods and corpora which have been developed for
the Urdu NLP task. Subsequently, the UCREL Semantic Analysis System has been
presented (as a model for the development of the Urdu counterpart), along with its
core components (word and sentence tokenizer, POS tagger, lemmatizer, semantic
lexicons, and semantic tag disambiguation methods) and its multilingual extension.
The chapter concluded with a brief account of evaluation measures used in this

research work.

!The password can be obtained through following email: jawadshafi@cuilahore.edu.pk
https://creativecommons.org/licenses/by/4.0/ - Last visited: 21-January-2020


http://passdropit.com/8SNGiT8L
https://creativecommons.org/licenses/by/4.0/
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In Chapter 3, a detailed development of the Urdu natural language tools (word,
sentence tokenizers and POS taggers) has been presented, these tools are core com-
ponents of the US Tagger. The Urdu word tokenization algorithm is a rule-based
morpheme matching approach to solve the space omission which is coupled with a
tri-gram stochastic language model that backed-off to bi-gram maximum likelihood
estimation, supplemented by smoothing technique for unknown words. To solve
the space insertion problem a dictionary look-up approach is used. For the word
tokenization algorithm, a large compound word and morphemes dictionary has
also been generated automatically. Apart from algorithms and dictionaries, large
benchmark training and testing datasets are also developed. The training dataset
consists of 1,361K N-grams whereas, the test dataset contains 59K manually tok-
enized words. The results of the proposed word tokenizer shows a precision of 0.96,
recall of 0.92, F| of 0.94, and accuracy of 0.97. The Urdu sentence tokenizer composed
of a rule base, regular expressions, and a dictionary look-up approach. To test the
Urdu sentence tokenizer, a large dataset is also developed composed of 8K manually
annotated sentences. The proposed sentence tokenizer obtained promising results
on test dataset, precision = 91.08%, recall = 94.14%, F; = 92.59%, and error rate =
6.85%. For the Urdu POS tagging task sixteen different stochastic and two baseline
models have been developed. These proposed Urdu POS taggers are based on two
stochastic machine learning models that are further supplemented with various lan-
guage features as well as smoothing estimations. In addition, a large gold-standard
training/testing dataset has been formed. The best accuracy of the Urdu POS Tagger
is 95.14%, which is based on tri-gram Hidden Markov Model, linear interpolation,
suffix, and morphological information.

Chapter 4 outlined the development of a benchmark semantically annotated

corpus for the Urdu language, USA-19. The USA-19 Corpus follows standard practice
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for the corpus creation process i.e. data collection, data preprocessing, corpus
annotation and inter-annotator agreement, corpus design and standardization. The
proposed corpus contains 8K tokens in the following domains: news, social media,
Wikipedia, and historical text (each domain having 2K tokens). Furthermore, the
USA-19 Corpus is annotated semi-automatically at word level and with 21 major
semantic fields and 232 sub-fields with the USAS (UCREL Semantic Analysis System)
semantic taxonomy which provides a comprehensive set of semantic fields for coarse-
grained annotation. Each word of the proposed corpus is annotated with at least
one and up to nine semantic field tags to provide a detailed semantic analysis of
the language data, which allowed us to treat the problem of semantic tagging as a
supervised multi-target classification task. To demonstrate how a proposed corpus
can be used for the development and evaluation of Urdu semantic tagging methods,
another contribution of this chapter is to extract local, topical and semantic from the
proposed corpus and applied seven different supervised multi-target classifiers on
them and compared results. The evaluation showed that best results are obtained
using Classifier Chain and Random k-labEL Disjoint Pruned Sets classifiers (Exact
Match = 0.76, Hamming Loss = 0.06 and Accuracy = 0.94). It is further observed
that regarding single-label ML methods the best results are obtained using Random
Forest algorithm.

Chapter 5 described the detailed creation process of the Urdu semantic tagset,
lexicons (both single and multi-words) and the US Tagger. However, the main
focus of this chapter is to investigate the feasibility of rapidly constructing Urdu
semantic lexicons by using automatic and semi-automatic approaches, which act as
a knowledge source for the US Tagger. The lexicons are developed using mapping,
crowdsourcing, machine translation, GIZA++, word embedding, and named entity

approaches. These lexicons have the following statistics: 54,601 (mapping), 2,000
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(crowdsourcing), 41,971 (machine translation), 1,285 (GIZA++), 760 (word em-
bedding), and 44,480 (named entities). Entries of the most frequent words in these
lexicons are also manually edited. Further to this, a large English-Urdu sentence
aligned parallel corpus (7,218 sentences) and the Urdu monolingual corpus (88.33
million tokens) have also been developed as a supporting resources for GIZA++ and
word embedding approaches. Aside from these resources, the US Tagger has also
been developed which integrated NLP tools, Urdu semantic lexicons, and semantic
tag disambiguation methods to annotate at word level. The US Tagger annotates
Urdu text with the following four annotations, POS tag, lemma, single or multi-words
and semantic tag(s). The US Tagger and Urdu semantic lexicons are evaluated using
two corpora, (i) Urdu monolingual , and (ii) USA-19 Corpora and with several eval-
uation measures. Best average results for the US Tagger (Lexical Coverage = 89.63%,
and Precision = 79.47%) are obtained using Urdu mapping based semantic lexicons.
Thus, this chapter shows that it is feasible to rapidly generate Urdu semantic lexicons
with good lexical coverage. It has also been observed that to achieve a high precision
a certain amount of manual improvement and cleaning of Urdu semantic lexicons is

also required.

6.2 Thesis Contributions

The main contributions of this thesis are:

1. Development of various Urdu natural language tools along with supporting
resources. A state-of-the-art algorithm for word tokenizer has been proposed
along with automatically created lexicons. The algorithm is composed of bi-
gram morpheme match, tri-gram MLE, which back-off to bi-gram MLE as well

and Laplace smoothing estimation, and dictionary look-up techniques. The
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sentence tokenizer is a rule based, whereas, a tri-gram HMM based POS tagger
is proposed along with several smoothing estimations. All tools are tested on

newly developed corpora.

. Creation of the Urdu semantic tagset by automatically translating an existing

English semantic tagset into the Urdu language by using machine translation
and bilingual dictionaries. Automatically translated tagset is manually verified

by two annotators.

. Development of the Urdu semantic lexicons using automatic or semi-automatic

approaches. These approaches are, mapping, crowdsourcing, machine transla-
tion, GIZA++, word embedding, and named entities. A large English-Urdu
sentence aligned parallel and an Urdu monolingual corpora has been proposed

for GIZA++ and word embedding approaches.

. Development of a multi-target semantically annotated corpus annotated at

word level with the USAS semantic tags. A tagged word can have one to nine
Urdu semantic field tags to indicate different components of one sense. To
demonstrate the development and evaluation of Urdu semantic tagging task
topical, semantic and local features are extracted from the proposed corpus

and applied seven different multi-target classifiers on them.

. Development of the Urdu semantic tagger by integrating Urdu semantic lex-

icons, NLP tools, POS and general-likelihood semantic tag disambiguation
methods. The newly created tagger is evaluated on multi-target semantically

annotated and other corpora.
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6.3 Research Goals Revisited

The main objective of this thesis is the development of the Urdu semantic lexicons,
semantic tagger, supporting tools and resources; they function as the core compo-
nents and knowledge base on which the US Tagger relies. Furthermore, the semantic
tagger employs baseline semantic tag disambiguation methods. In order to meet the
overall objective, this research has undertaken an investigation as to whether and
how it is possible to create resources for the Urdu language which are compatible
with the existing English semantic tagger. Therefore, related to meeting the main

objective, this thesis has defined the following eight research goals (see Chapter 1).

e Research goal 1: To explore the in-depth problem of the automatic semantic
tagging task for Urdu text to see what new methods and frameworks are

required.

This research goal has been defined in Chapter 2. Where the fundamental
concepts related to the semantic tagging task are presented and we provided a
literature review of semantic annotations. The research field which is closely
related to semantic tagging is WSD. Therefore, in this chapter corpora and
methods for WSD and semantic tagging tasks are presented. Semantic tagger
annotate text using semantic lexical resources and NLP tools. Therefore, ex-
isting pre-processing tools (sentence/word and POS tagger), semantic lexical
resources and datasets are reviewed. In addition to this, the USAS and English
semantic tagger are presented along with its key components, application and
its multilingual extension, which have functioned as a model for the develop-
ment of the Urdu counterparts. To evaluate these resources, various evaluation

measures are explored.
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e Research goal 2: To develop efficient algorithms and methods as well as

extract rules for automatically detecting word and sentence boundaries as

well as to assign POS tags to Urdu language text.

This research goal has been addressed in Chapter 3. As the primary units for
semantic tagger are words and sentences. To the best of our knowledge, there
are no word and sentence tokenization tools available which can be embedded
in the US Tagger. Therefore, word and sentence tokenizers are developed. To
disambiguate semantic tags, a POS tagger is required. To fulfil this need, several

Urdu POS taggers are produced based on various state-of-the-art techniques.

Research goal 3: To develop large-scale supporting resources (e.g. lexicons,
word lists, and annotated corpora) for Urdu word, sentence segmentation

and POS tagging.

This research goal is also addressed in Chapter 3. As the proposed word,
sentence tokenizers and POS taggers are based on statistical, dictionary look-
up, rules and machine learning based techniques. These techniques required
lexicons, word-lists and annotated corpora to perform annotations. Therefore,
to achieve this, several supporting resources for word, sentence tokenizers and

POS taggers are developed.

Research goal 4: To develop annotated training and testing corpora for multi-

target classifiers and to evaluate the US Tagger.

This research goal is addressed in Chapter 4. A multi-target semantically
annotated corpus is presented to test the performance of multi-target classifiers,
the US Tagger, and lexical coverage of several proposed Urdu semantic lexicons.
The corpus is annotated at word level and with one to nine semantic tag(s)

to show multiple membership categories (different components of one sense)
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of the USAS semantic taxonomy. Furthermore, the newly developed corpus
is used to train and test baseline and feature extraction approaches on seven

supervised multi-target classifiers.

e Research goal 5: To create an Urdu semantic tagset for Urdu semantic tag-
ging task.
This research goal is described in Chapter 5. An English USAS semantic tagset
is carefully ported semi-automatically for the Urdu language. In order to make
sure that Urdu semantic tagset is of good quality a two step approach is used.
In the first step, automatic translation of English tags into Urdu is performed.

Furthermore, these translation are verified by two human experts.

e Research goal 6: To develop Urdu semantic lexicons (single and multi-word)
using automatic or semi-automatic approaches as well as supporting resources
and to determine how extensive are these lexicons in terms of lexical cover-
age.

This research goal is described in Chapter 5, where six different automatic
or semi-automatic approaches are used for the creation of Urdu single and
multi-word semantic lexicons. The Urdu semantic lexicons are also manually
edited by human annotator(s). An English-Urdu sentence aligned parallel
corpus and an Urdu monolingual corpus are also developed as a supporting
resources for the two approaches. The developed lexicons show encouraging

lexical coverage on two test corpora.

e Research goal 7: To evaluate methods for the semantic tag disambiguation

task for Urdu text.

This research goal is defined in Chapter 5. The task of the semantic tagger is

broadly subdivided into two steps: (i) tag assignment and (ii) tag disambigua-
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tion. In tag assignment, a tagger attaches a set of potential semantic tags to
each word whereas, in tag disambiguation the contextually appropriate tag is
selected. For the second step, various baseline statistical and knowledge based
approaches have been applied to improve semantic tag disambiguation, i.e.
POS and general-likelihood. The error rate of semantic tag disambiguation

methods are also calculated.

e Research goal 8: To develop a new software framework for the US Tagger

and its evaluation.

The above research goal is answered in Chapter 5. The US Tagger is developed
by integrating Urdu semantic lexicons, NLP tools, and context rules. Further-
more, lexical coverage and precision of newly created semantic lexicons and

the US Tagger is also calculated on several benchmark corpora.

6.4 Limitations and Future Directions

Despite favourable results of the proposed tools, methods, lexicons and corpora,
however, the following limitations have been observed. A word tokenization method
did not handle out-of-vocabulary words in morpheme matching process of space
omission problem. Sentence tokenizations are rule based which are not able to dealt
with non-sentence boundary markers and period markers used between different
abbreviations. Whereas, the POS tagger did not completely handle unknown words.
Multi-target classifiers did not explore feature extraction approaches and has only
been tested on a small dataset. In addition, state-of-the-art deep learning methods
have not been explored for the multi-target task. Furthermore, future research will
need to focus on the creation of a semantic multi-word lexicon and the manual

cleaning of the single word Urdu semantic lexicon.
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This thesis focused on the development process of the US Tagger, Urdu semantic
lexical resources, corpora for evaluation, and supporting resources as well as NLP
tools to meet the need of semantic analysis of Urdu text. However, semantic tagging
is a wide area and there are a number of interesting possibilities for future work and
research as follows.

The English semantic tagger (EST) has been used successfully in many corpus
and computational linguistics applications, for instance, for the analysis of interview
transcripts in market research [247], in the stylistic analysis of written and spoken
English [246] in Automatic Content Analysis of Spoken Discourse (ACASD) and
Automatic Content Analysis of Market Research Interview Transcripts (ACAMRIT)
projects, ussed in a pilot study of a large corpus of doctor patient interactions [230],
also EST is utilized in the Requirements Reverse Engineering to Support Business
Process Change (REVERE) project [181] in research area of software engineering, in
Benedict project®, where an EST and Finnish semantic tagger have been used together
to built a context-sensitive search tool for a new type of intelligent electronic dictio-
nary, used to create historical thesaurus-based semantic tagger for deep semantic
annotation [166], to create a historical semantic tagger for English [12], analysis of
personal weblogs in Singapore English [158], analysis and standardisation of SMS
spelling variation [226], analysis of the semantic content and persuasive composi-
tion of extremist media [172], detecting gender and spelling differences in Twitter
and SMS [26], for discourse analysis [159, 11], for finding contextual translation
equivalents for words in the Russian and English languages [217], in key domain
analysis [183], in Metaphors in political discourse [121], for ontology learning [71];
phraseology [82], in Political science research [106], for the protection of children

from paedophiles in on-line social networks [176], psychological profiling [127],

3The project reference is IST-2001-34237. For more information, see ftp://ftp.cordis.europa.
eu/pub/ist/docs/ic/benedict-ist-results_en.pdf. - Last visited: 28-December-2019


ftp://ftp.cordis.europa.eu/pub/ist/docs/ic/benedict-ist-results_en.pdf.
ftp://ftp.cordis.europa.eu/pub/ist/docs/ic/benedict-ist-results_en.pdf.
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for sentiment analysis task [219], to train chatbots and comparing human-human
and human-machine dialogues [218], and in deception detection research [127].
It would now be possible to apply the US Tagger for similar purposes. Among
these applications, the research community is mainly focusing towards sentiment
analysis and cyber security. Therefore, a possible future research venture can be
the development of a social media based content monitoring application such as
hate speech detection, studying and analysing the speech of the selected targeted
group to control terrorism activities, etc. Furthermore, another research interest for
research community can be to investigate the financial text mining* using the US
Tagger. There is a dire social need for such applications.

In terms of supporting tools which have been proposed in this thesis, possible
future work extensions for word tokenization can be the use of some other ma-
chine learning approaches (conditional random field, maximum entropy, neural
networks etc.) to learn the morphological pattern of the valid morphemes (instead
of morpheme look-up) and extend experiments to larger datasets as well as handle
out-of-vocabulary words in the morpheme matching process of the space omission
problem. For the Urdu sentence tokenization task, a possible extension is to develop
a hybrid Urdu sentence tokenizer i.e. using the rule-based algorithm along with
machine learning-based classifiers (such as conditional random field, sequential
minimal optimization). In terms of Urdu POS tagging, to handle unknown words
is a challenging task that needs to be addressed in the future. Another possible
extension can be the development of a hybrid POS tagger, in which various ML
statistical methods (CRF, SVM, etc.) along with heuristic rules can be adopted to

improve POS tagging.

% As in the Corporate Financial Information Environment (CFIE) project, where the English se-
mantic tagger has been used to perform analysis of UK corporate news stories: http://ucrel.lancs.
ac.uk/cfie/ - Last visited: 13-April-2019


http://ucrel.lancs.ac.uk/cfie/
http://ucrel.lancs.ac.uk/cfie/
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In the case of the semantically annotated corpus, other feature extraction ap-
proach(es) and multi-label classifiers can also be explored. Increasing the size of the
corpus is another avenue for future work. Considering the Urdu semantic lexicons,
a possible extension can be to generate large-scale multi-word semantic lexicons.
Furthermore, the development of a hybrid Urdu semantic tagger is a area which
needs further research. Moreover, further collocations feature should need to be
explore.

The EST has been extended for Czech, Chinese, Dutch, French, Italian, Malay,
Portuguese, Russian, Spanish, Finnish, Welsh, Urdu and Arabic. However, there is a
further plan to extend the EST framework to cover Swedish, Norwegian, and Turkish
languages. As a consequence, now there are equivalent semantic taggers based on
equivalent semantic lexicons which are capable of processing several languages.
These semantic taggers available for multiple languages enable the development of
multi-lingual and cross-lingual applications, as the semantic tagset acts as a kind of
a “meta-dictionary” or “lingua-franca” between the languages. This would make
it possible to use these semantic taggers for cross-lingual applications, for instance,
machine translation, plagiarism detection, and information extraction as well as

retrieval tasks.
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USAS Semantic Tagset in English

AGENERAL & ABSTRACT TERMS
Al General
Al General actions, making ete.
Al12 Darmaging and destroying
Al2 Suitability
Al3 ‘Caution
Ald Chanes, kuck
AlS Use
AlS1 Using
A152 Usefulness
AlG Physicalimental
AT Constraint
AlR InchusionExclusion
Alp Awciding
A2 Affect
A2 Affect Modify, change
A2 Affect CausaiConnected
A3 Being
A4 Classification
A4 Generally kinds, groups., examples
A42 Particularigeneral; detail
AS Evaluation
A5 Evaluation: Good'bad
A52 Evaluation: Truefalse
AB3 Evaluation: Accuracy
A54 Evaluation: Authenticity
a5 c :
AR ‘Cormparing: Similaridiffenent
AB2 ‘Cormparing: Usualurmesual
AG3 ‘Comparing: Varety
AT Definite (+ modas)
AR Seem
AD Getting and givi Ses5ion
A0 Opa\unsetfmsﬁﬂden
Finding: Showing
Al Importance
A1 Importance: Important
Al12 Importance: Noticeabdity
Al2 Easy/difficult
A2 Deegres
A3 Diegres:
A1z Degres: Maximizers
A123 Diegres:
Alld Degres: Approximators
A125 Diegres: i
Al3E Degres: Diminishers
A13T Degres: Minimizers.
Al4 Exclusivizers/particularizers
A15 S
BTI'E BODY & THE INDIVIDUAL
Anatomy and physiology
El."-! Health and disease
B3 Medicines and medical treatment
B4 ‘Cl=aning and personal cane
BS ‘Clothes and personal belongings
CARTS E
] Arts and erafts
E EMOTIONAL ACTIONS, STATES & PROCESSES
3] General
E2 Liki
E3 CamM\Violent'Angry
E4 isad
E41 Happy'sad: Happy
E42 Happy'sad:
E5 Feanbravenyishock
E6 Waorry, concern, confident
F FOOD & FARMING
F1 Food
F2 Drinks
F3 ‘Cigarettes and drugs
Farming & Horticulture
G GOVT. & THE PUBLIC DOMAIN
Govemment, Poliics & elections
G11 Govemment etc.
G12 Politics
G2 Crime, law and onder
G21 Crirne, law and onder: Law & order
G22 ‘General ethics
G3 ‘Warfare, defence and the amny. Weapons
H ARCHITECTURE, BUNLDINGS, HOUSES & THE HOME
Hi Architecture, kinds of houses & buildings
H2 Parts of buildings
H3 Areas around or near houses.
H4 Residence
H5 Fumiture and household fittings

| MONEY & COMMERCE
I Mon ﬁaﬂ
1.1 Mung uetge
n2 Money: Debts
a2 Meney: Price
12 Businsss
121 Business: Generally
122 Business; Selling
13 Work and empl
12.1 Work and employment: Generally
I3.2 Work and employment: Professionalism
Industry
I(EN'I'ERT.F.INI.ENT SPORTS & GAMES
K1 rianment generally
K2 Music and related activties
K2 Recorded sound etc.
K4 Drama, the theatrs & show business
K& Sports and games peneraly
KE1 Spms
K52
Chl dren’s and
L LIFE& Ll\ll'IFIGTHIIi&mES o
L1 Life and living things
L2 Living creatures generally
L2

M MOVEMENT, LOCATION, TFlA'\l"EL & TRANSPORT

M1 Moving, coming and goi

M2 Putting, taking. pl.lng pushlng. fransporting &c.

M3 Movementtransportation

] hhra'rm‘u:uﬁpunauun mmal

M5 Movementfiransportation: air

M5 Location and direction

M7 Places

M8 Remaining'stationary

N NUMBERS & MEASUREMENT

N1 Numbers

N2 Mathematics

N3 Measurerment

N2 Measurement: General

N3.2 Measurerment: Size

N33 Measurement: Distance

N34 Measurement: Violume

N3.5 Measurement: Weight

N3.8 rement:

N3.T Measurement: Length & height

N33 Measurement:

N Linear order

NG Cuantities

MNE.1 Entirety; madmum

N§.2 Exceeding; waste

MNE Fi eic.

O SUBSTANCES. MATERIALS. OBJECTS & EQUIPMENT
Substances and matenals

o11 Substances and matenals penerally: Solid

oiz Substances and materials generally: Liguid

o013 Subsiances and materials generally: Gas
Objects generally
Electricity and electrical equipment

04 Phiysical a

o1 General appearance and phiysical properties

c4z Judgement of appearance (pretty etc. )

43 Colour and eolour pattems

C44 Shape

045 Texture

046 Ti ratune

P EDUCATION

P Education in general

G IJNGUIS'I'ICA.CTIONS STATES & PROCESSES
Communication

QI 1 Communication in general

Q12 Paper documents and writing

Qi3 Telecommunications

o2 Spesch acts

o1 Speech efc: Communicative

s

o3 ., speech and grammar

o4 The Media

Q4.1 The Media: Books

042 The Media: Mewspa etc

SSOCMLMTIONB STATES & PROCESSES
Social actions, states & processes
.:.1 1 Social actions, states & processes

57
TR |
572
573
574
58

58

T TIME
T
Tl
Ti1.1
Ti12
Tii3
Ti2
Ti3
T2

T2

General |

Parndpaﬁtgn

Deserve efc.

Personality traits
Approachabdity and Friendliness.
Awarice

Egoism

Politeness

Toughness; strong'weak
Sensible

Peopie
People: Female

People: Male

Relationship

Refationship: General
Relationship: Intimatesexual
Kin

Groups and ailiation
Obligation and necessity

Helping hindering
Religion and the supematural

Time:

Time: General

Time: General: Past

Time: General: Presant; simuitansous
Time: General: Future

Time: Momentary

Time: Penad

Time: Begnning and ending

Time: Oid, new and young age

Time: Ea

T4 . Earyflate
W THE WORLD & OUR ENVIRONMENT

Wi
W2
W3
W4

n e Dabd = Coen de b =

LR R I e

it

ZMMES&GRNHA
Unamaak

Zl

RN

The universe

Light
Genga)hr.itams

W5 Green
X PSYCHOLOGICAL ACT}ONS, STATES & PROCESSES
General

Mental actions and processes
Thought, belief
Knowledge

Leam
Irvestigate, examine, test, search
Understand

object
Mental object: Conceptual otject
Mental chject: Means, method
Astention
Aftention
Interesthoredomiexcied/enemetic
Deciding
Wanting; planning; choosing
Tr
Abilty
Ability: Ability, inteligence
Sucoess and failure

Abiliry:
5CIENCE & TECHNOLOGY

Soence and technobogy i general
Infnnnalmbmnmzﬂ computing

d'ledpmpelmun

Gengaphicd NaTes
(Other proper names
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