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We developed a highly accurate and fully Maxwellian conformal mapping method for cal-

culation of main fields of electrostatic particle optical elements. A remarkable advantage

of this method is the possibility of rapid recalculations with geometric asymmetries and
mispowered plates. We used this conformal mapping method to calculate the multipole

terms of the high voltage quadrupoles in the storage ring of the Muon g-2 Experiment

(FNAL-E-0989). Next, we demonstrate that an effect where the observed tunes cor-
respond to a voltage that is about 4 % higher compared to the voltage to which the

Muon g-2 quadrupoles are set is explained by the conceptual and quantitative differ-
ences between the beam optics quadrupole voltage and the quadrupole voltage at the

plates. Completing the methodological framework for field computations, we present a

method for extracting multipole strength falloffs of a particle optical element from a set of
Fourier mode falloffs. We calculated the quadrupole strength falloff and its effective field

boundary (EFB) for the Muon g-2 quadrupole, which has explained the experimentally

measured tunes, while simple estimates based on a linear model exhibited discrepancies
up to 2 %.
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1. Introduction

Methods for measurement of the anomalous magnetic dipole moment (MDM) and

the electric dipole moment (EDM) using a storage ring rely on electrostatic particle

optical elements, including the Muon g-2 Experiment’s storage ring at Fermi Na-

tional Accelerator Laboratory (FNAL). Accordingly, it is necessary to accurately
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Fig. 1. Photograph of the Muon g-2 quadrupole, comprising quadrupole plates, trolley rails,
and a vacuum chamber. (Reprinted from Nucl. Instr. Meth. Phys. Res. A, Vol. 503, Yannis K.

Semertzidis et al., The Brookhaven Muon g-2 Storage Ring High Voltage Quadrupoles, Page No.

476, Copyright 2003, with permission from Elsevier.)

model main and fringe fields of electrostatic elements, in particular because energy

conservation in an electrostatic field requires an accurate integration of the equa-

tions of motion along the particle trajectory, whereas in case of the magnetic field

energy conservation is trivial.

In this research, we address the representation and field calculation problem

by considering the specific case of the electrostatic quadrupoles1 of the Muon g-2

Experiment’s storage ring (“Muon g-2 quadrupoles”; see photograph in Fig. 1), to

the general geometric and electrostatic properties of which we refer in singular as

the Muon g-2 quadrupole.

We developed a conformal mapping method for calculation of main fields of elec-

trostatic particle optical elements. Conformal mapping methods provide an analytic

formula defining a fully Maxwellian map to a polygonal model of the element, where

curves can be approximated using linear interpolation. Our model of the main field

of the Muon g-2 quadrupole allows rapid recalculations with geometric asymme-

tries and mispowered plates, the latter being useful, inter alia, for simulations of

RF scraping and the effects of damaged quadrupole resistors.

We used the multipole terms of the Muon g-2 quadrupole calculated using con-

formal mapping methods to propose an alternative explanation for an effect where

when a voltage is set on the plates of a Muon g-2 quadrupole, the observed tunes

correspond to a voltage that is about 4 % higher than the set voltage. This effect

was named the “oomph” effect,2 and the term “oomph” was used since within the

Muon g-2 collaboration. (One previously hypothesized explanation of this effect had

been that the quadrupole plates were all 49.11 mm from the reference orbit instead
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of the nominal design aperture 50 mm, which, due to the quadratic dependence

of the quad strength on the length scale, resulted in an increase of the quadrupole

strength by about 4 %.) From here on forward we will also use the term “oomph” for

this effect. Oomph is necessary to match muon loss simulations with the observed

loss data, as well as the muon loss peaks with the betatron resonance lines.

For fields with a longitudinal dependence such as fringe fields, Fourier analysis

at one radius is insufficient for multipole strength calculation; however, multipole

strengths can be extracted from Fourier modes calculated at multiple radii. For the

fringe field of the Muon g-2 quadrupole, we calculated the field map using a BEM

solver. We calculated the falloffs of the Fourier modes for the field of the quadrupole

and extracted the falloff of the quadrupole strength, which, with consideration of

our conclusions regarding the oomph effect, resulted in an excellent agreement of

calculated tunes with experimentally measured tunes.

This paper presents and discusses methods for computation of main and fringe

electrostatic fields and applies them to the Muon g-2 quadrupole, and it additionally

explains the oomph effect, where electrostatic quadrupoles have apparently higher

voltages than set in the control room.

2. Conformal Mapping Methods

We used conformal mapping methods3 for calculation of the main field on the

Muon g-2 quadrupole, which is described in this paper, as well as to calculate

fringe fields of electrostatic deflectors.3 A conformal mapping (or conformal map)

is a transformation f : C → C that is locally angle preserving. A conformal map-

ping satisfies Cauchy–Riemann equations and, therefore, its real and imaginary

parts satisfy Laplace’s equation: ∆< (f) = 0 and ∆= (f) = 0. Conformal mappings

automatically provide the electrostatic potential in cases where the electrostatic ele-

ment’s geometry can be represented by a polygon, possibly with some vertices at the

infinity. The domain of a conformal mapping is called the canonical domain, and the

image of a conformal mapping is called the physical domain. A Schwarz–Christoffel

mapping is a conformal mapping from the upper half-plane as the canonical domain

to the interior of a polygon as the physical domain.

The electrostatic potential for a cross section or a longitudinal section modeled

by a generalized polygon may be found by obtaining a conformal mapping f from a

suitable canonical domain to the polygon. A bi-infinite strip is a suitable canonical

domain if the polygon comprises two groups of consecutive sides characterized by

the same constant Dirichlet boundary condition, with two constant values in total.

A rectangular part of a bi-infinite strip is a suitable canonical domain when the

physical domain is a logical (or generalized) quadrilateral.

If the solution of the Laplace equation in the canonical domain is φ, the solution

of the Laplace equation in the physical domain is ϕ = φ ◦ f−1. In practice, the

electrostatic potential is usually the appropriately selected, shifted, and scaled real

or imaginary part of f−1.
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The solution for the electrostatic potential obtained this way is fully Maxwellian

in the sense that the analytic formula for f or f ′ results in the solution for the

potential satisfying the Laplace equation.

As described in,4,5 inverse conformal mapping g = f−1 may be obtained by

(i) solving the equation
f (g (w))− w = 0 (1)

using the Newton–Raphson or another numerical method; or
(ii) solving the ODE3

dg (w)

dw
=

1

f ′ (g (w))
, g (w0) = z0. (2)

3. Main Field of the Muon g-2 Electrostatic Quadrupole

The main field of an electrostatic element such as the Muon g-2 collaboration

quadrupole can be obtained using the following general method:3

(i) Calculate the electrostatic potential using conformal mapping methods with

one plate at 1 V and the other Dirichlet boundary conditions (the remaining

plates, the rectangular enclosure, and the trolley rails) of 0 V.
(ii) Apply plate distance errors as perturbations to four copies of the potential,

each copy corresponding to one plate at 1 V and the other Dirichlet boundary

conditions of 0 V.
(iii) Apply appropriate rotations to these four copies of the potential, scale the copies

(e.g., by ±2.4× 104 or with mispowered values), and use their superposition.

We considered two polygonal models of the cross section: (1) the nominal case with

symmetric voltages and no geometric asymmetries (“symmetric model”), and (2)

the general case of mispowered plates and geometric asymmetries (“nonsymmetric

model”). In the former case, we simplified the polygonal model using the four-fold

rotational symmetry and the four mirror symmetries, as Fig. 2 shows. The conformal

mapping theory for physical domains as n-connected regions for n ≥ 2 is quite

challenging or restricted (see, e.g., Ref. 6 and Ref. 4) compared to simply-connected

regions. We approximated the cross-sectional geometry in the nonsymmetric model

by a simply-connected region shown in Fig. 3 by adding rectangular connecting

bars between the rectangular enclosure and the four plates, which were placed in

the middle of the back side of each plate to minimize their impact on the multipole

terms.

The physical device uses connecting rods, which are made from a dielectric ma-

terial, to hold the plates in position. These connecting rods can be seen in Fig. 1. For

application of the conformal mapping method in the nonsymmetric model case, we

used rectangular connecting bars as a mathematical measure, which were modeled as

von Neumann boundary conditions with equipotential lines normal to the boundary.

Modifying or adding any boundary condition in the polygonal model changes the

equipotential lines and the multipole terms of the potential. However, placing the
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Fig. 2. The polygonal model of 1/8th part of cross section of the Muon g-2 quadrupole in the

symmetric model case, obtained from the full cross section using the four-fold rotational symmetry
and the four mirror symmetries.

connecting bars in the vertical and horizontal midplanes behind the plates, where

the equipotential lines are almost parallel to the nearby plate and vacuum chamber

wall, minimizes the effect of the bars on the multipole terms. Indeed, if the equipo-

tential lines were perfectly parallel, or if the connecting bars were infinitely thin and

the quadrupole had a full four-fold symmetry, the connecting bars would have no

effect. The connecting bars were made as thin as possible while avoiding conformal

mapping algorithm convergence problems due to the crowding phenomenon.
In both symmetric and nonsymmetric cases, considering that two constant

Dirichlet boundary conditions are interposed by two von Neumann boundary con-
ditions, forming a logical quadrilateral, we used a conformal mapping from a rect-
angular part of a bi-infinite strip. The derivative of the conformal map f from the
canonical domain to the physical domain was4

f ′ (z) = c cn (z|m) dn (z|m)

n∏
j=1

(
sn (z|m)− sn

(
xj + iyj |m

))αj−1 ,

where sn, cn, and dn are the Jacobi elliptic functions,7 the number of vertices n

and angles πα are parameters of the polygonal model, and the parameters x, y, m,

and c were found using the SC Toolbox .8

Before proceeding further, we briefly introduce the method of differential alge-

bras (DA),9 which is used for various calculations discussed in this paper. Among
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Fig. 3. The polygonal model of the cross section of the Muon g-2 quadrupole in nonsymmetric

model case.

many, one of the advantages of DA computations is that Taylor series expansions

can be produced automatically for a highly complex analytic function by substitut-

ing its comprising functions with their DA values. Another advantageous technique

is the DA fixed-point algorithm, e.g., for the inversion of a Taylor series expansion,

that completes in finitely many steps. The code COSY INFINITY 10 has an effi-

cient implementation of multivariate differential algebra (DA).9 For the purpose of

cross-checking of various computations, we also used Mathematica to compute some

Taylor series expansions. In our CPU time tests3 COSY INFINITY ’s DA imple-

mentation was significantly faster than respective calculations in Mathematica by

two to three orders of magnitude.
Knowing the analytic expression for a derivative f ′ of a conformal mapping f

and the constant part

g0 = cons (g (0)) ∈ C

of the DA value of g = f−1, i.e. the DA value’s scalar part, at the origin w = 0, we
can obtain the DA inverse g (0) at the origin as

g (0) = g0 +
(
∂−1f ′ (g0)

)−1
.

Symmetric model In the symmetric model case, the derivative f ′ of the con-

formal mapping has a branch point at the preimage of the origin, which corresponds

to the reference orbit. This presents certain difficulties in the analysis. For example,
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it is not possible to obtain the electrostatic potential multipole terms by obtaining

f via a Taylor series expansion of f ′ and then calculating the inverse series. The

same applies to the calculation of DA values of f at point z = g0.
In view of this, for the symmetric model case, we obtained the multipole expan-

sion of the electrostatic potential for the Muon g-2 quadrupole up to order 24 in
the form

ϕ (r, θ) =
A0

2
+

24∑
j=1

rj
(
Aj cos (jθ) +Bj sin (jθ)

)
+O

(
r25
)

by solving the restriction of the ODE from Eq. 2 to the vertical edge of the polygonal

model, using the solution as a boundary condition in solving the Cauchy–Riemann

PDE in Mathematica, and performing Fourier analysis.
We also calculated the multipole expansion in MATLAB in the symmetric model

case up to order 24 by computing the inverse values of the conformal mapping object
f at an equidistant discretization of a circle of radius R into N = 1001 arc intervals
of length 4t = 2πR/N as

u =
(
f
−1 (R cos (j4t) , R sin (j4t))

)N−1
j=0

,

taking the discrete Fourier transform (DFT) of the electrostatic potential ϕ around

the circle, and obtaining the Fourier modes using the Hermitian symmetry.

Nonsymmetric model For the nonsymmetric model case, we obtained the

multipole expansion up to order 24 using the DA inverse of the conformal mapping in

COSY INFINITY and Mathematica, as well as using Fourier analysis applied to its

conventional inverse in MATLAB. In particular, we produced a COSY INFINITY

program called mterms, as well as its variant written in Python, which calculates the

multipole terms of the Muon g-2 quadrupole for a given set of mispowered plates

and plate misalignments.

Fig. 4 shows a heatmap plot of the multipole expansion of the electrostatic po-

tential to order 24. Fig. 5 shows multipole strengths higher than the quadrupole

strength, i.e. the multipole expansion from order 3 to order 24. Because the contri-

butions of these higher multipole strengths in the quadrupole are relatively small

within the aperture, Fig. 5 uses a contour plot with a logarithmic contour scale to

visualize the magnitude levels.

Our a posteriori error analysis indicates that the DA method is accurate. This

application of the conformal mapping method was near its limit in terms of the

complexity of geometry due to the crowding phenomenon,11 where crowding refers

to a close collocation of preimages of the polygon vertices. However, the method

can be expanded to significantly more complex geometries using the cross ratios

of the Delaunay triangulation (CRDT) algorithm.3,4, 12,13 The conformal mapping

method has the advantage of an analytic, fully Maxwellian formula and allows

rapid recalculations with adjustments to the geometry and mispowered plates,3 as

opposed to BEM and FEM solvers such as COULOMB14 and Opera-3d .15

The multipole terms we calculated for the Muon g-2 quadrupole were used to

study the effects of an unpowered plate and for RF scraping studies. In the next
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Fig. 4. A heatmap plot of the multipole expansion of the electrostatic potential to order 24 in the

nonsymmetric model case. This multipole expansion was obtained using the DA inverse in COSY

INFINITY ; the DA inverse in Mathematica and Fourier analysis in MATLAB produced visually
identical results. Calculations were performed for unitless voltages ±1 on the plates. The plot is

valid within the aperture radius Ra = 50 mm, denoted by the solid black circle.
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Fig. 5. A contour plot showing the multipole expansion of the electrostatic potential without the

quadrupole strength in the nonsymmetric model case, i.e. orders 3 to 24. The contributions of
these higher multipole strengths in the quadrupole are relatively small within the aperture, and

logarithmic scale contours are used to visualize the magnitude levels. This multipole expansion
was obtained using the DA inverse in COSY INFINITY. The scaling of the multipole expansion

from Fig. 4 was preserved. The plot is valid within the aperture radius Ra = 50 mm, denoted by

the solid black circle.
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section, we use these multipole terms to explain the oomph effect. The multipole

terms were also used to study the effect of damaged resistors with affected RC

time constants on beam dynamics variables such as the beta function, tunes, and

coherent betatron oscillation frequencies in the Muon g-2 storage ring.

4. The Oomph Effect and Two Quad Voltages

In this section, we analyze the oomph effect in the context of the main field of the

quadrupoles. The explanation for the oomph effect that we will propose, however,

due to its nature, is applicable to both main and fringe fields. We note that the

term “quadrupole voltage” refers to two different things: (1) the voltage that is set

on the quadrupole plates by the control room, and (2) the beam optics quadrupole

voltage that is directly relevant to calculating the tune.

The tune is subject to the quadrupole voltage

V2,2 = M2,2R
2
a,

where Ra is the aperture radius Ra = 50 mm and M2,2 is the quadrupole strength

in the multipole expansion9

ϕ (s, r, θ) =
+∞∑
k=0

+∞∑
l=0

Mk,l (s) cos (lθ + θk,l) r
k. (3)

In this multipole expansion, ϕ (s, r, θ) is the electrostatic potential, where s is the

longitudinal and (r, θ) are the polar transversal particle optical coordinates.

On the other hand, the voltage on the plate is the sum of the contributions of

all multipole voltages Vl,l, which can be calculated using the multipole expansion in

Eq. 3. For the sake of illustration, considering the scaling properties of electrostatics,

we examined the case of the plates set to Vplate = 1 V.

We express the beam optics multipole voltages of the main field of the Muon g-2

quadrupole as normal multipole voltages vn and skew multipole voltages wn in the

expansion

ϕ (r, θ) =
v0
2

+
+∞∑
n=1

(
r

Ra

)n
(vn cos (nθ) + wn sin (nθ)) . (4)

We considered three cases “Semertzidis et al.”, “Wu”, and “Valetov” of multipole

strengths of the Muon g-2 quadrupole. The multipole strengths were independently

calculated by Semertzidis et al1 and Wanwei Wu16 using Opera-3d’s FEM solver

in their respective cases. The multipole strengths in our case “Valetov” were cal-

culated using conformal mapping methods as described in Sec 3. The model used

for calculation of Valetov multipole strengths has a full four-fold symmetry, and it

would be sufficient to calculate the plate voltage for one plate. Semertzidis et al.

multipole strengths have a nearly four-fold symmetry, which can also be seen from

the cross-sectional geometry model in Fig. 18 of Ref. 1. On the other hand, Wu mul-

tipole strengths are based on full 3D calculations including the curved longitudinal

axis, resulting in no four-fold symmetry.
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Case “Semertzidis et al.” We obtained the multipole voltages (vn, wn) by

scaling the multipole normal and skew strengths (An, Bn) from the values in Table 5

of Ref. 1 at Rref = 45 mm and the plate voltage Vs = 24 kV as

(vn, wn) = (An, Bn)
Vs

Vplate

(
Ra

Rref

)n
,

where Vplate = 1 V.

Case “Wu” We performed Fourier analysis at reference radius Rref = 45 mm

for the Muon g-2 quadrupole main field data obtained by Wanwei Wu based on full

3D Opera-3d FEM.16 We calculated the multipole voltages (vn, wn) by scaling the

resulting multipole strengths (An, Bn) to the aperture radius Ra.

Case “Valetov” We calculated the multipole voltages (vn, wn) by scaling to

the aperture radius Ra from the multipole strengths (An, Bn) that we obtained for

the Muon g-2 quadrupole in the symmetric model case (see Sec. 3) using Fourier

analysis performed using MATLAB ,3 at reference radius Rref = 45 mm.

As an accuracy cross check, for each of the sets of beam optics multipole voltages,

we calculated the plate voltages as sums of multipole voltage contributions. The

calculations were performed using Eq. 4 at the aperture radius Ra and polar angles

θ = 0◦, 90◦, 180◦, and 270◦, corresponding to the middle of each quadrupole plate.

Table 1 shows the results of these calculations. The accuracies in terms of the

magnitudes of plate voltages approximating 1V were 4×10−5V for Valetov multipole

voltages, 1.6×10−3V for Wu voltages, and 2.5×10−3V for Semertzidis et al. voltages.

All three models and the corresponding voltage calculations show the quadrupole

voltage is (V2,2 − Vplate) /Vplate = 4 % higher than the plate voltage magnitude: the

multipole voltages add up to the correct plate voltage of 1 V, but the quadrupole

voltage is about 1.04 V. It is worth to note that the multipoles maintain a constant

voltage across the longitudinal quadrupole plates, which are not equipotential lines

of a pure quadrupole.

The 4 % effect (1) quantitatively explains the shift of the peaks in COSY IN-

FINITY muon loss simulations relative to the observed effects,17 and it (2) quan-

titatively allows to reproduce the measured tunes, as Table 2 shows.

Table 1. Plate voltages of the Muon g-2 quadrupole

calculated from multipole voltages obtained in cases
Semertzidis et al., Wu, and Valetov at polar angles
θ = 0◦, 90◦, 180◦, and 270◦. The values in this table

show how well the plate voltages ±1 V that were used
to obtain these multipole voltages are approximated.

θ Semertzidis et al. Wu Valetov

0◦ 0.99772 1.00159 0.99996

90◦ −0.99652 −1.00002 −0.99996
180◦ 0.99772 1.00064 0.99996

270◦ −0.99652 −1.00000 −0.99996
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5. Fringe Field of the Muon g-2 Electrostatic Quadrupole

In the fringe field of an electrostatic particle optical element, the expansion of the
electrostatic field, from including the dependence of the field on the longitudinal
coordinate s, takes the general Taylor–Fourier form3

ϕ (r, θ, s) =

+∞∑
k=0

+∞∑
l=0

Mk,l (s) cos
(
lθ + θk,l

)
rk.

Multipole terms Mk,l (s) vanish for k < l and k = l + 1, l + 3, . . . in the general
case.9 We compare it with the Fourier expansion of the electrostatic potential

ϕ (r, θ, s) =
a0 (r, s)

2
+

+∞∑
l=0

al (r, s) cos (lθ + θl) ,

where we assume a0 (r, s) to be zero, considering the gauge invariance of the elec-
trostatic potential. Thus, for a set of radii rj for j = 1, 2, . . . , N ,

al
(
rj
)

=

+∞∑
m=0

Ml+2m,lr
l+2m
j , (5)

and we can extract an approximation of the 2l-pole strength Ml,l from Fourier

modes al by solving a matrix equation.18

We developed a Python program called STEP File Generator (or stepfg). This

program produces 3D STEP19 (ISO 10303-242) files from polygonal models specified

by vertices. Compared to performing this process manually in CAD software, our

software has workflow efficiency advantages. The output file in the STEP format

can be used in many general 3D programs, including BEM and FEM field solvers.

Using the STEP File Generator, we effectively extruded a polygonal model of a 90◦

section of the full cross section of the Muon g-2 quadrupole. Because the curvature

radius R = 711.2 cm is relatively large compared to the half-aperture d = 5 cm,

the approximation of a straight reference orbit is quite accurate for the purpose of

calculating the fringe field.

The electrostatic potential was calculated by Helmut Soltner using COULOMB ’s

BEM field solver14 and our input data at a grid-point set of coordinates with radii

r = 1.8, 2.1, 2.4, 2.7, 3.0 cm (6)

and longitudinal coordinates with the discretization size ranging from 4z =

0.625cm generally to4z = 0.078cm near the edge of the quadrupole, where the field

falloff is the steepest. We note that the conformal mapping method we presented in

Sec. 3 is applicable to 2D fields and not applicable to 3D fields such as fringe fields

of electrostatic quadrupoles.

From the field data using COULOMB, we calculated the Fourier mode falloffs

using the DFT and the Hermitian symmetry at the above set of radii. Next,

we extracted the quadrupole strength falloff for the Muon g-2 quadrupole us-

ing Eq. 5. From the quadrupole strength falloff, we calculated the effective field

boundary (EFB) zEFB = 1.2195 cm. We also fitted an Enge function model using

the Levenberg–Marquardt Gauss–Newton method to the falloff of the quadrupole
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Fig. 6. Falloffs of 2nd order Fourier modes a2 (rj) calculated at radii r = 1.8, 2.1, 2.4, 2.7, 3.0 cm
from Wu field data.16 Curves with larger magnitudes correspond to larger radii.

Fig. 7. The Fourier modes a2 (rj) (five thin dashed curves) alone fall off more quickly than the

quadrupole strength M2,2 (solid curve); all curves are scaled to 1 well inside the quadrupole. This
is because the second derivative of M2,2 (s) is negative in the fringe field at s > 0 cm and positive

at s ? 0 cm, impacting the additional terms based on the second derivative of M2,2 in Eq. 5.

strength,3 because Enge function coefficients are the necessary input parameters to

model fringe fields in COSY INFINITY 10 for beam dynamics computations.

For a comparison, we applied the same multipole strength extraction method

to the electrostatic field data obtained by Wanwei Wu16 using Opera-3d ’s FEM
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M

Some computational noise

is noticable here in Opera-3d

Fig. 8. The falloff of the multipole term M2,2 based on Soltner–Valetov field data (zEFB =

1.2195cm; thin solid curve) and based on Wu field data16 (zEFB = 1.1233cm; thick dashed curve),
calculated by us in both cases. The difference 0.0962 cm in the EFBs is 2 % compared to the

aperture radius 5 cm.

field solver. Wu field data accounts for the curvature of the reference orbit. To

apply the multipole strength extraction method, we interpolated the data to obtain

field data at the set of radii of Eq. 6, because Wu field data is for a rectangular

grid in each transversal plane. Fig. 6 shows the resulting Fourier mode falloffs. In

Fig. 7, we compare these Fourier modes with the extracted quadrupole strength

M2,2. Additionally, we fitted the multipole expansion to the raw field data in each

cross section and obtained similar results. The field falloffs and the EFBs obtained

from Soltner–Valetov and Wu field data are in good agreement as shown in Fig. 8.

6. Comparison of Computed and Measured Tunes

In the previous sections, we have discussed a series of efficient and accurate meth-

ods of constructing faithful models of the main and fringe fields of the electrostatic

quadrupole of the Muon g-2 storage ring. Our discussions started from the con-

formal mapping method to calculate the multipole terms of the main field not

only for symmetric voltage cases with symmetric geometries but also for general

cases with mispowered plates or asymmetric geometries, and we utilized the DA

method in the process. Since electrostatic fields fall off very slowly compared to

magnetic fields, it is particularly important to model the fringe field both for the

falloff profile and for identifying the EFB, and we calculated the fringe field falloff

of the quadrupole strength using the 3D field data obtained via COULOMB ’s BEM

solver. The computed multipole strengths for the main field and for the fringe field

falloffs are compared with those obtained based on Opera-3d ’s FEM field data, re-

sulting in a good agreement, and particularly the main field demonstrating much
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Table 2. Tunes of the Muon g-2 storage ring computed (1) by us using a simple

linear model and (2) by David Tarazona for a detailed nonlinear model account-
ing for the higher order multipole terms, the fringe field falloffs, EFBs, and also

the magnetic field imperfection.17 They are compared with tunes obtained by

Antoine Chapelain using fiber harp experimental measurements (preliminary),16

where the data errors are 0.04 % (13 kV) to 0.05 % (20.5 kV) for νx and 0.2 %

(20.5 kV) to 0.3 % (13 kV) for νy . Relative differences ∆νx,y/νx,y of the com-
puted tunes to the measured tunes are listed. The magnetic field imperfection

in the nonlinear model contributed 0.01 % to νx and −0.1 % to νy compared to

the equivalent nonlinear model without it.

Horizontal Tunes 13 kV 15 kV 19 kV 20.5 kV

Linear model νx 0.9624 0.9565 0.9446 0.9401
Linear model ∆νx/νx 0.129 % 0.149 % 0.212 % 0.211 %

Nonlinear model νx 0.9609 0.9547 0.9424 0.9377

Nonlinear model ∆νx/νx −0.033 % −0.037 % −0.023 % −0.041 %

Vertical Tunes 13 kV 15 kV 19 kV 20.5 kV

Linear model νy 0.2715 0.2916 0.3282 0.3410

Linear model ∆νy/νy −1.734 % −1.769 % −2.222 % −2.026 %

Nonlinear model νy 0.2783 0.2990 0.3369 0.3500
Nonlinear model ∆νy/νy 0.715 % 0.724 % 0.343 % 0.575 %

higher accuracy compared to the latter.

In the DA based framework of COSY INFINITY ,10 faithful values of main field

multipole strengths, the Enge function coefficients, and the EFBs for the fringe fields

are necessary parameters to model an element such as the Muon g-2 electrostatic

quadrupole to conduct nonlinear beam dynamics simulations for a system such as

the Muon g-2 storage ring. One of the first questions in beam dynamics calculations

of a storage ring is to obtain tune values, and so it is for the Muon g-2 storage ring.

Typically at the very early stage of a system setup, linear tunes are estimated

based on the design values of field parameters. Horizontal and vertical tune values

based on a linear model of the Muon g-2 electrostatic quadrupole are listed in

Table 2, where the quadrupole main field strength M2,2 alone is taken into account,

which directly relates to the plate voltage without any higher multipole terms,

fringe field falloffs, or EFBs. With the parameters obtained through the methods

and the calculations discussed in this paper, we can now describe the system more

realistically than a linear model. Using the computational mechanism in COSY

INFINITY, we computed tunes with various levels of details. Table 2 lists tune

values computed using one of the most detailed nonlinear models of the Muon g-2

storage ring, which includes the consideration of the magnetic field imperfection.17

As expected, we observed discrepancies between the linear model tunes and

the nonlinear model tunes as seen in Table 2. In the linear model case, they were

about −2 % for vertical tunes νy and 0.1 % to 0.2 % for horizontal tunes νx. We

compared both with the experimentally measured (preliminary) tunes,16 and the

relative differences to the measured (preliminary) values are listed in Table 2, where

the nonlinear model represents much higher agreement. It is worth to note that the
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relative differences for the nonlinear model are comparable to the data errors of

the measured (preliminary) tunes,16 which are noted in the table caption. The

larger differences seen in the vertical tunes can be explained by the tendency of

off-midplane particles to have smaller vertical tunes than the vertical tune in the

midplane, and the particles in the experimental measurements have a non-zero

variance of the vertical position. A quantitative analysis of this effect on vertical

tunes can be performed by studying amplitude-dependent tune shifts, and regarding

that we refer to Ref. 20 and an earlier study in Ref. 21.
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