1. Dayside convection throat rotates towards afternoon sector before main phase

2. Then electric potential increases and dayside throat rotates back towards noon

3. Average large-scale morphological changes in the electric field during storms happen on dayside

Average Ionospheric Electric Field Morphologies during

etic Storm Phases

1: Lancaster University, LA1 4YW, UK 2: University of Leicester, LE1 7RH, UK

Motivation

- SuperDARN's addition of mid-latitude radars allows us to study the high-latitude jon spheric electric field with improved coverage
- We are building a model of improved ionospheric electric field dynamics, which will include time-variability:

Need to know average storm dynamics to build improved models

Method

- SuperDARN was built to study high latitude ionospheric convection
- Radio signals are backscattered by magnetic field-aligned ionospheric irregularities
- Doppler shift is used to calculate ionospheric convection velocities
- A large dataset (2 min cadence, 2010-2016) allows us to statistically study average storm dynamics
- We use the geomagnetic storm list from Walach & Grocott (2019) which uses Sym-H to automatically identify 54 geomagnetic storms and their storm phases
- The median durations are:
 - Initial phase: 9.8 hours
 - Main phase: 4.5 hours
- Recovery phase: 27.9 hours We perform a superposed epoch analysis on the SuperDARN data, normalised to the median storm phase durations, to make average maps of ionospheric convection (at a 2-minute cadence) • We perform a principal component analysis on the resulting ionospheric electric field to extract and quantify dominant morphologies without bias

0.6 mV/m

Using

Super Dual Auroral Radar Network is a collection of radars funded by national scientific funding agencies of Australia, Canada, China, France, Japan, South Africa, United Kingdom, and United States of America, and we thank the international PI team for providing the data.

SuperDARN network:

Principal Component Analysis

• Each original electric potential map ($\mathbf{\Phi}_{t}$) can be expressed (or reconstructed) in terms of eigenvectors of the covariance matrix of $\phi(X_i)$ and their eigenvalues (α_i), where:

$$\alpha_i = \Phi_t \cdot X_i \tag{1}$$
$$\Phi_t = \sum_{i=1}^m \alpha_i X_i \tag{2}$$

- We use the Householder method for eigen-decomposition to achieve bace & | Lancaster 🌌 hysics | University this (e.g. Press et al. 2007)
- We scale each average storm map to 40° magnetic collatitude and use a 2°×2° resolution for the electrostatic potential
- This gives use 4500 eigenvectors and values, which describe the storm-time dynamics

Explained variance [%]:

Eigenvectors:

initial phase t:0 median duration

n_{sp}: 17079

- Most variability is on the dayside
 - Clear increase of α_1 throughout main phase, followed by a decrease: Ionospheric electric potential increases throughout main phase and the decreases as soon as recovery phase starts
 - α_3 increases towards start of main phase and then clearly decreases throughout main phase:

Dayside convection throat rotates towards afternoon

Curve converges fast, which means not many eigenvectors & eigenvalues are needed to explain the majority of morphologies

- Two-cell convection pattern is dominant
- X1 provides increase/decrease in two-cell potential
- X2 provides a way to add asymmetry

Φ [kV]

X3+ provide rotation of the dayside convection throat & rotation of overall pattern

Φ [kV]

sector before main phase and then as potential increases, dayside throat rotates back towards noon

m.walach@ancaster.ac.uk

Funded by NERC **#NE/P001556/1**

