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Abstract

We extend the Uniform Mixture Model of Gao, An and Bai (2019) to the case of linear regression. Gao, An

and Bai (2019) proposed that to characterize the probability distributions of multimodal and irregular data observed

in engineering, a Uniform Mixture Model can be used. This model is a weighted combination of multiple uniform

distribution components. This case is of empirical interest since, in many instances, the distribution of the error term

in a linear regression model cannot be assumed unimodal. Bayesian methods of inference organized around Markov

Chain Monte Carlo are proposed. In a Monte Carlo experiment, significant efficiency gains are found in comparison to

least squares justifying the use of the Uniform Mixture Model.
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1 Introduction

Gao, An and Bai (2019) proposed that to characterize the probability distributions of multimodal and irregular data

observed from practical engineering, a Uniform Mixture Model (UMM) can be used, which is a weighted combination

of multiple uniform distribution components. As these authors notice, because of noise in many data sets, “probability

distributions of observed data can not be accurately characterized by typical unimodal distributions (such as normal,

lognormal, and Weibull distributions), and the adequacy of typical unimodal distributions may be questioned”.

The uniform distribution in the interval (a, b) has probability density:

f(u) =


1

b−a , if a < x < b,

0, otherwise.

(1)

The UMM is defined by discretizing the support to points {a1, a2, ..., aN+1}, where N is given, and using the

following mixture density:

fUMM (u) =

N∑
j=1

wj
1

aj+1 − aj
I(aj < u < aj+1), (2)

where I(·) is the indicator function and the weights wj satisfy

wj ≥ 0, j = 1, ..., N,

N∑
j=1

wj = 1. (3)

2 The case of linear regression

Consider now a regression model of the form

yi = x′iβ + ui, i = 1, ..., n, (4)

where yi is the dependent variable, xi ∈ <k is a vector of explanatory variables, β ∈ <k is a vector of coefficients to be

estimated, and n > k is the number of observations. Suppose the first element of xi is unity so that an intercept is always

present in the model. Assuming the distribution of the error term, ui, is unknown but can be approximated by a UMM,

we must have E(ui|{xt}nt=1) = 0, i = 1, ..., n, which implies the following constraint:

E(ui|xi) =
N∑
j=1

wj
aj + aj+1

2
= ∆

N∑
j=1

jwj + a1 − ∆
2 = 0, (5)

assuming aj+1 − aj = ∆ ∀j. From (2) we have that:

fUMM (ui) =

N∑
j=1

wj
1

∆
I(aj < yi − x′iβ < aj+1), i = 1, ..., n. (6)
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Since aj = a1 + (j − 1)∆, we can write this equation as:

fUMM (ui) =

N∑
j=1

wj
1

∆
I(a1 + (j − 1)∆ < yi − x′iβ < a1 + j∆), i = 1, ..., n, (7)

which implies that

fUMM (ui) =

N∑
j=1

wj
1

∆
I(−∆ < yi − x′iβ − a1 − j∆ < 0), i = 1, ..., n. (8)

3 Statistical inference

3.1 Markov Chain Monte Carlo (MCMC) in general

Very often, complicated posterior distributions arise in statistics, operations research, and related field. Given a parameter

α ∈ A ⊆ Rd, and data D, suppose that the likelihood function is L (α;D). Suppose also we have a prior on the parameters,

say p(α). By Bayes theorem we know that the posterior is:

p(α|D) ∝ L (α;D)p(α). (9)

In general, we are interested in the posterior means of certain functions of interest, say f(α). The posterior mean

of this function of interest is:

Eα|D [f(α)] =
A f(α)p(α|D) dα

A p(α|D) dα
, (10)

where Eα|D [f(α)] denotes posterior expectation, and the denominator is the normalizing constant of the posterior. Part

of the problem could be to find marginal posterior densities. If we partition α = [α′
1, α

′
2] then the marginal posterior

density of α1 would be

p(α1|D) =
A p(α1, α2|D) dα2

A p(α|D) dα
. (11)

These integrals are typically, not available in closed form unless the problem is very simple. The Gibbs sam-

pler, a particular MCMC technique relies on the idea that we may be able to produce a sequence of parameter draws{
α(s), s = 1, . . . , S

}
, not necessarily iid, which converges (as S → ∞) to the posterior whose unormalized density is given

by (9). If such a sample were available, the posterior expectation in (10) could be accurately approximated as follows:

Eα|D [f(α)] ' S−1
S∑

s=1

f(α(s)). (12)

Therefore, a sampling approach would facilitate the tasks of Bayesian inference to a great degree. The Gibbs
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sampler relies on the idea that the sequence
{
α(s), s = 1, . . . , S

}
can be produced recursively by using the conditional

posterior distribution of each element of α. Suppose for example α = [α1, α2]
′ where α1, α2 are two scalar parameters for

simplicity (although clearly they can be vectors). The Gibbs sampler is as follows:

• Draw α
(s)
1 from its conditional distribution α1|α(s−1)

2 ,D,

• Draw α
(s)
2 from its conditional distribution α2|α(s)

1 ,D,

and so on, if there are additional parameters. We repeat for s = 1, . . . , S and we assume α(0)
2 is available. Quite often,

the conditional posterior distributions are univariate and amenable to random number generation by commonly available

means.

3.2 MCMC in the UMM linear regression model

Suppose now there is an index Ji ∈ {1, ..., N} so that

−∆ < yi − x′iβ − a1 − Ji∆ < 0, i = 1, ..., n, (13)

whose interpretation is that ui is drawn from a uniform distribution in (aJi
, aJi+1) with probability wj .

In turn, the posterior (augmented) distribution of the model is:

p(θ, {Ji}ni=1|D) ∝
n∏

i=1

wJi
I (−∆ < yi − x′iβ − a1 − Ji∆ < 0) p(θ). (14)

Here, θ is the parameter vector which includes β and some other elements as we explain below, and D denotes the

entire data set {yi, xi}ni=1. Therefore, we have:

p(θ, {Ji}ni=1|D) ∝ wn1
1 ...wnN

N

n∏
i=1

I (−∆ < yi − x′iβ − a1 − Ji∆ < 0) p(θ), (15)

where I(·) is the indicator function, nj =
∑n

i=1 I (−∆ < yi − x′iβ − a1 − j∆ < 0), and
∑N

j=1 nj = n. So, nj represents the

number of observations in the jth sub-interval.

It turns out that given ∆ and N the endpoint a1 can be estimated from the data. Define the parameter vector as

θ = [β′, a1, {Ji}ni=1, w
′]′. Given the Jis we must have:

a1 + (Ji − 1)∆ < yi − x′iβ < a1 + Ji∆, i = 1, ..., n. (16)

Therefore, the conditional posterior of regression parameters, β, is:

p(β|{Ji}, w, a1) ∝ const.,

s.t Ψ ≡ (mint=1,...,n yt − aJt) > x′iβ > (maxt=1,...,n yt − aJt) ≡ ψ, i = 1, ..., n.
(17)
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From (5) along with the posterior in (15) we have

max
t=1,...,n

(yt − x′tβ)−N∆ < a1 < min
t=1,...,n

(yt − x′tβ), (18)

where the first inequality comes from the restriction: aN+1 = a1 +N∆ > maxt=1,...,n(yt − x′tβ). Moreover, we have:

aN+1 = a1 +N∆. (19)

Therefore, the right endpoint can be expressed in terms of N, a1 and aN+1. If we wish to impose the constraint

a1 = −aN+1 then we have aN+1 = N∆
2 . In this case, a1 = −N∆

2 , and a1 has to be treated as given. We follow this

practice, throughout to simplify the analysis as treating a1 adds a layer of technicalities, although it is straightforward to

treat it as an unknown parameter. In practice, the support of the error can be accurately estimated using the standard

error of LS residuals.

Given {wj}, N and ∆, these equations determine the values of the endpoints. Suppose our prior is

p(β,w) ∝ w−1
1 ...w−1

N p(β), (20)

In turn, the conditional posterior of weights is:

p(w|β, {Ji}ni=1, D) ∝ wn1−1
1 ...wnN−1

N , (21)

subject to (3), which is a Dirichlet distribution.

From (17) we have that β has to be drawn from the prior p(β) subject to the restrictions that Ψ > x′iβ > ψ, i =

1, ..., n, as in (17). A particular convenient prior is the flat prior, viz. p(β) ∝ const. All the above techniques can be

implemented using straightforward Markov Chain Monte Carlo (MCMC) techniques organized around the Gibbs sampler

(Gelfand and Smith, 1990) by drawing successively random numbers from the conditional posterior distributions in (17)

and (21). In particular, for β we proceed as follows. The restrictions that Ψ > x′iβ > ψ, i = 1, ..., n, as in (17), can be

written, in matrix notation as:

Ψ1n > Xβ > ψ1n, (22)

where 1n is an n×1 vector of ones, and X is the n×k matrix of regressors. In turn, the posterior conditional distribution

of β is p(β) ∝ const. subject to these restrictions. Suppose X = [x1, ...,xk] where xj is the jthe column of X, an n × 1

vector. We can write (22) as follows:

Ψ1n > β1x1 + ...+ βkxk > ψ1n. (23)

Suppose we want to draw β1|β2, ..., βk, D. Then the conditional posterior distribution of β1 is uniform in < subject
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Table 1: Efficiency of regression-UMM versus LS
case (a) case (b) case (c) case (d)

n = 25 1.712 1.912 1.981 2.231
n = 50 1.515 1.832 1.872 1.945
n = 500 1.350 1.644 1.750 1.717
n = 1, 000 1.210 1.355 1.515 1.422
n = 10, 000 1.07 1.101 1.113 1.130

Notes: The results are based on 10,000 of Monte Carlo replications. The results refer to b1,LS and b1. The efficiency of b1,LS and b1 was quite similar
to the results reported above. We use 10,000 Monte Carlo simulations to examine the efficiency of LS versus UMM-regression-based techniques. MCMC
is implemented using 15,000 passes the first 5,000 of which are discarded during the “burn-in” phase. Initial conditions were obtained from LS and, in
all cases, we have N = 100 points in the support of the error term.

to the restrictions:

Ψ∗
1 ≡ Ψ1n −

∑
j 6=1

βjxj > β1x1 > ψ1n −
∑
j 6=1

βjxj ≡ ψ∗
1. (24)

We can draw β1 (conditional on all other βs) from a uniform distribution subject to the restrictions in (24) which are

enforced via rejection sampling. Repeating for each j = 1, ..., k we obtain draws from the posterior conditional distribution

of βj |β(−j), D, j = 1, ..., k. Finally, to obtain draws from the conditional distribution of {Ji}ni=1 we have:

p(Ji = j|β,w,D) ∝
n∑

t=1

I (a1 + (j − 1)∆ < yt − x′tβ < a1 + j∆) , j = 1, ..., N. (25)

In turn, we normalize πj = p(Ji=j|β,w,D)∑N
j′=1

p(Ji=j′|β,w,D)
, and we set Ji = j with probability πj , j = 1, ..., N . The Gibbs

sampler yields a sample
{
β(s), w(s), J (s)

}S

s=1
which converges to the posterior distribution whose non-normalized density

is given in (15), as S increases.

4 Monte Carlo evidence

We consider four cases for the distribution of the error term as in Figure 1.

For each case we assume that the sample size is n =25, 50, 100, 500, 1,000 and 10,000. We have two correlated

regressors: the first one, xi1 ∼ N(0, 1) and the second is xi2 = xi1 + 0.1εi, where εi ∼ N(0, 1), i = 1, ..., n. The regression

model is: yi = β0 + β1xi1 + β2xi2 + ui, where ui is generated according to cases (a) through (d). The true parameter

values are: β0 = 10, β1 = 1, β2 = −1.

Our interest focuses on comparing with least squares (LS) regression and the potential improvement in efficiency,

which is defined as Eff =
√
var(bj,LS)/var(bj), where j = 1, 2, bj,LS is the Bayes posterior mean estimate of βj from the

UMM model, bj,LS is the LS estimator of βj , and “var” denotes sampling variance. We use 10,000 Monte Carlo simulations

to examine the efficiency of LS versus UMM-regression-based techniques. MCMC is implemented using 15,000 passes the

first 5,000 of which are discarded during the “burn-in” phase. Initial conditions were obtained from LS and, in all cases,

we have N = 100 points in the support of the error term.

From the results in Table 1, regression-UMM-based techniques are considerable more efficient compared to LS

particularly for “small” samples (i.e. n ≤ 1, 000) although even at n = 10, 000 the improvement in efficiency is quite

evident. With n = 10, 000 the efficiency is close to unity but still the efficiency of UMM is larger (notice that LS is
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Figure 1: Cases
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Case (a): A mixture of five normals, with means –10, –5, 0, 5, 10, standard deviations 0.25, 1, 0.5, 1, 0.25, and
probabilities 0.2.
Case (b): A mixture of five Student-t densities with one degree of freedom and the same configurations as in Case (a).
Case (c): A mixture of five lognormal densities with one degree of freedom and the same configurations as in Case (a).
Case (d): A mixture of ten Student-t densities with randomly selected means using N(0, 102), randomly selected standard
deviations using |N(0, 1)| and ten randomly selected probabilities in the interval (0,1) normalized so that they sum up
to unity.
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Table 2: Bias and efficiency of LS estimator of β1 and UMM-regression
N = 10 N = 50 N = 100

bias LS 0.014
bias UMM 0.012 0.011 0.011

s.e. LS 0.011
s.e. UMM 0.009 0.007 0.007

Notes: s.e. stands for standard error.

best linear unbiased, but the UMM-regression estimator is not linear so efficiency gains are possible even in quite large

samples). Moreover, the regression-UMM-based estimator is, practically, unbiased as it mean squared error and variance

are very similar (results available on request). Finally, efficiency gains are largest in cases (b) and (c) where the mixing

components are far from normality (viz. Student-t with one degree of freedom and lognormal components).

Another interesting case is to consider ui ∼ N(0, σ2), i = 1, ..., n, where σ2 is estimated using the LS estimator

s2 =
∑n

i=1(yi−x′
ibLS)2

n−k , and bLS = (X ′X)−1X ′y. In turn, we know that the support of the error terms is, approximately,

(−3s, 3s) (perhaps too “generously”). Even a plot of LS residuals can inform us, at least in large samples, about the

support as well as the form of the distribution of errors.

Using the same data generating process as in cases (a), (b), and (c), we examine the bias and efficiency of LS

estimator of β1 and UMM-regression with n = 100 but different number of points (N) in the support of UMM-regression.

in Table 2.

For example the mean square error (MSE) of LS is 0.0112 + 0.0142 = 0.000317 while the MSE of UMM-regression

estimator with N = 50 is 0.0072 + 0.0112 = 0.00017 so the ratio of MSEs is almost 1.86. The MSE is lower compared to

LS even if we use only N = 10 points in the support of the error.
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