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Abstract

When a clinical trial is subject to a series of interim analyses as a result of which the study
may be  terminated or  modified,  final  frequentist  analyses  need to take account  of  the
design used.  Failure to do so may result in overstated levels of significance, biased effect
estimates and confidence intervals with inadequate coverage probabilities.  A wide variety
of valid methods of frequentist analysis have been devised for sequential designs comparing
a single experimental  treatment with a single control  treatment.  It  is  less clear  how to
perform the final analysis  of a sequential or adaptive design applied in a more complex
setting, for example to determine which treatment or set of treatments amongst several
candidates should be recommended.  

This paper has been motivated by consideration of a trial in which four treatments
for sepsis are to be compared, with interim analyses allowing the dropping of treatments or
termination  of  the  trial  to  declare  a  single  winner  or  to  conclude  that  there  is  little
difference  between  the  treatments  that  remain.   The  approach  taken  is  based  on  the
method  of  Rao-Blackwellisation  which  enhances  the  accuracy  of  unbiased  estimates
available from the first interim analysis by taking their conditional expectations given final
sufficient statistics.  Analytic approaches to determine such expectations are difficult and
specific  to  the  details  of  the  design:  instead  “reverse  simulations”  are  conducted  to
construct replicate realisations of the first interim analysis from the final test statistics.  The
method  also  provides  approximate  confidence  intervals  for  the  differences  between
treatments.
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1. Introduction

This paper is motivated by a design for a trial in sepsis,  1 with the objective of comparing
four treatments for sepsis in respect of survival of the patient to 28 days, analysed as a
binary response and referred to as “success”.  Although one of the treatments is standard
care, it is given no special privileges: all four treatments are dealt with in the same way.  At
each of a series of interim analyses, all pairwise comparisons of remaining treatments are
made.  Any treatment that is worse than any other according to pre-determined criteria is
eliminated from the trial.  If only one treatment remains, it is declared the winner and the
trial  stops.   If  all  remaining treatments  are sufficiently  similar  to one another,  they are
declared joint winners and the trial stops.  Otherwise the trial continues to the next interim
analysis.  At the end of such a trial, how should the differences between the performances
of  the treatments be estimated,  bearing in mind the potential biases introduced by the
elimination and stopping rules 2?

Estimation following a sequential trial has a rich statistical literature.  For the case of
trials comparing two treatments, methods may be based on orderings of the final sample
space  3-6 or on direct adjustment of the maximum likelihood estimate to reduce its bias.  7

Overviews of alternative approaches are available.  8,9  For adaptive designs, which are not
entirely  pre-defined,  estimation  methods  can  be  devised  by  extending  the  ordering
approach  10,11 or through shrinkage approaches.  12,13  In this paper, an approach based on
Rao-Blackwellisation  14,15 will  be developed.  This is  a method that has been adopted by
previous authors for certain specific designs. 16,17

It is difficult to generalise approaches based on orderings of the final sample space to
trials  of  multiple  treatments  because  there  are  so  many  possible  final  samples  and  it
becomes  unclear  how to  determine  which  provide  stronger  evidence  favouring  a  given
alternative over  the  null  than  the  sample  observed.   Direct  adjustment  of  maximum
likelihood estimates depends on knowledge of the distribution of the final sample statistics
around the stopping boundary.  While this can be characterised for a comparison of two
treatments that  relies on a single test  statistic,  it  is  far  more challenging to achieve for
multiple treatments compared in respect of several pairwise test statistics.  Here the Rao-
Blackwellisation approach will  be developed.  This is  based on the expected value of an
unbiased  estimate  computed  at  the  first  interim  analysis  (and  thus  unaffected  by  any
stopping rules), conditional on sufficient statistics computed at the end of the study.  Rather
than finding this test statistic and its standard error analytically, it will be determined by
reverse simulation.  That is, starting with the final values of the numbers of patients and the
numbers  of  successes  for  each  treatment  (and  when  present,  within  each  stratum),
hypergeometric sampling will  be used to create possible samples at  each earlier interim
analysis until that at the first interim has been recreated.  Only those sequences that are
consistent with continuation to the observed end of the sequential procedure are accepted.
The mean and variance of unbiased estimates from each acceptable replicate simulated first
interim analysis are then used to provide unbiased estimates and approximate confidence
intervals that allow for the sequential nature of the design.

The  approach  developed  has  the  potential  for  implementation  following  a  wide
range of multiple treatment trials and flexible adaptive designs.  It is often easier to work
backwards from the end of the trial and determine which sequences of data would have led
to continuation to the final sample, than to project such sequences from the outset.  Much
of  the  development  and  evaluation  of  the  method  will  be  made  in  the  context  of  a
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conventional sequential comparison of just two treatments because that setting is simpler
analytically and computationally, and because it allows comparisons to be made with more
established methods.

In the next section the trial design described in Magaret et al. 1 is reviewed.  Instead
of using the elimination and stopping rules proposed in that  paper,  the performance of
alternative rules based on the triangular test 8 is examined.  It must be emphasised that this
design serves here only as an illustration of the new estimation approach.   The latter could
be applied to a wide range of multiple treatment designs and indeed other forms of flexible
adaptive design.  In Section 3, the simple comparative triangular design that forms the basis
of the four treatment evaluation is extracted and examined in isolation, and in Section 4,
naïve and orderings-based analyses are developed in the two-treatment context, together
with  two  forms  of  the  Rao-Blackwellisation  approach.   The  new  method  is  applied  to
simulated data from the four treatment design in Section 5, and to simulated data from a
simpler design for a smaller trial in Section 6.  Section 7 draws together conclusions from
this work.

2. A design for the comparison of four treatments

The design introduced by Magaret et al.1 comprised up to four successive analyses based on
constant  nominal  -levels.   Here  the  overall  structure  of  that  design  is  retained  but  a
different approach is taken to the elimination and stopping rules: one which will allow the
extraction of a simple triangular test 8 for examination in the central sections of this paper.
This  design  examined in  this  paper  was  accepted for  use  by  the  investigators  and was
written into  the  protocol.   For  reasons  unconnected  with  the  trial  design  or  any  other
statistical considerations, the trial did not actually run.

Treatment effects are expressed in terms of odds ratios for success.  The value 1.5 is
taken to be of clinical importance.  The probability of success (survival to 28 days) for a
patient receiving treatment Ti is denoted by pi, i = 1, ..., 4.  The log-odds ratio for treatment
Ti relative to Tj is denoted by ij = log[{pi(1 – pj)}/{pj(1 – pi)}].  The design seeks to satisfy the
following requirements.  Type I error requirement:   For any treatment Ti, if there is another
treatment Tj, i  j such that pi = pj, then the probability that the trial finds Ti to be the sole
winner is to be  0.025.  Power requirement:   For any pair of treatments Ti and Tj, if Ti is
superior  to  Tj to  the  extent  that  ij =  log(1.5),  then  the  probability  that  T j would  be
eliminated from the study is to be  0.90.  

Interim analyses  occur  whenever 36 new patient  outcomes become available  on
each of the treatments remaining in the study.  The maximum sample size is set at 2772.
Patient responses and interim analyses continue until the trial stopping rules are satisfied or
else it is impossible to assign 36 more patients to all remaining treatments within this quota.
The  probability  that  not  all  treatment  comparisons  will  be  resolved  after  2772  patient
responses have been observed is small.  If all four treatments were to remain in the trial, the
maximum number of interim analyses would be about 20: more could occur if treatments
were eliminated.  

At the kth interim analysis, every pair of treatments Ti and Tj will  be compared in
terms of the statistics Zijk and Vijk where 
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Here nik denotes the number of patient responses available for patients on Treatment T i,
and Sik the number of those who have survived to Day 28.  For a stratified version of the
procedure,  the statistics shown are computed separately within each stratum, and then
summed over strata to provide the values of Zijk and Vijk to be used.  Notice that alternative
and equivalent formulations for these two statistics are:
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The  first  shows  that  Zijk is  the  difference  between  the  proportions  of  successes  on
treatments Ti and Tj, multiplied by a factor that increases as sample size increases and is
equal to ¼ (nik + njk) when  nik = njk.  The second shows that Vijk is the product of the overall
success rate and the overall  failure rate on the two treatments multiplied by that same
factor.  It can be shown that Vijk always increases between interim analyses.

At the kth interim analysis, it is concluded that Ti is better than Tj if Zijk ≥ 10.90266 +
0.12380Vijk, no different from Tj if Zijk  (10.90266  0.37140Vijk, 10.90266 + 0.37140Vijk), and
worse than Tj if Zijk ≤ 10.90266  0.12380Vijk.  If the interval used to judge no difference is
empty because the left-hand limit is larger than the right-hand limit, then the no difference
conclusion is not possible.   Whenever one treatment is found to be worse than another
according  to  this  criterion,  that  treatment  is  eliminated  from the  trial.   Randomisation
continues between the remaining treatments, and interim analyses continue to take place
whenever 36 new outcomes have become available for each remaining treatment.  The trial
stops when only one treatment remains, or when all remaining treatments are found to be
no different from one another.  For the purposes of the simulations conducted here, the
trial also stops if a further interim analysis would require the total number of patients to
exceed 2772,  although in  practice  investigators  might  choose  an  alternative strategy  as
discussed later in this section.

The elimination and stopping rules, as they relate to a comparison between one pair
of treatments, are shown in Figure 1.  Each interim analysis is governed by discs shown on
the boundaries, and at the kth interim analysis the value of Zijk is plotted against that of Vijk,
and  the conclusion indicated  is  drawn.   The  design has  been developed from a double
triangular design devised to compare two experimental treatments. 8,18  The boundaries are
computed to satisfy the type I error and power requirements mentioned above, interpreted
for the simple case of two treatments.  Computation is based on the SEQ function of SAS,
following  19,20 but using the four boundary option of SEQ.  The increment in information
between interim analyses for this double triangular test is V = 4.40337.  When p1 = 0.40 and
p2 = 0.50 or when p1 = 0.50 and p2 = 0.60 (both corresponding to an odds ratio of 1.5), this
corresponds to an increase in sample size between interim analyses of 35.58 per treatment,
which is rounded up to 36 in this application.  

Applied to the case of four treatments, the type I  error and power requirements
specified at the beginning of this section are valid.  The probability that T1 is declared the
sole winner, when in fact p1 = p2 is greatest when the success rates on T3 and T4 are both
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zero so that there is no chance of them being declared either sole or joint winners.  There
would also be a negligible chance that they would be declared no different from T 1 or from
T2 or from both.   In this circumstance, the probability that T1 would be declared the sole
winner is therefore equal to the probability of T1 being found better than T2 in the double
triangular test when 12 = 0: that is 0.025.  Furthermore, the probability that T1 is eliminated,
when 12 = log(1.5) is least when the success rates on T3 and T4 are both zero so that there is
no  chance  that  T1 would  be  eliminated  relative  to  them.   In  this  circumstance,  the
probability that T1 would be eliminated is therefore equal to the probability of T2 being
found better than T1 in the double triangular test when 12 = log(1.5): that is 0.900.  

Properties of the design estimated from million-fold simulations, are shown in Table
1 below.  In each of the Cases 1-12, one set of treatments share a high success rate and the
rest share a low rate, with the odds ratio between the two rates being 1.5.  In Cases 13-16,
all success rates are equal.  Also shown are “Mixed Cases”.  For these, we imagine that the
trial  is  conducted  at  four  centres  each  recruiting  equal  numbers  of  patients.   In  the
simulations, the 36 patients recruited to each treatment for each new interim analysis are
distributed amongst the centres at random.  The four centres in the mixed cases each have
a different set of success probabilities, namely the four sets shown in the cases above.  In
the simulations for the mixed cases,  the statistics Z and V given in (1)  are stratified for
centre: that is the four within-centre values of Z and V are calculated and then summed to
provide the values to be compared with the stopping boundaries.  

In Cases 1-4 and Mixed Case I, the probability that T4 is correctly eliminated exceeds
0.90, as specified in the power requirement.  This is true for T2 and T3 as well, although these
results are not shown: in general  the full  results reflect the symmetry of each scenario.
Treatment  T1 is  correctly  selected  with  a  probability  exceeding  0.80:  this  is  a  desirable
feature, although not part of the formal specification.  In Cases 5-8 and Mixed Case II, the
probability of wrongly declaring T1 to be the winner is no more than 0.026, (essentially)
satisfying the type I error requirement.  The probability of eliminating T4 is well above the
value of 0.90 of the power requirement.  The probability of correctly declaring T 1 and T2 to
be joint winners is above 0.90, except for Case 8 where it is 0.885.    In Cases 9-12 and Mixed
Case III,  the probability that T1 wins is 0.005 and the probability that T4 is  eliminated is
greater than 0.975.  The probability of correctly identifying the three joint winners is greater
than 0.814.  Finally, in Cases 13-16 and Mixed Case IV, the probability that T 1 wins is 0.002
or less in all cases.  The probability of correctly identifying all four treatments as no different
is greater than 0.748, except for case 16 where it is 0.591.    

Average total sample sizes at termination are around 1400-2400.  Sample sizes are
smaller when success probabilities are close to ½, and larger when they are close to 1 or to
0.  They are also smaller when there is a single treatment that is more efficacious than the
others, or when there are two good treatments.  Cases where three or all four treatments
are equally efficacious require larger sample sizes before a conclusion is reached.  Ethically,
this is sound, as if all treatments are the same, no group of patients is being disadvantaged
by being in the trial.  The full results show that sample sizes on poor treatments tend to be
small and those on good treatments to be large, indicating the effectiveness of eliminating
poor treatments.   The percentage of inconclusive trials (trials where after 2772 patients
uncertainty between at least one pair of treatments remains) was 26.6% in Case 16.  In all
other  cases,  such  percentages  are  small  or  negligible.   If  the  trial  ends  without  either
identifying a single winner or concluding that there is no difference between the remaining
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treatments,  then investigators  can  accept  the result  available,  or  else  recruit  additional
patients to force a conclusion.

The construction of the decision rules of the design guarantees that it is not possible
to declare two treatments to be no different from one another during the first 6 interim
analyses (see Figure 1).  It is possible to stop at any analysis to conclude that one of the
treatments is better than all of the others, but the evidence has to be very strong.  Minimal
evidence  for  T2 to  be  eliminated  relative  to  T1 at  the  first  interim analysis  requires  23
successes out of 36 on T1 and none on T2: the corresponding one-sided nominal p-value lies
well below 0.00001.   In fact, under most realistic scenarios, the probability of stopping at
one of first three interim analyses is negligible.  

It  can be seen that  the procedure presented here achieves  the type I  error and
power  requirements  specified,  and  has  other  desirable  properties  in  terms  of  high
probabilities of appropriate conclusions and relatively low expected sample sizes.   It must
be  stressed  that  these  interim  analyses  are  very  simple  to  carry  out.   The  following
information on all patients randomised 28 days ago or earlier is all that is needed: Patient
identification number; Treatment centre and any other baseline stratification factors; Date
of randomisation; Treatment arm (T1, T2, T3 or T4); and Survived to Day 28 (YES or NO).  All
but  the  last  are  available  for  a  month  before  the  patient  is  to  be  included  in  interim
analyses.  More extensive reviews of the data might be planned, perhaps to coincide with
every 4th or every 5th interim analysis.  Interim analyses are to be conducted whenever the
average number of patient responses per remaining treatment collected since the previous
interim analysis  reaches  36.   Ideally,  this  should  be 36 patients  per  treatment,  but  the
formulae given at (1) can be used when sample sizes are unequal, and the accuracy will
remain  good  provided  that  sample  sizes  per  treatment  are  approximately  equal.   The
method is also likely to be forgiving of slight slippage from an average of exactly 36 new
patients per treatment.

3. Conventional post-trial estimation for a simple triangular test

Now consider a comparison between just two treatments, T1 and T2.  A series of up to 20
interim analyses are conducted, at the kth of which the statistics Z12k and V12k defined in (1)
will be computed.  Here, they will be denoted simply as Zk and Vk, and the log-odds ratio 12

by .   The trial will be stopped with the conclusion that T1 is better than T2 if Zk ≥ 10.93898 +
0.123134Vk,  or  with  the  conclusion  that  T1 is  no  better  than  T2 if  Zk  10.93898  +
0.369402Vk.   The design is constructed using published code, 19,20 and the risk of one-sided
type I error is set to 0.025 and the power for an odds ratio of 1.5 to 0.90.  Note that the
boundaries differ slightly from those used in the four treatment case, because the latter
were based on the properties of pairwise double triangular tests.  Here, T1 can be thought of
as the experimental treatment and T2 as the control: the design is asymmetric in dealing
with the treatments.  The maximum value of V is V20 = 88.8380, at which point the stopping
boundaries meet.  Hence V1 = 4.4419.  For p1 = 0.60 and p2 = 0.50, so that  = log(1.5), the
total sample size per interim analysis is approximately 72 (36 per treatment).  In simulations
reported here, additional interim analyses are conducted beyond the 20 initially planned, up
to a maximum of 25, if increments in V fall short of the anticipated value of 4.4419 and no
boundary has been reached.  In practice, if increments in V are observed to be low, then
sample sizes per interim can be increased. 
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Table  2  shows  the  results  of 12  simulated  realisations  of  this  triangular  design,
ordered by increasing strength of evidence that T1 is better than T2.  Also given are results of
a naïve analysis in which the sequential nature of the design is ignored, and a valid analysis
based on the ordering of Fairbanks and Madsen.  21  For the naïve analysis, the estimated

value of  is taken to be ̂  = Z*/V* with standard error se = 1/V*, and the corresponding

95% confidence interval (L, U) is ( ̂   1.96se), where Z* and V* are the values of Z and V
found from the final dataset.  The orderings analysis is computed following 19 and 20.  In each
computation the value of Vi is taken to be equal to i*V20/20.  In practice the true values of
the Vi would be used, but the approximation is used here for simplicity, and to allow readers
to check the computation of the estimates.  The analysis methods developed in the next
section do not depend on the intermediate values of the V i.  The bias-adjusted estimate 7

has  no corresponding accurate  method for  computing confidence intervals  and for  that
reason, it is not explored here. 

The orderings analysis provides valid p-values and reduces estimates of  when the
upper  boundary  is  crossed  and  increases  them  in  the  case  of  the  lower  boundary.   It
provides totally satisfactory results based on the actual sequential design used.  However, it
is difficult to see how it might be generalised for use following a sequential comparison of
more than two treatments.

4. Post-trial estimation based on Rao-Blackwellisation for a simple triangular test

The Rao-Blackwellisation approach 14,15 is based on the estimate 1 1 1
ˆ Z / V   deduced from

the data available at the first interim analysis, which is unbiased for  as it does not depend

on  the  stopping  rule  in  any  way.   Consequently,  the  estimate  
 1

ˆE Z ,V   
,  is  also

unbiased for  and has smaller variance.  The statistics (Z*, V*) are jointly sufficient for , as
will be demonstrated in Section 4.1 below.  They are not complete, so that it cannot be

claimed that  


 is  the minimum variance unbiased estimate.   However,  a  less universal

statement can be made, as follows.  The estimate 


 is truncation-adaptable, meaning that
it depends only on the form of the interim analyses that were performed and not on those
that  were  planned to  take  place  but  did  not.   (Orderings  analyses  are  also  truncation-

adaptable,  but the bias-adjusted method  7 is  not.)   The estimator    achieves minimum
variance within the class of unbiased truncation-adaptable estimators. 22

Now 
 E   

, and 

              1 1 1 1 1
ˆ ˆ ˆ ˆvar var E Z ,V var E var Z ,V 1 V E var Z ,V .              

In  order  to  compute  confidence  intervals,  it  will  be  assumed  that  the  pivot

    E var     
 follows a standard normal distribution and that 

  1
ˆE var Z ,V 

 can

be reliably estimated by
 1
ˆvar Z ,V 

.  Thus the standard error of   is given by
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      1 1
ˆse 1 V var Z ,V    

 ,                                                                       (2)

and an approximate 95% confidence interval  for   is  
  1.96se  

.   It  is  unlikely that
either of the assumptions on which this approach is based are more than approximately
true.  The accuracy of the derived confidence intervals should be evaluated by simulation for

any given application.  The theoretical basis for the unbiasedness of the estimate   is far
stronger than that for the accuracy of the confidence interval.

Two methods for evaluating   and 
 se 

 will now be developed.  The first, Method
RB1, is an analytical approach depending on known properties of the triangular test.  It is
infeasible  to  generalise  RB1  to  the  four  treatment  case,  and  it  is  included  here  for
comparison and checking.  Method RB2 employs reverse simulation to re-create replicate
observations of Z1 and V1, and is applicable in complicated situations such as a comparison
of four treatments.  

4.1 Method RB1
Denote the lower and upper stopping limits for Zk at the kth interim analysis by  k and uk

respectively,  k  = 1,  2,  ...  .   The sequential  design based on the first  n  of  these interim
analyses, which is then truncated, is denoted by Rn.  The interim analysis at which the design
Rn actually  stops  will  be  denoted by K[n],  and  the corresponding final  values of  the test
statistics by Z[n] and V[n].  Equation (5.38) of 8 defines the function f[n](z, k, ) to be

      z 0 [n] [n]n

1
f z,k, lim P Z z,z z ,K k

z
     

 ,    k  =  1,  ...,  n.
(3)

The sequence of functions f[n](z, k,  ) for z <  k or z > uk, k = 1, ..., n – 1, and f[n](z, n,  ),
together provide a density for the final position of the test statistics (Z [n], V[n]) over all of their
possible  final  values.   Using  Equation  (5.41)  of  8;  it  can  be  shown  that  for  any  

         2
n n n nn n

f z ,n, exp z V f z ,n,0    
, as pointed out by Emerson and Kittelson. 15

Now, let

       
nz

nn n
F z ,n, f s,n, ds

 
   .

This is the probability that the design Rn stops at the nth interim analysis with Z[n] ≤ zn.  In fact,
it is the probability that any design which shares with Rn the stopping limits for its first n
interim  analyses  stops  at  the  nth interim  analysis  with  Z[n] ≤  zn.   This  function  can  be
evaluated using the SAS function SEQ.  Note that 

   nn
F z ,n,       2

n n nn
exp z V F z ,n,0  

.                                                                           (4)
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The probability that the design Rn stops at the nth interim analysis with Z[n]  (zn – z, zn + z)

is given by        n nn n
F z z,n, F z z,n,     

.
Next, consider the adjusted sequential test, in which the first lower limit is amended

to be 1 + t, t  (0, u1 – ).  The functions corresponding to f[n] and F[n] for this design will be

denoted by   
 t

n
f

 and   
 t

n
F

 respectively.  Then, the probability that the sequential design Rn

starts with a value of z1 lying above 1 + t and then later stops at the nth interim analysis with

Z[n]  (zn – z, zn + z) is given by  
     

   tt

n nn n
F z z,n, F z z,n,     

.  Denote the conditional
probability that Z1 lies above 1 + t, given that the trial stops at the nth interim analysis with

Z[n]  (zn – z, zn + z) by S(t; ).  Then 
        1 1 n nn n

S t; P Z t K n,Z z z,z z        
.   It

follows, using (4), that

 
 
     

   

       

tt

n nn n

n nn n

F z z,n,0 F z z,n,0
S t

F z z,n,0 F z z,n,0

   


   
,                                                                           (5)

where the value of  is suppressed in the notation for S.  This confirms the sufficiency of the
statistics Z[n] and K[n].  It can be shown that

   
1 1u

1 1 [n] [n]0
S t dt E Z K ,Z



 



  and  

    1 1u 2

1 1 [n] [n]0
2 tS t dt E Z K ,Z .



 



           (6)

             
Suppose that a trial with stopping limits at the first n interim analyses of (1, u1), ... , (n, un)

stops with Zn = zn.  Thus K[n] = n and Z[n] = zn.  The value of        n nn n
F z z,n,0 F z z,n,0   

can  be  evaluated  using  the  SAS  function  SEQ  for  the  trial  stopping  limits  with  the
modification that the nth continuation region is (zn – z, zn + z).  The value of z is chosen to
be small, but large enough for the resulting nth continuation probability to be reported with

a reasonable number of decimal places.  Then  
     

   tt

n nn n
F z z,n,0 F z z,n,0   

 is evaluated
in a similar way, but for a design with first continuation region given by (1 + t, u1) for a grid
of values of t between 0 and u1  1.   This allows S(t) to be found from (5) for the same grid
of values, from which the conditional mean and standard deviation of Z1 given K[n] = n and
Z[n] = zn can be found from (6) using numerical integration.  Note that the function SEQ is
constructed for stopping limits for Zn/V1.  This necessitates some intricate programming in
order to obtain the correct answers.

4.2 Method RB2

For  reverse  simulation,  the  estimate  
 1
ˆE ,   S n 

 is  used,  where  S*  and n* are  the
vectors of numbers of successes and numbers of patients, by treatment, in the final dataset.
The final interim analysis will be taken to be the K th.  The number of successes on Ti at the kth

interim analysis,  Sik,  is  simulated as  a hypergeometric  observation,  being the number of
successes in a draw of nik patient responses from a total of ni,k+1 responses of which Si,k+1 are
successes,  i  = 1,  2;  k = K  – 1,  K – 2,  ...,  1.   For  each replicate  simulation,  the estimate
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1 1 1
ˆ Z V   is  found  from  (1)  using  the  simulated  numbers  of  successes  on  the  two
treatments at the first interim analysis.  All values of Zk and Vk, k = 1, ..., K – 1, are checked,
and  any  simulated  sample  path  that  corresponds  to  a  trial  that  would  have  stopped
according to the sequential design prior to the Kth interim analysis is deleted from the set of

simulated runs.  Then the mean and variance of the remaining values of 1̂ are used as 

and 
 1
ˆvar ,  S n

 respectively.  The latter is used in place of 
 1
ˆvar Z ,V 

in (2) to provide

a value for 
 se 

.  The set of simulated realisations of the first interim analysis can be used
in  a  similar  way  to  provide  unbiased  estimates  of  the  success  probabilities  p1 and  p2,
allowing for the sequential nature of the trial.

4.3 Evaluation of Methods RB1 and RB2
Table  3 presents results  from analyses of  the 12 cases presented in Table 2 using Rao-
Blackwellisation methods.  For Method RB1, the value of z in (5) was set at 0.01, and a grid
of 100 points was used to evaluate the integrals in (6).  For Method RB2, 10 million-fold
reverse simulations were generated, and the first column in the RB2 section of the table
shows  that  between  17.0%  and  99.3%  of  the  replicates  were  complete:  that  is  they
corresponded to sequential trials that would not have stopped prior to the observed final
interim  analysis.   Figure  2  shows  the  estimate  and  confidence  intervals  from  the  Rao-
Blackwellisation approaches and the same quantities from the naïve and orderings analysis,
plotted  against  the  values  of  the  naïve  estimates.   The  value  of  the  naïve  estimate  is
subtracted from all quantities, in order to provide a clearer view of the differences between
the methods.  The 12 cases are ordered with respect to the naïve estimates, and so Cases 1
to 12 are the points indicated by crosses running from left to right.  The vertical line at  =
0.2462 represents the value of treatment effect at which the trend of the plot of Z against V
would head for the tip of the triangle, for this is the average of the boundary slopes.  

When  the  naïve  estimate  lies  below  0.2462,  both  adjustments  increase  the
magnitude of the estimate, with those due to the Rao-Blackwell  estimate being greater.
When the naïve estimate lies above 0.2462, both adjustments reduce the magnitude of the
estimate, with those due to the Rao-Blackwell estimate again being greater.  Adjustments
using Method RB1 are a little more extreme than those using RB2.  

The naïve confidence limits are narrowest and will fail to meet the target coverage
probability.  The Method RB1 leads to the widest intervals, followed closely by RB2.  When
the naïve estimate lies  below 0.2462,  adjusted limits  lie  above the corresponding  naïve
limits and when it  lies below 0.2462 they lie below.  This effect is greatest for the Rao-
Blackwell approaches.  In cases in which there is a large overshoot of the boundary at the
final interim analysis (Cases 6, 8, 9 and 11), the adjustments for sequential analysis have the
greatest effect on the estimate of .  In cases where the overshoot is small (Cases 5, 10 and
12), the adjustments for sequential analysis have less effect on the estimate of .  The SAS
programs  leading  to  the  RB1  and  RB2  analyses  shown  in  Table  3  are  provided  as
supplementary material of this paper.

Table 4 presents the results of 1000-fold simulations of the naïve approach and of
Methods RB1 and RB2 for three true values of .  These are the null value, 0; the alternative
value log(1.5) = 0.405; and between these the value 0.246 which is the average of the two
boundary slopes.  In each case the control success probability was set at pC = 0.6. The results
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from the naïve approach confirm that there is a problem to be addressed.  In particular,
when  = 0.405 the effect of the treatment is systematically overestimated, and in all three
cases the coverage probability of confidence intervals is inadequate.  For Method RB1, the
grid is again constructed of 100 points and the value of z set as 0.01.  For Method RB2, for
reasons of computing time, one million replicate reverse simulations were used rather than
the  ten  million  that  underlay  the  results  presented  in  Table  3.   The  Rao-Blackwellised

estimate  


 is  presented with its  standard  deviation computed from the 1000 replicate
values and its standard error, which is the mean of the values computed from (2).  These
two values are close to one another,  in support of the basis of computation.   For both

methods, the bias of 


 is small.  The coverage probabilities of the 95% confidence intervals
are around 0.970 (and significantly greater than 0.95 at the one-sided 2.5% level) in each
case.  They could therefore be used in practice as conservative computations.  

5. Application to the comparison of four treatments

A single set of simulated data consistent with the design proposed in Section 1 is used to
illustrate the implementation of Rao-Blackwellisation in a more complicated situation.  Table
5  displays  the  data  from this  single  realisation.   This  summary  is  sufficient  for  analysis
according to Method RB2.  There are six pairwise treatment comparisons to consider.  Table
6 presents the final  values of  the test  statistics Z and V for each of  these comparisons.
Treatment  T2 was  eliminated  in  comparison  with  T1 at  the  4th interim  analysis,  and  T4

followed at the 5th.   This  left T 1 and T3,  which continued to be monitored until the 12th

interim analysis, at which point T1 was found to be the winner.
Whether the analysis is conducted allowing for the sequential design used or not,

two options are available for the final analysis.  Option 1 is to use all data available on each
treatment in making each comparison.  Option 2 is to restrict the data used in any pairwise
comparison to that collected from patients randomised when both treatments were still in
contention.  This is the form of analysis reflected in the values of Z and V displayed in Table
6.  It avoids biases that may be caused by any temporal effects on the nature of the patients
recruited, on the manner in which treatments were administered, or on how observations
were recorded.  Option 2 will be adopted here.

To implement Option 2, three separate reverse simulations have to be performed.

To compute the estimate 13  and its standard error, reverse simulation is conducted from
the  12th interim  analysis,  at  which  T1 was  found  to  be  better  than  T3,  leading  to  the
termination of the whole trial.  From Table 5, it can be seen that at the 12 th interim analysis
at Centre 1,  T1 had been administered to 103 patients with 83 successes and T3 to 111
patients  with  85  successes.   At  the  11th interim  analysis  at  Centre  1,  T1 had  been
administered to 98 patients and T3 to 102 patients.  For the reverse simulation, the number
of  successes  on  T1 at  Centre  1  is  generated  as  a  hypergeometric  random variable:  the
number of successes from 98 patients drawn randomly from 103 of which a total of 83 are
successes.  The number of successes on T3 at Centre 1 is generated similarly, as are the
success  counts  for  other  centres.   These success  counts  are  then used to  generate  the
numbers of successes on the two treatments at the 10th interim analysis, and so on back to
the  first  interim  analysis.   In  the  reverse  simulation,  the  numbers  of  patients  and  of
successes on T4 at the 5th interim analysis is taken to be as recorded in Table 5, and the
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numbers of successes at earlier interim analyses are filled in by hypergeometric simulation;
for T2 the reverse simulation begins at the 4th interim analysis.  In the example, no treatment
was  eliminated  at  the  first  interim  analysis.   If  one  of  them  had  been,  then  the  Rao-
Blackwellisation  process  would  amount  to  taking  the  estimates  of  the  log-odds  ratios
featuring that treatment directly from the first interim analysis.

The next step is to determine which of the reverse simulated runs are consistent
with  the  outcome  of  the  trial,  and  to  delete  those  which  are  not.   For  each  reverse
simulated run, every remaining treatment comparison is considered at each interim analysis
in turn.  The relevant stratified values of Z and V can be computed from the simulated
success counts.  Consider the comparison between treatments T i and Tj, i   j = 1, 2, 3, 4.
First, consider an interim analysis which in the real trial is the last for both T i and Tj.  In such
a case the reverse simulated data for both treatments will be identical to those used in the
actual trial, and the conclusions will be the same.  No runs will be deleted on the basis of
these data.

Now consider an interim analysis which in the real trial is the last for T i, but after
which Tj continued to be observed.  If, in the real trial T j was found better than Ti at this
interim analysis, then any reverse simulation for which this did not occur is deleted.  It is
possible that in the real trial Tj was not found better than Ti at this interim analysis, Ti being
eliminated in comparison with another treatment.  In this case, any reverse simulation in
which Ti was found to be better than, or worse than, T j is deleted.  Furthermore, any reverse
simulation  run  that  ends  at  this  interim  analysis  with  the  conclusion  that  there  is  no
difference between any of the remaining treatments will be deleted.

Finally, consider an interim analysis which in the real trial is not the last for either T i

or Tj.  Any reverse simulation for which T j was found better than, or worse than, T i at this
interim analysis is deleted.  Once more, any reverse simulation run that ends at this interim
analysis  with  the  conclusion  that  there  is  no  difference  between  any  of  the  remaining
treatments will be deleted.

For each of the reverse simulation runs that remains after the deletion process, the

estimate 13 131 131
ˆ Z V  is found from (1) using the reverse simulated stratified test statistics

for the comparison of T1 and T3 from the first interim analysis.  The mean of the values of 13̂

provides the RB2 estimate  13  and the corresponding variance provides  
 13
ˆvar , S*n*

.
The latter  is  used in a  suitably  amended version of  equation (2)  to  provide a value for

 13se 
.    
A second reverse simulation is then run, starting at the 5th interim analysis, and using

the actual  numbers of  successes on T1,  T3 and T4 at  each centre at  that  analysis  as the
starting point for each reverse simulation.  Following the deletion of runs that would have

been incomplete, 14  and 34  and their corresponding standard errors are found.  The third
reverse simulation starts at the 4th interim analysis and uses the actual numbers of successes
observed on all  treatments at each centre at that analysis as the starting point for each

reverse simulation.  This provides the estimates  12 ,  23  and  24  and their corresponding
standard errors. 
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In  the  results  that  follow,  one  modification  of  the  method  implemented  in  the

unstratified case is made.  For the purposes of computing the ij


 and their standard errors

only, Vijc1 is replaced by ijc1V
, where

   

   
ic1 jc1 ic1 jc1 ic1 jc1 ic1 jc1

ijc1 2

ic1 jc1 ic1 jc1

n n S S n n S S
V

n n n n 1

   
 

  
,                                                                   (7)

and the additional subscript c indicates the centre, c = 1, ..., 4.  The usual expression for  V ijc1,
is used during the conduct of the trial and when assessing whether simulated trial runs are

complete.   However,  it  is  
   ij1 ij11 ij21 ij31 ij41 ij11 ij21 ij31 ij41

ˆ Z Z Z Z V V V V          
 that  is

averaged over complete simulated runs to provide ij


 and used to determine 
 ijse 

.  The
reason for this change is pragmatic: without it estimates show excessive bias and standard
errors are too small or sometimes non-existent as equation (2) involves the square root of a

negative value.  Use of ijc1V
 largely avoids these problem, as E(Zijc1) is closer to ijc1V

 than it is

to ijc1V
 and var(Zijc1) is closer to ijc1V

 than it is to ijc1V
.  In the unstratified case the sample

sizes per treatment at the first interim analysis are quite large, and so this level of attention
to detail  is  unnecessary.   In the stratified case, it  is  the sample sizes within centre that
determine the accuracy of the procedure, and without the use of (7) these are now too
small to guarantee the accuracy of the estimates, or the existence of the standard errors.

Table 7 compares a naïve analysis in which pairs of treatments are compared using
the data available at the last interim analysis in which both were present but ignoring the
sequential  nature  of  the  trial,  with  the  RB2  method  described  above.   The  number  of
reverse simulations was set at 10 million.  It can be seen that the effect of allowance for the
sequential design is to reduce the magnitude of the estimates of the advantage of T1 over
each of T2 and T4, while the estimate of the advantage of T1 over T3 is hardly changed.  The
corresponding  confidence  intervals  are  all  widened.   The  other  estimates  of  treatment
effects have also been reduced in magnitude, but the effect on their standard errors is less
marked.  The SAS programs leading to the RB2 analyses shown in Table 7 is provided as
supplementary material of this paper.

Table 8 shows the results from 1000 replicate simulations of a situation in which T1 is
the  best  treatment.   To  achieve  a  feasible  computational  time,  one  million  reverse
simulations are used in each analysis.  Furthermore, for ease of computation, Option 1 is
chosen  so  that  a  single  set  of  reverse  simulations  will  yield  estimates  and  confidence
intervals for all treatment comparisons.  For comparison, the results from naïve analyses
based  on  the  test  statistics  Z  and  V  comparing  the  final  samples  simulated  from  each
treatment (that is using Option 1) are also shown. In 103 of the 1000 replicate simulations,
fewer than 1000 of the million reverse simulations led to sample paths that were consistent
with the outcome of the trial and thus survived the deletion process described above.  For
the purpose of this investigation, the results from these runs are considered unreliable and
are omitted.  In practice the number of reverse simulations would be raised to 10 million or
beyond  to  yield  sufficient  consistent  reverse  simulations,  this  being  feasible  for  single
analyses but not for 1000 as required here.
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The comparisons of T1 with the three rival treatments each lead to overestimation of
treatment effect when the  naïve analysis is used, whereas the estimates drawn from RB2
show much smaller biases.  The results for the other comparisons are similar for the two
approaches, with RB2 being a little less biased.  In most of the simulated realisations, the
timing of these comparisons will have been determined by the completion of others, and so
the effects of the sequential design would be expected to be less marked.  The coverage
probabilities for confidence intervals based on the naïve approach are too low, while those
for RB2 are conservative, but satisfactory.  Other simulations were conducted in which each
RB2 analysis depended on only 100,000 reverse simulations.   These led to less accurate
estimation and markedly conservative confidence intervals.  It appears that, provided that
sufficient reverse simulations are used, RB2 leads to accurate analyses that overcome the
potential bias inherent in the use of data-dependent elimination and stopping rules.  

6. Application in a simpler setting

The application for which the trial design was developed concerned a large study that would
have recruited over a lengthy time period, and which would have benefited from the large
number of interim analyses planned.  It is of interest to explore what would happen were
the method implemented within a smaller and simpler study.  For this purpose, a fictitious
example is considered.  

The  illustrative  trial  concerns  a  comparison  of  four  treatments  yielding  binary
observations.  Stratification is not allowed for.  The Type I and Type II error requirements are
that the probability that a treatment is wrongly found to be the sole winner should be  
0.025, and that the worse of two treatments separated by an odds ratio of 2.25 should be
eliminated  with  probability   0.90.   Interim  analyses  are  to  be  conducted  after  32
observations per remaining treatment.  The double triangular design for two treatments
satisfying this specification is used for the four treatment comparison, in the same way as
described in Section 2.  For the upper triangle of the continuation region, the lower and
upper boundaries are:

Z = 4.9261 + 0.7411V     and     Z = 4.9261 + 0.2470V.

Up to 8 interim analyses are allowed, but no more than 640 patients in total.  
Table 9 presents the results of million-fold simulations, confirming that the  Type I

and Type II  error requirements are satisfied.  Table 10 contrasts the properties of naive
estimation of treatment effects with those when the RB2 method is used in this setting.  The
comparative and absolute properties of the RB2 analysis in this simpler setting are similar to
those for the motivational example shown in Table 8.  

7. Conclusions

The approach presented here for estimation following a sequential trial is quite general, and
can be implemented for a wide variety of designs.  In the case of a comparison of a single
experimental  treatment  with  a  single  control  arm,  the  method  works  and  provides
satisfactory results,  as  has  been demonstrated in  Section 4  above.   However,  there  are
already numerous methods of computing point and interval estimates in the two-treatment
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context.  In particular, methods based on orderings of the final sample space are just as
good for computing point estimates and more accurate for finding confidence intervals than
the approach introduced here. They are also less computationally demanding.

The utility of the approach described here is in more complicated designs comparing
multiple treatments or with flexible adaptive features, as reverse simulation is based only on
the form of the stopping rules implemented and not on their theoretical properties.  The
method has been illustrated and evaluated for one particular form of comparison of four
treatments  which  motivated  its  development,  but  its  implementation  is  certainly  not
restricted to that design.

The  claim  for  the  unbiasedness  of  estimates  produced  using  Method  RB2  is
underpinned by rigorous asymptotic theory, and the simulation results obtained for their
accuracy in Sections 5 and 6 are satisfactory.  The method for deriving confidence intervals
is less secure as it depends on two unverified assumptions: that the expected conditional
variance of the unbiased estimate at the first interim analysis can be approximated by its
observed value from reverse simulations, and that the adjusted estimate follows the normal
distribution.  Simulations presented in Sections 4-6 demonstrate that the resulting intervals
are conservative but useable.  It should be repeated that the number of reverse simulations
needed to achieve satisfactory results is large.  Here, in single demonstration analyses, 10
million replicates were used.  In earlier work, we found that using fewer replicates led to
less satisfactory results.  

Of course, the scenarios that could be investigated by simulation are limitless, and
only two have been explored here.  In particular, both of the cases considered have involved
success probabilities that are in the region of ½.  Prior to application in trials where the
success  probabilities  are  likely  to  be  close  to  0  or  to  1,  further  evaluation  might  be
appropriate.  
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Table 1: Properties of the four treatment design from million-fold simulations

win1 = proportion of runs in which T1 wins
elim4 = proportion of runs in which T4 is eliminated
nod = proportion of runs in which:  for Cases 1-8 and Mixed Cases I – II, T1 and T2 are 

declared no different from one another; for Cases 9-12 and Mixed Case III, T1 , T2 and 
T3 are declared no different from one another;  for Cases 13-16 and Mixed Case IV, all 
treatments are declared no different from one another

still = proportion of runs in which not all treatment comparisons are resolved after 2772 
responses

Case p1 p2 p3 p4 E(n) win1 elim4 nod still

1 0.500 0.400 0.400 0.400 1426 0.819 0.920 0.045 0.000
2 0.600 0.500 0.500 0.500 1427 0.819 0.919 0.044 0.000
3 0.692 0.600 0.600 0.600 1537 0.816 0.916 0.043 0.004
4 0.771 0.692 0.692 0.692 1765 0.802 0.902 0.039 0.039

Mixed Case I  (Cases 1-4) 1531 0.819 0.918 0.043 0.004

5 0.500 0.500 0.400 0.400 1389 0.025 0.975 0.901 0.000
6 0.600 0.600 0.500 0.500 1411 0.025 0.975 0.903 0.000
7 0.692 0.692 0.600 0.600 1540 0.026 0.974 0.901 0.002
8 0.771 0.771 0.692 0.692 1803 0.026 0.966 0.885 0.024

Mixed Case II  (Cases 5-8) 1524 0.026 0.975 0.901 0.001

9 0.500 0.500 0.500 0.400 1540 0.005 0.988 0.861 0.000
10 0.600 0.600 0.600 0.500 1583 0.005 0.988 0.861 0.000
11 0.692 0.692 0.692 0.600 1752 0.005 0.987 0.857 0.003
12 0.771 0.771 0.771 0.692 2066 0.005 0.975 0.814 0.057

Mixed Case III  (Cases 9-12) 1722 0.005 0.987 0.857 0.003

13 0.500 0.500 0.500 0.500 1795 0.002 0.066 0.785 0.001
14 0.600 0.600 0.600 0.600 1862 0.002 0.066 0.782 0.005
15 0.692 0.692 0.692 0.692 2071 0.002 0.064 0.748 0.053
16 0.771 0.771 0.771 0.771 2381 0.001 0.056 0.591 0.266

Mixed Case IV  (Cases 13-16) 2028 0.002 0.066 0.757 0.036
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Table 2: Details of 12 realisations of the triangular design and of two simple forms of analysis
Terminal values of the number of interim analyses, total sample size, the numbers of successes on T1 and T2 and of the statistics Z and V are

shown as int*, n*, S1*, S2*, Z* and V* respectively.  Patients are evenly divided between the two treatments so that n1* = n2* = ½n*.  
b* denotes the boundary crossed, with 0 denoting the lower boundary and 1 the upper boundary.

For the naïve analysis, the estimated value of  is Z*/V* with 95% confidence interval (L, U) = ( ̂   1.96/V*).
The orderings analysis is based on the ordering of Fairbanks and Madsen 21 and computed following 19 20.

Case Terminal data Naïve analysis Orderings analysis

int* n* S1* S2* Z* V* b* p-val ̂ L U p-val M L U

1   2 144   35   59 12.0   8.160 0 1.000 1.471 2.157 0.784 1.000 1.470 2.156 0.783
2   3 216   68   87 9.

5
10.943 0 0.998 0.868 1.461 0.276 0.997 0.857 1.454 0.256

3   4 288 102 118 8.
0

12.986 0 0.987 0.616 1.160 0.072 0.983 0.599 1.149 0.044

4 10 720 284 285 0.
5

29.833 0 0.537 0.017 0.376   0.342 0.485   0.007 0.358   0.378

5   8 576 201 201     0.0 30.359 0 0.500   0.000 0.356   0.356 0.464   0.017 0.344   0.382
6 13 936 275 259     8.0 57.337 0 0.144   0.140 0.119   0.398 0.089   0.187 0.084   0.468
7   9 648 252 222   15.0 31.819 1 0.004   0.471   0.124   0.819 0.007   0.454   0.097   0.807
8   6 432 120   88   16.0 26.963 1 0.001   0.593   0.216   0.971 0.003   0.563   0.168   0.949
9   6 432 161 130   15.5 23.745 1 0.001   0.653   0.251   1.055 0.002   0.623   0.205   1.034

10   5 360 135 108   13.5 19.744 1 0.001   0.684   0.243   1.125 0.002   0.676   0.231   1.120
11   5 360 124   92   16.0 21.600 1 0.000   0.741   0.319   1.162 0.001   0.704   0.260   1.137
12   3 216   82   55   13.5 12.527 1 0.000   1.078   0.524   1.631 0.000   1.075   0.519   1.629
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Table 3: Analyses of the 12 realisations of the triangular design based on Rao-Blackwellisation

Case Method RB1 Method RB2
 se L U % complete  se L U

1 1.463 0.360 2.169 0.757 99.3 1.473 0.383 2.225 0.722
2 0.823 0.325 1.461 0.185 89.3 0.834 0.334 1.488 0.180
3 0.560 0.298 1.145   0.025 79.9 0.567 0.295 1.145   0.010
4   0.046 0.204 0.354   0.447 55.7   0.046 0.158 0.263   0.356
5   0.051 0.201 0.342   0.445 67.0   0.052 0.183 0.307   0.411
6   0.224 0.166 0.101   0.549 17.0   0.227 0.158 0.081   0.536
7   0.420 0.197   0.033   0.806 63.7   0.424 0.185   0.062   0.787
8   0.519 0.214   0.100   0.939 56.0   0.529 0.213   0.110   0.947
9   0.580 0.226   0.136   1.024 54.9   0.584 0.229   0.135   1.033

10   0.653 0.239   0.184   1.122 85.7   0.658 0.245   0.179   1.138
11   0.655 0.238   0.188   1.122 58.5   0.671 0.243   0.195   1.147
12   1.059 0.291      0.490      1.629 95.8   1.069 0.312   0.457   1.680
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Table 4: Evaluation of the naïve and the Rao-Blackwellisation methods based on 1,000-fold simulations 

Naïve Method RB1 Method RB2

True value of    0   0.246 0.405   0   0.246 0.405   0   0.246 0.405

Estimate of  0.069   0.244 0.459 0.001   0.248 0.410 0.006   0.246 0.408
Standard deviation   0.209   0.227 0.213   0.213   0.182 0.203   0.233   0.187 0.196

Standard error   0.184   0.154 0.169   0.209   0.184 0.197   0.201   0.175 0.190
L 0.430 0.058 0.128 0.408 0.113 0.025 0.399 0.096 0.034
U   0.293   0.546 0.790    0.410   0.609 0.795   0.388   0.589 0.781

Probability that
(L ,U)

  0.943   0.932 0.920    0.976   0.976 0.972   0.958   0.967 0.971
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Table 5: Raw data from a single simulation of the four treatment design

Treatmen
t

Interim Centre n S Sample size at each interim Number of successes at each interim

1 12 1 103   83 11, 18, 30, 41, 50, 57, 65, 76, 86, 92, 98, 103 10, 17, 27, 35, 41, 46, 53, 63, 69, 74, 78, 83

2 100   67 10, 16, 25, 33, 41, 49, 60, 71, 82, 88, 96, 100 10, 14, 20, 25, 30, 34, 40, 47, 58, 61, 65, 67 

3 104   64 7, 17, 25, 35, 44, 55,  63, 68, 72, 83, 90, 104 6, 11, 16, 20, 26, 32,  36, 41, 43, 49, 55, 64

4 125   68 8, 21, 28, 35, 45, 55,  64, 73, 84, 97, 112, 125 4, 13, 15, 20, 27, 34,  38, 45, 48, 53, 62, 68

Total 432 282

2   4 1   39   25 12, 24, 31, 39 9, 17, 19, 25

2   30   13 6, 13, 25, 30 4, 8, 12, 13 

3   35   21 7, 16, 22, 35 5, 11, 15, 21

4   40   11 11, 19, 30, 40 1, 5, 8, 11

Total 144   70

3 12 1 111   85 9, 19, 29, 39, 48, 57,  67, 74, 85, 91, 102, 111 8, 15, 21, 27, 33, 41,  49, 56, 65, 70, 79, 85 

2   94   56 7, 15, 24, 32, 40, 49,  57, 64, 72, 79, 88, 94 5, 9, 15, 22, 28, 31,  33, 38, 44, 47, 52, 56

3 111   60 9, 17, 25, 32, 42, 50,  58, 68, 76, 90, 101, 111 3, 5, 8, 13, 21, 27,  31, 37, 41, 48, 55, 60

4 116   45 11, 21, 30, 41, 50, 60, 70, 82, 91, 100, 105, 116 4, 7, 12, 15, 18, 23, 26, 34, 37, 42, 44, 45

Total 432 246

4   5 1   50   32 9, 15, 23, 36, 50 5, 11, 17, 24, 32

2   47   27 9, 20, 32, 42, 47 6, 11, 16, 24, 27

3   40   18 11, 19, 28, 32, 40 5, 8, 12, 14, 18

4   43   16 7, 18, 25, 34, 43 3, 9, 10, 13, 16

Total 180   93
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Table 6: Comparative data derived from Table 5

Compariso
n

Interi
m

Site Z V ̂ Conclusion

T1 vs T2   4 1   4.25   3.75   1.133 T1 knocks out
T2 at 4th 
interim

2   5.10   3.76   1.356

3 0.50   4.25 0.118

4   5.53   4.53   1.221

Total 14.38 16.28   0.883

T1 vs T3 12 1   2.14   9.02   0.237 T1 knocks out
T3 at 12th 
interim

2   3.60 11.24   0.320

3   4.02 13.11   0.307

4   9.39 14.98   0.627

Total 19.15 48.35   0.396

T1 vs T4   5 1   4.50   4.93   0.913 T1 knocks out
T4 at 5th 
interim

2   3.44   5.00   0.688

3   2.95   5.23   0.564

4   5.01   5.49   0.912

Total 15.91 20.64   0.771

T2 vs T3   4 1 1.00   4.33 0.231 No 
conclusion2 3.94   3.81 1.034

3   3.23   4.18   0.773

4 1.84   4.41 0.417

Total 3.54 16.73 0.212

T2 vs T4   4 1 0.48   4.24 0.113 No 
conclusion2 2.42   4.37 0.554

3   2.72   4.17   0.652

4 1.97   4.03 0.489

Total 2.15 16.81 0.128

T3 vs T4   5 1   1.16   5.47   0.212 No 
conclusion2   2.71   5.02   0.540

3   1.02   5.11   0.200

4 0.28   5.36 0.052

Total   4.62 20.97   0.220
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Table 7: Analyses of the data from the single simulated run of the sequential four treatment comparison shown in Tables 5 and 6  
In the naïve analyses, the sequential nature of the trial is ignored

The Rao-Blackwellisation method, RB2, is based on 10 million replicate reverse simulations

Compariso
n

Naïve Proportion
complete

RB2

̂ se L U  se L U

T1 vs T2    0.883 0.248    0.347 1.319 0.7381     0.869 0.286    0.309    1.429
T1 vs T3    0.396 0.144    0.114 0.678 0.0199     0.405 0.220 0.027    0.837 
T1 vs T4    0.771 0.220    0.340 1.202 0.3050     0.667 0.256    0.165    1.169 
T2 vs T3 0.212 0.244 0.690  0.266 0.7381 0.167 0.255 0.667  0.33

3 
T2 vs T4 0.128 0.244 0.606  0.350 0.7381 0.069 0.249 0.557     0.418
T3 vs T4    0.220 0.218 0.207  0.647 0.3050     0.165 0.225 0.277     0.606 

Table 8: Evaluation of the naïve method and the Rao-Blackwellisation method RB2 in the four treatment case
Both evaluations are based on 1,000-fold simulations and each RB2 analysis employed 1,000,000 reverse-simulations

The RB2 results are based on the 897 replicates in which 1000 or more reverse simulations were complete.   

Method Naïve RB2

Comparison T1 vs T2   T1 vs T3   T1 vs T4   T2 vs T3   T2 vs T4   T3 vs T4 T1 vs T2   T1 vs T3   T1 vs T4   T2 vs T3   T2 vs T4   T3 vs T4

True value of  0.693   0.405 0.405 0.288 0.288   0.000 0.693   0.405   0.405 0.288 0.288   0.000

Estimate of  0.770   0.472 0.468 0.293 0.297 0.004 0.695   0.421   0.414 0.281 0.288 0.007
Standard deviation 0.210   0.192 0.195   0.210   0.209   0.189 0.240   0.212   0.218   0.218   0.212   0.194

Standard error 0.193   0.161 0.161   0.197   0.196   0.167 0.254   0.222   0.221   0.214   0.214   0.187
L 0.393   0.155 0.153 0.679 0.682 0.331 0.197 0.013 0.020 0.701 0.707 0.373
U 1.148   0.788 0.783   0.092   0.087   0.323 1.193   0.855   0.847   0.139   0.131   0.359

Probability 0.937   0.929 0.920   0.945   0.950   0.932 0.955   0.968   0.965   0.957   0.964   0.971
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that(L ,U)
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Table 9: Properties of the simpler four treatment design from million-fold simulations

win1 = proportion of runs in which T1 wins
elim4 = proportion of runs in which T4 is eliminated
nod = proportion of runs in which:  for Cases 1 and 2, T1 and T2 are declared no different 

from one another; for Case 3, T1, T2 and T3 are declared no different from one another; 
for Cases 4 and 5, all treatments are declared no different from one another

still = proportion of runs in which not all treatment comparisons are resolved after 640 
responses

Case p1 p2 p3 p4 E(n) win1 elim4 nod still

1 0.600 0.400 0.400 0.400 377 0.826 0.923 0.043 0.000
2 0.600 0.600 0.400 0.400 377 0.026 0.977 0.904 0.000
3 0.600 0.600 0.600 0.400 422 0.005 0.989 0.860 0.001
4 0.500 0.500 0.500 0.500 491 0.002 0.066 0.772 0.018
5 0.600 0.600 0.600 0.600 480 0.002 0.072 0.768 0.000
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Table 10: Evaluation of the naïve method and the Rao-Blackwellisation method RB2 for the simpler four treatment design 
Both evaluations are based on 1,000-fold simulations and each RB2 analysis employed 1,000,000 reverse-simulations

The RB2 results are based on the 989 replicates in which 1000 or more reverse simulations were complete.

Method Naïve RB2

Comparison T1 vs T2   T1 vs T3   T1 vs T4   T2 vs T3   T2 vs T4   T3 vs T4 T1 vs T2   T1 vs T3   T1 vs T4   T2 vs T3   T2 vs T4   T3 vs T4

True value of  1.099   0.811 0.811 0.288 0.288   0.000 1.099   0.811 0.811 0.288 0.288   0.000

Estimate of  1.177   0.907 0.909 0.291 0.286 0.003 1.075   0.804 0.796 0.290 0.294 0.006
Standard deviation 0.332   0.323 0.343   0.369   0.385   0.367 0.400   0.357 0.399   0.397   0.433   0.393

Standard error 0.335   0.308 0.309   0.365   0.366   0.333 0.424   0.397 0.396   0.406   0.406   0.374
L 0.519   0.303 0.304 1.008 1.003 0.651 0.243   0.025 0.020 1.085 1.090 0.739
U 1.834   1.511 1.514   0.425   0.432   0.656 1.907   1.583 1.573   0.505   0.501   0.728

Probability
that(L ,U)

0.961   0.949 0.932   0.957   0.947   0.943 0.971   0.972 0.952   0.971   0.954   0.959
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Figure 1:  The elimination and stopping rule for a single pair of treatments

Figure 2:  Estimates and 95% confidence limits for  from the Rao-Blackwellisation
approaches, the orderings analysis and the naïve approach - with the naïve estimate

subtracted - plotted against the naïve estimate for Cases 1-12
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