
λBGP: Rethinking BGP programmability
Nicholas Hart, Charalampos Rotsos, Vasileios Giotsas, Nicholas Race, David Hutchison

School of Computing and Communications, Lancaster University

Abstract—BGP has long been the de-facto control plane pro-
tocol for inter-network connectivity. Although initially designed
to provide best-effort routing between ASes, the evolution of
Internet services has created a demand for more complex control
functionalities using the protocol. At the heart of this challenge
lies the static nature of current BGP policy specification and en-
forcement, and the limited programmability of production BGP
policy frameworks. Meanwhile, in other contexts, the SDN model
has demonstrated that open and generic network control APIs
can greatly improve network functionality and seamlessly enable
greater flexibility in network management. In this paper, we
argue that BGP speaking systems can and should provide an open
control API and a richer policy language, in order to address
modern era network control requirements. Towards this goal, we
present λBGP, a modular and extensible BGP stack written in
Haskell. The framework offers an extensible integration model
for reactive BGP control that remain backwards compatible
with existing BGP standards, and allows network managers to
use a high-level language to define policy and inject dynamic
information sources into path selection logic. Using kakapo, a
high performance BGP traffic generator, we demonstrate that
λBGP offers performance comparable to production BGP speak-
ers while enabling complex AS route processing mechanisms in
just a few lines of code.

I. INTRODUCTION

The Border Gateway Protocol (BGP) is a routing protocol
used by Autonomous Systems (ASes) to exchange routing and
reachability information. The first version of the protocol was
designed in the early days of the Internet and was intended to
enable connectivity across the Internet. Although the protocol
has undergone several revisions, version 4 [1] is the latest
protocol version released in 1994, and the core functionality
of the protocol has remained intact ever since.

Meanwhile, the requirements for the control plane of the
Internet have been radically revised in the intervening years.
The rate of growth in size and traffic in the Internet continues
with no sign of reduction, and novel requirements for better
than best-effort service delivery have emerged, while new
control functions, like anycast, stress the policy mechanisms
of the protocol. BGP currently faces significant challenges to
maintain performance and reliability in the face of demands
for highly adaptable and programmable inter-network connec-
tivity.

At the heart of these challenges, we identify two major
limitations. First, BGP configuration mechanisms have not
evolved sufficiently to support complex policies. BGP con-
figuration in current BGP routers consists of match-action
rules with regular expression matching on path attributes.
A user can use these rules to either filter paths from the
RIB, bias the path selection algorithm of the BGP protocol,

or supplement the information transmitted to adjacent ASes.
Configuration is stateless and programmability is typically
limited to simple arithmetic and logical expressions. As a
result, network managers must maintain large and complex
configuration files in order to achieve the required policy
effects, requiring regular updates in order to support changing
network conditions. Misconfiguration errors are a major cause
of BGP problems [2], and connectivity outages and route leaks
at a global or national level are not uncommon [3], [4].

Second, the BGP path selection process in current BGP
routers is proactive, and its scope is limited to protocol
information and static configuration data. Many measurement
studies have highlighted the fact that BGP could improve the
optimality and security of forwarding decisions by analyzing
the information in the routing protocol or fusing routing
information with external monitoring information [5], [6].

BGP policy mechanisms remain closed and lack support
for run-time adaptation; as a result, human intervention is
frequently required to adapt network policies to dynamic
network conditions. Configuration automation can be achieved
using scripts or distributed configuration platforms, such as
Ansible [7], but unfortunately such make-or-break approaches
are not sufficiently integrated to ensure correctness, and can
lead to connectivity outages [8]. More recently, large content
service providers have developed specialized BGP architec-
tures that redesign the path selection mechanism to overcome
protocol limitations, including edge peering scalability [9] and
capacity-aware routing [6]. However, such solutions are very
specific to the Internet edge context, and require extensive in-
vestment in hardware to support the required programmability
in the network fabric.

In recent years, the rise of the Software Defined Networking
(SDN) paradigm has highlighted the benefit of open control
APIs in networking. SDN solutions have enabled a series of
innovative and highly adaptive network functionalities in pro-
duction networks in other application domains than IDR. BGP
was an early target of SDN style programmability, with the
development of platforms like RCP [10] and Morpheus [11].
Nonetheless, the direction of much of this work has been to
deliver control centralization of legacy BGP routers, which
reduces BGP resilience. More recently, research efforts have
explored BGP as an east-west interface to their network con-
trol frameworks. Their design philosophy views BGP routing
information as an additional policy input stream to optimize
forwarding. As a result, implementations include minimal and
monolithic BGP speaker implementations which lack support
for several protocol features [12].

Enabling BGP programmability is critical in order to meet
the growing control requirements of modern networks. BGP
speakers require open and unified control APIs to enable
suitable programmability, automation and security in inter-
domain routing. We believe that the programming API should
capitalize on the design philosophy of the protocol, respecting
the underlying key design principles features which protect
against routing instabilities at run time. Towards this goal, we
present λBGP [13], a BGP stack written in Haskell, offering
a flexible API for runtime BGP policy adaptation.

Specifically, we identify the following contributions:
• We present λBGP, an open-source BGP stack written in

a functional language. λBGP offers a secure, performant
and extensible BGP framework, that takes advantage of
the static type system, high expressivity, and built-in
concurrency and parallelization support in GHC/Haskell.

• We elaborate on the design of the BGP protocol, and
define an open and flexible control API for BGP routers,
which is compatible with existing BGP standards.

• We compare λBGP with existing production BGP imple-
mentations and identify that our system can deliver com-
parable processing performance for Internet-scale RIB
tables. Our evaluation uses kakapo, an open-source high-
performance BGP traffic generator and monitor written
in C.

In the rest of this paper we first describe the functionality
of the BGP protocol (§ II) and identify a set of functional
requirements for a reactive BGP control API (§ III). Then we
present the architecture of λBGP and discuss the design of its
control API (§ IV). We next evaluate the performance of λBGP
against popular production BGP speakers and demonstrate its
flexibility through a reactive control application (§ V). Finally,
we discuss related efforts in BGP programmability (§ VI) and
conclude by discussing possible future directions (§ VIII).

II. BGP CONFIGURATION AND POLICY

All standards compliant BGP speakers operate within
strictly defined constraints, designed to ensure routing stability
and consistency at both inter-AS and intra-AS levels. The BGP
protocol defines strict rules regarding the dissemination and
integrity of protected route attributes. As long as it adheres
to these protocol rules a BGP speaker has complete freedom
to define its forwarding policy and the routes advertised to
internal peers and other ASes. This flexibility is required
for transit networks to operate securely and profitably. This
routing policy license, and the mechanisms which embed it in
a BGP router, find expression in the configuration languages
implemented by all BGP speakers, in which the policy rules
which can be expressed correspond closely to common busi-
ness objectives.

BGP configuration primitives can be organized in four broad
types.

Import filters, are applied before evaluating relative prefer-
ences between routes, and enable network managers to reject
routes, from customers or peers, which are not known to be
directly associated with those neighbours.

Export filters restrict routes advertisements to specific peers.
Export filters are typically used towards provider networks
to ensure that the traffic they send is destined to local AS
customers.

Local route preference rules are used to rank preference
of alternate viable routes to a specific prefix. Preference
supplements the profit protection effects of outbound filters,
typically to ensure that traffic is routed to the most profitable
(or least costly) destination where multiple route options exist.
Finer grained preference rules are also used to perform traffic
engineering, e.g. to offload traffic at the nearest viable exit, or
via the fattest or least congested pipes.

Finally, policy tagging rules, using the path attribute BGP
community, allow network managers to mark routes to down-
stream BGP speakers in order to apply further filters or
preference assignments. Generally, the net effect of BGP
community tagging is an extension of the three aforementioned
configuration primitives. For AS internal cases this may just
simplify configuration, but in inter-AS cases it enables co-
operative effects which would not otherwise be possible.

The realisation of the aforementioned configuration di-
rectives is realized through a three phase route processing
and selection algorithm [1], depicted in Figure 1. Phase 1
processes and filters and rank routes. Stage 1 is most relevant
to eBGP routes, since iBGP routes already contain a Local
Preference value from Stage 1 processing at the ingress border
router, which would also be expected to filter unwanted routes.
Phase 1 has a mandatory filtering rule which rejects any routes
which contain the local AS number in the AS path

In Phase 2, route selection compares all available routes for
each prefix, using Phase 1 ranking outcomes (local preference)
selects, individually for each destination prefix, the highest
ranking route. If more than one route ties for top rank then a
fixed tie break algorithm is applied. Table I presents the route
metrics used during the tie break process, in priority order.
The operationally most significant metrics are the path length,
the source of the route (eBGP over iBGP) and IGP metrics.
Another path attribute, MED, allows a directly connected
external AS to signal preference when multiple alternate links
are available.

Phase 3 implements peer specific filters over routes which
won out in phase 2. A mandatory Stage 3 rule excludes
routes received from internal peers from onward forwarding to
further internal peers. Although not directly relevant to route
selection, Stage 1 and Stage 3 also allow path attributes to be
modified, subject to certain rules. There are some mandatory
path attribute modification rules: when sending to an external
peer the received AS path list attribute is extended with the
local AS number, and the local preference attribute removed.
BGP speakers widely apply tagging of routes, using a flexible
path attribute named BGP Community. Stage 1 and 3 processes
can arbitrarily read and modify community tags and use them
in their filtering and ranking functions.

The BGP protocol offers two main points for policy enforce-
ment. Firstly, during phase 1, the network manager can assign
preference to paths and affect route filtering and selection,

Peer3
Peer2

BGP Adj-RIB-in

Peer1

Peer3
Peer2

BGP Adj-RIB-out

Peer1Phase
2

Phase
1

Phase
3

BGP Loc-RIB

Figure 1: Path processing in BGP. Forwarding state in split into per-session Adj RIB-in and Adj RIB-out structures and a
global LOC-RIB. Each route update is process by a three phase route validation and selection process.

Path metric Description
Local Preference Network-wide path preference
AS PATH length Route AS hop count
Origin Binary valued attribute set at route origin
MED Neighbour AS signalled link preference
EBGP Prefer routes received from external peers
IGP metric IGP metric to next hop
Peer Router ID Arbitrary criterion
Peer address Arbitrary criterion

Table I: Phase 2 route selection criteria, ordered on prece-
dence. Selection criteria in bold are most significant.

before their insertion in the RIB. Secondly, the network
manager can manipulate route communities or filter router in
phase 3 and effectively control route advertisements to peering
ASes.

Compliance with the protocol-specified configuration points
is essential if effective BGP programmability is to maintain
routing stability and consistency.

Safeguarding against AS internal forwarding loops was
an important design objective in the original BGP architec-
ture, and the specified sequencing of filters and preference
calculation before insertion into a common RIB implicitly
enforces the important rule that the same local preference
should be advertised to all internal peers and the maintenance
of consistency in local preference values across the AS.

Equally important in this regard, but only a convention,
is the principle that route filters are only applied on BGP
sessions with external peers. However, there is no restriction
on changing (and re announcing) calculated preference or
other path attributes for an existing route: in conventional
routers this rarely happens, but it can. soft reconfiguration [14]
allows route policy to be dynamically reconfigured, after
which existing received routes are reevaluated and the resulting
routes re-advertised, which may be entirely different to those
previously announced. Thus we can see that dynamic policy is
not a new, or questionable concept, and also that RFC based
constraints are insufficient to protect against fundamental risks
in applying policy in BGP networks.

III. BGP PROGRAMMABILITY CHALLENGES

In the recent years, the functional requirements for the
BGP protocol have changed drastically. The number of In-
ternet peers has increased exponentially, introducing scala-

bility challenges for FIB sizes and the protocol convergence
times [15]. In parallel, BGP policy mechanisms are required
to enable a whole array of new control plane functionalities,
like anycast forwarding [16], security and capacity-aware load-
balancing [6].

Existing configuration paradigms are quite effective for
expressing many network policy requirements, especially those
which optimise long terms commercial objectives. But routing
policies in support of security and service protection are diffi-
cult or impossible to encode in static configuration languages.
Examples are responses to inadvertent or malicious routing
failures, or responding to dynamic network conditions, e.g.
congestion, route instability, or sub-optimal routing from a
preferred peer. For these cases we require programmability,
and in many case access to persistent and/or external state.
These requirements motivate the development of open, pro-
grammable, BGP speakers.

In order to initiate a discussion on the programmability
requirements of modern networks with respect to BGP, we
identify two specific use-cases and discuss the challenges they
raise.

Security:: A common security challenge for BGP net-
works is Path hijacks, the announcement from a malicious
AS of paths that place the AS as the best route in an
effort to eavesdrop or damage service delivery. BGPSec is
a protocol extension enabling ASes to cryptographically sign
and validate route updates using a Resource Public Key
Infrastructure (RPKI). Unfortunately, BGPSec support remains
limited across the Internet (∼16% of total routes have valid
certificates) [17], exposing ASes to path hijacking. The re-
search community has proposed numerous mechanisms to in-
clude additional information in the path selection process [18],
[19]. Nonetheless, existing BGP policy mechanisms remain
proactive and lack automation.

Performance-aware routing:: Internet traffic is increas-
ingly shifting toward delay-sensitive applications such as
video streaming, VoIP, gaming and SaaS [20]. Fundamental
changes in the Internet interconnection strategies led to the
flattening of the topology to bring content providers closer to
“eyeball” ASes [21], but the inability of BGP to incorporate
performance-aware metrics creates significant challenges in
meeting performance demands [22], [23], [24]. BGP traffic en-
gineering policies lack predictability and responsiveness, and

λBGP
Session

BGPRibRib

AdjRibIn AdjRibOut

ZServFSM

Config

Figure 2: λBGP architecture.

often do not bring the desired results [25], [26], while existing
proposals either require protocol changes that are unlikely to
be adopted [27], or they rely on data-plane “optimizers” that
are prone to instabilities and misconfigurations [28], [29].

IV. λBGP ARCHITECTURE

A. A Route Policy API

Section 2 motivates the design approach for a dynamic,
programmable BGP speaker, which is nonetheless RFC com-
pliant. At its lowest level, the programmable BGP speaker
provides a simple callback API, which is invoked whenever
route Updates are received, and again whenever a change to
the main RIB occurs as a result of a new route or route
withdrawal. These call-outs correspond exactly to the Stage
1 and Stage 3 processing phases for the BGP route selection
process as described in RFC4271. This low-level API also
has the capability to re-evaluate routes received in the past
and trigger routing changes asynchronously to routing update
message reception. An important aspect of this API is that it
effectively guarantees RFC compliance, as long as it adheres to
the basic principles that it does not reference other route state
whilst processing, and that the path attribute changes it makes
are permitted by the applicable RFCs. The earlier discussion
on soft-reconfiguration points to two variants on this API: a
simpler version which is only capable of reacting to routes on
arrival, and a second, more powerful version which mimics
soft-reconfiguration.

B. λBGP Design

evalLocalPref :: PeerData -> [PathAttribute]
-> [Prefix] -> IO Word32
updateCommunities :: PeerData -> [PathAttribute]
-> [Prefix] -> Maybe [PathAttribute]
filterExport :: PeerData -> [PathAttribute]
-> [Prefix] -> Bool

Listing 1: Signature of the API callback functions which allow
users to compute run-time local preference values, manipulate
communities and filter route advertisements.

Our BGP implementation aims to fulfill three key design
goals. First, we developed a BGP speaker in a functional
programming language, to improve the security and flexibility
of the code. The abstraction and static type checking of
functional languages can eliminate a large portion of coding
errors , while the brevity of the language reduces code size and
potentially the attack surface. Second, we define a control API
for BGP speakers supporting evolutionary programmability,
backwards compatible with existing standards. The proposed
API allow a network manager to interject in the route process-
ing algorithm defined in the BGP standards and at run-time
adapt the forwarding policy. Third, our API enables a reactive
control API, capable of incorporating multiple information
sources during route selection.
λBGP [13] is a complete implementation of a BGPv4

router in Haskell. The source code of λBGP is open source,
under the Apache 2.0 license. The router offers a complete
implementations of all the components of a BGP router,
including the finite state machine and the RIB. In addition,
our implementation supports BGP, MRT, and BMP parsing
and Zserv integration, to deploy FIB updates on the data plane
through the zebra service.
λBGP is a fully-fledged BGP router which enforces all of

the explicit and implied rules in RFC4271, whilst enabling
conforming programmable behavior. These rules are essential
to prevent a misbehaving policy ’program’ from causing un-
predictable or catastrophic disruption to connected networks.

The λBGP architecture is depicted in Figure 2 and consists
of 4 modules. The session module manages network-level con-
nectivity with adjacent BGP peers and serializes/deserializes
BGP messages. The FSM module implements a BGP finite
state machine and manages the BGP session lifecycle. Once
a BGP session is established, BGP messages are passed to
the BGPRib module, which processes BGP update messages
into BGP RIB manipulations. The BGPRib is responsible for
deploying FIB updates, using the Zserv module, and generates
route updates to adjacent peers.

It is worth highlighting that the modular design of λBGP
enables easy modification of different functionalities of a BGP
speaker. For example, the source code λBGP offers two RIB
module implementations. The one used in the evaluation sec-
tion, employs the IntMap data structure of the Haskell runtime
to store route data. Additionally, the source code contains
an alternative RIB implementation that uses a compressed
data structure to explores performance gains achieved due to
route groupings in the Internet [30]. Similarly, the code offers
alternative Session module implementations, that allow the use
of different parsers (e.g. MRT, BMP) to feed route updates to
λBGP.
λBGP offers a programmable and reactive control API.

A network manager can implement route processing logic
in Haskell and inject them in the main processing logic of
the BGP algorithm. Nonetheless, to ensure conformance with
BGP standards, our framework enables programmability in
two primary phases: during the computation of the local pref-
erence and the communities of a route, and the filtering of a

route advertisement. Listing 1 provides the function signatures
of the respective callbacks. The evalLocalPref function
implements a custom local preference calculation algorithm.
The updateCommunities function allows manipulation of
the communities attribute of a route. The filterExport
function allows router filter on the Adj-RIB out, effectively
controlling which routes are exported to each peer. It is
important to point out that the evalLocalPref is an IO action
function, which allows non-pure function implementations,
performing IO operations and accessing persistent state.

If a local preference calculation performs external IO, its
processing and subsequent advertisement can be delayed. This
can impact negatively the convergence and responsiveness of
the protocol. To address this challenge, the λBGP API offers
the optional runtime capability of an asynchronous processing
mechanism, on a per-route basis. The asynchronous route
processing mechanism allows the BGP speaker to further
process a route update after the initial calculation of the
local preference value is completed. The asynchronous route
processing mechanism processes a route update using initially
a simple default algorithm. In parallel, the BGPRib module
delegates the computation of the local preference, using the
enhanced function, to an asynchronous thread. When this
thread completes, and if the re-calculated local preference has
changed, then the BGPrib module will re-process the route
and disseminated any required updated route announcements.
In order to avoid processing of stale updates, the router assigns
a monotonically increasing id for each route update for a given
prefix. If a route that is currently expecting the computation
of its local preference is overwritten by a new update, then
the thread is canceled and the asynchronous route selection
terminated. Whilst this strategy does have the potential to
generate increased routing traffic if applied too freely, the
asynchronous route evaluation algorithm can be designed to
mitigate this problem by ensuring that only highly ranked
threats are actioned immediately, and if required, rate lim-
iting its own actions. Otherwise the asynchronous processing
function can simply alert network managers.

V. EVALUATION

In this section we evaluate the performance of our system
and demonstrate the flexibility using an advanced BGP policy
configuration. In summary, λBGP achieves comparable pro-
cessing overheads against production software BGP speakers
even when processing large route tables. In parallel, the design
of λBGP allows the realization of highly adaptive policy
mechanisms, which cannot be implement using existing BGP
policy and configuration tools.

A. λBGP performance

To evaluate the performance of λBGP, we developed
kakapo [31], a BGP traffic generator and logging framework
written in C. Kakapo implements a minimal BGP speaker,
which allows BGP session establishment, BGP update mes-
sage generation and logging. The tool is designed to achieve
high traffic throughput and logging precision. It uses BGP

BGP Router

docker

Kakapoo

generator
session
receiver
session

Figure 3: Experimental topology

 0

 1

 2

 3

 4

 5

 6

 200000 400000 600000 800000
L

a
te

n
c
y
 (

s
e

c
)

RIB size (prefix)

frr
λbgp
bgpd

bird

(a) 5 routes per update

 0

 1

 2

 3

 4

 5

 6

 200000 400000 600000 800000

La
te

nc
y

(s
ec

)

RIB size (prefix)

frr
λbgp
bgpd

bird

(b) 10 routes per update

Figure 4: Performance comparison of λBGP against produc-
tion BGP speakers, which significantly improves as more
prefixes are included in an update.

packet pre-crafting and socket IOVECS, to minimize the per-
packet processing latency, while the user can control the size,
content and frequency of BGP update bursts in addition to the
overall size of route table.

To ensure consistently unique routes in repeated updates,
routes are varied by changing intermediate AS numbers in the
AS path. For each BGP speaker, we configure two peering
sessions to the kakapo tester, on different network addresses.
One session is used to inject a stream of BGP updates to

the speaker, while the second session logs the time it takes
for the BGP speaker to consume, process and re-advertise
each update. We define processing latency as the time period
between the transmission of the first update, in a burst of
updates on the source BGP session, to the receipt in the
logging peer of the last update in the burst.

For this measurement we employ the topology depicted in
Figure 3. In the experiments we use a Dell R630 server,
hosting KVM virtualised containers and using the Docker
daemon for orchestration. OS is Centos 7; Docker version
18.09; Haskell is GHC version 8.6.5. Both BGP speakers and
the kakapo tester run as docker instances in separate VMs;
virtualised point-to-point links are used to connect VM hosts.

Our BGP performance testbed measures many aspects of
routing performance, including continuous throughput and
single update processing latency, generated either by a single
or multiple concurrent source BGP speakers. However, some
metrics are more sensitive to specific experimental conditions
than others, or exhibit distracting anomalies. Therefore in this
paper we present experimental results for one readily under-
standable performance metric, which is broadly consistent with
other metrics we have measured. This metric is the time taken
to fully process and re-announce single large route tables. This
processing function correlates with the real-world scenario
following the establishment of a new BGP peer session.

We define two control parameters for the experiments in
this report. The first control parameter is the overall size
of the routing table (RIB), the second is the number of
Update messages used to convey a complete route table. The
route table is synthetic, and contains up to 800,000 distinct
prefixes, uniformly announced as 5 prefixes per Update,
for a total of 160,000 distinct origin ASes and AS-paths.
This size of route table and ratio of paths to prefixes
is representative of the observed data in contemporary
RIPE RIS and RouteView datasets, and thus corresponds
closely with operational reality for a core transit border router.

In our experiments we compare λBGP against three produc-
tion BGP speakers: BIRD[32], FRR [33] and openBGP [34].
Each experiment is repeated 10 times and we present in
figure 4 the mean for each update size.

The first graph show that as the size of the route table
increases the relative performance of the various BGP speakers
remains constant, and also that there is a roughly linear
increase in elapsed time as the route table size increases (it
is not the purpose of the present paper to analyze in detail
the scaling behavior of BGP speakers). The graph shows that
there is a range in performance between the BGP speakers of
around 2:1, and that bird2 is the best performer. FRR is the
slowest: openBGP and hBGP are 2nd and 3rd respectively.
The significance of the second graph is that by concentrating
identical size route tables over smaller numbers of paths and
thus also a smaller number of Update messages, there is an
improvement in performance of all BGP speakers. This is to
be expected, since some part of the total processing effort is
devoted to the mechanics of processing protocol messages, for

example in the parsing process: also, there may be a smaller
number of user/operating system interactions, because of the
smaller number of messages and reduced size of the TCP
data stream. The noteworthy observation is that in this second
scenario the observed relative performance order changes, and
the Haskell implementation rises to second place. From this
we conclude that the current Haskell implementation is a little
less optimized for the tasks of parsing messages, but performs
better when it comes to accessing and updating the large data
structures which compose BGP RIBs. The overall conclusion
however is that a relatively naive implementation in Haskell
is capable of delivering comparable or even better control
performance than well written C language equivalents.

There are of course caveats: in these examples both the
native C BGP speakers and the Haskell speaker are applying
minimal policy logic to route selection, although they must
all run a full LocRIB / Phase 2 best route selection process.
The question of how the performance ordering would change
in the presence of complex policy is one for further study,
however the fact that Haskell implementation enables the
relevant processing to be taken in parallel, and the possible
inefficiency of the C language speakers implementation of con-
figuration language statements, compared with the possibility
of a compiled, optimized, equivalent in Haskell, will make for
interesting further work.

B. λBGP programmability

type AdjacencyMatrix =
Data.IntMap.IntMap (Data.IntMap.IntMap ())

adjCheckPair :: AdjacencyMatrix -> Int -> Int -> Bool
adjCheckPair adjMap a b =

maybe False (Data.IntMap.member a)
(Data.IntMap.lookup b adjMap)

adjcheckPath :: AdjacencyMatrix -> [Int] -> Bool
adjCheckPath m (a:b:zx) = adjCheckPair m a b

&& adjCheckPath m (b:zx)
adjcheckPath _ _ = True

evalLocalPref :: PeerData -> [PathAttribute]
-> [Prefix] -> IO Word32

evalLocalPref peerData pathAttributes _ = do
adjMatrix <- adjMatrixFromPeer peerData
let asPath = getASPath pathAttributes

validPath = adjCheckPath adjMatrix asPath
return $ if validPath then peerLocalPref peerData

else 0

Listing 2: A sample local preference calculation function
which reduces the local preference value if the path contains
unknown AS adjacencies.

To evaluate the effectiveness of the λBGP API, we present
in this section the implementation of a policy that deprecates
paths containing previously unseen AS connections. The un-
derlying idea is that BGP misconfigurations or prefix hijacks
manifest as advertisements of bogus AS paths, which may be
detected by constructing an AS adjacency matrix from globally

collected route advertisements. The policy could be applied at
the level of adjacent AS pairs, or longer sequences; however,
in this example we address just the first case. Detection of
such “adjacency anomalies” has been shown to be effective in
preventing traffic misdirection attacks [35], but have not been
implemented in practice due to the limited programmability
of the existing BGP implementations.

Listing 2 presents a sample function that consumes a pre-
calculated AS adjacency matrix, and monitors whether con-
nectivity of any AS pair has been observed previously. Also,
our implementation uses an asynchronous local preference
calculation method to monitor the path over time and update
the local preference accordingly. Specifically, if adjacency be-
tween a pair of ASes is seen for the first time, then the function
reports the new path to an external server, delays a short time,
and refreshes the adjacency check database. Thus the initial
route update is processed immediately, but if the external
server determines that the AS path is invalid, the path may
be demoted, and most likely removed from the route table.
It is important to mention that no comparable functionality is
currently supported by any production BGP router. It is notable
that the LOCAL PREF evaluation call-out is able to return
multiple ”live” results. Specifically, a continuation function
is passed into the user-provided evaluation function, which
may then return an initial result in a timely fashion, but then
later generate additional differing results, potentially triggering
further route updates and re-advertisement, if appropriate.

VI. RELATED WORK

The research community has explored a series of approaches
to enable BGP programmability, which predominantly rely
on separating the routing logic from the routers. Of great
relevance to our work is XORP [36], an open-source extensible
multi-protocol routing platform enabling integration of IGP
and EGP protocols. The platform offered a policy language
for the configuration of individual routing protocols and the
management of information exposure between protocols. Al-
though the policy language offered a number of novel features,
such as the ability to influence EGP route advertisement based
on IGP state, it was not Turing-complete. ExaBGP [12] is a
popular BGP speaker equipped with a REST configuration
API for route injection. ExaBGP is used extensively for
rapid prototyping of BGP experiments, as well as to expose
BGP control to network applications. In contrast to λBGP
however, ExaBGP is a single-threaded Python system, lacking
a complete BGP speaker/RIB/route selection engine and is
optimized as a responsive offline tool rather than a full fledged
active element in an iBGP mesh.

Research on BGP has often proposed logically central-
ized control architectures of BGP networks. Routing Con-
trol Platform (RCP) [10] proposed the introduction of BGP
programmability across a network by decoupling the routing
state from the BGP routers and introducing a centralized
route control server. RCP reduces the complexity of fully-
distributed path computation by introducing a centralized
Route Reflector, which performs route selection based on

IGP routing information and the network topology. Unfor-
tunately, the EGP visibility of the route control server is
hindered by the adoption of iBGP, which dictates that edge
routers will expose only the best route for a each prefix.
To address these challenges Verkaik et al. [37] developed
IRSCP, an RPC extension with support for high-availability
and fine-grain BGP policy. Control applications can define
an explicit egress ranking per prefix, enforced by the control
infrastructure at run-time. Similar to IRSCP, Morpheus [11]
proposes outsourcing the BGP routing selection process to a
small selection of servers which offer programmable multi-
criteria route selection. Morpheus supports multiple route
classification mechanisms, combined using a weight-based
approach, and per-flow state persistence. These authors all
resolve the issue of gaining visibility to external routing state
by either intercepting or duplicating all external peer BGP
sessions, and do not provide a programmable online routing
solution, relying instead on pre-computed configuration with
a non-realtime refresh capability.

We believe that the design of λBGP offers an extensible
platform which overcomes these limitations to implement
and extend existing centralized BGP control architectures and
expand BGP programmability across the network.

More recent proposals advocate SDN-based centralized
control planes to improve network management, the expres-
siveness and flexibility of traffic engineering policies, and
convergence time [38], [39], [40]. The SDN-IP [41] applica-
tion introduces support for iBGP in the ONOS platform and
explore the applicability of BGP as an East-West Interface.
Software Defined Internet eXchanges (SDXs) [42], [43] aim to
address some inherent limitations of BGP in the context of IXP
route servers, which enable very dense peering connectivity
that can therefore provide the significant benefit of finer-
grained routing policies. Espresso [9] and Edge Fabric [6] in-
troduce novel BGP control architectures that centralized route
control and enable novel criteria in route selection, including
path performance and capacity. All of these approaches are
orthogonal to λBGP, since they bypass the conventional BGP
internal mesh entirely to implement programmable routing
logic, whilst λBGP is designed to integrate synergistically
within the existing iBGP routing mesh.

VII. DISCUSSION AND FUTURE WORK

The proposed control API is only a first step towards
enabling appropriate BGP programmability. Nonetheless, even
the simple illustrative code fragment in Listing 2 would
actually have correctly detected and deprecated the route leaks
in the case of the Verizon outage of 20019[8].
It is important to note that this API is the lowest level API
possible: higher-level, application specific, APIs, such as an
implementation of a policy DSL, may be built using this API,
and in fact that is our main purpose in providing this low-level
API. However, even this API is sufficient to implement useful
policies which are not otherwise possible in conventional
BGP speakers. A more advanced API implementation might

also choose to provide composable policy, or dynamically re-
loadable policy modules - alternatively, an implementation
might outsource the task of route evaluation to an external
system after making an initial fast response based on con-
ventional static configuration, with the option of overriding
an initial evaluation response. These options are orthogonal
to the topic of developing high-level policy APIs, but the
concept of composing security, performance and business
policy as distinct implementations is an obvious direction
for future investigation, and the mechanisms described would
allow different approaches for different classes of policy.
A concrete example would be a dynamic security module
which would allow mitigation for specific newly emerging
threats to be deployed, composed with a static business policy,
and an externally moderated traffic engineering system which
can update granular route selection in response to changing
network loads.
We believe that new BGP architectures can be developed
around such λBGP instances to provide AS-wide programma-
bility and enable support in legacy hardware routers. Connect-
ing λBGP through iBGP to AS local routers can enable the
manager to bias the route selection of already deployed legacy
border routers in the network. Nonetheless, designing such
architectures requires extensive experimentation to understand
the trade-offs of different configuration strategies. For exam-
ple, if standard iBGP is used to connect legacy BGP routers to
λBGP, then programmability may be limited due to restricted
network visibility, since legacy routers typically only advertise
their selected routes rather than the complete BGP message
feed. However, increasing deployment off BGP ADDPATH
and BMP capability offers the prospect of improved visibility
over diverse routes at AS borders.

Finally, we believe that λBGP can provide an ideal environ-
ment to explore reactive BGP policy verification. The network
community has developed multiple BGP policy verification
frameworks [44], [45] offering high-level intent languages
and static analysis frameworks to validate BGP policies. Such
mechanisms operate in an offline fashion and allow network
managers to detect misconfigurations prior to deployment. The
development of λBGP using a functional language and its open
control API allow integration of similar mechanisms in the
heart of the path selection algorithm. In parallel, the support
of λBGP for asynchronous path computation can amortize the
computational costs of static analysis, while the verification
can include live network state to improve results.

VIII. CONCLUSION

In recent years, Internet evolution has introduced a re-
quirement for greater reactivity and flexibility in the control
plane of the network, in order to fulfill the performance
and availability demands of many modern network services.
Unfortunately, BGP policy frameworks remain static, closed-
loop and reliant on low-level policy languages that lack
support for appropriate programmability. In this paper, we
revisit the implementation of BGP systems and present an

open control API for BGP routers and route controllers that
ensures conformance with protocol standards. More signifi-
cantly, we present λBGP, an implementation of a BGP router
written in Haskell that implements the proposed control API.
An essential attribute of the specific API described is the
enforcement of BGP protocol rules over the range of actions
available to API clients, which contrasts with the unlimited and
potentially dangerous impact of more generic programmable
BGP frameworks. Furthermore, the described implementation
combines programmability with performance at Internet scale,
and the experimental results show that there need be no
trade-off between these contrasting goals. Using a novel BGP
testing framework, we demonstrate that our implementation
can achieve performance comparable with production BGP
implementations. Additionally, we demonstrate the expres-
siveness of the proposed solution using an example local
preference calculation method which validates new routes
against a dynamically maintained AS adjacency matrix.

ACKNOWLEDGMENTS

The authors are grateful to the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) for funding the
TOUCAN (EP/L020009/1) and INITIATE (EP/P003974/1)
projects, and EPSRC and British Telecoms (BT) for funding
the NG-CDI (EP/R004935/1) project, which supported much
of the work presented in this paper.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol
4 (bgp-4),” Internet Requests for Comments, RFC Editor, RFC
4271, January 2006, http://www.rfc-editor.org/rfc/rfc4271.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc4271.txt

[2] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding bgp mis-
configuration,” in Proceedings of the 2002 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communica-
tions, ser. SIGCOMM ’02. New York, NY, USA: ACM, 2002, pp.
3–16. [Online]. Available: http://doi.acm.org/10.1145/633025.633027

[3] A. Robachevsky, “Google leaked prefixes and knocked Japan
off the Internet,” https://www.internetsociety.org/blog/2017/08/google-
leaked-prefixes-knocked-japan-off-internet/, Aug. 2017.

[4] RIPE, “YouTube Hijacking: A RIPE NCC RIS case study,”
https://www.ripe.net/publications/news/industry-developments/youtube-
hijacking-a-ripe-ncc-ris-case-study, 2008.

[5] V. Giotsas, G. Smaragdakis, C. Dietzel, P. Richter, A. Feldmann,
and A. Berger, “Inferring bgp blackholing activity in the internet,” in
Proceedings of the 2017 Internet Measurement Conference, ser. IMC
’17. New York, NY, USA: ACM, 2017, pp. 1–14. [Online]. Available:
http://doi.acm.org/10.1145/3131365.3131379

[6] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V. Madhyastha,
I. Cunha, J. Quinn, S. Hasan, P. Lapukhov, and H. Zeng,
“Engineering egress with edge fabric: Steering oceans of content
to the world,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’17. New
York, NY, USA: ACM, 2017, pp. 418–431. [Online]. Available:
http://doi.acm.org/10.1145/3098822.3098853

[7] “Ansible,” https://www.ansible.com/, 2019.
[8] T. Strickx, “How verizon and a bgp optimizer knocked large parts of

the internet offline today,” http://tiny.cc/v2o29y/, 2019.
[9] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,

M. Hines, T. Kim, A. Narayanan, A. Jain, V. Lin, C. Rice, B. Rogan,
A. Singh, B. Tanaka, M. Verma, P. Sood, M. Tariq, M. Tierney,
D. Trumic, V. Valancius, C. Ying, M. Kallahalla, B. Koley, and
A. Vahdat, “Taking the edge off with espresso: Scale, reliability and
programmability for global internet peering,” in Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,

ser. SIGCOMM ’17. New York, NY, USA: ACM, 2017, pp. 432–445.
[Online]. Available: http://doi.acm.org/10.1145/3098822.3098854

[10] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in Proceedings of the 2Nd Conference on Symposium on
Networked Systems Design & Implementation - Volume 2, ser. NSDI’05.
Berkeley, CA, USA: USENIX Association, 2005, pp. 15–28. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251203.1251205

[11] Y. Wang, I. Avramopoulos, and J. Rexford, “Morpheus: Making routing
programmable,” in Proceedings of the 2007 SIGCOMM workshop on
Internet network management. ACM, 2007, pp. 285–286.

[12] Exa Networks, “exaBGP,” https://github.com/Exa-Networks/exabgp,
2019.

[13] “hBGP - A complete functional language implementation of
a BGP stack (BGP speaker, dataplane, MRT and BMP),”
https://github.com/hdb3/hbgp/, 2019.

[14] E. Chen, “Route refresh capability for BGP-4,” Internet Requests for
Comments, RFC Editor, Tech. Rep. 2918, September 2000. [Online].
Available: rfc2918

[15] T. Holterbach, S. Vissicchio, A. Dainotti, and L. Vanbever, “Swift:
Predictive fast reroute,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’17.
New York, NY, USA: ACM, 2017, pp. 460–473. [Online]. Available:
http://doi.acm.org/10.1145/3098822.3098856

[16] Z. Li, D. Levin, N. Spring, and B. Bhattacharjee, “Internet anycast:
Performance, problems, & potential,” in Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: ACM, 2018, pp. 59–73.
[Online]. Available: http://doi.acm.org/10.1145/3230543.3230547

[17] N. I. of Standards and Technology, “Global prefix/origin validation using
rpki,” https://rpki-monitor.antd.nist.gov/, 2019.

[18] M. Konte, R. Perdisci, and N. Feamster, “Aswatch: An as reputation
system to expose bulletproof hosting ases,” SIGCOMM Comput.
Commun. Rev., vol. 45, no. 4, pp. 625–638, Aug. 2015. [Online].
Available: http://doi.acm.org/10.1145/2829988.2787494

[19] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos, D. Cicalese,
A. King, and A. Dainotti, “Artemis: Neutralizing bgp hijacking within a
minute,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2471–2486, Dec.
2018. [Online]. Available: https://doi.org/10.1109/TNET.2018.2869798

[20] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jaha-
nian, “Internet inter-domain traffic,” ACM SIGCOMM Computer Com-
munication Review, vol. 41, no. 4, pp. 75–86, 2011.

[21] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “The flattening internet topol-
ogy: Natural evolution, unsightly barnacles or contrived collapse?” in
International Conference on Passive and Active Network Measurement.
Springer, 2008, pp. 1–10.

[22] N. Kushman, S. Kandula, and D. Katabi, “Can you hear me now?!:
it must be bgp,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 2, pp. 75–84, 2007.

[23] R. Bian, S. Hao, H. Wang, A. Dhamdere, A. Dainotti, and C. Cotton,
“Towards passive analysis of anycast in global routing: Unintended
impact of remote peering,” ACM SIGCOMM Computer Communication
Review, vol. 49, no. 3, 2019.

[24] Z. Li, D. Levin, N. Spring, and B. Bhattacharjee, “Internet anycast:
performance, problems, & potential.” in SIGCOMM, 2018, pp. 59–73.

[25] B. Quoitin, C. Pelsser, O. Bonaventure, and S. Uhlig, “A performance
evaluation of bgp-based traffic engineering,” International journal of
network management, vol. 15, no. 3, pp. 177–191, 2005.

[26] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of routing
optimization for internet traffic engineering,” IEEE Communications
Surveys & Tutorials, vol. 10, no. 1, pp. 36–56, 2008.

[27] R. Oliveira, M. Lad, B. Zhang, and L. Zhang, “Geographically informed
inter-domain routing,” in 2007 IEEE International Conference on Net-
work Protocols. IEEE, 2007, pp. 103–112.

[28] M. Luckie, “Spurious routes in public bgp data,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 14–21, 2014.

[29] M. Levy, “The deep-dive into how verizon and a bgp optimizer
knocked large parts of the internet offline monday,” Cloudflare Blog.
https://tiny.cc/hjm29y, July 2019.

[30] A. Broido and k. claffy, “Analysis of RouteViews BGP data: policy
atoms,” in Network Resource Data Management Workshop, Santa Bar-
bara, CA, May 2001.

[31] “kakapo - A BGP traffic flood tool - source, sink and monitor, +
analytics,” https://github.com/hdb3/kagu, 2019.

[32] CZ.NIC Labs, “The BIRD Internet Routing Daemon,”
https://bird.network.cz/, 2019.

[33] Linux Foundation, “FRRouting,” https://frrouting.org/, 2019.
[34] “OpenBGPD,” http://www.openbgpd.org/, 2019.
[35] Y. Xiang, Z. Wang, X. Yin, and J. Wu, “Argus: An accurate and agile

system to detecting ip prefix hijacking,” in 2011 19th IEEE International
Conference on Network Protocols. IEEE, 2011, pp. 43–48.

[36] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov,
“Designing extensible ip router software,” in Proceedings of the 2nd con-
ference on Symposium on Networked Systems Design & Implementation-
Volume 2. USENIX Association, 2005, pp. 189–202.

[37] P. Verkaik, D. Pei, T. Scholl, A. Shaikh, A. C. Snoeren, and J. E.
van der Merwe, “Wresting control from bgp: Scalable fine-grained route
control,” in 2007 USENIX Annual Technical Conference on Proceedings
of the USENIX Annual Technical Conference, ser. ATC’07. Berkeley,
CA, USA: USENIX Association, 2007, pp. 23:1–23:14. [Online].
Available: http://dl.acm.org/citation.cfm?id=1364385.1364408

[38] V. Kotronis, X. Dimitropoulos, and B. Ager, “Outsourcing the routing
control logic: better internet routing based on sdn principles,” in Pro-
ceedings of the 11th ACM Workshop on Hot Topics in Networks. ACM,
2012, pp. 55–60.

[39] P. W. Thai and J. C. De Oliveira, “Decoupling bgp policy from routing
with programmable reactive policy control,” in Proceedings of the 2012
ACM conference on CoNEXT student workshop. ACM, 2012, pp. 47–
48.

[40] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A.
Corrêa, S. Cunha de Lucena, and R. Raszuk, “Revisiting routing control
platforms with the eyes and muscles of software-defined networking,”
in Proceedings of the first workshop on Hot topics in software defined
networks. ACM, 2012, pp. 13–18.

[41] SDN-IP Architecture, “ONOS,” https://wiki.onosproject.org/display/ONOS/SDN-
IP+Architecture, 2019.

[42] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“SDX: A software defined internet exchange,” in ACM SIGCOMM
Computer Communication Review, vol. 44, no. 4. ACM, 2014, pp.
551–562.

[43] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rexford,
and L. Vanbever, “An industrial-scale software defined internet exchange
point,” in 13th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 16), 2016, pp. 1–14.

[44] N. Feamster, “Practical verification techniques for wide-area routing,”
SIGCOMM Comput. Commun. Rev., vol. 34, no. 1, pp. 87–92, Jan.
2004. [Online]. Available: http://doi.acm.org/10.1145/972374.972390

[45] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy,
and Z. Tatlock, “Scalable verification of border gateway
protocol configurations with an smt solver,” SIGPLAN Not.,
vol. 51, no. 10, pp. 765–780, Oct. 2016. [Online]. Available:
http://doi.acm.org/10.1145/3022671.2984012

