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Abstract 

The use of Linear Mixed-effects Models (LMMs) is set to dominate statistical 

analyses in psychological science and may become the default approach to 

analyzing quantitative data. The rapid growth in adoption of LMMs has been matched 

by a proliferation of differences in practice. Unless this diversity is recognized, and 

checked, the field shall reap enormous difficulties in the future when attempts are 

made to consolidate or synthesize research findings. Here we examine this diversity 

using two methods – a survey of researchers (n=163) and a quasi-systematic review 

of papers using LMMs (n=400). The survey reveals substantive concerns among 

psychologists using or planning to use LMMs and an absence of agreed standards. 

The review of papers complements the survey, showing variation in how the models 

are built, how effects are evaluated and, most worryingly, how models are reported. 

Using these data as our departure point, we present a set of best practice guidance, 

focusing on the reporting of LMMs. It is the authors’ intention that the paper supports 

a step-change in the reporting of LMMs across the psychological sciences, 

preventing a trajectory in which findings reported today cannot be transparently 

understood and used tomorrow. 
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1.0 Introduction 

 

Linear Mixed-effects Models (LMMs) have become increasingly popular as a 

data analysis method in the psychological sciences. They are also known as 

hierarchical or multilevel or random effects models (Snijders & Bosker, 2011). LMMs 

are warranted when data are collected according to a multi-stage sampling or 

repeated measures design. That is, when there are likely to be correlations across 

the conditions of an experiment because the conditions include the same participants 

or participants who have some association with each other. Multi-stage sampling can 

arise naturally when collecting data about the behavior or attributes of participants 

recruited, e.g., as students from a sample of classes in a sample of schools, or as 

patients from a sample of clinics in a sample of regions. Repeated measures occur 

when participants experience all or more than one of the manipulated experimental 

conditions, or when all participants are presented with all stimuli. Such investigations 

are common in psychology. These designs yield data-sets that have a multilevel or 

hierarchical structure. Participant-level observations, e.g., an individual’s measured 

skill level or score, can be grouped within the classes or schools, clinics or regions 

from which the participants are recruited. Trial-level observations, e.g., the latency of 

response to a stimulus word, can be grouped by the participants tested or by the 

stimuli presented (Baayen, Davidson, & Bates, 2008). We expect that the responses 

made by a participant to some stimuli will be correlated, or that responses from 

children in the same class or school or region will be correlated, or that responses to 

the same stimulus item across participants will be correlated. The hierarchical 

structure in the data (the ways in which data can be grouped) is associated with a 

hierarchical structure in the error variance. LMMs allow this structure to be explicitly 

modelled. 

We review current practice for LMMs in the psychological sciences. To begin, 

we present an example of a mixed-effects analysis (Section 1.1), with the aim of 
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clearly illustrating how random effects relate to fixed effects. Researchers who are 

comfortable in their conceptual understanding of LMMs may wish to skip this part. 

Following the example, we present data from a survey of researchers (Section 2.0) 

and a review of reporting practices in papers published between 2013 and 2016 

(Section 3.0). Our observations reveal significant concerns in the community over the 

implementation of LMMs, and a worrying range of reporting practices in published 

papers (Section 4.0). Using the available literature, we then present best practice 

guidance (Section 4.1) with a bullet-point summary (Section 5.0). To preempt two 

key conclusions, researchers should be reassured that there is no single correct way 

to implement an LMM, and that the choices they make during analysis will comprise 

one path, however justified, amongst multiple alternatives. This being so, to ensure 

the future utility of our findings, the community must adopt a standard format for 

reporting complete model outputs (see the example tables in Appendix 5). All 

appendices and data are available at osf.io/bfq39. 

 

1.1 An example 

Our example is introductory but it is not intended as a step-by-step tutorial. 

We provide an explanation of mixed-effects models without recourse to algebra or 

formulae. In particular, we discuss random intercepts and random slopes in the 

context of this example, and how these can be fit alone (intercepts or slopes only) or 

together (intercepts and slopes) for a given fixed effect predictor.  In our experience 

as researchers and teachers, this is the biggest conceptual hurdle to understanding 

and working with LMMs.  

  A subset of data from Meteyard and Bose (2018) has been used, and scripts 

and data are available from osf.io/bfq39 – Files – LMMs_BestPractice_Example.R 

and NamingData.txt for those wishing to recreate the analysis and graphs1. For those 

																																																								
1	We	have	left	annotations	and	comments	between	the	two	authors	in	the	script,	to	illustrate	the	
work-in-progress	nature	of	a	coding	script	
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wishing to see the model output, osf.io/bfq39 – Files – 

LMMs_BestPractice_Example_withOutput is available as both an R script and a text 

file.  

To collect the data, ten individuals with aphasia completed a picture naming 

task. Stimuli comprised 175 pictures from the Philadelphia Naming Test (Roach et 

al., 1996). The experiment tested how cues presented with the pictures affected 

naming accuracy, and each picture was presented with four different cues. Thus, 

each participant was presented with each picture four times, and the study 

conformed to a repeated measures design. The four cues were: a word associated to 

the naming target (towel - bath); an unassociated word (towel - rice); the 

phonological onset (towel – ‘t’); and a tone. Given previous findings, we predicted 

that a phonological onset cue or an associated word cue would improve naming 

accuracy, relative to an unassociated word cue or the tone cue. The experiment also 

tested how the properties of the target name affected naming accuracy. Here we will 

look at the length of the word (in phonemes) and the frequency of the word (log 

lemma frequency). We predicted that words with more phonemes (longer words) 

would be harder to name, as reflected in reduced response accuracy, whereas words 

with higher frequency would be easier to name, as seen in increased accuracy. 

  In conventional mixed-effects modeling terms, given this design, we have 

three fixed effects. Cue type is a factor with four levels (the different cues). Length 

and frequency are two continuous predictors that have a value associated to each 

target picture name. The random effects are associated with the unexplained2 

differences between the participants (10 participants, each of whom completed 700 

trials) and the items (175 items, each associated with 40 observed responses). 

Participants and items were sampled from respective person or picture populations: 

																																																								
2	We	do	not	have	a	complete	explanation	for	why	different	participants	or	items	are	associated	
with	variation	in	responses,	so	there	will	always	be	some	error	variance	associated	with	
participants	and	items	that	is	‘unexplained’.		Any	explanations	or	predictions	that	we	do	have	can	
be	included	in	the	model	as	fixed	effect	predictors.	
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each participant and each item can be seen to be a sampling unit from a wider 

population. Intuitively, responses by a participant will tend to be correlated because 

one person may be more or less accurate than another, on average. Responses to 

each item will tend to be correlated because one picture will be more or less difficult 

than another. For simplicity, we are going to illustrate random effects for participants 

only. Graphs are generated from mixed-effects models with all fixed effects 

predictors but only the random effect under consideration (see Figures 1-4). This is 

so we can consider each case in isolation. 

  The simplest possible random effect to include in the mixed-effects model 

would be the random effect of participant on intercepts, in an intercepts only model. 

What does that mean? To start, we can calculate the average accuracy (grand 

mean) across all participants’ responses. However, the participants differ in the 

severity of their aphasia, and this variation leads to differences between participants 

in their average naming accuracy (Figure 1a). To account for this, we can model the 

random variance in intercepts due to unexplained differences between participants: 

the random intercepts by participants. Figure 1a shows the raw data, with each 

participant’s accuracy (averaged across all the trials they completed) and the grand 

mean. It is clear that some participants are above the mean and some are below it. 

Because we are modelling how each participant deviates from the grand mean, it is 

convenient to scale the units for these differences as standard deviations from the 

grand mean, centered at zero. Figure 1b shows the random intercepts for 

participants (extracted from a mixed-effects model that included the fixed effects plus 

just the random intercepts by participant) where zero represents the grand mean. 

This plot shows the difference between each participant’s accuracy and the grand 

mean accuracy. The model output tells us that the variance associated with random 

intercepts is 1.58 (SD=1.257). So, on average, participant-level intercepts vary 

around the grand mean by 1.257 SD units. Given that the units for measurement of 
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accuracy go from 0 to 1, we can interpret this as quite a large amount of variation 

across participants. This is clearly illustrated in Figure 1a and 1b. 

 

----- FIGURE 1 ----- 

Figure 1 Title: Illustrations for Participant Intercepts for Naming Accuracy

 

 

  Our readers will know that participants may differ not only in the level of 

performance (average accuracy of response) but also in the ways in which they are 

influenced by the experimental conditions or by the stimulus attributes. We can 

account for random differences between sampled participants in their response to 

cue type by specifying a model term corresponding to random slopes for the effect of 

cue type, that is, to deviations between participants in the coefficient for cue type. We 

can calculate the average naming accuracy within each cue condition across 

participants. To get the fixed effect result, we can then (as in an ANOVA) compare 

the four cue types to each other and see on average the effect of cue type on naming 

accuracy. Figure 2a shows the average response accuracy per condition, illustrating 

this fixed effect for cue type.  
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--- Figure 2a here – 

 

 

The trends in the plot suggest that cues which share the target onset (known 

as a ‘phonological cue’ in aphasia research) increase accuracy relative to the other 

three cue types. When we model random slopes for cue type over participants (i.e. 

slopes only, without random intercepts), we aim to gauge how the effect of cue type 

differs across participants. In this experiment, cue type is a factor with four levels, so 

we are concerned with the variation among participants in how the average accuracy 

of response differs between the four conditions.  

 

-- Figure 2b here – 
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Figure 2b shows the individual participant data for each condition. It is clear 

that not all participants show the same effect of phonological cueing. For example, 
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participants who are highly accurate across all conditions (Participants A to D) show 

ceiling effects, so there is not much scope for phonological cueing to improve naming 

further.  So, what is the spread (variance) of deviations between participants around 

the average effect of cue type? Figure 2c shows the participant random slopes 

estimated for the effect of cue type. This shows how within each cue type condition 

the effect for different participants varies around the mean accuracy of responses 

under that condition.  

 

-- Figure 2c here – 

 

 

The model output tells us the variance in slopes associated with each cue 

type (Shared onset SD = 1.268, Associated word SD = 1.259, Tone SD = 1.310 and 

Non-associated word SD = 1.254). So, on average, within each condition, 

participants vary around the mean by ~1.3 units. The model output also tells us how 

the by-subjects deviations in the slopes of the effects of cue type conditions are 
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correlated with each other, with high positive correlations (0.94 - 0.99). A per-subject 

deviation in response to one condition will, predictably, correlate with the deviation 

for the same participant in response to other conditions. This is perhaps unsurprising 

given how much the participants vary between each other, a variation that is driven 

principally by the severity of their aphasia. Put another way, the main explanation of 

participants’ performance across the different cue conditions comes from accounting 

for the differences between the participants. This is a nice example of the variance-

covariance structure in the data – i.e. where variation arises and how it is related 

across groupings in the data.  

 For the continuous fixed effect predictors, the term ‘random slope’ will make 

more intuitive sense, and here we will model both random intercepts and random 

slopes for the effect of length across participants. For a more complete account of 

the data, we will also ask the model to fit the covariance for intercepts and slopes – 

that is, to model them as correlated. For example, participants who are more 

accurate (higher intercept) may show a stronger effect of length (steeper slope), 

resulting in a positive correlation between intercept and slope. First, to see how word 

length affects naming accuracy, we look at the slope of naming accuracy when we 

plot it against length, illustrating the average effect of length (see Figure 3a). By 

fitting random intercepts and random slopes for word length over participants, we 

model both the differences between participants in overall accuracy (see Figure 1) 

and the between-participant differences in the slope for the effect of length. To 

illustrate this, we have plotted the fitted values from a model with random intercepts 

and with random slopes for word length over participants. Figure 3b shows the 

separate estimated slope of the length effect for each participant. More accurate 

participants have higher intercepts, and participants show differences in how steep or 

shallow the slope for length is. Steeper slopes mean a stronger effect of length on 

naming accuracy. Finally, we plotted the same data as the random effects – that is, 

the per-subject deviations from the average intercept and from the average slope 
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(Figure 3c). From this plot, we can see that deviation in overall accuracy (i.e. random 

variation in intercepts by participant) is much greater than in slopes for length.  

 

----- FIGURE 3 ----- 

Figure 3 Title: Illustrations for Participant Intercepts and Slopes for Length in 

Phonemes 

 

 

The model output gives us the variance associated with participant intercepts 

(SD = 1.259), with values consistent with those we have seen previously for 

participant intercepts. It also gives us the variance associated with the effect of 

Length in Phonemes, with an SD = 0.135. This is much smaller than the variation 

associated with participant intercepts, and that tells us that (as seen in Figure 3c) 

participants show much more variation in the overall accuracy of their naming than 

they do in how their naming accuracy is affected by the lengths of the words they 
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name. The correlation (covariance) between the slopes for Length and the participant 

intercepts is positive and relatively low (0.34). Thus, there is some tendency for 

participants with higher accuracy (higher intercepts) to show greater effects of Length 

(steeper slopes). 

  Finally, the same process can be applied to the effect of target name 

frequency, and this is illustrated by Figures 4a-c. Here we can see more variation 

between participants in how frequency affects naming accuracy.  

 

----- FIGURE 4 ----- 

Figure 4 Title: Illustrations for Participant Intercepts and Slopes for Frequency 
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subject deviations) in Figure 4c. The correlation between the random slopes for the 

effect of Frequency and the participant random intercepts is large and negative (-

0.84). Participants with higher accuracy (higher intercepts) show a reduced effect of 

Frequency (shallower slopes), this is clearly reflected in Figure 4b. 

We hope that this example has done two things. First, clearly explained the concept 

of random and fixed effects. Second, highlighted just how informative the random 

effects can be. 

 

 

1.2 The ascendency of mixed models 

LMMs have grown very popular in modern Psychology because they enable 

researchers to estimate (fixed) effects while properly taking into account the random 

variance associated with participant, items or other sampling units. From under 100 

Pubmed citations in 2003, the number of articles referring to LMMs rose to just under 

700 by 2013 (see Figure 5), the starting year in our review of LMM practice. This 

popularity is associated with an increasing awareness of the need to use LMMs. 

However, the growth in popularity has been associated with a diversity among 

approaches that will incubate future difficulties. In simple terms, variation in current 

reporting practices will make meta-analysis or systematic review of findings near 

impossible. The present article examines the diversity in modeling practice and 

outlines the features of a reproducible approach in using and reporting mixed-effects 

models. 

Historically, the dominant approach for repeated measures data in 

psychology has been to aggregate the observations. Typically, in Psycholinguistics, a 

researcher would calculate the mean latency of response for each participant, by 

averaging over the RTs of each stimulus, to get the average RT by-participants 

within a condition for a set of stimuli (e.g., per cue type, if our example were a 

naming latency study). In a complementary fashion, mean RTs for each stimulus 
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would be calculated by averaging over the RTs of each participant, to get the 

average RT by-items within a condition (e.g., each cue type condition). The means of 

the by-participants or by-items latencies would be compared using Analysis of 

Variance (ANOVA) in, respectively, by-participants (F1 or F_s) or by-items (F2 or 

F_i) analyses. If s/he was seeking to correlate the average latency of responses by-

items with variables indexing stimulus properties, or by-participants with variables 

indexing participant attributes, s/he would use multiple regression to estimate the 

effects of item or participant attributes on the averaged latencies. A series of 

analyses dating back over 50 years have shown that these approaches suffer 

important limitations (Baayen et al., 2008; Clark, 1973; Coleman, 1964; Raaijmakers 

Schrijnemakers, & Gremmen, 1999).  

 As Clark (1973; after Coleman, 1964) noted, researchers seeking to estimate 

experimental effects must do so in analyses that account for random differences in 

outcome values both between participants and between items. The random 

differences can include by-participants or by-items deviations from the average 

outcome (e.g., fast or slow responding participants, see Figure 1), or from the 

average slopes of the experimental effects (e.g., individual differences in the strength 

of an experimental effect, see Figures 2-4). The presence of random differences in 

the intercept or in the slope of the experimental effect between-items meant, Clark 

(1973) observed, that the at-the-time common practice of using only by-subjects’ 

ANOVAs to test differences between conditions in mean outcomes was likely to be 

associated with an increased risk of committing a Type I error. Such errors arise in 

Null Hypothesis Significance Testing (NHST) where the researcher calculates a test 

statistic (e.g., t corresponding to a difference between conditions) and compares its 

value with a distribution of hypothetical test statistics generated under the null 

hypothesis assumption of no difference. A p value indicates the proportion of test 

statistic values, in the null hypothesis distribution, equal to or more extreme than the 

test statistic calculated given the study data (Cassidy, Dimova, Giguère, Spence, & 
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Stanley, 2019). Errors arise when a researcher rejects the null hypothesis when 

there is no substantial underlying difference in outcomes between conditions. 

Ignoring random variation in outcomes among stimulus items can mean that 

significant effects are observed and interpreted as experimental effects, when they 

are in fact due to uncontrolled variation amongst items (e.g., effects seen in by-

participant average RTs are in fact driven by a ‘fast’ or ‘slow’ item influencing the 

means). This was termed the language-as-fixed-effect fallacy.  

Clark’s (1973) remedy was to calculate F1 and F2 and then combine them 

into a quasi-F ratio (minF’) that afforded a test of the experimental effect 

incorporating both by-participants and by-items error terms. Analyses have shown 

that minF’ analyses perform well in the sense that Type I errors are committed at a 

rate corresponding to the nominal .05 or .01 significance threshold (Baayen et al., 

2008; Barr, Levy, Scheepers, & Tily, 2013). However, such analyses suffer from two 

critical limitations. Firstly, use of the approach is restricted to situations where data 

have been collected in a balanced fashion across the cells of the experimental 

design. Most researchers know that balanced data collection is rare. Experimenters 

can make mistakes and observations are missed or lost. Participants make errors 

and null responses may be recorded. Perhaps critically, in practice, Raaijmakers et 

al. (1999; Raaijmakers, 2003) showed how the use of minF’ declined and was 

replaced by the reporting of separate F1 and F2 analyses, despite the associated 

risk of elevated Type I error rates (see also Baayen et al., 2008).  

The minF’, F1 and F2 analyses are also restricted to situations where data 

have been collected according to a factorial design. That is, comparing outcomes 

recorded for different levels of a categorical factor or different conditions of an 

experimental manipulation. However, researchers often seek to examine the 

relationships between continuous outcome and continuous experimental variables. 

Cohen (1983) demonstrated that the cost of dichotomizing continuous variables is to 

substantially reduce the sensitivity of analyses. This may be especially important 
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where the relationship between outcome and experimental variables cannot be 

assumed to take a monotonic function (Cohen, Cohen, Aiken, & West, 2003). In such 

circumstances, researchers have tended to estimate the effects of continuous 

experimental variables using multiple regression, e.g., predicting by-item mean 

reading response latencies from a set of predictors capturing different word 

properties (Balota et al., 2004). However, Lorch and Myers (1990) demonstrated that 

such by-items regression analyses reverse the language-as-fixed-effect problem by 

failing to take into account random between-participants differences.  

Lorch and Myers (1990) recommended that the researcher conduct a two-

step analysis, firstly, conducting a regression analysis separately for each participant, 

e.g., predicting a participant’s response latencies from variables indexing stimulus 

properties and then, secondly, conducting an analysis of the per-participant 

coefficients estimates. This approach, sometimes known as slopes-as-outcomes 

analysis, has been used in some highly cited experimental Psychology studies (see 

examples by Balota, Cortese, Sergent-Marshall, Spieler, & Yap, 2004; Kliegl, 

Nuthman, & Engbert, 2006; Zwaan, Magliano, & Graesser, 1995) though perhaps 

more often in educational and other areas of social science research (see, e.g., 

citations of Burstein, Miller, & Linn, 1981; see discussion in Kreft & de Leeuw, 1998). 

However, the approach does not take into account variation between participants in 

the uncertainty about coefficients estimates (e.g., if one participant has fewer 

observations than another). That is, in a two-step analysis it is not possible to 

distinguish variation between per-participant coefficients and error variance (Snijders 

& Bosker, 2011). As well as avoiding the language-as-a-fixed-effect-fallacy, LMMs 

are also a solution to the limitations of slopes-as-outcomes analyses, as they ‘shrink’ 

– or pool - estimates towards sampling unit means (e.g., participant means) when 

there are fewer data points for that grouping (e.g., more missing data points for a 

participant, Gelman & Hill, 2007).  
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Introductions to LMMs (e.g., Snijders & Bosker, 2011) often discuss random 

differences between sampling units (e.g., between participants) either as error 

variance that must be controlled, or as phenomena of scientific interest (e.g., Baayen 

et al., 2008; Bolker et al., 2009; Gelman & Hill, 2007; Kliegl et al., 2011). Either way, 

LMMs allow this variation to be modeled by the experimenter as random effects. This 

means specifying that the measured outcome deviates, per sampling unit, from the 

average of the data set (random intercepts, see Figure 1) or from the average slope 

of the experimental or covariate effect of interest (random slopes, Figures 2-4). 

Random intercepts and random slopes variance estimates can tell us how much of 

the overall error variance is accounted for by variation between sampling units, e.g., 

the differences in overall RT between participants or between items. They can also 

tell us what the estimated difference is for a given sampling unit, e.g., by how much 

does a participant’s overall RT differ from the grand mean RT?  

It is worth highlighting that if these systematic differences in hierarchically 

structured data-sets are not properly accounted for, then false positive results 

become worryingly high (e.g., a Type I error rate as high as 80%: Aarts et al., 2014; 

see also Clark 1973; Rietveld & van Hout, 2007) and the power of summary statistics 

to detect experimental effects is reduced (Aarts et al., 2014). More generally, an 

analysis that fails to account for potential differences between sampling units in the 

slopes of experimental variables can mis-estimate the robustness of observed effects 

(Gelman, 2014). For example, one half of participants may show an effect in a 

positive direction and half show an effect in a negative direction. If this variation is not 

captured, the estimated direction of the average effect across all participants can be 

misleading (for an excellent exploration of this, see Jaeger, Graff, Croft, & Pontillo, 

2011). Given these numerous analytic advantages, LMMs have been rapidly 

adopted, particularly in subject areas such as psycholinguistics (Baayen, 2008; 

Baayen et al., 2008).  
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----- FIGURE 5 Here -------- 

Figure 5 Title: Number of Pubmed citations for ‘Linear Mixed Models’ by year 

 

 

 

1.3 So what is the problem? 

The problem for researchers is that there are multiple analytic decisions to be 

made when using LMMs. This issue is not new to their advent in experimental 

Psychology. Simmons, Nelson, and Simonsohn (2011) demonstrated the decisive 

impact on results of ‘researcher degrees of freedom’. Silberzahn and Uhlmann 

(2015) showed that the same data can reasonably be analysed in a variety of 

different ways by different research groups. Neither demonstration depended on the 

use of LMMs. The proliferation of alternate findings that arise from variation in 

choices at each point in a sequence of analytic decisions is crystallized by Gelman 

and Loken (2013) in the metaphor ‘the garden of forking paths’. Multiple analytic 

steps make variation in observed results more likely, even when reasonable 

0

300

600

900

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Year

N
um

be
r o

f P
ub

m
ed

 c
ita

tio
ns



RUNNING	HEAD:	Best	practice	guidance	for	LMMs	

	 21	

assumptions and decisions have been made at each step (Gelman & Loken, 2013; 

Silberzahn & Uhlmann, 2015). The same concerns have arisen in fields other than 

experimental Psychology, for example, following the rapid expansion in 

neuroimaging studies in which complex analyses with multiple analytic steps are the 

norm (Carp, 2012a; Carp, 2012b; Poldrack & Gorgolewski, 2014; Wager, Lindquist, & 

Kaplan, 2007). Thus, this paper reports on the use of LMMs in the context of ongoing 

concerns regarding statistical best practices across the cognitive and neurosciences 

(e.g., Carp, 2012a, 2012b; Chabris et al., 2012; Cumming, 2013a, 2013b; Ioannidis, 

2005; Kriegeskorte et al., 2009; Lieberman & Cunningham, 2009; Pashler & 

Wagenmakers, 2012; Simmons, Nelson & Simonsohn, 2011; Vul et al., 2009).  As 

we shall report, the decisions that researchers must make when conducting LMMs 

appear to be associated with a heightened sense of uncertainty and insecurity.  

Researchers’ concerns may stem, in part, from the fact that the rapid 

adoption of LMMs has not been complemented by the adoption of common 

standards for how they are applied and, critically, how they are reported. There are 

many excellent introductory texts available for LMMs (e.g., Baayen et al., 2008; 

Baayen, 2008; Bates, 2007; Bolker et al., 2009; Bryk & Raudenbush, 1992; Gelman 

& Hill, 2007; Goldstein, 2011; Hox, 2010; Judd, Westfall, & Kenny, 2012; Kreft & de 

Leeuw, 1998; Pinheiro & Bates, 2000; Snijders & Bosker, 2011; see also Appendix 

3). The caveat here is that even some texts that are designed to be introductory 

require a higher level of mathematical literacy than is required for or delivered by a 

majority of undergraduate psychology courses (e.g., fluency in linear and matrix 

algebra). It is also not clear how many undergraduate courses teach LMMs. 

Therefore, students may be required to read research papers that they are not 

equipped to understand. It may be feared that educational resources are sufficient to 

motivate the use of LMMs but are not sufficient to enable their appropriate 

application by researchers. Established researchers may baulk at the time needed to 
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undergo retraining in software applications and statistics, and to have to allocate 

more time in the future as software and analytic practices update.   

The development of appropriate training for current or developing researchers 

is an important concern for the future but we are optimistic that this challenge can be 

met over time. There are a growing number of LMM tutorials available for different 

disciplines which include examples and technical descriptions of software use 

(Baayen et al., 2008; Brauer & Curtin, 2018; Brysbaert, 2007; Chang & Lane, 2016; 

Cunnings, 2012; Field, Miles & Field, 2009; Field & Wright, 2011; Jaeger, 2008; 

Kliegl, 2014; Magezi, 2015; Murayama, Sakaki, Yan, & Smith, 2014; Rasbah et al, 

2000; Rabe-Hesketh & Skrondal, 2012; Schluter, 2015; Th. Gries, 2015;	

Tremblay & Newman, 2015; West & Galecki, 2011; Winter, 2013). From the authors’ 

own experiences, as interested but not mathematically expert readers, the most 

friendly and relevant tutorials for language researchers can be found in Brysbaert 

(2007), Cunnings (2012) and Winter (2013). Once the reader is comfortable, we 

strongly recommend the recent paper by Brauer and Curtin (2018).    

  The trouble is not that researchers are not doing what experts advise but, 

rather, it is the ways in which researchers have responded to the evolution of 

recommendations in what is, in part, a methodological field with active areas of 

development. Critically, the literature on LMMs is fairly consistent in terms of 

recommendations for best practice but there has been some diversity in the guidance 

available to researchers (e.g., compare Barr et al., 2013; Bates, Kliegl, Vasishth & 

Baayen, 2015; Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017). Thus, a critique 

by Barr and colleagues (2013) of the application of relatively simple mixed-effects 

models, including random intercepts but not random slopes, led to a wider sense of 

unease about the replicability of previously published results. It appeared to many 

that the frequent reporting of findings from LMMs including just random intercepts 

would be associated with an inflated risk of false positives. However, latterly, it has 

been argued that the risk of false positives must be balanced with the risk of false 
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negatives through the inclusion of a parsimonious selection of random effects 

(Matuschek et al., 2017). This apparent diversity in recommendations could be a 

source of the uncertainty in approach or diversity in practice that (to anticipate) our 

observations uncover. But we would read the succession of publications as marking 

a progression in our understanding of the most useful application of mixed-effects 

models. Many agree that LMMs are appropriate to many experimental data analysis 

problems. Many assume that random effects should be incorporated in the LMMs 

that are fitted. As we will argue, the key issue is that since LMMs are an explicit 

modelling approach, they require a different attitude than has been ingrained, 

perhaps, through the long tradition of the application of ANOVA to the analysis of 

data from factorial design studies. 

What we hope to make clear is that there is no single correct way in which 

LMM analyses should be conducted, and this has important implications for how the 

reporting of LMMs should be approached. Researchers will, quite reasonably, be 

guided in their approach to analyses by the research question, the structure of the 

data as it arises from study design and the process of observation, and the 

constraints associated with the use of statistical computing software. The problem is 

that variation in practice – especially reporting practice - can have a direct and 

damaging impact on our ability to aggregate data and to accumulate knowledge. 

Replicability and reproducibility are critical for scientific progress, so the way in which 

researchers have implemented LMM analysis must be entirely transparent. We also 

hope that the sharing of analysis code and data becomes widespread, enabling the 

periodic re-analysis of raw data over multiple experiments as studies accumulate 

over time.  
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1.4 Present study 

We examine the diversity in practices adopted by different researchers when 

reporting LMMs, and the uncertainty that that diversity appears to engender.  We 

completed a survey of current LMM practice in psychology. This consisted of two 

parts, a questionnaire sent out to researchers and a review of papers that used LMM 

analyses. We found widespread concern and uncertainty about the implementation 

of LMMs alongside a range of reporting practices that frequently omitted key 

information. The survey demonstrates the assimilation of a data analysis method in 

our discipline in ‘real time’.  To address these concerns, we present a set of best 

practice guidance with a focus on clear and unambiguous reporting of mixed-effects 

model analysis.  

 

 

 

2.0 Questionnaire 

 

 

2.1 Method 

 

2.1.1. Participants 

 163 individuals completed the questionnaire: 94 females, 63 males and 6 who 

did not disclose their gender. Mean age was 36 years (standard deviation, SD = 

9.26, range = 23-72). Just under 40% of respondents reported their discipline as 

Psycholinguistics, 16% Linguistics, 11% Psychology, 5% Cognitive 

Science/Psychology, 4% Language Acquisition and 3% Neuroscience; 15% of 

individuals reported more than one discipline. A number of other disciplines were 

reported by individuals (e.g., Anthropology, Clinical Psychology, Reading). Mean 

number of years working in a given discipline was 10.38 (SD = 8.16, range = 0.5-30). 
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Data on academic position and institution can be found in Table 1.  We recognize 

that this sample is biased towards those already using mixed-effects models (rather 

than reading about them), and this was reflected in the high proportion who stated 

they already used them (see 2.2.1 below) and the small number who stated they 

were planning to use mixed-effects models (2.2.3). 

 

Table 1: Reported position and institution type for questionnaire respondents  
(% of total) 
 
Position % Institution % 
Undergraduate 0.00 University UK 25.77 
Postgraduate MSc 1.23 University Other 59.51 
Postgraduate PhD 24.54 Research Institute UK 0.61 
Postdoctoral researcher 26.38 Research Institute Other 9.82 
Lecturer/Assistant Professor 24.54 Institution Other 4.29 
Reader/Senior Lecturer 
/Associate Professor 11.04 

 

Professor 9.20 
Other 3.07 
 
 

2.1.2 Design and procedure 

A qualitative questionnaire was used, with both open and closed questions. 

Ethical approval for the study was granted by the University of Reading School of 

Psychology & Clinical Language Sciences Research Ethics Committee. The online 

questionnaire was implemented in LimeSurvey (LimeSurvey Project Team & 

Schmitz, 2015). Individuals were invited to complete the questionnaire via email lists 

and personal emails to academic contacts of the authors, with a request to forward 

on to any interested parties. All responses to the questionnaire were anonymous. 

The questionnaire began with a brief introduction to the study. Consent was provided 

by checking a box to indicate agreement with a statement of informed consent.  

 The questionnaire elicited answers to questions focusing on the use and 

reporting of Linear Mixed-effects Models (LMMs). Appendix 1 provides the full 

questionnaire. Questions covered demographic information, use and reporting of 
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LMMs, challenges encountered when using LMMS and concerns they had for their 

own research and their field.  

A period of approximately one month was allowed for responses to be 

collected. Data collection was stopped once we had reached the current sample size, 

as the sign-up rate to complete the questionnaire had slowed. The sample size was 

judged adequate for our purposes (frequency and thematic analysis of question 

responses) and we judged that a substantial increase in numbers was unlikely if we 

left more time. 

 

2.1.3 Analysis 

 The complete data can be found at osf.io/bfq39 – Files – Mixed models 

survey results_analysis.xlsx. For closed questions, the percentage of responses 

falling into a given category were calculated. For open-ended questions, thematic 

analysis was completed to identify the most common responses across individuals 

(Braun & Clarke, 2006). Individual responses to each question (e.g., challenges to 

using LMMs) were collated as rows in a spreadsheet and given a thematic label to 

code the response (e.g., software, convergence, lack of standard procedures etc.). 

Responses were then reviewed and sorted, combining responses that fell into the 

same thematic label. We were interested in reporting the most common responses, 

so the total number of responses that fell into a given theme were counted as a 

percentage of the total responses to that question. For questions where categorical 

responses were made (e.g., reporting software used, listing training and resources), 

we generated lists of unique responses and the frequency (% of total) with which 

each one was reported. The results of the above analyses are presented together. 

 

 

2.2 Results 
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2.2.1 Usage of mixed-effects models 

 The great majority of respondents (91%) had used mixed-effects models for 

data analysis. The mean year of first using LMMs was 2010 (SD = 3.94 years, range 

= 1980 – 2014). We asked respondents to estimate how often they used mixed-

effects models, the mean was 64% of data analyzed (SD = 31%, range = 0-100).  

 

2.2.2 Training & software 

 The majority of respondents had attended a workshop, course or training 

event to learn mixed-effects models (68%), 30% had learnt from colleagues, 21% 

from internet resources, 12% using specific books or papers, 10% were self-taught 

and 9% had learnt from a statistics advisor or mentor. Appendix 2 provides a 

comprehensive list of the specific authors, papers, books, websites and other 

resources used by respondents. Readers may find this useful for their own training 

needs. 

 The majority of individuals used the statistical programming language and 

environment, R (90%) (R Core Team, 2017), with 20% mentioning the lme4 package 

(Bates, Maechler, Bolker, & Walker, 2015). Other named R packages were gamm4 

(Wood & Scheipl, 2016), languageR (Baayen, 2013), lmerTest (Kuznetsova, 

Brockhoff & Christensen, 2016), mgcv (e.g., Wood, 2011), and nlme (Pinheiro et al., 

2016). The next most frequently used software was SPSS (8%; IBM Corp, 2013). A 

number of other software applications were named by one or two people: MLwiN 

(Rasbash et al, 2009), Matlab (Matlab, 2012), Mplus (Muthén & Muthén, 2011), Stan 

(Stan Development Team, 2016), JASP (JASP Team, 2016), S-PLUS (e.g. 

Venables, 2014), SAS and ESS (Rossini et al., 2004). 

 

2.2.3 Planned use 

 For individuals who had not yet used mixed-effects models (15 respondents), 
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11 were planning to use them and four were not. For those planning to use them, 

reasons included exploration of a larger number of predictor variables (5 responses), 

to look at change over time or longitudinal data (2 responses) and for better 

statistical practice (e.g., control of individual differences, inclusion of random effects; 

2 responses). 

 

2.2.4 Challenges to using mixed-effects models 

 The most frequently reported concern was a lack of consensus or 

established, standardized procedures (26% of respondents; e.g. "it's quite difficult… 

to understand what standard practice is”). Related to this were responses that 

described a lack of training or clear guidelines for analysis, interpretation or reporting 

results (13%; e.g., "minimal training/knowledge available in my lab", “Presentation of 

data for publication”) and the relative novelty of the analysis (7%; "it is relatively new 

so recommended practices are in development and not always fully agreed upon"). 

A number of responses highlighted a lack of knowledge (18%; e.g., "I do not know 

enough about them”, "some reviewers request these models but researchers are not 

all skilled in these techniques", "complex math behind it not easy to grasp", "not 

enough people who know it"). A broad challenge in applying conceptual knowledge 

was seen in responses covering difficulties in selecting or specifying models (25%; 

e.g., "Model specification - knowing what to include and what not to include"), models 

which fail to converge or in which assumptions are violated (14%; e.g., “How to deal 

with models that fail to converge"), understanding and interpreting random effects 

structures (16%; e.g., “Determining what constitutes an appropriate slope term in the 

random effects structure"), identifying interactions (4%; "Working out significant 

interactions") or interpreting results generally (7%; “difficulty in interpreting the 

results"). Other specific points included models being overly flexible or complex (e.g., 

"The potential complexity of the models that goes substantially beyond standard 

procedures", "Mixed models are so flexible that it can be difficult to establish what is 
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the best suited model for a given analysis") and challenges in checking and 

communicating model reliability (e.g., "Knowing how to test whether a model violates 

the assumptions of the specific model type being used”). The most frequently 

reported concerns are reported in Table 2. 

Table 2: Most frequently reported challenges and concerns in using LMMs* 

Reported challenge % 
Lack of standardized 
procedures 

26 

Selecting and specifying 
models 

25 

Researcher reports lack of 
knowledge  

18 

Understanding and 
interpreting random 
effects 

14 

Lack of training/guidelines 
for analysis, interpretation 
and reporting 

13 

Use of new and unfamiliar 
software 

12 

  
General concern over 
use of LMM for own 
analysis 

75 

Reporting results 15 
Model selection 14 
Learning and 
understanding analysis 

14 

Lack of established 
standards 

11 

  
General concern over 
use of LMMs for 
discipline 

73 

Lack of standards 23 
LMMs used when not fully 
understood 

23 

Misuse of models 17 
Reporting is inconsistent 
and lacks detail 

17 

Peer review of LMMs is 
not robust 

10 

*identified by thematic analysis 
 

 Technical challenges were highlighted, specifically the use of new or 

unfamiliar software (12%; e.g., "software package (R) I was unfamiliar with") and the 
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reliability of analysis code (e.g., "Some of the code might also not be reliable. For 

example, people reported differences when running the same analysis in different 

versions of the same software"). A number of individuals reported specific difficulties 

with model coding and fitting (e.g., coding of categorical variables, setting up 

contrasts, structuring data appropriately, forward and backward model fitting and 

post-hoc analyses).  

 A number of responses reflected unease at the shift from traditional factorial 

designs and ANOVA or other inferential statistical tests (e.g., "[lack of] convincing 

evidence that mixed models provide information above and beyond F1 and F2 

tests"). For example, susceptibility to p-value manipulation or difficulties in 

establishing p-values (4%; “too many people still believe that we are fishing for p-

values if we do not use classical anovas"), knowing how to map models onto study 

design (4%; "Knowing when it's appropriate to use them", "to understand the 

influence on future study designs"), difficulties with small samples, sparse data and 

calculating effect sizes or power. 

 

2.2.5 Concerns using mixed-effects models for own data and in the wider 

discipline 

 Around 75% of respondents had concerns over using LMMs in their own data 

analysis. For these respondents, the most salient concerns were reporting results 

(15%; e.g., "Do you report your model selection criteria and if so, in what level of 

detail… perhaps several models fail to converge before you arrive at one that 

does?"), selecting the right model (14%; e.g., "model selection"), learning how to do 

the analysis and fully understanding it (14%; e.g., "I do not have enough knowledge 

to correctly apply the technique"), a lack of established standards (11%; e.g., “the 

lack of standardized methods is a problem"), models that do not converge (9%; e.g., 

"How to deal with convergence issues") and the review process when submitting 

LMM analysis for publication (9%; e.g., “experimental psychology reviewers are often 
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suspicious of them”). Other concerns broadly reflected those already identified as 

challenges above. See Table 2 for the most frequently reported concerns. 

Around 73% of respondents had concerns over the use of LMMs in their 

discipline or field. Here, the key concerns were a lack of standards (23%, e.g., "lack 

of established standards"), use of models without them being fully understood (23%; 

e.g., "Overzealous use of random effects without thinking about what they mean"), 

frank misuse of models (17%; e.g., "Misapplication of mixed models by those not at 

the forefront of this area"), reports of model fitting being inconsistent and not detailed 

enough (17%; e.g., "not describing the analysis in enough detail"), a lack of familiarity 

and understanding of the models (10%; e.g., "lack of knowledge about their 

implementation") and the review process not being robust (10%; e.g., “Reviewers 

often can’t evaluate the analyses”). Additional concerns were over researchers being 

able to misuse the flexibility of mixed-effects models (5%; e.g., "increased 

‘researcher degrees of freedom’ ") or “p-hack” the data (3%; e.g., "It's easier to p-

hack than an ANOVA"), and the breadth of approaches to making decisions during 

model fitting (4%; e.g., "The variety of approaches people take for deciding on model 

structure"). There was also concern over why LMMs were deemed better than 

factorial ANOVA approaches (3%; e.g., "Why are they privileged over simpler 

methods?") and that it was difficult to compare them against these traditional 

approaches (2%; e.g. "less accessible to readers/reviewers without experience… 

than traditional analyses"). See Table 2. 

 

2.2.6 Current practice 

 For respondents who were currently using mixed-effects models, 70% did not 

specify variance-covariance structures for the models. On reflection, participants may 

not have understood this question given that it was not accompanied by an 

explanation of these terms. We asked people to provide a typical model formula from 

their analyses. Two individuals stated that they used SPSS, and therefore did not 
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specify model formulae. Of those who did provide an example, only three explicitly 

mentioned model comparison and model checking. See Table 5 for a summary of 

random effects from model examples. 100% specified random intercepts for 

subjects/participants and 92% specified random intercepts for items/stimulus 

materials or trials. Random slopes to allow the effect of interest to vary across 

subjects and/or items were less common (62%).  

 

Table 3: Current practice 
 
Current practice % 
Do you specify variance-
covariance structures? 
Yes 
No 

 
 

30 
70 

  
Random Effect 
structures from model 
examples: 

 

Random intercepts for 
subjects 

100 

Random intercepts for 
stimuli/trials 

92 

Random slopes for effect 
to vary across subjects 

62 

  
Comparison to factorial 
analysis (ANOVA) 

 

Do you compare LMMs to 
factorial analysis? 
Yes 
No 
N/A 

 
 

61 
24 
15 

Were results comparable? 
Yes 
No 
N/A 

 
33 
46 
21 

  
How do LMMs compare 
to factorial analysis?* 

 

LMM are better fit to data 28 
Largely comparable 26 
LMMs are more 
sensitive/less conservative 

16 

LMMs are more 
conservative 

8 
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*identified by thematic analysis 
 

When included, random slopes were often qualified on the basis of 

experimental design and only included when appropriate for the data structure (e.g., 

random slopes for within-subject factors; Barr et al., 2013). Where multiple predictor 

factors were included, interactions between factors for random slopes were typically 

included. It is notable that some respondents stated that they did not include 

interaction terms for random slopes, excluded these first if the model failed to 

converge, or simplified random effects until the model converged. Some removed the 

modeling of correlations between random effects for the same reason. See Table 3. 

 

2.2.7 Comparison to traditional approaches 

 Around 61% of respondents had compared the results of LMM analyses to 

the results of more traditional analyses (i.e. ANOVA or other factorial inferential 

statistics; 15% responded N/A). Of those, 33% reported that results had been 

comparable, 46% reported that results were not comparable and 21% responded 

with N/A. An open question asked for respondents’ evaluation of this comparison. 

The most frequent response was that results were comparable (26%; e.g., "Largely 

methods correspond to each other"). A number of responses identified that mixed-

effects models were preferred or gave a better, more detailed fit to the data (28%; 

e.g., "I think we got a better fit for our data using LMEs instead of the traditional 

ANOVAs/Regression models"). However, it is not clear whether results were 

comparable in terms of the size of numeric effects or coefficients. Responses instead 

focused on whether results were significant. LMMs were reported to be more 

sensitive/less conservative, demonstrating significance for small effects (16%; e.g., 

"differences can occur if effects are just above or below p=.05", "mixed models 

seems less conservative than for example (repeated measures) anova"). However, 

mixed-effects models were also found to be more conservative, depending on how 
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the random effects structures were specified (8%; e.g., "Mixed models are typically 

more conservative, but not always"). Traditional F1/F2 tests were sometimes used to 

confirm or interpret effects in the mixed-effects models (4%; "I look if both analyses 

point to the same effects of the experimental manipulations") and in one instance 

F1/F2 tests were reported to be “much easier and less time-consuming” than LMMs. 

See Table 3. 

 

2.2.8 Reporting & Preferred reporting 

Respondents were asked for their typical practice when reporting models, this 

question was multiple choice and a summary of responses is given in Table 4.  The 

vast majority reported p-values and model fitting (88% and 80% respectively), but 

other options were chosen much less often: model likelihood was reported by 50% of 

respondents; confidence intervals by 37%; specification/reporting of model iterations 

by 36%; and F-tests between models by 31%. 

 
Table 4: Current practice in reporting mixed models (% total)*  
 
What is reported  % Yes % No 
p-values 88 12 
Model fitting 80 20 
Likelihood 49 51 
Confidence intervals 37 63 
Iterated models 36 64 
F-tests 31 69 
*ordered by frequency of response high to low, rounded up to nearest %; 147 
responses. Respondents were asked simply to indicate whether they reported model 
fitting and model likelihood, for detailed discussion of these parts of LMM analysis 
see sections 4.1.4 to 4.1.6. 

 

For preferred reporting format, the majority were in favour of a table (53%), 

followed by written information in the text (19%) and then plots (15%). The main 

reasons for selecting tables were ease of reading and clarity. Written text could 

provide details and facilitate interpretation. Plots were deemed important for more 
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complex models and to visualize the model structure. Some individuals stated that 

reporting format should depend on the data and model complexity (7%). 

 

2.2.9 Sharing of Code and Data 

 We asked respondents to state whether they would share data and code, with 

70% responding that they would share both (e.g., “Yes. Science should be open in its 

practice”). Table 5 summarizes the responses. Some respondents specified that they 

would share data only after publication, on request, after an embargo or when they 

had finished using it (9%; e.g., “I would be willing to share data on personal 

request”). Reasons for sharing included being open and transparent or a duty to 

share work that had been publicly funded (e.g., “yes, always. No-brainer: tax-payer-

funded scientist”). A number of respondents identified a general benefit to the field 

and to improve standards. For example, to contribute to meta-analysis or further data 

exploration (e.g., “… to facilitate additional research and replication of previous 

results. This data would also be extremely helpful for meta-analyses and for future 

research to be able run power analyses based on previous findings”). Analytic rigour 

was also mentioned, for example having a more open discussion about how models 

are used, checking model fitting, correcting errors, and having more experienced 

people look at the data (e.g., “We definitely need transparency and standards here 

because most of us are not statisticians”).  Around 3% would not share data and 3% 

were unsure. Reasons included not wanting to be ‘scooped’, and being unsure if data 

sharing was allowed on ethical grounds. One respondent asked “Why should I share 

my data?”. 
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Table 5: Sharing of code and data* 
 
Would you share data 
and code? 

% 

Share both data and code 70 
Share code 15 
Specified sharing of data 
after publication 

9 

Would not share either 3 
Unsure 3 
  
Would you like access 
to data and code? 

% 

Access to both 74 
Access to both but unlikely 
to use it 

6 

Access to code  9 
Did not want access to 
either 

3 

Did not want access to 
code 

3 

Did not want access to 
data 

2 

Unsure 2 
*Identified from thematic analysis 
   

Around 15% responded that they would share code, with no statement about 

data sharing. Reasons for sharing code included it being good practice and good for 

learning, as well as comparing analyses (e.g., “Good practice, other researchers can 

look at what you did and learn something, or point out errors”, “I think it is helpful to 

share code. This will hopefully lead to a more open discussion of the choices we all 

make when doing this type of analyses”). Two individuals stated that they would not 

share code due to their inexperience. A few respondents mentioned difficulty in 

sharing code that could often be ‘messy’ and that it would be time consuming to 

prepare code for publication. 

We asked respondents to state if they would like to access data and code in 

published reports. Around 74% would like access to both, with a further 6% 

specifying yes but that they would be unlikely to use it. Reasons for accessing were 

broadly similar to those identified above, with mention of transparency, improved 
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standards, for learning, for meta-analysis, analytic rigour and checking reported data. 

Some respondents reported that current data sharing practices were already 

sufficient (e.g., sharing data on request, depositing in centralised archives, e.g., 

“Doesn't have to be in published reports. Can be in a database accessed via the 

publisher or institute”), or that this was a wider issue and not specific to LMMs (e.g., 

“I don't see the access to data and code being a mixed effects specific issue. This is 

for any paper, regardless of the statistical technique used”). A smaller number 

specified that they would like access to code (9%) with no statement about data. 

Some respondents qualified that data and code should be part of supplementary 

materials or a linked document, rather than in the publication itself. Finally, a few 

people did not want access to code (3%), data (2%) or both (3%), or they were 

unsure (2%). See Table 5. 

 

 

2.3 Discussion 

 

 Most respondents had concerns over the use of LMMs in their own analyses 

and in their discipline more widely. Concerns were driven by the perceived 

complexity of LMMs, with responses detailing a lack of knowledge (own knowledge, 

that of reviewers or other researchers). Our interpretation is that this knowledge 

deficit (perceived or real) drives the other concerns. Namely, difficulties in learning 

and understanding the analysis process and difficulties in building, selecting and 

interpreting LMMs. For some, these difficulties are compounded by having to learn 

about new software applications (for an overview of software applications and their 

comparability see McCoach et al., 2018). Software applications undergo changes 

and updates which may change the results of a fitted model, as illustrated in the grey 

literature around lme4 (e.g. internet discussion boards such as stackoverflow.com; 

Nava & Marius, 2017). Such back-end changes – typically not salient to the average 
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psychology researcher – will add to the sense that mixed-effects models are complex 

and problematic. Respondents were concerned by not knowing what to report or how 

to report results from LMMs. This point feeds into reports of LMMs being received 

skeptically by reviewers as inconsistent formatting and presentation of analyses will 

exacerbate difficulties in the review process. It may be that two individuals trained in 

LMMs complete analyses that are true to their original training, but which – for similar 

data – differ in implementation and are reported differently in publications. Given that 

reviewers are sampled from the community of active researchers, lack of knowledge 

in reviewers was also a concern. At present, we are using a method of analysis that 

the community feels is not well understood, not clearly reported and not robustly 

reviewed. Little wonder that some see it as overly flexible and yet another way of 

fishing for results. 

Most researchers report p-values for model coefficients and some detail of 

model fitting for LMMs, fewer provide details of iterated models or Likelihood 

comparisons between different models. This means that, in general, the number of 

decisions being made during model fitting and the process of model selection is not 

transparently reported in manuscripts. This lack of transparency should not be seen 

as deliberate obfuscation: most respondents were willing to share analysis code and 

data, and felt that it was important to do so.       

  Alternate choices taken at multiple analytic steps can foster the emergence of 

different results for the same data (Gelman & Loken, 2013; Silberzahn & Uhlmann, 

2015) giving the impression of unprincipled flexibility. The rapid uptake of LMMs has 

been driven, in part, by the need to explicitly account for both subject- and item-

related random error variance (Locker, Hoffman & Boviard, 2007; Baayen et al., 

2008; Brysbaert, 2007) and part of the anxiety over model building arises when one 

moves from factorial ANOVA into LMMs (Boisgontier & Cheval, 2016). Although 

ANOVA and LMM share a common origin in the general linear model, they are very 

different in terms of execution. In LMMs, the analysis process is similar to regression 
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(Bickel, 2007). A model equation for the data is specified and reliable analysis 

requires larger data sets (e.g., trial-level data or large samples of individuals, 

Baayen, 2008; Luke, 2016; Maas & Hox, 2004; 2005; Pinheiro & Bates, 2000; 

Westfall, Kenny & Judd, 2014). Nested models may be compared or ‘built’ to find the 

best fit to the data. The process feels notably different to producing a set of summary 

statistics (e.g., averaging responses to all items for a subject), which are then put 

through a factorial analysis (such as ANOVA). Survey responses reflected this 

uneasy shift. Of respondents who had compared LMMs to ANOVA, a third found 

comparable results but nearly half found results that were not comparable. For those 

who had compared the two analyses, LMMs were reported to be a better fit to the 

data, but could be both more or less conservative especially when effects were 

marginally significant under ANOVA. It is worth noting that LMMs are not a new level 

of complexity for statistics in cognitive science (compare: structural equation 

modelling, Bowen & Guo, 2011; growth curve modelling, Nagin & Odgers, 2010), 

especially when compared against advances in brain imaging analysis and 

computational modelling. However, the perceived complexity is demonstrated by 

survey responses repeatedly referring to a lack of knowledge and established 

standards.  

  The survey data clearly demonstrates that researchers are uncomfortable 

with the use of LMMs. This is despite a number of excellent texts (see Appendix 2, 

and references given in the Introduction) and an explosion of online tutorials and 

support materials. To evaluate whether there is a problem in how LMMs are actually 

implemented and communicated, we completed a review of published papers using 

LMM analysis. 
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3.0 Review of current practice in use and reporting of LMMs 

 

Our objective was to review current practice in the use and reporting of 

LMM/GLMMs in linguistics, psychology, cognitive science and neuroscience. This 

complements the survey by adding objective data on how LMMs are used and 

reported.  

 

3.1 Method 

We completed a review of published papers using LMM analysis, taking a 

sample rather than exhaustively searching all papers. This approach was chosen to 

make the review manageable. To start, the first author used Google Scholar to find 

papers citing Baayen et al. (2008), widely seen as a seminal article whose 

publication was instrumental to the increased uptake of LMM analysis (cited over 

3500 times to date). To keep the review contemporary, papers were chosen from a 

four-year period spanning 2013, 2014, 2015 and 2016. Papers had to be in the field 

of language research, psychology or neuroscience (judged on the basis of title, topic 

and journal). From each year, the first 100 citations fitting the above criteria were 

extracted from Google Scholar, when limited by year, giving 400 papers in total. The 

first search was completed on 30th May 2017, giving a total of 3524 citations for 

Baayen et al (2008) with 2360 citations between 2013-2016. Therefore, we sample 

~17% of the papers fitting our criteria, published in that four-year period. Sixteen 

papers were excluded as they did not contain an LMM analysis (e.g., citing Baayen 

et al. in the context of a review, or when referring to possible methods). One paper 

was not accessible. Three papers were initially reviewed to establish the criteria for 

classifying papers, with an excel spreadsheet created with a series of drop-down 

menus for classification. To check coding and classifications, the second author 

looked at one reported model from 80 papers (20% of the total papers coded; 20 

papers from each year). Initial agreement was 77%, with differences resolved by 
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discussion. The spreadsheet with all the data and classifications from the review can 

be found here (https://osf.io/bfq39/; Files – Baayen Papers Rev with coding 

check.xlsx). Classification criteria are summarized in Table 6, and a fuller description 

of these can be found in Appendix 3. 

 

 

Table 6: Classification criteria for review and associated data table 

Criteria Options Data 
Table 

Field / Topic Psychology, Linguistics & Phonetics, Neuroscience, 
Psycholinguistics. 

 

Model Type LMM, GLMM, LMM & GLMM, GAMM, Other. A4.1 
Approach ANOVA testing for fixed effects via LRTs/model 

comparison  
ANOVA testing with random effects of interest 
Regression with random effects control for subject / 
item variance 
Regression with multiple predictors and control 
variables 
Regression with random effects of interest 
Repeated measures / control for hierarchical sampling 
Repeated measures with random effects of interest 

A4.2 

Model 
Comparison 

LRTs, AIC/BIC, LRTs & AIC/BIC, descriptive A4.3 

Statement on 
model 
selection 

What detail is given by the authors on how different 
models have been compared, or a final model 
selected? 

A4.4 

Convergance / 
Random Effect 
simplification 

What detail is given by the authors of any convergence 
issues and what was done to deal with this (e.g. model 
simplification)? 

Model 
equation 

Yes reported, not reported, given for some and not 
others 
 
 

A4.5 

Dependent 
variable 

RT, Errors / Categorical variable, RT & Errors, eye 
movement data, brain imaging data, other 

 

Fixed Effects 1 IV, IV & Control variables A4.6 
Fixed Effects 2 Main effects, main effects & interactions 
Random Effect 
approach  
(if mentioned) 

LRTs; LRT & AIC/BIC; LRTs/AIC for slopes; Maximal 
structure; LRTs backwards from maximal, LRTs 
upwards from minimal; LRTs against null 

A4.7 

Random Effect 
Intercepts 
modelled 

Subject, Item/other, Subject & Item/other, Subject, item 
& other, Item & other 

Random Effect 
Slopes 
modelled  

FE over subject, FE over item/other, FE over subject & 
items/other, FE over subject with interactions, FE over 
items/other with interactions, FE over subject & 



PREPRINT	NOT	PEER	REVIEWED:	Best	practice	guidance	for	LMMs	
	

	 42	

items/other with interactions 
Random Effect 
covariances 
modelled 

Yes reported as modelled, no not modelled, unclear 
whether modelled or not 

Reporting 
Format 

Text only 
Text & Tables 
Text, tables & figures 
Table & Figures 
Text & Figures 
Figures 
Tables 

A4.8 

Reporting 
Fixed Effects 

Coefficients 
Coefficients, t & p 
Coefficients, SE/CI 
Coefficients, SE/CI, t/z 
Coefficients, SE/CI, t/z & p 
Coefficients, SE/CI, p 
Coefficients, p 
t/z, p 
p 
Additional note if condition means reported, not 
coefficients. 

A4.9 

Reporting 
Random 
Effects 

Variance, variance & covariance, or not reported A4.10 

Model fit 
reported 

R2, model estimate correlation with data, R2 & est. 
correlations, AIC/BIC, Log Likelihood, other (define), 
no. 

A4.11 

P-values  
(if mentioned) 

Assume t > 1.96 / 2 
MCMC 
LRTs 
F tests 
Sattherwaite 
Kenward-Rogers 

A4.12 

Appendices for 
full reporting  
(if mentioned) 

Yes A4.13 

 

 

3.3 Results 

The complete data set can be found at osf.io/bfq39 and tables with counts in 

Appendix 4. Here we will summarize the data by walking through the stages of LMM 

analysis: model selection, evaluating significance and reporting results. Tables 

presenting counts in Appendix 4 follow the order below. 

 

3.3.1 Model Selection 
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The majority of papers used LMM (n=193), GLMM (n=88) or a combination of 

both LMM and GLMM (n=95). General Additive Models (GAMs) were rare in our 

sampled papers (n=5; see Table A4.1 in Appendix 4).  

 The majority of papers approached the use of LMMs as a variant on 

regression with random effects controlling for participant and item variation (n=272) 

but a number also used LMMs as a replacement for ANOVA (n=61). It was relatively 

rare for studies to look at the random effects as data of interest (n=13; see Table 

A4.2). The classic use of LMMs for hierarchical sampling designs was present 

relatively infrequently (n=26), which may be a result of the sampling process. LMMs 

have been used for a number of years in educational and organisational research to 

address questions concerning hierarchical sampling designs (Gelman & Hill, 2007; 

Scherbaum & Ferreter, 2009; Snijders, 2005). Baayen et al. (2008) – our seed paper 

- presents LMMs as a method to control for by participant and by item variation in 

experimental cognitive science.  

Reporting the model selection process was infrequent (typically present in 

~20-25 papers in each year; Table A4.3) and a wide variety of practices were 

present. Manuscripts reported “best fit” models following Likelihood Ratio Tests 

(LRTs) or Akaike Information Criterion or Bayesian Information Criterion (AIC/BIC) 

comparisons (n=23) or minimal model approaches in which models were simplified 

by removing fixed or random effects that were not significant (n=31). Models were 

also selected by moving from maximal to minimal models (n=6) or minimal to 

maximal models (n=8), or using backwards fitting (n=7).  

  Model comparisons for fixed effects were not present in all manuscripts 

(typically present in ~50-60 papers in each year; Table A4.4). This may be because 

researchers using experimental designs are modelling all fixed effects together (as in 

an ANOVA) rather than using model comparison to select them. When comparisons 

were present, the majority reported LRTs (n=129), with fewer reporting AIC or BIC 
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(n=12) or a combination of LRTs and AIC/BIC (n=20). Some papers described the 

model comparison process but did not provide data for the comparisons (n=54).  

Model comparisons for random effects were also not present in all 

manuscripts (Table A4.5). The numbers that did test for the inclusion of random 

effects increased over time (2013 = 16, 2014 = 33, 2015 = 43, 2016 = 42). When a 

specific approach was reported, there was a clear preference for using a maximal 

random effects structure (Barr et al., 2013; n=86), followed in frequency by a 

preference for using Likelihood Ratio Tests to determine random effects structures 

(LRTs, n=25). Less common was a combination of starting with a maximal structure 

and then using LRTs to simplify (n=11) or starting with a minimal structure and using 

LRTs to add more complex random effects (n=7). 

Reporting of convergence issues was increasingly common over the four-

year period (2013 = 2, 2014 = 8, 2015 = 14, 2016 = 21; Table A4.4), and a variety of 

methods were reported for dealing with this. For example, simplification by removing 

slopes (n=9), correlations between intercepts and slopes (n=2) or both slopes and 

correlations (n=4). Some manuscripts reported the “fullest model that converged” 

without specific detail on how simplification took place (n=14). 

Fixed effect predictors (Table A4.5) were most often modelled as main effects 

and interactions (n=287) as compared to main effects alone (n=94), the inclusion of 

control variables was also common (n=109). The vast majority of models included 

random intercepts for both participants and items (Table A4.6, n=277), with a good 

number that included intercepts for participants only (n=64). Random slopes were 

present in around half the papers (2013 = 41, 2014 = 50, 2015 = 67, 2016 = 58; 

Table A4.6). Most commonly, random slope terms were included to capture variation 

in fixed effect predictors varying as main effects over participants (n=78) or over both 

participants and items (n=94). It was less common to include the variation of fixed 

effect interactions as slopes over subjects and/or items (n=36). Where random 

slopes were modelled, it was rare for manuscripts to explicitly report whether 
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correlations or covariances between intercepts and slopes had been modelled (~10-

15 papers per year) and this information was often unclear or difficult to judge (n=63).  

A simple way to report the structure of a model is to provide the model 

equation (Table A4.7); this was given in a minority of papers with a clear increase 

over time (2013 = 7, 2014 = 6, 2015 = 26, 2016 = 22, total n = 61). However, the 

majority of papers did not provide this information (n=317). 

 

3.3.2 Evaluating significance 

We classified 10 different combinations or approaches to evaluating 

significance for fixed effects (see Table A4.8). It is worth noting that only around half 

the papers reported the method used (n=207), so we can assume that researchers 

employed methods that were defaults for software packages. The main methods 

reported were: MCMC bootstrapping procedures available in R (n=71); assuming t 

was normally distributed and taking t>1.96 or t>2 as significant (n=52); or taking p-

values for fixed effects from Likelihood Ratio Tests (LRTs) comparing models with 

and without the effect of interest (n=40). Other options for evaluating significance 

involved using approximations for calculating degrees of freedom (e.g., Sattherwaite, 

n=20; number of observations – fixed effects n=2), or using F tests calculated over 

the model output (n=23) (see further discussion in Section 4.1.5 and 4.1.6). 

It was very rare for measures of model fit to be reported (Table A4.9), with 

most papers not providing this information (n=330). When model fit information was 

provided, it was most often the Log Likelihood or AIC/BIC value (n=35) which are 

informative relative to another model of the same data. R2 was provided in few cases 

(n=8).  

 

3.3.3 Reporting results 

Manuscripts typically used text, tables and figures to report model output 

(n=151) although other options were evenly split over text and tables (n=85) and text 
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and figures (n=94), with several only reporting model output in the text (n=52; Table 

A4.10). Thus, many papers do not provide a summary of model output in a table, as 

you would expect for an analysis using multiple regression. 

We saw every possible variation in reporting fixed effects (Table A4.11). The 

majority reported fixed effect coefficients, standard errors or confidence intervals, test 

statistics (t/z) and p-values (n=128). It was also common to report the coefficients 

and the standard error or confidence intervals with a test statistic but no p-value 

(n=52), a p-value but no test statistic (n=39), coefficients without standard errors or 

confidence intervals (n=73), or to provide only a test statistic or a p-value (n=43). 

Most studies did not report random effects at all (Table A4.12, n=304), with 

only 51 papers reporting variances and 23 reporting variances and correlations or 

covariances. 

A small number of papers used appendices to provide a complete report on 

model selection, fitting and code used for analysis (n=25, Table A4.13). 

 

 

3.4 Discussion  

The variation in practice evident from the review of papers mirrors the 

uncertainty reported by surveyed researchers. Naturally, some of the variation will be 

attributable to what is appropriate to the data and the hypotheses (e.g., the use of 

LMMs or GLMMs, the modelling of main effects only or interactions). What concerns 

us is the evidence for unnecessary or arbitrary variation in the reporting of LMMs. 

Because it is arbitrary, this variation will make analyses difficult to parse and it will 

incubate an irreducible difficulty (given low rates of data or code sharing) for the 

aggregation or summary of psychological findings. This difficulty will, necessarily, 

impede the development of theoretical accounts or practical applications. 

 Prior to completing this work, we hypothesized that models were being used 

in different ways by the research community – as an alternative to multiple 



RUNNING	HEAD:	Best	practice	guidance	for	LMMs	

	 47	

regression or as an alternative to ANOVA. We found some support for this, the vast 

majority of models (70%) were framed as regression analyses, and around 15% as 

ANOVA analysis. We also found other approaches, for example, whether the random 

effects were reported as data of interest, or whether the study was explicitly 

controlling for a hierarchical sampling procedure. Around 56% of the papers reported 

some form of model comparison but did not always then give informative detail. For 

model selection, 24% provide explicit detail on the approach taken for fixed effects 

and around 35% provided detail on how the random effects structure had been 

chosen. The review of papers clearly shows both diversity of practice and a lack of 

transparency and detail in reporting. This makes the diversity confusing rather than a 

source of information. In this context, it is not surprising researchers report confusion 

and lack of knowledge. 

Of particular interest was the variation in how significance was established. 

Only half the papers reported the method used, yet we encountered 10 different 

methods for testing significance in use. Depending on the study (e.g., confirmatory 

hypothesis testing or data exploration) researchers will have different needs for their 

analysis (Cummings, 2012). When replacing ANOVA or ANCOVA, researchers might 

want something similar to an F test that provides a p-value for the main effect or the 

interaction effect. This can be achieved by testing to see if the inclusion of a predictor 

improves model fit (e.g., Frisson et al., 2014; Trueswell et al., 2013). Alternatively, an 

ANOVA can be used to get F-tests for predictors. Here, the ANOVA summarises the 

variation across levels of a predictor in the model, and therefore how much variation 

in the outcome that predictor accounts for (e.g., if there is zero variation across 

experimental conditions, that manipulation does not change the outcome; Gelman & 

Hill, 2007). It is interesting to note that Gelman and Hill (2007) suggested the latter 

use of ANOVA not as a final analysis step in establishing significance, but as a tool 

for data exploration to inform which predictors are interesting when building models.  
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We found 63 papers that evaluated significance by using F tests or model 

comparison (~30% of the papers that reported a specific method of testing 

significance). However, it was not the case that LMMs framed as ANOVA always 

used this method for evaluating significance: such cases were evenly split across 

analyses framed as ANOVA (n=30) and those framed as regression (n=31, see 

Table A4.14).  Where the analysis was framed as regression, we expected that it 

would draw on the power of LMMs to account for nested sampling groups (e.g., 

geographic or genealogical relationships between different languages, Jaeger, Graff, 

Croft, & Pontillo, 2011), modelling the influence of individual differences (e.g., such 

as age, Davies et al., 2017), change over time in repeated measures data (e.g., 

Walls & Schafer, 2006), or accounting for multiple predictor variables (Baayen & 

Milin, 2010; Davies et al., 2017). What researchers might want here is more similar to 

regression, exploring model building and comparison (e.g., Goldhammer et al., 2014) 

and coefficients for predictor variables. The vast majority of manuscripts were framed 

as regression and reported the significance of coefficients (n=122). Interestingly, it 

was almost never the case that papers reported both whether a coefficient was 

significant and whether the inclusion of that predictor improved model fit (n=2).  

 

 

 

4.0 General Discussion 

 

Linear Mixed-effects Models (LMMs) have, for good reason, become an 

increasingly popular method for analyzing data across many fields but our findings 

outline a problem that may have far-reaching consequences for psychological 

science even as the use of these models grows in prevalence. We present a 

snapshot of what psychological researchers think about mixed-effect models, and 

what they do when they publish reports based on their results. A survey of 
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researchers reveals that we are concerned about applying LMMs in our own 

analyses, and about the use of LMMs across the discipline. These widely-held 

concerns are linked to uncertainty about how to fit, understand and report the 

models. We may understand the reasons why we should use them but many among 

us are unclear how to proceed, as writers or as reviewers, in the absence of clear 

guidance, and in the face of marked inconsistencies in reporting practices. These 

concerns are mirrored in a striking diversity apparent in the ways in which 

researchers specify models, present effects estimates, and communicate the results 

of significance tests. 

We observe that it is the reporting of models that is the principle point of 

failure. We find substantial, seemingly arbitrary, variation across studies in the 

information communicated about models and the estimates derived from them. We 

predict that this variation will make analyses difficult to parse, and thus will seed an 

irreducible difficulty for the future for the accumulation of psychological evidence. We 

saw that model equations were very rarely reported, though this is a simple means to 

communicate the precise structure of both fixed and random effects. Papers using 

LMM analysis do not always provide a complete summary of the model results. Fixed 

effect coefficients were not always reported with standard errors or confidence 

intervals. Random effects were hardly reported at all. These are all essential data for 

meta-analysis and power analysis. Curiously, then, the reporting of LMMs often 

ignores the key reason for using the analysis in the first place: an explicit accounting 

for the variance associated with groupings (sampling units) in the data. Random 

effect variances and covariances allow us to see just how much of the variance in the 

data can be attributed to, for example, individual variation (e.g., fast or slow 

participants) and the predicted effects (e.g., do fast participants always show a 

smaller effect?). If we care about psychological mechanisms, these are valuable 

observations that are simply not being reported. 
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The need for common standards was raised in relation to core aspects of 

working with LMM analysis, including model building, model comparison, model 

selection, and the interpretation of results. There are varying ways to build any 

statistical model, for example, in linear regression (e.g., stepwise model selection, 

simultaneous entry of covariate predictors) and so there are varying ways to build an 

LMM. There is no one approach that will suit all circumstances, therefore researchers 

should report and justify the process they took. A number of recent studies have 

shown how the results for experimental data can vary substantially depending on 

alternate more-or-less reasonable-seeming decisions taken during data analysis 

(Gelman & Loken, 2013; Silberzahn & Uhlmann, 2015; Simmons et al., 2011; see, 

also, Patel, Burford, & Ioannidis, 2015). The more complex the analysis pipeline, the 

greater the possible number of analyses, and the greater the likelihood of 

widespread but undocumented variation in practice.  We do not identify the existence 

of alternate analytic pathways as inherently troubling – the path we take during 

analysis is always one amongst many. The difficulty for scientific reasoning stems 

from the occlusion of approaches, decisions and model features by inconsistent or 

incomplete reporting. 

In general, maybe we as a field can live with a balance in which data are 

sacred but analyses are contingent. On publication, we share the data and analysis 

as transparently as possible, and seek to guarantee its fidelity. We do not assume 

that an analysis as-published will be the last word on the estimation of effects carried 

in the data. We allow that alternate analyses may, in future, lead to revision in 

estimated effects. This approach would be supported by a reduced reliance on 

significance cut-offs and a greater focus on effect sizes themselves. A more 

systematic exploration of the sensitivity of results to analytic choices may permit the 

field to build	in robustness to results reporting. In a helpful recent discussion, Gelman 

and Hennig (2017) explore the ways in which researchers can usefully move to 

considering statistical analyses in terms of transparency, consensus, impartiality, 
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correspondence to observable reality, and stability. Consistent with our analysis of 

the application and reporting of mixed-effects models in psychological science, 

Gelman and Hennig (2017) advocate, moreover, the broader acknowledgement of 

multiple perspectives, the ways in which different decisions can be made given 

differing perspectives or in different contexts, and the rigorous explanations of our 

choices given the possibility of alternate approaches. It may be that we shall see, 

increasingly, that analyses addressing scientific hypotheses are supplemented by 

examinations of the stability of estimates over reasonable variants in approach. We 

are certain, however, that transparency in reporting will be foundational to progress. 

 

 

4.1 Best Practice Guidance 

 

In the following sections, we present short discussions and recommendations 

for practice for the key areas highlighted by the survey and review results. We offer, 

in Table 7, advice concerning best practice in reporting LMMs. 

 

4.1.1 Preparation for using LMMs 

 A number of researchers are moving from analysing factorial design data  

with ANOVA to analysing factorial design data with LMMs. In this context, the sample 

of experimental stimuli or trial types needs to be carefully considered to furnish the 

sensitivity sufficient to detect experimental or observed effects (see below), and the 

computational engine (most often, maximum likelihood estimation) for LMMs 

assumes a large sample size (Maas & Hox, 2004; 2005). It is our view that some 

issues with convergence are likely caused by researchers using LMMs to analyse 

relatively small sets of data. With smaller samples, it is less likely that a viable 

solution can be found to fit the proposed model to the data. It is worth highlighting 

that the literature on mixed-effects models defines ‘small’ as 50 or fewer sampling 
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units (Bell et al., 2010; Maas & Hox, 2004; 2005). A researcher may be interested in 

the effect of frequency, testing this with 10 high frequency and 10 low frequency 

words. In an ANOVA, the participant average RT for the high and low frequency 

words would be calculated. In an LMM, this would be the coefficient for frequency 

(e.g. Figure 4a). However, a random effect may also be fit to model how this effect 

differs for each participant (e.g. Figure 4b). In this case, the model only has available 

20 data points per participant (10 high and 10 low) and this may simply be insufficient 

to complete the computation (Bates et al., 2015). With more complex random effect 

structures (e.g., maximal structures for some designs, after Barr et al., 2013) and 

perhaps no change in how researchers plan experiments, it is unsurprising that 

convergence issues have become increasingly common.  

In short, plan to collect data for as many stimuli and as many participants as 

possible. This comes with the caveat that with very large sample sizes, smaller 

effects can become ‘significant’ even though they may not be meaningful. We direct 

researchers to the discussion in Section 4.1.6 below, and the very sensible advice 

from the American Statistical Association (Wasserstein & Lazar, 2016) to move away 

from cut-offs for interpreting p values. Where smaller sample sizes are unavoidable 

(e.g. recruitment of hard to reach or specialist populations, difficulty generating large 

samples of stimuli), researchers should - of course - acknowledge this limitation. 

They should also examine	(see	osf.io/bfq39/files/ 

LMMs_BestPractice_Example_withOutput) the random effects and consider their 

validity. Convergence issues may mean that the fitting of random effects for some 

terms is not possible. Random effect variances that are close to zero indicate there is 

little variance to be accounted for in the data. Random intercepts and slopes that 

show high or near perfect correlations may indicate over-fitting. 

   

4.1.2 Power Analysis for LMMs  
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 It will surprise no-one that power analysis for LMMs is complicated. This is 

principally because study design features like the use of repeated measures require 

multiple level sampling (e.g., of participants, of stimuli) and entail a hierarchical or 

multilevel structure in the data (grouping trial-level observations, say, under 

participants or stimuli) (Scherbaum & Ferreter, 2009; Snijders & Bosker, 1993; 

Snijders, 2005). If, for example, a researcher presents all 20 stimuli to each of 20 

participants, in each condition of a factorial design, the data sample can be 

characterized in terms of the lowest level of sampling (the individual observations, 

n=400, of each response by a participant to a stimulus) but also in terms of higher-

level groupings, or sampling units (the number of participants and the number of 

items), while the mixed-effects model may incorporate terms to estimate effects or 

interactions between effects within and across levels of the hierarchical data 

structure (i.e. effects due to participant attributes, stimulus properties, or trial 

conditions). In addition, for LMMs, we can usefully consider the power to accurately 

estimate fixed effect coefficients, random effect variances, averages for particular 

sampling units or interactions across those units (Scherbaum & Ferreter, 2009; 

Snijders, 2005). From hereon we will focus only on power to detect fixed effect 

predictors.  

  For fixed effects, power in LMMs does not increase simply as the total sample 

of observations increases. Observed outcome values within a grouping (e.g., trial 

response values for a given participant) may be more or less correlated. If this 

correlation (the intra-class correlation for a given grouping) is high, adding more 

individual data points for a grouping does not add more information (Scherbaum & 

Ferreter, 2009). In other words, if the responses across trials from a particular 

participant are highly correlated, the stronger explanatory factor is the participant, not 

the individual trials or conditions (as we saw in the example in Section 1.1). Getting 

the participant to do more trials does not increase power. This also means that 

accurate power estimation for LMMs requires us to estimate or know the variation 



PREPRINT	NOT	PEER	REVIEWED:	Best	practice	guidance	for	LMMs	
	

	 54	

within and between sampling units, e.g., for trials within subjects (Snijders & Bosker, 

1993; Scherbaum & Ferreter, 2009). This is one of the reasons why reporting 

random effect variances is so important for the field. 

The general recommendation is to have as many sampling units as possible, 

since this is the main limitation on power (Snijders, 2005), where sampling units 

consist of the sets by which the lowest level of observations (e.g., trial-level 

observations) are grouped, where groupings can be expected to cause correlations 

in the data (Bell, Morgan, Kromery & Ferron, 2010; Maas & Hox, 2005; 2006). Fewer 

sampling units will mean that effects estimates are less reliable (underestimated 

standard errors, greater uncertainty over estimates; Bell et al, 2010; Maas & Hox, 

2004; 2005). When looking across a range of simulation studies, Scherbaum & 

Ferreter (2009) concluded that increasing numbers of sampling units is the best way 

to improve power (this held for the accuracy of estimating fixed effect coefficients, 

random effect variances and cross-level interactions). For psychological research, 

this means 30-50 participants, and 30-50 items or trials for each of those participants 

completing each condition (i.e. a total sample of 900-2500 data points; Scherbaum & 

Ferreter, 2009). For example, assuming typical effect sizes of 0.3-0.4 (scaled in 

standard deviations), Brysbaert and Stevens (2018) recommend a minimum of 40 

participants and 40 items (1600 data points). It bears repeating that any power 

analysis is dependent on the effect sizes under consideration so there is no simple 

rule (e.g., “just use 40 participants and 40 items”). In parallel, it is an empty critique to 

say that studies are ‘underpowered’ unless we can guess the likely effect sizes.  For 

example, with LMM analysis a typical factorial experiment in psychology with 30 

participants responding to 30 stimuli has power of 0.25 for a small effect size (0.2) 

and 0.8 for a medium effect size (0.5, see Figure 2 in Westfall, Kenny & Judd, 2014). 

To achieve a power of 0.95 for this number of participants and stimuli, you need a 

minimum effect size of around 0.6. Recall that 0.4 is a typical effect size for 

psychological studies (Brysbaert & Stevens, 2018). Adding more participants alone 
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does not remedy this problem (Luke, 2016), as power asymptotes due to the 

variation in stimuli (Westfall, Kenny & Judd, 2014). This links back to the issue 

identified above: the higher-level groupings (sampling units) in the data influence 

variation (responses for the same participant are correlated, responses for the same 

items are correlated) so ideally, the numbers for all sampling units should be 

increased. Ultimately, these considerations may change the design of the study. 

 Brysbaert and Stevens (2018) provide an easy to read tutorial on conducting 

power analysis to detect fixed effects. They show how to use the online application 

from Westfall, Kenny and Judd (2014, jakewestfall.shinyapps.io/two_factor_power/)  

as well as power analysis using simulated data in R. For the online application from 

Westfall et al (2014), researchers need (a) an estimate of the effect size for the fixed 

effect (b) estimates for the variance components – i.e. the proportion of the total 

variance that each random effect in the model accounts for and (c) the number of 

participants and the number of items. For power analysis from simulation, 

researchers would ideally use pilot data or data from a published study. It is also 

possible, with some skill, to generate data sets that give an ‘idealised’ experiment 

outcome (e.g. a significant effect of some reasonable size) and base power analysis 

on that. It is worth stressing that without the full reporting of random effects in 

publications and more common sharing of data we are severely limiting our ability to 

conduct useful a-priori power analysis. Appendix 2 lists packages available for LMM 

power analyses, but we strongly recommend Brysbaert & Stevens (2018) as a 

starting point. 

 

4.1.3 Assumptions for LMMs 

Researchers should check whether the assumptions of LMMs have been 

met. For LMMs, we take the same assumptions as for regression (linearity, random 

distribution of residuals, homoscedasticy; Maas & Hox, 2004; 2005) except that 

LMMs are used because the independence assumption is violated because we know 
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that data are grouped in some way, so observations from those groups are 

correlated. For LMMs, we assume that residual errors and random effects deviations 

are normally distributed (Crawley, 2012: Field & Wright, 2011; Pinheiro & Bates, 

2000; Snijders & Bosker, 2011). The simplest way to check these assumptions is to 

plot residuals and plot random effects. The script associated with Section 1.1 

provides some R code for plotting random effects. For plotting residuals and 

checking model assumptions, we refer readers to the excellent tutorial by Winter 

(2013). It has been shown that non-normally distributed random effects do not 

substantially affect the estimation of fixed effect coefficients but do affect the 

reliability of the variance estimates for the random effects themselves (Maas & Hox, 

2004). 

 

4.1.4 Selecting Random Effects 

The literature suggests that two approaches can sensibly be taken. 

Researchers may choose to select random effects according to experimental design 

(Brauer & Curtin, 2018; Barr et al 2013), and this can result in a maximal to minimal-

that-converges modelling process (more on this below). Alternatively, researchers 

can select random effects that improve model fit (Bates et al., 2015; Linck & 

Cunnings, 2015; Magezi, 2015). This results in a minimal to maximal-that-improves-

fit process. In both cases, the random effects part of the model is built first. Once it is 

established, fixed effects are added.  

  Selecting random effects according to experimental design has been 

recommended for confirmatory hypothesis testing (Barr et al, 2013) and this is the 

most common situation for researchers in experimental psychology. The steps are to 

identify the maximal random effects structure that is possible for the design, and then 

to see if this model converges (whether the model can be fit to the data).  Brauer and 

Curtin (2018) helpfully summarise Barr et al (2013) with three rules for selecting a 

maximal random effects structure, add: (1) random intercepts for any unit (e.g., 
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subjects or items) that cause non-independence in the data; (2) random slopes for 

any within-subject effects; and (3) random slopes for interactions that are completely 

within-subjects.  

  Many readers will have found that complex random effect structures may 

prevent the model from converging. This often occurs because the random effects 

specified in the model are not present in the data (Bates et al., 2015; Matuschek et 

al., 2017). For example, when a random effect is included to estimate variance 

associated with differences between participants in the effect of a within-subjects 

interaction between variables, while in the data the interaction does not substantially 

vary between participants, researchers would commonly find that the random effect 

cannot be estimated. Solutions to convergence problems may include the 

simplification of model structure (Brauer and Curtin, 2018; Matuscheck et al, 2017), 

using Principal Components Analysis to determine the most meaningful slopes 

(Bates et al., 2015), switching to alternate optimization algorithms (see comments by 

Bolker, 2015), or indeed to alternate programming languages or approaches (e.g., 

Bayes estimation, Eager & Roy, 2017). We strongly recommend the summary 

provided by Brauer and Curtin (2018), where a step-by-step guide is provided for 

dealing with convergence issues and, in particular, steps to take for simplification 

from a maximal model. 

  Alternatively, researchers may select random effects that improve model fit 

(Linck & Cunnings, 2015; Magezi, 2015). Matuscheck et al. (2017) demonstrated that 

models are more sensitive (in the detection of fixed effects) if random effects are 

specified according to whether Likelihood Ratio Test (LRT) model comparisons 

warrant their inclusion, that is, according to whether or not the random effects 

improve model fit. Matuschek et al. (2017) contend that we cannot know in advance 

whether a random effect structure is supported by the data, and that in the long run, 

fitting models with random effects selected for better model fit means that the 

researcher can effectively manage both Type I and Type II error rates. So, under this 
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process, the random effects are built up successively and tested at each point to see 

if they improve model fit, beginning with intercepts, slopes for main effects, then 

intercepts and slopes, and then interactions between main effects. Researchers may 

find that certain random effect terms do not improve model fit, or that the model does 

not converge with some terms. In the model output, random effect variances may be 

estimated as close to zero. Either outcome suggests the random effect being 

modelled is not present in the sample. Where covariances are modelled (correlations 

between intercepts and slopes), perfect correlations between random effect terms 

can indicate over-fitting. That is, all the variance explained by the random slope is in 

fact already explained by fitting the random intercept (leading to a perfect correlation 

between these terms). In this case, it is unlikely that the inclusion of the slope would 

improve model fit.  

Our focus on random effects reflects the novelty of this requirement for 

psychological research, and the conceptual and computational challenges involved: 

what effects can be specified? (Barr et al., 2013); what effects allow a model to 

converge? (Eager & Roy, 2017). More broadly however, our discussion reflects a 

general point about model specification and selection: why should we want to build 

all models in the same way? The two options we have outlined above for selecting 

random effects are both reasonable and well-motivated. It should be left up to 

individual researchers to choose the approach they prefer and to give the rationale 

for that choice.  

 

4.1.5 Model comparison and model selection 

 There is a tradition of data analysis in psychological research in which factorial 

ANOVAs are used to test all possible main effects and interactions, given a study 

design, in an approach that appears objective. We acknowledge that this approach 

appears to relieve the researcher of the need to make decisions about the model 

(though it may require decisions about the data, Steegen et al., 2016; and though 
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decisions may be involved in subtle ways, Gelman & Hennig, 2017; Simmons et al., 

2011). It is tempting, therefore, for researchers to adhere to a prominent set of 

recommendations as the ‘one true way’ to complete analysis, disregarding the fact 

that LMMs require an explicit modelling approach. Comparable with other modelling 

approaches (e.g., growth curve modelling, structural equation modelling), however, 

we advocate that there should be a clear statement of the criteria used when 

selecting model parameters and these should be principally driven by the research 

questions.  

 

4.1.5.1 A pragmatic approach to life with multiple models 

  It would be productive for the field if we acknowledge that the approach we 

take during analysis is typically to choose one course given alternatives. We should 

ask the questions “How was your study designed?” and “What do you want to know 

from the data?” and “Given that, why have you taken the approach you have taken?”.  

So, it is inevitable that researchers will end up building and testing multiple models 

when working with LMMs. In the context of testing data from an experimental design 

(e.g., the kind of factorial design that would traditionally be analysed using an 

ANOVA), it is sensible for the fixed effects to be defined around the experimental 

conditions (see, e.g., Barr et al, 2013; Schad, Vasishth, Hohenstein & Kliegl, 2018). 

However, researchers may have fixed effect variables that they wish to analyse in 

addition to the experimental conditions. These could be added after the experimental 

conditions, added at the same time, or tested for inclusion. Naturally, the approach 

taken will depend on the hypotheses. As we have stated above, there is no single 

correct approach that will apply across all situations.  

    There are several approaches to model selection. In a controlled experimental 

study, the hypotheses about the fixed effects may be entirely specified in terms of the 

expected impact of the experimental conditions, and these could then be entered all 

at once (as for ANOVA). Alternatively, researchers may be interested in finding the 
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simplest explanation for the data. In this case, they might start with the most complex 

model, incorporating all possible effects implied by the experimental design, and 

remove terms that do not influence model fit (i.e., where a simpler model may explain 

the data comparably to a more complex model). The approach taken by a researcher 

should be justified with respect to their research questions, and assumptions. 

 

4.1.5.2 Model comparison 

 Model comparison can be completed using information criteria (e.g., the Akaike 

Information Criterion, AIC, and the Bayesian Information Criterion, BIC; see 

discussions in Aho, Derryberry, & Peterson, 2014) and Likelihood Ratio Tests 

(LRTs). LRTs apply when models are nested (the terms of the simpler model appear 

in the more complex model) and the models are compared in a pairwise fashion (see 

discussions in Luke, 2016; Matuschek et al., 2017). If not nested, models can be 

evaluated by reference to information criteria. Aho et al. (2014) argue that AIC and 

BIC may be differently favoured in different inferential contexts (e.g., in their account, 

whether analyses are exploratory (AIC) or confirmatory (BIC)), and we highlight, for 

interested readers, a rich literature surrounding their use (e.g., Burnham & Anderson, 

2004; see, also, McElreath, 2015). However, LRT model comparisons are often 

useful as a simple means to evaluate the relative utility of models differing in discrete 

components (models varying in the presence vs. absence of hypothesized effects). 

The LRT statistic is formed as twice the log of the ratio of the likelihood of the more 

complex (larger) model divided by the likelihood of the less complex (smaller) model 

(Pinheiro & Bates, 2000). It can be understood as a comparison of the strength of the 

evidence, given the same data, for the more complex versus the simpler model. The 

likelihood comparison yields a p-value (e.g., using the anova() function in R) because 

the LRT statistic has an approximately c2 distribution, assuming the null hypothesis is 

true (that the simpler model is adequate), with degrees of freedom equal to the 

difference between the models in the number of terms. 



RUNNING	HEAD:	Best	practice	guidance	for	LMMs	

	 61	

 When comparing models using LRTs, successive models should differ in either 

their fixed effects or their random effects but not both. This is because (a) models 

tested with LRTs must be nested and (b) a change in the random effect structure will 

change the values of the fixed effects (and vice versa). Models can be generated 

using maximum likelihood (ML) or restricted maximum likelihood (REML). Both 

methods solve model fitting by maximizing the likelihood of the data given the model. 

When comparing models that differ in their fixed effects, it is recommended to use 

ML estimation for the models. This is because REML likelihood values depend on the 

fixed effects in the model (Faraway, 2016; Zuur et al, 2009). When comparing 

models that differ in their random effects, it is recommended to use REML estimation 

for the models. This is because ML estimates of random variance components tend 

to be underestimated in comparison with REML estimates (Zuur et al, 2009).  

 Researchers may be concerned whether there need to be corrections for 

multiple comparisons when multiple models are being compared using LRTs. If a 

complex model is being built and LRTs are being used at each step to judge the 

inclusion or exclusion of a particular effect, should there be an adjustment to the 

alpha level to reflect the volume of comparisons being made? The problem can be 

framed in terms of the simplification of a model where greater complexity is rejected 

because the more complex model is found, by means of the LRT comparison, to fit 

the data no better than the simpler model. A simpler model, in that circumstance, will 

be associated with too narrow confidence limits and too small p-values, however 

good the overall fit, because degrees of freedom corresponding to the dismissed 

complexity (the rejected larger model) are then not accounted for in the estimation of 

standard errors for the simpler model (cf. Harrell, 2001). More generally, p-values 

depend upon the researcher following their intentions: adhering to prior sampling 

targets, or completing as many statistical comparisons as were planned (Kruschke, 

2013). Therefore, our advice would be that, firstly, researchers should be explicit 

about the models they fit and evaluate. Secondarily, if researchers plan to perform 
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significance tests, they should consider the utility of pre-registering experimental data 

collection and analysis plans (Nosek, Ebersole, DeHaven, & Mellor, 2018). 

   

4.1.5.3 Using multiple models to test for robust effects 

It is worth considering how variation in data preparation and model building 

can be harnessed to clarify the stability or sensitivity of effect estimates. Steegen et 

al. (2016) described multiverse analyses, in which all possible data sets are 

constructed from a sampling of the alternative ways in which raw data can be 

prepared for analysis (e.g., with variations on outlier exclusion, variable coding) and 

the analysis of interest is then performed across these data sets. P-value plots can 

be used to show how effects vary across differently collated data sets, indicating the 

robustness of results, or potential holes in theory or measurement. Patel, Burford and 

Ioannidis (2015) describe the “vibration of effects” or VoE which shows the variation 

in effect estimates across different models. This is particularly applicable in cases 

where there are many ways to specify models, and many possible variables or 

covariates of interest. VoE analysis shows how the influence of a variable changes 

across models and as more covariates are included (adjustment variables).  

 

4.1.5.4 Reporting Model building  

  The problem we have identified, the arbitrary variation in reporting and 

analytic practice, is not insoluble. When multiple models have been fit to reach a final 

‘best model’, best practice is to report the process of comparison. Appendix Table 

A5.1 offers a format for reporting LRT model comparisons concisely. When multiple, 

equally plausible, models of the data are possible, a fruitful approach is to examine 

the variation in estimates across a series of models and report this as a test of the 

robustness of effects (Patel et al, 2015).  

 In an era of online publication, it is straightforward for appendices and 

supplementary materials to house additional information. The provision of analysis 
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scripts and data with publication are a straightforward means to repeat or modify 

analyses if researchers (and reviewers) so wish. With the increasing use of pre-

registration, researchers will specify in advance the modelling approach they will use. 

This may include an actual model to be fit (i.e. a model equation), but at minimum it 

should include the dependent variable(s), fixed effects, covariates, a description of 

how random effects were chosen and the method by which model selection will take 

place (e.g. simple to complex, covariates first etc.). To be truly comprehensive it 

should also have an a-priori power analysis (see section 4.1.2); this alone would 

mean the model (or alternative models) are well specified beforehand. 

  

4.1.6 Testing the significance of fixed effects 

  Researchers familiar with ANOVA will know that significance tests typically 

require the specification of model and error (denominator) degrees of freedom. 

Computing degrees of freedom for significance tests in LMMs is a non-trivial problem 

(Baayen at al., 2008; Bates, 2006; Luke, 2016). For models with a hierarchical 

structure it is not clear how to define the denominator degrees of freedom (e.g., by 

number of observations, number of participants, or number of random effects). As 

Luke (2016) notes, researchers may prefer to use model comparison with LRTs to 

evaluate the significance of a fixed effect as this method does not require 

computation of denominator degrees of freedom. The lme4 package in R (Bates et 

al, 2015) provides a summary guide to how p-values can be obtained for fitted 

models (search for help(“pvalues”) when lme4 is installed), with a number of different 

options for confidence intervals, model comparison and two named methods for 

computing degrees of freedom (Kenward-Roger, Satterthwaite).  Clearly, one reason 

why multiple methods for computing p-values appear in the literature is that a variety 

of options are available.  

Luke (2016) used simulations to compare different methods for computing 

significance in LMMs. In pairwise model comparisons, observed likelihood ratios are 
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associated with p-values under the assumption that the distribution of the LRT 

statistic approximates the c2 distribution. Alternatively, the t statistics associated with 

model coefficients can be treated as z scores, where t > 1.96 effects can be taken to 

be significant (at the .05 alpha level). Luke (2016) found that interpreting t as z is 

anti-conservative, especially for small samples of participants and items and, 

critically, that this risk is independent of the total number of observations because 

one cannot compensate for small numbers of participants with large numbers of 

items. In our literature review, LRTs and t-as-z approaches were the most commonly 

used in published manuscripts. Luke (2016) reports that Satterthwaite and Kenward-

Rogers approximations when applied to models estimated with REML yield relatively 

robust significance tests across different samples sizes. Following Luke (2016), we 

recommend the use of these methods when p-values are needed for fixed effects. If 

researchers want to complete the equivalent of ANOVA omnibus and follow up tests, 

they can perform an LRT when a fixed effect is added to the model (omnibus test) 

and then compute contrasts (the follow up tests) from the model (see Schad, 

Vasishth, Hohenstein & Kliegl, 2018, for detailed guidance on performing contrasts in 

R). In summary, once the final model is established, it can be estimated with REML, 

and significance tests for model coefficients can be performed using Satterthwaite or 

Kenward-Rogers approximate degrees of freedom.  

Alternatively, some researchers argue for abandoning dichotomous “above or 

below 0.05” thresholds (Amrhein, Greenland & McShane, 2019; Wasserstein, Schirm 

& Lazar, 2019; Wasserstein & Lazar, 2016). This is in line with a now substantial 

body of work arguing for a change in how Null Hypothesis Significance Testing 

(NHST) and frequentist statistics are used. For example, reporting means or 

coefficient estimates and confidence intervals but not p-values (Cumming, 2013a; 

2013b) or interpreting p-values as just another piece of information about the 

likelihood of the result (Wasserstein, Schirm & Lazar, 2019). We strongly advise 
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readers to familiarize themselves with the American Statistical Association’s 

statement on p-values (Wasserstein & Lazar, 2016). 

An increasing number of researchers advocate the adoption of Bayesian 

analysis methods (Kruschke, 2013; McElreath, 2015) in which estimates for fixed 

effects coefficients and random effects variances (or covariances) are associated 

with posterior distributions that allocate varying probabilities to different potential 

effect values. Researchers familiar with lme4 model syntax (Baayen et al., 2008; 

Bates et al., 2015) can apply the same syntax to fit Bayesian mixed-effects models 

(using the brms library, Burkner, 2017). With Bayesian models, researchers can 

identify the credible interval encompassing the plausible estimates for an effect (see 

Vasishth, Nicenboim, Beckman, Li, & Kong, 2018, for a helpful recent tutorial; see 

Nicenboim & Vasishth, 2018, for an example report in this journal) instead of seeking 

to test (only) the existence of the effect (Kruschke, 2013). Bayesian model fitting 

encourages the incorporation of prior beliefs about the varying plausibility of potential 

estimates for target effects. For example, researchers interested in the effect of word 

attributes on response latency in reading tasks would, perhaps, suppose a priori that 

the coefficient for a hypothesized effect in this domain would be captured by an 

estimate associated with a normal probability distribution centered on 0, with a 

standard deviation of plus or minus 10. This quantifies the belief that psycholinguistic 

effects vary in size and direction, are of the order of tens of milliseconds, and that 

some hypothesized effects may tend to zero. Relevant to earlier discussion, recent 

work has shown that problems encountered with convergence for more complex 

mixed-effects models can be avoided through using Bayesian model fitting given the 

specification of prior information (Eager & Roy, 2017). Essentially, this is because the 

incorporation of prior information directs model fitting processes away from extreme 

values (e.g. random effects variances close to zero) that can cause problems for 

convergence. Regardless of whether models are fit with frequentist or Bayesian 
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methods, reporting of the modelling process needs to be entirely transparent. 

 

4.1.7 Reporting 

The standard for publication should be that other researchers can reproduce 

the study itself, as well as the study’s results on the basis of the reported method, 

analysis approach and data (if available) (e.g., Open Science Collaboration, 2015). It 

is our judgment that many issues arise because of ‘under-reporting’ – that is, 

insufficient information provided in publications on the analysis steps (Gelman & 

Loken, 2013; Silberzahn & Uhlmann, 2015; Simmons et al., 2011) and for LMMs 

more specifically, incomplete reporting of model results. Table 7 provides guidance 

for the reporting of LMMs (more specific guidance on Generalised Linear Mixed-

effects Models can be found in Bolker et al., 2009).  

  We have been asked what to do about the extensive documentation required 

by what we see as best practice, comprehensive, reporting. The simple solution is for 

researchers to share their data analysis scripts with publication. Scripts show exactly 

what decisions have been taken and exactly how models were selected and 

compared. When provided with data, they allow any other researcher to replicate 

entirely the reported results. Researchers using R may also consider making their 

whole analysis reproducible (Marwick, Boettiger, Mullen, 2018). This can be 

achieved with packages such as docker, which creates a container (a stand-alone 

application, Gallagher, 2017). This recreates the complete environment of the 

original analysis (for a tutorial, see Powell, 2019). The package holepunch will create 

a docker file, description and image on GitHub for a particular analysis that can then 

be run independently (Ram, 2019). For long term storage of scripts and analysis 

information there are a number of options where journal space is tight – many 

institutions provide data storage and archive facilities for their researchers, and the 

Open Science Framework provides facilities for data storage and archive, as well as 

pre-registration and project documentation. 
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  Knowing in advance that an analysis script will be shared on publication will 

likely make researchers more systematic and attentive to their code and annotations 

in the first place. It should also encourage more supportive discussion (rather than 

criticism) around analysis processes and best practice methods, and give the less 

experienced an easy way to learn from experts.  

 

Table 7: Best practice guidance for reporting LMMs 

Issue Recommendation 

Preparation for modelling 

Software Report the software and version of 

software used for modelling 

Power analysis (section 4.1.2) Report any a-priori power analyses, 

including effect sizes for fixed effects and 

variances for random effects. 

The model 

Assumptions of LMM 

(section 4.1.3) 

Report what data cleaning has been completed, outlier/data 

removal, transformations (e.g., centering or standardizing 

variables) or other changes prior to or following analysis 

(e.g., Baayen & Milin, 2015). 

Report whether models meet assumptions for LMMs. 

Report if transformations were carried out in order to meet 

assumptions (e.g., log transformation of reaction time to 

meet the assumption that residuals are normally distributed). 

Selection of fixed and 

random effects (section 

4.1.4 and 4.1.5) 

Random effects are explicitly specified according to 

sampling units (e.g., participants, items), the data structure 

(e.g., repeated measures) and anticipated interactions 

between fixed effects and sampling units (e.g., intercepts 
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only or intercepts and slopes).  

Fixed effects and covariates are specified from explicitly 

stated research questions and/or hypotheses. 

Report the size of the sample analysed in terms of total 

number of data points and of sampling units (e.g., number of 

participants, number of items, number of other groups 

specified as random effects, such as classes of children). 

Model comparison* 

(section 4.1.5) 

A clear statement of the methods by which models are 

compared/selected; e.g., simple to complex, covariates first, 

random effects first, fixed effects first etc. 

Report comparison method (LRT, AIC, BIC) and justify the 

choice. 

A complete report of all models compared (e.g., in 

appendices/supplementary data/analysis scripts) with model 

equations and the result of comparisons. An example table 

reporting model comparisons can be found in Appendix 

Table A5.1.  

Convergence issues 

(section 4.1.5) 

If models fail to converge, the approach taken to manage 

this should be comprehensively reported. This should 

include the formula for each model that did or did not 

converge and a rationale for a) the simplification method 

used and b) the final model reported. This may be most 

easily presented in an analysis script. 

The results (section 4.1.6 and 4.1.7) 

Model* Provide equation(s) that transparently define the reported 

model(s). An elegant way to do this is providing the model 

equation with the table that reports the model output (see 
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Appendix Table A5.2). 

Model output* Final model(s) reported in a table that includes all parameter 

estimates for fixed effects (coefficients, standard errors 

and/or confidence intervals, associated test statistics and p-

values if used), random effects (standard deviation and/or 

variance for each random effect, correlations/covariances if 

modelled) and some measure of model fit (e.g. R-squared, 

correlation between fitted values and data) (see Appendix 

Table A5.2). 

Data and code Share coding script used to complete the analysis. 

Wherever possible share data that generated the reported 

results.   

*	Example tables here are adapted from the excellent examples in Stevenson et al., 
2013 (Table 2), Goldhammer et al., 2014 (Table 1) and Li et al., 2014. 
 

 

 

5.0 Conclusion 

We completed a survey of current practice and a review of published papers 

for LMMs. Concerns raised in the survey were broadly corroborated by data from a 

review of published papers. In response to this, we have reviewed current guidelines 

for the implementation and reporting of LMMs, and provided a summary of best 

practice. A summary of that summary is provided below. The survey highlighted that 

many researchers felt they had a lack of knowledge, or were unable to properly deal 

with the complexity of LMMs. We hope this paper has gone some way to remedying 

this deficit (perceived or real), and encouraging researchers to spend time preparing 

analyses in a such a way that fully transparent reporting is painless. 
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5.1 Bullet points for Best Practice 

• Plan to collect data for as many stimuli and as many participants as possible. 

• Complete power analysis prior to data collection. This will require that you 

specify the model and consider plausible effect sizes. 

• Acknowledge that the choices you make during analysis are considered, 

justified and one path amongst many. 

• During analysis, check that assumptions of LMMs have been met. 

• If using LMMs to control for unexplained variance (e.g. when replacing 

ANOVA), fit random effects first. 

• Provide a clear rationale for selection of fixed effects and any model 

comparison or model selection process. 

• Appendix 5 provides example tables for concisely reporting model 

comparison and model outputs (https://osf.io/bfq39/files/) 

• Provide the model equation(s) for the final model or models to be reported. 

• If reporting p values, estimate the final model or models to be reported using 

REML and report Satterthwaite or Kenward-Rogers approximate degrees of freedom 

for p values for fixed effect coefficients. 

• Report point estimates, standard errors and confidence intervals for the fixed 

effect coefficients. 

• Report random effect variances from the final model in full. 

• Whenever possible, share analysis code and data on publication. 
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Titles and Legends for Figures 1-5 
 
Figure 1 Title: Illustrations for Participant Intercepts for Naming Accuracy  
Figure 1 Legend: Figure 1a shows each participant’s mean accuracy across all the 
naming trials they completed, with the group mean as the rightmost column. Figure 
1b shows the participant’s accuracy scaled as standard deviations from the group 
mean (centered at zero) – the Random Intercepts by Participant. 
 
Figure 2a Title: Average accuracy across the four Cue Type conditions 
Figure 2a Legend: Accuracy values are fitted values taken from a mixed effect model 
fit to the data with all three fixed effect predictors and random slopes for Cue Type by 
Participant: Accuracy ~ Cue Type + Length Phonemes + Frequency + (0 + Cue Type 
| Participant). Note random intercepts for Participants were not included in this 
model, to illustrate a slopes only model. Error bars are 95% confidence intervals. 
 
Figure 2b Title: Effect of Cue Type by Participant 
Figure 2b Legend: Sh.Ons = Shared onset cue (phonological cue), Assoc = 
Associated word cue, NonAssoc = Non associated word Cue. Each panel represents 
the data from a single participant, showing their naming accuracy (across all trials in 
that Cue Type condition) as a boxplot. Accuracy values are fitted values taken from a 
mixed effect model fit to the data with all three fixed effect predictors and random 
slopes for Cue Type by Participant: Accuracy ~ Cue Type + Length Phonemes + 
Frequency + (0 + Cue Type | Participant). Note random intercepts for Participants 
were not included in this model, to illustrate a slopes only model. 
 
Figure 2c Title: Effect of Cue Type by Participant, as deviations from the condition 
mean (Random slopes for Cue Type by Participant) 
Figure 2c Legend: Each panel shows the values for a Cue Type condition (Shared 
onset, Tone, Associated word, Non Associated word). In each panel, participant’s 
accuracy is scaled as standard deviations from the condition mean (centered at 
zero). These are the Random Slopes by Participant. These are taken from a mixed 
effect model fit to the data with all three fixed effect predictors and random slopes for 
Cue Type by Participant: Accuracy ~ Cue Type + Length Phonemes + Frequency + 
(0 + Cue Type | Participant). Note random intercepts for Participants were not 
included in this model, to illustrate a slopes only model. 
 
Figure 3 Title: Illustrations for Participant Intercepts and Slopes for Length in 
Phonemes 
Figure 3 Legend: Accuracy values are taken from a mixed effect model fit to the data 
with all three fixed effect predictors, random intercepts by Participant and correlated 
random slopes for Length by Participant: Accuracy ~ Cue Type + Length Phonemes 
+ Frequency + (1 + Length Phonemes | Participant). Figure 3a shows the average 
effect of Length in Phonemes, a negative slope showing that words that are longer 
are harder to name. Figure 3b shows the effect of Length for each individual 
participant (steeper or shallower slopes) and the overall differences in accuracy 
between participants (higher or lower intercepts). Figure 3c shows the Random 
Intercepts and Slopes for Length. In Figure 3c the left panel shows the Participant 
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Intercepts, scaled as deviations from the grand mean Intercept (as in Figure 1b). The 
right panel of Figure 3c shows the Participant Slopes for the effect of Length scaled 
as deviations from the average effect of Length. 
                       
Figure 4 Title: Illustrations for Participant Intercepts and Slopes for Frequency. 
Figure 4 Legend: These figures parallel those seen in Figure 3. Accuracy values are 
taken from a mixed effect model fit to the data with all three fixed effect predictors, 
random intercepts by Participant and correlated random slopes for Frequency by 
Participant: Accuracy ~ Cue Type + Length Phonemes + Frequency + (1 + 
Frequency | Participant). Figure 4a shows the average effect of Frequency, a positive 
slope showing that words with higher Frequency are easier to name. Figure 4b 
shows the effect of Frequency for each individual participant (steeper or shallower 
slopes) and the overall differences in accuracy between participants (higher or lower 
intercepts). Figure 4c shows the Random Intercepts and Slopes for Frequency. In 
Figure 4c the left panel shows the Participant Intercepts, scaled as deviations from 
the grand mean Intercept (as in Figure 1b). The right panel of Figure 3c shows the 
Participant Slopes for the effect of Frequency scaled as deviations from the average 
effect of Frequency. 
 
Figure 5 Title: Number of Pubmed citations for ‘Linear Mixed Models’ by year 
Figure 5 Legend: Generated using the tool available at http://dan.corlan.net/medline-
trend.html, entering “Linear Mixed Models” as the phrase search term and using data 
from 2000 to 2018. 


