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Abstract—Blockchain and cryptocurrencies have been widely
deployed and used in our daily life. Although there are numer-
ous works in the literature surveying technical challenges and
security issues in blockchains, very few works focused on the
anonymity guarantees provided in cryptocurrencies. In this work,
we conduct a systematic survey on anonymity in cryptocurrencies
with a clear categorization for the different tiers of anonymity
offered in the various cryptocurrencies as well as their known
weaknesses and vulnerabilities. We also study the techniques
that have been used to achieve each tier of anonymity. Finally,
we asses the current techniques, and present a forecast for the
technological trends in this field.

Index Terms—Blockchains, Cryptocurrencies, Privacy,
Anonymity

I. INTRODUCTION

For many blockchain applications, particularly cryptocur-
rencies, anonymity is a critical property expected from the
underlying platform. It does not only obscure users’ identity,
but it also ensures fairness, without which users may opt-
out of participation due to plausible fear of unfair treatment.
Inadequate anonymity guarantees can also result in malicious
parties focusing their efforts on de-anonymized high-value
targets, leaking business information, and undermining the
negotiation position. Besides, inefficient anonymity protection
can lead to targeted denial of service which can decrease the
fungibility of the affected cryptocurrency and further cripple
its efficacy as a currency [45].

Moreover, different privacy enhancement technologies may
offer the same (or similar) level of user anonymity, but their
characteristics, like footprint, and computational effort and
time, have direct repercussions on the adopt-ability of the
cryptocurrency, its scalability, and even its transaction fees. For
example, when Monero adopted the use of Bulletproofs [22]
instead of Borromean [46] range proofs, the size of the trans-
actions was reduced, consequently minimizing the transaction
fees [51].

In the past decade, Bitcoin, altcoins, and many other
decentralized blockchain-based applications have been hot
research topics. As such, there are numerous surveys on
blockchain and cryptocurrencies in the literature, e.g., the
work of Tschorsch [64], including several surveys on general
security issues in cryptocurrencies like the Conti et al.’s
survey [25]. However, most of these works merely list all
the cryptocurrencies and compare their privacy features at an
ad-hoc level. In this work, for the first time, we provide a

systematic study on the blockchain anonymity by categorizing
the level of anonymity into four different tiers. We also
examine the known techniques that can be used to achieve
the various anonymity guarantees. Besides, we discuss the
vulnerabilities and weaknesses of the different anonymity
techniques, compare their effectiveness, and forecast their
technological trends in this field.

Contributions. Previous surveys consider general security
issues and challenges in Bitcoin and cryptocurrencies with no
particular focus on anonymity and privacy [25][39][26][34].
The only previous survey that focuses on privacy and
anonymity is the work of Khalilov et al. [38]; however, it
does not provide any classification of the different levels of
anonymity in cryptocurrencies, nor does it explain the related
anonymity techniques. On the contrary, in this work, we
provide a systematic study on blockchain anonymity. More
specifically, our contributions are summarised as follows.

(1) Present a novel categorization for the tiers of anonymity
offered in the diverse cryptocurrencies.

(2) Examine the techniques used to achieve the different
tiers of anonymity, and discuss their vulnerabilities and
weaknesses.

(3) Compare the anonymity techniques and forecast their
technological trends.

Roadmap. In Sec. II, we discuss the four tiers of anonymity
offered in cryptocurrencies. In Sec. III, we list and describe
the techniques that are used to achieve the aforementioned
tiers and the known attacks and weaknesses concerning each
technique. In Sec. IV, we discuss and asses the anonymity in
the various cryptocurrencies, and forecast related technological
trends. Finally, Sec. V presents a summary of the related work.

II. PRIVACY TIERS

The offered anonymity in any cryptocurrency and
blockchain application can be assessed by considering two
characteristics: (1) the ability of the used anonymity scheme
to break any possible linkage between transactions, and (2) its
ability in hiding users’ identities (senders and receivers). Given
these two characteristics, we define four different tiers of
anonymity in cryptocurrencies as follows: (1) pseudonymity,
(2) set anonymity, (3) full anonymity, and (4) confidential
transactions. Below we describe each of these tiers.



Fig. 1: Distribution of 20 cryptocurrencies and protocols according to their tier of
anonymity.

Pseudonymity. This is the most primitive level of anonymity
in cryptocurrencies. This level of anonymity is guaranteed
in Bitcoin, and, as shall be seen in Sec. III-A, this level of
anonymity is achieved by using pseudo-anonymous addresses.
Set anonymity. In set anonymity, the identity of the user is
either 1 out of n possible identities. Set anonymity is achieved
by using ring signatures [55] where n is equal to the size of
the ring. Similarly, mixers provide set anonymity where n is
equal to the number of inputs in the mixer.
Full anonymity. This level is provided when the sender can
be any node, and the sent note or coin can be any unspent
note. As shall be discussed, this level is attained in by using
commitments and zero-knowledge proofs as in Zerocoin [48]
and Zcash [33].
Confidential transactions. This level guarantees that the
transacted amounts are hidden. We emphasize that we do
not limit this tier to Monero’s confidential transactions [45],
and include but any approach that hides or obfuscates the
transferred amounts to thwarts transaction flow analysis. Since
a cryptocurrency can, for example, guarantee set anonymity
while offering confidential transactions at the same time, as
is the case in Monero [5], this tier of anonymity can also be
thought of as an anonymity feature rather than a separate level
of privacy.

Fig. 1 shows a pie chart representing the distribution of
20 currencies and implementations according to their tier of
anonymity. Details of these currencies shall are shown later in
Table IV.

III. PRIVACY TECHNIQUES

To achieve the four anonymity levels mentioned in Sec. II,
cryptocurrencies implement various anonymity techniques. In
this section, we discuss six major techniques: (1) pseudony-
mous addressing, (2) ring signatures, (3) mixers, (4) commit-
ments, (5) zero-knowledge proofs, and (6) stealth addressing.
Besides, we give example implementation in cryptocurrencies,
and list the known attacks and weakness concerning each of
the aforementioned techniques.

A. Pseudonymous Addressing

Pseudonymous addressing aims to preserve privacy by
breaking the link between addresses and their owners’ real
identities. As discussed in the following paragraphs, it is
widely known that Bitcoin is an example implementation of
pseudonymous addressing in cryptocurrencies.

Fig. 2: Representation of clustering attacks on Bitcoin.

Pseudonymity in Bitcoin. Bitcoin is the first cryptocurrency,
and remains to be the most successful one with a market
value of over $211 billion1, and more than 9000 participating
nodes2. As explained in its whitepaper [50], Bitcoin preservers
users’ anonymity through the use of pseudonymous addresses.
Namely, a user’s address is the Base-58 encoding of the the
following 25-byte binary string:

ε = RIPEMD-160(SHA-256(publicKey))
address = version∣∣ε∣∣checksum

Where publicKey is the user’s public key, version is a one-
byte value indicating the version, and checksum is the least
significant four bytes of the following value [64][69]:

checksum = SHA-256(SHA-256(ε))

Further, although they do not entirely enhance
anonymity [12], Bitcoin users are advised to take two
protective measures. 1) Users can generate a new key pair
for each transaction [50]. In fact a person generating a
transaction will also generate a new key pair so that the
change address is not linked to the originating address
and is indistinguishable from the destination’s address.
2) In every transaction, the sender fully empties one or
more accounts, (inputs), and creates one or more accounts,
(outputs). This approach helps break the linkage between
the user’s accounts [23]. Nonetheless, as discussed in the
following subsection, addresses can still be clustered and
using the aid of public services and websites, the real identity
of the users can eventually be revealed as discussed in many
publications [47][54][56][64].

Attacks on Pseudonymous Addressing. Pseudonymous ad-
dressing provides a weak anonymity guarantee. In fact, it is
mentioned on Bitcoin’s official website that Bitcoin is not
anonymous [3]. Consequently, it is not surprising that various
de-anonymization attacks have been proposed in the relevant
literature. Overall, these attacks can be classified into two
broad categories: 1) clustering and Bitcoin blockchain analysis
and 2) exploitation of the Bitcoin P2P network and diffusion
protocol. A summary of these attacks is shown in Table I.

1https://coinmarketcap.com/ on 08/08/2019.
2https://bitnodes.earn.com/ at 13:22:21 UTC on 08/08/2019.
3Linking Bitcoin pseudonyms to the user’s IP does not only cause a privacy

breach but also may allow attackers to launch DoS against that user’s IP. This
is more relevant if this user is a vendor or a service provider.



1) Clustering and Bitcoin blockchain analysis.
As shown in Fig 2, this attack analyzes Bitcoin traffic flow to cluster the user’s addresses and transactions and link them to a public service, e.g.
an exchange website. These services can then reveal the real identity behind the pseudonymous address. In general, there are two approaches to
clustering: analysis of transactions’ inputs and outputs, and behavioural analysis.
Analyzing transactions’ inputs and outputs. Use two particular heuristics to cluster transactions: (i) Inputs in one transaction are likely owned by
the same user [50]. Different users can theoretically contribute inputs in the same transaction, but rarely do so. (ii) Newer output address can be
assumed to be a change address that belongs to the user generating the transaction [47][54][56][64]. These heuristics result in representations of
Bitcoin addresses, transactions, and users/entities. The last step in traffic analysis is to map users from these representations to real-world identities.
This step aims to establish ownership and can be accomplished using the aid of public services, e.g. online stores and exchange website, which
usually have user-identifying information such as email addresses and even bank accounts [54].
To demonstrate the effectiveness of the above heuristics, the authors of [47], attempted to track known Bitcoin thefts to exchange services. In
summary, they were able to track 6 out of 7 thefts from the point of theft to an exchange service. Furthermore, if presented with legal subpoena,
these services can reveal the real identities behind the exchange operation. More importantly, their success in tracking these thefts prove that even
privacy-conscious users, who seek to further hide their identities by sending (or peeling) some of their funds to newly generated addresses, are prone
to de-anonymization using these heuristics.
Behavioural Analysis. In this type of attacks, addresses and transactions are clustered based on behavioural attributes like their time, location, and
amount. Androulaki et al. [12] used behavioural analysis to augment their clusters; namely, they considered the time of the transactions, the indices
of the inputs in a transaction, and the transferred amount. Using these techniques, they succeeded to unveil about 40% of the users in their simulated
Bitcoin network. Similarly, Ron et al. [57] used behavioural analysis to link the Bitcoin addresses that are believed to be related to the Silk Road
marketplace[6]. Also, Dupont et al. [28] analyzed user’s spending habits to reveal Bitcoin users physical location by analyzing. In addition, they
assessed their method by collecting 518 known charities’ Bitcoin addresses and physical locations, and comparing this data against their informed
guesses, where their initial results show an accuracy of up to 72%.
2) Exploiting Bitcoin P2P Network.
This family of attacks exploits the nature of Bitcoin P2P network to link pseudonymous addresses to IP addresses. The work of Koshy et al. [36]
constitutes the first proposal to deanonymize Bitcoin users by studying the relay patterns of transactions, and they were able to map between 252
and 1162 Bitcoin addresses to the IP addresses that likely own them 3. Similarly, the work in [35] attempts to develop a probabilistic model to
identify transactions’ originators’ IP based on monitoring the nodes that first relay a given transaction. Moreover, the authors of [16] attempted to
deanonymize Bitcoin client, even those sitting behind NATs, by the set of entry nodes they connect to. According to their methodology, the attacker
tries to connect to the majority of servers, and they argue that when the attacker receives the transaction from 2 to 3 entry nodes, he can map the
transaction to a specific client with a very high probability.4
To strengthen their anonymity, Bitcoin users may choose to use anonymization tools, such as Tor [7]; however, as shown by Biryukov et al. in [17],
combining Bitcoin and Tor introduces a new attack vector. The authors in [17] explore the exploitation of Bitcoin P2P with Tor beyond the mere
banning of Bitcoin clients from using Tor exit nodes as previously done in [16]. The crux of their attack depends on: 1) forcing Bitcoin clients to
connect to the attacker’s Tor Exit nodes or directly to the attacker’s Bitcoin peers, and 2) fingerprinting clients by writing unique (possibly fake)
addresses to the target’s address table.
In 2015, the Bitcoin community has responded to the aforementioned attacks by changing its transactions broadcasting protocol from a gossip-like
trickle spreading protocol to a diffusion spreading protocol [70]. To asses the impact on anonymity, the authors of [29] studied the properties of the
two broadcasting protocols and their effect on user anonymity, and concluded the two Bitcoin flooding protocols do not protect the user anonymity.
Also, Mastan et al. attempted to de-anonymize Bitcoin users sitting behind Tor by studying the pattern of their sessions and constructing a session
graph, which they were able to perform with a precision of 0.9 [42] .
3) Other attacks
Goldfeder et al. [32] studied the effect of web trackers on Bitcoin users when shopping online, and concluded that trackers can uniquely identify
transactions, link them to the user’s cookie and reveal the user’s real identity. Other tools and frameworks have been proposed for visual traffic
analysis of the Bitcoin blockchain [61][14].

TABLE I: Attacks on Bitcoin Pseudonymity.

B. Ring Signatures

Ring signatures were introduced by Rivest et al. [55]
extending the idea of group signatures that was proposed
by Chaum and van Heyst [24]. In a group signature, there
is a trusted group manager who can de-anonymize the other
signers. On the contrary, ring signatures are ad-hoc with no
trusted manager, and any signer can sign on behalf of the
group. Specifically, a ring signature scheme consists of a tuple
of algorithms S = (Setup,KeyGen,Sign,Verify) as follows:

● param ← Setup(1λ) is the setup algorithm that takes as
input the security parameter 1λ, and it outputs a system
parameter param. The rest of the algorithms implicitly
take param as an input.

● (PK, SK)← KeyGen(param) is the key generation algo-
rithm that takes as input the setup parameter param, and

4A list of current active Tor exit nodes can be found in: https://torstatus.
blutmagie.de/

outputs a pair of public and secret keys (PK, SK).
● σ ← Sign(P, SK, `,m) is the signing algorithm that takes

as input a set of public keys P ∶= {PK1, . . . , PKn},
the secret key SK, the index ` such that SK is the
corresponding secret key of PK`, and the message m,
and it outputs the signature σ.

● b ← Verify(P,m,σ) is the verification algorithm that
takes as input a set of public keys P , the message m
and the signature σ, and it outputs b ∶= 1 if only if the
signature is valid.

Ring signatures have evolved since their proposal in three
directions: (1) threshold ring signatures [21], (2) linkable
ring signatures [40][13][41], and (3) traceable ring signa-
tures [31][30]. To further clarify the usage of ring signatures
in blockchains, we explain below the signature scheme used
in the CryptoNote protocol and the use of ring signatures in
Monero’s RingCT.
The use of ring signatures in CryptoNote. As shown in

https://torstatus.blutmagie.de/
https://torstatus.blutmagie.de/


Vulnerabilities and Weaknesses of Ring Signatures
Weakness Description

Deducibility due to 0-
mixin coins.

The authors of two independent works [49][37] described two weaknesses in Monero’s ring signature. The first weakness
is the deducibility of the real spent input as a result of referencing outputs that have been provably spent or consumed in
previous 0-mixin transactions, where mixin refers to the number of decoy outputs that are referenced in a transaction to
anonymize the real to-be-consumed output. Specifically, they found that 0-mixin transactions don’t only de-anonymize the
output they reference but have a cascading effect which can result in de-anonymizing other transactions with mixin ≥ 1.

Identifying real inputs us-
ing temporal analysis.

The second weakness described in [49], similarly mentioned in [37], is related to the sampling of mixins (or chaff coins).
Namely, the authors of [49] have found that, about 80% of the time, the real consumed output is the newest created coin.

Identifying real inputs us-
ing inference.

Beyond the effect of zero-mixin transactions and temporal analysis, Yu et al. [71] devised a set of security games called
“The Sun-Tzu Survival Problem” to model untraceability in CryptoNote-based cryptocurrencies, and explained that the
sampling strategy of decoy mixins can enable attackers to infer the real to-be-spent inputs. Similarly, another work described
closed set attack which is based on the observation that if the number of referenced outputs (or public keys) in a set of
transaction inputs is equal to the number of inputs, then these referenced outputs must be the real consumed outputs in
these inputs and mere decoy mixins whenever referenced outside of this set [72].

Flooding the network
with attacker-generated
outputs.

The authors of [66] described two attacks on Monero ring signature. The first attack is an extension to the discussion
from [62] and based on flooding the network with outputs that are generated by the attacker(s) and addressed to their own
addresses. Therefore, if these outputs are referenced as decoy outputs, i.e. mixins, in any ring signature, the attacker(s),
who passively monitors the signatures, can rule out their outputs and hence decrease the anonymity of the signer. If, for
example, a transaction references n outputs/coins, i.e. has a mixin of size n, and m of which are generated by the attacker,
then the effective mixin size is reduced to (n −m).

Subverted sampling of
outputs.

The second attack described in [66] is an active version of the previous attack. Namely, the attacker mis-implements wallets
to sample his outputs when generating ring signatures. Therefore, the attacker who continuously monitors all transactions,
can de-anonymize the real spent outputs.

Anonymity reduction by
observing identical UPID.

The authors of [67] describe an anonymity reduction attack on Monero transactions by observing identical UPID in
different transactions. Namely, they state that if a transaction Ta has a UPID Ua and generates some output Oa, and a
latter transaction Tb that uses the same UPID Ua and references Oa as part of its mixins, then Oa is likely to be the real
spent output in Tb and not a mere decoy output.

De-anonymization by new
forks

Wijaya et al. [68] demonstrated that Monero hard forks can lead to traceability of the real spent outputs when the user
spends the coins in the original blockchain and the newly forked blockchain.

Time and size Borromean ring signatures which were used to construct rangeproofs in Monero RingCT resulted in rangeproofs that are
several kilobytes in size and take milliseconds to verify [53]. Hence, the crypto community has been looking for a more
succinct and faster to verify which eventually resulted in devising Bulletproofs [22] as discussed in Sec. III-E.

TABLE II: List of attacks on ring signatures.

its whitepaper [59], CryptoNote’s signature uses a slightly
modified version of the traceable ring signature scheme pro-
posed by Fujisaki et al. [31]. According to this protocol, the
payer generates a one-time public key R ∶= gr and computes
the address T ∶= ghashp(A

r
)
⋅ B. In this case, the payee is

able to compute the corresponding one-time private key as
t ∶= hashp(R

a
) + b. Note that the one-time ring signature

scheme is transformed from the OR-composition of Schnorr’s
identification Sigma protocols. Also, the protocol has a LNK
algorithm to link any two signatures produced by the same
signing key, which is important to prevent double spending.
For clarity, the signing algorithm is depicted in Fig. 3. Let
P ∶= {Pj}

k
j=1 be a set of public keys, and the signing algorithm

also takes input as the secret key t` such that P` = gt` , ` ∈ [k].
Denote I ∶= hashg(P`) as the key image. As seen in Fig. 3,
the verifier does not know any information beyond the fact
that 1 out of the possible k signers generated the signature σ.

Borromean ring signature in Monero’s RingCT. Borromean
ring signature is a 1-out-of-n signature invented by Maxwell
and Polestra [46] that is an optimization of the AOS ring
signature by Abe et al. [11]. Borromean ring signature is used
in Monero’s RingCT to generate rangeproofs by generating a
ring signature for each digit of the committed amount. This
effectively hides the committed amount a while proving its
range a ∈ [0,231 − 1]. If an amount a is encoded in 16 base-4
digits d0d1d2 . . . d15, the sender chooses 16 blinding factors xi
and generates 16 commitments, one for each digit as follows:

function Sign({Pj}kj=1, t`, `,m):
● Set I ∶= hashg(P`);

● For j ∈ [k], pick qj
$← Zp;

● For j ∈ [k], j ≠ `, pick wj
$← Zp;

● For j ∈ [k]:
– Set Lj ∶= gqj if j = `;

Set Lj ∶= gqj ⋅ P
wj

j if j ≠ `;
– Set Rj ∶= (hashg(Pj))qj if j = `;

Set Rj ∶= (hashg(Pj))qj ⋅ Iwj if j ≠ `;
● Set c ∶= hashp(m,L1, . . . , Lk,R1, . . . ,Rk);
● For j ∈ [k]:

– Set cj ∶= wj if j ≠ `;
Set cj ∶= c −∑k

j=1 cj if j = `;
– Set rj ∶= qj if j ≠ `;

Set rj ∶= q` − c`t` if j = `;
● Return σ ∶= (I, c1, . . . , ck, r1, . . . , rk).
end function
function Verify({Pj}kj=1,m,σ):
● For j ∈ [k]:

– Set L′j ∶= grj ⋅ P
cj
j ;

– Set R′j ∶= (hashg(Pj))rj ⋅ Icj ;

● Check if ∑k
j=1 cj

?= hashp(m,L′1, . . . , L′k,R′1, . . . ,R′k)
end function

Fig. 3: CryptoNote Ring Signature: signing and verification algorithms

Ci = xiG + aiH

where ai = (415−i ∗ di) , i ∈ [0,15] and di ∈ [0,3]. After
that, the sender generates 4 public keys Ci,d for each digit di



Type Examples Disadvantage

Centralized
Mixers

CryptoMixer [4]
Bitcoin Fog [2]
BestMixer [1]
Mixcoin [19]

Blindcoin [65]

Single point of failure
No deniability against the mix itself [73]

No prove of mixing
Unreasonable trust of 3rd party

Possible theft

Obscuro [63]
Uses trusted execution environments (TEE)

Assumes no mis-implementation by mixer operator
Anonymity set is limited by block size [63]

Smart-contract-
like

Mixers

CoinJoin⋆ [43]
CoinShuffle† [58]

Coinswap [44]

⋆No anonymity against insiders (users in mix)
Vulnerable to Sybil attacks

Vulnerable to collusion between users in mix
Anonymity set = the number of users in mix [73]

†last user determines the outcome of the shuffle [73]
Malicious users can disrupt mixing [63]1

Decentralized
Mixers

CoinParty [73] Longer mixing delay [73]
Assumption 2/3 of the peers are honest

Zerocoin [48]

Anonymity level is related to number of minted
coins (between a coin’s mint and its spend)

[48]

Reveals the number of mint and spent coins [48]
Reveals transferred denominations [48]

TABLE III: List of proposed mixers in literature. 1: Users can join mixing and then
abort to disrupt the operation.

corresponding to the 4 possible values d ∈ {0,3} as follows:

Ci,d = Ci − (415−i ∗ d)H

This will generate 4 public keys Ci,d for each ring signa-
ture for which the signer/sender knows one private key, xi
corresponding to the public key that was generated for the
actual committed value of the digit. For example, if the 3rd

most significant digit of the base-4-encoded a has a value of
1, that is d2 = 1, then the signer would know the private key
x2 corresponding to the second public key in the 3rd ring:
C2,1 because:

C2,1 = C2 − (415−2 ∗ 1)H

C2,1 = (x2G + (415−2 ∗ 1)H) − (415−2 ∗ 1)H = x2G

By choosing the blinding factors x0, x1, . . . , x15 so that they
add up to x which is the blinding factor used for the overall
commitment C, any party can publicly verify that C = C0 +

C1+⋅ ⋅ ⋅+C15. However, no one can know which of the possible
4 values each commitment corresponds to, nor can they know
which value in the range is committed to.
Attacks on ring signatures. Although ring signatures have
evolved over time, there remains some weaknesses that can
be exploited as listed in Table II.

C. Mixers

To address the privacy limitations in Bitcoin, there have
been multiple proposals to break any linkage between senders
and recipients by mixing users’ funds through coin-laundry
services called mixers. These mixers are generally in the
following three forms: 1) trusted centralized mixers were the
1st-generation of mixers and demand unreasonable trust of
third-party services to mix the user’s coins. 2) smart-con-
tract-like mixers in which multiple users agree to create a
joint transaction to obfuscate inputs and outputs, e.g. Coin-
Join [43] and CoinShuffle [58], and 3) decentralized mixers
which are trust-free cryptographic extensions to Bitcoin, e.g.
Zerocoin [48] and CoinParty [73][74]. It is important to note
that this latter type of mixers does not represent fully-fledged

anonymous zero-knowledge-proof currencies, which are dis-
cussed later in Sec. III-E. Instead, this type represents exten-
sions on top of other currencies, and may not be practical
for day-to-day usage. For example, Zerocoin is presented
in [48] as a decentralized mix that extends Bitcoin; however,
its limited functionality and high computational cost do not
allow it to be used for routine transactions. Table III shows an
up-to-date list of mixers proposed in the literature.

De-anonymization Attacks on Mixers. Table III lists the
known weaknesses of the different types of mixers.

D. Commitments

Commitments are widely used as references/pointers to
some secret, which allows the secret owner to demonstrate
the properties of such a secret using (non-interactive) zero-
knowledge proofs. For instance, the user could commit the
balance of his/her account, and then use zero-knowledge
proofs to show the balance is within a certain range, e.g., larger
than 0. In the blockchain context, two types of commitment
schemes have been used: (i) additive homomorphic, e.g.,
Pedersen commitment and its variants and (ii) non-malleable,
e.g., hash-based commitments.

(Generalized) Pedersen commitment. This commitment [52]
is used in many blockchain platforms, such as Monero. To
make the commitment non-interactive, the commitment key is
typically given as a common reference string. Let (G,H) ∈ G2

be the commitment key. To commit a message m ∈ Zq , the
committer picks a fresh randomness r ∈ Zq and outputs the
commitment as c ∶= rG + mH . It is easy to see that the
commitment is computationally binding and unconditionally
hiding. In Monero, the group is instantiated from elliptic curve
(the secp256k1 curve). In addition, Pedersen commitments are
additively homomorphic, i.e., they preserve addition and com-
mutativity, which enables the public verification that the sum
of the hidden input values is equal to the hidden output values.
For example, disregarding transaction fee for simplicity, if a
transaction has three inputs a, b, and d, and two outputs e and
g s.t. a + b + d = e + g.
Hash-based Commitments. Hash-based commitments has
been used in Zcash, due to its efficiency, which enables
fast zk-SNARK at that time. Unlike Pedersen commitment,
hash-based commitments are usually transparent in the sense
that the setup process is public coin. Hence, unlike common
reference-string-based schemes, the setup process is believed
to be subversion resistant. To commit a message m ∈ {0,1}∗,
the committer picks a random coin r ∈ {0,1}λ and outputs
the commitment as c ∶= hash(m,r), where λ is the security
parameter, say 256 in practice. In Zcash, the hash was instan-
tiated from SHA-256; recently, they switched to group-based
structure-preserving hash. More details can be found in the
Zcash protocol specification [33].

E. (Non-interactive) Zero Knowledge Proofs

Typically, the zero-knowledge proofs used in blockchains
need to be publicly verifiable, which means they need to be



non-interactive. On the other hand, it is well-known that non-
interactive zero-knowledge (NIZK) proofs cannot be realized
in the standard model, a.k.a. plain model; therefore, all the
non-interactive zero-knowledge proofs require some setup
assumptions, such as common reference string, random oracle,
etc. As mentioned before, in terms of subversion resistance,
the random oracle model is more preferred by the community.
In general, NIZK proofs have been used to achieve anonymity
in cryptocurrencies in three ways:

1) Utilizing the existing scripts in current cryptocurrencies
to extend these cryptos and break the linkage between
the senders and the receivers. Zerocoin is an example of
this methodology.

2) Devising new cryptographic structures to replace current
inefficient structures. An example of this type is the use
of bulletproofs to replace Borromean ring signatures in
Monero RingCT’s rangeproofs.

3) Designing new ZKP-based cryptocurrencies that are fully
anonymous like Zcash [8] which is an implementation of
the Zerocash protocol [60].

In the following, we discuss two commonly used NIZK
techniques.

zk-SNARK. Succinct non-interactive zero-knowledge argu-
ment of knowledge (zk-SNARK) has two very important
properties: (i) succinctness and (ii) unbalanced. Succinctness
means that the proof size is less than poly-logarithmic (or
constant in this concrete case) w.r.t. the witness size. Un-
balanced indicates that the verifier’s running time is much
less than the statement execution time, i.e. poly-logarithmic
(or constant in this concrete case). In the blockchain context,
a zero-knowledge proof needs to be verified by a great number
of verifiers; hence, unbalanced is a very desired property.
However, the cost of the proof generation is usually very high,
which limits its wide adoption.

zk-SNARK is used to achieve full anonymity in Zero-
cash [60] – a digital currency that is decentralized, privacy-
preserving, and efficient. To anonymize the sender, the re-
ceiver, and mask the transferred amount, Zerocash uses a
zk-SNARK. Zcash [8] is a cryptocurrency that implements
the Zerocash protocol. The Zcash blockchain contains two
sets: a set containing commitments cm, and a set containing
nullifiers nf. Hence, the Zcash blockchain does not only
contain a database of unspent transactions but a database of
all transactions that ever existed. To each note, there is a
cryptographically associated note commitment and a nullifier
(so that there is a 1:1:1 relation between notes, note com-
mitments, and nullifiers). Computing the nullifier requires the
associated private spending key ask. It is infeasible to correlate
the note commitment with the corresponding nullifier without
knowledge of at least this spending key. An unspent valid note,
at a given point on the blockchain, is one for which the note
commitment has been publicly revealed on the blockchain prior
to that point, but the nullifier has not.

The basis of the privacy properties of Zcash is that when a
note is spent, the spender only proves that some commitment

for it had been revealed, without revealing which one. This
implies that a spent note cannot be linked to the transaction
in which it was created. That is, from an adversary’s point
of view, the set of possibilities for a given note input to a
transaction includes all previous notes that the adversary does
not control or know to have been spent.

Bulletproofs. Bulletproofs are shorter zero-knowledge proofs
that were proposed in [22] and are based on the work of
Bootle et al. [20]. While SNARK requires the use of pairing-
based cryptography, and bilinear pairing groups in particular,
Bulletproofs are based on discrete log computation; hence,
Bulletproofs are suitable for all elliptic-curve algorithms and
can prove arbitrary arithmetic circuit. For the prover’s running
time, Bulletproof is much faster than zk-SNARK; however,
the verifier’s running time is typically similar to the prover’s
running time, which is linear in the statement execution. It
means that Bulletproofs cannot be used to achieve verifiable
computation sourcing, as the verifier needs to spend an equal
amount of time to verify the proof. In Monero, Bulletproofs
substantially reduce the size of transactions by replacing
Borromean signature [46] in generating range proofs.

Disadvantages of zero-knowledge proofs. Zero-knowledge
proofs (ZKP) can provide strong anonymity guarantees, as in
Zcash and Zerocoin; however, they suffer a few disadvantages.
First, while various work in literature studied their subversion
resistance [15][10], it is proven that non-interactive ZKPs
for general NP language must require some trusted setup
assumptions, such as, the security parameter’s generation
ceremony in Zcash, which are susceptible to subversion. Also,
the proof generation and verification can be computationally
inefficient. More importantly, the prover’s efficiency is far
from being practical for large-scale statement and/or verifiable
computation.

F. Stealth Addressing

Stealth addressing is a technique proposed as part of the
CryptoNote protocol [59] to hide the recipient’s identity (or
address). In short, the sender, Alice, uses Diffie-Hellman
exchange [27] to compute a shared secret and generate a
one-time destination address that can only be identified by
the intended recipient, Bob. Specifically, let’s assume Bob’s
public key is the pair (A,B) that corresponds to his private
key (a, b), such that A = aG, and B = bG, where G is the base
point of the used elliptic curve. In this case, Alice generates a
random number r, and a one-time address P =Hs{rA}G+B,
where Hs is a collision-resistant cryptographic hash function.
Along with P , Alice sends R = rG as part of the transaction.
Bob checks every transaction using his private key (a, b) and
computing P

′

=Hs{aR}G +B. If the transaction is destined
for Bob, then P

′

= P .
More generally, the stealth addressing technique can gen-

eralised to any non-interactive key exchange (NIKE) together
with the public key system. Hence, the above scheme can be
easily extended to a post-quantum secure stealth addressing
scheme by replacing the underlying primitives.



Anonymity Tier Anonymity Technique

# crypto-
currency

pseudo-
anonymity

set
anonymity

full
anonymity +CT pseudonymous

addresses
ring

signature mixers commitments ZKP (1) bullet-
proofs

stealth
addressing

1 Bitcoin ✓ ✓
2 Ethereum ✓ ✓
3 Ethereum Classic ✓ ✓
4 Bitcoin Cash ✓ ✓
5 Bitcoin Diamond ✓ ✓
6 Litecoin ✓ ✓
7 Cardano ✓ ✓
8 IOTA ✓ ✓
9 Dogecoin ✓ ✓
10 NEM ✓ ✓
11 Nano ✓ ✓
12 Lisk ✓ ✓
13 Waves ✓ ✓
14 Tether ✓ ✓
15 USD Coin ✓ ✓
16 Dash ✓ ✓
17 Bytecoin ✓ ✓ ✓
18 Monero ✓ ✓ ✓ ✓ ✓
19 Zerocoin ✓(2) ✓ ✓ ✓
20 Zcash ✓(3) ✓ ✓ ✓

TABLE IV: Categorization of 20 cryptocurrencies and protocols according to their tier of privacy and used techniques. (1) Zero-knowledge proofs. (2) The anonymity of a spent
coin is relative to the number of minted coins before spending this coin. (3) This is with respect to shielded transactions.

Fig. 4: Timeline of Monero privacy enhancements [9][5].

IV. DISCUSSION

Cryptocurrencies, tiers of anonymity, and techniques.
Table IV summarizes the tiers of anonymity offered in 20
currencies and the techniques they implement to achieve
privacy and anonymity.

Comparison between different schemes. As shown in Ta-
ble IV, one can conclude that ZKP and commitments are
used to achieve the highest tier of anonymity; full anonymity.
However, these two techniques can increase the computational
cost, and may require a trusted setup. Therefore, anonymity
schemes shouldn’t be assessed only by considering the level of
anonymity they provide but by jointly examining three factors:
1) the level of anonymity provided by using the scheme, 2) the
scheme’s computational efficiency, and 3) the extent of needed
trust to use the technique.

Technology trend. The future technological trend in privacy
mechanisms is best exemplified by Monero’s evolution since
its inception. As shown in Fig. 4, Monero was initially based
on the CryptoNote protocol which uses linkable ring signatures
and then evolved over time and adapted the use of Bulletproofs
to replace Borromean signatures in its RingCT’s rangeproofs.
This demonstrates the continuous quest for cryptocurrencies to
adapt privacy schemes that: 1) offer a higher tier of anonymity,
2) require less generation and verification time, 3) produce
more succinct proofs, 4) do not require trusted setup, and
5) possibly, result in minimal transaction fees. The design of
new anonymity schemes should also consider their impact on

the forkability of the cryptocurrency [68].

Open problem. There are some known intrinsic vulnerabilities
concerning anonymization in cryptocurrencies and blockchains
in general. One of these vulnerabilities is leaking the user’s
IP address and timestamp whenever a user broadcasts a
transaction. This can be exploited, as demonstrated in many
works [36][16][17][29], to de-anonymize the users regardless
of the specific blockchain application they are using. Further-
more, even when using an anonymization tool, like Tor, users
can still be de-anonymized as previously discussed in Sec. III.

V. RELATED WORK

In 2015, Bonneau et al. [18] presented the first SoK to
generally survey issues related to Bitcoin and altcoin. With
specific focus on Bitcoin, Conti et al. systematically surveyed
security and privacy issues in Bitcoin, and listed respective
countermeasures [25]. Other surveys on general security issues
in blockchains include the work of Li et al. [39], the work
of Dasgupta et al. [26], and the survey of Joshi at al. [34].
The work of Khalilov et al. [38] presents a comprehensive
survey of all studies related to anonymity in Bitcoin, and
studies related to anonymity in schemes that are improvements
to Bitcoin and other schemes that are alternative to Bitcoin.
However, unlike our work, the work of Khalilov et al. [38]
does not categorize cryptocurrencies in terms of the level of
anonymity they provide, nor does it thoroughly explain the
used privacy techniques.

VI. CONCLUSION

In this work, we presented a high-level categorization of
the anonymity guarantees offered in cryptocurrencies, and
showed that most cryptocurrencies, 15 out of 20, still use the
most primitive level of anonymity; pseudonymity. Besides, we
explained the used anonymity schemes and their weaknesses.
Finally, we assessed the different anonymity techniques and
presented a forecast for their future technological trends.
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