
Models in the Cloud: Exploring Next
Generation Environmental Software Systems

Will Simm1, Gordon Blair1, Richard Bassett2, Faiza Samreen1, and Paul
Young2

1 School of Computing and Communications, Lancaster University, UK
w.simm@lancaster.ac.uk

http://www.ensembleprojects.org
2 Lancaster Environment Centre, Lancaster University, UK

Abstract. There is growing interest in the application of the latest
trends in computing and data science methods to improve environmental
science. However we found the penetration of best practice from com-
puting domains such as software engineering and cloud computing into
supporting every day environmental science to be poor. We take from
this work a real need to re-evaluate the complexity of software tools
and bring these to the right level of abstraction for environmental sci-
entists to be able to leverage the latest developments in computing. In
the Models in the Cloud project, we look at the role of model driven
engineering, software frameworks and cloud computing in achieving this
abstraction. As a case study we deployed a complex weather model to the
cloud and developed a collaborative notebook interface for orchestrating
the deployment and analysis of results. We navigate relatively poor sup-
port for complex high performance computing in the cloud to develop
abstractions from complexity in cloud deployment and model configura-
tion. We found great potential in cloud computing to transform science
by enabling models to leverage elastic, flexible computing infrastructure
and support new ways to deliver collaborative and open science.

Keywords: cloud computing · environmental modelling · data science.

1 Introduction

Models in the Cloud is a three year project which sets out to explore the oppor-
tunity for a paradigm shift in the support offered by cloud computing for the
execution of complex environmental models. Cloud computing is having a major
and transformative impact on many areas of society, including in smart cities,
eCommerce and eGovernment. Significant advances are being made in these ar-
eas and cloud computing is proving to be of significant benefit in minimising
up-front investment, achieving economies of scale, supporting elasticity in the
underlying computational/ storage capacity and out-sourcing of the infrastruc-
ture management [6].

These advances present a new opportunity for configuring computing on de-
mand, and provide a fabric of services that can be configured and combined to



2 W. Simm et al.

support new modes of working. In visioning the future, consider that the code
for a software model of the environment is constrained by the computer system
it is to be deployed upon, traditionally a desktop computer or a high perfor-
mance parallel computing environment. Here, the experiment is designed to fit
the available computer. Now consider that cloud computing effectively allows
you to design a computer around your experiment, removing constraints in a
flexible, on demand, dynamic environment, then the potential opportunities for
science are vast.

In his call to action for software engineers, Easterbrook [3] specifically identi-
fies ‘Computer-Supported Collaborative Science’ as a fundamental way in which
software engineering can contribute to addressing the grand challenge of climate
change. He identified that through supporting earth system models with soft-
ware engineering tools and techniques we can accelerate the process of getting
scientific ideas into working code.

Blair et al. [2] laid out a roadmap of 10 challenges for research in data science
of the natural environment. These research challenges cross-cut the themes of
data acquisition, infrastructure, methods and policy making and are summarised
here: 1) supporting a cultural shift towards more open and more collaborative
science; 2) build on cloud computing, extending the levels of abstraction for the
domain of science; 3) address complexity more fundamentally and explicitly, e.g.
data science techniques to address extremes and emergent behaviours; 4) provide
the tools to reify uncertainty and reason about cascading uncertainty; 5) seek
adaptive techniques such as adaptive sampling or adaptive modelling driven by
uncertainty considerations; 6) seek approaches that deal with epistemic uncer-
tainty in environmental modeling and links with dealing with emergent behavior
in complex and irreducible phenomena; 7) seek novel data science techniques,
especially those that can make sense of the increasing complexity, variety and
veracity of underlying environmental data; 8) seek innovations in modeling by
combining process models with data-driven or stochastic modeling techniques;
9) incorporate sophisticated spatial and temporal reasoning, including reasoning
across scales; and 10) discover new modes of working, methods and means of
organization that enable new levels of cross-disciplinary collaboration.

In this work we primarily address challenge 2) and see running models in
a collaborative, elastic cloud environment is fundamental to underpin many of
the other challenges. In supporting new modes of science, it is critical to provide
tools at the right level of abstraction for uptake by scientists in their work, and
it is through the lens of abstraction that this project focuses to ascertain what
is in place and what is required to leverage cloud computing.

Abstracting from underlying compute infrastructure and defining interfaces
and datastores for environmental models will allow models to be connected and
run more efficiently, and to allow scientists to concentrate on the science, re-
sulting in a better understanding of phenomena and uncertainties which would
hopefully be reflected in better policy informed by results. This work forms a
core pillar of technology enabling the concept of ‘models of everywhere’ - a vi-



Models in the Cloud: Exploring Next Gen Environmental Software Systems 3

sion to have models of everywhere, models of everything and models at all times,
being constantly re-evaluated against the most current evidence [1].

In prior work we published a qualitative study with environmental modellers,
and an implementation and associated feedback from modellers on a cloud de-
ployment of a complex weather model [9]. This paper summarises that work,
adds further analysis and describes the next steps taken.

The aim of this research is to determine if the principles and approaches exist
to leverage cloud computing at a usable level of abstraction, and to inform the
development of new tools and practices. This paper contributes the approach
we took, the lessons learned from qualitative and experimental work, and adds
reflections on lessons learnt to inform taking this work forward.

2 Methodology

As part of an interdisciplinary team of researchers 3, we undertake agile research.
This involves relatively short cycles of “Plan - Act - Reflect”, with each cycle
informing the next. Supporting this work is an evolution of the Speedplay re-
search methodology [4], rooted in participatory design that sees the computer
scientists and environmental scientists in equal partnership, developing together.
In this research we will go full circle, not just unravelling and understanding the
opportunity, but designing and building technologies with end users embedded
in the process.

We had end users as collaborators embedded throughout the project, the
research team was comprised of experienced computer scientists and environ-
mental modellers. We first did a qualitative study phase with environmental
modellers from across the spectrum of the modelling community, this allowed us
to up skill in understanding, shared language and get a handle on the challenges
faced by modellers. It also helped focus the resources of the study.

We went onto an experimental phase where we began ‘learning through doing’
- exploring the application of abstraction technologies to this domain, putting
models into cloud architectures and learning about the challenges in doing this
both from computing and environmental science perspectives. This is the ‘Act’
part of the cycles in which feedback and reflection is embedded in directing the
research.

3 Qualitative Phase

We undertook a study consisting of semi-structured interviews and demonstra-
tions with a diverse group of five environmental scientists engaged in writing
software to model a variety of environmental systems and processes. The pur-
pose of the study was to gain an understanding of how environmental models are
developed and deployed, and the computing tools and architectures which are
used. These sessions also up skilled both computer and environmental scientists

3 https://www.ensembleprojects.org/



4 W. Simm et al.

in their domain languages (e.g. cloud in the sky vs cloud computing, environ-
mental model vs software model) and understanding of each other’s domain.
Further detail is in Simm et al. [9] but the findings are summarised and analysis
extended here.

We selected our 5x participants from those working with a range of model
complexities, from small scale statistical models of insect population to commu-
nity developed global climate models. This was to enable us to gain an under-
standing of the challenges and opportunities at each scale. We grouped findings
under Technical, Scientific and Human headings, for brevity just the main tech-
nical findings are summarised here [9]:

Computational Demands and Resources required by models varied
from desktop machines to institutional high performance computing (HPC) fa-
cilities. When running models on HPC, in depth systems administration skills
are required such as file system preparation, shell script writing and good com-
mand line familiarity. Data is input and output in flat files not data stores, and
sorted and downloaded by FTP and shared by email. Projects are not costed to
include projected compute costs or support form experienced software engineers.

In terms of Computational Skills and Expertise each of the participants
had self-taught programming and systems admin without a formal education in
computing. Code is frequently written as a monolith with little thought to code
reuse or defining interfaces or structure.

Code Understanding - models are written in scientific languages such as
Fortran, Matlab and R, often models are configured and run with Bash scripts
and results are analysed using Python and R. Code is often not well commented
and is difficult for others to understand, and Integrated Development Environ-
ments (IDEs) are not used often except for Matlab and R.

Version Control systems are not widely used, code (and data) being shared
by email amongst collaborators rather than using version controlled repositories
which leads to confusion about the ‘latest version’ and why changes are made
and by whom.

Fault Tolerance and Resilience is good in large community models, al-
lowing them to restart after a crash. However many models are difficult to debug
and understand why crashes have occurred.

(In)efficiency arises from needing to download large data files (sometimes
10’s of GiB) to extract the small amount of data for focus as data is stored in
flat file format rather than query-able data stores. Code reuse is poor, languages
like R do not enforce object orientated styles, and the choice of language is
sometimes sub optimal, e.g. R is good at statistical modelling but often used for
many other things.

Compatibility - the interfaces for running models are not abstracted from
the models - in depth knowledge of the model is required to configure, parame-
terise and run models. Data input and output is usually flat file CSV, netCDF
and Excel spreadsheet format.

This phase of embedding computer scientists in the environmental modelling
domain allowed us to grasp the challenges faced by environmental modellers and



Models in the Cloud: Exploring Next Gen Environmental Software Systems 5

understand what appropriate abstractions over computing complexity might be.
The main finding of this phase of work from the perspective of this project is
that the code of environmental models is deeply entwined with the architecture of
the conventional computing systems and the working practices of environmental
scientists. There is a great desire to move the science on from this complexity,
which we believe could be achieved through abstraction. Indeed, to foster greater
understanding of uncertainty in models of environmental systems, models runs
may need to be more efficient and run many more times in many more places
with approaches such as models of everywhere [1]. Software engineering achieves
the separation of concerns through abstraction using modularity, frameworks and
defined interfaces; these practices are not often seen in day to day environmental
modelling, possibly due to a lack of SE training, but mainly due to the absence
of tools at a usable level of abstraction for this domain.

The offline mode of working makes sharing and collaborating difficult, we
found our participants indicated closer collaboration would be desirable for sci-
ence. Code is not released to the community because it is not considered robust
or efficient; usually this is because of concerns about input data, misunderstood
bugs or the specifics of a system such as configuration of dependencies. A soft-
ware engineer can see much of this could be resolved through abstraction (e.g.
by using pre-built data cleaning libraries rather than unique data cleaning code),
changes to code writing style to make debugging easier, and using dependency
management tools.

3.1 Opportunities for Abstraction

Computational abstraction alone will not address the problems identified in the
qualitative work, social factors are important as well, but beyond the scope of
this paper. However we believe abstracting from computational complexity can
play a significant role at multiple levels:

1. At the model code level: Software frameworks and robust software engi-
neering practices such as defined interfaces and modular code architectures
would allow code reuse, reduce dev time and reduce the need for debugging.

2. At the infrastructure level: By removing the reliance on the desktop and
HPC there is the opportunity to deploy models to new and flexible architec-
tures provided by cloud computing. There are multiple additional benefits
here of opening access to experiments for collaborative science, and access
to data stores and data science tools already present in cloud offerings.

3. At the model configuration level: Complex models have interdependence
across a huge volume of configurations, the interaction of which needs to be
understood, and sometimes the same value needs to be specified in multiple
places.

4. At the model parameterisation level: There is a range of methods to
parameterise models, often involving multiple model runs before settling on
a suitable parameter set.



6 W. Simm et al.

The first opportunity is perhaps symptomatic of a lack of core software en-
gineering skills within the community writing software models. It cannot be
addressed without significant re-engineering of models; our participants pledged
to learn about best practice but software frameworks for developing and running
models would support this.

The second is one area in which we chose to focus our efforts by deploying
models to the cloud to explore the opportunity, and look for tools at the right
level of abstraction to enable an environmental modeller to configure and deploy
a suitable infrastructure for their experiment.

The third is another area we looked at, and felt their was an opportunity for
techniques such as Model Driven Engineering (MDE) to build a software model
of the complexities in configuration of environmental models.

The fourth we have considered and propose that techniques from AI and
machine learning can reduce the parameter space and help the scientist to select
the most suitable parameters for their experiment, but only if models exist in
an on demand, flexible cloud infrastructure supported by fit for purpose data
stores and powerful data science machines.

4 Experimental Phase

This phase describes approaches to abstracting over i) the complexity in the
configuration and deployment of an environmental model (abstraction 3 above)
and ii) the complexity in cloud deployment of the model (abstraction 2 above).
We created a tool for the configuration experiments, and a cloud deployment of
the Weather Research and Forecasting (WRF) model. Here, we raise the level of
abstraction through reducing the complexity of configuration and deployment,
leveraging the on demand scale-ability of cloud architecture.

4.1 WRF

The Weather Research and Forecasting (WRF) model [10] is a large community-
based endeavour (around 40,000 users), supported by the National Center for
Atmospheric Research (NCAR). The model is primarily used for atmospheric
research and forecasting across a wide range of scales (thousands of kilometres
to meters). The diverse range of extensively validated science WRF can simulate
includes regional climate, air quality, urban heat islands, hurricanes, forest fires,
and flooding through coupling with hydrological models.

WRF is chosen as a case study here for the following reasons: i) WRF instal-
lation is viewed as a barrier to use; ii) cloud resources will enable WRF users to
conduct simulations beyond current capability [7]; iii) WRFs open-source nature
and portability; and iv) benefits will impact WRFs large community user base.

4.2 Configuration and Collaboration

Model Driven Engineering (MDE) is an approach to managing complexity
in software systems and to capture domain knowledge effectively [8]. Domain



Models in the Cloud: Exploring Next Gen Environmental Software Systems 7

knowledge is captured in a software model of the system, this model is configured
using Domain Specific Languages (DSLs) that relate to the application domain
and potentially the underlying platform features. Code is then generated by the
model using transformation approaches to configure and deploy the system being
modelled. This approach has been applied successfully in a variety of areas [8]
including in industry settings [5].

In this work we investigated using this approach to develop DSLs to allow
scientists to describe an experiment, with the underlying software model manag-
ing the generation of code to configure the environmental model appropriately,
deploying the model to appropriate flexible cloud infrastructure and returning
results. In exploring the tools available, we found they are not able to support
such a vision at the current state of readiness. There are so many complexities
and flexibility required in configuring models like WRF for the many different
uses, that to hard code a set of rules into a DSL was not an approach that was
likely to be successful.

Instead we decided to use a general purpose language to manage the config-
uration and deployment, and proposed embedding a future ‘learning’ approach
that would match experimental configurations to infrastructures, and would be
able to recommend an appropriate architecture for an experimental configu-
ration. In our qualitative phase we found our participants were familiar with
languages such as R and Python, often used to process data and produce visu-
alisations.

In taking this MDE-lite approach, we produced a Python object based model
of a WRF experiment configuration, that allows configuration using standard
Python constructs. The Python package f90nml4 allows the object to gener-
ate Fortran 90 namelist files that are used to configure WRF, these are auto-
uploaded to the WRF instance for deployment. This provides a layer of abstrac-
tion over the skills required to login to an instance, navigate the file system,
and edit the Fortran namelist file without introducing errors. No configuration
dependencies are managed in this first iteration, but this can be added to the
Python model in future.

Code notebooks such as Jupyter5 are now widely used in the data science
community to collaborate and annotate data analysis. They are online environ-
ments, often hosted in the cloud (but not necessarily publicly available) that
allow code to be edited and run with multiple collaborators. They allow mixed
mode documentation, with in line code and output visualisation from many
modern programming languages, including Python and R. They are able to pull
in data from outside sources and write out data to attached cloud native stores
or via API.

For our purposes a Jupyter code notebook provides an ideal space for envi-
ronmental scientists to control modelling experiments. Whilst it would not be
possible to run a complex model such as WRF in the notebook, it is possible to
configure a run experiments via system APIs. The model can be configured us-

4 https://pypi.org/project/f90nml/
5 https://jupyter.org/



8 W. Simm et al.

ing our Python object based configuration tool, and the experiment run outside
of the notebook (either on the same machine or an external ‘cloud burst’) with
output data returned to the notebook for collaborative analysis. The notebook
allows the experiment to be documented (supporting scientific reproducibility)
and shared, extending the reach of the experiment.

4.3 Cloud Deployment of WRF

We built a scripted cloud deployment of WRF, and evaluated usability, perfor-
mance and cost metrics. This installation script dealt with dependencies and
the configuration and compilation required to run WRF on the Microsoft Azure
cloud platform. The script is automated as far as possible, however in a number
of places unavoidable user input is requested from the WRF installer.

The architecture of the WRF model itself is complex, described by [10]. Our
standard cloud configuration consisted of a Message Passing Interface (MPI)
supported cluster of 9 standard compute nodes from the Microsoft Azure Dsv3-
series each having a 3.2 GHz Intel Xeon E5-2673 v4 (Broadwell) processor. One
node is a master node taking care of all the compilation and providing a means
of sharing the storage and computation with all the nodes.

We used a predefined image of Ubuntu Server 16.06 LTS for each of the cluster
machines and each node has 8 processors with 32 GiB RAM and temporary
storage of 64 GiB that is considered a secondary storage for each compute node.
We used the GNU Fortran and GCC compilers. The cluster provides primary
storage of 100 GiB shared amongst nodes via the Network File System (NFS).
The shared location contains all the simulation related input/output data and
files required for WRF configuration as well as compilation. All the cluster nodes
and storage are deployed in Western Europe under one secure virtual network
and have friction-less access to enable data sharing and execution of MPI jobs.

An expert user group of 6 regular WRF users agreed that our automated
WRF deployment successfully abstracted over the major hurdle of initially in-
stalling the model. They helped to develop the use cases that we used in devel-
oping the work: A) removing barriers to entry for new users, allowing them to
immediately run experiments; B) users wanting to run the model in a standard
way to feed results into other models; and C) power users wishing to deploy
massively in parallel and without waiting for institutional HPC queue times [9].

4.4 Mechanisms for Cloud Computing Configuration

To build on this scripted installation, we investigated key mechanisms to ab-
stract over the complexities of configuring compute architecture, by exploring
different modes of cloud deployment. We wanted to retain as much flexibility in
the deployment whilst retaining usability for our use cases.

Portal configuration. The scripted installation described above requires
the manual configuration of the cluster from the Azure web portal, or defined
in code using their Infrastructure As Code (IAC) offering, which are general
purpose interfaces and require a deep understanding of the desired infrastructure.



Models in the Cloud: Exploring Next Gen Environmental Software Systems 9

Because of this knowledge required, it is perhaps not a suitable interface for our
use cases except perhaps (C) the power user who may have an understanding of
the relative merits of different cluster configurations and be able to fine tune to
their experiment manually. Since the WRF installation is not fully automated,
it still requires user interaction.

Containerisation is a mechanism whereby the software environment includ-
ing dependencies for a particular application is defined in code. These containers
are infrastructure agnostic, so can be deployed to any suitable provider. However
the MPI architecture of the WRF model makes it unsuitable for containerisa-
tion - MPI is the mechanism by which messages are transferred between nodes,
and we found little support for this in existing technologies. This situation is
changing, with a number of providers beginning to offer support for MPI 6.

LibCloud is a Python library for interacting with many cloud providers,
abstracting from their specific IAC offering. This allows a provider agnostic
configuration of a cloud infrastructure from a notebook, however it is again
general purpose and does not encompass every offering from every provider. It
is designed for the computer scientist, and does not really abstract from the
complexity of deploying a cloud computing system, just from the differences
that individual cloud providers might have for their standard machines. It also
does not get around the user interaction required for installing WRF so perhaps
only suitable for use case (C).

Infrastructure As A Service (IAAS) allows the replication of predefined
and configured machine images, allowing standard node with WRF installed to
be instantiated on demand. In Azure this can be in their machine image library
for anyone to use, and other providers have similar facilities.

In summary, the IAAS approach was selected as being most suitable for our
WRF cloud deployment as it means deployment is instantaneous with no user
interaction required in getting a system running WRF running, so good for use
cases (A) and (B). However this reduces flexibility for (C) in terms of virtual
machine specification as it is tied to a specific standard machine type offered by
our cloud provider. Without re-engineering the WRF installer, or WRF itself it
was not possible at this time to create a cloud-native, provider agnostic system
without user input in the installation.

4.5 Experimental System

The IAAS approach whilst reducing ultimate flexibility in infrastructure, allowed
us to explore how WRF might be configured and deployed from a notebook envi-
ronment. We built a demonstrator using the Azure SDK for Python to configure
and deploy a WRF cluster from within a Jupyter notebook running on an in-
stance of Azure data science machine and so far a number of test experiments
have been run.

6 https://www.stackhpc.com/the-state-of-hpc-containers.html



10 W. Simm et al.

Fig. 1. WRF-Cloud System Architecture

Ongoing Work: The next stage
in developing this system is to inte-
grate the WRF namelist configuration
tool to the same notebook, and re-
turn results as an attached data store
to the machine. The same Jupyter
notebook can then be used to sort
output data and prepare data visu-
alizations. In this way the whole ex-
periment can be orchestrated through
a single collaborative notebook inter-
face, which is version controlled and
can be archived easily. Figure 1 shows
this visually.

5 Reflections

The key successes of this project were in using the WRF case study to navi-
gate available technologies to create useful abstractions not only to enable the
scientist to focus on science, but in support of Easterbrook’s vision of the next
generation of computer supported collaborative science [3]. A vision where mod-
els form part of a service fabric of technologies that can be recombined and run
an unlimited number of times to explore the specifics of place and rationalise
about uncertainty. The work underpins Blair’s ten challenges to environmental
data science community [1] and leverages the elasticity and flexibility of cloud
computing to provide on demand, scale-able computing.

Adapting WRF to a cloud computing infrastructure and attempting to lever-
age the latest advances was bound to face some challenges. WRF has been de-
veloped over decades and consists of about half a million lines of Fortran code.
Fortran is especially good at large scale numerical simulation, however it is not
a typically supported language in the modern software industry and hence cloud
computing platforms. The MPI libraries for parallelising code were written for
Fortran and C++, and support for these is low in cloud native technologies such
as containerisation, although this is changing as more cloud providers consider
supporting scientific applications. Containerisation allows complete abstraction
from underlying compute architecture, and would make deployment on new gen-
erations of machines possible. As such it was not possible during the project to
leverage these cutting-edge technologies to run WRF, and we had to step back
to an IAAS approach of using machine images to explore our ideas.

Installing and compiling WRF on new machines is a chore, and requires an
advanced computing skill set. Our demonstrator of an auto-install of WRF to
the cloud was an eye-opener for many of our participant scientists. The ability to
simply spin up a virtual machine pre-installed with WRF is beginning to be used
in teaching labs, instead of requiring students to go through the long error-prone
process. This was a successful exercise in abstraction from complexity.



Models in the Cloud: Exploring Next Gen Environmental Software Systems 11

We found the tools developed by the MDE research community to be unable
to capture the complexity of WRF deployment without reducing the flexibility
required by the wide range of use cases - they required hard coding a set of
configurations. However we designed a Python tool to allow the scientist to
retain full control of the experimental configuration, without risking errors in the
generation of a Fortran namelist configuration file, that in future could manage
configuration dependencies and abstract from configuration complexities.

We added further abstraction from the cloud provider’s interface by bringing
these tools together into a now becoming familiar Jupyter notebook, writing
code to deploy a WRF system from within the notebook, which can then also be
used to analyse results in a collaborative environment that describes the whole
experiment. An obstacle we are facing in completing this vision is the poor
support of WRF’s netCDF output files, which are designed for flat file stores.
Other groups are working on this, for example Unidata at UCAR7.

6 Conclusion

In this project we aimed to find out if the principles and approaches exist to
leverage cloud computing at a usable level of abstraction in environmental mod-
elling, and we found we were able to make usable abstractions from complexity
in deployment of the WRF model to cloud, and the configuration of WRF. We
found a notebook based approach supports new practices in collaborative and
open science through the ability to describe and run an experiment in a single
notebook document that can be shared and examined by others. Our findings
can be generalised to other complex models, specifically MPI based models but
learning is applicable to many others.

The abstractions proposed and explored through this project mean that WRF
could form part of a cloud service fabric consisting of many models, data stores
and data science services that could run as many times and in as many combi-
nations as desired. Add in cloud based machine learning facilities and a system
could propose its own infrastructures based on the experiment to be run, as
well as help to reduce the workload of scientists in terms of reducing parameter
spaces when parameterising models. These abstractions also have potential to
be significant when operationalising code which needs to run continuously and
effectively, allowing code to be run on diverse and shared architectures.

Future work will involve ‘closing the loop’ by returning outputs from WRF
to the notebook by connecting output data to a cloud native data store, thus
enabling the analysis of output within the same notebook, but also powerfully
interfacing output to other models as part of the aforementioned service fabric.
This work primarily focused on technical factors, but equally there are many
social factors at play in defining the software and hardware architectures in use
in environmental science. Future work could include exploring the barriers these
present to the take up of new computing technologies.

7 https://www.unidata.ucar.edu/blogs/news/entry/netcdf-and-native-cloud-storage



12 W. Simm et al.

7 Acknowledgements

Thanks to the wider Ensemble team (https://www.ensembleprojects.org/) for
their support. This work is supported by “Models in the Cloud: Generative
Software Frameworks to Support the Execution of Environmental Models in the
Cloud” EPSRC: EP/N027736/1 and a Microsoft Azure AI for Earth grant.

References

1. Blair, G.S., Beven, K., Lamb, R., Bassett, R., Cauwenberghs, K., Hankin, B., Dean,
G., Hunter, N., Edwards, L., Nundloll, V., Samreen, F., Simm, W., Towe, R.: Mod-
els of everywhere revisited: A technological perspective. Environmental Modelling
& Software p. 104521 (2019). https://doi.org/10.1016/j.envsoft.2019.104521

2. Blair, G.S., Henrys, P., Leeson, A., Watkins, J., Eastoe, E., Jarvis, S., Young,
P.J.: Data science of the natural environment: A research roadmap. Frontiers in
Environmental Science 7, 121 (2019). https://doi.org/10.3389/fenvs.2019.00121

3. Easterbrook, S.M.: Climate change: A grand software challenge. In: Pro-
ceedings of the FSE/SDP Workshop on Future of Software Engineering
Research. pp. 99–104. FoSER ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1882362.1882383

4. Ferrario, M.A., Simm, W., Newman, P., Forshaw, S., Whittle, J.: Software en-
gineering for ’social good’: Integrating action research, participatory design, and
agile development. In: Companion Proceedings of the 36th International Confer-
ence on Software Engineering. pp. 520–523. ICSE Companion 2014, ACM, New
York, NY, USA (2014). https://doi.org/10.1145/2591062.2591121

5. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of mde in industry. In: Proceedings of the 33rd International Conference on
Software Engineering. pp. 471–480. ICSE ’11, ACM, New York, NY, USA (2011).
https://doi.org/10.1145/1985793.1985858

6. Johnson, R.E.: Frameworks = (components + patterns). Commun. ACM 40(10),
39–42 (Oct 1997). https://doi.org/10.1145/262793.262799

7. Powers, J.G., Klemp, J.B., Skamarock, W.C., Davis, C.A., Dudhia, J., Gill, D.O.,
Coen, J.L., Gochis, D.J., Ahmadov, R., Peckham, S.E., Grell, G.A., Michalakes, J.,
Trahan, S., Benjamin, S.G., Alexander, C.R., Dimego, G.J., Wang, W., Schwartz,
C.S., Romine, G.S., Liu, Z., Snyder, C., Chen, F., Barlage, M.J., Yu, W., Duda,
M.G.: The weather research and forecasting model: Overview, system efforts, and
future directions. Bulletin of the American Meteorological Society 98(8), 1717–
1737 (2017). https://doi.org/10.1175/BAMS-D-15-00308.1

8. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. Computer
39(2), 25–31 (Feb 2006). https://doi.org/10.1109/MC.2006.58

9. Simm, W.A., Samreen, F., Bassett, R., Ferrario, M.A., Blair, G., Whittle, J.,
Young, P.J.: SE in ES: Opportunities for software engineering and cloud comput-
ing in environmental science. In: Proceedings of the 40th International Conference
on Software Engineering: Software Engineering in Society. pp. 61–70. ICSE-SEIS
’18, ACM, New York, NY, USA (2018). https://doi.org/10.1145/3183428.3183430

10. Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., Huang,
X.Y., Duda, M.: A description of the advanced research wrf version 3 (2008).
https://doi.org/10.5065/D68S4MVH


