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ABSTRACT
In modern cities, complaining has become an important way for
citizens to report emerging urban issues to governments for quick
response. For ease of retrieval and handling, government officials
usually organize citizen complaints by manually assigning tags to
them, which is inefficient and cannot always guarantee the qual-
ity of assigned tags. This work attempts to solve this problem by
recommending tags for citizen complaints. Although there exist
many studies on tag recommendation for textual content, few of
them consider two characteristics of citizen complaints, i.e., the
spatio-temporal correlations and the taxonomy of candidate tags. In
this paper, we propose a novel Spatio-Temporal Taxonomy-Aware
Recommendation model (STAR), to recommend tags for citizen
complaints by jointly incorporating spatio-temporal information
of complaints and the taxonomy of candidate tags. Specifically,
STAR first exploits two parallel channels to learn representations
for textual and spatio-temporal information. To effectively lever-
age the taxonomy of tags, we design chained neural networks that
gradually refine the representations and perform hierarchical rec-
ommendation under a novel taxonomy constraint. A fusion module
is further proposed to adaptively integrate contributions of tex-
tual and spatio-temporal information in a tag-specific manner. We
conduct extensive experiments on a real-world dataset and demon-
strate that STAR significantly performs better than state-of-the-art
methods. The effectiveness of key components in our model is also
verified through ablation studies.
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1 INTRODUCTION
With the rapid progress of urbanization, citizens are increasingly
concerned with emerging environmental and societal issues within
cities, such as noise pollution [47] and traffic congestion [20], many
of which are related to unsatisfying public services or lack of effec-
tive governance [46]. Thus governments need to be well informed
of these problems so that they can quickly respond and conduct
flexible governance. To this end, a number of platforms have been
developed and deployed in many cities to collect and response to
citizen complaints [4, 28, 47].

Figure 1: A typical citizen complaint platform.

The basic workflow of a typical citizen complaint platform in
Figure 1 is as follows: 1) citizens submit complaints; 2) government
officials assign complaints tags that help describe their content
(one complaint can have multiple tags); 3) different departments
retrieve relevant complaints based on tags and handle them prop-
erly. Tagging is of great importance in the workflow as it enables
better organization and retrieval of content [1, 31, 39]. Analysis of
complaints with suitable tags can also provide governments with
valuable insights into problems within cities and facilitate better
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Figure 2: Temporal distributions of complaints tagged with
bus service (red) and noise pollution (blue), respectively.

Figure 3: Spatial distributions of complaints taggedwith taxi
(left) and garbage (right), respectively.

policy-making [14, 47]. However, it is often painstaking to manu-
ally tag citizen complaints, especially when officials are uncertain
about the suitable tags among hundreds of candidates. Therefore,
automatic tag recommendation for complaints is essential as it not
only improves the tagging efficiency but also guarantees the quality
of assigned tags, which becomes an indispensable component of
intelligent city management.

Prior efforts on tag recommendation for textual content are
mainly based on topic models [19, 24, 27, 39]. Some recent studies
try to adopt deep neural networks since they have shown promising
results in many language processing tasks [16, 29]. For example,
Gong and Zhang [9] propose a two-way CNN architecture that
consists of local and global channels. Li et al. [21] incorporate
topic modeling into LSTM through an attention mechanism and
Tang et al. [31] apply a novel seq2seq model. These methods have
achieved encouraging performance due to their ability to learn good
representations for textual content. However, merely modeling the
content of complaints is not enough. We identify the following two
key characteristics of tag recommendation for citizen complaints,
which offer new opportunities for further improvement.

C1. Spatio-Temporal Correlations. In addition to textual con-
tent, citizen complaints often contain timestamps and locations
that indicate when and where the concerned issues happen. We ob-
serve that many tags of complaints are highly correlated with their
spatio-temporal information. As shown in Figure 2, complaints1
tagged with noise pollution happen most around midnight, while
those tagged with bus service mainly occur during the running
time of public buses. Similarly, in Figure 3, complaints with tag taxi
usually happen at places next to roads, while those tagged with
garbage scatter more randomly in the whole city. Spatio-Temporal
correlations can be viewed as prior knowledge that suggests which
tags are suitable for a complaint even without its textual content.
Thus, we are inspired to harness spatio-temporal information to
enhance tag recommendation for complaints.

1Detailed description of the citizen complaints dataset is in Section 4.1.1

Figure 4: Taxonomy of candidate tags for citizen complaints.

C2. Taxonomy of Candidate Tags. Similar to E-commerce
websites which provide item taxonomies [44], citizen compliant
platforms usually set up a taxonomy of candidate tags for ease of
management. As shown in Figure 4 , the taxonomy is essentially a
tree-like structure where parents represent more abstract meanings
than their children (e.g., noise pollution and air pollution belong to
the general category of pollution). Since the taxonomy captures se-
mantic tag correlations, we are motivated to leverage this structured
knowledge to improve the tag recommendation performance.

However, there exist several challenges in integrating above
observations C1 and C2 for tag recommendation. First, it is im-
proper to trivially combine textual content and spatio-temporal
information together since they are of different modalities and de-
scribe complaints from different views. Thus they are supposed to
be elaborately encoded and represented. Second, spatio-temporal
information is of different importance to different tags. It may com-
plement textual content well when recommending some tags but
could be useless or even noise for other tags, making it difficult to
fuse textual and spatio-temporal information effectively. Third, it is
challenging to further consider the taxonomy of tags given above
concerns. Some pioneering studies [3, 8] propose to learn node em-
beddings for a taxonomy, which fails to fully capture its structured
knowledge. How to explicitly incorporate the tag taxonomy into
our recommendation task still remains unexplored.

To tackle the aforementioned challenges, we propose a novel
Spatio-TemporalTaxonomy-AwareRecommendationmodel (STAR)
to recommend tags for citizen complaints, which jointly incorpo-
rates spatio-temporal information and the taxonomy of candidate
tags. Specifically, STAR includes two parallel channels, a textual
channel to encode the textual content of a complaint, and a spatio-
temporal channel to encode its spatio-temporal information. With
textual and spatio-temporal representations respectively, we design
chained neural networks that predict which tags should be rec-
ommended at each level of the taxonomy from general to specific.
Predictions that violate parent-children relationships are further
penalized. In this way, the obedience of the hierarchical structure
is explicitly encouraged and the representations are gradually re-
fined from coarse to fine. Thereafter, to effectively combine results
based on textual and spatio-temporal information, we propose a
fusion module that adaptively discriminates contributions of these
two counterparts in a tag-specific manner. We conduct extensive
experiments on a real-world dataset of citizen complaints to verify
the rationality and effectiveness of our model.

To summarize, this work makes the following key contributions:

• We propose to integrate textual and spatio-temporal informa-
tion to recommend tags for citizen complaints. In particular,
we separately encode them through two parallel channels
and adaptively fuse recommendations in a tag-specific way.



Figure 5: The framework of STAR.

• We propose to explicitly take into consideration the informa-
tion of tag taxonomy for tag recommendation. Particularly,
we incorporate the taxonomy of tags by employing chained
neural networks for hierarchical recommendation with a
novel taxonomy constraint.

• Experimental results on a real-world dataset show that STAR
significantly outperforms state-of-the-art methods. Impor-
tant components of our model are verified through abla-
tion studies. We further demonstrate its robustness via thor-
ough parameter sensitivity analysis. Case studies are also
conducted to show that STAR can fuse textual and spatio-
temporal information reasonably.

2 PROBLEM FORMULATION
We define the problem of tag recommendation for citizen com-
plaints as follows.

Input. The input data of our model consists of a citizen com-
plaint C and a given taxonomy ϒ of tags.

Definition 1. The citizen complaint C is a three-tuple, i.e.,
(Cw ,Ct ime ,Cloc ), where Cw is a sentence of words describing the
complaint content, Ct ime is the timestamp indicating when the con-
cerned issue happens, and Cloc is the corresponding location.

Definition 2. The tag taxonomy ϒ is a tree that expresses the
hierarchy of tags via a parent-child relationship. As shown in Figure 4,
a child node (e.g., air pollution) is a sub-tag of its parent (e.g., pollu-
tion). We denote the set of nodes in ϒ as T , where T = {t1, t2, ..., tL}
and L represents the total number of nodes in ϒ. The set of all leaves
in ϒ is denoted as Tleaf and that of inner nodes is denoted as Tinner.

Definition 3. The hierarchical level hl of tl is recursively de-
fined based on its parent: hl = hparent (l ) + 1, where tparent (l ) is the
parent of tl . If tl is the root of ϒ, hl is set to 0. Note that hierarchical
levels of all leaves may not be the same. We useH to denote the largest
hierarchical level of nodes.

Output. Given a citizen complaint C and a tag taxonomy ϒ, for
each leaf tag tl ∈ Tleaf, our model outputs the probability pl ∈ [0, 1]
that tl is suitable for this complaint.

3 THE PROPOSED MODEL
In this section, we first introduce the model overview. Then, we
describe the design of major components in STAR and illustrate
how the components can be jointly optimized.

3.1 Model Overview
The overview of the STAR framework is illustrated in Figure 5. It
mainly consists of the following components.

Textual and Spatio-Temporal Channels. Since textual con-
tent and spatio-temporal information are of different modalities
and describe complaints from different views, we apply the textual
channel A and the spatio-temporal channel B to process the com-
plaint C respectively. In particular, channel A takes Cw as input
and obtain the textual representation qA that capture semantics of
C . Given Ct ime and Cloc , channel B obtains the representation qB
that captures spatio-temporal features ofC , where we also consider
the spatial and temporal smoothness.

Taxonomy-Aware Tag Recommendation Module. In this
module, we recommend tags based on qA and qB . To explicitly
incorporate the tag taxonomy ϒ to guide the recommendation pro-
cess, we design two symmetric chained neural networks (NetA
and NetB ) which operate on qA and qB respectively. Under the
taxonomy constraint, the chained neural networks perform tag
recommendation at different hierarchical levels of ϒ and the initial
representation qA / qB is gradually refined from coarse to fine, thus
leading to better performance.

Fusion Module. The recommendation results (i.e, pA,l , pB,l for
each tl ∈ T ) based on qA and qB are integrated in the fusion mod-
ule. Since the relative importance of textual and spatio-temporal
information varies when we consider different tags for recommen-
dation, we perform adaptive fusion by determining the contribu-
tions of these two counterparts in a tag-specific manner.



3.2 Textual Channel
Given Cw = [w1,w2, · · · ,wn ] with n words, we aim to obtain tex-
tual representation ofC that captures its semantics. Here we choose
the Kim CNN [16] architecture, which has been widely used for
sentence representation learning [2, 33] due to its ability to simul-
taneously preserve word orders and enable efficient computation.

Specifically, Cw is first encoded into W1:n = [e1, e2, · · · , en ] ∈
Rdw×n through a word embedding layer, where dw is the embed-
ding size. Then a convolution operation with filter f ∈ Rdw×s is
applied toW1:n , where s (s ≤ n) is the window size of the filter. A
feature cfi is computed from the sub-matrixWi :i+s−1 as:

c
f
i = σ (f ∗Wi :i+s−1 + b), (1)

where ∗ is the convolution operation, σ is an activation function,
and b ∈ R is the bias. By applying the filter to every possible
position of W1:n and performing max-over-time pooling, we select
the most significant feature:

ĉf = max({cf1 , c
f
2 , · · · , c

f
n−s+1}) ∈ R. (2)

Finally, all features ĉf from multiple filters (with varying windows
sizes) are concatenated together as the final representation:

qA = [ĉf1 , ĉf2 , · · · , ĉfdA ] ∈ RdA , (3)

where dA is the total number of filters.

3.3 Spatio-Temporal Channel
In this channel, we aim to process Ct ime and Cloc to obtain the
representation that captures spatio-temporal features of C .

Specifically, we equally partition a day into Nt ime slots and dis-
cretizeCt ime by the slot it falls into. Similarly, we partition the city
into a grid map ofNloc cells for the discretization ofCloc . Therefore,
Ct ime andCloc are coded as two one-hot vectors. Then, we leverage
two embedding matrices, Et ime and Eloc , to embedCt ime andCloc
as et ime ∈ Rdt ime , eloc ∈ Rdloc respectively, where dt ime ,dloc are
embedding sizes and Et ime ∈ RNt ime×dt ime , Et ime ∈ RNloc×dloc

are parameters to learn.
We further concatenate et ime , eloc together and pass it through

a dense layer, i.e. fully connected network, to obtain the joint rep-
resentation of spatio-temporal information by:

qB = σ (WB (et ime ⊕ eloc ) + bB ) ∈ R
dB , (4)

where dB is the size for spatio-temporal representation, ⊕ is the
concatenation operator, WB ∈ RdB×(dt ime+dloc ), bB ∈ RdB are
parameters to learn.

To better instruct the learning of Et ime and Eloc , we additionally
consider their temporal and spatial smoothness. Intuitively, two
adjacent time slots (e.g., 1-2 a.m. and 2-3 a.m.) tend to show similar
temporal characteristics and thus their corresponding embeddings
are expected to be similar. The above observation also applies to
locations. To incorporate such smoothness prior, we introduce the
following loss term Lsmo on Et ime and Eloc :

Lsmo = ∥Mt imeEt ime ∥
2
F + ∥MlocEloc ∥

2
F , (5)

where ∥ · ∥F is the Frobenius norm. Inspired by [34], we define
Mt ime ∈ RNt ime×Nt ime describing correlations between time slots

andMloc ∈ RNloc×Nloc describing correlations between cells by:

Mt ime =


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(6)
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.
.

. . .
.
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.

−sNloc ,1/SNloc −sNloc ,2/SNloc . . . 1


,

(7)
where si, j = 1

di, j
and di, j is the euclidean distance between the

centers of cell i and j and Si =
∑
j,i si, j is for scaling.

3.4 Taxonomy-Aware Tag Recommendation
In this module, we perform tag recommendation based on qA and
qB . To leverage the tag taxonomy in guiding the recommendation
process, we hierarchically make predictions for tags at different
levels of ϒ from general to specific, and impose the taxonomy
constraint that encourages obedience of this hierarchical structure.

Since qA and qB describe the complaint from different views,
two independent sets of recommendation results based on them
can be obtained and further integrated (see Section 3.5), which
is a common paradigm of multi-view learning [40]. As shown in
Figure 5, two parallel chained neural networks NetA and NetB are
employed to operate on them respectively. In the following, since
NetA and NetB only differ in their inputs, we focus on illustrating
the process for NetA without loss of generality.

3.4.1 Hierarchical Recommendation. We model the taxonomy
of tags in NetA by jointly predicting pl for tl at different levels. Our
method is based on the chained neural network [36, 37] which is
effective in generating multiple outputs in a hierarchical structure.

Since tags at different levels describe a complaint at different
levels of abstractness, hierarchical recommendation over ϒ requires
representations of different granularities. InNetA, the initial textual
representation qA sequentially flows through H chained layers,
each layer corresponding to one level of ϒ. In this way, qA can be
gradually refined from coarse-grained to fine-grained. Specifically,
the representation q(1)A of the first level is calculated as follows:

q(1)A = σ (W(1)
A qA + b

(1)
A ) ∈ Rd1 , (8)

where W(1)
A ∈ Rd1×dA , b(1)A ∈ Rd1 are parameters to learn. The

representation q(h+1)A of level h + 1 is based on that of level h:

q(h+1)A = σ (W(h+1)
A (q(h)A ⊕ qA) + b

(h+1)
A ) ∈ Rdh+1 , (9)

where W(h+1)
A ∈ Rdh+1×(dA+dh ), b(h+1)A ∈ Rdh+1 are parameters to

learn. Here we add a residual connection for qA to avoid the loss
of raw information during propagation through multiple layers.

Let Lh denote the number of tags at level h. With q(h)A , we aim
to calculate a result vector p(h)A ∈ RLh which includes predicted



probabilities pA,l ∈ [0, 1] for all tl at level h:

p(h)A = [· · · ,pA,l , · · · ] = sigmoid(MLP(q(h)A )), (10)

where MLP(·) is a multi-layer perceptron that consists of one hidden
layer for feature transformation and another layer for output.

3.4.2 Taxonomy Constraint. We further model the parent-child
relationship between tags. Intuitively, if tag tl is suitable for com-
plaint C , at least one child of tl is also suitable and vice versa. The
taxonomy constrains that the predicted probability for an inner
node should be close to the maximal value of its children. To pe-
nalize violation of this structural constraint, as illustrated in Figure
6 (a), we propose to perform max pooling over children of inner
nodes and compute the following loss term:

Ltax =
∑

tl ∈Tinner

∥pA,l − max
i ∈children(l )

pA,i ∥
2, (11)

where pA,l is the predicted probability for tl by (10), and children(l)
is the index set of all children of tl . By considering Ltax in final
optimization, we explicitly encourage obedience of the hierarchical
structure in ϒ. To help clarify this, the example in Figure 6 (d) is
preferred to that in (b) and (c).

3.4.3 Summary. We apply binary cross entropy to calculate the
prediction loss for tl ∈ T . Since only tl ∈ Tleaf will be recommended
in practice, we particularly divide the loss of all tags into two groups:

Linner = −
∑

tl ∈Tinner

(1 − yl ) log(1 − pA,l ) + yl logpA,l ,

Lleaf = −
∑

tl ∈Tleaf

(1 − yl ) log(1 − pA,l ) + yl logpA,l ,
(12)

where yl ∈ {0, 1} is the ground truth of whether tl is assigned toC .
yl for tl ∈ Tinner can be recursively inferred: yl = max

i ∈children(l )
yi .

Then, the total loss for NetA is defined as:

LA = Lleaf + λinnerLinner + λtaxLtax, (13)

where λinner, λtax > 0 are hyper-parameters. The loss LB for NetB
is defined in the same way.

Figure 6: Illustration of our taxonomy constraint.

3.5 Fusion Module
For each tl ∈ T , the recommendation module outputs two predic-
tions pA,l and pB,l based on qA and qB respectively. In this module,
we aim to fuse them for the final prediction pl .

Instead of using a constant fusion weight, we propose to adap-
tively combine pA,l and pB,l in a tag-specific manner, i.e, different
fusion weights are used for different tags. The reason is that the rela-
tive importance of textual content and spatio-temporal information
in the recommendation task varies with tags. For example, some
tags are highly correlated with spatio-temporal information while
others may be weakly correlated. Spatio-Temporal information is
more important in the former case than the latter. To this end, we
introduce a fusion vector w ∈ [0, 1]L to learn, wherewl represents
the weight in combining pA,l and pB,l :

pl = wl pA,l + (1 −wl ) pB,l . (14)

Here the largerwl is, the more textual information contributes to
the final recommendation. Given pl for each tl ∈ T , we compute
the fusion loss Lfusion similar to that for NetA and NetB in (13).

3.6 Joint Learning
Composed of channel A, channel B, recommendation module, and
fusion module, our STAR model can be jointly optimized in an
end-to-end manner. We minimize the following objective function:

L = Lfusion + λALA + λBLB + λsmoLsmo, (15)

where λA, λB , λsmo > 0 are weights for corresponding loss terms.
We use the Adam optimizer [17] because it can automatically adjust
the learning rate during the training phase.

4 EXPERIMENTS
In this section, we conduct experiments to evaluate our proposed
model2. We aim to answer the following research questions:

• RQ1: Compared with state-of-the-art tag recommendation
models, how does STAR perform?

• RQ2: What is the influence of various components in the
architecture of STAR?

• RQ3: How do different hyper-parameter settings (e.g., the
size of training data, weights of loss terms and the size of
word embedding) affect the performance of STAR?

• RQ4: Can the fusion module reasonably integrate results
based on textual and spatio-temporal information?

4.1 Experimental Settings
4.1.1 Dataset Description. Our dataset comes from the records

of a citizen complaint platform in Tianjin. With the resident popu-
lation around 16 million, Tianjin is one of the four municipalities in
China. Each record in our dataset contains the id, text description,
timestamp, location and assigned tags of a complaint. We collect the
complaints from June 1, 2016 to July 30, 2018. For privacy concerns,
we have completely anonymized the dataset before data mining.

Following [31], we preprocess texts of complaints by removing
all the punctuation marks from the text and splitting the remaining
string into individual words. Common stopwords are also discarded.
For temporal information, we convert timestamp of each complaint
2The source code of STAR is available at https://github.com/jygao97/STAR.

https://github.com/jygao97/STAR


Table 1: Basic statistics of the complaints dataset.

# Complaints # Words Avg. words per complaint

1,005,985 90,878 12.9

# Cells # Tags # Layers of taxonomy

6,205 163 4

into a 24-dim one-hot vector indicating which hour it belongs to.
For spatial information, we partition the city into a grid map and
map location of each complaint to the cell it belongs to. The side
length of each cell is set to 1 kilometer following [12]. The basic
statistics of the dataset are shown in Table 1.

4.1.2 Baselines. To demonstrate the effectiveness of our pro-
posed STAR, we select seven competitive methods for comparison:

• LDA [19] recommends tags for textual content based on Latent
Dirichlet Allocation (LDA).

• Maxide [41] is a traditional multi-label learning method for tag
recommendation, which makes predictions based on speedup matrix
completion with side information.

• Kim CNN [16] is first proposed for sentence classification. Here it
can be used to learn representations for complaints with CNN and
then recommend tags.

• LSTM is a widely-used variant of RNN. Similar to [21], we perform
an average pooling operation on the hidden vectors at each position
of LSTM as the representation of complaints.

• TLSTM [21] is a novel attention-based LSTM model which incor-
porates topic modeling into the LSTM architecture through an
attention-mechanism.

• ABC [9] adopts an attention-based CNN architecture for tag recom-
mendation, which models the textual content with a local attention
channel and a global channel.

• iTag [31] is an integrated model which jointly considers sequential
text modeling, tag correlation and content-tag overlapping in a
coherent encoder-decoder framework.

4.1.3 Evaluation Metrics. To evaluate the performance of mod-
els, we adopt the widely-used F1 (the threshold is set to 0.5) and
Precision-Recall AUC that jointly consider precision and accuracy.
A higher F1 or AUC indicates a better performance.

4.1.4 Implementation Details. Our STAR model is implemented
in Pytorch3. We randomly split the dataset into training (70%), vali-
dation (15%) and test (15%) sets. We tune hyper-parameters on the
validation set and report the performance on the test set. For all
methods, we use the Adam optimizer [17] with an initial learning
rate of 0.001. The co-efficient of L2 norm regularization is fixed to
0.001 and the batch size is fixed to 256. The word embedding size
dw is fixed to 128. The above settings are for fair consideration. For
other hyper-parameters of baselines, we directly reuse them if re-
ported by their authors. Otherwise, we tune them on the validation
set. After parameter tuning, we set the number of topics in LDA
and TLSTM to 60. The filter sizes in Kim CNN and STAR are set to
{1, 2, 3, 4, 5}, each size with 80 filters. λA, λB , λinner, λtax and λsmo
of STAR are set to 1.0, 1.0, 1.5, 0.1, and 0.01 respectively. We use
ReLU [23] for activation functions in STAR as it performs best on
the validation set. Each experiment is repeated twenty times and
we report the average and standard deviation as the result.
3https://pytorch.org/

Table 2: Comparison among different models. Best results
are highlighted in bold. p-value is the probability of no sig-
nificant difference with STAR on both F1 and AUC by t-test.

Models F1 (%) Impv. AUC (%) Impv. p-value

STAR 81.6 ± 0.1 - 89.3 ± 0.1 - -
LDA 37.4 ± 0.1 +118.2% 62.4 ± 0.1 +43.1% < 10−3

Maxide 57.5 ± 0.1 +41.9% 70.6 ± 0.0 +26.5% < 10−3
Kim CNN 77.6 ± 0.3 +5.2% 86.4 ± 0.1 +3.4% < 10−3
LSTM 77.0 ± 0.5 +6.0% 85.6 ± 0.3 +4.3% < 10−3
TLSTM 79.8 ± 0.3 +2.3% 87.9 ± 0.2 +1.6% < 10−3
ABC 79.0 ± 0.2 +3.3% 87.5 ± 0.1 +2.1% < 10−3
iTag 67.8 ± 1.0 +20.4% - - < 10−3

4.2 Performance Comparison (RQ1)
We report the performance of all models in Table 2. The improve-
ments of STAR compared with baselines are also listed. Note that
iTag does not output probability for each candidate tag, which pre-
vents us from calculating its AUC. After analyzing the results, we
have the following observations.

First, methods based on deep learning (Kim CNN, LSTM, TLSTM,
ABC, iTag, and Ours) significantly outperform those traditional
methods (LDA and Maxide). The improvement on average is 62.6%
on F1 and 31.3% on AUC. This is because deep neural networks can
better capture the semantics of complaints than bag-of-words or
topic modeling used by traditional methods. It also demonstrates
the necessity of adopting neural networks in our textual channel
which effectively encodes textual content of complaints.

Second, TLSTM and ABC perform better than Kim CNN and
LSTM by 2.7% on F1 and 2.0% on AUC. We attribute it to the fact
that the attention mechanism applied by ABC and TLSTM allows
them to focus on words that are more important in recommending
suitable tags. We notice that iTag performs worse than LSTM. It
makes sense since iTag overemphasizes the sequential order of
tags which does not matter in this task. It also focuses on mod-
eling content-tag overlapping phenomenon [31] which is rare in
citizen complaints. These improper assumptions of iTag hurt its
performance.

Third, our proposed STAR achieves the best performance among
all models, outperforming the second best one by 2.3% on F1 and
1.6% on AUC. Its improvements over baselines are all statistically
significant. Sharing the same textual channel with Kim CNN, STAR
outperforms it by 5.2% on F1 and 3.4% on AUC. We attribute the
superiority of STAR to its two properties. First, STAR recommends
tags in a taxonomy-aware way so that coarse-grained representa-
tion of complaints can be gradually refined in different levels from
general to specific. Second, STAR exploits correlations between
tags and spatio-temporal information of complaints, which makes
it more comprehensive and robust than models totally based on
textual content and yields better performance consequently.

4.3 Ablation Study (RQ2)
We analyze impacts of key components in STAR via ablation studies.
The default model is compared with following variants.

• STAR without taxonomy (V1) removes the modeling of tag tax-
onomy and directly considers candidate tags Tleaf .



Table 3: Comparison among variants of STAR. Best results
are highlighted in bold. p-value is the probability of no sig-
nificant difference with STAR on both F1 and AUC by t-test.

Variants F1 (%) AUC (%) p-value

STAR 81.6 ± 0.1 89.3 ± 0.1 -
STAR without taxonomy 77.6 ± 0.2 86.5 ± 0.1 < 10−3
STAR with channel A only 81.1 ± 0.1 89.2 ± 0.0 < 10−3
STAR with channel B only 14.2 ± 0.4 25.7 ± 0.2 < 10−3

STAR without fusion 81.1 ± 0.1 89.2 ± 0.1 < 5 × 10−2
STAR with constant fusion 81.0 ± 0.1 89.0 ± 0.1 < 10−3

• STAR with channel A only (V2) removes the spatio-temporal
channel and is solely based on the textual content.

• STAR with channel B only (V3) removes the textual channel and
is totally based on spatio-temporal information.

• STAR without fusion (V4) feeds the concatenation of textual and
spatio-temporal representations into the recommendation module.
Thus it does not require a fusion module.

• STAR with constant fusion (V5) fuses results based on two chan-
nels with a fixed weight w . Here w is empirically set to 0.9 so that
more attention can be paid to textual content.

Comparison results are listed in Table 3, from which we make
the following conclusions.

Effectiveness of being taxonomy-aware. Compared with V1,
STAR achieves 5.2% higher F1 and 3.2% higher AUC. It demonstrates
the effectiveness of incorporating the tag taxonomy. Such hierarchi-
cal knowledge allows our model to capture semantic correlations
between tags and refine the representation of complaints in differ-
ent levels, thus enabling better tag recommendation.

Effectiveness of spatio-temporal information.The improve-
ment of STAR over V2 shows that spatio-temporal information can
act as a useful complement to textual content. However, the poor
performance of V3 suggests that merely modeling spatio-temporal
information of complaints is far from enough. It is reasonable since
complaints may happen at the same location and same time slot but
describe totally different issues. Overall, comparison with V2 and
V3 demonstrates the necessity of jointly modeling textual content
and spatio-temporal information via two parallel channels in STAR.

Effectiveness of adaptive fusion. The superiority of STAR
over V4 shows that the effects of textual content and spatio-temporal
information on recommendation should be modeled independently
and then fused together. Simply concatenating and feeding them
into the recommendation module will worsen the performance.
We also observe that STAR outperforms V5 which uses a fixed
weight in the fusion module. It is because the importance of spatio-
temporal correlations for tags may vary from one to another and
constant weighting fails to handle this problem properly. It further
verifies our design of dynamic fusion that adaptively discriminates
contributions of textual content and spatio-temporal information.

4.4 Parameter Sensitivity Analysis (RQ3)
We start by exploring how the performance of STAR changes with
the varying amounts of training data. We then analyze the impact
of word embedding size dw . Moreover, we study how the weights
of different loss terms affect performance. When conducting param-
eter sensitivity analysis, we set other hyper-parameters to values
described in Section 4.1.4.

Figure 7: Performance of STARw.r.t different ratios of train-
ing data (compared with two competitive baselines).

Figure 8: Performance of STAR w.r.t different word embed-
ding sizes (compared with two competitive baselines).

4.4.1 Varying the amount of training data. We take 20%, 40% ,
60% and 80% of the complete training data as four new training
datasets. Two competitive baselines (TLSTM and ABC) are used
for comparison. The results are shown in Figure 7. We can see
that STAR consistently achieves the best performance with varying
amount of training data, outperforming TLSTM by 16.7% on F1
when the ratio is set as 20%. It demonstrates the robustness of
STAR against data insufficiency. We owe it to the incorporation
of the tag taxonomy which contains semantic correlations of tags.
Such prior knowledge is especially useful when the low incidence
of some tags in the training data provides little learning opportunity
to complex models. We also notice that the performance of TLSTM
drops significantly when encountering data insufficiency, which
may be caused by the smooth nature of LSTM [11].

4.4.2 Varying the word embedding size dw . In our model, an
embedding layer is applied to encoding textual content of citizen
complaints. To see the effect of embedding size on the performance,
we vary it in the set {16, 32, 64, 128, 256}. ABC and TLSTM are
also chosen for comparison. As shown in Figure 8, STAR constantly
outperforms baselineswith varyingdw , which further demonstrates
the robustness of our approach. We also observe that increasing
dw of models does not necessarily improve the performance of tag
recommendation because too many parameters in the embedding
layer may lead to overfitting.

4.4.3 Varying the weight λinner of Linner. Although we only
recommend leaf tags for complaints in practice, our taxonomy-
aware model additionally focuses on making predictions for inner
tags by considering Linner in (13). To study the impact of Linner,
we vary its weight in {0, 0.5, 1.0, 1.5, 2.0}. Figure 9 shows that STAR
achieves the best performance when λinner is 1.5. Smaller or larger
λinner tends to hurt the performance. It is reasonable since we have
to balance the emphasis put on Lleaf and Linner. Too small or large



Figure 9: Performance of STAR w.r.t weights of Linner.

Figure 10: Performance of STAR w.r.t weights of Ltax.

Figure 11: Performance of STAR w.r.t weights of Lsmo.

λinner may make one of them dominate the learning process and
yield unsatisfying model performance.

4.4.4 Varying the weight λtax of Ltax. We penalize the misalign-
ment between predictions on parents and children by further con-
sidering Ltax in (13). We vary its weight λtax in {0, 0.01, 0.1, 1, 10}
and show results in Figure 10. It can be seen that the best F1 and
AUC are achieved when λtax = 0.1 and 1.0 respectively. The perfor-
mance degrades when λtax = 0. This demonstrates the importance
of involving alignment between parents and children. Such design
allows STAR to predict in a way that is coherent with hierarchical
knowledge in the taxonomy of tags.

4.4.5 Varying the weight λsmo of Lsmo. Timestamps and loca-
tions of complaints are encoded via two embedding matrices in the
spatio-temporal channel. We further encourage the smoothness
of embedding matrices by imposing Lsmo on model learning. To
study its influence, we vary its weight λsmo in {0, 0.01, 0.1, 1, 10}.
As shown in Figure 11, the best performance of STAR is achieved
when λsmo = 0.01. Both F1 and AUC degenerate when λsmo = 0, i.e.,
not considering Lsmo at all. Thus we conclude that it is necessary
to consider the smoothness prior, which helps STAR learn better
embedding matrices for spatio-temporal information. We also note
that too large λsmo worsens the performance. It makes sense since

Figure 12: Histogram of learned fusion weights for both in-
ner tags (blue) and leaf tags (red).

too much emphasis on Lsmo enforces the embeddings of time slots
and cells to be identical and thus the entire spatio-temporal channel
becomes meaningless.

4.5 Study on the Fusion Module (RQ4)
In (14) of Section 3.5, we combine predictions based on textual and
spatio-temporal information in a tag-specific manner, wherewl ∈

[0, 1] is the fusion weight learned for tag tl . The larger wl is, the
more textual information contributes to the final recommendation
of tl and vice versa. In this section, we first give an overview of
the distribution ofwl for all tags. Then we conduct case studies to
illustrate that STAR is able to reasonably determinewl .

4.5.1 Overview of all weights. The distribution ofwl for tl ∈ T

is illustrated as a histogram in Figure 12. We observe thatwl mainly
distributes between 0.50 and 1.0, showing that textual information
consistently plays an important role in tag recommendation. It is
reasonable since Cw of an complaint often describes the concerned
issue in details and is indispensable for tag recommendation, which
corresponds with the bad performance of V3 in Section 4.3. We also
notice that allwl of inner tags are larger than 0.80, which makes
sense since spatio-temporal correlations for inner tags (coarse-
grained) are often weaker than leaf tags (fine-grained). Thus spatio-
temporal information contributes less to prediction for inner tags.

Another interesting observation is that there are two dense re-
gions ofwl for leaf tags, the one around 0.55 and the one around
0.90, corresponding to tags that are highly correlated and weakly
correlated with spatio-temporal information. In the following, we
further study examples of tags with large or smallwl .

4.5.2 Case studies of weights. In Table 4, we list several tags
of interest, i.e. with either large (∼ 0.90) or small (∼ 0.50) fusion
weightswl . Basically, tags that are highly correlated with certain
locations usually have small wl . For example, complaints about
vessel inspection, port management mostly take place in the area
of harbor and thus spatial information is of great significance in
recommending these tags. On the contrary, when complaints may
happen in a rather large area, e.g., air pollution, posting service, etc,
recommendation relies relatively more on the textual information.

Among the listed tags, we notice two intriguing examples. First,
noise pollution, which is closely correlated with temporal informa-
tion (often happens at midnight), has a fusion weight of 0.9455,
indicating that recommendation of this tag largely depends on
textual information. After checking raw complaints tagged with
noise pollution, we explain that corresponding Cw often directly



Table 4: Examples of tags of large or small fusion weights.

Tags of
large weights wl

Tags of
small weights wl

city sanitation 0.9682 port management 0.4996
real estate 0.9526 parking lot 0.4999
air pollution 0.9517 water carriage 0.5030
parking 0.9487 vessel inspection 0.5047

noise pollution 0.9455 overspeed 0.5055
consumption card 0.9202 water conservancy 0.5115
posting service 0.9025 railway transportation 0.5332
landscaping 0.8974 irrigation 0.5797

writes like “...a large noise outside ...”, making merely textual in-
formation effective enough for precise tag recommendation and
dominate the task. The second is a comparison made between the
two “parking” related tags. For “parking lot” which refers to a par-
ticular type of location, the tag recommendation is largely affected
by spatio-temporal information withwl ∼ 0.50. On the other hand,
for “parking” which describes an event which may happen at many
places (e.g., parking lots or roadside anywhere), the recommenda-
tion mainly depends on the complaint text withwl ∼ 0.95 as it is
weakly correlated with spatio-temporal information.

The above study verifies that tags are not equally correlated with
spatio-temporal information and thus it is necessary to adaptively
determine fusion weights in a tag-specific manner. It also shows
that STAR learns reasonable weights in the fusion module.

5 RELATEDWORK
In this section, we review the studies related to our work.

5.1 Mining Citizen Complaints
In recent years, a number of citizen complaint platforms have been
deployed to facilitate communication between citizens and govern-
ments [4, 14, 28]. Since such complaints reveal underlying problems
within cities, there is now a significant research interest in mining
citizen complaints to obtain valuable insights. For example, Zheng
et al. [47] propose to diagnose the noise pollution of a city based
on the complaints data. Zheng et al. [48] also attempt to detect
collective anomalies with the aid of citizen complaints. Besides,
Zhao et al. [46] propose to predict crimes by integrating citizen
complaints with other data sources such as human mobility and
point of interests. However, all of these studies require citizen com-
plaints to be correctly organized into fine-grained categories or
given suitable tags describing their content. In fact, it is painstaking
to manually tag citizen complaints and the tagging quality cannot
be guaranteed under many circumstances. Thus we aim to automat-
ically recommend suitable tags for citizen complaints, which can
benefit above downstream applications and is of great importance
especially under the context of intelligent city management.

5.2 Tag Recommendation
Existing work on tag recommendation can be divided into collabo-
rative filtering methods and content-based methods [31, 39].

Collaborative filtering methods. Methods in this class aim
to employ users’ tagging histories (i.e., user-item-tag tuples) and

recommend tags to users in a personalized manner. Typically, Syme-
onidis et al. [30] construct user-item-tag tensors and model per-
sonalized tag recommendation as a tensor factorization problem.
Rendle et al. [26] further incorporate pairwise rankings into tensor
factorization. Fang et al. [5] exploit Gaussian radial basis function
to increase the capacity of Canonical Decomposition. It is also
modeled as a link prediction problem in a heterogeneous graph
by [6, 45]. However, collaborative filtering methods only consider a
fixed set of items and fail to recommend tags for new content. Thus,
we focus on content-based methods when recommending tags for
citizen complaints which cannot be determined beforehand.

Content-based methods. Content-based methods try to rec-
ommend suitable tags by directly modeling the content. There exist
studies towards various types of content, e.g., videos [32], audios [7],
images [25, 43], and text [24]. We mainly pay attention to those for
textual content since citizen complaints are often in this format.
Ramage et al. [24] and Krestel et al. [19] propose to recommend
tags based on topic models. Wu et al. [38, 39] further consider the
tag-content relevance phenomenon. Many recent studies apply neu-
ral networks to learn representations for the textual content, which
have achieved encouraging results. Gong and Zhang [9] adopt a
novel attention-based CNN architecture that consists of global and
local channels. Li et al. [21] propose topical attention-based LSTM
that incorporates topic distributions into sequential modeling of
the content. Tang et al. [31] propose a seq2seq method that jointly
models tag correlation and content-tag overlapping.

To improve the recommendation performance, some studies at-
tempt to combine the content information with other types of data.
For example, Gong et al. [10] additionally model types of tags as a
hidden variable into their DPMM (Dirichlet Process Mixture Mod-
els). Besides, Ma et al. [22] and Zhang et al. [42] propose to introduce
temporal information for improvement. However, the taxonomy of
tags utilized in our approach is ignored by existing studies on tag
recommendation, though it exists widely in real-world systems and
is easy to obtain [13, 15]. Based on the spatio-temporal characteris-
tic of citizen complaints, we further incorporate spatio-temporal
information into our proposed model.

5.3 Taxonomy-Aware Recommendation
Since the taxonomy data is available in many scenarios (e.g., music
taxonomy [18], product taxonomy [13], and aspect taxonomy [8]),
it has been successfully exploited in several recommendation tasks.
For example, Koenigstein et al. [18] propose to utilize item tax-
onomy for music recommendation. Kanagal et al. [15] combine
the taxonomy data with latent factor models to improve sequen-
tial recommendation. Huang et al. [13] further propose taxonomy-
aware multi-hop reasoning networks for sequential recommen-
dation. Wang et al. [35] and Gao et al. [8] propose to generate
appropriate explanations for recommendation results with the aid
of the taxonomy data. Different from these approaches, we ex-
plicitly incorporate the taxonomy data by performing hierarchical
recommendation under a novel taxonomy constraint. In this way,
the recommendation process is guided by the structured knowl-
edge and representations of complaints are gradually refined, thus
improving the performance of tag recommendation.



6 CONCLUSION
In this paper, we propose a novel spatio-temporal taxonomy-aware
recommendation model STAR to recommend tags for citizen com-
plaints, which jointly incorporates spatio-temporal information
and the taxonomy of candidate tags. Specifically, STAR employs
two parallel channels to learn textual and spatio-temporal repre-
sentations of complaints, and then feed them into chained neural
networks that perform hierarchical recommendation under the tax-
onomy constraint. An adaptive fusionmodule is further proposed to
integrate results in a tag-specific manner. Extensive experiments on
a real-world dataset demonstrate that STAR outperforms state-of-
the-art methods significantly. The effectiveness of key components
in STAR is also verified through ablation studies.
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