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Abstract. Entangled embedded periodic nets and crystal frameworks are defined, along
with their dimension type, homogeneity type, adjacency depth and periodic isotopy type.
We obtain periodic isotopy classifications for various families of embedded nets with small
quotient graphs. We enumerate the 25 periodic isotopy classes of depth 1 embedded nets
with a single vertex quotient graph. Additionally, we classify embeddings of n-fold copies
of pcu with all connected components in a parallel orientation and n vertices in a repeat
unit, and determine their maximal symmetry periodic isotopes. We also introduce the
methodology of linear graph knots on the flat 3-torus [0, 1)3. These graph knots, with
linear edges, are spatial embeddings of the labelled quotient graphs of an embedded net
which are associated with its periodicity bases.

1. Introduction

Entangled and interpenetrating coordination polymers have been investigated inten-
sively by chemists in recent decades. Their classification and analysis in terms of sym-
metry, geometry and topological connectivity is an ongoing research direction [1],[2, 3],
[12],[15], [18], [19], [41]. These investigations also draw on mathematical methodologies
concerned with periodic graphs, group actions and classification [5],[25],[54]. On the other
hand it seems that there have been few investigations to date on the dynamical aspects
of entangled periodic structures with regard to deformations avoiding edge collisions, or
with regard to excitation modes and flexibility in the presence of additional constraints.
In what follows we take some first steps in this direction and along the way obtain some
systematic classifications of basic families.

A proper linear 3-periodic net N = (N,S) is a periodic bond-node structure in three
dimensions with a set N of distinct nodes and a set S of noncolliding line segment bonds.
The underlying structure graph G = G(N ) is also known as the topology of N (cf. [26]).
Thus, the net N is an embedded net for a topology G, it is translationally periodic with
respect to each basis vector of some vector space basis for the ambient space, the nodes
are distinct points, and the bonds of N are noncolliding straight line segments between
nodes. We also define the companion structure of a crystallographic bar-joint framework
C. In this case the bonds are of fixed lengths which must be conserved in any continuous
motion. Additionally a 3-periodic graph (G, T ) is a pair in which a countable graph G
carries a specific periodic structure T .
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Formal definitions of the periodic entities C,N and G are given in Definitions 2.1,
2.4 and 2.5. In crystallographic terminology it is usual in such definitions to require
connectedness [27]. However, we find it convenient in these definitions to extend the usage
to cover disconnected periodic structures.

Subclasses of linear d-periodic nets N in Rd are defined in terms of the diversity of their
connected components and we indicate the connections between these class divisions and
those used for entangled coordination polymers. In particular we define the dimension type,
which gives a list of the periodic ranks of connected subcomponents, and the homogeneity
type which concerns the congruence properties between these components.

Fundamental to the structure of an embedded periodic net are its labelled quotient graphs
which are finite edge-labelled graphs determined by periodicity bases. In particular the
infinite structure graph G(N ) is determined by any labelled quotient graph of this kind,
and the (unique) quotient graph QG(N ) is the graph of the labelled quotient graph of a
primitive periodicity basis. These constructs for N provide useful discriminating features
for embedded nets even if they are insensitive to entanglement and catenation.

Our main concern is the entangled nature of linear periodic nets in 3-space which have
more than one connected component, however we also consider the self-entanglement of
connected structures. Specifically, we approach the classification of linear periodic nets
in terms of a formal notion of periodic isotopy equivalence, as given in Definition 6.1.
This asserts that two embedded periodic nets in R3 are periodically isotopic if there is a
continuous path of noncrossing embedded periodic nets between them which is associated
with a continuous path of periodicity bases. In this way we formalise an appropriate
variant of the notion of ambient isotopy which is familiar in the theory of knots and links.

As a tool for understanding periodic isotopy we define linear graph knots on the flat
3-torus and their isotopy equivalence classes. Such a graph knot is a spatial graph in the
3-torus which is a geometric realisation (embedding) of the labelled quotient graph of a
linear periodic net arising from a choice of right-handed periodicity basis for N . We prove
a natural finiteness theorem (Theorem 6.4) showing that there are finitely many periodic
isotopy types of linear graph knots with a given labelled quotient graph. This in turn
implies that there are finitely many periodic isotopy types of linear 3-periodic nets with a
given labelled quotient graph.

Our discussions and results are structured as follows. Sections 2 to 6 cover terminology,
illustrative examples and general underlying theory. In Section 7 we give group theory
methods, while in Sections 8, 9 and 10 we give a range of results, determining periodic
isotopy classes and topologies for various families of embedded nets.

More specifically, in Section 2 we give comprehensive terminology, ab initio, and give
the connections with terms used for coordination polymers and with the net notations of
both the Reticular Chemistry Structural Resourse (RCSR) [47] and ToposPro [14]. In the
key Section 3 we discuss labelled and unlabelled quotient graphs. The example considered
in detail in Section 3.1 illustrates terminology and motivates the introduction of model
nets for the analysis of periodic isotopy types (periodic isotopes). In Section 4 we define
primitive periodicity bases and introduce a measure of adjacency depth for an embedded
net. In Section 5, as preparation for the discussion of periodic isotopy for embedded
nets, we define linear graph knots on the flat 3-torus T3 = [0, 1)3 as spatial graphs with
(generalised) line segment edges. In Section 6 we discuss various isotopy equivalences for
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graph knots. Also we define periodic isotopy equivalence for embedded nets and prove
that it is an equivalence relation and that there are finitely many periodic isotopes with
a common labelled quotient graph. In the group methods of Section 7 we give the group-
supergroup construction of entangled nets [5], the definition of maximal symmetry periodic
isotopes, and the role of Burnside’s lemma in counting periodic isotopes. In Section 8 we
determine periodic isotopy classes and also restricted periodic isotopy classes for various
multicomponent shift homogeneous embeddings of n-fold pcu. Such multicomponent
embedded nets are related to the interpenetrated structures with translationally equivalent
components which are abundant in coordination polymers. For generic embeddings we give
proofs, based Burnside’s lemma for counting orbits of spatially equivalent embeddings,
while for maximal symmetry embeddings for n-pcu we use computations based on group-
supergroup methods. In Section 9 we give a detailed determination of the 19 topologies and
periodic isotopy classes of connected linear 3-periodic nets with a single vertex quotient
graph and adjacency depth 1 (Table 3). In the final section we indicate further research
directions.

2. Terminology

In any investigation with cross-disciplinary intentions, in our case between chemistry
(reticular chemistry and coordination polymers) and mathematics (isotopy types and pe-
riodic frameworks), it is important to be clear of the meaning of terms. Accordingly we
begin by defining all terminology from scratch.

The structure graph G = (V,E) of a finite or countably infinite bar-joint framework G is
given a priori since, formally, a bar-joint framework G in Rd is a pair (G, p) consisting of a
simple graph G, the structure graph, together with a placement map p : V → Rd, p : v →
p(v). The joints of G are the points p(v) and the bars of G are the (unordered) joint pairs
p(v)p(w) associated with the edges vw in E. It is often assumed that p(v) 6= p(w) for the
edges vw and hence the bars may also considered to be the associated nondegenerate line
segments [p(v), p(w)].

A d-periodic bar-joint framework in Rd is a bar-joint framework G = (G, p) in Rd whose
periodicity is determined by two sets Fv, Fe of noncoincident joints p(v) and bars p(u)p(w),
respectively, together with a set of basis vectors for translational periodicity, say a =
{a1, . . . , ad}. The requirement is that the associated translates of the set Fv and the set
Fe are, respectively, disjoint subsets of the set of joints and the set of bars whose unions
are the sets of all joints and bars. In particular p is an injective map.

The pair of sets (Fv, Fe) is a building block, or repeating unit, for G. We refer to this
pair of sets also as a motif for G for the basis a and note that G is determined uniquely
by any pair of periodic basis and motif. In fact we shall only be concerned with finite
motifs. Also, for 1 ≤ d′ < d we similarly define a d′-periodic bar-joint framework in Rd as
one which is generated by a finite motif and a linearly independent set of d′ vectors for
translational periodicity.

Definition 2.1. A crystallographic bar-joint framework C in Rd, or crystal framework, is
a d-periodic bar-joint framework in Rd with finitely many translation classes for joints and
bars.
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Viewing C as a bar-joint framework, rather than as a geometric d-periodic net, is a
conceptual prelude to the consideration of dynamical issues of flexibility and rigidity [49],
one in which we may bring to bear geometric and combinatorial rigidity theory. Note
however that we have not required a crystal framework to be connected.

In the case of a 3D crystal framework C, particularly an entangled one of material origin,
it is natural to require that the line segments [p(v), p(w)], for vw ∈ E, are essentially
disjoint in the sense that they intersect at most at a common endpoint p(x) for some
x ∈ V . We generally adopt this noncrossing assumption and say that C is a proper crystal
framework in this case. Thus a proper crystal framework C determines a closed set, denoted
|C|, formed by the union of the (nondegenerate) line segments [p(v), p(w)], for vw ∈ E.
We call this closed set the body of C. By our assumptions one may recover C from its body
and the positions of the joints.

The connected components of a crystal framework may have a lower rank (or dimension)
of periodicity. Accordingly we make the following definition.

Definition 2.2. A subperiodic crystal framework, or d′-periodic crystal framework, with
rank 1 ≤ d′ < d, is a d′-periodic bar-joint framework in Rd, with d′ linearly independent
period vectors and finitely many translation classes for joints and bars.

For completeness we define a 0-periodic bar-joint framework in Rd to be a finite bar-
joint framework in Rd. Thus every connected component of a crystal framework in Rd

is either itself a crystal framework in Rd or is a subperiodic crystal framework with rank
1 ≤ d′ ≤ d, or is a finite framework. Note that a subperiodic subframework exists for C if
and only if C has infinitely many connected components, that is, if and only if the body
of C has infinitely many topologically connected components.

In view of the finiteness requirement for the d′-periodic translation classes, a subperiodic
crystal framework in Rd has a joint set consisting of finitely many translates of a sublattice
of rank d′. In general d′-periodic subperiodic frameworks may differ in the nature of their
affine span, or spatial dimension, which may take any integral value between d′ and d.
Formally, the spatial dimension is the dimension of the linear span of all the so-called bar
vectors, p(w) − p(v) associated with the bars p(v)p(w) of the framework. Once again we
define a subperiodic framework to be proper if there are no intersections of edges.

The various definitions above, and also the following definition of dimension type, trans-
pose immediately to the simpler category of linear periodic nets N , as defined in the next
section.

We now introduce the general terminology which is specific to 3-dimensional space. Also
we indicate how later this formulation of dimension type aligns with the terminology used
by chemists for entangled periodic nets.

Definition 2.3. A periodic or subperiodic framework C in 3-dimensional space has di-
mension type d = {d′; d1, . . . , ds}, where d′ is the periodicity rank of C and where d1, . . . , ds
is the decreasing list of periodicity ranks of the connected components. (In the symbol,
a number representing the periodicity rank of a component is listed only once even if it
occurs as the rank of several components.)

In particular there are 15 dimension types {d} for rank 3 crystallographic frameworks,
or for linear 3-periodic nets, namely
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{3; 3}, {3; 3, 2}, {3; 3, 1}, {3; 3, 0}, {3; 3, 2, 1}, {3; 3, 2, 0}, {3; 3, 1, 0}, {3; 3, 2, 1, 0}

{3; 2}, {3; 2, 1}, {3; 2, 0}, {3; 2, 1, 0}, {3; 1}, {3; 1, 0}, {3; 0}

2.1. Categories of periodic structures. Consider the following frequently used terms
for periodic structures, arranged with an increasing mathematical flavour: Crystal, crystal
framework, linear periodic net, periodic graph, and topological crystal.

We have defined proper crystal frameworks in Rd with essentially disjoint bars and
these may be viewed as forming an “upper category” of periodic objects for which there is
interest in bar-length preserving dynamics. If we disregard bar lengths, but not geometry,
then we are in the companion category of positions, or line drawings, or embeddings of
d-periodic nets in Rd. Such embeddings are of interest in reticular chemistry and in this
connection we may define a linear d-periodic net in Rd to be a pair (N,S), consisting of a
set N of nodes and a set S of line segments, where these sets correspond to the joints and
bars of a proper d-periodic crystal framework. A stand-alone definition is the following

Definition 2.4. A (proper) linear d-periodic net in Rd is a pair N = (N,S) where

(i) S, the set of edges (or bonds) of N , is a countable set of essentially disjoint line
segments [p, q], with p 6= q,

(ii) N , the set of vertices (or nodes) of N , is the set of endpoints of members of S,
(iii) there is a basis of vectors for Rd such that the sets N and S are invariant under

the translation group T for this basis,
(iv) the sets N and S partition into finitely many T -orbits.

Thus a linear periodic net can be thought of as a proper linear embedding of the structure
graph of a crystal framework, the relevant crystal frameworks being those with no isolated
joints of degree 0. Note that a linear periodic net is not required to be connected.

A linear d-periodic net is referred to in reticular chemistry as an embedding of a “d-
periodic net”. This is because the term d-periodic net has been appropriated for the
underlying structure graph of a linear periodic net. See Delgado-Friedrichs and O’Keeffe
[27], for example. This reference, to a more fundamental category on which to build, so
to speak, then allows one to talk of a d-periodic net having an embedding with, perhaps,
certain symmetry attributes. It follows then, tautologically, that a d-periodic net is a
graph with certain periodicity properties and we formally specify this in Definition 2.5.

The next definition is a slight variant of the definition given by Delgado-Friedrichs [25],
in that we also require edge orbits to be finite in number.

Definition 2.5. (i) A periodic graph is a pair (G, T ), where G is a countably infinite
simple (abstract) graph and T is a free abelian subgroup of Aut(G) which acts on G freely
and is such that the set of vertex orbits and edge orbits are finite. The group T is called
a translation group for G and its rank is called the dimension of (G, T ).

(ii) A d-periodic graph or a d-periodic net is a periodic graph of dimension d.
(iii) The translation group T and the periodic graph (G, T ) are maximal if no periodic

structure (G, T ′) exists with T ′ a proper supergroup of T .
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The subgroup T (or the pair (G, T )) is referred to as a periodic structure on G. Some
care is necessary with assertions such as “N is an embedding of a 3-periodic net G”. This
has two interpretations according to whether G comes with a given periodic structure T
which is to be represented faithfully in the embedding as a translation group or, on the
other hand, whether the embedding respects some periodic structure T ′ in Aut(G).

Finally we remark that there is another category of nets which is relevant to more
mathematical considerations of entanglement, namely string-node nets in the sense of
Power and Schulze [51]. In the discrete case these have a similar definition to linear
periodic nets but the edges may be continuous paths rather than line segments.

2.2. Maximal symmetry, the RCSR and self-entanglement. Let N be a linear
d-periodic net. Then there is a natural injective inclusion map

ιN : S(N )→ Aut(G(N ))

from the usual symmetry group (space group) S(N ) of N to the automorphism group of
its structure graph G(N ).

Definition 2.6. Let N be a linear d-periodic net.
(i) The graphical symmetry group of N is the automorphism group Aut(G(N )). This is

also called the maximal symmetry group of N .
(ii) A maximal symmetry embedding of G(N ) is an embedded netM for which G(M) =

G(N ) and the map ιM is a group isomorphism.

A key result of Delgado-Friedrichs [24],[25] shows that many connected 3-periodic graphs
have unique maximal symmetry placements, possibly with edge crossings. These place-
ments arise for a so-called stable net by means of a minimum energy placement, associated
with a fixed lattice of orbits of a single node, followed by a renormalisation by the point
group of the structure graph. In fact a stable net is defined as one for which the minimum
energy placement has no node collisions. See also [27], [56]. While maximum symmetry
positions for connected stable nets are unique, up to spatial congruence and rescaling,
edge crossings may occur for simply-defined nets because, roughly speaking, the local
edge density is too high. It becomes an interesting issue then to define and determine the
finitely many classes of maximum symmetry proper placements and this is true also for
multicomponent nets. See Section 7.1.

The Reticular Chemistry Structural Resource (RCSR)[47] is a convenient online data-
base which, in part, defines a set of around 3000 topologies G together with an indication
of their maximal symmetry embedded nets. The graphs G are denoted in bold face no-
tation, such as pcu and dia, in what is now standard nomenclature. We shall make use
of this and denote the maximal symmetry embedding of a connected topology abc as
Nabc. This determines Nabc as a subset of R3 up to a scaling factor and spatial congru-
ence. ToposPro [14] is a more sophisticated program package, suitable for multi-purpose
crystallochemical analysis and has a more extensive periodic net database. In particular
it provides labelled quotient graphs for 3-periodic nets.

Both these databases give coordination density data which can be useful for discrimi-
nating the structure graphs of embedded nets.

In Section 6 we formalise the periodic isotopy equivalence of pairs of embedded nets.
One of our motivations is to identify and classify connected embedded nets which are
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not periodically isotopic to their maximal symmetry embedded net. We refer to such an
embedded net to be a self-entangled embedded net.

2.3. Derived periodic nets. We remark that the geometry and structural properties
of a linear periodic net or framework can often be analysed in terms of derived nets or
frameworks. These associated structures can arise through a number of operations and
we now indicate some of these.

(i) The periodic substitution of a (usually connected) finite unit with a new finite unit
(possibly even a single node) while maintaining incidence properties. This move is common
in reticular chemistry for the creation of “underlying nets” [1], [15].

(ii) A more sophisticated operation which has been used for the classification of coor-
dination polymers replaces each minimal ring of edges by a node (barycentrically placed)
and adds an edge between a pair of such nodes if their minimal rings are entangled. In this
way one arrives at the Hopf ring net (HRN) of an embedded net N . This is usually well-
defined as a (possibly improper) linear 3-periodic net and it has proven to be an effective
discriminator in the taxonomic analysis of crystals and coordination polymer databases.

(iii) There are various conventions in which notational augmentation is used [2], [4] to
indicate the derivation of an embedded net or its relationship with a parent net. In the
RCSR listing for example the notation pcu-c4 indicates the topology made up of 4 disjoint
copies of pcu [47]. In Tables 1, 2 we use a notation for model embedded nets, such as
Mff

pcu, ..., which is indicative of a hierarchical construction.
(iv) On the mathematical side, in the rigidity theory of periodic bar-joint frameworks C

there are natural periodic graph operations and associated geometric moves, such as peri-
odic edge contractions, which lead to inductive schemes in proofs. In particular periodic
Henneberg moves, which conserve the average degree count, feature in the rigidity and
flexibility theory of such frameworks [46].

2.4. Types of entanglement and homogeneity type. Let us return to descriptive
aspects of disconnected linear 3-periodic nets N in R3.

We first note the following scheme of Carlucci et al [19] which has been used in the
classification of observed entangled coordinated polymers. Such a coordination polymer,
P say, is also a proper linear d-periodic net N in R3, and this is either of full rank d = 3,
or is of subperiodicity rank 1 ≤ d < 3, or is a finite net (which we shall say has rank 0).
Let P be a d-periodic coordination polymer in R3. Then P is said to be

(i) in the interpenetration class if all connected components of N are also d-periodic,
(ii) in the polycatenation class otherwise.

Thus P is in the interpenetration class if and only the dimension type of its net is
{3; 3}, {2; 2}, {1; 1} or {0; 0}.

The entangled coordination polymers in the interpenetration class may be further di-
vided as subclasses of n-fold type, according to the number n of components, where,
necessarily, n is finite.

The linear 3-periodic nets in the polycatenation class have some components which
are subperiodic and in particular they have countably many components. When all the
components are 2-periodic, that is, when N has dimension type {3; 2}, then N is either
of parallel type or inclined type. Parallel type is characterised by the common coplanarity
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of the periodicity vectors of the components, whereas N is of inclined type if there exist
2 components which are not parallel in this manner. The diversity here may be neatly
quantified by the number, ν2 say, of planes through the origin that are determined by the
(pairs of) periodicity vectors of the components.

Similarly the disconnected linear 3-periodic nets of dimension type {3; 1} can be viewed
as being of parallel type, with all the 1-periodic components going in the same direction,
or, if not, as inclined type. In fact there is a natural further division of the nonparallel
(inclined) types for the nets of dimension type {3; 1} according to whether the periodicity
vectors for the components are co-planar or not. We could describe such nets as being of
coplanar inclined type and triple inclined type respectively. The diversity here may also
be neatly quantified by the number, ν1 say, of lines through the origin that are determined
by the periodicity vectors of the components.

The disconnected nets of parallel type are of particular interest for their mathemati-
cal and observed entanglement features, such as borromean entanglement and woven or
braided structures [19], [45].

The foregoing terminology is concerned with the periodic and sub-periodic nature of the
components of a net without regard to further comparisons between them. On the other
hand the following terms identify subclasses according to the possible congruence between
the connected components.

N is of homogeneous type if its components are pairwise congruent. Here the imple-
menting congruences are not assumed to belong to the space group.

N is n-heterogenous, with n > 1, if there are exactly n congruence classes of connected
components.

Thus every 3-periodic linear netN in R3 is either of homogeneous type or n-heterogeneous
for some n = 2, 3, . . . .

The homogeneous linear 3-periodic nets split into two natural subclasses.

N is of shift-homogenous type if all components are pairwise translationally equivalent
(shift equivalent). Otherwise, when N contains at least one pair of components which are
not shift equivalent then we say that the homogeneous net N is of rotation type.

Finally we take account of the space group of N to specify a very strong form of
homogeneity: each of the two homogeneous types contain a further subtype according to
whether N is also of transitive type or not, where

N is component transitive (or is of transitive type) if the space group of N acts transi-
tively on components.

Such component transitive periodic nets have been considered in detail by Baburin [5]
with regard to their construction through group-supergroup methods.

Note that a homogeneous linear 3-periodic net in R3 which is not connected falls into
exactly one of 16 possible dimension-homogeneity types according to the 4 possible types
of homogeneity and the 4 possible dimension types d, namely d = {3; 3}, {3; 2}, {3; 1} or
{3; 0}. For a full list of correspondences see Figure 1.
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Figure 1. Dimension type and polycatenation.

2.5. Catenation and Borromean entanglement. To the dimension-homogeneity type
division of multicomponent embedded nets one may consider further subclasses which
are associated with entanglement features between the components. Indeed, our main
consideration in what follows is a formalisation of such entanglement in terms of linear
graph knots. We note here some natural entanglement invariants of Borromean type. In
fact the embedded nets of dimension type {3; 2} have been rather thoroughly identified in
[19], [4] where it is shown that subdimensional 2-periodic components can be catenated
or woven in diverse ways.
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To partly quantify this one may define the following entanglement indices. Let N be
such a parallel type embedded net, with dimension type {3; 2}, and let S be a finite set
of components. Then a separating isotopy of S is a continuous deformation of S to a
position which properly lies on both sides of the complement of a plane in R3. If there
is no separating isotopy for a pair S = {Ni,Nj} of components of N then we say that
they are entangled components, or are properly entangled. This partial definition can
be made rigourous by means of a formal definition of periodic isotopy. We may then
define the component entanglement degree of a component Ni of N to be the maximum
number, δ(Ni) say, of components Nj which can form an entangled pair with Ni. Also
the component entanglement degree of N itself may be defined to be the maximum such
value.

Likewise one can define the entanglement degrees of components for embedded nets
of dimension type {3; 1} and for the subdimensional nets of dimension type {2; 2} (wo-
ven layers) and dimension type {1; 1} (braids). More formally, we may say that N has
Borromean entanglement if there is a set of n ≥ 3 connected components which admit
no separating periodic isotopy while, on the other hand, every pair in this set admits a
separating periodic isotopy. In a similar way one can formalise the notion of Brunnian
catenation [44] for a multicomponent embedded net.

2.6. When topologies are different. Two standard graph isomorphism invariants used
by crystallographers are the point symbol and the coordination sequence.

In a vertex transitive countable graph G the point symbol (PS), which appears as 42464

for bcu for example, indicates the multiplicities (24 and 4) of the cycle lengths (4 and
6) for a set of minimal cycles which contain a pair of edges incident to a given vertex. If
the valency (or coordination) of G is r then there are r(r − 1)/2 such pairs and so the
multiplicity indices sum to r(r − 1)/2. For G nontransitive on vertices the point symbol
is a list of individual point symbols for the vertex classes [13].

The coordination sequence (CS) of a vertex transitive countable graph G is usually given
partially as a finite list of integers associated with a vertex v, say n1, n2, n3, n4, n5, where
nk is the number of vertices w 6= v for which there is a edge path from v to w of length k
but not of shorter length. For bcu this sequence is 8, 26, 56, 98, 152. Cumulative sums of
the CS sequence are known as topological densities, and the RCSR, for example, records
the 10-fold sum, td10.

Even the entire coordination sequence is not a complete invariant for the set of under-
lying graphs of embedded periodic nets. However this counting invariant can be useful
for discriminating nets whose local structures are very similar. A case in point is the pair
8T17 and 8T21 appearing in Table 3, which have partial coordination sequences 8, 32, 88
and 8, 32, 80, respectively.

3. Quotient graphs

We now define quotient graphs and labelled quotient graphs associated with the periodic
structure bases of a linear periodic net N . Although quotient graphs and labelled quotient
graphs are not sensitive to entanglement they nevertheless offer a means of subcategorising
linear periodic nets. See, for example, the discussions in Eon [30, 31], Klee [39], Klein [40],
Thimm [57] and Section 4.3 below.
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Let N = (N,S) be a linear 3-periodic net with periodic structure basis a = {a1, a2, a3}.
Then N is completely determined by a and any associated building block motif (Fv, Fe).
It is natural, especially in illustrating examples, to choose the set Fe of edges of N to be
as connected as possible and to choose Fv to be a subset of the vertices of these edges. Let
T denote the translation group associated with a, so that T is the set of transformations

Tk : (x, y, z)→ (x, y, z) + k1a1 + k2a2 + k3a3, k ∈ Z3.

Each (undirected) line segment edge p(e) in Fe has the form [Tkp(ve), Tlp(we)], where p(ve)
and p(we) are the representatives in Fv for the endpoint nodes Tkp(ve), Tlp(we) of the edge
p(e). The labels k and l here may be viewed as the cell labels or translation labels
associated with endpoints of p(e). (As before ve, we indicate vertices of the underlying
structure graph G(N ).)

The labelled quotient graph LQG(N ; a) of the pair (N , a) is a finite multigraph together
with a directed labelling for each edge, where the labelling is by elements k ∈ Z3. The
vertices correspond to (or are labelled by) the vertices v of the nodes p(v) in Fv, and the
edges correspond to edges p(e) in Fe. The directedness is indicated by the ordered pair
(ve, we), or by vewe, (viewed as directedness “from ve to we”). The label for this directed
edge is then k − l where k, l are the translation labels as in the previous paragraph, and
so the labelled directed edge is denoted (vewe, k − l). There is no ambiguity since the
directed labelled edge (vewe, k− l) is considered as the same directed edge as (weve, l−k).
In particular the following definition of the depth of labelled directed graph is well-defined.

Definition 3.1. Let H = (H, λ) be any labelled quotient graph. Then the depth of H is
the maximum modulus of the coordinates of the edge labels.

The quotient graph QG(N ; a) of the pair (N , a) is the undirected graph G obtained from
the labelled quotient graph. If a is a primitive periodicity basis, that is, one associated
with a maximal lattice in N , then QG(N ; a) is independent of a and is the usual quotient
graph of N in which the vertices are labelled by the translation group orbits of the nodes.
Primitive periodicity bases are discussed further in the next section. Moreover we identify
there the “preferred” primitive periodicity bases which have a “best fit” for N in the sense
of minimising the maximum size of the associated edge labels.

Definition 3.2. The quotient graph QG(N ) of a linear periodic net N in Rd is the
unlabelled multigraph graph of the labelled quotient graph determined by a primitive
periodicity basis.

Finally we remark on the homological terminology related to the edge labellings of a
labelled quotient graph. The homology group H1(T3;Z) of the 3-torus T3 is isomorphic to
Z3. In this isomorphism the standard generators of Z3 may be viewed as corresponding to
(homology classes of) three 1-cycles which wind once around the 3-torus (which we may
parametrise naturally by the set [0, 1)3) in the positive coordinate directions. Also, we
may associate the standard ordered basis for Z3 with a periodicity basis a for N . In this
case the sum of the labels of a directed cycle of edges in the labelled quotient graph is
equal to the homology class of the associated closed path in T3.

3.1. Embedded nets with a common LQG. We now consider the family of all linear
3-periodic nets (proper embedded nets) which have a periodic structure basis determining
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a particular common labelled quotient graph. This discussion illuminates some of the
terminology set out so far and it also gives a prelude to discussions of periodic isotopy.
Also it motivates the introduction of model nets and linear graphs knots on the 3-torus.

Let H be the 6-coordinated graph with two vertices v1, v2, two connecting edges between
them and two loop edges on each vertex. (We say that a finite or countable graph is n-
coordinated if every vertex has valency n.) Let (H, λ) be the labelled quotient graph with
labels (0, 0, 1), (1, 1, 1) for the loop edges for v1, labels (0, 1, 0), (0, 0, 1) for the loop edges
for v2, and labels (0, 0, 0), (0,−1,−1) for the two directed edges from v1 to v2. Let N be
an embedded net with a general periodic structure basis a such that LQG(N ; a) = (H,λ).
(In particular N has adjacency depth 1, as defined in the next section.) Note that the 4
loop edges on v1 and v2 imply that N has two countable sets of two dimensional parallel
subnets all of which are pairwise disjoint. These subnets are either parallel to the pair
{a2, a3} or to the pair {a3, a1+a2+a3}. In particular if N ′ ⊆ N is the embedded net which
is the union of these 2D subnets then N ′ is a derived net of N of dimension type {3; 2}.
Also N ′ is in the polycatenation class of inclined type (rather than parallel type). By
means of a simple oriented affine equivalence (see Definition 4.3) the general pair (N , a)
with LQG (H,λ) is equivalent to a pair (M, b), having the same LQG, where b is the
standard right-handed orthonormal basis. We shall call the pair (M, b) a model net.

By translation (another oriented affine transformation) we may assume that there is a
node p1 of M at the origin which is associated with the vertex v1 of H. Let p2 be the
unique node associated with v2 which lies in the unit cell [0, 1)3. Now the pair (M, b) is
uniquely determined by p2 and we denote it simply asM(p2). Figure 2 illustrates the part
of the linear periodic netM(p2) which is visible in [0, 1)3. In Section 5 we shall formalise
diagrams such as Figure 2 in terms of linear graph knots on the flat 3-torus.

(1,1,1)

(0,-1,-1)(0,0,0)

(0,1,0)(0,0,1)

(0,0,1)

x

z

p

p
2

1

Figure 2. (a) A labelled quotient graph (H, λ). (b) Part of the netM(p2)
in the cube [0, 1)3 where M(p2) is determined by the LQG together with
the standard basis periodic structure b, a node p1 at the origin and the node
p2 in the unit cell [0, 1)3.

With this normalisation the point p2 can be any point in [0, 1)3, subject to the essential
disjointness of edges, and we write O for this set of positions of p2. Note that as p2 moves
on a small closed circular path around the main diagonal its incident edges are determined
and there will be 5 edge crossings with the diagonal. In fact the 2 vertical edges and the 2
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horizontal edges which are incident to p2 contribute 2 crossings each, and the other edge
incident to p2 contributes 1 crossing. These are the only edge crossings that occur as p2

”carries” its 6 edges of incidence during this motion. It follows from similar observations
that O is the disjoint union of 5 pathwise connected sets.

In this way we see that a pair of netsM(p2),M(p′2), with p2, p
′
2 in the same component

set, are strictly periodically isotopic in the sense that there is a continuous path of linear
periodic nets between them each of which has the same periodic structure basis, namely
b. From this we may deduce that there are at most 5 periodic isotopy classes of embedded
nets N which have the specific labelled quotient graph (H,λ) for some periodic structure.
Conceivably there could be fewer periodic isotopy classes since we have not contemplated
isotopy paths of nets, with associated paths of periodicity bases, for which the labelled
quotient graph changes several times before returning to (H,λ).

Let us also note the following incidental facts about the nets M(p2). They are 6-
coordinated periodic nets and so provide examples of critically coordinated bar-joint frame-
works, of interest in rigidity theory and the analysis of rigid unit modes. This is also true
of course for all frameworks with the same underlying quotient graph.

4. Adjacency depth and model nets

We now define the adjacency depth of a linear 3-periodic net N . This positive integer
can serve as a useful taxonomic index and in Sections 9, 10 we determine, in the case
of some small quotient graphs, the 3-periodic graphs which possess an embedding as a
(proper) linear 3-periodic net with depth 1. These identifications also serve as a starting
point for the determination of the periodic isotopy types of more general depth 1 embedded
nets.

We first review maximal periodicity lattices for embedded nets N and their primitive
periodicity bases.

4.1. Primitive periodic structure. Let a be a vector space basis for Rd which consists
of a periodicity basis for a linear d-periodic net N . The associated translation group T (a)
of isometries of N is a subgroup of the space group of N . We say that a is a primitive,
or a maximal periodicity basis , if there is no periodicity basis b such that T (a) is a proper
subset of T (b).

We focus on 3 dimensions and in order to distinguish mirror related nets we generally
consider right-handed periodicity bases of the embedded nets N .

The next well-known lemma shows that different right-handed primitive bases are simply
related by the matrix of an invertible transformation with integer entries and determinant
1. Let GL(d,R) be the group of invertible d × d real matrices, viewed also as linear
transformations of Rd, and let GL+(d,R) be the subgroup of matrices with positive deter-
minant. Also, let SL(d,R) be the subgroup of elements with determinant 1, and SL(d,Z)
the subgroup of SL(d,R) with integer entries.

Lemma 4.1. Let N = (N,S) be a linear 3-periodic net in R3 with a primitive right-handed
periodicity basis b and a right-handed periodicity basis a. Then a is primitive if and only
if there is a matrix Z ∈ SL(3,Z) with a = Zb = (Zb1, Zb2, Zbd).
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4.2. The adjacency depth ν(N ) of a linear periodic net. While certain elementary
linear periodic nets N have ”natural” primitive periodicity bases it follows from Lemma
4.1 that such a basis is not determined by N . It is natural then to seek a preferred basis a
which is a “good fit” in some sense. The next definition provides one such sense, namely
that the primitive basis a should be one that minimises the adjacency depth of the pair
(N , a).

Definition 4.2. The adjacency depth of the pair (N , a), denoted ν(N , a), is the depth of
the labelled quotient graph LQG(N ; a), that is the maximum modulus of its edge labels.
The adjacency depth, or depth, of N is the minimum value, ν(N ), of the adjacency depths
ν(N , b) taken over all right-handed primitive periodicity bases b.

Let N be a linear 3-periodic net with periodicity basis a. Consider the semi-open
parallelepipeds (rhomboids)

Pk := Pk(a) := {t1a1 + t2a2 + t3a3 : ki ≤ ti < ki + 1, 1 ≤ i ≤ 3}, k ∈ Z3.

These sets form a partition of R3, with Pk viewed as a unit cell with label k. Note that
each cell Pj has 26 ”neighbours”, given by those cells Pl whose closures intersect the
closure of Pk. (For diagonal neighbours this intersection is a single point.) Thus we have
the equivalent geometric description that ν(N ) = 1 if and only if there is a primitive
periodicity basis such that the pair of end nodes of every edge lie in neighbouring cells of
the cell partition, where here we also view each cell as a neighbour of itself.

It should not be surprising that for the connected embedded periodic nets of materials
the adjacency depth is generally 1. Indeed while the maximum symmetry embedding Nelv

for the net elv has adjacency depth 2, it appears to us to be the only connected example
in the current RCSR listing with ν(N ) > 1. The periodic net elv gets its name from the
fact that its minimal edge cycles have length 11. On the other hand in Section 8 we shall
see simple examples of multicomponent nets with adjacency depth equal to the number
of connected components.

Definition 4.3. Let Ni = (Ni, Si), i = 1, 2, be linear 3-periodic nets in R3. Then N1 and
N2 are affinely equivalent (resp. orientedly (or chirally) affinely equivalent) if there are
translates of N1 and N2 which are conjugate by a matrix X in GL(3,R) (resp. GL+(3,R)).

It follows from the definitions that if N1 and N2 are affinely equivalent then they have
the same adjacency depth.

The next elementary lemma is a consequence of the fact that linear 3-periodic nets are,
by assumption, proper in the sense that their edges must be noncrossing (ie. essentially
disjoint).

Lemma 4.4. Let N be a linear 3-periodic net with a depth 1 labelled quotient graph
(H, λ). Then there are at most 7 loop edges on each vertex of H and the multiplicity of
edges between each pair of vertices is at most 8.

Proof. Let a be a periodic structure basis such that ν(N ; a) = 1. Without loss of generality
we may assume that a is an orthonormal basis. Let p1 be a node of N . Let p2, . . . , p8

be the nodes Tkp1 where k 6= (0, 0, 0) with coordinates equal to 0 or 1, and let p9, . . . , p27

be the nodes Tkp1 for the remaining values of k with coordinates equal to 0, 1 or −1.
Every line segment [p1, pt] with t ≥ 9 has a lattice translate which either coincides with or
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intersects, at midpoints, one of the line segments [p1, pt] with t < 9. Since N has no edge
crossings it follows that there are at most 7 translation classes for the edges associated
with multiple loops of H at a vertex.

We may assume that p1 = (0, 0, 0). Let q1 be a node in (0, 1)3 in a distinct translation
class. Since the depth is 1 it follows that the edges [q1, p] in N with p a translate of p1,
correspond to the positions p = λ, where λ ∈ Z3 has coordinates taking the values −1, 0
or 1. The possible values of λ are also the labels in the quotient graph of N for the edges
directed from the orbit vertex of p1 to the orbit vertex of q1. There are thus 27 possibilities
for the edges [q1, p], and we denote the terminal nodes p by λa, λb, . . . .

Since N is a proper net, with no crossing edges, we have the constraint that k =
(λa − λb)/2 is not a lattice point for any pair λa, λb. For otherwise [q1 + k, λb + k] is an
edge of N and its midpoint coincides with the midpoint of [q1, λa]. It follows from the
constraint that there are at most 8 terminal nodes. �

The following proposition gives a necessary condition for a general 3-periodic graph
(G, T ) to have an embedding as a proper linear 3-periodic net. Moreover this condition
is useful later for the computational determination of possible topologies for nets which
have a quotient graph with 1 or 2 vertices.

We say that a labelled quotient graph (H,λ) has the divisibility property, or is divisible,
if for some pair of labelled edges (v1v2, k), (v1v2, l), with the same vertices, and possibly
v1 = v2, the vector k − l is divisible in the sense that it is equal to nt, with t ∈ Z3 and
n ≥ 2 an integer. If this does not hold then the 3 entries of k − l are coprime and (H,λ)
is said to be indivisible.

Proposition 4.5. Let N be a (proper) linear 3-periodic net in R3 and let (H, λ) be a
labelled quotient graph associated with some periodic structure basis for N . Then (H,λ)
is indivisible.

Proof. Let (v1v2, k), (v1v2, l) be two edges of (H, λ), with v1 6= v2,. Then N has the
incident edges [(p(v1), 0), (p(v2), k)], [(p(v1), 0), (p(v2), l)] which, by the properness of N ,
are not colinear. Without loss of generality and to simplify notation assume that the
periodicity basis defining the labelled quotient graph is the standard orthonormal basis.
Then these edges are [p(v1), p(v2) + k] and [p(v1), p(v2) + l]. Taking all translates of these
2 edges by integer multiples of t = k− l we obtain a 1-periodic (zig-zag) subnet, Z say, of
N with period vector t = (t1, t2, t3).

Suppose next that t is divisible with t = nt′, t′ ∈ Z3 and n ≥ 2. Since Z + t′ does not
coincide with Z there are crossing edges, a contradiction.

Consider now two loop edges (v1v1, k), (v1v1, l) and corresponding incident edges in N ,
say [p(v1), p(v1) + k] and [p(v1), p(v1) + l]. Taking all translates of these 2 edges by the
integer combinations n1k + n2l, with (n1, n2) ∈ Z2, we obtain a 2-periodic subnet, with
period vectors {k, l}, which is an embedding of sql. The vector t = k − l is a diagonal
vector for the parallelograms of this subnet and so, as before, t cannot be divisible. �

As a consequence of the proof we also see that an embedded net is improper if either
of the following conditions fails to hold: (i) for pairs of loop edges in the LQG with the
same vertex the two labels generate a maximal rank 2 subgroup of the translation group,
(ii) for pairs of nonloop edges the difference of the two labels generates a maximal rank 1
subgroup.
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4.3. Model nets and labelled quotient graphs. We first note that every abstract 3-
periodic graph (G, T ) can be represented by a model netM in R3 with standard periodicity
basis b, in the sense that G is isomorphic to the structure graph G(M) of M by an
isomorphism which induces a representation of T as the translation group ofM associated
with b. Formally, we define a model net to be such a pair (M, b) but we generally take
the basis choice as understood and use notation such as M,M(p, i),M(p2) etc.

Let (G, T ) be a 3-periodic graph with periodic structure T and let H = G/T be the
quotient graph (V (H), E(H)) determined by T . Identify the automorphism group T
with the integer translation group of R3. This is achieved through the choice of a group
isomorphism i : T → Z3 and this choice introduces an ordered triple of generators and
coordinates for T . Any other such map, j say, has the form X ◦ i where X ∈ GL(3,Z).

Label the vertices of G by pairs (vk, g) where g ∈ T and v1, . . . , vn is a complete set
of representatives for the T -orbits of vertices. For the sake of economy we also label the
vertices of H by v1, . . . , vn. Let pH : V (H) → [0, 1)3 be any injective placement map.
Then there is a unique injective placement map p : V (G)→ R3 induced by p and i, with

p((vk, g)) = pH(vk) + i(g), 1 ≤ k ≤ n, g ∈ T.
Thus the maps pH , i determine a (possibly improper) model embedded net for (G, T ) which
we denote asM(p, i). In particular if ((vk, g), (vl, h)) is an edge of G then this determines
the line segment edge [p((vk, g)), p((vl, h))] ofM(p, i). This net is possibly improper since
some edges may intersect. Write H(i) for the labelled quotient graph (H,λ) of M(p, i)
with respect to b. As the notation implies, this depends only on the choice of i which
coordinatises the group T .

With i fixed we can consider continuous paths of such placements, say ptH , 0 ≤ t ≤ 1,
which in turn induce paths of model nets, t→Mt =M(ptH), 0 ≤ t ≤ 1. (See also Section
3.1.) When there are no edge collisions, that is, when all the nets Mt in the path are
proper, this provides a strict periodic isotopy between the the pairs (M0, b) and (M1, b)
and their given periodic structure bases, b. (Such isotopy is also formally defined in the
remarks following Definition 6.1.)

Note that if H is a bouquet graph, that is, has a single vertex, then the strict periodic
isotopy determined by t → ptH between two model nets for H corresponds simply to a
path of translations.

In the next proposition we consider 3-periodic graphs as pairs (G, T ), as in Definition
2.5 (and Definition 4.2 of Eon [30]). Moreover we have the following natural notion of
isomorphism.

Definition 4.6. The pairs (G, T ), (G′, T ′) are isomorphic as 3-periodic graphs if and only
if there is a countable graph isomorphism G → G′ induced by a bijection γ : V → V ′,
together with a group isomorphism π : T → T ′ such that γ(g(v)) = π(g)(γ(v)) for
v ∈ V, g ∈ T.

It is in this sense that we may say that an isomorphism (G, T ) → (G′, T ′) of periodic
graphs is pair of isomorphisms (γ, π) which respects the periodic structure.

Note, for example, that the countable structure graph G = G(Npcu) has periodic struc-
ture T (resp. T ′) determined by the periodicity basis (2, 0, 0), (0, 2, 0), (0, 0, 1) (resp.
(4, 0, 0), (0, 1, 0), (0, 0, 1)) for Npcu. The periodic graphs (G, T ) and (G, T ′) fail to be iso-
morphic since they have different quotient graphs, which is a necessary condition for this.
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Proposition 4.7. Let (G, T ), (G′, T ′) be 3-periodic graphs (with given periodic structures)
with labelled quotient graphs H(i) = (H,λ),H(i′) = (H ′, λ′) arising from group isomor-
phisms i : T → Z3 and i′ : T ′ → Z3. Then the following statements are equivalent.

(i) (G, T ) and (G′, T ′) are isomorphic as 3-periodic graphs.

(ii) There is a graph isomorphism φ : H → H ′ and X ∈ GL(3,Z) with | detX| = 1 such
that λ′(φ(e)) = X(λ(e)) for all directed edges e of H(i).

Proof. (ii) =⇒ (i). A typical edge e of H(i) is denoted by a triple (ve, we, λ(e)) and a
typical associated edge of G is

(g(ve), (g + i−1(λ(e)))(vw)),

where g ∈ T and where we have written the group operation in T additively. Define
γ : V (G) → V (G′) by γ(g(v)) = π(g)(φ(v)) where v ∈ V (H), g ∈ T and π is the group
isomorphism T → T ′ defined by π = (i′)−1 ◦ X ◦ i. Then γ is a bijection between the
vertex sets of G and G′. Moreover we note that since π ◦ i−1 is equal to (i′)−1 ◦ X the
γ-induced edge (γ(g(ve)), γ((g + i−1(λ(e)))(vw)) is equal to

(π(g)(φ(ve)), π(g + i−1(λ(e)))(φ(vw))) = (π(g)(φ(ve)), (π(g) + (i′)−1X(λ(e)))(φ(vw)))

and so is an edge of G′, since X(λ(e)) is equal to λ′(φ(e)), the label of the edge φ(e) in
H(i′). Thus γ induces a graph isomorphism G → G′ and moreover the pair γ, π is an
isomorphism of the periodic graphs, as required.

(i) =⇒ (ii). Consider an isomorphism from (G, T ) to (G′, T ′) given by the pair γ, π.
Note that γv : V (G) → V (G′) maps T -orbits to T ′-orbits, as does γe : E(G) → E(G′),
and so γ defines a graph isomorphism φ from H = G/T to H ′ = G′/T ′. Also, the edge
(ve, i

−1(λ(e))(vw)) in G (associated with the edge e = (ve, we, λ(e)) as before) maps to

(γ(ve), γ(i−1(λ(e))(vw))) = (γ(ve), π((i−1(λ(e)))(γ(vw))) = (γ(ve), (i
′)−1(Xλ(e))(γ(vw)))

where X is the matrix in GL(3,Z) with X = i′ ◦ π ◦ i−1. This implies that Xλ(e) must be
the label for the associated edge φ(e) in H′(i′), and so (ii) holds. �

In the case when H = G/T and H ′ = G/T ′ are bouquet graphs one can say much more.
Any graph isomorphism γ : G→ G′ lifts to a linear isomorphism between the model nets
M,M′ determined by any pair T, T ′ of maximal periodic structures. See for example
Theorem 3 of Kostousov [43]. It follows that for bouquet quotient graph nets we have the
following stronger theorem.

Theorem 4.8. Let M(p, i) and M(p′, i′) be model nets, with nodes on the integer lattice,
for 3-periodic graphs (G, T ) and (G, T ′) with bouquet quotient graphs. Then the following
are equivalent.

(i) G and G′ are isomorphic as countable graphs.
(ii) M(p, i) and M(p′, i′) are affinely equivalent by a matrix X in GL(3,Z).

Definition 4.9. A (proper) linear 3-periodic net N is a lattice net if its set of nodes is a
lattice in R3.
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Equivalently N is a lattice net if its quotient graph is a bouquet graph. One may also
define a general lattice net in R3 as a (not necessarily proper) embedded net whose quotient
graph is a bouquet graph. Theorem 4.8 shows that lattice nets (even general ones) are
classified up to affine equivalence by their topologies. In Theorem 9.5 we obtain a proof
of this in the depth 1 case, independent of Kostousov’s theorem, through a case-by-case
analysis. Also we show that for the connected depth 1 lattice nets there are 19 classes.

In principle Proposition 4.7 could be used as a basis for a computational classification
of periodic nets with small quotient graphs with a depth 1 labelling. However we note
that there are more practical filtering methods such as those underlying Proposition 10.1
which determines the 117 connected topologies associated with certain depth 1 nets which
are supported on 2 parallel vertex lattices in a bipartite manner.

5. Linear graph knots

Let H be a multigraph, that is, a general finite graph, possibly with loops and with an
arbitrary multiplicity of ”parallel” edges between any pair of vertices. Then a graph knot
in R3 is a faithful geometric representation of H where the vertices v are represented as
distinct points p(v) in R3 and each edge e with vertices v, w is represented by a smooth
path p̃(e) ⊆ R3, with endpoints p(v), p(w). Such paths are required to be free from self-
intersections and disjoint from each other, except possibly for coinciding endpoints. Thus
a graph knot K is formally a triple K = (H, p, p̃), and we may also refer to this triple as
a spatial graph or as a proper placement of H in R3. It is natural also to denote a graph
knot K simply as a pair (N,S), where N is the set of vertices, or nodes, p(v) in Rd, and
S is the set of nonintersecting paths p̃(e). We remark that spatial graphs feature in the
mathematical theory of intrinsically linked connected graphs [22], [42].

One can similarly define a graph knot K in any smooth manifold and of particular
relevance is the Riemannian manifold known as a flat 3-torus. This is essentially the
topological 3-torus identified naturally with the set [0, 1)3 and the topology, in the usual
mathematical sense, is the natural one associated with continuity of the quotient map
R3 → [0, 1)3. Moreover we define a line segment in the flat torus to be the image of a line
segment in R3 under this quotient map. The curiosity here is that such a flat torus line
segment may appear as the union of several line segment sets in [0, 1)3.

We formally define a linear graph knot in the flat torus to be a triple (H, p, p̃), or a pair
(N,S), where the vertices, or nodes, p(v) lie in [0, 1)3 and the paths, or edges, p̃(e) are
essentially disjoint flat torus line segments. Intuitively, this is simply a finite net in the
flat 3-torus with linear nonintersecting edges.

We now associate a linear graph knot K in [0, 1)3 with an embedded net N with a spec-
ified periodicity basis a. Informally, this is done by replacing N by its affine normalisation
N ′, wherein a is rescaled to the standard basis, and defining K as the intersection of the
body |N ′| with [0, 1)3. That is, one takes the simplest model net N ′ for N and ignores
everything outside the cube [0, 1)3.

For the formal definition, let (Fv, Fe) be a motif for (N , a), where Fv ⊂ N (resp.
Fe ⊂ S) is a finite set of representatives for translation classes of nodes (resp. edges) of
N = (N,S), with respect to a. Let π : R3 → [0, 1)3 be the natural quotient map associated
with the ordered basis a. This is a composition of the linear map for which a maps to the
standard right-handed basis, followed by the quotient map. Define p : Fv → [0, 1)3 to be
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the induced injection and p̃ : Fe → [0, 1)3 to be the induced map from closed line segments
to closed line segments of the flat torus [0, 1)3.

Definition 5.1. Let H be the quotient graph for the pair (N , a). The triple (H, p, p̃) is
the linear graph knot of (N , a) and is denoted as lgk(N , a).

Since N is necessarily proper, with essentially disjoint edges, the placement (H, p, p̃)
has essentially disjoint edges and so is a linear graph knot.

Note that the linear graph knot determines uniquely the net N ′ which in fact can be
viewed as its covering net. It follows immediately that if lgk(N , a) = lgk(M, b) then N
and M are linear periodic nets which are orientedly affine equivalent.

We now give some simple examples together with perspective illustrations. Such illus-
trations are unique up to translations within the flat 3-torus and so it is always possible
to arrange that the nodes are interior to the open unit cube. In this case the 3D diagram
reveals their valencies. On the other hand, as we saw in the partial body examples in Sec-
tion 3.1 it can be natural to normalise and simplify the depiction by a translation which
moves a node to the origin.

Example 5.2. The simplest proper linear 3-periodic net is the primitive cubic net N =
Npcu. We may normalise this so that the node set is a translate of the set Z3. The standard
primitive periodic structure basis gives the graph knot lgk(N , b), which we denote as Kpcu

and which is illustrated in Figure 3. The 3 “line segment” edges in the flat torus are
here depicted by 3 pairs of line segments. The quotient graph of Npcu, which is also
the underlying graph of Kpcu, has one vertex and 3 loop edges. Note that if the node
is translated to the origin then the depiction of the loop edges is given by 3 axial line
segments.

x

y

z

Figure 3. The linear graph knot Kpcu on the flat 3-torus [0, 1)3.

By taking a union of n disjoint generic translates (within [0, 1)3) of Kpcu one obtains the
linear graph knot of an associated multicomponent linear net. In Theorem 8.2 we compute
the number of periodic isotopy classes of such nets and the graph knot perspective is helpful
for the proof of this.

Example 5.3. Figure 4 shows linear graph knots (or finite linear nets) on the flat torus
for the maximal symmetry nets Nbcu and Nsrs. Each is determined by a natural primitive
right-handed depth 1 periodicity basis a which, by the definition of lgk(N , a), is normalised
to b. The quotient graphs for these examples are, respectively, the bouquet graph with
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4 loop edges and the complete graph on 4 vertices. The periodic extensions of these
graph knots give well-defined model nets, sayMbcu andMsrs which are orientedly affinely
equivalent to the maximal symmetry nets Nbcu and Nsrs.
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Figure 4. Linear graph knots on the flat torus for bcu and srs.

Example 5.4. The linear 3-periodic net Ndia for the diamond crystal net (with maximal
symmetry) has a periodic structure basis a corresponding to 3 incident edges of a regular
tetrahedron, and has a motif consisting of 2 vertices and 4 edges. The graph knot Kdia =
lgk(Ndia, a) is obtained by (i) an oriented affine equivalence with a model net Mdia with
standard orthonormal periodic structure basis, and (ii) the intersection ofMdia with [0, 1)3.
This graph knot has an underlying graph H(0, 4, 0) (in the notation of Section 10) with 2
vertices and 4 nonloop edges.

In Figures 5, 6 we indicate 4 graph knots which define model nets each with underlying
net (structure graph) equal to dia. In fact the graph knots K1, K2 are rotationally linearly
isotopic (see Definition 6.3). To see this consider a linear graph knot homotopy starting
with K1 which is determined by a downward motion of the central vertex (at (1/2, 1/2, 1/2)
say) of K2 through the floor of [0, 1)3. The edge deformations are determined and, since
the floor is equal to the roof we can terminate the vertex motion at (1/2, 1/2, 1/2). Note
that there are no edge crossings, so that the homotopy is in fact an isotopy. Moreover,
examining the edges, one of which is re-entrant, we see that the final linear graph knot is
equal to the image of K1 under a half-turn rotation about the line through (1/2, 1/2, 1/2)
and (0, 0, 1/2).
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Figure 5. Linear graph knots K1, K2 associated with dia.
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On the other hand K2 and K3 are linearly isotopic in terms of a motion of the vertex
of K2 at the origin to the position of the left hand vertex of K3. It follows from this that
the associated model netsM1,M2,M3 are strictly periodically isotopic, simply by taking
the periodic extension of these isotopies to define periodic isotopies.
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Figure 6. Linear graph knots K3, K4 associated with dia.

In contrast to this observe first that the linear graph knot K4 is obtained from K3 by
a continuous motion of the nodes p1 and p2 to their new positions in the 3-torus. Such a
motion defines a linear homotopy in the natural sense. The (uniquely) determined edges
of the intermediate knots in this case inevitably cross at some point in the motion so
these linear homotopies are not linear isotopies. The model net M4 for the knot K4 is in
fact not periodically isotopic to the unique maximal symmetry embedding Ndia, and so is
self-entangled. We show this in Example 6.7.

In the model nets of the examples above we have taken a primitive periodic structure
basis with minimal adjacency depth. In view of this the represented edges between adjacent
nodes in these example have at most 2 diagramatic components, that is they reenter the
cube at most once. In general the linear graph knot associated with a periodic structure
basis of depth 1 has edges which can reenter at most 3 times.

Remark 5.5. We shall consider families of embedded nets up to oriented affine equivalence
and up to periodic isotopy. In general there may exist enantiomorphic pairs, that is, mirror
images N ,N ′ which are not equivalent. This is the case, for example, for embeddings of
srs. However, such inequivalent pairs do not exist if the quotient graph is a single vertex
(lattice nets) or a pair of vertices with no loop edges (double lattice nets with bipartite
structure). This becomes evident in the latter case for example on considering an affine
equivalence with a model net for which the point (1/2, 1/2, 1/2) is the midpoint of the 2
representative nodes in the unit cell. This midpoint serves as a point of inversion for the
model net (or, equivalently, its graph knot). The graph knots in Figure 6 indicate such
centered positions.

Remark 5.6. We have observed that for a linear 3-periodic net the primitive right-handed
periodicity bases a are determined up to transformations by matrices in SL(3,Z). Such
matrices induce chiral automorphisms of the flat 3-torus which preserve the linear struc-
ture. Accordingly (and echoing the terminology for embedded nets) it is natural to define
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two graph knots on the same flat torus to be orientedly (or chirally) affinely equivalent if
they have translates which correspond to each other under such an automorphism. Thus,
to each linear 3-periodic net N one could associate its primitive graph knot, on the under-
standing that it is only determined up to oriented affine equivalence.

Remark 5.7. We remark that triply periodic surfaces may be viewed as periodic exten-
sions of compact surfaces on the flat 3-torus. It follows that the tilings and triangulations
of these compact surfaces generate special classes of linear 3-periodic nets. Such nets have
been considered, for example, in the context of periodic hyperbolic surfaces and minimal
surfaces, where the methods of hyperbolic geometry play a role in the definition of isotopy
classes [32], [36]. See also Hyde and Delgado-Friedrichs [35].

6. Isotopy equivalence

Consider the following informal question.

When can N0 be deformed into N1 by a continuous path with no edge crossings ?

This question is not straightforward to approach for two reasons. Firstly, a linear
periodic net may contain, as a finite subnet, a linear realisation of an arbitrary knot or
link. For example, the components of N could be translates of a linear realisation of an
arbitrary finite knot where all vertices have degree 2. (Here N would have dimension
type {3; 0}.) Thus, resolving the question by means of discriminating invariants is in
general as hard a task as the corresponding one for knots and links. Secondly, the rules
for such deformation equivalence need to be decided upon, and, a priori, the deformation
equivalence classes are dependent on these rules.

The following definition may be regarded as the natural form of isotopy equivalence
appropriate for the category of embedded periodic nets in 3 dimensions which have line
segment bonds, no crossing edges and no coincidences of node locations (node collisions).

Definition 6.1. Let N0 and N1 be proper linear 3-periodic nets in R3. Then N0 and N1

are periodically isotopic, or have the same periodic isotopy type, if there is a family of such
(noncrossing) nets, Nt, for 0 < t < 1, for which

(a) there is a continuous path of bases of R3, t → at, 0 ≤ t ≤ 1, where at is a right-
handed periodicity basis for Nt,

(b) there are bijective functions ft : |N0| → |Nt|, for 0 ≤ t ≤ 1, which map nodes to
nodes, such that,

(i) f0 is the identity map on |N0|,
(ii) for each node point p in |N0| the map t→ ft(p) is continuous,
(iii) the restriction of ft to each edge [a, b] is the unique affine map onto the image edge,

[ft(a), ft(b)] in |Nt| determined by linear interpolation.

We make a number of immediate observations:
1) The condition (iii) could be omitted but is a conceptual convenience in that it implies

that each map ft from the body of N0 to the body of Nt is determined by its restriction
to the nodes.

2) The definition applies to entangled nets with several connected components and in
this case the isotopy can be viewed as a set of n independent periodic isotopies, for the n
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components, with the same time parameter t and periodicity bases at, and subject only
to the noncollision of components for each value of t.

3) Every such net N0 is periodically isotopic to a model net N1 =M with periodicity
basis b. Indeed, for any right-handed periodicity basis a for N there is an elementary
isotopy equivalence from (N , a) to a unique pair (M, b) which is determined by a path of
transformations from GL+(d,R) which in turn is determined by any continuous path of
bases from a to b.

4) If N0 and N1 are orientedly affine equivalent then they are periodically isotopic since
the topological group GL+(3,R) is path-connected.

We also define the pair (N0, a) to be strictly periodically isotopic to the pair (N1, b) if
there is an isotopy equivalence (at, (ft)), as in parts (a), (b) of the definition with a0 = a
and a1 = b. In view of the previous observations we have the following

Equivalent definition. The embedded periodic nets N and N ′ in R3 are periodically
isotopic if there is a rescaling and rotation of N ′ to a net N ′′ so that (i) N and N ′′ have a
common embedded translation group with basis a, and (ii) (N , a) and (N ′′, a) are strictly
periodic isotopic.

Strict periodic isotopy is evidently an equivalence relation on the set of pairs (N , a).
Periodic isotopy is also an equivalence relation but this is not so immediate. However, as
the next proof shows, one can replace a pair of given periodic isotopies, between N0 and
N1 and between N1 and N2, by a new pair such that the paths of periodicity bases can
be concatenated, and so provide an isotopy between N0 and N2.

Theorem 6.2. Periodic isotopy equivalence is an equivalence relation on the set of proper
linear 3-periodic nets.

Proof. Let {(at), (ft) : 0 ≤ t ≤ 1} be an isotopy equivalence for N0,N1 as above and let
{(bt), (gt) : 1 ≤ t ≤ 2} be an isotopy equivalence between N1 and N2. Suppressing the
implementing maps ft and gt we may denote this information as

N0  (at) N1, N1  (bt) N2.

We now have 2 periodic structures a1 and b0 on N1. If they were the same then a periodic
isotopy betweenN0 andN2 could be completed by the simple concatenation of these paths.
However, in general we must choose new periodic structures to achieve this.

For a periodic structure basis e = {e1, e2, e3} and k = (k1, k2, k3) ∈ Z3 let us write k · e
for {k1e1, k2e2, k3e3}. We have a1 = j · e for some primitive periodic structure basis e of
N1. Similarly b0 = j′ · e′ for some primitive periodic structure basis e′. Since primitive
right-handed periodicity bases on the same linear periodic net are equivalent by a linear
map X ∈ GL+(3,Z), it follows that the vectors of e′ are integral linear combinations of
the vectors of e. Thus the vectors of b0 are integral linear combinations of the vectors of e.
It follows that we can now find elements k, k′ ∈ Z3 so that the vectors of k · a1 are integral
linear combinations of the vectors of k′ · b0.

Consider now the induced isotopy equivalences

N0  (k·at) N1, N1  (k′·bt) N2.

These isotopies are identical to the previous isotopy equivalences at the level of the paths
of individual nodes, but the framing periodic structure bases have been replaced. These
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periodic isotopies do not yet match, so to speak, but we note that the second isotopy
equivalence implies an isotopy equivalence from (N1, d) to some (N2, d

′) whenever the
periodic structure basis d has vectors which are integer combinations of the vectors of
(k′ · b0). Thus we can do this in the case d = k · a1 to obtain matching isotopy paths, in
the sense that the terminal and initial periodic structure bases on N1 agree. Composing
these paths we obtain the desired isotopy equivalence between N0 and N2. �

6.1. Isotopy equivalence for linear graph knots. In the next definition we formally
define two linear graph knots on the flat torus to be linearly isotopic if there is a continuous
path of linear graph knots between them. It follows that if the linear graph knots lgk(N1, a)
and lgk(N2, b) are linearly isotopic then, by simple periodic extension, the nets N1 and N2

are periodically isotopic. Also we see in Proposition 6.5 a form of converse, namely that
if N1 and N2 are periodically isotopic then they have graph knots, associated with some
choice of periodic structures, which are linearly isotopic.

On the other hand note that a linear 3-periodic netN in R3 with the standard periodicity
basis {b} is periodically isotopic to its image N ′ under an isometric map which cyclically
permutes the coordinate axes. This is because there is a continuous path of rotation
maps of R3 from the identity map to the cyclic rotation and restricting these maps to |N |
provides maps (ft) for a periodic isotopy. While the associated graph knots K = lgk(N , b)
and K ′ = lgk(N ′, b′), considered as knots in the same 3-torus, are homeomorphic (under a
cyclic automorphism of the 3-torus which maps one graph knot to the other) they need not
be linearly isotopic. This follows since linear isotopy within a fixed 3-torus must preserve
the homology classes of cycles and yet K may contain a directed cycle of edges with a
homology class in H1(T3;Z) = Z3 which do not appear as a homology class of any cycle
of edges in K ′.

In view of this, in the next formal definition we also give weaker forms of linear isotopy
equivalence which can be considered as linear isotopy up to rotations and linear isotopy
up to affine automorphisms.

Let X ∈ GL+(3;Z). Then there is an induced homeomorphism of the flat 3-torus which
we denote as Xπ. This is affine in the sense that flat torus line segments map to flat torus
line segments.

Definition 6.3. Let K0 = (N0, S0) and K1 = (N1, S1) be linear graph knots on the flat
torus T3 = [0, 1)3.

(i) K0 and K1 are linearly isotopic if there are linear graph knots Kt = (Nt, St),for
0 < t < 1, and bijective continuous functions ft : |K0| → |Kt| such that, f0 is the identity
map on K0, ft(N0) = Nt, ft(S0) = St, and the paths t→ ft(p), for p ∈ K0 and 0 ≤ t ≤ 1,
are continuous.

(ii) K0 and K1 are rotationally linearly isotopic if for some rotation automorphism Xπ,
with X a rotation in GL+(3;Z), the graph knots K1 and XπK2 are linearly isotopic.

(ii) K0 and K1 are globally linearly isotopic if for some affine automorphism Xπ, with
X ∈ GL+(3;Z), the graph knots K1 and XπK2 are linearly isotopic.

6.2. Enumerating linear graph knots and embedded nets. We can indicate a linear
graph knot K on the flat 3-torus by the triple (Q, h, p), where (Q, h) is a labelled directed
quotient graph and p = (x1, . . . , xn) denotes the positions of its n vertices in the flat 3-
torus T3 = [0, 1)3. We may also define general placements of K, or of (Q, h), as triples
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(Q, h, p′) associated with points p′ in the n-fold direct product (T3)n. Such placements
either correspond to proper linear graph knots with the same labelled quotient graph, or
are what we shall call singular placements, for which the nodes x′i of p′ may coincide, or
where some pairs of line segment bonds determined by (Q, h) and p′ are not essentially
disjoint.

The general placements of K are thus parametrised by the points x′ of the flat 3n-
torus T3n = [0, 1)3n, and this manifold is the disjoint union of the set K(Q, h) of proper
placements and the set S(Q, h) of singular placements.

Theorem 6.4. There are finitely many linear isotopy classes of linear graph knots in the
flat torus T3 with a given labelled quotient graph.

The following short but deep proof echoes a proof used by Randell [53] in connection with
invariants for finite piecewise linear knots in R3. However we remark that an alternative
more intuitive proof of this general finiteness theorem could be based on the fact that the
isotopy classes of the linear graph knots can be labelled by finitely many crossing diagrams
(appropriate to the 3-torus). Also direct arguments are available to show such finiteness
for labelled quotient graphs with 1 or 2 vertices.

Proof. It suffices to show that there are finitely many representative linear graph knots
(with the same given LQG) so that any linear graph knot (with the given LQG) is linearly
isotopic to one of them. The set S(Q, h) is a closed semialgebraic set since it is defined by
a set of polynomials and inequalities. The open set set K(Q, h) is equal to T3n\S(Q, h).
Since this set is the difference of two algebraic sets it follows from the structure of real
algebraic varieties [60] that the number of connected components of K(Q, h) is finite.
Taking a representative linear graph knot from each of these components completes the
proof. �

The theorem implies that the isotopy classes of linear graph knots are countable, since
labelled quotient graphs are countable, and so in principal these classes may be listed by
various schemes. For example, for each n there are finitely many labelled quotient graphs
of depth 1 with n vertices and so there are finitely many linear isotopy classes of linear
graphs knots with n vertices and depth 1.

The corollary of the next elementary proposition gives a similar finiteness for the periodic
isotopy classes of embedded periodic nets.

Proposition 6.5. Let N and N ′ be linear 3-periodic nets in R3.
Then the following are equivalent.
(i) N and N ′ are periodically isotopy equivalent.
(ii) There are right-handed periodicity bases a and a′ for N and N ′ such that the linear

graph knots lgk(N , a) and lgk(N ′, a′) are linearly isotopic.

Proof. Suppose that (i) holds. Let N0 = N and N1 = N ′ and assume the equivalence is
implemented, as in the definition of periodic isotopy, by a path of intermediate nets Nt
together with (a) a continuous path of bases t → at, 0 ≤ t ≤ 1, where at is a periodicity
basis for Nt, and (b) bijective functions ft from the set of nodes of N0 to the set of
nodes of Nt. The functions ft necessarily respect the periodic structure. Let a = a0 and
a′ = a1. It follows that the resulting path t → lgk(Nt, at) an isotopy between lgk(N , a)
and lgk(N ′, a′).
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Suppose that (ii) holds, with K = lgk(N , a) and K ′ = lgk(N ′, a′). A linear isotopy
equivalence (ft) between K and K ′ extends uniquely, by periodic extension, to a periodic
isotopy equivalence between N and N ′. �

Corollary 6.6. Let (H,λ) be a labelled quotient graph. Then there are finitely many
periodic isotopy classes of linear 3-periodic nets N which have the labelled quotient graph
(H,λ) with respect to some periodicity basis.

Proof. Fix a labelled quotient graph (H,λ). Then a linear 3-periodic net N ′ which has
the labelled quotient graph (H,λ) with respect to some periodicity basis is periodically
isotopic to a linear 3-periodic netM′ which has labelled quotient graph (H, λ) with respect
to the standard basis. It suffices to show that the set of such model nets M′ has finitely
many periodic isotopy classes. This follows since, by Theorem 6.4, their linear graph knots
(for the standard basis) have finitely many linear isotopy types and (as in the proof of
the previous proposition) a linear isotopy at the graph knot level determines a periodic
isotopy of the level of nets, simply by periodic extension. �

In future work it will be of interest to focus on individual topologies and to determine
the finitely many periodic isotopy classes of depth 1. Of particular interest are those with
some sense of maximal symmetry over their periodic isotopy class. In fact we formalise
this idea in Section 7.2 in connection with homogeneous multicomponent nets.

We now note two basic examples of connected self-entangled nets, which we regard as
periodic isotopes of their maximal symmetry embedded nets.

Example 6.7. Self-entangled diamond. The multi-node fragment in Figure 7 shows part
of an embedded net, say N , whose topology is dia. That N and the usual maximum sym-
metry net Ndia are not periodically isotopic follows from an examination of the catenation
of cycles. Specifically the diagram shows that N has 2 disjoint 6-cycles of edges which are
linked. This property does not hold for Ndia and so they cannot be periodically isotopic.

Figure 7. Catenated 6-cycles in a self-entangled embedding of dia.

Example 6.8. Self-entangled embeddings of cds. The maximal symmetry net Ncds (as-
sociated with cadmium sulphate) has an underlying periodic net cds with quotient graph
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H(1, 2, 1). The left hand diagram of Figure 8 indicates a linear graph knot for cds and
the 3-periodic extension of this diagram defines a model embedded net which is period-
ically isotopic to Ncds. To be precise, define this net as the model net M(p1, p2) with
p1 = (1/2, 1/2, 1/2), p2 = (1/2, 1/4, 1/2) and with labelled quotient graph LQG(N , b) =
H = (H(1, 2, 1), λ) where λ assigns the labels, (0, 0, 1) to the loop edge associated with
p1, (1, 0, 0) to loop for p2 and the labels (0, 0, 0) and (0, 1, 0) to the 2 remaining edges.
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z

Figure 8. Linear graph knots for distinct periodic isotopes of cds

In the manner of Example 3.1 let us now view p2 as variable point p′2 = (x, y, z) within
the semiopen cube [0, 1)3. The positions of p′2 together with the labelled quotient graph,
define model nets as long as there are no edge crossings. Let O be the set of these positions
for p′2. Then, viewed as a subset of [0, 1)3 (not as a subset of the flat 3-torus) the set O
decomposes as the union of 5 path-connected components O1, . . . ,O5. The set O1 is the
subset of O with y < 1/2, the set O2 is the subset with y > 1/2, x > 1/2, z < 1/2 (the
right hand figure of Figure 8 corresponds to a point in O2), and O3 is the subset with
y > 1/2, x < 1/2, z < 1/2. The sets O4,O5 are similarly defined to O2,O3, respectively,
except that z is greater than 1/2.

Let M1, . . . ,M5 be representatives for the 5 path-connected components. The net
M1 =M(p1, p2) is a model net for Ncds while the netM2 is a periodic isotope. This can
be seen once again by exhibiting different catenation properties. Specifically, Mα

cds has a
6-cycle of edges which is linked to (penetrated by) an infinite linear subnet, while Mcds

does not have such catenation.

6.3. Entangled nets, knottedness and isotopies. The examples above concern con-
nected self-entangled nets and their connected graph knots on the 3-torus and there is a
natural intuitive sense in which such nets can be ”increasingly knotted” by moving through
homotopies to embeddings with an increasing number of edge crossings. However the lin-
ear graph knot association is also a helpful perspective for multicomponent nets whose
components are not self-entangled so may be equal to, or perhaps merely isotopic to, their
individual maximal symmetry embeddings. In this case there are intriguing possibilities
for the nesting of such ”unknotted components” and their associated space groups. We
address this topic in Sections 7 and 8 as well as the attendant crystallographic issue of
formulating a notion of maximal symmetry for such multi-component nets.

For completeness we note two further forms of isotopy equivalence which will not be of
concern to us.
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(i) Relaxed periodic isotopy. The notion of periodic isotopy equivalence in Definition
6.1 can be weakened in a number of ways. One less strict form, which one could call
relaxed periodic isotopy, omits the condition (a), requiring periodic basis continuity, and
so allows a general continuous path of intermediate (noncrossing) periodic nets Nt. Since
the continuity requirement in (b) of the node path functions (ft) is one of point-wise
continuity on the set of nodes N0 and, moreover, the ambient space is not compact, it
follows that such paths of periodic embedded nets can connect embedded nets that are
not periodically isotopic. In particular, one can construct relaxed periodic isotopies which
untwist infinitely twisted components.

(ii) Ambient isotopy. The usual definition of ambient isotopy for a pair K1, K2 of knots
(or links) in R3 requires the existence of a path ht of homeomorphisms of R3 (the ambient
space) such that h0 is the identity map and h1(K1) = K2. Here, for x ∈ R3, we have
ht(x) = h(t, x) where h : [0, 1] × R3 → R3 is a continuous function. Also, the closed sets
Kt = h(t,K0), for 0 ≤ t ≤ 1, form a path of knots (or links) between K0 and K1.

One may similarly define ambient isotopy for embedded periodic nets [28]. In this case
the intermediate closed sets Lt, defined by Lt = ht(|N0|) are the bodies of general string-
node nets Lt. We recall from [51] that a string-node net N in the Euclidean space Rd is
a pair (N,S) of sets (whose respective elements are the nodes and strings of N ) with the
following two properties. (a) S is a nonempty finite or countable set whose elements are
lines, closed line segments or closed semi-infinite line segments in Rd, such that collinear
strings are disjoint. (b) N is a nonempty finite or countable set of points in Rd given by
the intersection points of strings.

It is natural to impose the further condition that these sets are the bodies of (proper)
linear 3-periodic nets, and this then gives a definition of what might be termed locally
periodic ambient isotopy. In this case the set of restriction maps ft = ht||N0| define a
relaxed periodic isotopy.

7. Group methods and maximal symmetry isotopes

We now give some useful group theoretic perspectives for multicomponent frameworks,
starting with the general group-supergroup construction in Baburin [5] for transitive nets.
This method underlies various algorithms for construction and enumeration. In this di-
rection we also define maximal symmetry periodic isotopes in terms of extremal group-
supergroup indices of the components. Finally, turning towards generically, or randomly,
nested components, we indicate the role of Burnside’s lemma in counting all periodic
isotopes for classes of shift-homogeneous nets.

7.1. Group-supergroup constructions. Let N = N1 ∪ · · · ∪ Nn be a linear 3-periodic
net which is a disjoint union of connected linear 3-periodic nets in R3. Let G be the space
group of N and assume that it acts transitively on the n components of N . Thus N is a
transitively homogeneous net, or is of transitive type.

Let g1 = id, the identity element of G, and note that for each i = 2, . . . , n there is an
element gi ∈ G with giN1 = Ni. Also, let Hi ⊂ G be the subgroup of elements g with
g · Ni = Ni, for i = 1, . . . , n.

Lemma 7.1. The cosets of H1 in G are g1H1, . . . , gnH1.
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Proof. The cosets giH1 are distinct, since their elements map N1 to the distinct subnets
Ni. On the other hand if g ∈ G then gN1 = Nj for some j and so g−1

j gN1 = N1, g
−1
j g ∈

H1, g ∈ gjH and gH1 = gjH1. �

Write stab(v;G) to indicate the subgroup of G which fixes the node v of N and similarly
define the stabiliser group of an edge e of N .

Lemma 7.2. Let v (resp. e) be a node (resp. edge) of Ni for some i. Then

stab(v;G) = stab(v;Hi), stab(e;G) = stab(e;Hi).

Proof. It suffices to show that if g fixes an element (vertex or edge) of Ni then gNi = Ni.
Observe that Ni is the maximal connected subnet of N containing the element. Also, for
any subnet M the image g · M is connected if and only if M is connected, and so the
lemma follows. �

These lemmas feature in the proof of the following theorem [5].

Theorem 7.3. If g ∈ G is a mirror element then g ∈ H1.

The significance of this result is that it shows that the construction of a transitive type
entangled net N with a connected componentM requires the space group S(N ) to be free
of mirror symmetries which are not in S(M). In fact this necessary condition is frequently
a sufficient condition and this leads to effective constructions of novel entangled nets where
these nets have components giM with multiplicity equal to the index of S(M) in S(N ).

7.2. Maximal symmetry periodic isotopes. LetN be a multicomponent embedded 3-
periodic net in R3 with space group S(N ) and let N1,N2, ...,Ni, ...,Nn be representatives
of the equivalence classes of the components of N for the translation subgroup of S(N ).
Also, as in the previous section, let Hi be the setwise stabiliser of Ni in S(N ). Regarding
Hi as a subgroup of Aut(G(Ni)) (cf. Section 2.2) we may compute the indices mi =
|Aut(G(Ni)) : Hi|. Here we restrict our scope to crystallographic nets Ni (Klee, [39]) and
therefore the indices are always finite. These indices evidently coincide when S(N ) is
transitive on the components of N and this is our primary focus.

We say that S(N ) is a maximal symmetry space group for the periodic isotopy class of
N if the nondecreasing rearrangement m(S(N )) of m1, . . . ,mn, which we call the multi-
index of S(N ), is minimal for the lexicographic order when taken over all groups S(N ′)
where N ′ is periodically isotopic to N . In this case we refer to N as a maximal symmetry
periodic isotope and we write Smax(N ) for this space group, noting that Smax(−) is only
defined for such minimal multi-index embedded nets. We note that a maximal symmetry
proper embedding of a multicomponent net need not be unique, as might be already the
case for (connected) single component nets (cf. Section 2.2).

In the same way one may define maximal symmetry groups for periodic homotopy and
one may consider other equivalence relations depending on the matter at hand but these
issues shall not concern us here.

We note that a maximal symmetry embedding for periodic isotopy is related to the con-
cept of an ideal geometry of a knot (Evans, Robins and Hyde, [33], and references therein)
that is required to minimize some energy function. However, as well as a certain arbitrari-
ness in the choice of energy function and the possibility of overlooking a global minimum,
the result of optimization depends on the imposed periodic boundary conditions. Thus
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the determination a maximal translational symmetry embeddings remains problematic in
the search for an ideal geometry of a multicomponent periodic net. In contrast, our def-
inition, being essentially group-theoretic, aims to capture isotopically intrinsic properties
of embedded nets which are independent of such constraints.

Maximizing the symmetry of interpenetrated embedded nets is important for a number
of reasons, e.g. to characterize their transitivity properties and to derive possible distor-
tions which might occur in a crystal structure by examining group-subgroup relations.
Furthermore, the knowledge of a maximal symmetry can be used to explicitly construct
a deformation path that relates an embedding with maximal symmetry to a distorted
embedding N ′ with higher multi-index. A periodic homotopy path can be constructed
relative to a common subgroup of Smax(N ) and S(N ′), for example, by interpolating
between coordinates, and this path is often crossing free and so a periodic isotopy.

Determination of maximal symmetry is a highly non-trivial task. The only general ap-
proach to the problem was proposed in [5] that is based on subgroup relations between
automorphism groups of connected components and a respective Hopf ring net. Along
these lines maximal symmetry embeddings and their symmetry groups have been deter-
mined for n-grids as in Section 8.5.

7.3. Counting periodic isotopy classes by counting orbits. Let us now consider
embedded nets N with n components on which the space group acts transitively. We
are interested in calculating the number of periodic isotopy classes for a given topology.
In the next section we solve this problem for n-fold pcu by reducing the counting to a
combinatorial calculation, namely to a calculation of the number of orbits of a finite set of
”normalised” n-pcu nets under the action of a finite group of isometries, where the finite
group is generated by cube rotations and shifts.

The method is generally applicable but for a translationally transitive n-pcu embedding
a normalisation of N takes a particularly natural form in which the components have
integral coordinates. While a normalised net is not uniquely associated with N it turns
out that their multiplicity corresponds to the cardinality of an orbit under the finite group
action, and so counting the number of orbits gives the count we seek. A standard formula
for counting such orbits is given by Burnside’s Lemma which states the following. Let G
be a finite group acting on a finite set X with group action x→ g · x, so that the orbit of
an element z ∈ X is the set {g · z : g ∈ G}. Then the number of distinct orbits is given by

1

|G|
∑
g∈G

|Xg|,

where Xg denotes the set of points x with g · x = x. In this way the problem is reduced
to counting, for each symmetry element g, the number of normalised nets which have this
symmetry.

8. Classifying multicomponent entangled nets

We next determine the number of periodic isotopy types of various families of embedded
nets (linear 3-periodic nets) in R3 whose components are embeddings of the net pcu. The
simplest family here consists of those nets N with n parallel components, each being a
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shifted copy of the model net Mpcu. In this case we refer to N as a multigrid or n-grid.
Such nets have dimension type {3; 3} and are shift-homogeneous.

For practical purposes, both in this section and in Section 9, we focus on the following
hierarchy of 4 equivalence relations for embedded nets:

1. Nets N0,N1 are affinely equivalent (resp. orientedly affine equivalent) if they have
translations N ′0,N ′1 with N ′0 = XN ′1 for some invertible 3 × 3 matrix X (resp. with
detX > 0).

2. The pairs (N0, a
0), (N1, a

1), with given periodicity bases, are strictly periodically
isotopic if there is a continuous path of embedded nets Nt with an associated continuous
path of periodicity bases from a0 to a1.

3. N0,N1 are periodically isotopic if they have strictly periodically isotopic pairs for
some choice of periodicity bases a0, a1.

4. N0,N1 are topologically isomorphic, or have the same topology, if their structure
graphs (underlying nets) are isomorphic as countable graphs.

8.1. Translation-transitive n-grids. We first consider embeddings of n-grids with a
strong form of homogeneity. Specifically we give group-supergroup methods which deter-
mine the periodic isotopy types of translation-transitive n-grids.

Considering the translation transitivity assumption it follows that the shift vectors re-
lating parallel copies of a single component grid are in fact coset representatives of some
lattice with respect to the sublattice generated by the standard periodicity basis of a
connected component. The number of cosets is equal to the index of a sublattice. This
observation gives a recipe for generating translation-transitive n-grids, by enumerating
superlattices of index n for the lattice of a connected component while discarding the
associated n-grids which fail to be noncrossing.

A determination of index n superlattices can be made with the following lemma. See
also [20], [23].

Lemma 8.1. Let n have a factorisation n = p1p2p3, with 1 ≤ pi ≤ n, and let

L =

 p1 0 0
q1 p2 0
r1 q2 p3


be a matrix with integral entries satisfying 0 ≤ q1 < p2, 0 ≤ q2 < p3 and 0 ≤ r1 < p3. The
rows of the inverse matrix L−1 generate a superlattice of Z3 of index n. Moreover, every
superlattice of Z3 of index n has such a representation.

A computational determination of the number, βtt(n), of periodic isotopy types, can
now be implemented with the following 3-step algorithm. Some of the values are recorded
in the summary Table 1.

(i) Using the lemma, generate all superlattices with index n.
(ii) Discard such a superlattice if its corresponding n-grid has edge crossings.
(iii) Reduce the resulting list to a (maximal) set of superlattices which are pairwise

inequivalent under the point group of a primitive cubic lattice.
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We have indicated that this (practical) 3-step generation-and-reduction algorithm gives
the number of congruence classes of translationally transitive n-grids. That this number
also agrees with the (a priori smaller) number of periodic isotopy classes (up to chirality)
is essentially a technical issue. This follows from Theorem 8.2 (iii) and Appendix A. More-
over, for the same reason the algorithm determines exactly the translationally transitive
n-grids which are maximal symmetry periodic isotopes.

We remark that a similar 3-step algorithm can be applied in the case of translationally
transitive embeddings of e.g. n-fold dia, n-fold srs and other nets. We conjecture that if
connected components are crystallographic nets in their maximal symmetry configurations,
then step (iii) leads directly to the classification into periodic isotopy classes.

8.2. A combinatorial enumeration of n-grids. We now consider the wide class of
general multigrids, with no further symmetry assumptions. The combinatorial objects
relevant to periodic isotopy type counting are given in terms of various finite groups acting
on finite sets of patterns which we now define.

Let T = {1, . . . , n}3, viewed as a discrete 3-torus, and let Cn be the cyclic group of
order n. In particular Cn can act on T by cyclically permuting one of the 3 coordinates.
Also, let R be the rotation symmetry group of the unit cube [0, 1]3. Then R acts on the
discrete torus T in the natural way.

Let X (n) be the finite set of unordered n-tuples, or patterns, {p1, . . . , pn} where the
points lie in T and have distinct coordinates, so that for all pairs pi, pj the difference
pi − pj has nonzero coordinates. In particular |X (n)| = (n!)2. These n-tuples in fact
correspond to the coordinates of the nodes appearing in a unit cell of the n components
of a normalised n-grid.

Finally, for n ∈ N, let ρ(n), α(n), β(n), respectively, be the number of orbits in X under
the natural action of the groups

R, Cn × Cn × Cn, Cn × Cn × Cn ×R.
Recall that a linear graph knot for an embedded net N is determined by a choice of

periodicity basis a and is denoted lgk(N , a). In the case of an n-grid N with its standard
periodicity basis b we refer to lgk(N , b) as the standard linear graph knot for N . Evidently
lgk(N , b) appears as the union of n disjoint translates in the flat 3-torus of Kpcu.

Theorem 8.2. (i) The number of linear isotopy types of standard linear graph knots of
n-grids is α(n).

(ii) The number of rotational isotopy types of standard linear graph knots of n-grids is
β(n).

(iii) The number of periodic isotopy classes of n-grids is β(n).

The proof of this theorem is given in Appendix A. The essential argument involves a
discretisation in which, in (ii) for example, the components are separately shifted by a
(joint) isotopy to an evenly spaced position. Then n nodes in a unit cell corresponds to
a pattern of n coordinate distinct points in the discrete torus {1, 2, . . . , n}3. Additionally,
for (iii) one must resolve the technical problem in Remark 11.1 in the case of n-grids and
show that the triple cyclic order of coordinates (modulo the rotation group R) is indeed
a periodic isotopy invariant. We do this in Lemma 11.2, and the equivalence given in
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Proposition 6.5 is a helpful step in the proof. We also note that the periodic isotopy that
one needs to construct in the proof, when the cyclic orders coincide modulo R, is simply
a concatenation of a periodic isotopy of local component translations (to achieve equal
spacing), followed by a an elementary periodic isotopy induced by a path of affine motions
corresponding to a (bulk) rotation and final translation.

8.3. Translational isotopy and framed n-grids. The general formulation of periodic
isotopy of necessity entails some technical complexity in the proofs. We now note two
restricted but natural n-grid contexts where the determination the number of equivalence
classes simplifies. We omit the formal proofs. In the first of these we define a more
restricted form of isotopy while in the second context we distinguish, or colour, one of the
component grids.

Let us say that a multi-grid is aligned if its componentsMi are translates of the model
net Mpcu with node set Z3.

Definition 8.3. Two aligned n-grids M,M′ are translationally isotopic if for some la-
belling of the components there are continuous functions gi : [0, 1] → R3, for 1 ≤ i ≤ n,
with gi(0) = 0 for all i, such that

(i) for each t the embedded net

M(t) = (M1 + g1(t)) ∪ · · · ∪ (Mn + gn(t))

is a (noncrossing) linear 3-periodic net,
(ii) M =M(0) and M′ =M(1).

This simple form of the periodic isotopy t→M(t) in fact corresponds to strict periodic
isotopy for these nets with respect to the standard periodicity basis. It is a form of “local”
periodic isotopy in the sense that the deformation paths of the nodes are localised in space.
In particular deformation paths incorporating bulk rotations are excluded.

Theorem 8.4. The number of translational isotopy classes of aligned n-grids is α(n).

For the second variation, let us define a framed n-grid to be an (n + 1)-grid with a
distinguished component, the framing component. Thus a framed n-grid is a coloured
n + 1 grid where all but 1 of the components are of the same colour. Periodic isotopy
for coloured n-grids may be defined exactly as before but with the additional requirement
that the maps (ft) respect colour.

It is evident that the cube rotation group R acts naturally on such framed n-grids. Also,
as indicated in our remarks following Theorem 8.2, counting periodic isotopy types reduces
to counting orbits of patterns p of n + 1 coordinate-disjoint points, p = (p1, . . . , pn+1), in
the discrete torus {1, 2, . . . , n + 1}3. However, in view of the colour preservation we may
assume, by shifting, that pn+1 lies in the R-orbit of (1, . . . , 1), and from this it follows
(varying the proof of Theorem 8.2) that the periodic isotopy classes correspond to the
R-orbits of the n-tuples (p1, . . . , pn).

Theorem 8.5. The number of periodic isotopy classes of framed n-grids is ρ(n).
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8.4. Employing Burnside’s lemma. We can now make use of Burnside’s lemma to
compute values of α(n), β(n) and ρ(n). The following formula readily shows that α(5) =
128, α(7) = 74088 for example.

Proposition 8.6. Let p be a prime number. Then

α(p) =
1

p3
((p!)2 + (p− 1)3p2)

Proof. Note that a group element g = abc 6= 000 in Cp×Cp×Cp with a or b or c equal to
0 does not fix any pattern under the cyclic action on T = {1, 2, . . . , p}3 and so |Xabc| = 0
in this case. Also, every pattern is fixed by the identity element and so |X000| = (p!)2. It
remains to consider the (p− 1)3 group elements abc with none of a, b, c equal to 0.

The group element 111 acts as a diagonal shift and so any fixed pattern of nodes in T is
determined by the unique node occupying a particular face of T . Conversely any of the p2

node locations on this face determines a unique fixed pattern for the action of 111. Thus
|X111| = p2.

Since p is prime the same argument applies to any group element abc with none of a, b, c
equal to the identity element 0, since a, b, c each have order p. There are (p − 1)3 such
elements abc and so the formula now follows from Burnside’s Lemma. �

The case of composite n is similar. In the case that each of a, b, c have order r where r
divides n the size of the fixed set Xg for g = abc is the product n2(n−r)2(n−2r)2 · · · r2. All
other elements except the identity have no fixed patterns. In this way we obtain α(4) = 12
and α(6) = 2424.

Similarly, for the framed n-grids one may compute ρ(2) = 1, ρ(3) = 4, ρ(4) = 33.
Evidently there is rapid subsequent growth rate since the Burnside Lemma formula quickly
leads to the lower bound ρ(n) ≥ (n!)2/(24× n3).

8.5. Classes of embedded n-pcu. Figure 9 gives examples of small n-grids with con-
trasting transitivity properties.

In Table 1 we summarise the number of classes of n-grids for various types of n-grid and
forms of isotopy for some small values of n with the values of α(n) and β(n) obtained via
Burnside’s Lemma as before. The count βt(n) is for transitive n-grids in the sense given in
Section 2.4, and for n-grids this coincides with vertex transitivity. The count βtt(n) is for
translation-transitive n-grids which have components that are equivalent by translations
in the space group. These counts, which coincide if n is prime, are obtained using the
group-supergroup algorithm of the Section 7.2.

n 2 3 4 5 6 7 n-grids/isotopy

α(n) 1 4 12 128 2424 74088 n-grids/translational isotopy
β(n) 1 1 3 9 89 - n-grids/periodic isotopy
βt(n) 1 1 3 2 7 4 transitive n-grids/periodic isotopy
βtt(n) 1 1 1 2 1 4 translation-transitive n-grids/periodic isotopy

Table 1. Counts of isotopy classes of n-grids.
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Figure 9. Four examples of shift homogenous n-grids with interpenetration
class according to [6], the vertex and edge transitivity [ve] and the RCSR
names where available.

Figure 10 summarises homogeneity and transitivity types of multicomponent embedded
nets.

9. Classifying lattice nets

9.1. Depth 1 disconnected nets with a single vertex QG. A model net M which
has adjacency depth 1 with respect to the standard basis b is determined by a set Fe of
edge representatives [a, b] for the translational orbits of edges. In the case that there is a
single orbit for the nodes we may assume that there is a node at the origin and choose
the unique edge-orbit representative [a, b] such that (a, b) is a subset of the semiopen
cube [0, 1)3. Such representative edges are determined up to sign by the vectors a− b, or
equivalently in this case, by the labels of the depth 1 labelled quotient graph LQG(M, b).
We use the following terminology for edges in Fe. This will also be useful in subsequent
sections.
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Figure 10. Homogeneity and transitivity types of entangled nets.

The 3 axial edges are denoted ax, ay, az and d1, . . . , d4 denote the 4 diagonal edges which
are incident to (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0) respectively. The 3 face diagonal edges
which are incident to the origin are denoted fx, fy, fz, corresponding to the directions
(0, 1, 1), (1, 0, 1), (1, 1, 0), while the edges gx, gy, gz are the other face diagonals, parallel to
the respective vectors (0, 1,−1), (1, 0,−1), (1,−1, 0). Thus we may define any set Fe by
means of an ordered subword w of the ordered word

axayazfxfyfzgxgygzd1d2d3d4

In view of the noncrossing condition it is elementary to see that every model net M is
affinely equivalent, simply by rotations, to a standardised model net defined by the standard
ordered word of the form w = w1w2d1 or w1w2 , where w1 is either ax, axay, axayaz or the
null word, and w2 is a face subword with 0, 1, 2 or 3 letters, of which there are 27
possibilities.

We now determine the depth 1 embedded bouquet nets that are disconnected, that is,
which have more than one and possibly infinitely many connected components. It turns
out that there are 6 embedded nets up to affine equivalence and we now give 6 model nets
for these types.

(i) Ma is the model net determined by Fe = {ax} and consists of parallel copies of a
1-periodic linear subnet.
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(ii)Maa is determined by the word axay and is the union of parallel planar embeddings
of sql.

(iii) Maafz is the net for axayfz and is the union of parallel planar embeddings of hxl.
(iv)Mfff is the net for fxfyfz and is the translation transitive union of 2 disjoint copies

of an embedding of pcu.
(v)Mggd is the net for gxgyd1 and is the translation transitive union of 3 disjoint copies

of an embedding of pcu.
(vi) Md

ggg is the net for gxgygzd1 and is the translation transitive union of 3 disjoint
copies of an embedding of hex.

x

y

z

Figure 11. {a} A single vertex quadruple-edged building block for the
model net Md

ggg. {b} A (rescaled) fragment of this net. The diagonal edge

in the building block gives a 32-penetrating edge.

In the above list, and in Tables 1, 3 below, we use a compact notation where the letter
subscripts for the nondiagonal edges are suppressed if they appear in alphabetical order,
and where d indicates the diagonal edge d1. Thus, the model net for w = gxgygzd1, which
could be written asM(gxgygzd1), is written in the compact formMd

ggg. Its repeating unit,
or motif, is indicated in Figure 11 along with a fragment of the embedding rotated so that
the penetrating edges are vertical.

Theorem 9.1. There are 6 affine equivalence classes of disconnected embedded nets with
adjacency depth 1 and a single vertex quotient graph.

Proof. LetM be a model net of the type stated, with generating edge set Fe with |Fe| = m.
If m = 1 (resp. m = 2) then M is affinely equivalent to Ma (resp. Maa).

Let m = 3. Then the 3 edges of Fe have separate translates, under the periodic structure,
to 3 edges in M which are incident to a common node. Suppose first that this triple is
coplanar. Then it determines a planar subnet M1 say, which is an embedding of hxl.
Also M is equal to the union of the translates of M1 of the form M1 + nb where b is a
vector of integers and n ∈ Z. Thus M is affinely equivalent to Maaf .

On the other hand, if the edges of Fe are not coplanar then M1 is an embedding of
pcu. Examination shows that this occurs with M disconnected, only for words w of the
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forms (i) fff , giving 2 components, (ii) fgg, gfg or ggf , each of which is of type fff
after a translation and rotation, and (iii) ggd, gives which gives 3 components.

For m ≥ 4 the model net Md
ggg is the only net which is not connnected. �

Model net Edge word Coordination Net/multiplicity

Ma ax 2 line ∞
Maa axay 4 sql ∞
Maafz axayfz 6 hxl ∞
Mfff fxfyfz 6 pcu-c
Mggd gxgyd1 6 pcu-c3
Md

ggg gxgygzd1 8 hex-c3

Table 2. Disconnected nets with a single vertex, depth 1, labelled quotient graph.

9.2. Connected lattice nets with depth 1. Let N1 denote the family of proper linear
3-periodic nets with a periodic structure basis providing a depth 1 labelled quotient graph
with a single vertex. We now consider the subfamily Nc

1 of connected nets N in N1. These
nets also gives building block nets for embedded nets with a double vertex quotient graph,
and for multicomponent nets. In Theorem 9.5 and Corollary 9.6 we classify the nets up to
oriented affine isomorphism and up to periodic isotopy respectively, there being 19 classes
for each equivalence relation. As in the previous section it will suffice to consider model
nets. Moreover each model net M in Nc

1 is determined by an ordered word for the edges
of a repeating unit Fe and these edges [a, b] are subsets of the unit cell [0, 1)3 except for
one of their endpoints. In view of connectivity and noncrossing conditions the quotient
graph QG(M) is a bouquet graph with a single vertex and loop edges of multiplicity
m = 3, 4, 5, 6 or 7 (as implied by Lemma 4.4).

To distinguish these model nets we make use of some new readily computable local
features which can be read off from the repeating unit and which provide some readily
computable structural invariants under affine isomorphism.

Definition 9.2. The hxl-multiplicity hxl(N ) of an embedded net N is the number of
translation classes of planar 2-periodic subnets of N which are completely triangulated.

For the model netsM in Nc
1 this multiplicity is equal to the number of triples of edges

[a, b] in Fe whose edge vectors, b−a, form a coplanar triple. It may also be computed from
the point symbol (PS) as the number of 3-cycles divided by 6. Thus the point symbol of
fcu is 324.436.56 and so hxl(Nfcu) = 4.

The next definition might be viewed as a strong form of local catenation.

Definition 9.3. (i) An edge of an embedded net is 32-penetrating if there exist 2 disjoint
parallel edge-cycles of length 3 and an edge [a, b] which passes through them in the sense
that the open line segment (a, b) intersects the convex hull of each cycle.

(ii) An edge of an embedded net 42-penetrating if it passes through 2 disjoint parallel
untriangulated parallelograms.
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Figure 12. Penetrating edges of type 32 and 42 as observed for three 10-
coordinated nets from Table 3.

One can check for example that for the model netM in Nc
1 with a defining ordered word

w there exists a 32-penetrating edge if and only if w contains the subword gxgygzd1. Also
there exists a 42-penetrating edge if and only if w contains d1 and precisely 2 of the 3
letters gx, gy, gz. See Figure 12.

We similarly define when an edge is 31-penetrating or 41-penetrating. In fact there
are no depth 1 lattice nets with a 31-penetrating edge. In general let us say that N has
property 3k if there are 3k-penetrating edges but no 3k+1 penetrating edges. We also define
property 4k similarly. We indicate these properties in column 5 of Table 3.

9.3. Classification of depth 1 lattice nets. We now define 19 model nets M in Nc
1

with standard orthonormal basis as a depth 1 periodicity basis and where in each case the
node set is the subset Z3 of R3. We do this, as in the previous section, by specifying a
defining edge word, as listed in column 2 of Table 3. The 9 nets without the strong edge
penetration property (of type 32 or 42) appear in the RCSR whereas the other 10 nets do
not. This reflects the fact that the strongly penetrated nets can be viewed as exotic forms
in reticular chemistry. Indeed, there are 3 new topologies which have not been observed
either in the RCSR and or the ToposPro net databases. Two of these are provided by the
model nets Mggg

ad ,M
ggg
aad given in Figure 13.
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Model net Edge word hxl(M) Coordination Penetration Topology td10 π(-)

Mpcu axayaz 0 6 0 pcu 1561 48

Md
pcu axayazd1 0 8 0 bcu 2331 48

Mf
pcu axayazfx 1 8 0 hex 2331 24

Mg
aad axaygxd1 0 8 41 ilc 3321 12

Mgg
ad axgxgyd1 0 8 42 8T17 4497 4

Mgygz
ad axgygzd1 0 8 42 8T21 4041 12

Mff
pcu axayazfxfy 2 10 0 bct 3101 16

Mgd
pcu axayazgxd1 1 10 41 ile 3761 8

Mgg
aad axaygxgyd1 0 10 42 10T1539 4991 4

Mgxgz
aad axaygxgzd1 1 10 42 new 4751 4

Mggg
ad axgxgygzd1 1 10 32 new 6095 4

Mfff
pcu axayazfxfyfz 3 12 41 ild 4201 12

Mggg
pcu axayazgxgygz 4 12 0 fcu 3871 48

Mggd
pcu axayazgxgyd1 2 12 42 12T1305 5191 4

Mggf
aad axaygxgyfzd1 1 12 42 12T1657 5431 12

Mggg
aad axaygxgygzd1 2 12 32, 41 new 6421 4

Mfffd
pcu axayazfxfyfzd1 6 14 41 bcu-x 4641 48

Mggfd
pcu axayazgxgyfzd1 4 14 42 14T199 5631 12

Mgggd
pcu axayazgxgygzd1 4 14 32, 41 14T957 6621 12

Table 3. Connected nets with a single vertex, depth 1, labelled quotient graph.
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Figure 13. Motifs for the model nets Mggg
ad , M

ggg
aad and Mgggd

pcu (14T957)

which have a 32-penetrating edge.

We also record in the final column the cardinality of the point group of the maximal
symmetry net with the given topology, which we may denote by π(pcu) etc.

Let us define an elementary affine transformation of R3 to be a rotation, a translation,
or a linear map whose representing matrix has entries 1 on the main diagonal and a single
nonzero nondiagonal entry equal to 1 or −1. These maps, such as (x, y, z)→ (x− z, y, z),
map model nets to model nets and play a useful role in case-by-case analysis.
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Remark 9.4. We note that the countable graph ilc, represented by the model net Mg
aad

can be represented in other ways. The model net Md
fff gives one such alternative. The

topology is also made apparent by its equivalence, by elementary transformations, with
the net obtained from the pcu model net by the addition of integer translates of the long
diagonal edges with edge vector (1, 2, 1). However, in this case the standard basis is a
periodic structure basis of depth 2.

Theorem 9.5. There are 19 oriented affine equivalence classes of connected lattice nets
with depth 1.

We have obtained this classification by means of a case-by-case proof as well as a verifi-
cation by an enumeration of lattice nets using GAP. The following interesting special case,
with two new nets, illustrates the general proof method. (See the supporting information
for the complete proof.)

Determination of the 10-coordinated connected lattice nets of depth 1. Suppose first that
a model netM in this case has 3 axial edges and 2 face edges. Then it is straightforward
to see that it is equivalent by elementary affine transformations to the model net Mff

pcu,
for bct. Also, any model net of type aaafd is similarly equivalent to this type. On the
other hand, a type aaagd model net has hxl-multiplicity equal to 1, rather than 2, and so
represents a new equivalence class. Its topology is ile.

Consider next the model nets with 2 axial edges and no diagonal edges. These are
equivalent by elementary affine transformations to a model net with 3 axial edges and so
they are equivalent to the model nets in Table 3 for bct and ile. The same is true for the
9 nets of type aawd where w is a word in 2 facial edges which is not of type gg.

Thus, in the case of 2 axial edges it remains to consider the types axaywd1 with w =
gxgy, gxgz and gygz. Each of these has a penetrating edge of type 42. The first two are
model nets in the list and they give new and distinct affine equivalence classes in view of
their penetration type and differing hxl(N ) count. The third net, for the word axaygygzd1

is a mirror image of the first net and is orientedly affinely equivalent to it, by Remark 5.5
for example.

It remains to consider the case of 1 axial edge, ax, together with d1 and 3 facial edges. If
there are 2 edges of type fx, fy or fz then there is an elementary equivalence with a model
net with 2 axial edges. The same applies if there is a single such edge. (For an explicit
example consider axfxgygzd1 and check that the image of this net under the transformation
(x, y, z)→ (x, y − z, z) gives a depth 1 net with 2 axial edges.)

Finally the model net for axgxgygzd1 appears in the listing and gives a new class with
penetration type 32. �

Corollary 9.6. There are 19 periodic isotopy classes of connected linear 3-periodic nets
in R3 with adjacency depth 1 and a single vertex quotient graph.

Proof. If the connected linear 3-periodic nets N1,N2 are orientedly affinely equivalent
then, as previously observed, they are periodically isotopic. Thus there are at most 19
periodic isotopy classes. On the other hand periodically isotopic embedded nets have
structure graphs which are isomorphic as countable graphs. Since the 19 model nets have
nonisomorphic structure graphs the proof is complete. �
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Figure 14. Maximal symmetry embeddings of the 9 model nets of Nc
1

which do not have the 32- or 42-penetration property.

Theorem 9.5, together with the linear implementation of graph isomorphisms indicated
in Theorem 4.8, implies that the structure graphs of the 19 model nets must be noniso-
morphic as graphs. This also follows on examining the td10 topological density count.
We remark that Table 3 , without the final td10 column, almost distinguishes 19 affine
equivalence classes (and hence, by Theorem 4.8, the structure graphs) since we have only
appealed to topology density to distinguish the curious pair Mgg

ad (8T17), Mgygz
ad (8T21).

Figure 14 shows the maximal symmetry embeddings of the 9 model nets of Nc
1 which do

not have the 32- or 42-penetration property.

10. Double lattice nets and further directions

We give a brief indication of research directions in the determination of periodic isotopy
classes and periodic isotopes for embedded nets with a double vertex quotient graph as
well as research directions in rigidity and flexibility.



ISOTOPY CLASSES OF 3-PERIODIC NET EMBEDDINGS 43

10.1. Double lattice nets. For convenience we define a double lattice net to be an em-
bedded periodic net N in R3 whose set of nodes is the union of 2 translationally equivalent
rank 3 lattices and we let N2 be the family of proper double lattice nets with adjacency
depth 1.

The double vertex quotient graph N in N2 consists of 2 bouquet graphs and a number
of nonloop edges. We denote these graphs as H(m1,m2,m3) where m1 and m3 are the
loop multiplicites, with m1 ≥ m3 ≥ 0, and m2 is the multiplicity of the connecting edges.
From Lemma 4.4 we have the necessary conditions 0 ≤ m1 ≤ 7 and 0 ≤ m2 ≤ 8 as well
as m3 ≥ 1 if m2 = 1, since, from the definition of a linear 3-periodic net, there can be no
nodes of degree 1. If N is a net in Nc

2, the subfamily of connected nets, then we also have
the additional condition m2 ≥ 1.

Each net N ∈ N2 admits a unique 3-fold decomposition N = N1 ∪ N2 ∪ N3 where N1

and N3 are the disjoint 3-periodic subnets associated with the two bouquet subgraphs and
where N2 is the net, with the same node set as N , associated with the subgraph with
non-loop edges. The subnets N1,N3 may have no edges if one or both vertices has no loop
edges. When loops are present on both vertices then the nets N1,N3 are bouquet nets,
and are of three possible dimension types, namely {3; 1}, {3; 2} or {3; 3}. As we have seen
earlier, for type {3; 1} there is 1 affine isomorphism class of embedded nets, for type {3; 2}
there are 2 such classes and for type {3; 3} there are 3 classes for disconnected nets and
19 classes for connected nets.

Thus in the 3-fold decomposition of a net N in N2, each of the subnets N1, N3 is either
devoid of edges or is separately orientedly affinely equivalent to one of the 25 model nets
for N1. The relative position (parallel or inclined, for example) of these component nets
allows for considerable diversity for the entangled net N1 ∪ N3. In particular, while N is
affinely equivalent to a general model netM1∪M2∪M3, with standard periodic structure
basis b, in general we can only additionally arrange that one of the subnets M1,M3 is
equal to a translate of one of the specific 25 model nets in Tables 2 and 3.

Evidently there is a considerably diversity for the periodic isotopy classes of embedded
nets with depth 1 and a double vertex quotient graph. We now show that there is even a
marked increase in the number of topologies for such nets.

For 1 ≤ m ≤ 8 define N∗2(0,m, 0) to be the family of nets N in N2 which have a
periodicity basis with a depth 1 bipartite quotient graph H(0,m, 0) with an edge carrying
the label (0, 0, 0). The label condition here ensures the natural condition that N has an
edge between the pair of representative joints in the semi-open unit cell for the periodicity
basis. In fact this convention, which we call the unit cell property, is the natural convention
used by Chung, Hahn and Klee [21] in their schemes for the enumeration of periodic nets.

For m = 1, 2, 3 the nets of this type are not connected. For m = 4 it is well known
that there is a unique connected topology G(N ) for the nets in N∗2(0,m, 0), namely the
diamond net dia. For higher values of m we are able to determine the topologies through
a computational analysis based in part on the indivisibility criterion Proposition 4.5. See
also the supporting information.

Proposition 10.1. There are 117 nonisomorphic topologies for bipartite double lattice nets
with the unit cell property, which are connected and have adjacency depth 1. Moreover,
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the number of m-coordinated topologies, for m = 4, 5, 6, 7 and 8, are, respectively, 1, 11,
31, 40 and 34.

10.2. Rigidity and flexibility. The analysis of infinitesimal rigidity and flexibility for
connected crystal frameworks C is a well-developed mathematical topic. In its simplest
form a velocity field on the node set is assumed to be periodic with respect to a given
periodicity basis a. This is the so-called fixed lattice theory and in fact it corresponds
exactly to the rigidity theory of fixed edge-length graph knots on a fixed flat torus for the
parallelepiped defined by the periodicity basis. In this case a finite matrix, the periodic
rigidity matrix for the pair (C, a), determines the space of periodic infinitesimal flexes
and so this matrix is a discriminator for the (strict) periodic rigidity of C with respect
to a. On the other hand the flexible lattice theory allows for infinitesimal motions of
the periodicity basis and so embraces a larger finite dimensional vector space of velocity
fields with a correspondingly larger rigidity matrix. See [17], [50]. Recently necessary and
sufficient conditions have been given for infinitesimal rigidity with respect to the infinite
dimensional space of all velocity fields. See Kastis and Power [38].

The fixed lattice theory also has close connections with the analysis of rigid unit modes
(RUMs) in material crystals with a connected bond-node net. See for example the RUM
mode analysis in [7], [49]. In fact this analysis also applies to disconnected crystal frame-
works with several components if there are no interaction constraints between the com-
ponents. Indeed, suppose that C belongs to the interpenetration class and let a be a
periodicity basis for both C and each of its finitely many components Ci. Then the RUM
spectrum Ω(C) of C, with respect to a, is the union of the RUM spectra of its components.

A crystal framework is said to be critically coordinated, or to be a Maxwell framework,
if the quotient graph satisfies |E| = 3|V |. This is often interpreted as an equality between
the total number of constraints (provided by |E| equations) that restrict the total number
of degrees of freedom of a repeating unit of nodes, which is 3|V |. It also implies an equality
of limits of averages over increasing volumes for these constraint/freedom quantities. It
is for such frameworks, which includes all zeolite frameworks for example, that the RUM
spectrum is typically a nontrivial algebraic variety exhibiting detailed structure [29], [49],
[59].

In the light of this it is of interest to determine the basic Maxwell frameworks C which
have a depth 1 labelled quotient graph with either 1 or 2 vertices. From Proposition
10.1 it follows that there are 31 topologies for crystal frameworks of this type with the
unit cell property and quotient graph H(0, 6, 0). These remarks suggest that it would be
worthwhile to augment periodic net database resources with tools for the identification of
Maxwell lattices and the calculation of flexibility information related to RUM spectra.

11. Appendix A

The proof of Theorem 8.2.

Proof. Note first that any connected component Ki of K is determined by the position of
its unique node in [0, 1)3. Thus K is determined by the position pi = (xi, yi, zi), 1 ≤ i ≤ n,
of its n-tuple of nodes. Also, in view of the disjointness of components two such nodes
pi, pj have differing corresponding coordinates in [0, 1). Consider a deformation path (ft)
from K to K ′. Since the graph knots ft(K) are also graph knots of n-grids, and edge
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collisions cannot occur in the deformation, it follows that the cyclical order of the x- y-
and z-coordinates of the points ft(p1), . . . , ft(pn), is constant. Thus the ordered triple of
cyclic orders for the coordinates is an invariant for linear graph knot isotopy.

Despite the constraint of coordinate distinctness we see that K can be linearly isotopic to
an n-grid graph knot K ′ determined by p′i = (x′i, y

′
i, z
′
i), 1 ≤ i ≤ n, where the n coordinates

x′i lie at the midpoints of the distinct subintervals of the form [j/n, (j+1)/n), 0 ≤ j ≤ n−1.
This spacing is achieved by simultaneously translating the points pi in the x-direction at
appropriate independent speeds while maintaining x-coordinate distinctness. Additionally,
the equal spacing of the y- and z-coordinates can be achieved by similar isotopies which
locally translate in the y- and z-direction. The resulting position is unique up to the cyclic
permutation action of Cn×Cn×Cn on the coordinate axes. It follows now that two graph
knots of n-grids are linearly isotopic if the cyclic order of their coordinates coincide. Thus
the set of cyclic orders is a complete invariant for linear graph knot isotopy and (i) and
(ii) follow.

Assume next that the n-grids N and N ′ are periodically isotopic. It will suffice to show
that their linear graph knots are rotationally linearly isotopic.

Without loss of generality we may assume that the components have node sets that lie
on translates of the lattice Z3 in R3. Thus, by the definition of periodic isotopy there
are periodicity bases a = {a1, a2, a3} and a′ = {a′1, a′2, a′3}, with integer entries, such that
(N , a) and (N ′, a′) are strictly periodically isotopic by means of a deformation path (ft)
and an associated path of bases at from a to a′. Define k1 to be a common multiple of the
x-coordinates of {a1, a2, a3} and similarly define k2, k3 for the y- and z-coordinates. Then
there is an implied periodic isotopy between (N , k · b) and (N ′, a′′), for some periodicity
basis a′′ with integer entries. This is given by the same periodic isotopy deformation path
(ft) but with a new associated path of bases (for lower translational symmetry) which is
determined by the initial basis k · b and the path at. So, without loss of generality we may
assume at the outset that a = k · b.

We next show that a′ is equal to k′ · b where k′ is a cyclic permutation of k. Thus we
will obtain that the linear graph knots lgk(N0, k · b), lgk(N1, k

′ · b) are rotationally linearly
isotopic.

To see this consider a single component N 1
0 of the n-grid N0. Note that the linear

graph knot lgk(N 1
0 , k ·b) has minimal discrete length cycles c1, c2, c3 with homology classes

δ1, δ2, δ3, respectively, equal to the standard generators of the homology group H1(T3,Z) =
Z3 of the containing flat 3-torus. These discrete lengths are k1, k2, k3. Moreover we see,
from the rectangular geometry of N 1

0 , the following uniqueness property, that if c1 and
c′1 are 2 such minimal length cycles for δ1 which share a node then c1 = c′1. Indeed, the
minimality implies that the edges of c1 are parallel or, equivalently, that the nodes of c1

can only differ in x-coordinate.
Let N 1

1 be the corresponding component of N1. In fact N 1
1 = f1(N 1

0 )). The linear graph
knot lgk(N 1

1 , a
′) is, by definition, equal to the affine rescaling of the intersection of the

body |N 1
1 | with the semiopen parallelepiped defined by the periodicity vectors a′1, a

′
2, a
′
3.

We note that if a′ is not of the form k′ ·b then for at least one of the the standard generators
δi (associated with a′i) of the flat 3-torus homology group H1(T3,Z) = Z3, the minimal
length cycles do not have the uniqueness property. This follows from elementary geometry
since not all edges of the cycle can be parallel when a′i is not parallel to a coordinate axis.
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On the other hand the linear isotopy between lgk(N 1
0 , k·b) and lgk(N 1

1 , k
′·b) preserves the

lengths of cycles of edges and so the claim follows. Since we have shown that lgk(N , k · b)
and lgk(N ′, k · b) are isotopic linear graph knots up to a rotation it follows from the
technical lemma, Lemma 11.2 that the graph knots lgk(N , b) and lgk(N ′, k · b) are linearly
isotopic up to a rotation, and so (iii) now follows from (ii). �

Remark 11.1. Recall the notation k · a = (k1a1, k2a2, k3a3) introduced in the proof of
Theorem 6.2. Let us say that this denotes the amplification by k ∈ Z3

+ of the periodic
structure basis a. We pose the following general problem. If N1,N2 are connected linear
periodic nets which have a common periodic structure basis a and if the pair (N1, k ·
a) is periodically isotopic to the pair (N2, k · a), then does it follow that N1 and N2

are periodically isotopic ? In view of the proposition above this is equivalent to the
corresponding problem for linear graph knots K and their k-fold amplifications which we
may write as k · K. We expect that this is true and therefore that the amplified knots
are isotopic if and only if the unamplified knots are isotopic. In fact one can verify this
connection for various specific classes of interest, as we do below in the case of multigrid
nets.

The following technical lemma resolves the question of Remark 11.1 in the case of n-
grids.

Lemma 11.2. Let N0 and N1 be shift homogeneous n-grids with standard linear graph
knots K0 and K1 and suppose that for some k ∈ Z3 the amplified graph knots k ·K0 and
k ·K1 are isotopic. Then K0 and K1 are strictly linearly isotopic.

Proof. Figure 15 indicates a subgraph knot, C0 say, of one of the components of k ·K0 in
the case that k = (3, 6, 5). We refer to this as a ”chain”. It consists of a small cube of
edges attached to 3 cycles of edges in the axial directions. Let p1 denote the vertex which
is common to these 3 cycles. The other n − 1 components of k · K0 have similar chains
which are shifts of C0 and there is a unique such chain where the shift of p1 lies in the
semiopen small cube p1 + [0, 1)3 of the flat 3-torus. Let p2, . . . , pn be these axial joints
and let J0 = J0(p1, . . . , pn) be the union of these chains (giving a linear subgraph knot of
k ·K0).

x

y

z

Figure 15. A chain subgraph knot of k ·Kpcu.
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Suppose that k ·K0 and k ·K1 are linearly isotopic, by the isotopy (gt), 0 ≤ t ≤ 1. This
restricts to a linear isotopy from J0 to a subgraph knot g1(J0) of k · K1. In this isotopy
the images under gt, for 0 < t < 1, of the n axial cycles of J0 in a specific coordinate
direction need not be linear. However, since there can be no collisions the cyclical order
for t = 0 agrees with the cyclical orders for t = 1. It follows that g1(J0), which has the
form J0(q1, . . . , qn), is a subgraph knot of k ·K1 of the same cyclical type as the subgraph
knot J0. Since K0 and K1 are also defined by the cyclical order of p1, . . . pn and q1, . . . , qn
it follows that they are linearly isotopic. �
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