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Abstract

The essential dimension, edk(G), of an algebraic group G is an invariant that measures

the complexity of G-torsors over fields. The correspondence between algebraic tori

and finite subgroups of GLn(Z) means one can establish bounds on edk(T ) of an

algebraic torus T by studying the action of the corresponding subgroup of GLn(Z)

acting on the character lattice T ∗ ∼= Zn. Specifically, the action has a combinatorial

property called the symmetric p-rank ; this thesis is written to explore this notion,

giving bounds on the essential dimension, and its p-local version the essential p-

dimension, of algebraic tori and related groups.
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Chapter 1

Introduction

The essential dimension was introduced formally in 1997 by Buhler and Reichstein

[6] in their work on finite Galois field extensions with a given Galois group. It has

subsequently been defined for a variety of algebraic objects, and the value of the

essential dimension is often connected with profound results about that underlying

object. In general, the essential dimension is difficult to calculate and the task is split

into finding upper and lower bounds. Lower bounds are often given by the essential

p-dimension, a p-local version which is usually easier to calculate.

This thesis aims to calculate the essential (p)-dimension of various algebraic groups,

specifically algebraic tori and extensions of small finite groups by algebraic tori. The

groundwork for this was laid in [28, Corollary 5.1] where it was was shown that the

essential p-dimension of algebraic tori could be calculated as a result of data on the

Galois group action on its character lattice, known as the symmetric p-rank. This

property was calculated in [30] for the actions of the Weyl groups on character lattices
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of maximal tori in semisimple algebraic groups, which in turn gave bounds on the

wider question of edk(G) for semisimple algebraic groups G.

This thesis roughly takes the following trajectory. Chapter 2 introduces the necessary

foundations in algebraic groups, Galois cohomology and lattices. Algebraic groups are

viewed from a scheme-theoretic viewpoint, following [37], and the essential dimension

is introduced and discussed in Chapter 3. The original work in this thesis can be

found in the final two chapters; Chapter 4 is dedicated to calculating the symmetric

p-rank, with a special emphasis on complex reflection groups of degree 3 or more. For

each such group G, there is shown to be a natural choice of lattice L defined such

that G acts as a symmetry of L. The symmetric p-ranks are calculated by studying

the geometry of L, and Table 4.2 summarises these results. The symmetric p-ranks

of the automorphism group of the Leech lattice are also found, in Table 4.5. Also in-

cluded is an implementation of a method given by Merkurjev [33, Thm. 4.3] (see also

Proposition 4.0.6) in MAGMA, which finds the values of the symmetric p-ranks of the

automorphism group of every irreducible finite maximal subgroup (up to conjugacy)

of GLn(Z), for n ≤ 9, which is shown in Table 4.1. The code for this algorithm can

be found in Appendix C.1.1.

Finally, Chapter 5 shifts the focus of study to extensions of some small finite groups by

algebraic tori. Here, the value of the symmetric p-rank provides a valuable bound on

the essential (p)-dimension of such groups, but gaining the exact value is a more

substantial task and requires a subtle approach. For certain small finite groups

F = {Cp, Cp2 , C2 × C2, D2p} (p prime), the essential (p)-dimension is calculated for

all extensions of F by algebraic tori, subject to some conditions of the base field.
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Chapter 2

Preliminaries

2.1 Algebraic schemes

This chapter lays the groundwork in algebraic groups, lattices and cohomology that

is necessary for the topics covered in the rest of this work. It should be noted that

none is the author’s own work, and comes directly from several sources; namely [37]

on algebraic groups, [26] and [8] on lattices, and [5] and [43] on group and Galois

cohomology. The author has endeavoured to approach topics in the language of

category theory, definitions in this area can be found in [31].

For a field k, the category of k-algebras, Algk, has as objects finitely generated

commutative algebras over k, and morphisms all k-algebra homomorphisms. If A is

an object in Algk, the topological space X := Spec(A) is defined as the set of prime

ideals p in A, endowed with the Zariski topology. To each open subset U ⊂ Spec(A)

can be associated a multiplicative subset of A, SU := A \
⋃
{p | p ∈ U}. Localising
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A at SU , S−1
U A := {a

s
| a ∈ A, s ∈ SU} gives an object in Algk. This k-algebra

is denoted by OX(U) for the open subset U ⊂ X, and endows X with a sheaf of

k-algebras OX .

An affine algebraic scheme over k is a topological space X endowed with a sheaf of

k-algebras OX , that is isomorphic to Spec(A) for some k-algebra A ∈ Algk, called

the coordinate algebra of X. A morphism of affine algebraic schemes f : X → Y is

a continuous map and a collection of ring homomorphisms, one for each open subset

U ⊂ Y , ϕU : OY (U) → OX(f−1(U)) such that for two open subsets U1 ⊂ U2 of Y ,

the following diagram commutes

OY (U2) OX(f−1(U2))

OY (U1) OX(f−1(U1)).

ϕU2

ϕU1

(2.1)

For each f ∈ A, the subset D(f) := {p | f /∈ p} of Spec(A) are the principal open

sets and form a base for the topology on Spec(A).

Proposition 2.1.1. [36, Proposition 3.14] There is a contravariant equivalence of

categories between the category of finitely generated k-algebras Algk and the category

of affine algebraic schemes over k, Schaff.

Proof. If α : A → B is a morphism of finitely generated k-algebras, then it induces

a unique map α∗ : Spec(B) → Spec(A); p 7→ α−1(p). This is well defined (the

preimage of a prime ideal is prime) and continuous as (α∗)−1(D(f)) = D(α(f)). The

functor A 7→ Spec(A) is therefore fully faithful, so induces an equivalence of categories

between Algk and its image under Spec, which by definition is Schaff.
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Using these affine pieces, one builds the notion of an algebraic scheme, which is

a topological space X with a sheaf of k-algebras OX , such that there exists a finite

collection of open subsets (or covering) Ui of X, where the Ui are affine algebraic

schemes, and
⋃
Ui = X. The notion of a morphism of algebraic schemes naturally

extends from that of affine algebraic schemes in (2.1).

Example 2.1.2. Consider the affine plane without the origin, V := A2 \ {0}. Then

there is no k-algebra A such that V = Spec(A). However, there exists affine algebraic

schemes Vx := A1 \ {0} = Spec(k[x, y]/(x)) and Vy := A1 \ {0} = Spec(k[x, y]/(y)),

that cover V , so V is an algebraic scheme.

Given a k-algebra R, and K/k a field extension of k, RK := K ⊗ R defines an

algebra over K. For a scheme X over k, this enables the definition of a new sheaf of

K-algebras, K ⊗k OX(U) for all open subsets U , so the scheme X has the structure

of an algebraic scheme over K, denoted XK . This construction defines a functor,

X 7→ XK which takes an algebraic scheme over k to a scheme over K. For instance,

if X is affine, then X := Spec(A)→ XK := Spec(K ⊗ A).

The height of a prime ideal p is the greatest length, n, of a chain of distinct prime

ideals

p = pn ⊃ . . . ⊃ p0 = {0}.

The Krull dimension of A ∈ Algk is the supremum of the heights of all prime ideals

p ⊂ A. Likewise, the dimension of an algebraic scheme X over k is the length n,

of the largest chain of distinct closed irreducible subschemes of X, and for affine

X = Spec(A), it is clear that the Krull dimension of A and the dimension of X

correspond. Indeed if U ⊂ X is any open set of X, then dim(X) = dim(U), so the
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dimension of any algebraic scheme X, dim(X) is equal to the Krull dimension of A,

where Spec(A) ⊂ X is an open set in X.

A point in a scheme x ∈ X over k lies in an open neighbourhood U ⊂ X, so x ∈

U = Spec(A) corresponds to some prime ideal p ⊂ A, A ∈ Algk. If Ap denotes the

localisation of A at p, then the residue field of x, k(x) is defined as

k(x) := Ap/pAp. (2.2)

This definition does not depend on the choice of the open neighbourhood and for a

field K/k, x is K-rational if k(x) ⊂ K. The transcendence degree of k(x) over k

gives the Krull dimension of the corresponding prime ideal (see [20, pp. 87-88]) so

also dim(X) = sup tr.deg(k(x)) for x running over X.

For any k-algebra R, the set of points of R in the scheme X is defined by

X(R) := Hom(Spec(R), X), (2.3)

in the category of algebraic schemes, Sch (see [37, A.16, pp. 494]). If X := Spec(A)

is affine, then X(R) = Hom(Spec(R), Spec(A)) = Homalg(A,R) due to Proposition

2.1.1. This leads to the identification of algebraic schemes to their functor of points. A

functor F : C → Set is representable if there exists an A ∈ C such that F is naturally

isomorphic to the Hom functor hA := Hom(−, A). Yoneda’s Lemma ([31, pp.61])

implies that the functor from Algk to Set that sends R 7→ X(R) is fully faithful, so

an algebraic scheme X is defined up to unique isomorphism by this functor and thus

can be identified as a representable functor F : Algk → Set.

An algebraic scheme X is separated if the image of the diagonal ∆ : X → X ×
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X; ∆(x) 7→ (x, x) is closed, and reduced if the elements of OX contain no non-zero

nilpotent elements. X is geometrically reduced if Xk := X ⊗ k is reduced for k the

algebraic closure of k and an algebraic variety is a scheme which is both separated

and geometrically reduced.

If X ∈ Schaff then there exists some k-algebra A = k[T1, . . . , Tn]/(f1, . . . , fm) such

that X = Spec(A) and a point x is smooth if the derivatives ∂fi
∂tj

, 1 ≤ i ≤ m, 1 ≤ j ≤ n

are not all zero. If this is true for all x ∈ X, then X is also said to be smooth. More

generally, an algebraic scheme is smooth if each point has an open neighbourhood

which is a smooth affine scheme.

2.2 Algebraic groups

A separated algebraic scheme G is an algebraic group if there exists morphisms that

bestow on G the structure of a group. That is to say there exists an identity element

e ∈ G, and morphisms µ : G×G→ G; µ(x, y) 7→ xy and ι : G→ G; ι(x) 7→ x−1 that

obey the usual group axioms. As an algebraic scheme, an algebraic group G gives a

representable functor F : Algk → Set, where R 7→ G(R). Extending to a functor

R 7→ (G(R), µ(R)) gives an identification of G as a functor Algk → Grp. In this

sense, G is called a group functor.

Remark 2.2.1. The underlying scheme needs to be separated otherwise elements of

the form gh−1 would not be closed in G.

The underlying scheme is a finite union of irreducible components, and the compo-

nent containing the identity element is denoted by G◦. If G◦ = G, (i.e. the underlying
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scheme is irreducible), then the group is connected.

The multiplication map µ on an affine algebraic group corresponds to the comultipli-

cation map on the coordinate algebra O(G) of G, ∆ : O(G) → O(G) ⊗ O(G). This

gives the coordinate algebra the structure of a Hopf algebra, which is an algebra over

k with the following algebra morphisms

∆ : A→ A⊗ A (2.4)

ι : A→ A (2.5)

ε : A→ k. (2.6)

These are the co-multiplication, co-inverse and co-unit maps which satisfy certain

properties on A that mirror the group axioms on G. Just as a k-algebra defines an

affine algebraic scheme, if A is a Hopf algebra k, then Spec(A) defines an affine

algebraic group and likewise the representable functor Algk → Grp defined by

R 7→ Hom(A,R×) is the functor of points of the algebraic group G(R). Morphisms

of algebraic groups are simply morphisms of algebraic schemes, that are also homo-

morphisms of groups.

The following are some important basic examples of algebraic groups that will be re-

ferred to throughout. For V a vector space of dimension n over k, the group GL(V ) is

defined as the group of k-linear automorphisms of V . This defines an affine algebraic

group, as GL(V ) = Spec(k[T1, . . . Tn]/det(Ti)). In the language of group functors,

GL(V ) has the following description,

R 7→ AutR(VR), (2.7)

16



where AutR(V ) is all R-linear automorphisms of V . If n ≥ 1 is an integer, one can

define the n-th roots of unity as an algebraic group,

µn = Spec(k[T ]/(T n − 1)). (2.8)

The Hopf algebra has comultiplication map given by ∆(T ) = T ⊗ T , and it is the

group functor R 7→ {r ∈ R | rn = 1}.

The last example is the multiplicative group, Gm, which consists of the multiplicative

elements of the underlying field. The underlying Hopf algebra is k[T, T−1], with the

same comultiplication map as µn. As a group functor, R 7→ R×.

Example 2.2.2. All abstract finite groups give rise to an algebraic group. Indeed, if

F is such a group, then Fk := Spec(k × · · · × k︸ ︷︷ ︸
|F | times

). Fk is the following functor of points

R 7→ Hom(π0(Spec(R)), F ), where π0(X) is the variety whose points correspond to

the connected components of X, known as the variety of connected components of X.

Remark 2.2.3. Note that µm and the constant algebraic group associated to Z/mZ

are not the same as algebraic groups. To illustrate, suppose m is a prime. If the field

is algebraically closed, then these are isomorphic as groups. However, |µm(K)| = 1

and |(Z/mZ)(K)| = m for all fields K of characteristic dividing m.

A representation of an algebraic group G is a vector space V and a morphism

ρ : G→ GL(V ). Analogously to regular groups, a representation (V, ρ) is equivalent

to an action of the group on a module; in this case, for all k-algebras, there is an action

of G(R) on the module R⊗ V . This module induces a co-action on the co-module of
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O(G), which is a map φ : V → V ⊗O(G), linear over k, such that

(idV ⊗∆) ◦ φ = (φ⊗ idO(G)) ◦ φ, (2.9)

(idV ⊗ ε) ◦ φ = idV . (2.10)

In the special case where V = k, then a representation χ : G → Gm is a character.

The set of characters of an algebraic group G is denoted G∗, and has the structure of

an abelian group; with the sum of χ and χ′ given by

(χ+ χ′)(g) = χ(g)χ′(g). (2.11)

2.3 Multiplicative groups

If M is a finitely generated abelian group, then the group algebra k[M ] has the

structure of a Hopf algebra, by defining the maps ∆(m) → m ⊗ m, ε(m) → 1 and

ι(m)→ m−1 for m ∈M , and extending linearly on the whole of k[M ]. This defines a

functor from finitely generated abelian groups to affine algebraic groups Diag(M) :=

Spec(k[M ]). Algebraic groups isomorphic to Diag(M) are called diagonalisable.

Example 2.3.1. Take M = Z/nZ. Then k[M ] ' k[T ]/(T n − 1), so Diag(M) = µn,

(see 2.8). If M = Z, then k[M ] ' k[T, T−1] and Diag(M) = Gm.
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Proposition 2.3.2. If M1 and M2 are two finitely generated abelian groups,

Diag([M1 ⊕M2]) = Diag(M1)×Diag(M2). (2.12)

Proof. Note k[M1 ⊕M2] = k[M1] ⊕ k[M2], and under the contravariant equivalence

in Proposition 2.1.1, Spec(A⊕B) = Spec(A)× Spec(B).

Remark 2.3.3. Every diagonalisable group can be constructed from the two featured

in Example 2.3.1 simply by using Proposition 2.3.2, along with the structure theorem

of finitely generated abelian groups; all finite rank abelian groups are of the form

M := (
⊕

Zm)⊕ (
⊕

Z/niZ) [14, Thm. 13.5].

Theorem 2.3.4. [37, Thm. 14.9] There exists a contravariant equivalence of cate-

gories between finitely generated abelian groups and diagonalisable groups, given by

the functor Diag and its quasi-inverse G→ G∗.

Proof. By Proposition 2.3.2 and Remark 2.3.3, it is sufficient to check the case when

Mi are Z or Z/nZ. Here is a list of possibilities that is easy to verify, where the

left hand side are abstract group homomorphisms, and the right are morphisms of

algebraic groups.

Hom(Z,Z) ∼= Z ∼= Hom(Gm,Gm),

Hom(Z,Z/nZ) ∼= Z/nZ ∼= Hom(µn,Gm),

Hom(Z/nZ,Z) ∼= {1} ∼= Hom(Gm, µn),

Hom(Z/mZ,Z/nZ) ∼= Z/dZ ∼= Hom(µm, µn),
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where d = gcd(m,n), and the elements in Hom(Z/nZ,Z) and Hom(Gm, µn) are

the identity maps. In general, for any choice of M , the homomorphisms have the

form φn(x) = nx for some suitable n. Under Diag, this homomorphism becomes

Diag(φ)(x) = xn, which is the required bijection between Hom(M1,M2) and

Hom(Diag(M1),Diag(M2)). The functor Diag is therefore fully faithful, and is essen-

tially surjective by the definition of diagonalisable groups.

An affine algebraic group G over k is called multiplicative if Gksep is diagonalisable.

If G is a connected multiplicative group, then Gksep ' Gn
m for some n, and G is an

algebraic torus. A torus G splits over K if GK ' Gn
m and K is a splitting field of G.

The value of n is the rank of the torus.

Example 2.3.5. Set k = R. There are two 1 dimensional tori over R; the split torus

G(R) = R×, and the anisotropic torus, G(R) = {z ∈ C× | zz = 1}. Both groups have

G(C) ' C×. Note that the split torus is the multiplicative group, and the anisotropic

torus is the unit circle T1 ⊂ C.

As the characters of a split torus are given by points of Zr, then any representation

is given by some subset of Zr. These characters of Gr
m also form a basis of the

coordinate algebra O(Gr
m) = k[T1, T

−1
1 , . . . Tr, T

−1
r ].

For a non split torus G, define G∗ as the group of morphisms Gksep → Gm,ksep ,

where ksep is the separable closure of k. This character lattice has an action of Γ :=

Gal(ksep/k) which offers an extension of Theorem 2.3.4 to an equivalence between Γ :=

Gal(ksep/k)-modules and groups of multiplicative type, though first it is necessary to

consider the topology on Γ.
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For L/k a Galois field extension, the Galois group Gal(L/k) is an inverse limit of

the finite groups Gal(K/k), where k ⊆ K ⊆ L, and K/k is a finite Galois extension

of k. This group is endowed with the Krull topology, where the open sets are the

subgroups Gal(ksep/K).

The action of an arbitrary topological group Γ on a module M is continuous if the

mapping Γ ×M → M is continuous. If M is endowed with the discrete topology,

then this is equivalent to saying every element of M is fixed by some open subset of

Γ. If Γ is a Galois group, this simply means for every element m ∈ M there exists

some K/k Galois extension such that m is fixed by Gal(ksep/k).

Corollary 2.3.6. [37, Theorem 14.17] There is an antiequivalence of categories be-

tween algebraic groups over k of multiplicative type and finitely generated abelian

groups with a continuous action of Γ := Gal(ksep/k).

Proof. Suppose M is a finitely generated abelian group, with continuous action of Γ.

Using the categorical equivalence in Corollary 2.3.6, Spec(ksep[M ]) is a diagonalisable

group, so Spec(k[M ]) is a group of multiplicative type.

Conversely, suppose G is of multiplicative type over k. Every χ ∈ Hom(Gksep ,Gm,ksep)

is defined over some finite field extension K/k, so is fixed by some open subgroup

Gal(ksep, K). Thus under the discrete topology, the action of Γ on G∗ is continuous.

As a group functor, the multiplicative group defined in the above theorem is

R 7→ Hom(Spec(k[M ]), (R⊗k ksep)×), (2.13)
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where R is a k-algebra, and the morphisms are in the category of algebraic groups.

In general, if K is a field extension, ksep⊇ K/k, then GK can be identified as the

functor of points GK = Hom(G∗, ksep)Gal(K/k), the group of morphisms G∗ → ksep

that commute with the action of ΓK . Recall the two tori over R in Example 2.3.5.

Example 2.3.7. The character group of C× is Z, which has precisely one non-trivial

automorphism, m 7→ −m. The action of Γ = Gal(C/R) is complex conjugation, so

the group of morphisms that commute with this action satisfy

σ · χ(m) = χ(σ(m))

χ(m) = χ(m)−1.

This is simply the collection of z ∈ C× that satisfy zz = 1. Thus the rank 1 tori in

Example 2.3.5 are recovered.

Corollary 2.3.8. There exists an antiequivalence of categories between algebraic tori

over k and torsion-free Z-modules with continuous action by Gal(ksep/k).

Proof. The finitely generated torsion-free Z-modules (i.e. Zn) correspond to the split

tori under the Diag functor, this is just the restriction of Corollary 2.3.6 to this

case.

Remark 2.3.9. Suppose T is a torus over k, so Γ = Gal(ksep/k) acts on T ∗ =

Zn. Although Γ is usually a profinite group, it factors through a finite group of

automorphisms of T ∗, called the decomposition group of T , denoted by AT . Explicitly,

there exists a morphism π : Γ→ Aut(Zn), and AT := π(Γ).
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2.4 G-lattices

A lattice L is a free Z-module of finite rank, along with a symmetric positive definite

bilinear form L × L → Z. When L has an action by a finite group G that preserves

the bilinear form, it is a G-lattice. A G-lattice yields an integral representation of G

φ : G → GL(L) ' GLn(Z). (2.14)

It is often useful to study how “similar” two lattices are. For instance, two G-lattices

L, L′ are isomorphic if there is a group isomorphism ϕ : L → L′ that preserves the

bilinear form. For coarser equivalences, it is necessary to consider the bilinear forms

over other rings, by considering L⊗ZR as an R-module, or R[G]-module for G-lattices.

One such important ring is the localisation of Z at a prime p

Z(p) :=
{a
b
| a, b ∈ Z, p 6 | b

}
⊂ Q.

L(p) is used to denoted L ⊗Z Z(p), and two lattices L, L′ are locally isomorphic if

L(p) ' L′(p) for all primes p. The set of isomorphism classes of the L(p) is the genus

of L, and the notation L ∨ L′ means L and L′ have the same genus.

Let L be a G-lattice of rank n, with bilinear form 〈, 〉 and Z-basis {ei}. The dual of

L is defined as

L∗ := {m ∈ Rn | 〈m, l〉 ∈ Z | for all l ∈ L}. (2.15)

Clearly L ⊂ L∗, and the dual L∗ can be identified as Hom(L,Z) via the maps m 7→ φm,

where φm(x) = 〈m,x〉, and ϕ 7→ (m1, . . . ,mn) ∈ L∗, where mi := ϕ(ei) for the basis
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in L ' Zn. L∗ is a lattice; it has a Z-basis given by (e∗1, . . . e
∗
n), where 〈e∗i , ej〉 = δi,j

and if B and B∗ are the matrices formed by the bases {ei} and {e∗i } respectively. L∗

is also a G-lattice; G-acts on φ ∈ Hom(L,Z) by g · φ(l) := φ(g−1 · l).

There are numerous ways to construct new lattices from two given lattices. If L is a

GL-lattice and M a GM -lattice, then the direct sum L⊕M := {(l,m)| l ∈ L, m ∈M}

is a GL×GM -lattice. There also exists the tensor product, L⊗ZM ,which has elements

of the form

L⊗Z M :=
∑
i,j

αi,j(ei ⊗ fj), (2.16)

for αi,j ∈ Z and Z-bases {ei} of L and {fi} of M . As −l⊗m = l⊗−m, L⊗ZM has

a faithful action by the central product, GL ×GM/(−1,−1). This will be discussed in

more detail in Section 4.1.3.

A lattice L′ is adjacent to a lattice L if they share the same bilinear form, rank, and

there exists some collection vi ∈ L′ such that L′ is generated by L and vi. Also as

L 6 L′, and r is the index of L in L′, r := [L′ : L], then L′ is denoted L+r. A collection

of adjacent lattices forms a partially ordered set and is called a family. Such families

often share the same lattice automorphism group, though occasionally there can be

additional automorphisms for certain family members.

Example 2.4.1. The Dn root lattice comprises all points

{(x1, . . . , xn) |
∑
xi ∈ 2Z},

along with the standard inner product. The regular integer lattice, In is an adjacent

lattice, generated as a Z-module by Dn and the vector (1, 0, . . . , 0). The third family

member, D+4
n = D∗n, is generated by In and the following two vectors (1

2
, . . . , 1

2
),
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(1
2
, . . . , 1

2
,−1

2
). The family is the following poset Dn 6 In 6 D+4

n . They all share

the same automorphism group C2 o Sn (where o denotes the wreath product), barring

dimension 4, where D4 has an extra automorphism of order 3 (known as triality).

If a G-lattice L has a Z-basis that is permuted by G, then it is a permutation

G-lattice, and two G-lattices L and L′ are stably permutation equivalent if there exists

some permutation lattices P , P ′ such that L ⊕ P ' L′ ⊕ P ′, (here G acts with the

diagonal action). Denote [L] as the stably permutation class of L, and if [L] = [0],

then L is a stably permutation lattice. In fact the stably permutation class of L⊕ L′

only depends on the respective classes of L and L′ (see [26, 2.3, pp.34]) so the set

of classes is a monoid, which is denoted SPG. A G-lattice L is invertible (sometimes

called permutation projective) if [L] is an invertible element of SPG.

As mentioned in Remark 2.3.9, the set of characters T ∗ = Hom(T,Gm) of an algebraic

torus T over k form a copy of Zn with an action of the decomposition group AT ; a

finite subgroup of the Galois group Gal(ksep/k). The set of cocharacters of T is the

set T∗ = Hom(Gm, T ), which has a natural pairing with T ∗; 〈 , 〉 T ∗ × T∗ → Z;

〈χ, λ〉 = χ ◦ λ ∈ (Gm)∗ = Z, for χ ∈ T ∗, λ ∈ T∗. The cocharacter lattice is

canonically isomorphic to the dual of the character lattice; as T∗ = Hom(Gm, T ) =

Hom(Diag(Z),Diag(L)) = Hom(T ∗,Z), under the contravariant equivalence Diag.

Therefore T ∗ ⊂ T∗, and restricting this bilinear form to T ∗×T ∗, gives a bilinear form

on T ∗, and it is thus T ∗ is an AT -lattice.

Certain lattice properties of the AT -lattice T ∗ correspond to properties of the algebraic

torus T . For instance, T is quasi-split if T ∗ is permutation, and is special if T ∗ is

invertible. An important example of this occurs when the group G is a p-group. A

morphism of algebraic groups φ : G→ Q is an isogeny if φ is surjective and has finite
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kernel, and further if the kernel has order prime to p, then it is a p-isogeny.

Proposition 2.4.2. [27, Lemma 9.1] Let G be a p-groups. For two G-lattices L, L′,

Diag(L) and Diag(L′) are p-isogeneous if and only if L ∨ L′.

Proof. If L ∨ L′, then there exists an isomorphism φ : L(p) → L′(p). As L ⊂ L(p), and

φ is surjective, φ(L) has finite, prime to p index inside 1
n
L′ for some n prime to p.

As G-modules, L′ ' 1
n
L′, so by restricting to L, there exists an injective morphism

φ : L→ L′ that has a finite cokernel of size prime to p. Under the functor Diag, this

results in a surjective morphism Diag(φ) : Diag(L′)→ Diag(L) with kernel finite and

order prime to p, so Diag(φ) is a p-isogeny.

If Diag(L′) → Diag(L) is a p-isogeny, then likewise under the quasi-inverse, there

exists an injective morphism φ : L→ L′ with finite cokernel of order prime to p. The

resulting exact sequence, when tensored with Z(p) is

1 L(p) L′(p) coker(φ)(p) 1, (2.17)

but coker(φ) has order prime to p and therefore vanishes, giving the required isomor-

phism.

Automorphisms of lattices are always finite subgroups of GLn(Z) (see 2.14). In

fact, there are finitely many of these subgroups, a fact which has been known since

the 19th century.

Theorem 2.4.3. [23] For a given n, there are finitely many conjugacy classes of

finite subgroups of GLn(Z).
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Although finite, the number of finite subgroups of GLn(Z) grows rapidly with n,

so attempts at a classification focus on the maximal subgroups that are irreducible

(as integral representations). These irreducible maximal finite subgroups of GLn(Z)

are completely classified up to GLn(Z)-conjugacy for ranks 1 to 10 and primes up to

23, and up to GLn(Q)-conjugacy for all ranks up to 31. There exists databases of

such groups in the computer algebra systems GAP and MAGMA, and these groups,

along with descriptions of the lattices for which these symmetries appear as the full

automorphism group, can be found in the first two of a series of papers by Conway

and Sloane [10], [11].

Definition 2.4.4. Let L be a G-lattice, and φ : G → GL(L) the corresponding

integral representation of G. The symmetric rank of φ is defined as

SymRank(φ) := min{|Λ|} (2.18)

where the minimum runs over all generating subsets Λ ⊂ L that are invariant under

G.

A p-local version of this is the symmetric p-rank. For a prime p, a subset Λ is said

to p-generate L if it generates a full rank sub-lattice of L that has index prime to p.

Definition 2.4.5. Using the same definitions as Definition 2.4.4, let Γp be a Sylow

p-subgroup of G. The symmetric p-rank of φ is defined as

SymRank(φ; p) := min{|Λ|} (2.19)

where the minimum runs over all p-generating subsets Λ ⊂ L that are invariant under
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Γp.

Example 2.4.6. Suppose L is a G-lattice, where G contains an element that acts

on L as −1. Then SymRank(φ; 2) ≥ 2 · rank(L), as any 2-generating invariant set

decomposes as X = X ′ q−X ′, where |X ′| ≥ rank(L).

Remark 2.4.7. The symmetric (p)-rank is defined for a specific integral representa-

tion of a finite group G; though often this representation is implicitly defined. For

notational convenience, given a G-lattice L, and H 6 G, then SymRank(Ĥ; p) :=

SymRank(φ|H; p).

Often the group G is implicit, either when comparing G-lattices across a fixed G, or

when G = Aut(L), the full automorphism group of L. In these cases the notation

SymRank(φ; p) is replaced by SymRank(L; p), though this notation will be clearly

defined in each such instance.

2.5 Group cohomology

The following introduction on group cohomology follows [5]. For G a finite group,

and M a G-module, define the following set of maps

Cn(G,M) = {f : Gn →M}. (2.20)
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Together with the differential map ∂n+1 : Cn(G,M)→ Cn+1(G,M) defined by

∂n+1(f)(g1, . . . , gn+1) = g1 · f(g2, . . . , gn+1)+ (2.21)

n∑
i=1

(−1)if(g1, . . . , gi−1, gigi+1, . . . , gn+1) + (−1)n+1f(g1, . . . , gn) (2.22)

forms a cochain complex, and the following set of n-cocycles and n-coboundaries

respectively,

Zn(G,M) = ker ∂n+1,

Bn(G,M) =


0 n = 0

Im ∂n n ≥ 1.

The cohomology group of G with coefficients in M with degree n is defined as

Hn(G,M) = Zn(G,M)/Bn(G,M). (2.23)

The following descriptions of the low degree cohomology groups follow immediately

from the definitions.

H0(G,M) = MG, (2.24)

Z1(G,M) = {f : G→M | f(gh) = g · f(h) + f(g) for all g, h ∈ G}, (2.25)

B1(G,M) = {f : G→M | f(g) = gm−m for some m ∈M}, (2.26)

the latter two being known as the crossed homomorphisms, and the principal crossed

homomorphisms respectively. The group H2(G,M) gives information on the exten-
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sions of G by M , which are the groups E which fit into the exact sequence of groups

1 M E G 1. (2.27)

Two extensions E1 and E2 are equivalent if there exists an isomorphism σ : E1 → E2,

and the following diagram commutes

1 M E1 G 1

1 M E2 G 1.

id σ id

The group H2(G,M) specifies the classes of extension, up to equivalence. If c ∈

H2(G,M) is a 2-cocycle, and define E as the set of formal pairs {(g,m) |g ∈ G,m ∈

M}, with binary product

(g1,m1)(g2,m2) = (g1g2, c(g1, g2)m1(g1 ·m2)), (2.28)

and a pair of 2-cocycles give isomorphic extensions when their difference lies in

Z2(G,M).

When G is a finite cyclic group, H2(G,M) is particularly easy to calculate.

Proposition 2.5.1.

If there exists a short exact sequence of G-modules

1 A B C 1, (2.29)
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then this induces a long exact sequence (of cohomology groups)

1 AG BG CG H1(G, A) H1(G, B) H1(G, C) · · · , (2.30)

which extends to the right through the H i. If M is non-abelian, then it is possible

to make sense of H i(G,M) for i = 0, 1, using the same definitions as (2.24). M is

referred to as a G-group in this case. Note the H i may not in general be groups,

though as the trivial cocycle always exists, they are pointed sets, so kernels can be

defined. Thus the long exact sequence of cohomology in (2.30) is also valid here, up

to H1.

Group cohomology can be extended to topological groups and algebraic groups in a

natural manner. Recall from (2.3.4) that an action of a topological group Γ on M is

continuous if the mapping Γ ×M → M is a continuous map, which is equivalent to

M =
⋃
U⊂ΓM

U for the open subgroups U ⊂ Γ. In general, if E is a topological space

under the discrete topology, with a continuous action by Γ, then it is a Γ-set. If E also

has the structure of a group or module then it is a Γ-group or module, respectively. If

M is a Γ-module, then restricting the cochain complex at (2.20) to continuous maps

f : Γ → M , along with the same differential gives the right analogue to the finite

group case. The same definitions of H i apply here, and when Γ is a Galois group,

these are the Galois cohomology groups.

Finally, for algebraic groups, analogous definitions give rise to the Hochschild coho-

mology. If G is an algebraic group over k, a commutative algebraic group M is a

G-module if for all k-algebras R, M(R) is a G(R)-module. The group Cn(G,M)

is then defined as the set of all maps of set-valued functors between Gn and M ,

31



specifically if G has coordinate ring A, then Cn(G,M) = M(A⊗n). Using the same

definitions of the differential, the cohomology groups are denoted H i
0(G,M), the ith

Hochschild cohomology group.

2.6 Galois cohomology and twisted forms

A fundamental question in Galois theory is given a pair of “objects” A and B defined

over a field k (such as k-algebras or algebraic varieties), and a Galois extension K/k

such that there is a K-isomorphism φ : AK → BK (B is a K-form of A) in what sense

are Ak and Bk the same? Certainly it is not true that there exists a k-isomorphism

Ak → Bk; indeed this is only true if there exists a Gal(K/k)-invariant K-isomorphism

AK → BK , which takes k points in A to k-points in B. The Galois cohomology group

H1(Γ,AutK(A)) (see (2.23), along with the suitable definition of the cochain map

described at the end of Section 2.5) measures in some sense the obstructions to creat-

ing such isomorphisms, and will be explored in the following section. The definitions

and results are from [43], and the discussion will give some insight in to the bijection

between the forms of an algebraic object A and the classes of H1(Γ,AutK(A)). Let

Γ := Gal(K/k), G a Γ-group and F a Γ-set, which also has an action of G. G is said

to act on F compatibly with Γ if σ · (g · f) = σ(g) · σ(f) for all g ∈ G, f ∈ F , σ ∈ Γ.

Definition 2.6.1. [43, pp. 46] A right (resp. left) principal homogeneous space, or

right (resp. left) torsor over G is a non-empty Γ-set P , on which G acts on the right

(resp. left) compatibly with Γ such that for each pair x, y ∈ P , there exists a unique

g ∈ G such that y = x · g.
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Unpacking the definition, if P is a (right) torsor over G, then for any σ ∈ Γ, there

must exist some corresponding gσ ∈ G such that σ · x = x · (gσ) for all x ∈ P . The

map σ 7→ gσ is a 1-cocycle; for σ, τ ∈ Γ, gστ is the unique element in G such that

στ(x) = x · (gστ ). As στ(x) = σ(x · gτ ) = σ(x) · σ(gτ ), then gστ := gσσ(gτ ), satisfying

the 1-cocycle condition.

On the other hand, given a cocycle g ∈ Z1(Γ, G), then defining a copy of G with

a new action of Γ, σ ∗ g = gσσ(g), gives a principal homogeneous space P , with G

acting on the right by translations.

Proposition 2.6.2. [43, Prop. 33] Let Γ := Gal(K/k), and G be a Γ-group. There ex-

ists a bijection between the set of principal homogeneous spaces over G and H1(Γ, G).

The connection between principal homogeneous spaces and forms AK → BK can

now be elucidated. In general, if A is an object over a field k, and K/k a Galois field

extension, then AutK(A) is a Γ-group that acts on A in a compatible way. If A is an

object over k, then define an equivalence relation on P×A, where (x, a) ∼ (x·g, g−1a)

for g ∈ G. The resulting quotient (P × A)/ ∼ is a Γ-set, and has a bijection with

A. This is the twisting of A by P and yields a form of A. Conversely, the set of

K-isomorphisms between two forms A→ B is a principal homogeneous space.

The term “object” has hitherto been used to denote some algebraic structure defined

over a field, that is functorial over field extensions and has a definable group of auto-

morphisms. Propositions 1 and 5 in [43, pp.122–123] assert the existence of a bijection

between the forms of A and the classes H1(Γ,AutK(A)) for A a k-vector space and a

(quasi-projective) algebraic variety respectively. Of specific interest is when AutK(A)

is an algebraic group, and it is useful to consider how H1(Gal(ksep/K),Autksep(A))
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changes as K runs over Galois field extensions of K/ksep. To this end, the notation

is amended, and if G is an algebraic group, where G := Aut(A), then the group

H1(Gal(ksep/K),Autksep(A)) is instead written as H1(K,G). The Galois cohomology

functor is the following

F : Fieldsk → Set

K 7→ H1(Gal(ksep/K,G).

Example 2.6.3. [43, 1.2(b), pp.143] A central algebra over k is a finite-dimensional,

associative, unital algebra over k that satisfies Z(A) = k, and a simple algebra is

one that has no non-trivial proper two sided ideals. The central simple algebras are

the twisted forms of the matrix algebra Mn(k), and as PGLn := Aut(Mn), the set

H1(K,PGLn) is the set of K-isomorphism classes of central simple algebras.

Example 2.6.4. [43, 1.2(c), pp.143] Let q be a quadratic form on a k-vector space

V . Then AutK(V ) = O(q), the orthogonal group that preserves the quadratic form

q. This is an algebraic group, and therefore H1(K,O(q)) classifies all quadratic forms

that become isometric to q over the field extension Ksep.

2.7 Extensions of finite groups by tori

In the previous discussion (for instance Remark 2.3.9), G-lattices appeared when

studying the action of Gal(ksep/k) on some torus T over k. This section will now

explore a situation where a similar link to G-lattices appears; extensions of finite

groups by tori. For the rest of this chapter, T is a split torus over a field k. If
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L is an F -lattice for some finite group F , then F acts on the characters of the

torus T := Diag(L) := Spec(k[L]). These characters form a basis of the coordinate

algebra of T , O(T ), so induces an action on the torus itself, given by homomorphisms

θ : F → Autk(T ). As the group F defines an algebraic group (the constant group

scheme Fk, see Example 2.2.2) then it is possible to construct an exact sequence of

algebraic groups

1 T G F 1,π (2.31)

where G(R) = T (R)× F (R) as sets for all k-algebras R, and G acts on T by conju-

gation in the same way as π(G) = F .

One such group G is the semidirect product T o F : Algk → Grp, which is endowed

with the following product, for t, t′ ∈ T (R), f, f ′ ∈ F (R),

(t, f) · (t′, f ′) = (tθ(f)(t′), ff ′).

In this case, the exact sequence splits, meaning there exists a morphism of algebraic

groups s : F → G such that π ◦ s is the identity.

It is important to note that the definition of an extension of F by T not only depends

on T and F , but crucially on the chosen action of F on T , which will be implied by

the action of F on T ∗. The notation of the base field is now dropped, and the symbol

F either denotes the abstract group, or the constant group scheme Fk associated,

depending on the setting.

As T is abelian with an action of F , it has the structure of an F -module. As a result,

algebraic groups G that satisfy (2.31) are classified up to isomorphism by the elements

of the group Ext1(F ;T ) ([SGA3, XVII. pp.367]). This is an abelian group, with the
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binary operation being the Baer sum. Two extensions create a new extension by a

pullback under the diagonal map F → F × F , and then a pushforward along the

multiplication map T × T → T ; (t1, t2) 7→ t1t2.

The following are some useful lemmas on the structure of Ext1(F ;T ).

Lemma 2.7.1. [SGA3, XVII, Lemma 5.2.4] Ext1(F ;T ) has m torsion, where m

equals the order of F .

Recall the definition of an isogeny from Section 2.4.

Lemma 2.7.2. [2, pp. 7] Define mT as the isogeny T → T ; x 7→ xm, and define

T [m] := ker(mT ). Then Ext1(F ;T ) ≤ Ext1(F ;T [m]).

Proof. The isogeny mT yields the exact sequence

1 T [m] T T,
mT (2.32)

applying Ext(F ;−) to (2.32) leads to a long exact sequence

. . .Ext1(F ;T [m]) Ext1(F ;T ) Ext1(F ;T ) . . . ,
(mT )∗

(2.33)

and Lemma 2.7.1 says any extension class γ ∈ Ext1(F ;T ) is annihilated by m, i.e.

mγ = 0. Then mγ can be identified as the (mT )∗(γ), the pushout of γ by mT ,

and using the exact sequence in (2.33), every γ ∈ Ext1(F, T ) is the image of some

γ′ ∈ Ext1(F, T [m]).

The aim of the following discourse is to show that, for a split torus T , and a
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constant group scheme F , there is a canonical bijection between Ext1(F ;T ) and

H2(F ;T (k)), where H i denotes the (abstract) group cohomology of the finite group

F and T (k) the group of k-rational points of T .

The extension in (2.31) is Hochschild if it admits a scheme-theoretic section, a map

of schemes s : F → G such that π ◦s is the identity on F . Two Hochschild extensions

G and G′ are equivalent if there exists a morphism of algebraic groups f : G → G′

such that the following diagram commutes

1 T G F 1

1 T G′ F 1.

π

f

π′

(2.34)

Lemma 2.7.3. Let T be an F -module. Then there exists a bijection between the set

of Hochschild extensions up to equivalence of F by T and the Hochschild cohomology

group H2
0 (F ;T ).

Proof. Suppose G is a Hochschild extension, and s : F → G the section. Then define

c : F × F → T as the preimage in T of s(f1)s(f2)s(f1f2)−1. This defines a 2-cocycle,

and similarly given a 2-cocycle c : F × F → T , the group functor T (R)× F (R) with

multiplication for all ti ∈ T (R), fi ∈ F (R),

(t1, f1)(t2, f2) := (c(f1, f2)t1(f1 · t2), f1f2) (2.35)

defines a Hochschild extension, with section s(f1) = (1, f1) for all k-algebras R.

This is reminiscent of the case for abstract groups, where there is a canonical

bijection between H2 of the abstract group cohomology, and the group (up to equiv-
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alence) of extensions Ext1, but in the setting of algebraic groups some extensions

aren’t necessarily Hochschild.

Example 2.7.4. Consider the following extension of algebraic groups over a perfect

field of characteristic not 2.

1 {±1} Gm Gm 1,σ (2.36)

where σ is the squaring map z 7→ z2. No section exists, so this is not Hochschild.

A section s : Gm → Gm would imply σ defines an isomorphism of schemes, which is

false.

In the case of a finite group by split torus however, all extensions have a scheme-

theoretic section. The exact sequence (2.31) endows G with the structure of a torsor

over F , where T takes the place of Γ in Definition 2.6.1, viewed as a topological group

under the étale topology. The group H1
ét(F ;T ) classifies these torsors over F . Rather

than give an exposition on étale cohomology here, the reader is referred to [16, Chap.

5]. The reason for this omission is due to the following, which is a consequence of [41,

Thm. 14].

Proposition 2.7.5. Hét(F ;T ) has d-torsion, where d is the degree of the splitting

field of T .

If an extension gives a set valued section, then the torsor is trivial, (as there exists

an isomorphism of schemes T × F → G). This therefore gives rise to the following
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short exact sequence, which is a rewording of [SGA3, XVII. App. I.3.1],

0 H2
0 (Fk;T ) Ext1(F ;T ) Hét(Fk;T ). (2.37)

In (2.36), σ defined a non-trivial torsor C2-torsor Gm → Gm where C2 acts as {±1},

so the corresponding extension was not Hochschild.

Proposition 2.7.6. Denote by Fk the constant group scheme associated to the finite

abstract group F , and M a Fk-module. There is a canonical bijection between the

Hochschild cohomology H i
0(Fk,M) and the abstract group cohomology H i(F,M(k)).

Proof. It is sufficient to simply show a bijection between C(Fk,M), the maps of set

valued functors, and Ci(F,M(k)), the set of maps between the abstract groups. For

the former, C(Fk,M) = M(A) where A = k|F |, the coordinate ring of Fk. C(F,M(k))

is given by the identification of the elements of F to the k-points of M , so there are

bijections of sets C(F,M(k))
'−→ M(k|F |)

'−→ C(Fk,M). As this is preserved through

taking products of F , the chain complexes are thus equivalent.

Corollary 2.7.7. Let T be a split torus, and F a finite group. There exists a canon-

ical bijection between the elements of Ext1(T ;F ) and the abstract group cohomology

H2(T (k);F ).

Proof. As T is split, Hét(Fk;T ) is trivial, so H2
0 (Fk;T ) ' Ext1(F ;T ). Proposition

2.7.6 gives an isomorphism between the Hochschild cohomology group of algebraic

groups H2
0 (F ;T ), and the abstract group cohomology H2(F ;T (k)).

Example 2.7.8. Take F = C2, T = Gm, so T ∗ = Z. The action of C2 on T ∗

sends x 7→ −x, and on T sends z 7→ z−1. T [2] ' C2, and H2(F, T [2]) = H2(C2, C2) =
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Z/2Z. There are thus two isomorphism classes of extensions with the following matrix

representations. Embed Gm in GL2 by sending z 7→ diag(z, z−1), so F acts by sending

elements in T to their inverse. There are two choices of element g ∈ GL2 such that

gtg−1 = t−1,
(

0 a
a−1 0

)
or
(

0 a
−a−1 0

)
. These matrices are in the preimage under π of the

non-trivial element of F . The first of these is the split case, so the finite group F can

be identified as a subgroup of G. The second choice gives rise to the non-split case, so

corresponds to the non-trivial element of H2(F ;T ), which is the following 2-cocycle

c(g, g′) =


−1 g = g′ 6= e

1 otherwise.

(2.38)

There is no copy of F in the non-identity component of G, and F 6= F ′ =
〈(

0 −1
1 0

)〉
,

so T ∩ F ′ =
〈( −1 0

0 −1

)〉
= C2.
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Chapter 3

Essential dimension

The intuition behind the essential dimension of an algebraic object is “how many

algebraically independent parameters are required to describe that object?”. First

defined for finite groups in [6] by Buhler and Reichstein, the definition of edk(Sn) is

roughly equivalent to the minimum number of parameters required to describe a poly-

nomial of degree n. This was then generalised to any finite group, where the essential

dimension was given by the minimal dimension with which a faithful representation

can be “compressed” (see Section 3.2). Essential dimension has since been defined

for a variety of other algebraic objects including algebraic groups, firstly in [40] for

algebraic groups over fields of characteristic 0 and subsequently more generally in [1],

by defining the essential dimension using category theory and G-torsors. This will be

the path followed in this chapter, additionally making use of the survey paper [34],

which synthesises the various viewpoints.
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3.1 Definition

Let k be a field. The category Fieldsk consists of field extensions of k, with morphisms

as field homomorphisms over k. Suppose F is a covariant functor Fieldsk → Set and

K/k a field extension. For an intermediate field extension, K/K0/k, with morphism

α : K0 → K, an element x ∈ F(K) is defined over K0 if x is in the image of

F(α) : F(K0)→ F(K) (so there exists x0 ∈ F(K0) such that F(α)(x0) = x). In this

case the field K0 is a field of definition of x.

The essential dimension of x is the following

edk(x) := min tr. degk(K0) (3.1)

amongst all fields of definition of x, K0.

Definition 3.1.1. [1, Def. 1.2] For a functor F : Fieldsk → Set,

edk(F) := max edk(x), (3.2)

over all field extensions K/k and all x ∈ F(K).

The idea is to define the essential dimension of an algebraic object by choosing

a suitable functor. For example, given a scheme X, a natural choice would be the

associated functor of points X(K), which gives the K-rational points of X. In this

case the essential dimension recovers the usual definition of dimension.
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Proposition 3.1.2. [1, Prop. 1.17] For an algebraic scheme X defined over k,

edk(X) = dim(X).

Proof. The discussion in Section 2.1 showed that if x ∈ X(K) for K/k, then the

residue field k(x) ⊂ K. Therefore, edk(x) = tr.degk(k(x)). Thus

edk(X) = max{tr.degk(k(x))}

= dim(X),

where the maximum is taken over all x ∈ X(K), K/k.

For any F : Fieldsk → Set, if there exists some scheme X such that for every

K/k there is a surjection of sets X(K) → F , (called here a surjection of functors

X → F) then X is called a classifying scheme, and from the definition of edk(F) and

the earlier proposition,

edk(F) ≤ dim(X). (3.3)

Definition 3.1.3. Let G be an algebraic group over k. The essential dimension of

G is the essential dimension of the covariant first Galois cohomology functor K →

H1(K,G) associated to G,

edk(G) := edk(H
1(−, G)). (3.4)
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The choice of this functor for algebraic groups is thus a measure of the complexity

of classes of G-torsors over Spec(k) when taking different field extensions of k. This is

often a difficult number to calculate and the quest is usually divided between finding

upper and lower bounds.

3.2 Upper bounds

Firstly defined are the “scheme theoretic” version of group actions; the definitions

and results in this section are from [1]. For a scheme S (which will be referred to

now as a base scheme), then a morphism of schemes T → S, along with T form an

S-scheme. If X is such an S-scheme, and G is an algebraic group which is also an

S-scheme, then one can form the pullback along S, G ×S X. G acts on X if there

is a morphism of S-schemes G ×S X → X, given by (g, x) 7→ x · g, such that the

usual properties of group actions hold. The scheme X is thus a G-scheme, and the

scheme-theoretic stabilizer Gx for x ∈ X is given by the pullback

Gx G×S {x}

Spec(k(x)) X.x

(3.5)

If the scheme theoretic stabilizer of all points x ∈ X is trivial, then like with abstract

groups, G acts freely on X. If for some open subset U ⊂ X, Gx is trivial for all x ∈ U ,

then G is said to act generically freely on X.

If a linear representation of G is generically free, then the scheme U/G is a classifying

scheme for edk(G), so gives rise to the following upper bound.
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Proposition 3.2.1. [1, Prop. 4.11] Suppose V is a vector space over k such that G

acts on V linearly and generically-freely. Then

edk(G) ≤ dim(V )− dim(G). (3.6)

Remark 3.2.2. IfG is a finite group, then a faithful representation V is automatically

generically free, as G acts freely on the dense open set V \S, where S :=
⋃
g 6=1 Sg,

Sg := {x ∈ V | g · x = x}.

Proposition 3.2.3. [SGA3, V, Theorem 8.1] A G-scheme over k is generically free

if and only if there is a non empty dense subscheme U ⊂ X and a G-torsor U → Y

with Y a variety over k.

The G-torsor is defined by the choice of U → Y , but this can be made suitably

generic by taking the generic fiber, which is the pullback along X → Y and the

generic point Spec(k(Y ))→ Y , (corresponding to the prime ideal {0}).

Torsors in turn give rise to classifying schemes. Suppose f : X → Y , with Y irre-

ducible, is a G-torsor. Then Y → H1(−, G) gives a classifying scheme subject to some

conditions on f ; for any infinite field extension k′/k and any principal homogeneous

space P ′ of G over k′/k, the set of points y ∈ Y (k) such that P is isomorphic to the

fiber f−1(y) must be dense in Y . In this case f : X → Y is classifying for G. As

before, any torsor classifying for G can be made generic by taking the corresponding

generic fiber, and the generic fiber of a classifying torsor is the generic torsor of G.

From (3.3) the essential dimension is bounded by the minimum dimension of a clas-

sifying scheme. A rational map f : X 99K Y is a set of maps f : U → Y , for U

non-empty open set of X, where f1 : U1 → Y = f2 : U2 → Y if f1(U ′) = f2(U ′) for
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some U ′ ⊂ U1 ∩ U2. A compression of a G-torsor f : X → Y is a torsor f ′ : X ′ → Y ′

such that the following square commutes

X X ′

Y Y ′,

g

f f ′

h

(3.7)

where g is a G-equivariant dominant (i.e. f(X) is dense in Y ), rational map X 99K X ′,

and a h a rational map Y 99K Y .

Lemma 3.2.4. [1, Lemma 6.13] A compression f ′ : X ′ → Y ′ of a classifying torsor

f : X → Y is also classifying.

The essential dimension of a torsor, edk(f) is defined as min{dim(X′)} across all

compressions f : X → Y to f ′ : X ′ → Y ′. The essential dimension of a classifying

torsor of an algebraic group is in fact equal to the essential dimension of the group

itself.

Proposition 3.2.5. [1, Cor 6.16] For an algebraic group G over k, edk(G) = edk(f),

where f is the generic torsor of G.

The properties of a classifying torsor f : X → Y are mirrored in the properties of

X; X must have that for every generically free G-scheme X ′ with F (X ′)G infinite and

every dense open G-invariant set U ⊂ X, there is a G-equivariant rational morphism

X ′ 99K U . Such G-schemes X are called versal.

Example 3.2.6. [19, Sec. 5] Let V be a generically free representation of G, and X

a G-scheme such that F (X)G is infinite and U ⊂ V is non empty and G-invariant. A
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representation V of G is a versal G-variety, and if G acts generically freely on V , this

recovers the result in Proposition 3.2.1.

Example 3.2.7. Suppose V is a generically free representation of an algebraic group

G, such that G also acts generically freely on P(V ). Then V 99K P(V ) is a G-

compression, so edk(G) ≤ dim(P(V )) = dim(V )− 1.

In [40], the notion of essential dimension for algebraic groups was defined purely

on the minimum dimension of a compression of a generically free G-variety. This was

over characteristic 0, and in this case is equivalent to the definitions via compressions

ofG-torsors in [1], which this discourse has followed. The survey paper [34] synthesises

both these viewpoints.

Proposition 3.2.8. [1, Thm. 6.19] Suppose H is a subgroup of an algebraic group G

over k. Then

edk(H) + dim(H) ≤ edk(G) + dim(G) (3.8)

Proof. For V a generically free representation of G, and an open subset U ⊂ V then

U → U/G is a classifying torsor. Then there exists a G-compression

U X

U/G Y,

g

f f ′

h

(3.9)

where edk(G) = dim(Y ). As G acts generically freely on U and X, so does H.

Similarly, as g is G-equivariant, it is also H-equivariant, so U → U/H must also have
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a compression to X → Y . Therefore

edk(H) ≤ dim(X)− dim(H)

= edk(G) + dim(G)− dim(H).

Note this implies for finite groups H ≤ G, edk(H) ≤ edk(G).

3.3 Lower bounds

Throughout, p denotes a prime integer. A useful lower bound on the essential dimen-

sion is given by the essential p-dimension, which is a p-local version of the essential

dimension that is usually easier to find. A field extension K/k is prime to p if it is a

finite extension, and [K : k] is prime to p. The following are p-local versions of the

earlier definitions so the set up is exactly as before. F is a functor Fieldsk → Set

with K/k a field extension. An element x ∈ F(K) is p-defined over a field K0/k if

there are morphisms K0 → K ′ and K → K ′ in Fieldsk for some field K ′/k and an

element x0 ∈ F (K0) such that K ′/K is a prime to p extension and x is in the image

of F(K0)→ F(K ′). The essential p-dimension of x is then

edk(x; p) := min tr. degk(K0) (3.10)
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amongst all fields K0, such that x is p-defined over K0. The essential p-dimension of

F is therefore

edk(F ; p) := max edk(x; p), (3.11)

over all field extensions K/k and elements x ∈ F(K).

The essential p-dimension effectively disregards any data from fieldsK/k where [K : k]

is prime to p, and the essential dimension can be seen as a specific case of the essential

p-dimension, by setting p = 0 (a “prime to 0” extension of K being only K itself). If

an element x is defined over K0, then it is p-defined over K0, so edk(x; p) ≤ edk(x),

so from its definition, edk(F ; p) ≤ edk(F).

When G is a finite p-group, the essential p-dimension is much easier to calculate.

Theorem 3.3.1. [24, Theorem 4.1] Let G be a finite p-group, k a field of characteristic

not p that contains a primitive pth root of unity. Then

edk(G; p) = edk(G) = min dim(V ) (3.12)

where the minimum runs over all faithful representations V of G over k.

There is also the following useful lemma.

Lemma 3.3.2. [35, Lemma 4.1] Let G′ be a closed subgroup of a smooth algebraic

group G defined over k, where char(k) 6= p. If the index [G : G′] is finite and prime

to p, then edk(G
′; p) = edk(G; p).
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3.4 Essential p-dimension of algebraic tori

A split torus T = (k×)r has essential dimension 0, as the standard representation is

generically free. However, if T is non-split then the value of the essential p-dimension

follows from a combinatorial property of the underlying character lattice. Suppose T

is a torus over k, so Tksep is a split torus. Then the representations of Tksep are of the

form

V =
⊕

χ∈T ∗ksep

Vχ, (3.13)

because Tksep is abelian. However, not all representations of Tksep descend to repre-

sentations on Tk.

Proposition 3.4.1. [37, Thm. 14.22] Let T be an algebraic torus over k. Define Γ :=

Gal(ksep/k). The irreducible representations of T are in one-to-one correspondence

with orbits of Γ acting on T ∗ksep.

Proof. A representation ρksep : Tksep → k×sep is defined over k if and only if it commutes

with the action of Γ. As Γ acts by permuting the characters in T ∗ksep
, a representation

must contain the orbit of the character under the action Γ.

Let X be a ZG-module, with G a finite group. A p-presentation is a map of

ZG-modules φ : P → X, where P is a permutation ZG-module, and the cokernel is

finite and of order prime to p. A p-presentation φ : P → X is the same as giving a

surjective map φ(p) : P → X(p), where X(p) := X ⊗Z Z(p).

Theorem 3.4.2. [28, Corollary 5.1] Let G be a group of multiplicative type over k,

K/k be a finite Galois splitting field of G, and Γp be a Sylow p-subgroup of Gal(K/k).
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Then

edk(G; p) = min rank(kerφ), (3.14)

where the minimum is taken over all p-presentations φ : P → G∗ of G∗, viewed as a

ZΓp-module.

Recall the definition of the decomposition group of an algebraic torus from (see

Remark 2.3.9).

Corollary 3.4.3. Let T be an algebraic torus defined over k, whose splitting field

K/k has p power degree. Define ψT : AT → T ∗ as the integral representation of the

decomposition group of T . Then

edk(T ; p) = SymRank(ψT ; p)− dim(T ) (3.15)

Proof. From Theorem 3.4.2, it suffices to show that the minimum rank of the kernel of

a p-presentation is equal to SymRank(ψT ; p)−dim(T ). Given ∆ ⊂ T ∗, a Γp-invariant

subset which p-generates T ∗, the image of the canonical map φ : Z[∆]→ L is qT ∗, for

some q prime to p, therefore φ is a p-presentation, and rank(kerφ) = rank(Z[∆]) −

rank(T ∗) = SymRank(ψT ; p) − dim(T ). Conversely, given a p-presentation, φ : P →

T ∗, pick a Γp-invariant Z-basis ∆ ⊂ P . Then φ(∆) generates qT ∗, where q is prime

to p.

Remark 3.4.4. An algebraic group G over k is special if H1(K,G) = 0 for all field

extensions K/k. If a torus T is special, then clearly edk(T ; p) = 0 for all p > 0.
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A large amount of the original work in this thesis comes in Chapter 4,which is an

exploration of the symmetric p-ranks of various lattices. The symmetric p-ranks of

the automorphism groups of many low rank lattices can be found in Table 4.1, which,

due to Theorem 3.4.2 gives the values of edk(T ) for many low rank-tori. See 4.1 for

more information on the choice of lattices and a discussion on the results found.

3.5 Essential dimension of extensions of algebraic

tori

For the final section in this chapter, edk(G) is explored for groups G which are ex-

tensions of finite groups by tori. See Section 2.7 for a more robust introduction to

these groups and how to classify such extensions. Whereas the essential dimension for

p-groups and algebraic tori are given exactly by the dimensions of certain represen-

tations, the situation here is a little harder. These groups have been studied before,

owing to the fact that, if G is a connected semisimple group whose centre is finite,

and N is the normalizer of a maximal torus T ≤ G, then

edk(N) ≥ edk(G).

See [40, Prop 4.3] (in this instance the proof doesn’t rely on k having characteris-

tic 0). This was employed by Meyer and Reichstein in [35] for calculating bounds

on edk(PGLn), and by MacDonald in [30] for calculating bounds on the values of

edk(G; p) for semisimple groups G.
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For split extensions, there exists a simple lower bound.

Proposition 3.5.1. Let G := T o F , T an algebraic torus, F a finite group, over a

field k. Then edk(F ) ≤ edk(G).

Proof. G is a split extension, so the following

F T o F F, (3.16)

composes to the identity. Applying the Galois cohomology functor, this induces the

sequence

H1(k, F ) H1(k, T o F ) H1(k, F ), (3.17)

which also composes to the identity, meaning H1(k, ToF )→ H1(k, F ) is a surjection.

Recall from Corollary 3.2.1 that the essential dimension of an algebraic group is

bounded above by the dimension of a generically free representation.

Proposition 3.5.2. [35, Lemma 3.2] Let G satisfy (2.31), and suppose W is a faithful

representation of F and V is a representation of G which is generically free on its

restriction to T . Then V ×W is a generically free representation of G.

Proof. Remark 3.2.2 shows that a faithful action by a finite group (constant group

scheme) is generically free, so it acts freely on a dense open subset UW ⊂ W so

StabG(UW ) = T . T acts freely on a dense open subset UV ⊂ V , StabT (UV ) = {1}

therefore StabG(UW × UV ) = StabG(UV ) ∩ StabG(UW ) = StabT (UV ) = 1, so G acts

freely on an open dense subset of V ×W .
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This next lemma assumes no restrictions on the base field k. Recall that for a

representation of torus T → GL(V ) V splits into one dimensional irreducible repre-

sentations, or weight spaces V =
⊕

λ∈∆ Vλ, for ∆ ⊂ T ∗ (the set of weights). The

action of T on these weight spaces by multiplication, in a generalisation of the notion

of eigenspaces.

Lemma 3.5.3. [18, Lemma 2.3] Let G be a group over k satisfying (2.31). Suppose

G acts on a vector space V such that

1. Every weight of V has multiplicity 1, and

2. For Ω the set of weights of V , F acts faithfully on the kernel of the map ψ :⊕
ω∈Ω Z→ T ∗; nω 7→

∑
ω nωω.

If T acts faithfully on V resp. P(V ) (the projectivisation of V ), then G acts generically

freely on V resp. P(V ).

The second condition will be denoted KF , so an invariant subset of Λ ⊂ T ∗

“satisfies KF” if F acts faithfully on the kernel of the map Z[Λ]→ T ∗.

Example 3.5.4. An easy non-trivial example where the second part fails in Lemma

3.5.3 is for the root lattice A2 = {(α, β,−α − β) | α, β ∈ Z}. If T := Diag(A2), and

F := C3 which permutes ∆ := {α, β, −α − β}, then the map ψ : Z[∆] → T ∗ has

kernel 〈(1, 1, 1)〉, which is fixed under the action of F .

Additionally to the symmetric p-ranks calculated in Table 4.1, the condition KF is

checked on each of the generating subsets, using an algorithm implemented in GAP.
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Code for this can be found in Appendix C.2.1.

In order to calculate the essential p-dimension, often a change of base field is necessary.

Definition 3.5.5. A field K is p-special if every finite extension of K has degree

a power of p. Every field k has some algebraic field extension k(p) that is p-special,

called the p-special closure of k.

Some results on the essential p-dimension are defined for a smooth algebraic group.

The following lemma shows that by replacing k by a p-special closure gives a smooth

algebraic group with the same essential p-dimension.

Lemma 3.5.6. [29, Lemma 2.1] A group G defined over k(p) is smooth, and for any

field k, char(k) 6= p, edk(G; p) = edk(p)(G; p).

A linear representation φ : G → GL(V ) is p-generically free (respectively, p-

faithful) if kerφ is finite of order prime to p, and φ descends to a generically free

(respectively, faithful) representation of G/ kerφ.

Theorem 3.5.7. [29, Thm. 1.1] Let G be a group over a p-special field of character-

istic not p satisfying (2.31) such that F is a finite p-group. Then

min dim(ρ)− dim(G) ≤ edk(G; p) ≤ min dim(µ)− dim(G), (3.18)

where the minima are taken over all p-faithful linear representations ρ and all

p-generically free representations µ of G respectively.

If the group is a torus, the lower and upper bounds are equal ([28, Lemma 2.5])

and likewise with finite groups, (see Remark 3.2.2).
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The gap between the p-faithful and p-generically free representations is a difficult

one to narrow, and is the cause of the difference in bounds that occur in Chapter 5.

Even the very simple case explored in Example 2.7.8 has a difference between the two

bounds.

Example 3.5.8. An easy example of a p-faithful representation which fails to be p-

generically free can be found for the group G := Diag(Ap−1)o Cp, where Diag(Ap−1),

the torus of root datum of Lie type Ap−1 (when p = 2, this group is O2). The

dimension p representation of G which embeds Diag(Ap−1) in Gp
m as the matrix

diag{(t1, . . . , tp−1, t
−1
1 . . . t−1

p−1)}, and Cp as p×p permutation matrices is not generically

free. The generic point (α1, . . . , αp), αi 6= 0 is stabilised by



0 α1

α2
0 · · ·

... 0
. . . 0

0 · · · 0 αp−1

αp

α1

αp
0 · · · 0


.
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Chapter 4

The symmetric p-rank

This chapter is an exploration of the symmetric p-ranks of some integral representa-

tions (see Definition 2.4.5). To give an idea of the values the symmetric p-rank can

take, Table 4.1 contains the symmetric p-ranks of the automorphism groups of all

irreducible maximal finite subgroups of GLn(Z) up to dimension 9. The descriptions

of the lattices used are from [11], and the symmetric p-rank is calculated using an

algorithm implemented in MAGMA.

For lattices associated to root systems, the symmetric p-ranks of both the full au-

tomorphism group and Weyl group, (along with any intermediate groups between

the two) was completed in [30] (Tables I–III). These calculations gave bounds on the

essential dimension of simple algebraic groups, (see Section 3.5).

Weyl groups appear naturally as the symmetries of the root lattices for the root da-

tum of algebraic groups, though they fall into a more general class of groups; complex

reflection groups. Though there isn’t a canonical way to embed them in a root lattice,

57



as with Weyl groups, they do appear as symmetries in other lattices. For instance,

the symmetry group of the Coxeter-Todd lattice has as an index 2 subgroup the com-

plex reflection group (C6 o PSU4(F3)) o C2 (known as Mitchell’s group). The lattices

associated to the some of the complex refection groups will be explored, and their

symmetric p-ranks calculated, in Table 4.2. The chapter concludes with the calcula-

tion of the symmetric p-rank for a particularly famous lattice; the Leech lattice.

The following example highlights how different the value of the symmetric p-ranks

can be, even among lattices of the same family with the same automorphism groups.

Example 4.0.1. The integer lattice In is generated by the standard basis vectors

{ei} and has automorphism group C2 o Sn, which acts by permuting the coordinates

and multiplying each entry by ±1. For p > 2, SymRank(In; p) = n, as the standard

basis vectors are permuted under the action of Sn. As the −1 action is included in

the Sylow 2-subgroup, then SymRank(In; 2) = 2n, achieved by taking the invariant

set ±ei.

The lattice D∗n is generated by the standard basis vectors along with 1
2

∑
ei, so any

element in D∗n must have entries either all integers, or all half integers. The full

automorphism group is the same, and the vectors {ei} generate a full rank sublattice

of index 2. Therefore, for p > 2, SymRank(D∗n; p) = n. However, for p = 2, any

2-generating set must include a coordinate with a half integer, so all entries must

be a half integer. Under the Sylow 2-subgroup (which includes an action of ± on

each entry), this vector must have orbit size of at least 2n. The orbit of (1
2
, . . . , 1

2
)

generates D∗n and has size 2n, so SymRank(D∗n; 2) = 2n. This is can be interpreted

geometrically, where the generating set is the 2n vertices of a unit hypercube, and

the smaller 2-generating set as the midpoints of the 2n faces of the hypercube of edge
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e1

−e1

e2

−e2

e3

−e3

1
2
(e1 + e2 + e3)

Figure 4.1: Two subsets of the D∗3 lattice, invariant under the action of its Sylow
2-subgroup. The subset containing 1

2
(e1 + e2 + e3) has size 2n = 8 generates the

lattice, whereas the set {±ei} has size 2n = 6 and generates an index 2 sublattice.

length 2.

The symmetric p-rank behaves well with taking direct products, the proof of which

relies on Nakayama’s Lemma.

Lemma 4.0.2. Nakayama’s Lemma [12, §5.7] Let R be a commutative ring, with

Jacobson radical J , and M a torsion-free R-module. Define m as the image of

m ∈M under the surjection M →M/JM . If {mi} ∈M are such that their images

mi generate M →M/JM , then the mi generate M .

The augmentation ideal I of the group ring R := ZG is the kernel of the map

R→ Z;
∑

i αigi 7→
∑

i αi.

Lemma 4.0.3. [12, Cor. 5.25] When G is a p-group, and R is the group ring ZG, the
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Jacobson radical of the ring R(p) := R ⊗ Z(p) is the ideal generated by (p + I), where

I is the augmentation ideal.

Recall that for a subset of a G-lattice, ∆ ⊂ L, a morphism f : Z[∆] → L is a

p-presentation if and only if the composition f(p) : Z[∆]→ L→ L(p) is surjective.

If L is a G-lattice, where G is a p-group, then consider the surjection L → L :=

L/(pL + IL). Any p-generating G-invariant subset splits into disjoint G-orbits ∆ =∐
∆i. For any point l ∈ L, the elements in the orbit of l under G belongs to the

same equivalence class modulo p+ I; g · l = (g − e) · l + l and as g − e ∈ I, l = g · l.

Therefore G acts trivially on L, and the image ∆i has rank 1. Nakayama’s Lemma

states that a basis of L gives a basis of L(p), which under the map L → L(p) gives a

p-generating set.

Proposition 4.0.4. Let L, M be GL-, GM -lattices, and φL, φM be the corresponding

integral representations. Then

SymRank(φL⊕M ; p) = SymRank(φL; p) + SymRank(φM ; p), (4.1)

where φL⊕M is the representation GL × GM → GL(L⊕M).

Proof. Firstly, the group GL × GM acts on (l,m) ∈ L⊕M by (gl, gm) · (l,m) = (gL ·

l, gM ·m). Define ΓL and ΓM as Sylow p-subgroups of GL, GM respectively. If ∆L ⊂ L,

∆M ⊂ M are p-generating and ΓL-(resp. ΓM -)invariant, then ∆L ⊕ ∆M ⊂ L ⊕M

must be p-generating and ΓL × ΓM -invariant. Therefore

SymRank(φL⊕M ; p) ≤ SymRank(φL; p) + SymRank(φM ; p).
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To prove the opposite inequality, it will be shown that any p-generating (ΓL × ΓM)-

invariant subset ∆ ⊂ L⊕M can be replaced by some (ΓL × ΓM)-invariant subset ∆′

such that

1. |∆′| ≤ |∆|

2. SpanZ(∆′) ⊇ SpanZ(q∆) for some q ∈ Z prime-to-p.

3. ∆′ = {(li, 0)} ∪ {(0,mi)} for non zero li ∈ L, mi ∈M .

If this was the case, then |∆′| ≥ SymRank(L; p) + SymRank(M ; p), so

SymRank(φL⊕M ; p) ≥ SymRank(φL; p) + SymRank(φM ; p).

To show such a ∆′ exists, consider the image of ∆ under the surjection L ⊕M →

L⊕M . As it is a surjection, and ∆ p-generates L⊕M , ∆ must generate L⊕M as a

Fp-vector space. Take an orbit ∆i ⊆ ∆. Then ∆i is a rank 1 element (l,m) ∈ L⊕M .

As ∆ generates L⊕M , either (l, 0) ∈ SpanFp(∆) or (0,m) ∈ SpanFp(∆) (or neither).

If the former is true, then define ∆′i by replacing an orbit representative (l′,m′) ∈ ∆i

by (0,m′), and by (l′, 0) otherwise. Then ∆′ is such that ∆′ still generates L. Also,

as the size of the (GL × GM)-orbit of (l,m) is greater than the size of the orbit of

either (l, 0) or (0,m), |∆′i| ≤ |∆i|. Repeating this process for an orbit representative

of each orbit in ∆ gives a ∆′ such that ∆ generates L, and |∆′| ≤ |∆|. By Nakayama’s

Lemma, ∆′ must generate (L ⊕M)(p), so Z[∆′] → (L ⊕M)(p) is surjective and ∆′

p-generates L. Therefore, ∆′ satisfies the three conditions outlined and the result

follows.
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Remark 4.0.5. Note that if instead L and M are G-lattices, then it is easy to check

that the same argument holds for the symmetric p-rank of φ : G → L⊕M , where G

acts diagonally.

4.0.1 A method of Merkurjev

If L is a G-lattice, define L := L/(pL+ IL), where I is the augmentation ideal of ZG,

and p a prime. Fix a Sylow p-subgroup Γp ≤ G. For a subgroup H of Γp, LH is the

canonical image of the H-fixed points of L in L. Define the following for k ∈ N,

Vk :=
∐
H≤Γp

LH (4.2)

where the union ranges over all H where [Γp : H] | pk. There is a natural inclusion

0 =: V−1 ⊆ V0 ⊂ . . . Vr = L, (4.3)

where |Γp| = pr.

Proposition 4.0.6. [33, Thm. 4.3] Let L be a G-lattice. Using the definition of Vk

at (4.2),

SymRank(L, p) =
r∑

k=0

(rank(Vk)− rank(Vk−1))pk (4.4)

Using this algorithm is practical when Γp ≤ G is small, however computing through

the extensive list of all subgroups is computationally impossible as Γp gets large. It

was implemented in MAGMA by the author (see Appendix C.1.1) to find the values

of the symmetric p-rank in Table 4.1. This algorithm takes as an input a lattice L
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from the database IntegralMatrixGroupDatabase() in MAGMA, and firstly finds

the subspaces Vk ⊂ L. Using the formula (4.4), it then outputs the symmetric p-ranks

of Aut(L), for all p that divide the order of Aut(L).

4.0.2 The Smith Normal Form

The Smith Normal Form (see [14, § 12.3]) can be used to determine if a subset X ⊂ Zn

generates Zn. If A is an M × n matrix over Z, then there exists invertible matrices

P1 and P2 such that P1AP2 = D, where D is a diagonal matrix whose n non-zero

entries αi satisfy αi|αi+1 for 1 ≤ i < n. These αi are the elementary divisors, and are

unique up to multiplication by ±1. D is the Smith Normal Form of A. A map φ is

p-surjective if |coker(φ)| is prime to p.

Proposition 4.0.7. Let X ⊂ Zn of size m, and A is the m × n matrix whose rows

are the elements of X. Then X generates (resp. p-generates) Zn if and only if

det(D) = ±1 (resp. q, where q is prime to p), where D is the Smith Normal Form of

A.

Proof. A is a Z-linear transformation Zm → Zn, and if A is (p)-surjective, X (p)-

generates the lattice. As the Pi are isomorphisms of Zm and Zn, then D is (p-

)surjective if and only if A is (p)-surjective. However, D is a diagonal matrix defined

over Z, so is surjective if and only if its entries are ±1, and is p-surjective if and only

if its entries are all prime to p.
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Lemma 4.0.8. [30, Lemma 1.14] Let φ : F → GL(L) be an integral representation,

L′ ⊂ L is a sublattice of index prime-to-p, then

SymRank(φ; p) = SymRank(φ|L′ ; p).

Proof. Suppose X is a minimal invariant set that generates a sublattice of L′ of

index prime-to-p, X is an invariant p-generating set of L, so SymRank(φ; p) ≤

SymRank(φ|L′ ; p). Now suppose X is a minimal invariant p-generating set of L,

then cX for c = [L : L′] is a p-generating invariant set inside L′, so SymRank(φ; p) ≥

SymRank(φ|L′ ; p)

4.1 Tables of symmetric p-ranks

To give an idea of the values of the symmetric p-ranks, Table 4.1 gives the values of

the symmetric p-ranks of the full automorphism groups of each irreducible maximal

finite subgroup of GLn(Z). The descriptions of the following lattices are from [11],

and the naming convention used there will be followed. Recall that for a lattice L, the

following notation L+r denotes a lattice of the same family, where [L+r : L] = r (see

2.4.1). These values were calculated using the algorithm in Section 4.0.1; the code

for this can be found in Appendix C.1.1. Lastly, the column labelled KF denotes

the primes p for which the invariant p-generating set satisfies the condition KF (see

Lemma 3.5.3). The symbol “-” is used for when the lattice has no symmetry of that

order, and “o” for when the lattice has a symmetry of that order, but the symmetric

p rank is equal to the rank.
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L |Aut(L)|
Symmetric p-rank

KFp = 2 p = 3 p = 5 p = 7

A1 2 2 - - - -

I2 23 4 - - - -

A2 22 · 3 4 3 - - -

I3

24 · 3
6 o - - -

A3 8 o - - 2

A+4
3 8 o - - 2

D4 27 · 32 16 9 - - 2, 3

A2 ⊗ I2 25 · 32 8 6 - - -

A4
24 · 3 · 5

8 o 5 - -

A+5
4 8 o 5 - -

I4 27 · 3 8 o - - -

A2 ⊗ A2 24 · 32 8 9 - - 3

I5

28 · 3 · 5
10 o o - -

D5 16 o o - 2

D+4
5 32 o o - 2

A5

25 · 32 · 5

16 6 o - 2, 3

A+2
5 12 9 o - 2, 3

A+3
5 16 6 o - 2

A+6
5 12 6 o - 2

I6

210 · 32 · 5
12 o o - -

D6 32 o o - 2

D+4
6 64 o o - 2

I3 ⊗ A2 27 · 34 12 9 - - 2

E6
28 · 34 · 5

32 27 o - 2, 3

E+3
6 32 27 o - 2, 3

A6
25 · 32 · 5 · 7

12 o o 7 -

A+7
6 12 o o 7 -

Q6(1) 24 · 3 · 7 16 o - 7 2

Q6(4)

24 · 3 · 5
16 o o - 2

Q6(4)+2 12 o o -

Q6(4)+4 16 o o - 2
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L |Aut(L)|
Symmetric p-rank

KFp = 2 p = 3 p = 5 p = 7

A3 ⊗ I2
29 · 32

16 o - - 2

A+4
3 ⊗ I2 16 o - - -

D+2
6 29 · 32 · 5 32 o o - 2

A3 ⊗ A2
25 · 32

16 9 - - 2

A+4
3 ⊗ A2 16 9 - - 2

I7

211 · 32 · 5 · 7
14 o o o -

D7 40 o o o 2

D+4
7 128 o o o 2

E7
210 · 34 · 5 · 7

64 27 o o 2, 3

E+2
7 40 27 o o 2, 3

A7

28 · 32 · 5 · 7
32 o o o 2

A+8
7 16 o o o 2

I8

215 · 32 · 5 · 7
16 o o o -

D8 64 o o o 2

D+4
8 256 o o o 2

D4 ⊗ I2 215 · 34 32 18 - - 2, 3

E8 214 · 35 · 52 · 7 128 81 25 o 2, 3, 5

D4 ⊗ A2 28 · 33 32 27 - - 2, 3

(D4 ⊗ A2)+2

27 · 32

32 12 - - 2, 3

(D4 ⊗ A2)+4 64 27 - - 2, 3

(D4 ⊗ A2)+8 24 12 - - 2, 3

I4 ⊗ A2 211 · 35 16 12 - - -

(I4 ⊗ A2)+3

28 · 35
16 81 - - 3

(I4 ⊗ A2)+27 16 27 - - 27

A4 ⊗ I2
29 · 32 · 52

16 o 10 - -

A+5
4 ⊗ I2 16 o o - -

(A4 ⊗ I2)+5 28 · 32 · 52 16 o 25 - 5

Q8(1) 27 · 32 · 52 64 18 25 - 2, 3, 5

A4 ⊗ A2
25 · 32 · 5

16 12 10 - -

A+5
4 ⊗ A2 16 12 10 - -
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L |Aut(L)|
Symmetric p-rank

KFp = 2 p = 3 p = 5 p = 7

Q8(3)

25 · 3 · 7

16 9 - o -

Q8(3)+3 16 9 - o -

Q′8(3) 16 9 - o -

Q′8(3)+3 16 9 - o -

A8
28 · 34 · 5 · 7

16 27 o o 3

A+9
8 16 9 o o -

A2 ⊗ A2 ⊗ I2 29 · 34 16 18 - - 3

A⊗3
2 25 · 34 16 27 - - 3

I9

216 · 34 · 5 · 7
18 o o o -

D9 32 o o o 2

D∗9 512 o o o 2

A9

29 · 34 · 52 · 7

20 o 25 o 2, 5

A+2
9 64 o 25 o 2, 5

A+5
9 32 o 10 o 2

A+10
9 = A∗9 32 o 10 o 2

A3 ⊗ I3

213 · 34

24 o - - 2

(A3 ⊗ I3)+2 32 o - - 2

(A3 ⊗ I3)+4 128 o - - 2

(A3 ⊗ I3)+16 64 o - - 2

(A3 ⊗ I3)+32 128 o - - 2

(A3 ⊗ I3)+64 24 o - - 2

A3 ⊗ A3
28 · 32

32 o - - 2

(A3 ⊗ A3)+4096 32 o - - 2

(A3 ⊗ A3)+2

212 · 32
64 o - - 2

(A3 ⊗ A3)+2048 48 o - - 2

A3 ⊗ A∗3 27 · 32 32 o - - 2

Q9(5)
25 · 32 · 5

24 o 10 - 2

Q9(5)∗ 24 o 10 - 2

Table 4.1: Symmetric p-ranks of automorphism groups of lattices up to dimension 9.
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Remark 4.1.1. The lattice named “D4” in Table 4.1 could also be called “F4”;

the Z-span of the vectors of these root systems give equivalent lattices. The full

automorphism group of this lattice is the Weyl group W (F4), of size 1152, and W (D4)

is an index 6 subgroup inside W (F4).

For lattices of the form L ⊗Z M , the symmetric p-rank of the automorphism group

is multiplicative except for when p = 2, when it is half the product of the individual

symmetric 2-ranks. Recall from Section 2.4, the group Aut(L⊗ZM) always contains

the central product

(Aut(L)× Aut(M))/(−1,−1).

For p = 2, if L and M are GL-, GM - lattices, both with a non-trivial action of −1,

then the central product dictates that (−1, 1) = (1,−1), and the definition of the

tensor product gives r(l ⊗ m) = (rl ⊗ m) = (l ⊗ rm) for r ∈ Z, l ∈ L, m ∈ M .

Therefore if ∆L

∐
−∆L and ∆M

∐
−∆M are 2-generating invariant sets of L and M ,

then (∆L

∐
∆′L) ⊗ (∆M

∐
−∆M) = (∆L

∐
−∆L) ⊗ ∆M , which gives a 2-generating

and invariant subset. This is a strictly p = 2 phenomenon.

4.2 Complex reflection groups

A linear transformation g of a vector space V over a field F of characteristic 0 is a

reflection if [V, g] := Im(Id−g) has dimension 1. Intuitively, these are transformations

that fix some hyperplane in V , and groups generated by reflections are consequently

68



called reflection groups. The root of a reflection g is any non-zero vector in [V, g].

Let V be a complex vector space of dimension n, equipped with a positive definite

hermitian form (−,−) : V × V → C. An isometry g is a transformation that

preserves this form (that is, (u, v) = (g · u, g · v), and the unitary group, U(V ) is

the group of isometries of V . Any finite reflection group G of V preserves some

hermitian form (take (u, v) :=
∑

g∈G (gu, gw)), so is a subgroup of U(V ) after picking

an appropriate hermitian form. As any two forms are equivalent over C, U(V ) is

unique up to conjugacy in GL(V ) so G appears as a subgroup of U(V ) under the

regular hermitian form〈, 〉, given by 〈(u1, . . . , un), (v1, . . . , vn)〉 = u1v1+. . . unvn, where

vi denotes complex conjugation, and (u1, . . . , un), (v1, . . . , vn) ∈ Cn.

Groups G that are generated by complex reflections of some complex vector space

V are called complex reflection groups, (sometimes unitary reflection groups in the

literature) and if G is a finite subgroup of U(V ) with V irreducible, then G is an

irreducible complex reflection group. These are the building blocks of all complex

reflection groups, and were classified by Shephard and Todd in 1954. It was shown

that the irreducible complex reflection groups belong either to a family G(m,n, p) or

are one of 34 exceptional groups. The description of the complex reflection groups

can be found in [25], the reader is referred there and [4] for an introduction to the

subject.

If N is the normalizer of a split torus T over a field k, char(k) 6= p in a semisimple

algebraic group G, then define T̂ as the integral representation of the Weyl group

W ' N/T acting on the character lattice T ∗. Theorem 1.10 in [30] asserts the

following

max{SymRank(T̂ ; p)} − dim(T ), ed(F ; p)} ≤ ed(N ; p) (4.5)
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and

ed(N ; p) ≤ SymRank(T̂ ; p)− dim(T ) + ed(F ; p). (4.6)

Also, if the condition KF was satisfied, then the lower bound was an equality. Due

to the surjection of Galois cohomology H1(k,N)� H1(k,G), see [43, III.4.3 Lemma

6] together with [1, Lemma 1.3] the symmetric p-rank was calculated for each case,

and this gave bounds on the essential p-dimension of G.

The aim of the following is to attempt something similar for some complex reflection

groups, though there does exist some issues upon stepping outside the realm of Weyl

groups.

Firstly, there is not necessarily a canonical choice for a root lattice; complex root

systems form complex lattices, which are free J -modules for some suitable ring J ⊂

C. However, often complex reflection groups appear as low index subgroups inside

an irreducible maximal finite subgroup of GLn(Z); this phenomenon is explored in

Section 4.2.2.

Secondly, (4.5–4.6) relies on the construction of a representation of dimension equal to

the symmetric p-rank; this was realised due to the representation of highest weight,

which can only be applied in the case of algebraic groups. However, there does

always exist a representation of this dimension for the split extension T oW for a W

action on T ∗, and the arguments used in (4.5–4.6) can be applied to this group. For

completeness, a proof is provided in Theorem 4.2.1, but note that the arguments are

not the author’s own.

Moreover, there doesn’t exist an analogue of a semisimple algebraic group that has a

complex reflection group as its Weyl group. Although there certainly does exist the

group T oW of which one can attain bounds on the essential p-dimension, this group
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isn’t a normalizer of a split torus inside some larger algebraic group.

The story doesn’t quite end there however; the search for such analogues has lead to

much fruitful mathematics, including the study of Spetses, where certain unipotent

characters seem to evidence a mysterious algebraic structure that behaves like an

analogue of semisimple algebraic groups for complex reflection groups, see [3] for

more details.

Theorem 4.2.1. Let L be a W -lattice for some finite group W , with φW : W →

GL(L) the integral representation, and define the split torus T := Diag(L) over k,

char(k) 6= p. There exists the following bounds on edk(T oW ; p),

max{SymRank(φW ; p)} − dim(T ), edk(W ; p)} ≤ edk(T oW ; p)

and

edk(T oW ; p) ≤ SymRank(φW ; p)− dim(T ) + edk(W ; p).

If the p-generating subset of L satisfies KF (see Lemma 3.5.3), then the lower bound

is an equality.

Proof. Let Γp be a Sylow p-subgroup of W . Using Lemma 3.5.6 and replacing k by

k(p), means the value of the essential p-dimension of the groups remains unchanged,

and the groups are smooth. Then by Lemma 3.3.2, edk(T oW ; p) = edk(T o Γp; p),

and edk(W ; p) = edk(Γp; p) so replace W by Γp. For the lower bound, as the extension

is split, we can apply Proposition 3.5.1, so edk(Γp; p) ≤ edk(T oΓp; p). Also, suppose

V is a p-faithful representation of T o Γp, which decomposes into weight spaces

{Vλ | λ ∈ ∆} for a subset ∆ ⊂ L = T ∗. As V is p-faithful, the elements in ∆
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generate a sublattice of L = T ∗ of index that is finite and prime to p (as shown in

the proof of Corollary 3.4.3). As Γp permutes the weight spaces, ∆ would also have

to be invariant under Γp, hence dim(V ) = |∆| ≥ SymRank(φW ; p). Applying the

lower bound of Theorem 3.5.7 gives SymRank(φW ; p)− dim(T ) ≤ edk(T oW ; p). If

the subset ∆ satisfies the condition KF , then this is bound is an equality, by Lemma

3.5.3.

For the upper bound, let ∆ be a minimal p-generating, Γp-invariant subset of L.

Then there exists a p-faithful representation V∆ of T o Γp of dimension |∆|, given by

V∆ := Spank{(vλ) | λ ∈ ∆}. The finite group group Γp acts by permuting the basis

elements, g : vλ 7→ vg·λ, for all g ∈ Γp, λ ∈ ∆, and T acts by t : vλ 7→ λ(t)vλ for any

t ∈ T and vλ ∈ Vλ (see [35, pp. 473]). This action on the basis {vλ | λ ∈ ∆}, is then

extend linearly to the whole of V∆. If KF is satisfied, then by Lemma 3.5.3 it is p-

generically free, and if not, as Γp is a p-group, there exists a faithful representation VΓ

of Γp of dimension edk(Γp; p) (from Theorem 3.3.1) and by Proposition 3.5.2, V∆×VΓ

is p-generically free of dimension |∆|+ edk(W ; p).

Example 4.2.2 shows how to use the tables for calculating these bounds.

The symmetric p-ranks of lattices associated to complex reflection groups of rank 3

or greater (those which can be easily attributed to complex root systems) can be

found in Table 4.2. and the essential p-dimension of the complex reflection groups

themselves was studied in [15]. Remarkably it turns out to be equal to the number of

fundamental invariants of W that divide p. The list for each of the complex reflection

groups considered here is given in Table A.1 in Appendix A.

As a guide for Table 4.2, Σ denotes the complex root system (defined in 4.2.1), Λ(Σ)real
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gives the lattice that contains that complex reflection group via the construction

outlined in 4.2.2, along with the index of the complex reflection group in the full

automorphism group of that lattice. The column labelled KF denotes at which p the

condition KF is satisfied (see Lemma 3.5.3). The condition is not satisfied mostly in

the cases where SymRank(φL; p) = rank(L) so 0 ≤ edk(G; p) ≤ 1, for G satisfying

(2.31). As the only algebraic groups with essential dimension 0 are connected [40,

Theorem 5.4], in this case edk(G; p) = 1. To elucidate how to use Tables 4.2 and A.1

in conjunction with Theorem 4.2.1, consider the following example.

Example 4.2.2. Take the complex reflection group J (4)
3 . For each prime considered,

assume char(k) 6= p. The corresponding lattice Q6(1) contains W (J (4)
3 ) as an index

2 subgroup (more information on this group is given in 4.3.2). The symmetric 2-

rank of both the Weyl group and the larger full automorphism group is 16, and

as KF is satisfied for p = 2, ed(T o W (J (4)
3 ); 2) = 10. The symmetric 3-rank is

equal to the rank, and as mentioned previously T oW (J (4)
3 ) is not connected, its

essential 3-dimension is therefore 1. Finally, the symmetric 7-rank is 7, so 1 ≤

ed(T oW (J (4)
3 ); 7) ≤ 2. In fact, as a C7-lattice, Q6(1) ' A6 (the A6 root lattice)

so edk(T oW (J (4)
3 ); 7) = edk(Diag(A6) o C7; 7) = 2 (see the beginning of 5.3 for an

explanation of this figure).

Remark 4.2.3. Comparing Table 4.2 of symmetric p-ranks with Table A.1, some

relationships appear. Firstly, edk(W ; p) = 0 precisely when the group W has no

p-symmetry and if edk(W ; p) = 1, then the symmetric p-rank is either equal to the

rank, or in the case of p = 7, the nearest multiple of p greater than the rank. For

edk(W ; p) = n ≥ 2, the value of the symmetric p-rank is always greater than pn.
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Σ Λ(Σ)real [Aut(Λ) : W (Σ)] SymRank(φL; p) KF

p = 2 p = 3 p = 5 p = 7

H3

Q6(4)

2

16 o o - 2

Q6(4)+2 12 o o - -

Q6(4)+4 16 o o - 2

J (4)
3 Q6(1) 2 16 o - 7 2

L3
E6

25 · 5 16 27 - - 2, 3

M3 24 · 5 16 27 - - 2, 3

J (5)
3 Q12 22 32 54 o - 2, 3

F4 D4 1 16 9 - - 2, 3

H4 Q8(1) 2 64 18 25 - 2, 3, 5

N4

E8

25 · 34 · 5 · 7 64 o 10 - 2

O4 24 · 33 · 5 · 7 128 18 10 - 2

L4 27 · 5 · 7 16 81 o - 2, 3

K5 Q10 2 128 81 o - 2, 3

K6 K12 2 128 243 o 14 2, 3

E6

E6
2

32 27 o - 2, 3

E+3
6 32 27 o - 2, 3

E7

E7
1

64 27 o o 2, 3

E+2
7 40 27 o o 2, 3

E8 E8 1 128 81 25 o 2, 3, 5

Table 4.2: Symmetric p-ranks of lattices associated to complex reflection groups.
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4.2.1 Complex lattices and root systems

Let F be a finite abelian extension of Q, and J the intersection of F and the set of

all algebraic integers, called the ring of integers of F. A J -lattice is a collection of n

linearly independent vectors in F n, along with all their J -linear combinations. Any

submodule of a free J -module is itself free if J is a principal ideal domain, and

although this isn’t necessarily the case a priori in practice, the specific J considered

are indeed principal ideal domains. This leads to a natural generalisation of root

systems for complex reflection groups, see [25, Def. 1.43].

Definition 4.2.4. [25] A J -root system in a vector space V over F , with hermitian

inner product (−,−) is a pair (Σ, f), where Σ is a finite subset of V , f : Σ →J ×

a function such that

1. Σ spans V and 0 /∈ Σ,

2. for all α ∈ Σ and λ ∈ F , λα ∈ Σ if and only if λ ∈J × ,

3. for all α ∈ Σ and λ ∈J ×, f(λα) = f(α) 6= 1,

4. for all α, β ∈ Σ, the Cartan coefficient

〈a | b〉 = (1− f(β))
(α, β)

(β, β)

belongs to J ,

5. for all α, β ∈ Σ, rα,f(α)(β) := β − (1− f(α))
(v, f(α))

(α, α)
a ∈ Σ

and f(rα,f(α)(β)) = f(β).
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The group generated by the reflections {rα | α ∈ (Σ, f)}, is denoted W (Σ, f),

and is called (in slightly confusing nomenclature) the Weyl group of the system. It

will be shown later that many of the irreducible complex reflection groups are indeed

Weyl groups of some complex root system. A notable difference between this and the

“real” case is the fact that these reflections can have order greater than 2.

The complex lattice Λ(Σ) is formed of the J -linear combinations of the root system

Σ; this gives a suitable generalisation of the root lattice of a real root system for

complex reflection groups. From these “complex lattices” it is often possible to define

a real counterpart; a free Z-module, exhibiting the same symmetry as its complex

counterpart. Throughout this chapter, define λ = 1
2
(−1+

√
−7) and σ = 1

2
(−1+

√
5),

and the instances of J used in this chapter will be Z[α] ∈ C, where α is one of

{λ, σ, ζp}, where ζp is a primitive pth root of unity. To each of these α is assigned an

involution; for a non real α, it is complex conjugation x 7→ x, otherwise x ∈ Z[σ],

and the involution is x 7→ x′, where (a+ b
√

5)′ = a− b
√

5.

J ζ3 = ω = e
2πi
3 λ = 1

2
(−1 +

√
−7) σ = 1

2
(−1 +

√
5)

Involution ω = ω2 = −1− ω λ = −1− λ σ′ = −σ − 1

Table 4.3: Reference table for lattices associated to complex reflection groups.

4.2.2 Λ(Σ)real

There are different ways to obtain a real lattice L ' Zn from a complex root system,

or complex lattice Λ. Ideally, there would be a canonical choice, such that the auto-

morphisms GL(L) are the same as GL(Λ). The following construction from [8, §2.6]
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defines a real lattice Λreal, from a complex lattice Λ. Firstly, for ω or λ, a complex

J -lattice vector (x1, . . . , xn) ∈ Λ, defines a lattice vector

(Re(x1), Im(x1), . . . ,Re(xn), Im(xn)) ∈ Z2n. (4.7)

For α = σ ∈ R, this lattice vector is instead

(x1, . . . , xn, x
′
1, . . . x

′
n). (4.8)

The integer combinations of these vectors give the elements of the rank 2n Z-lattice,

Λreal, with inner product given by the Hermitian form

(x1, . . . , xn) · (y1, . . . , yn) = Re(x1y1 + . . . xnyn)

=
1

2
(x1y1 + x1y1 + . . .+ xnyn + xnyn)

(4.9)

for α = ζp or λ, and

(x1, . . . , xn) · (y1, . . . , yn) =
1

2
(x1y1 + . . .+ xnyn + x′1y

′
1 + . . . x′ny

′
n) (4.10)

for α = σ.

The lattice Λreal is very closely related to its complex counterpart, and notably if G

is a group of automorphisms of a complex J -lattice Λ, (so comprised of elements of

GLn(J )), then G is a group of automorphisms of Λreal as a subgroup of GL2n(Z).

However these groups are often not isomorphic, as extra automorphisms of Λreal creep

in, for instance complex conjugation.

Example 4.2.5. Define ω := e
2πi
3 , and Λ a Z[ω]-lattice. Multiplication by ω gives an
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order 3 automorphism of Λ that leaves no non-zero fixed points of Λ, which induces

an order 3 automorphism of Λreal. In fact if L is a real lattice, with a fixed-point-free

automorphism of order 3, then L = Λreal for a Z[ω]-lattice Λ.

Now define θ := ω − ω =
√
−3. The element θ generates a prime ideal, indeed there

exists an isomorphism of rings

Z[ω]/θZ[ω] ' Z/3Z. (4.11)

The modulo 3 structure of Λreal is the modulo θ-structure of Λ.

As a concrete example, the root lattice A2 is Λreal for Λ := Z[ω]. The automorphisms

of Z[ω] are multiplication by −1 and ω, which generate the cyclic group of order 6.

This group sits as an index 2 subgroup of Aut(A2), with the extra symmetry coming

from complex conjugation.

4.3 Symmetric p-ranks of lattices of complex

reflection groups

For a complex root system Σ over J , the J -linear combinations of the roots form

a J -lattice, denoted by Λ(Σ). Using the construction Λreal on Λ(Σ) returns lattices

that contain W (Σ) as a group of automorphisms.

This has a varied effect, in some cases Λ(Σ)real returns a previously known root lattice

(either E6, E∗6 or E8), and the index of W (Σ) in the full automorphism group is large.

However in other cases Λ(Σ)real is a genuinely “new” lattice, that contains W (Σ) as
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a subgroup of small index, usually extended to the full automorphism group by an

outer automorphism such as complex conjugation.

For some complex root systems, the ring of integers for Σ is Q (these are the groups

more usually referred to as Weyl groups). In this case, the definition of Λreal is simply

the root lattice An, Dn or En, though embedded as

(l1, . . . ln) 7→ (l1, 0, l2, . . . , ln, 0).

For the remainder of this section, each complex root system of degree 3 or greater

will be taken in turn. A description of the root system Σ, along with W (Σ) is given,

and the construction of the real lattice Λ(Σ)real. By studying these groups, the value

of each of the symmetric p-ranks of both W (Σ) and the full automorphism group

Aut(Λ)real(Σ) will be calculated and given, leading to the results in Table 4.2. Also,

for each root system Σ, the Coxeter diagram W (Σ) is given, see [4] for a description

of these.

4.3.1 H3

Let τ := 1+
√

5
2

, the golden ration, and σ := 1
τ

= τ − 1. The root system H3 ∈ R3

is formed by taking the 30 cyclic permutations of (±2, 0, 0) and (±1,±τ,±σ). The

reflections in these roots form the complex reflection group W (H3) ∼= C2×A5, which

is the symmetry group of the icosahedron.

Λ(H3) is the set of Z[σ] linear combinations of the roots of H3, and Λ(H3)real (as

defined in Section 4.2) is the real rank 6 lattice Q6(4). The bilinear form on this
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5

Figure 4.2: Coxeter diagram of W (H3).

lattice is the following

(x1, y1, z1) · (x2, y2, z2) =
1

2
(x1x2 + y1y2 + z1z2 + x′1x

′
2 + y′1y

′
2 + z′1z

′
2). (4.12)

Embedding in R3, the roots of H3 form the midpoints of the edges of an icosahedron

and under the bilinear form (4.12) have norm 4. These form the minimal vectors

of the lattice Q6(4) ([11, pp. 46]), a member of the family of 3 lattices Q+r
6 (4) all

sharing the same bilinear form and automorphism group. The other two lattices have

minimal vectors that correspond to the faces and vertices of the icosahedron.

The 20 faces of the icosahedron (equivalently the vertices of the dodecahedron) are

given by the cyclic permutations of the coordinates (±1,±1,±1) and (0,±τ,±σ), and

this gives rise to the 20 minimal vectors, with norm 3, of the lattice Q+2
6 (4).

The lattice Q+4
6 (4) has 24 minimal vectors, which are given by by two labellings of

the 12 vertices of the icosahedron. The first set of 12 vertices, labelled {v∞, v0, . . . v4}

are the cyclic permutations of (0,±σ,±1). The second labelling is the set {wi}, where

wi := τvi. Together, the corresponding vectors in Z6 of {vi} and {wi} form the 24

minimal vectors, with norm 5
2
, of the lattice Q+4

6 (4).

It is possible to define the vectors of the other lattices in terms of vi and wi coordinates,

asQ6(4) = 〈±vi±vj,±wi±wj〉, andQ+2
6 (4) is generated by differences between certain

pairs of vi and wi. The containment is as follows

Q6(4) ⊂ Q6(4)+2 ⊂ Q6(4)+4. (4.13)
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v2

−v0

v0

−v2

v∞

−v1

v1

v3

v4

Figure 4.3: Position of vi ∈ Q+r
6 (4).

Using the characterisation via points on the icosahedron makes it very easy to un-

v∞ (σ, 1, 0)
v1 (0, σ,−1)
v3 (1, 0, σ)

v0 (−σ, 1, 0)
v2 (1, 0,−σ)
v4 (0, σ, 1)

Table 4.4: Coordinates of vi ∈ Q+r
6 (4).

derstand the automorphism group of Q+r
6 (4). The group C2 × A5, is the group of

symmetries of the icosahedron, and naturally this group leaves the sets {vi} and {wi}

invariant. This extends to the full automorphism group by adding the conjugation

map,

(x, y, z) 7→ (x′, z′, y′). (4.14)
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where (a + b
√

5)′ = a − b
√

5, and this interchanges the sets {vi} and {wi}. This

automorphism group contains W (H3) as an index 2 subgroup.

Remark 4.3.1. The notation for these lattices comes from [11, pp. 46], and the

reason that the index of the vertices runs from {0, . . . 4,∞} is due to the fact that

the symmetries of icosahedron act on vi exactly as the natural action of PSL2(5) on

P1(F5).

The sets {vi} and {wi} satisfy linear relations called the icosahedral relations, the

first of which says that
√

5 times any point is equal to the sum of all its adjacent

points, for instance

v0 + . . .+ v4 =
√

5v∞,

w0 + . . .+ w4 =
√

5w∞.

(4.15)

In particular, this means

v0 + . . .+ v4 + v∞ = v∞ +
√

5v∞

= 2(τv∞)

= 2w0.

Similarly, w0 + . . .+ w4 − w∞ = 2v∞. So the sets {vi} and {wi} each generate a full

rank sublattice of index 2.

The second set of relations is that the sum of two adjacent vi’s equals the sum of the

two corresponding adjoining wi (the next closest two vertices to that common edge).
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For instance,

v∞ + v4 = w0 + w3, v∞ + v2 = w1 + w3.

The Sylow 2-subgroup of W (H3) is C3
2 , and is generated by the symmetries that

multiply each coordinate by −1. These are reflections in three mutually orthogonal

planes with rectangles given by the vertices ±{v∞, v0}, ±{v1, v4} and ±{v2, v3}. By

adding the conjugation map (4.14), this generates Syl2(Aut(Q+r
6 (4)), and this outer

automorphism gives the Sylow 2-subgroup structure C2 ×D8, D8 being the dihedral

group of order 8.

For L = Q+2
6 (4), let φL be the integral representation of Aut(L), and φL|W (H3) the

restriction to the index 2 subgroup W (H3).

Proposition 4.3.2. For L = Q+2
6 (4), SymRank(φL; 2) = SymRank(φL|W (H3); 2) =

12 for i = 1, 2.

Proof. As mentioned previously, there exists an element g ∈ W (H3) such that φL(g) =

−1 , so SymRank(φL|W (H3); 2) ≥ SymRank(φL|W (H3); 2) ≥ 12. The orbit of w∞−v0 =

(τ, σ, 0) has size 12, and is formed by all the cyclic permutations of (±τ,±σ, 0). We

claim that this subset generates L. The remaining 8 minimal vectors are (±1,±1,±1),

and

(τ,−σ, 0) + (−σ, 0, τ) + (0, τ,−σ) = (1, 1, 1).

Therefore all minimal vectors can be attained with appropriate choice of ± multiples

of the coordinates. Therefore 12 ≤ SymRank(φL|W (H3); 2) ≤ SymRank(φL; 2) ≤

12.
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Lemma 4.3.3. Any vector x = (a1 + b1σ, a2 + b2σ, a3 + b3σ) ∈ Q6(4) satisfies
∑
ai ≡∑

bi ≡ 0 mod 2.

Proof. The minimal vectors of Q6(4) are cyclic permutations of (±2, 0, 0) and

(±1,±σ,±τ). As τ = 1 + σ, these satisfy the above condition. This property is

preserved under addition, so applies to all elements in Q6(4).

For the symmetric 2-ranks of the next two lattices, consider the map Z[σ] 7→ F2
2,

where which takes an element to its class modulo 2Z[σ]. This extends to a map on

the whole lattice, which will be denoted by f .

f : L→ F6
2. (4.16)

Lemma 4.3.4. If x = (α1, α2, α3) ∈ Q6(4) has orbit size less than 8 under the action

of C3
2 , or if x ∈ Q6(4)+4 has orbit size less than 4, then f(x) = 0.

Proof. Firstly, for α ∈ [1, σ, τ ], neither (α, α, 0), nor its cyclic permutations are in

Q6(4), and similarly, (α, 0, 0) nor its cyclic permutations are in either Q6(4) nor

Q6(4)+4. These all have norm less than 4, contradicting the minimality of the minimal

vectors of Q6(4)+r. As the cyclic permutations of (2, 0, 0) and (2σ, 0, 0) are in Q6(4)+r

r = 0, 4, this in turn implies that the cyclic permutations of (α1, α2, 0) /∈ Q6(4), and

(α, 0, 0) /∈ Q6(4)+r, r = 0, 4 for αi 6≡ 0 mod 2Z[σ].

The group C3
2 acts by −1 on each entry, so if x = (α1, α2, α3) ∈ Q6(4) has orbit size

less than 8 under C3
2 , then αi = 0 for some i, and the previous argument shows the

other entries must be in 2Z[σ], and a similar argument works for Q6(4)+4, so f(x) = 0
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in all cases.

Proposition 4.3.5. Let L = Q6(4). Then

SymRank(φL; 2) = SymRank(φL|W (H3); 2) = 16.

Proof. If X is a 2-generating set, invariant under C3
2 , then it contains two elements

x = (α1, α2, α3), y = (β1, β2, β3) ∈ X with α1 6≡ β1 6≡ 0 mod 2Z[σ], as Z[σ]/2Z[σ] '

F2
2. The action of C3

2 leaves the equivalence class of each entry invariant so they must

have different orbits and Lemma 4.3.4 implies both x and y have orbit size 8. It

remains to find a size 16 generating set, invariant under C3
2 , and the conjugating map.

Notice that the minimal vectors are split into 4 orbits of size 16, 8, 4 and 2, with

representatives (τ, 1, σ), (1, σ, τ), (0, 2, 0) and (2, 0, 0) respectively. The size 16 orbit

generates the lattice, as each of the other representatives can be found by integer

linear combinations of elements of the orbit of (τ, 1, σ). Specifically,

(1, σ, τ) = (τ,−1, σ) + (τ, 1,−σ) (= (−σ, τ, 1)),

(2, 0, 0) = (1, σ, τ) + (1,−σ,−τ),

(0, 2, 0) = (τ, 1, σ) + (−τ, 1,−σ).

The other elements of the orbits are achieved by using the linearity of the group

action. So 16 ≤ SymRank(φL|W (H3); 2) ≤ SymRank(φL; 2) = 16) ≤ 16.

Proposition 4.3.6. Let L = Q+4
6 (4). Then

SymRank(φL; 2) = SymRank(φL|W (H3); 2) = 16.
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Proof. As mentioned previously, the group C3
2 leaves invariant the equivalence class

modulo 2Z[σ] of the entries of x ∈ L. Consider the morphism f : L → (F2)6, where

the entry of each vector is taken to its equivalence class modulo 2Z[ω]. The image

of L has rank at least 4; the images of {(σ, 1, 0), (0, σ, 1), (1, 0, σ), (1, 0, τ)} forming a

linearly independent set. A set that 2-generates L must therefore generate its image

under f . The group C2
3 acts trivially on (F2)6, and by Lemma 4.3.4 any x ∈ L with

orbit size 2 or smaller has trivial image under this map, a set that must generate

f(L) must have size 4, each with a distinct orbit of size 4. Therefore a 2-generating

invariant set must have size 16 at least.

The set ±{v2, v3, w0, w∞} ∪ ±{v0, v∞, w2, w3} has size 16 and is invariant under C3
2

and the conjugating map. It generates the whole lattice, as the rest of the minimal

vectors (±{v1, v4, w1, w4}) are given from the following adjacency/adjoining relations,

v0 + v2 = w∞ + w1

v1 + v∞ = w0 + w2

v4 + v∞ = w0 + w3

v0 + v∞ = w1 + w4.

Therefore 16 ≤ SymRank(φL|W (H3); 2) ≤ SymRank(φL; 2) = 16) ≤ 16.

For p = 3 and 5, both Sylow p-subgroups are Cp. For p = 3 it is the rotation

around a triangular face, (choosing for example the rotation v∞ 7→ v3 7→ v4 is the

cyclic permutation of the coordinates [x, y, z]), and the order 5 automorphism is given

by the rotation around any vertex.
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Proposition 4.3.7. For L = Q6(4)+r, SymRank(φL; 3) = 6.

Proof. Take the Sylow 3-subgroup to be the rotation about the face given by the

vertices {v∞, v3, v4}. For Q6(4)+4, the set {v∞, v3, v4, v1, v0, v2} is invariant. This

contains all points vi, up to −1 sign, so generates a sublattice of index 2, so 3-

generates. Lemma 4.0.8 gives the symmetric 3-ranks of the other lattices.

Proposition 4.3.8. For L = Q6(4)+r, SymRank(φL; 5) = 6

Proof. Take the Sylow 5-subgroup to be the rotation about the vertex v∞. It is

sufficient to find a fixed point of this rotation, and together with an appropriate

orbit of 5 minimal vectors gives an invariant generating set. For Q6(4)+4, the set

{v∞, v3, v4, v1, v0, v2} is invariant. This contains all points vi, up to −1 sign, so gen-

erates a sublattice of index 2, so 5-generates. Again using Lemma 4.0.8 gives the

symmetric 5-rank.

4.3.2 J (4)
3

The roots of the root system J (4)
3 are the cyclic permutations of the following

(±2, 0, 0), (±λ,±1,±1) and (0,±µ,±µ), (4.17)

where λ := −1+
√

7i
2

, and µ := λ; the roots of the quadratic x2 + x + 2. The corre-

sponding complex reflection group W (J (4)
3 ) is isomorphic to C2 ×PSL2(F7), which is

the automorphism group of the Klein quartic, the second smallest nonabelian simple

group. Λ(J (4)
3 ) is the complex rank 3 Z[λ]-lattice generated by the roots of J (4)

3 , and
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4
4

Figure 4.4: Coxeter diagram of W (J (4)
3 ).

the rank 6 lattice Q6(1) is the name given to the real lattice, Λ(J (4)
3 )real. The group

W (J (4)
3 ) ' C2 × PSL2(F7) of order 24 · 3 · 7, [25, pp. 160] and this is an index 2

subgroup inside Aut(Q6(1)) [11, pp. 45].

The Sylow 2-subgroup of W (J (4)
3 ) has order 24, generated by ±1 on each coordinate,

along with an order 2 reflection which acts by swapping the last two entries. One can

see this acts on the set of minimal vectors. The Sylow 3-subgroup acts by cyclically

permuting the entries. As usual, denote by φ1
L and φ2

L as the integral representations

of W (J (4)
3 ) and Aut(Q6(1)) respectively.

Lemma 4.3.9. For (a1 + b1λ, a2 + b2λ, a3 + b3λ) ∈ Q6(1), ai, bi ∈ Z,

a1 + b1 ≡ a2 + b2 ≡ a3 + b3 mod 2, and (4.18)∑
ai ≡ 0 mod 2. (4.19)

Proof. Note that both these properties are preserved under addition; it remains to

show they are both true for the minimal vectors, which is easy to check, using that

[0, µ, µ] = [0,−1− λ,−1− λ].

Proposition 4.3.10. For L = Q6(1), SymRank(φiL; 2) = 16.

Proof. Suppose for a contradiction X ⊂ Q6(1) is a 2-generating invariant set with

|X| < 16. By Lemma 4.3.9 there must exist x = (a1 + b1λ, a2 + b2λ, a3 + b3λ) ∈ X
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whose entries satisfy ai + bi ≡ 1 mod 2 (as for instance (λ, 1, 1) ∈ Q6(1)). As all

entries must be non-zero, the orbit of x has size at least 8. If |X| < 16, then the orbit

of x must then have size 8, and be invariant under the action of swapping the last

two entries. It must have the form x = (α, β, β), α, β ∈ Z[λ]; denote the orbit of x

by Ox.

All other elements y = ai + biλ ∈ X \ Ox for i ∈ 1, 2, 3 must have orbit size 4 or

less, and by the previous argument must have (ai + bi) even. Inspecting orbit sizes,

y is either equal to (0, a, a) or a cyclic permutation of (2a, 0, 0), a ∈ Z[λ]. Therefore

all elements (α1, α2, α3) ∈ X, αi ∈ Z[λ], are such that α2 ≡ α3 mod 2Z[λ], so for

instance (µ, 0, µ) /∈ SpanZ(qX) for any odd q. Thus X is not 2-generating.

The orbits of (λ, 1, 1) and (0, µ, µ) have each size 8 and together generate Q6(1), which

is also invariant under the action of Syl2(Aut(Q6(1)). This is verified in Appendix

C.2.2, and therefore 16 ≤ SymRank(φ1
L; 2) ≤ SymRank(φ2

L; 2) ≤ 16.

The symmetric 3-rank is very easy to find thanks to the following easy Z-basis.

Proposition 4.3.11. For L = Q6(1), SymRank(φL; 3) = 6

Proof. The cyclic permutations of [λ, 1, 1] and [λ,−1, 1] form a Z[λ]-basis for Q6(1).

As [λ, 1, 1] − [λ, 1,−1] = [0, 2, 0], and adding cyclic permutations of (2, 0, 0) gives

all coordinates of type (±λ,±1,±1). Lastly, as λ + µ = −1, [0, µ, µ] = −[1, λ, 1] −

[−1, 1, λ], and [0, µ,−µ] = [1, 1, λ]− [1, λ, 1]− [0, 2, 0] + [0, 0, 2].

Proposition 4.3.12. For L = Q6(1), SymRank(φL; 7) = 7.

Proof. There are only 3 indecomposable Cp-lattices, for p ≤ 19 (see [12, Thm 34.31

pp. 729]), which are; the trivial lattice Z, the permutation lattice Z[Cp] and the
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root lattice Ap−1. Q6(1) has rank 6, and as the C7 acts non trivially, a C7-lattice,

Q6(1) ' A6, so SymRank(Q6(1); 7) = SymRank(A6(1); 7) = 7.

4.3.3 L3 and M3

The descriptions of these root systems Σ and the groups W (Σ) are from [25, pp. 149,

162]. L3 is given by the permutations and ωi multiples on each entry of (θ, 0, 0) and

(1, 1, 1), where θ = ω − ω2 =
√
−3, consisting of 36 points. These, along with their

−1 multiples form the minimal vectors (of norm 3) of the lattice Λ(L3)real, which is

in fact the root lattice E6. The description of E6 as this rank 3 Z[ω]-lattice is given

in [8, pp. 126], therefore W (L3) is those automorphisms GL3(Z[ω]) preserving the

hermitian form. It has order 23 · 34, and is generated by the order 4 reflection

1

θ


1 1 1

1 ω ω2

1 ω2 ω

 , (4.20)

along with permutation of the the entries, and diag{(ωa1 , ωa2 , ωa3)}, 0 ≤ ai ≤ 2. This

group is also the triple cover of the Hessian group.

3 3 3
4

3 3

Figure 4.5: Coxeter diagrams of W (L3) and W (M3).

The complex root system M3 is given by the points (1, ω, 0) under the action of

the group W (L3), which yields 27 vectors. This set, along with its −1 multi-
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ples, form the 54 minimal vectors (of norm 2) of Λ(M3)real, which is the lattice

E+3
6 . One can see Λ(L3)real is a sublattice inside Λ(M3)real, for instance (1, 1, 1) =

(1,−ω, 0)− (0, ω,−ω2)+(0, 1,−ω). The group W (M3) is generated by W (L3), along

with complex conjugation. An example of Syl2(W (L3)) is generated by the element

at (4.20), along with permutation of the last two coordinates, so is isomorphic to

C2 × C4. This is extended to Syl2(W (M3)) by including complex conjugation.

Define φL3 : W (L3)→ GL(E6), φM3 : W (M3)→ GL(E+3
6 ) as the respective integral

representations; here the symmetric p-ranks of the full automorphism group Aut(E6)

will not be covered, as that was calculated in [30].

Lemma 4.3.13. The following set ∆ 2-generates Λreal(L3),

∆ = {(1, ω, 1), (−ω,−1,−ω), (−1,−1,−ω),

(1, ω2, 1), (ω2, ω2, 1), (−1,−1,−ω2)}.
(4.21)

Proof. From the definition of L3, all x ∈ Λreal(L3) ⊂ (Z[ω])3. Set ei as the standard

basis vectors of Z3, and ai, 1 ≤ i ≤ 6 as the respective elements of ∆ at (4.21). There

exists the following relations

3e1 = a2 − a3 + a4 − a5,

3e2 = a1 − 2a2 − a4 + 2a5 − 2a6,

3e3 = 2a1 − 2a2 + a3 + 2a5 − a6,

3ωe1 = −2a2 + 2a3 + a4 − a5,

3ωe2 = a1 + a2 − a4 − a5 + a6,

3ωe3 = −a1 + a2 − 2a3 − a5 + 2a6.

Therefore ∆ is a generating set for (3Z[ω])3, and for any l ∈ Λreal(L3), 3l must be an

integer linear combination of elements of ∆, so ∆ 2-generates Λreal(L3), and therefore

also Λreal(M3).
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Lemma 4.3.14. Let H = Syl2(W (L3)). Then x ∈ Λreal(L3) falls into one of three

types under the action of H, where αi ∈ Z[ω],

1. x = (0, α1,−α1) of orbit size 2,

2. x = (α1, α2, α2) of orbit size 4,

3. all other cases, orbit size 8.

Proof. H is generated by the elements A and B,

A :=
1

θ


1 1 1

1 ω ω2

1 ω2 ω

 , B :=


1 0 0

0 0 1

0 1 0

 . (4.22)

As A2 = −B, one can express the elements of H as

H = {Id3, A,A
2, A3,−Id3,−A,−A2,−A3}. (4.23)

H is isomorphic to C4 × C2, so has 8 subgroups. Simply checking the spaces fixed by

each of these subgroups and applying the orbit-stabilizer theorem yields the result.

Here, αi ∈ Z[ω].

Generators Group Fixed points
Id3 {1} (α1, α2, α3)
−Id3 C2 (0, 0, 0)
−A2 C2 (α1, α2, α2)
A2 C2 (0, α1,−α1)

Generators Group Fixed points
−Id3, A2 C2 × C2 (0, 0, 0)

A C4 (0, α1,−α1)
−A C4 (0, 0, 0)

A,−Id3 C2 × C4 (0, 0, 0)
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The only non-trivial calculation is the fixed points of A; though as A2 fixes only

the points (0, α1,−α1), it suffices to check if A fixes those points, which indeed it

does.

Proposition 4.3.15. SymRank(φL3 ; 2) = SymRank(φM3 ; 2) = 16.

Proof. Set L = Λreal(L3). Suppose X is a 2-generating subset of L such that |X| < 16.

A consequence of Lemma 4.3.14 is that any x = (α1, α2, α3) ∈ L with orbit size less

than 8 has α2 ≡ α3 mod 2Z[ω]. As there exists elements in L with α2 6≡ α3, and as

X is 2-generating, it must therefore contain at least one element with α2 6≡ α3, and

thus an orbit of size 8. As |X| < 16, the remaining elements of X must lie in orbits

of size less than 8. Denote by X ′ this set of remaining elements of X with orbit sizes

less than 8.

Let A, B be the generators of the Sylow 2-subgroup H as in Lemma 4.3.14. Observe

the following relations on A and B,

Id3 − A+ A2 − A3 = 0,

A2 +B = 0.

Therefore, each element in H can be written as a linear combination of Id3, A and

A2; so an orbit of size 3 can have rank at most 3 (over Z). L has rank 6, so the

elements of X ′ must form a sublattice of rank 3 or greater, and as −Id3 ∈ H, this

means |X ′| ≥ 2 · rank(X ′) so |X ′| ≥ 6. There are no orbits of size 1, (for instance,

−Id3 fixes nothing) which means |X ′| = 6, to ensure |X| < 16. The only orbits of

size 2 are of the form (0, α1,−α1), which form a sublattice of rank 2, Z-spanned by
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(0, 1, 1) and (0, ω, ω). If X ′ was solely comprised of elements of orbit size 2, it would

have rank 2, which is impossible, so X ′ must be the union of an orbit of size 4 and

an orbit of size 2.

Finally, we show that rank(X) < 6, whereX is the image ofX modulo 2Z[ω]. Suppose

for a contradiction that rank(X) = 6, and set x = (α1, α2, α3) ∈ X as the element of

orbit size 8, where α2 6≡ α3, y = (α4, α5, α5) ∈ X as the element of orbit size 4 and

z = (0, α6,−α6) ∈ X of orbit size 2.

From the above arguments, for X to have rank 6, the set {x,A · x,A2 · x, y, A · y, z}

must be linearly independent, likewise their images modulo 2Z[ω] must be linearly

independent for X to have rank 6. We have x + A2 · x = (0, α2 − α3,−(α2 − α3)) ≡

(0, a, a) mod 2Z[ω] for some a ∈ Z[ω]/2Z[ω]. As θ ≡ 1 mod 2Z[ω], A · y ≡ θA · y =

(α4 +2α5, α4−α5, α4−α5). Therefore y−A ·y ≡ y−θA ·y = (2α5, α4−α5, α4−α5) ≡

(0, b, b) mod 2Z[ω] for some b ∈ Z[ω]/2Z[ω].

As X has rank 6, we must assume that firstly α4 6≡ α5 mod 2Z[ω], otherwise y−A·y ≡

(0, 0, 0). This also requires that a 6≡ b, and both are not ≡ 0. This implies x and y

must generate the space 〈(0, 1, 1), (0, ω, ω)〉. However, z must lie in this subspace, so

X must have rank less than 6. If rank(X) < 6, then X fails to 2-generate the lattice,

and a 2-generating invariant set must have size at least 16. The orbits of the points

in Lemma 4.21 give the size 16 set H ·∆ = ∆′ ∪ −∆′, where

∆′ = {(1, ω, 1), (1, 1, ω), (ω, 1, ω), (ω, ω, 1), (1, ω2, 1), (1, 1, ω2), (ω2, ω2, 1), (ω2, 1, ω2)}.

Therefore SymRank(Λreal(L3)) = 16. As this subset is also invariant under conju-

gation, it is invariant under Syl2(W (M3) and as Λreal(L3) has index prime to 2 in
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Λreal(M3), it must 2-generate that lattice too, so SymRank(Λreal(M3)) = 16.

Proposition 4.3.16. SymRank(φL3 ; 3) = SymRank(φM3 ; 3) = 27.

Proof. The Sylow 3-subgroups of W (L3), W (M3) and W (E6) are all isomorphic and

are acting on the same lattice, so the symmetric 3-ranks are equal to those of E6 and

E+3
6 respectively, which are both 27 (given in [30]).

4.3.4 J (5)
3

The root system J (5)
3 is defined over the ring Z[σ, ω], and is given by the union of H3

(see section 4.3.1) and the W (H3)-orbit of the following point in R3

(σ + 1 + ω, σω − 1, 0),

which has size 60, for a combined total of 90 vectors in Λ(J (5)
3 ). The group W (J (5)

3 )

5
4

Figure 4.6: Coxeter diagram of W (J (5)
3 ).

is the Valentiner group, which is an extension of A6 by C3. As it is a rank 3 root

system in Z[ω, σ] = {a1 + a2ω + a3σ + a4ωσ | ai ∈ Z} it must be embedded in Zn

with n at least 3 · 4 = 12.

Λ(J (5)
3 )real, contains 2 extra automorphisms; given by x 7→ x′ and x 7→ x so the index

of W (J (5)
3 ) in Aut(Λ(J (5)

3 )real) is at least 4.
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The GAP library does indeed contain a rank 12 lattice with 270 = 90 · 3 minimal

vectors (corresponding to the ω-multiples of the points in J (5)
3 ) and W (J (5)

3 ) appears

as an index 4 subgroup inside the full automorphism group. As a subgroup of GL12(Z),

it is studied in [39], though no description of the lattice structure has been found in

the literature. This lattice will be denoted by Q12, and the symmetric p-ranks have

been found using the algorithm in 4.0.1, and the code, along with the description of

Q12 in GAP can be found in Appendix C.2.2. The symmetric p ranks for W(J (5)
3 )

and the full automorphism group of Q12 are identical, and are 64, 54, and 12 for

p = 2, 3, 5 respectively.

4.3.5 H4

The roots of H4 are given by the even permutations of (±2, 0, 0, 0), (±1,±1,±1,±1)

and (0,±1,±σ±τ). These are the 120 vertices of the 600-cell, a 4 dimensional regular

polytope. The roots of H4 also can be described as quaternions known as the unit

icosians via (w, x, y, z) 7→ 1
2
(w+ xi+ yj + zk). The group of unit quaternions SU2 is

a double cover of SO3, and under this mapping the unit icosians form a double cover

of A5, called the binary icosahedral group. The lattice Λ(H4)real is the rank 8 lattice

5

Figure 4.7: Coxeter diagram of W (H4).

Q8(1) ([11, pp. 49]), which has 120 minimal vectors of norm 4, given by the roots of

H4. This lattice is closely related to the E8 lattice, in fact embedding H4 as a real

lattice but changing the inner product to the standard inner product in Z8 gives the
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E8 lattice, and Q8(1) is an index 2 sublattice inside E8.

For l, r unit quaternions, the map [l, r] : p 7→ lpr̂ (where r̂ is quaternionic conjugation)

then the point in R4 defined by the coefficients of lpr̂ is the image of (a, b, c, d) ∈ R4

(where p = a + bi + cj + dk) under some 4 dimensional isometry. The rotations

of the 600-cell can be expressed as all maps of the form [l, r], where l, r are in the

binary icosahedral group. As [−l,−r] = [l, r], the group of rotations is the central

product L × R/{±1} (L ' R ' 2.A5) of size 1
2
(120.120) = 7, 200. This is ex-

tended to W (H4) by including the wreathing involution, t : q 7→ q̂, which is the full

symmetry group of the 600-cell, denoted {3, 3, 5} of size 14,400. As usual, W (H4)

has index 2 inside Aut(Q8(1)), which is achieved by including the conjugation map

(w, x, y, z) 7→ (w′, x′, z′, y), (where (a+ b
√

5)′ = a− b
√

5).

The Sylow 2-subgroup of Aut(Q8(1)) has size 27, and is generated by ±1 multiplica-

tion on each coordinate, complex conjugation conjugation, and the Sylow 2-subgroup

of the alternating group A4, which can be taken as the group 〈(12)(34), (13)(24)〉 =

C2 × C2.

Lemma 4.3.17. For (α1, . . . , α4) ∈ Λ(H4)real,
∑

i αi ≡ 0 mod 2.

Proof. All the minimal vectors satisfy this condition, and as it is preserved under

addition and multiplication by σ, it holds for Λ(H4).

Lemma 4.3.18. If x = (α1, . . . , α4) ∈ Λ(H4)real, αi ∈ Z[σ] with two entries zero,

then αi ∈ 2Z[σ].

Proof. Similarly to previous arguments, suppose x has two zero entries, and one or

two entries odd. As the cyclic permutations of (2, 0, 0, 0) and (2σ, 0, 0, 0) ∈ L, this
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would imply either (αi, αj, 0, 0) or (αi, 0, 0, 0) ∈ Λ(H4) for αi, αj ∈ {1, σ, 1 + σ}, all

of which have norm less than 4, so can’t exist in L. Take for instance the norm of

(1+σ, 1+σ, 0, 0). Recall the norm at (4.10), and that τ = 1+σ, so |(1+σ, 1+σ, 0, 0)| =
1
2
((τ)2 + (τ)2 + σ2 + σ2) = τ 2 + σ2 = 3.

Denote by φ1
L, φ2

L the integral representations of W (H4) and Aut(Q8(1)) (which

is W (H4) along with the conjugating map).

Proposition 4.3.19. SymRank(φiL; 2) = 64.

Consider the map f : L → F8
2 which takes an element (α1, . . . , α4) ∈ L to its

equivalence class modulo 2Z[σ]. The image of L has rank 6, with the images of

{(0, 1, σ, τ), (1, 0, τ, σ), (σ, τ, 0, 1), (σ, 0, 1, τ), (1, σ, 0, τ), (1, 1, 1, 1)}

forming a linearly independent set. Let C4
2 be the group acting by ±1 on each entry,

which leaves f(L) invariant, and if a set X 2-generates L, f(X) must have rank at

least 6.

Consider the orbit of x = (α1, . . . , α4) ∈ L under H := 〈(12)(34), (13)(24)〉, the Sylow

2-subgroup of the alternating group A4. The action of this group on x gives

∑
x∈H·x

x =
4∑
1

αi(1, 1, 1, 1).

However Lemma 4.3.17 implies
∑

i αi ≡ 0 mod 2 so f(
∑

x∈H·x x) = 0. As |H · x| = 4,

then rank(H · x) ≤ 3.

Any x ∈ L with f(x) 6= 0 must have at most one zero entry by Lemma 4.3.18 so has
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orbit size at least 8 under C4
2 . Under the action of H and C4

2 , such x fall into three

categories:

1. Not fixed by any non-identity element ofH; these have orbit size at least 23 ·22 =

32 (under firstly C4
2 and then H).

2. Fixed by a single non-trivial element of H, so have no zero entries. These have

orbit size orbit size 24 · 2 = 32.

3. Fixed by every element of H. These also have no zero entries, so have orbit size

24 = 16 (from the action of C4
2).

Suppose for a contradiction that |X| < 64. If X didn’t contain an element of type

(1), then there can be at most one orbit of an element of type (2) (of size 32) together

with elements that are fixed by H. Therefore the whole set would be fixed by some

non-trivial element of H (and so any linear combination of the set would be fixed

by some non-trivial element of H) so wouldn’t 2-generate L. Thus an orbit of the

first type must exist in X, together with an orbit of an element fixed by H. However

from the previous discussion, the image of X under f in this case would have rank

3 + 1 = 4 < 6 so its image can’t generate f(L) and 2-generate L. Therefore, such an

X can’t exist, so SymRank(φ1; 2) ≥ 64.

A generating set of size 64 can be chosen, the orbit of (σ, 0, 1, τ) and its image under

the conjugating map, (τ, 0, σ, 1). GAP verifies this generates the lattice in Appendix

C.2.2. Therefore SymRank(φiL; 2) = 64.

Lemma 4.3.20. The root system H4 contains the subsystem A2 × A2.
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Proof. The sets

{(1, 1, 1, 1), (−1,−1,−1, 1), (0, 0, 0,−2)},

{(−τ, 1, σ, 0), (σ,−τ, 1, 0), (1, σ,−τ, 0)}

are mutually orthogonal and each set sums to 0.

In particular, the Sylow 3-subgroup of A2 × A2 is C3 × C3, so can be identified as

Syl3(W (H4)). The matrices for each generator can be identified as

A :=



0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


, B :=

1

2



1 −1 −1 −1

−1 1 −1 −1

−1 −1 1 −1

1 1 1 −1


. (4.24)

This means that the orbit of any x ∈ Q8(1) under C3 × C3 has rank at most 4.

Proposition 4.3.21. SymRank(Q8(1); 3) = 18.

Proof. If x ∈ A2, and fixed by the action of C3, then x = 0. Therefore, if x ∈ A2×A2,

with orbit size less than 9, it is 0 on one of the A2 components.

A 3-generating set in Q8(1) needs two elements in different copies of A2×A2, otherwise

they would sit inside a rank 4 sublattice. As the action of C3×C3 leaves these A2×A2

invariant, and from the previous discussion, for these to 3-generate, they need to each

have orbit size 9, therefore a 3-generating set needs size at least 18. There does exist

an orbit size 18 that generates Q8(1), verified in Appendix C.2.2.
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Proposition 4.3.22. SymRank(Q8(1); 5) = 25.

Proof. Q8(1) is an index 2 sublattice of E8, and as |Syl5(W (E8))| = |Syl5(W (H4))|

= 25, the groups must be the same. Using Lemma 4.0.8, SymRank(φL; 5) =

SymRank(φE8 ; 5) = 25.

4.3.6 N4 & O4

The root systems N4 and O4 are defined over the ring of Gaussian integers Z[i]. N4

is the 42 ·
(

4
2

)
= 96 points given by the permutations (2ia1 , 2ia2 , 0, 0) for 0 ≤ ai ≤ 3,

along with the 43 = 64 points (1 + i)(ia1 , ia2 , ia3 , ia4), 0 ≤ k ≤ 3,
∑
ai ≡ 0 mod 4.

This is a subsystem of O4, which is given by the previous points, along with the

16 points given by the permutations of (ik(2 + 2i), 0, 0, 0), 0 ≤ k ≤ 3, and the

extra 64 points (1 + i)(ia1 , ia2 , ia3 , ia4), given by relaxing the condition on the ai to∑
ai ≡ 0 mod 2.

The lattice Λ(O4)real is the E8 root lattice ([25, pp. 110]), and as N4 is a subsystem

of O4, it will be also embedded in E8.

The group W (N4) is given by multiplication by i on an even number of entries,

permutation of the coordinates, and an action of C5, due to the embedding of A4 in

the root system, so has size 43 ·4! ·5 = 29 ·3 ·5 = 7680. This is extended to W (O4) by

two extra elements; multiplication by diag{(ik1 , ik2 , ik3 , ik4)} where
∑

i ki ≡ 0 mod 2,

which gives an extra order 2 automorphism (for instance, the group element g =

diag{(−1, 1, 1, 1)} ∈ W (O4), but g /∈ W (N4)), and an extra automorphism of order 3

given by the subsystem D4 that embeds in O4, so W (O4) = 2 · 3 · |W (N4)| = 46080.

101



4

Figure 4.8: Coxeter diagrams of W (N4) and W (O4).

Lemma 4.3.23. The entries of (α1, . . . α4) ∈ Λ(Σ)real for Σ = N4, O4 are equal

modulo 2Z[i].

Proof. This is true for the points of both root systems and is preserved under addition,

and multiplication by i.

Proposition 4.3.24. SymRank(φN4 ; 2) = 64, SymRank(φO4 ; 2) = 128.

Proof. If X is a 2-generating set, then it must contain a vector with at least one

odd entry, and by Lemma 4.3.23, all the entries are odd. For W (N4), the orbit

under the Sylow 2-subgroup of this vector has size at least 43, coming from the

action of ik on each entry. The Syl2(W (N4))-orbit of (i+ 1)(1, 1, 1, 1) has size 43 and

generates Λreal(N4); the relations (2, 2, 0, 0) = (1+i)(1, 1, 1, 1)+(1+i)(−i,−i,−1,−1),

(2, 2i, 0, 0) = 1 + i(1, 1, 1, 1) + (1 + i)(−i, i, 1, 1) and their permutations show every

vector in N4 can be written as an integer linear combination of this set. As the Sylow

2-subgroup is generated by the multiplication by i on three coordinates and the Sylow

2-subgroup of S4 acting on the coordinates, this set is clearly invariant.

Similarly, the orbit of such a point under the Sylow 2-subgroup of W (O4) has size

2 · 43 = 128, due to the order 2 automorphism (which again fixes only vectors with

at least one zero entry). As this is the symmetric 2-rank of the W (E8) action on the

E8 root lattice, that must be an upper bound, so the result follows.
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The Sylow 3-subgroup of W (N4) is just given by the order 3 permutation (1 2 3).

Proposition 4.3.25. SymRank(φN4 ; 3) = 8.

Proof. The set 4ej and 4iej (where ej are the standard basis vectors) clearly generate

(4Z[i))4, and as all vectors α ∈ Λreal(N4) have coefficients in Z[i], 4α is contained in

the Z-span of 4ej and 4iej. These vectors also lie in Λreal(N4), for instance

(4, 0, 0, 0) = (2, 2, 0, 0) + (2, 0, 2, 0)− (0, 2, 2, 0). (4.25)

The rest can be obtained by taking suitable permutations and multiplying by i.

Therefore, 4ej and 4iej generate a sublattice of Λreal(N4) of index dividing 4. The

set 4ej and 4iej is also invariant under the Sylow 3-subgroup and has size 8, so is a

3-generating size 8 set.

The Sylow 3-subgroup of W (N4) is inherited by virtue of a copy of D4 living inside

the root system.

Lemma 4.3.26. There is an embedding of root systems D4 ⊂ O4.

Proof. As mentioned in Example 4.0.1, the D4 root system consists (when multiplied

each point by 2) of the 8 permutations ±(2, 0, 0, 0) and the 16 points (±1,±1,±1,±1).

Multiplying by (1 + i) clearly embeds these 24 points in O4.

From this description, iD4 := {ix | x ∈ D4} is another copy of D4, disjoint from

the original.

Proposition 4.3.27. SymRank(φO4 ; 3) = 18.
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Proof. As D4 ⊂ O4, and the orders of the Sylow 3-subgroups of W (D4) and W (O4)

are equal (of order 9), then they are equal. Any 3-generating invariant set must

have one element in the span of the copy of D4 ⊂ Q8(1), and one in the copy iD4,

otherwise the Z-span of the set would be rank at most 4. As this group leaves

the D4 system invariant, and the symmetric 3-rank of the automorphism group of

the D4 root lattice is 9, then the symmetric 3-rank must be at least 2 · 9 = 18.

Finally, a similar argument to Proposition 4.3.25 shows that D4 ∪ iD4 generates an

index 4 lattice; (2 + i, 0, 0, 0) + (2 − i, 0, 0, 0) = (4, 0, 0, 0), and so on. Therefore

SymRank(φO4 ; 3) = 18.

N4 (and by extension O4) contains A4 as a subsystem ([25, pp. 109]); given by

the following points and their −1 multiples:

(2, 2i, 0, 0), (2, 0, 2i, 0), (2, 0, 0, 2i), (0, 2,−2, 0),

(0, 2, 0,−2), (0, 0, 2,−2), (1 + i)(1, 1, 1, 1),

(1 + i)(1,−1,−i,−i), (1 + i)(1,− i,−1,−i), (1 + i)(1,−i,−i,−1).

(4.26)

Embedding this system as disjoint copies A4 and iA4, as before, gives the symmetric

5-ranks.

Proposition 4.3.28. SymRank(φN4 ; 5) = SymRank(φO4 ; 5) = 10.

Proof. The system A4 is a subsystem of N4 ⊂ O4, and as the Sylow 5-subgroups of

W (N4), W (O4) and W (A4) are all isomorphic to C5.

Therefore, any orbit of a non-fixed point in Λ(O4)real under the orbit of the Sy-

low 5-subgroup has rank 4. Thus two orbits are needed, and SymRank(φN4 ; 5) =
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SymRank(φO4 ; 5) ≥ 10. To show this upper bound is an equality, it is shown by

GAP that the every group isomorphic to C5 in W (E8) has symmetric 5-rank ≤ 10,

by finding 5-generating invariant sets, which can be found in Appendix C.2.2.

4.3.7 L4

In Section 4.3.3, the root system L3 is the set of the cyclic permutations and

diag{(ωi1 , ωi2 , ωi3)} multiples of (θ, 0, 0) and (1, 1, 1). Embed L3 inside C4 as the first

three entries, then the root system L4 is given by the union of L3, and the W (L3)

orbit (acting on the first three coordinates) of (0, 1,−1,−1) and (0, 0, 0, θ).

These form 120 roots, and along with their −1 multiples are the minimal vectors of

Λ(L4)real, which is the description of the E8 root lattice as a rank 4 Z[ω]-lattice.

W (L4) has order 27 ·35 ·5; the Sylow 2-group is given by multiplication by ±1 on each

coordinate, together with the Sylow 2-subgroup of the symmetric group S4 acting on

the coordinates. Similarly, the Sylow 3-subgroup acts by a multiplication of ω on

each entry and by an order 3 permutation on the coordinates. The Sylow 5-subgroup

acts by virtue of A4 ⊂ L4.

Set φL as the integral representation of W (L4) inside Λ(L4)real ' E8.

3 3 3 3

Figure 4.9: Coxeter diagram of W (L4).

Proposition 4.3.29. SymRank(φL; 2) = 16.

Proof. Note that L3 ⊂ L4, SymRank(φL; 2) ≥ 16. To achieve this lower bound, take

the set ±θei, ±ωθei for 1 ≤ i ≤ 4. This is invariant under the Sylow 2-subgroup of
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W (L4), and is 3 generating; indeed as −θ− 2ωθ = 3, these vectors generate a lattice

of index 3.

The Sylow 3-subgroup is generated by multiplying each entry by ω, along with the

Sylow 3-subgroup of the symmetric group S4, which can be taken as a permutation

of the first 3 coordinates. This has size 35, and comparing orders, Syl3(W (E8)) =

Syl3(W (L4)).

Proposition 4.3.30. SymRank(φL; 3) = 81.

Proof. As the Sylow 3-subgroups are the same, and Λ(L4) = E8, so their symmetric

3-ranks are the same.

4.3.8 K5 & K6.

As before, define ω := e
2πi
3 , and θ = ω − ω2 =

√
−3. The root system K6 is defined

as the permutations of following points in (Z[ω])6

±(ωiθ,−ωjθ, 0, . . . , 0), ±(ωa1 , . . . , ωa6), (4.27)

where all powers are in {0, 1, 2} and
∑
ai ≡ 0 mod 3. This contains 2 · 32 ·

(
6
2

)
+

2 · 35 = 756 points. The system K5 is defined as all points in K6 orthogonal (under

the Hermitian form) to (1, 1, 1, 1, 1, 1). K5 thus consists of the permutations of

±ωi(θ,−θ, 0, 0, 0, 0) ± (1, ω, ω2, 1, ω, ω2). (4.28)
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Therefore K5 consists of 2 · 3 ·
(

6
2

)
+ 2 ·

(
6
2

)
·
(

4
2

)
= 270 points.

The group W (K6) is Mitchell’s group, which has structure C6 o (PSU4(F3) o C2),

and has order 29 · 37 · 5 · 7 = 39, 191, 040, and W (K5) = C2 × PSU4(F2), of order

27 · 34 · 5 = 51, 840. The lattice Λ(K6)real is the Coxeter-Todd lattice, K12 (see [9]),

3 3

Figure 4.10: Coxeter diagrams of W (K6) & W (K6).

a well-known lattice and the densest packing in 12 dimensions. The group Aut(K12)

contains in addition the order 2 automorphism given by complex conjugation, so has

order 210 · 37 · 5 · 7.

The lattice Λ(K5)real is not so well studied, though adjoining complex conjugation as

an automorphism gives a maximal finite subgroup of GL10(Z) called F31 in [44, pp.

344]. It is correspondingly found as the group ImfMatrixGroup(10,4,1) in the GAP

database, though there is no explicit description as a lattice in its own right in the

literature, so in Table 4.2 it is denoted by Q10. For the following, the elements of

Λ(K5)real will be viewed as their respective elements inside Λ(K6)real.

The complex lattice Λ(K6), and its real counterpart were explored in [9], where differ-

ent descriptions (i.e. different Z[ω]-bases) are given. These make various subgroups of

the automorphism group more apparent, and all yield an equivalent version of Λ(K6).

Firstly, the lattice Λ(K6)real was called Λ(3) in [9, pp. 424]. Formally,

Λ(3) := (α1, . . . , α6) αi ∈ Z[ω], α1 ≡ . . . ≡ α6 mod θ. (4.29)
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As the elements in K5 are orthogonal to (1, . . . , 1), they additionally satisfy

∑
i

Re(αi) = 0. (4.30)

The Sylow 3-subgroup of W (K6) has size 37, and is generated by the permutations

(1 2 3) and (4 5 6), along with multiplying by diag{(ωa1 , . . . ωa6)}, such that
∑
ai = 0.

The Sylow 3-subgroup of W (K5) has order 35; to identify this however, note that

W (K6) acts transitively on the minimal vectors of Λ(3) ([25, pp. 107]), so for any

x ∈ K6, the points orthogonal to x make up the points of a copy of K5. Therefore,

if one takes instead of (1, . . . , 1) the point (1,−1, 0, 0, 0, 0), a description of a new

embedding of K5 appears,

α1 ≡ . . . ≡ α6 mod θ, where

α1 + α1 + α2 + α2 = 0

⇒ Re(α1 + α2) = 0.

(4.31)

This is all points in K6 orthogonal to (1,−1, 0, 0, 0, 0). The Sylow 3-subgroup of

W (K5) has order 35 ([25, pp. 166]) and can be identified as acting by ωi on the last

4 entries of (α1, . . . α6), and the permutation (4 5 6).

As usual, set φ1
Kn

, φ2
Kn

as the corresponding integral representations of W (Kn) and

Aut(Λ(Kn)real).

Recall the isomorphism

Z[ω]/θZ[ω] ∼= Z/3Z. (4.32)

If x ≡ θΛ in the complex lattice Λ, then the corresponding vector, xreal ∈ 3Λreal.
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Proposition 4.3.31. SymRank(φK5 ; 3) = 81, SymRank(φiK6
; 3) = 243.

Proof. A 3-generating subset X ⊂ Λ(Kn)real for n = 5 or 6, has at least one entry of

an element x 6≡ 0 mod θ. By (4.29), all the entries of x are congruent modulo θ, so

all are non-zero. For W (K5), the action of ωi on the last 4 entries leaves x with an

orbit size at least 81, and similarly for W (K5), the action of diag{(ωa1 , . . . ωa6)} gives

x orbit size at least 35 = 243. This gives lower bounds for the respective symmetric

3-ranks.

In both these cases, there exists orbits of this size that generate the lattice; checked

in GAP, (see Appendix C.2.2).

For identifying the Sylow 2-subgroup, our attention is turned to the description

of Λ(K6) in a different Z[ω]-basis, denoted by Λ(4) in [9]. This is defined as the sets

of 6-tuples of elements of Z[ω], (α1, . . . , α6) such that

α1 ≡ α2 ≡ . . . ≡ α6 ≡ m mod 2Z[ω], (4.33)

α1 + . . .+ α6 ≡ 2ωm mod 4Z[ω]. (4.34)

The minimal vectors in Λ(4) are the permutations of

ωi(2, 2, 0, 0, 0, 0), ωi(θ, 1, · · · , 1), (4.35)

along with the action of diag{(−1a1 , . . .− 1a6)}, where
∑

i ai = 0. One can check the

number of minimal vectors is correct; there are
(

6
2

)
· 4 · 3 = 180 of the first type, and

25 · 6 · 3 = 576 making a total of 756 minimal vectors. The point (1 . . . , 1) under this
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change of basis becomes (2, 2, 0, 0, 0, 0) (though as W (K6) is transitive on the minimal

vectors of Λ(K6)real any point will do), so K5 now describes the points satisfying (4.33)

and (4.34), as well as satisfying the condition

α1 + α1 + α2 + α2 = 0

⇒ Re(α1 + α2) = 0.

(4.36)

These are the points ±ωi(2,−2, 0, 0, 0, 0), ±ωi(0, 0, 2,±2, 0, 0), where the ±2 can

appear in any of the last 4 entries, and ±ωi(1,−1,±θ,±1,±1,±1), where there is an

even number of minus signs, and θ can be in any of the last 4 entries. As a sanity

check, there are 2 · 3 = 6 vectors of the first type,
(

4
2

)
· 22 · 3 = 72 of the second and

24 · 4 · 3 = 192 of the third, which gives 270 minimal vectors.

From this description, the Sylow 2-subgroups of W (Kn) become apparent. Firstly

taking K6, the symmetric group S6 acts by permuting the entries, and the Sylow

2-subgroup of S6 is H := C2×D8 (for example the group generated by (1 2), (1 3 2 4)

and (5 6)). The Sylow 2-subgroup of W (K6) is generated by this group, along with an

even number of sign changes (an odd number would violate (4.34)). This has index

2 inside the Sylow 2-subgroup of Aut(K12) which also contains complex conjugation

and so has order 210.

The Sylow 2-subgroup of W (K5) is the subgroup of Syl2(W (K6)) that leaves K5

invariant. The element that doesn’t satisfy this is (1 3 2 4), (though its square does)

and any diag{((−1)a1 , (−1)a2 , (−1)a3 , (−1)a4 , (−1)a5 , (−1)a6)} with a1 6≡ a2 modulo

2 (and of course
∑

i ai = 0). Taking a quotient by these elements gives the Sylow

2-subgroup of W (K5), with size 27. Take as the generators (1 2), (1 2)(3 4) and

(5 6) (which gives an index 2 subgroup of H) along with the group C4
2 that acts as
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diag{(−1a1 ,−1a2 ,−1a3 ,−1a4 ,−1a5 ,−1a6)}, (with
∑

i ai = 0, and a1 ≡ a2 mod 2).

For X ∈ Λ(K6)real, define X± as the orbit of X under the action of

diag{((−1)n1 , . . . , (−1)n6)} ∈ W (K6).

Lemma 4.3.32. Let H′ be the 2-group in W (K5) generated by (1 2), (1 2)(3 4) and

(5 6). For x = (α1, . . . , α6) ∈ K5, αi 6≡ 0 mod 2Z[σ], denote by X± the orbit of x

under the group generated by diag{((−1)n1 , . . . , (−1)n6)}. Then |H′ ·X±| ≥ 4 · |X±|.

Proof. Suppose for a contradiction that instead X± is invariant under an index 2

subgroup of H′. The size 4 subgroups of H′ are going to comprise two or more of the

transpositions (1 2), (3 4), (5 6). It can be assumed therefore that either α3 = ±α4 or

α5 = ±α6 (or both), for αi entries of x. Recall that αi ≡ m mod 2Z[ω], and suppose

(without loss of generality), α3 = ±α4. From (4.34),

α1 + α2 + (α3 ± α3) + α5 + α6 ≡ 2ω mod 4.

As Re(α1 +α2) = 0, α1 +α2 ≡ ω mod 2Z[ω], so taking the coordinates modulo 2Z[ω],

ω + α5 + α6 ≡ 0.

This contradicts α5 ≡ α6 mod 2Z[ω], so the result follows.

Proposition 4.3.33. SymRank(φiKn ; 2) = 128.

Proof. Recall that for x ∈ Λ(K5)real, all entries are equal modulo 2Z[σ]. For a set

X ⊂ Λ(K5) to be 2-generating, it must contain elements x, y where the xi, yi 6≡

0 mod 2Z[σ], and xi 6≡ yi mod 2Z[σ]. As the Sylow 2-subgroup of W (K5) leaves this
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equivalence class invariant, it must contain at least 2 orbits. Also, as all the entries are

non-zero, they have orbit size 24 under the action of the −1 multiples. Lemma 4.3.32

implies the orbit is extended to size 26 = 64 under the action of the permutations.

As there needs to be two distinct orbits of size at least 64, SymRank(φiK5
; 2) ≥ 128.

There exists a generating invariant set of size 128 under the full Sylow 2-subgroup of

W (K6) (see Appendix C.2.2) and as K5 ⊂ K6, SymRank(φiKn ; 2) = 27 = 128.

The permutation of order 5 (in either construction seen of Λ) gives a copy of

Syl5(Aut(K12)).

Proposition 4.3.34. SymRank(φiK5
; 5) = 10, SymRank(φiK6

; 5) = 12.

Proof. As these are equal to the respective ranks of Λ(Kn)real, it is sufficient to find

p-generating sets of each size, found in GAP (see Appendix C.2.2).

For SymRank(φiK; 7) = 14, another construction of Λ is used, Λ(7), [9, pp. 426].

Let α := 2 + 3ω, so α2 − α + 7 = 0. Also, Z[ω]/αZ[ω] ' Z/7Z, so α is a prime in

Z[ω]. The lattice vectors of Λ(7) are {(x0, . . . , x6) | xi ∈ Z[ω]} such that

x0 ≡ . . . ≡ x6 mod α, (4.37)∑
xi = 0. (4.38)

The group Syl7(Aut(Λ(7))) acts by cyclically permuting these 7 entries. It has no

fixed points, because if (α, . . . , α) ∈ Λ(7), (4.38) implies α = 0.

Proposition 4.3.35. SymRank(K12; 7) = 14
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Proof. As mentioned previously, Syl7(Aut(Λ(7)) fixes no points, so fixes no points of

K12. Therefore the symmetric 7-rank is a multiple of 7, so SymRank(φiK; 7) ≥ 14.

Appendix C.2.2 shows a size 14 generating invariant set.

4.4 The Leech lattice

The final part to this chapter is the calculation of the symmetric p-rank of the auto-

morphism group of the Leech lattice, Λ24. One of the most famous of all lattices, its

automorphism group contains many simple sporadic groups, and Λ24 has numerous

constructions. Some combinatorial results that are needed are proved using GAP, the

code for which will appear in the proof. For p = 2 and 3, different descriptions of Λ24

are used which highlight the Sylow p-subgroups more readily, and these rely on the

definition of the Golay codes.

4.4.1 The Golay Codes

A linear code C is a subspace of Fnq . The dimension of C is the dimension of the sub-

space, and the weight of a codeword c ∈ C, denoted wt(c), is defined as the number

of non-zero entries of c. The minimum weight along all non-zero codewords is the

minimal distance of the code word, and a triple [n, k, d] denotes a code with length

n (i.e. the dimension of Fnq ), k the dimension of C, and d the minimal distance of C.

For instance, the code [n, n, 1] is simply all length n words x . . . x, x ∈ Fq.

The complete weight enumerator is a homogeneous polynomial which details the
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number of codewords of each composition; for {xi}i∈{1,...,q}, it is the polynomial∑
c∈C x

n1(c)
1 . . . x

nq(c)
q , where ni(c) is the number of times the entry i appears in the

codeword c.

Many lattices can be constructed from codewords; for instance the Coxeter-Todd lat-

tice can be constructed using the hexacode, and the E8 root lattice can be constructed

using the Hamming code. A code has a group of automorphisms, and often if a code C

is used in constructing a lattice L, then Aut(C) will appear as a subgroup of Aut(L).

The following descriptions of the Golay codes and their automorphism groups can be

found in [8, pp. 85].

The binary Golay code C23 is the [23, 12, 7] code over F2, and after adding a zero-sum

check digit becomes the extended binary Golay code, C24 which is the [24, 12, 8] code

over F2. Its complete weight enumerator is

x24
1 + 759x16

1 x
8
2 + 2576x12

1 x
12
2 + 759x8

1x
16
2 + x24

2 . (4.39)

The (extended) ternary Golay code C12, is the [12, 6, 6] codeword over F3, with com-

plete weight enumerator

x12
1 + x12

2 + x12
3 + 22(x6

1x
6
2 + x6

1x
6
3 + x6

2x
6
3) + 220(x6

1x
3
2x

3
3 + x3

1x
6
2x

3
3 + x3

1x
3
2x

6
3). (4.40)

The automorphism group of C24 and C12 are the Mathieu groups M24, M12 respec-

tively, and define a C -set as the set of coordinates where a codeword of C24 has entry

1.

The Leech lattice can now be defined as the following set, given in [8, pp. 133],
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together with the standard inner product. The minimal vectors are the following

1√
8

(∓3,±123) ∈ R24, (4.41)

where the upper signs form a C -set. Λ24 is then the Z-span of these vectors. Here,

(an, bm) means a point with n entries equal to a, and m entries equal to b. All lattice

vectors have norm 16n for n ∈ N, and there are a total of 196,560 minimal vectors of

norm 16.

The automorphism group of Λ24 is ·0 := C2 × Co1, where Co1 is a simple sporadic

group of order 221 ·39 ·54 ·72 ·11 ·13 ·23. Co1 was in fact discovered by virtue of being

an automorphism group of this structure and contains many other simple sporadic

groups. Set φΛ : C2 × Co1 → Z24 as the integral representation of the automorphism

group of Λ24. The following section takes each prime in turn and calculates the

symmetric p-rank, using GAP to check various conditions on Λ24.

p 2 3 5 7 11 13 23
SymRank(φΛ; p) 32768 2187 125 49 24 26 24

Table 4.5: Symmetric p-ranks of the Leech lattice, Λ24.
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4.4.2 SymRank(φΛ; 2)

An equivalent definition of Λ24 ([8, pp.131]) is by the even and odd vectors, together

with the standard inner product.

1√
8

(0 + 2c+ 4x), (4.42)

1√
8

(1 + 2c+ 4y), (4.43)

where 0 is the zero vector, 1 = (124), c ∈ C24 with 1 ∈ F2 being viewed as 1 ∈ Z, and

x = (x1, . . . , x24), y = (y1, . . . , y24) ∈ Z24 such that

∑
xi ≡ 0 mod 2,

∑
yi ≡ 1 mod 2.

Theorem 26 in [8, pp. 287] gives a subgroup N < Aut(Λ24) of index prime to 2. This

group is isomorphic to N := C12
2 oM24, where C12

2 acts by −1 on an even number of

entries of Λ24 and M24 acts as the group of automorphisms of the binary Golay code,

so acts by permuting the entries of Λ24. The following elements of M24 generate a

Sylow 2-subgroup.

α1 := (2, 7)(3, 16)(8, 12)(9, 11)(10, 18)(15, 20)(17, 22)(21, 23),

α2 := (2, 8)(3, 6)(4, 16)(9, 13)(10, 22)(11, 24)(14, 19)(15, 20),

α3 := (2, 9)(7, 15)(8, 24)(10, 13)(11, 22)(12, 14)(17, 20)(18, 19),

α4 := (1, 6)(2, 12, 22, 18)(3, 23)(4, 5)(7, 10, 17, 8)(9, 14, 11, 19)(13, 20, 24, 15)(16, 21).

(4.44)

A Sylow 2-subgroup of Aut(Λ24) is thus given by this group of permutations, along

with multiplication by −1 on an even number of entries.

116



Lemma 4.4.1. Suppose x = (α1, . . . , α24), αi ∈ Z is an odd vector (as in 4.43).

1. There exists i, j such that |αi| 6= |αj|.

2. There must exist at least one αi such that x has an odd number of entries equal

to αi.

Proof. All lattice vectors in Λ24 must have norm that is a multiple of 16. For the

first part, suppose on the contrary that x = (α, . . . , α) ∈ Λ24, where α is odd. Then

|(±α, . . . ,±α)| = 24 · α2, which does not divide 16. For the second part, choose i, j

such that |αi| 6= |αj| (which is possible by part 1). Define ni as the number entries

of x with value αi. Then
∑
ni = 24, and |x| =

∑
niα

2
i . Now again suppose for a

contradiction the ni are all even. Certainly, not all the ni can divide 16, as
∑
ni = 24,

and a2
i are all odd. So |x| =

∑
nia

2
i does not divide 16.

The next lemma is proved using GAP.

Lemma 4.4.2. Let x be an odd vector (as in 4.43). Then the orbit of x under

H := Syl2(M24) has size at least 8.

Proof. By Lemma 4.4.1, x has at least two different entries up to absolute value, and

at least one of the entries appears an odd number of times. As the group M24 acts

on x by permuting the entries, it is sufficient to show that the orbit of any vector of

type (0n1 , 1n2), ni odd, is at least size 8 (here the only requirement is the two entries

are different; regardless whether it lies in Λ24). If a point contained any more entries,

this orbit would only increase under the action of Syl2(M24).
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gap> M24:=MathieuGroup(24);;

gap> sylow2sbgp:=SylowSubgroup(M24,2);;

gap> gens:=GeneratorsOfGroup(sylow2sbgp);;

gap> gens:=List(gens,g->PermutationMat(g,24));;

#Redefining the generators so they act naturally on e_i.

gap> sylow2sbgp:=Group(gens);;

gap> ListOfMinima:=[];;

gap> for i in [1..12] do

> j:=2*i-1; #j is all odd numbers up to 24.

> odd_vectors:=Union(Combinations(IdentityMat(24,Rationals),j));

#finding combinations of odd numbers of e_i.

> orbits:=OrbitsDomain(sylow2sbgp,odd_vectors);;

#decomposes into orbits under H

> L:=List(orbits,o->Size(o));;

> Add(ListOfMinima,(Minimum(L))); od; #for each collection,

finds minimum size of the orbits.

gap> Minimum(ListOfMinima); #minimum size of all orbits.

8

One such vector that achieves this minimum in Λ24 is (1, . . . , 1,−3).

Proposition 4.4.3. SymRank(φΛ; 2) = 215 = 32768

Proof. A set that 2-generates must contain at least one odd vector, say x, as no integer

linear combination of even vectors can produce an odd vector. From the definition,

x contains all odd entries, therefore no zero entries. Therefore, the orbit of x under

C12
2 has size 212. Lemma 4.4.2 also stated that an odd vector up to absolute value
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has minimum orbit size 8. As C12
2 acts trivially on vectors up to absolute value, the

orbit of x has size at least 8 · 212 = 215. So SymRank(Λ24; 2) ≥ 215. Finally, we

verify computationally if there exists an orbit of size 32768 that generates Λ24. Here

the function “SNFdet” calculates the determinant of the Smith Normal Form of an

integer matrix M , thereby returning the index of the sublattice generated by the rows

of M . See Appendix C.2.1 for the source code.

gap> DisplayImfInvariants(24,3);

#I Q-class 24.3: Size = 2^22*3^9*5^4*7^2*11*13*23

#I isomorphism type = C2.Co1

#I elementary divisors = 1^24

#I orbit size = 196560, minimal norm = 4

gap> G:=ImfMatrixGroup(24,3);;

gap> sylow2sbgp:=SylowSubgroup(G,2);;

gap> Id_24:=IdentityMat(24,Rationals);;

gap> min_vectors:=Orbit(G,Id_24[1],OnPoints);; #All minimal vectors.

gap> Size(min_vectors);

196560

gap> orbits:=OrbitsDomain(sylow2sbgp,min_vectors);; #Decomposes

minimal vectors in to orbits under the Sylow 2-subgroup.

gap> orbit_sizes:=List(orbits,o->Size(o));;

gap> smallsets:=orbits{Positions(L,32768)};; #Orbits of size 2^15.

gap> List(smallsets,o->SNFdet(o)); #If any of these equal 1, then an orbit

of size 2^15 generates the lattice.

[ 2, 1 ]
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So there exists an orbit of size 32768 that generates the lattice. This vector is

(1, · · · , 3) (the other vector of orbit size 215 is an even vector of type (28, 016)).

4.4.3 SymRank(φΛ; 3)

The Leech lattice can also be viewed as a complex lattice over Z[ω], using the (ex-

tended) ternary code, see 4.4.1. Recall that θ := ω − ω2 =
√
−3, and Z/3Z ' F3 '

Z[ω]/θZ[ω]. The complex Leech lattice Λ
(3)
12 ([8, 201]) can be defined as a rank 12

Z[ω]-module given by the following,

0 + θc+ 3x, 1 + θc+ 3y, −1 + θc+ 3z, (4.45)

where c ∈ C12, x = (x1, . . . , x12), y = (y1, . . . , y12) and z = (z1, . . . , z12).

∑
xi ≡ 0 mod θ,

∑
yi ≡ 1 mod θ

∑
zi ≡ −1 mod θ. (4.46)

The Leech lattice Λ24 = (Λ
(3)
12 )real, (giving the same description as 4.41 when mul-

tiplying all vectors by
√

2
3

). The description of the Leech lattice as a Z[ω]-lattice

provides many analogues with its description using the binary Golay code; most no-

tably the action by the Sylow p-subgroup of Co1 becomes apparent. Each codeword

c = (c1, . . . , c12) ∈ C12 gives an order 3 automorphism, diag{(ωc1 , . . . , ωc12)}. This

yields a group of isomorphism type C6
3 , as |C12| = 36. Also, Aut(C12) = M12, which

permutes the codewords in the lattice vectors (4.45). Exactly analogous to the group

N in the p = 2 case, the group generated by these automorphisms is C6
3 oM12. There-

fore the Sylow 3-subgroup is isomorphic to C6
3 o Syl3(M12). This has order 39, so is
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the Sylow 3 -subgroup of ·0 = Aut(Λ24). For instance, a set of generators of the Sylow

3-subgroup of M12 is

α1 = (2, 5, 12)(3, 11, 4)(6, 9, 8),

α2 = (1, 9, 4)(3, 10, 6)(7, 8, 11),

α3 = (1, 6, 11)(3, 7, 9)(4, 10, 8).

(4.47)

Note that this group leaves invariant the sets (1, 3, 4, 6, 7, 8, 9, 10, 11) and (2, 5, 12).

Proposition 4.4.4. SymRank(φΛ; 3) = 37 = 2187.

Proof. The vectors of type 0 + θc + 3x generate a sub-Z[ω]-lattice of index θ, so in

order for the corresponding real lattice vectors to 3-generate the lattice, the set must

contain one of the other vectors, say x0. This lattice vector has all non-zero entries

as the entries of any lattice vector are the same modulo θ, so under the action of C6
3

has orbit size 36. Now suppose for a contradiction x0 is fixed under Syl3(M12). From

(4.47), x0 must be some permutation of (a, . . . , a, b, b, b), for a, b ∈ Z[ω]. Note that

if two entries are the same, say x1 and x2, then the corresponding ci and yi must be

the same, as

θc1 + 3y1 = θc2 + 3y2

θc1 − θ2y1 = θc2 − θ2y2

c1 − θy1 = c2 − θy2

c1 = c2,
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as ci ∈ {0, 1,−1}, and thus y1 = y2. So for x0 = (a, . . . , a, b, b, b), the corresponding

vector y is of the form (ya, . . . , ya, yb, yb, yb), so
∑
yi = 9y1 + 3y2 ≡ 0 mod θ contra-

dicting (4.46). The orbit of x0 must be at least size 37, and there does indeed exist

orbits of that size that generate the lattice.

gap> G:=ImfMatrixGroup(24,3);;

gap> Id_24:=IdentityMat(24,Rationals);;

gap> sylow3sbgp:=SylowSubgroup(G,3);

<group of 24x24 matrices of size 19683 over Cyclotomics>

gap> min_vectors:=Orbit(G,Id_24[1],OnPoints);;

gap> Size(O);

196560

gap> orbits:=OrbitsDomain(sylow3sbgp,min_vectors);;

gap> sizes:=List(orbits,o->Size(o));;

gap> orbits:=orbits{Positions(sizes,2187)};;

gap> List(orbits,o->SNFdet(o));

[ 1, 3, 3, 1, 1, 1, 1, 1, 0, 0 ]

4.4.4 SymRank(φΛ; p) p > 3

The rest of the symmetric p-ranks are calculated using GAP. For p = 5 and 7, the

arguments show that any element in an orbit of a particular size lies in a certain index

p-sublattice.

122



Lemma 4.4.5. If x ∈ Λ24 has orbit size less than 125, then x lies in a sublattice Λ′

such that [Λ24 : Λ′] is divisible by 5.

Proof. The following GAP code finds a generating set of all orbits of size 25 or less,

and finds the index of the sublattice it generates inside Λ24.

gap> G:=ImfMatrixGroup(24,3);;

gap> sylow5sbgp:=SylowSubgroup(G,5);;

gap> conj_classes:=ConjugacyClassesSubgroups(sylow5sbgp);;

gap> L:=List(conj_classes,c->Size(c[1])>5);;

gap> conj_classes:=conj_classes{Positions(L,true)};;

gap> fixedpoints:=[];;

for g in conj_classes do

for h in g do

Add(fixedpoints,fixed_points(h));od;od;

gap> fixedpoints:=Union(fixedpoints);;

gap> GcdInt(SNFdet(fixedpoints),5);

5

The source code for any functions not in the GAP library used here can be found in

Appendix C.2.1.

Proposition 4.4.6. SymRank(φΛ; 5) = 125.

Proof. Lemma 4.4.5 shows that an invariant 5-generating set must contain an orbit of

size 125 or greater, so SymRank(φΛ; 5) = 125. Indeed a size 125 orbit does generate

123



the lattice; the following code shows within the minimal vectors there exists 4 such

generating orbits of size 125.

gap> min_vectors:=Orbit(G,IdentityMat(24,Rationals)[1],OnPoints);;

gap> orbits:=OrbitsDomain(sylow5sbgp,min_vectors);;

gap> size_of_orbits:=List(orbits,p->Size(p));;

gap> pos:=Positions(size_of_orbits,125);;

gap> list_of_indices:=List(orbits,p->SNFdet(p));;

gap> pos:=Positions(list_of_indices,1);

[ 25, 26, 27, 40 ]

Proposition 4.4.7. SymRank(Λ24); 7) = 49.

Proof. Firstly, if x ∈ Λ24 is fixed by a non-trivial element of Syl7(Aut(Λ24)), then it

lies in a sublattice of index divisible by 7.

gap> G:=ImfMatrixGroup(24,3);;

gap> sylow7sbgp:=SylowSubgroup(G,7);;

gap> J7:=ConjugacyClassesSubgroups(sylow7sbgp);;

for g in J7 do

for h in g do

Add(A,fixed_points(h));od;od;

gap> SNFdet(fix);

117649
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As 117649 = 76, there must exist an orbit of size 49 in an invariant, 7-generating set.

Indeed, an orbit of size 49 does p-generate the lattice.

gap> 7genset:=Orbit(sylow7sbgp,IdentityMat(24,Rationals)[2],OnPoints);;

gap> Size(7genset);SNFdet(7genset);

49

8

Proposition 4.4.8. SymRank(Λ24); 11) = SymRank(Λ24); 23) = 24.

Proof. It suffices to show that for each p, an invariant p-generating set of size 24 exists

and is invariant under the action of the Sylow p-subgroup.

gap> H11:=SylowSubgroup(G,11);;

gap> fixedpoints:=fixed_points(sylow11sbgp);;

gap> orbit_1:=Orbit(sylow11sbgp,IdentityMat(24,Rationals)[8],OnPoints);;

gap> orbit_2:=Orbit(sylow11sbgp,IdentityMat(24,Rationals)[17],OnPoints);;

gap> 11genset:=Union(Union(orbit_1,orbit_2),fixedpoints{[1,2]});;

gap> Size(11genset);SNFdet(11genset);

24

1

gap> sylow23sbgp:=SylowSubgroup(G,23);;

gap> fixedpoints:=fixed_points(sylow23sbgp);;

gap> Id_24:=IdentityMat(24,Rationals);;
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gap> 23genset:=Union([fixedpoints[1]],

Orbit(sylow23sbgp,Id_24[1],OnPoints));;

gap> Size(23genset);SNFdet(23genset);

24

235

Proposition 4.4.9. SymRank(Λ24); 13) = 26.

Proof. The Sylow 13-subgroup fixes no point in Λ24.

gap> fixed_points(SylowSubgroup(G,13));

[ ]

Therefore an invariant set must have size divisible by 13, and SymRank(Λ24; 13) ≥ 26.

gap> orbit_1:=Orbit(sylow13sbgp,Id_24[1],OnPoints);;

gap> orbit_2:=Orbit(sylow13sbgp,Id_24[2],OnPoints);;

gap> 13genset:=Union(orbit_1,orbit_2);;

gap> Size(13genset);SNFdet(13genset);

26

1
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Chapter 5

Essential dimension of extensions

of small finite groups by tori

This chapter aims to take a finite group F , classify all possible extensions of F by

algebraic tori and attain bounds on the essential (p)-dimension of these extensions.

In order to classify all extensions, it is necessary to classify all algebraic tori with

F -action, which is equivalent to classifying all finitely generated torsion-free ZF -

modules. In general this is a hopeless task, as most finite groups have wild (integral)

representation type. For the purposes of finding the essential p-dimension of tori

and extensions of finite groups by split tori, it is sufficient to classify lattices up to

genus, confident in the fact that a decomposition of Z(p)F -modules is unique, by the

Krull-Schimdt Theorem [12, Thm 36.0 pp. 768]. For certain F , this is achievable.
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5.1 Groups of finite representation type

Recall that a lattice L is indecomposable if there exists no non-trivial lattices L1, L2

such that L1 ⊕ L2 ' L.

Theorem 5.1.1. [22, Thm. 8] Let G be a finite group. The number of indecomposable

G-lattices is finite if and only if, for each prime p dividing |G|, the Sylow p-subgroups

are cyclic order p or p2.

Such groups G are said to be of finite representation type, and are exclusively

extensions of cyclic groups by cyclic groups. For instance, the groups Cm o Cn for m,

n ∈ N, which include the dihedral groups D2n. As well as being able to classify all

torsion-free ZF -modules, these groups possess other properties that will be useful for

calculating the essential dimension of extensions of F by split tori. The following is

a combination of several results, applied to the situation where F is a group of finite

representation type.

Proposition 5.1.2. [5, pp.58] Let F be a group of finite representation type. Then

H2(F ;T ) = T F/Im(NF (T )), where T F is the F -fixed points of T , and NF : T → T

is the norm map, t 7→
∑

g∈F g · t.

In particular, Corollary 2.7.7 gives us the group of extensions of F by T ,

Ext1(Fk;T ) = H2(F ;T (k)) = H0(F ;T (k)) = T (k)F , where T (k) is the k-rational

points of T , and T (k)F is its F -fixed points. Recall the short exact sequence at

(2.31),

1 T G F 1.π (5.1)
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Proposition 5.1.3. Let G be an algebraic group that satisfies (5.1), where F = Cn,

and assume the field k has characteristic not dividing n. For any F -invariant subset

∆ ⊂ T ∗, there exists a representation of V∆ of G, where dim(V∆) = |∆|, such that if

∆ p-generates T ∗, then V∆ is p-faithful. If ∆ also satisfies KF , (see Lemma 3.5.3)

then V∆ is p-generically free.

Proof. ∆ splits into disjoint orbits ∆ =
∐

∆i. Set λi ∈ T as an orbit representative;

either λ is fixed by a cyclic group or by nothing.

If |∆i| = n, then there exist a representation of G given by

VΛi := IndGT (λi), (5.2)

which has dimension n.

If λi is fixed by a cyclic group then consider the subgroup Gλi := {g ∈ G | g ·λi = λi}.

Indeed, there must exist some r ∈ Gλi such that rn ⊂ T , but ri * T for 1 ≤ i < n.

The {ri} form a set of a coset representatives of G/T , so G = T + rT + . . .+ rn−1T .

Equivalently, for every g ∈ Gλi , there exists a unique i and t such that g = rit. Define

ρ : Gλi → k× as ρ(g) = λ(t), for this g = rit. This is a morphism of groups, as for g,

g′ ∈ Gλi ,

ρ(gg′) = ρ(ritrjt′)

= ρ(ri+jr−jtrjt′)

= λi(r
−jtrjt′) as r−jtrjt′ ∈ T.
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= λi(r
−jtrj)λi(t

′)

= λi(t)λi(t
′) as r acts trivially on λi.

The corresponding map on the coordinate algebras O(Gm)→ O(G) factors through

O(T ), and as λ is a character of T , this defines a comorphism, so ρ is indeed a

morphism of algebraic groups thus a character of Gλi .

Now the representation

VΛi := IndGGλi
(ρ), (5.3)

is a representation of G of dimension |∆i|. For ∆ =
∐

∆i, using the representations

defined above, V∆ :=
⊕

V∆i
gives a representation of G of dimension |Λ|.

For the last part, the proof is from [30, Lemma 1.11], and is true regardless of the

choice of finite group F . Let M be the kernel of the representation T → GLVΛ
, and

XΛ = 〈∆〉, the sublattice generated by ∆. The map T → GLVΛ
factors through

Diag(XΛ), and this acts faithfully on V∆. As ∆ is p-generating, T ∗/XΛ is finite

of order prime to p, and Diag(T ∗/XΛ) = M by the above discussion. Therefore the

representation is p-faithful if and only if ∆ p-generates. Likewise, if the representation

VΛ is p-faithful, the same argument implies ∆ is p-faithful. Finally, Lemma 3.5.3 gives

us that if ∆ satisfies KF , VΛ is p-generically free.

Proposition 5.1.4. Let k be a field of characteristic not p, that contains a primitive

(pr)th root of unity. If G is an algebraic group over k that satisfies (5.1), where

Sylp(F ) = Cpr . Then

SymRank(φT ∗ ; p)− dim(G) ≤ edk(G; p) ≤ SymRank(φT ∗ ; p)− dim(G) + 1, (5.4)
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where φT ∗ is the integral representation F → T ∗. If a minimally generating, F -

invariant set Λ has size SymRank(φT ∗ ; p), then these bounds also hold true for edk(G).

Proof. If π : G → F is the surjection in the exact sequence 5.1, and Γp the Sylow

p-subgroup of F , then denote by GΓp the preimage of Γp under π. Certainly, [G :

GΓp ] = [F : Γp] is finite and prime to p, and by Lemma 3.3.2, edk(GΓp ; p) = edk(G; p).

Therefore, it suffices to find bounds on edk(GΓp ; p), and by Lemma 3.5.6, k can be

replaced by k(p).

For the lower bound, it suffices to consider a minimal p-faithful representation V of

GΓp , by Theorem 3.5.7. As V is a representation of T , it decomposes into weight

spaces, ∆ ⊂ T ∗. As V is p-faithful on T , ∆ must be p-generating, and as V is

a representation of GΓp , ∆ must be invariant under the action of Γp. Therefore

SymRank(φT ∗ ; p) ≤ dim(V ). For a minimal p-generating Γp-invariant set ∆ ⊂ T ∗,

using the representation defined in Proposition 5.1.3 gives such a p-faithful represen-

tation.

Theorem 3.5.7 also gives an upper bound, and a p-generically free representation can

be found by taking the faithful representation W of Γp of dimension one, and by

Proposition 3.5.2, the representation VΛ ×W is p-generically free. If ∆ is invariant

under F , and generates T ∗, then V∆ is a generically free representation of G, so the

last statement follows from edk(G; 2) ≤ edk(G), and edk(G) ≤ dim(V∆) − dim(G)

(Proposition 3.2.1).

Remark 5.1.5. The only algebraic groups of essential dimension 0 are connected (see

[40, Theorem 5.4]) so if SymRank(φT ∗ ; p) = rank(T ∗), then G has essential dimension

1.
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5.2 The category ExtF

The following section introduces a new category, ExtF . The objects of ExtF are

given by the data (L, c), where L is a ZF -lattice and c ∈ H2(F ; Diag(L)), where

Diag(L) is a split torus. Morphisms are ZF -morphisms φ : L1 → L2 (F -equivariant

Z-module homomorphisms), such that the following diagram commutes

Diag(L1)

F × F

Diag(L2)

c2

c1

φ′

where φ′ := Diag(φ), so for I ∈ Spec(k[L2]), φ′(I) = φ−1(I) ∈ Spec(k[L1]).

The data (L, c) defines a unique extension up to isomorphism, by Corollary 2.7.7.

There is a natural notion of summing two objects in ExtF . Take (L1, c1), (L2, c2) ∈

ExtF . These define algebraic groups Gi, unique up to isomorphism of extension that

fit in the short exact sequence (2.31). Define the sum, G1⊕FG2, as the pullback along

the diagonal map ∆ : F → F × F . Specifically, it is the universal object satisfying

G1 ⊕F G2 F

G1 ×G2 F × F

∆

π1×π2

There is also a notion of decomposition. Recall that an F -lattice L is indecom-

posable if there exists no non-trivial lattices L1, L2 such that L1 ⊕ L2 ' L. For

any F -lattice, there exists a (not necessarily unique) decomposition L =
⊕

Li into

132



indecomposable F -lattices Li. This means the corresponding tori also decompose,

Diag(L) =
∏

Diag(Li) into indecomposable tori. With respect to the 2-cocycles c,

define ci ∈ H2(F ;Ti) as the composition ρi ◦ c, where ρi is the projection T → Ti,

so (L, c) decomposes to indecomposable factors (Li, ci). Although all lattices can be

decomposed, they can in theory “lose” some information about the original extension

(i.e. c 6=
⊕

ci). Therefore it is not a given that all extensions can be built up from

indecomposable ones.

Proposition 5.2.1. If F has finite representation type, and char(k) is coprime to

|F | then any object in ExtF decomposes as a sum ' G1 ⊕F . . .⊕F Gn, where the Gi

are given by (Li, c), and the Li are indecomposable.

Proof. Recall the definition of the norm map NF (T ) in Proposition 5.1.2. F acts

component-wise on T1×T2, so any element (t1, t2) fixed by F must also have ti ∈ T Fi .

Conversely, if ti ∈ T Fi for i = 1, 2 then (t1, t2) ∈ (T1 × T2)F .

Similarly, if (t1, t2) ∈ Im(NF (T1, T2)), then there exists some (t′1, t
′
2) ∈ T1 × T2 such

that NF (t′1, t
′
2) = (t1, t2), so ti ∈ Im(NF (Ti)). Again, given ti ∈ NF (Ti), then (t1, t2) ∈

Im(NF )(T1×T2). Therefore there exists canonical isomorphisms (T1×T2)F ∼= T F1 ×T F2 ,

and Im(NF (T1 × T2)) ∼= Im(NF (T1))× Im(NF )(T2), so

H2(F ;T1 × T2) = (T1 × T2)F/Im(NF (T1 × T2))

= T F1 /Im(NF (T1))× T F2 /Im(NF (T2)),

and each 2 cocycle c ∈ H2(F ;T1 × T2) equals c1 ⊕ c2, for ci ∈ H2(F ;Ti). Therefore

any object (L, c) ∈ ExtF decomposes to a sum
⊕

(Li, ci) for indecomposable Li.
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Given a group F of finite representation type and a list of the indecomposable F -

lattices L, then the category ExtF of all extensions of F by split tori is characterised

by the list L and the choice of 2-cocycle c ∈ H2(F ; Diag(L)). Bounds on the essential

(p-)dimension can be found using Proposition 5.1.4, and because the lower bound is

given by the symmetric p-rank, Remark 4.0.5 asserts that the symmetric p-rank, (and

therefore the dimension of a minimally p-faithful representation) is additive with ⊕F .

For G an extension of a finite group by a torus, define gap(G; p) as the difference

between the dimensions of a minimally p-faithful and minimally p-generically free

representation (as done in [29]).

Proposition 5.2.2. Let F be a group of finite representation type, and (L, c1), (L2, c2)

be two objects in ExtF , over a field characteristic not p. Let Gi be the algebraic groups

given by (Li, ci). Then

gap(G1 ⊕F G2; p) ≤ min{gap(G1; p), gap(G2; p)}.

Proof. Suppose Vi, Wi are minimal p-faithful and p-generically free representations

of Gi respectively, so gap(Gi) = dim(Wi) − dim(Vi). Then V1 ⊕ V2 is a (minimal)

p-faithful representation of G1 ⊕F G2 (see previous discussion). Now consider the

representation Wi ⊕ Vj, i 6= j. There exists some dense open set Ui ⊂ Wi such that

|StabGi(Ui)| = q, for some q prime to p. For Uj dense in Vj, U := Ui ⊕ Uj is a dense

open subset of Vi⊕Wj with |StabG(U)| = q′ for some q′ prime to p. Therefore, Vi⊕Wj

is a p-generically free representation of G1⊕F G2, the smallest of which has dimension

min{dim(Wi ⊕ Vj)}, i 6= j, so gap(G1 ⊕F G2) ≤ min{gap(G1), gap(G2)}.
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In [27, Theorem 12.3], for all indecomposable Cp2-lattices Mi, the value of

edk(Diag(Mi); p) was calculated, where T := Diag(Mi) was split by Cp2 . By Proposi-

tion 3.4.2, this is exactly the value of the symmetric p-rank, and could be extended to

any Cp2-lattice, as the symmetric p-rank is additive (see Remark 4.0.5). Considered

here are instead groups that are extensions of Cp2 by split tori, along with similar

considerations for C2 × C2 and D2p.

5.3 Cp and Cp2

An example where a minimal p-faithful representation fails to be p-generically free is

when G = Diag(Ap−1) o Cp (here, Diag(Ap−1) is the torus of root datum of Lie type

Ap−1). G has a faithful representation of dimension p, that is not generically free (see

Example 3.5.8) and the dimension of the minimal p-generically free representation is

p + 1, which leaves 1 ≤ edk(Diag(Ap−1) o Cp; p) ≤ 2. The true value is 2, because

Diag(Ap−1)o Cp is the normalizer of the maximal torus of PGLp, which has essential

p-dimension 2, and for any semisimple algebraic group G, edk(NT (G); p) ≥ edk(G; p).

By Proposition 3.5.2, given any (p)-faithful representation V of G, then V ×W is

(p)-generically free, where W is the faithful 1 dimensional representation of Cp2 . It

is shown by the following proposition that the gap between the dimensions of the

p-faithful and p-generically free representations only exists for the split extensions.

Proposition 5.3.1. If G is a non-split extension of F := Cp2 by a split torus, over a

field containing a (p2)th root of unity, then a p-faithful representation is p-generically

free.
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Proof. If a representation V is p-faithful, then the restriction to T is p-generically

free (see [28, Lemma 2.5]), so for any dense open set U ⊂ V , |StabT (U)| = q for some

q prime to p. Take some g = rit, of order p2 modulo T as in Proposition 5.1.3, then

gp
2 ∈ T but gp

2 6= 1 as the extension is not split. Suppose for a contradiction that

|StabG(U)| is either infinite or divides p. So g fixes u then gp
2

fixes u, so |StabT (U)|

divides p, a contradiction. Therefore |StabG(U)| = q′ for some q′ prime to p.

Corollary 5.3.2. Let G satisfy 2.31, where F = Cp2 and char(k) 6= p. Let (G◦)∗ =⊕
i Li, where Li are indecomposable F -lattices. If G is non-split then

edk(G; p) = max{
∑

SymRank(Li; p)− dim(G), 1}. (5.5)

Else

max{
∑
i

SymRank(Li; p)− dim(G), 1} ≤ edk(G; p)

≤
∑
i

SymRank(Li; p)− dim(G) + 1.

(5.6)

Proof. Propositions 5.1.4 along with Remark 4.0.5 give the upper and lower bounds

in (5.6). As the group G is disconnected, edk(G) ≥ 1. If G is a non split extension,

then from Proposition 5.3.1, this is also the dimension of a minimal p-generically free

representation, so the bounds meet, resulting in (5.5).

Remark 5.3.3. Each Cp2-invariant p-generating set found in Table 5.1 is also gen-

erating, the p-generically free representations are in fact generically free, and as

edk(G; p) ≤ edk(G), these bounds are also true for the essential dimension.
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To calculate the symmetric p-ranks of the indecomposable Cp2-lattices, an exhaus-

tive list can be found in [12, 34.35], where they are given as certain extensions of other

lattices. In [27, pp. 27], this list was translated into quotients of various permutation

lattices. The group, G := 〈g〉 = Cp2 , and H := 〈h〉 = Cp, The permutation lattice ZH

can be considered as a G lattice by the action g · hi = hi+1, g ∈ G, h ∈ H. In the

following list, δG :=
∑

i g
i, and ε :=

∑
i g

pi for i ∈ [0, . . . , p− 1].

M1 = Z, M2 = ZH, M3 = ZH/〈δH〉, M4 = ZG,

M5 = ZG/〈δG〉, M6 = ZG ⊕ Z/〈δG − p〉. M7 = ZG/〈ε〉, M8 = ZG/〈ε− gε〉 ,

and the following four families

M9,r = ZG ⊕ ZH/〈ε− (1− h)r〉, 1 ≤ r ≤ p− 1

M10,r = ZG ⊕ ZH/〈ε(1− g)− (1− h)r+1〉, 1 ≤ r ≤ p− 2

M11,r = ZG ⊕ ZH/〈ε− (1− h)r, δH〉, 1 ≤ r ≤ p− 2

M12,r = ZG ⊕ ZH/〈ε(1− g)− (1− h)r+1, δH〉. 1 ≤ r ≤ p− 2

Proposition 5.1.2 and the subsequent discussion gives the definition H2(F ;T ) =

T F/Im(NF (T )), where NF (T ) is the norm map t 7→
∑

g∈G g · t. The calculations

of H2(F ;T ) given by the formula in Proposition 5.1.2, and an invariant generating
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set for each Mi are given in Appendix B.1. Each symmetric p-rank is given by the

rank of P , so for the corresponding p-presentation φ : P → P/N , we have kerφ = qN

for some q prime to p. As N has a faithful action by H, the condition KF (see Lemma

3.5.3) fails on every one of the lattices in L because N is a faithful H-module, and

this is in the kernel of P/N → N . In Table 5.1, the symmetric p-ranks were already

known, but the data in column H2(Cp2 ; Diag(L)) is new.

L rank(L) H2(Cp2 ; Diag(L)) SymRank(L; p)
M1 1 {1} 1
M2 p {1} p
M3 p− 1 Z/pZ p
M4 p2 {1} p2

M5 p2 − 1 Z/p2Z p2

M6 p2 {1} p2

M7 p2 − p Z/pZ p2

M8 p2 − p+ 1 {1} p2

M9,r p2 Z/pZ p2 + p
M10,r p2 + 1 {1} p2 + p
M11,r p2 − 1 (Z/pZ)2 p2 + p
M12,r p2 Z/pZ p2 + p

Table 5.1: Summary information table for all indecomposable Cp2 lattices.

Example 5.3.4. Take L := M9,r. The condition ε− (1− h)r = 0 yields

p−1∑
i=0

gpi −
r∑

k=0

(−1)k
(
r

k

)
hk = 0
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Acting by gj, for 0 ≤ j ≤ p− 1 gives

gj · (
p−1∑
i=0

gpi −
r∑

k=0

(−1)k
(
r

k

)
hk) = 0 0 ≤ j ≤ p− 1

gj · (
p−1∑
i=0

gpi) = gj · (
r∑

k=0

(−1)k
(
r

k

)
hk) 0 ≤ j ≤ p− 1

⇒
p−1∑
i=0

gpi+j =
r∑

k=0

(−1)k
(
r

k

)
hk+j. 0 ≤ j ≤ p− 1.

Translated to the torus case T := {t1, . . . tp2 , s1, . . . sp)} = Diag(M9,r), the relations

become multiplicative,
p∏
i=1

tpi+j =
r∏

k=1

s
(−1)k−1( r

k−1 )
k+j (5.7)

To find H2(G;T ), the formula in Proposition 5.1.2 is used. First note that elements

in T G must be of the form (t, . . . , t, s, . . . , s). As the alternating sum of binomial

coefficients is 0, the right hand side of (5.7) is 1, so tp = 1, thus t is a pth root of

unity. There are no other constraints, so T G = (ζ, . . . , ζ, s, . . . , s), where ζ is a pth

root of unity. Now consider

NG(t1, . . . , tp2 , s1, . . . , sp). The first p2 entries are

p2∏
i=1

ti =

p−1∏
j=0

p∏
i=1

tip+j

=

p−1∏
j=0

r∏
k=1

s
(−1)k−1( r

k−1 )
k+j using (5.7)

=

p∏
j=1

r∏
k=1

s
∑r
k=1(−1)k−1( r

k−1 )
j

= 1.
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Also, as NG(1, . . . , 1, s
1
p2 , . . . , s

1
p2 ) = (1, . . . , 1, s, . . . , s), then

H2(G;T ) = T G/Im(NG(T )) = Z/pZ.

A generating set is just the image of the standard basis of P = ZG⊕ZH in L, so this

set of characters are just evaluation on the entries of (t1, . . . , tp2 , s1, . . . , sp).

5.4 C2 × C2

The following proposition shows how to build representations of extensions of C2×C2

by algebraic tori, by slightly adapting the proof of Proposition 5.1.3. Many of the

same arguments are used; to avoid too much repetition, the reader is referred back

at certain points in this proof.

Proposition 5.4.1. Let G be an algebraic group over k, char(k) 6= 2, that satisfies

(2.31) with F = C2 × C2, and T := G◦. For an F -invariant subset ∆ ⊂ T ∗, a

representation V∆ of G exists such that,

1. If G is split, then dim V∆ = |∆|.

2. If G is non-split, then dim V∆ = |∆| + |∆0|, where ∆0 is the subset of ∆ that

comprises exclusively of all orbits of size 1.

In addition,

1. If ∆ is 2-generating then V∆ is 2-faithful.
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2. If ∆ satisfies KF , then V∆ is 2-generically free.

Proof. Firstly, if G is split, then the representation V∆ := Spank{(vλ) | λ ∈ ∆} (as

in the proof of Theorem 4.2.1) gives a representation of G of dimension |∆|. Now

suppose G is non-split. Define ∆′ = ∆ \∆0, Fλ the subgroup of F that fixes λ ∈ ∆,

and Gλ the preimage of Fλ under the surjection π (Gλ is therefore all the elements

of G that fix λ under the natural action of G on ∆). As the distinct orbits ∆i ⊂ ∆′

contain no orbits of size 1, then for all λ ∈ ∆i, Gλ/T ' C2 or Gλ = T . For each ∆i,

a representation V∆i
of G of dimension |∆i| can be therefore be constructed using

the same argument as Proposition 5.1.3; there exists a character of Gλ, and the

induced representation IndGGλ(ρ) gives a representation of G of dimension |∆i|. Set

V∆′ =
⊕

i V∆i
.

Now for each λ ∈ ∆0, find a G′ 6 G such that G′/T ' C2. As there exists a

character of G′, define Vλ as the 2 dimensional induced representation IndGG′ , and set

V∆0 =
⊕

λ∈∆0
Vλ. Putting these together, there exists a representation V∆ = V∆′⊕V∆0

with dimension |∆′|+ 2|∆0| = |∆|+ |∆0|.

For the second set of statements; the first is shown using the exact same argument

as Proposition 5.1.3 (which is true for any choice of finite group F ), and the second

is a application of Lemma 3.5.3.

Corollary 5.4.2. Let G be as in Proposition 5.4.1. If G is split, then

SymRank(φT ∗ ; 2)− dim(T ) ≤ edk(G; 2) ≤ SymRank(φT ∗ ; 2)− dim(T ) + 2. (5.8)
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Else

SymRank(φT ∗ ; 2)− dim(T ) ≤ edk(G; 2) ≤ SymRank(φT ∗ ; 2)− dim(T ) + 2 + r,

where r equals the number of trivial rank 1 summands in T ∗. If KF is satisfied, then

the lower bound is an equality.

Proof. Replacing k by the 2-special closure k(2) (and thus not changing the value

of ed(G; 2)) means one can apply Theorem 3.5.7 for the bounds on ed(G; 2). As in

the proof of Proposition 5.1.4, the lower bound is gained by the virtue that any 2-

faithful representation must decompose into weight spaces of which there are at least

SymRank(φT ∗ ; p). Note that an orbit ∆i ⊂ ∆ has size 1 if and only if L := T ∗ can

be decomposed with trivial rank 1 summands, so applying Proposition 5.4.1 gives

upper and lower bounds for G according to whether G is split. If the 2-faithful

representation is not 2-generically free, then take the representation VΛ ×W , where

W is the faithful 2 dimensional representation of C2×C2, which is 2-generically free by

Proposition 3.5.2. Finally, the last statement is an application of Lemma 3.5.3.

Remark 5.4.3. As with Cp2 , all minimal 2 generating sets are also generating sets,

giving generically free representations of G, so the bounds of the essential p-dimension

are true for the essential dimension, by Proposition 3.2.1.

There is not a finite set of indecomposable C2 × C2-lattices, but there are finitely

many of a given rank. In fact, indecomposable C2×C2-lattices are closely connected to

solutions of the “4-subspace problem” over the field F2 which was solved by Nazarova

[38]. A reduced 4-subspace system over k comprises a vector space V over k, and a
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set of 4 subspaces of V , {V, V1, V2, V3, V4} such that any three of the Vi span V . The

4-subspace problem is classifying all such indecomposable systems over an arbitrary

field k.

Remark 5.4.4. The 4 subspace problem is also equivalent to finding the indecom-

posable representations of the quiver D̃4 diagram. In 1972, it was proved by Gabriel

([17]) that the representations of a quiver have finite type if and only if the quiver is a

simply laced Dynkin diagram, (appropriately titled Gabriel’s theorem). Indeed if this

was the “3-subspace problem” then the representation theory would be of finite type,

as these is equivalent to representations of the quiver D4. See [42] for an introduction

to quivers and their representations.

Figure 5.1: Dynkin diagram D4 and D̃4, indecomposable representations of which
correspond to the indecomposable solutions of the 3-subspace and 4-subspace prob-
lems.

The usual notions of morphisms and decomposability of 4-subspace systems exist;

a morphism of systems is a k-linear map θ : V → W such that θ(Vi) ⊂ Wi for all

i, and a system is decomposable if there exists systems {W,W1,W2,W3,W4} and

{W ′,W ′
1,W

′
2,W

′
3,W

′
4} such that Wi ⊕W ′

i = Vi for all i, and W ⊕W ′ = V .

A G-lattice is reduced if it non-trivial and contains no ZG-free or rank 1 summands.

Proposition 5.4.5. There is a bijection between reduced 4-subspace systems over F2

and reduced C2 × C2-lattices.
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For a proof, see [7, pp. 200]. Rather than proving the bijection here, it will

be illustrated how to construct a C2 × C2-lattice from a 4-subspace system. Let Li,

i = 1, . . . , 4 be the four non-isomorphic rank 1 ZG-lattices. These are Zei, where ei

are the 4 idempotents of ZG, or equivalently 4 different copies of Z where g and h

act as ±1. If {V ;Vi} is a reduced 4-subspace system, then set di = dimVi, and define

Hi = Ldii . There is an exact sequence,

0 2Hi Hi Vi 0,
σi (5.9)

where the map σi takes (m1, . . .mdi) ∈ Hi to its canonical image in Vi. Setting

H =
⊕

Hi, σi can be extended to a map σ : H → V , where σ|Hi = σi. The reduced

C2 × C2-lattice associated to the 4-subspace system {V ;Vi} is defined as M = kerσ.

Example 5.4.6. Take V := F3
2, V1 = 〈e1〉, V2 = 〈e2〉, V3 = 〈e3〉 and V4 = 〈e1+e2+e3〉.

Then any choice of three of the Vi’s span V . The kernel of the map
⊕

Vi → V is

〈(1, 1, 1,−1)〉, in the basis vectors of the Vi. Set Li as the rank 1 C2 × C2-lattices

where the following table shows the actions of the two generators g, h ∈ C2 × C2.

L1 L2 L3 L4

g 1 -1 1 -1

h 1 1 -1 -1

Set Hi := Li, and H =
⊕

Hi. Then M ⊂ Z4 is spanned by (1, 1, 1,−1), and 2H, so
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a Z-basis is 

1 1 1 −1

0 2 0 0

0 0 2 0

0 0 0 2


,

where g acts by −1 on entries 2 and 4, h acts by −1 on entries 3 and 4, and gh acts

by −1 on entries 2 and 3. Considering the action of g and h on this Z-basis, the

integral representation of C2 × C2 is

ρ(g) =



1 0 0 0

−1 −1 0 0

0 0 1 0

−1 0 0 −1


, ρ(h) =



1 0 0 0

0 1 0 0

−1 0 1 0

−1 0 0 −1


.

Applying Corollary 5.4.2, if G is an extension of C2 ×C2 by Diag(L), L a C2 ×C2-

lattice, edk(G; 2) (and therefore edk(G)) is bounded below by SymRank(φL; 2) −

rank(L) and above by SymRank(φL; 2)− rank(L) + 2, using the dimension 2 faithful

representation of C2×C2. If the subset generates rather than just 2-generates, this is an

upper bound for edk(G), and if Λ ⊂ L satisfies KF , then SymRank(φL; 2)−rank(L) =

edk(G; 2) = edk(G).

A list of the indecomposable 4-subspace systems. up to permutation of the {Vi}

can be found in [32, pp. 22]. This section will use the same notation found there.

Different choices of which rank 1 lattice Li is assigned to which subspace Vi gives

non-isomorphic lattices, so each of the 9 types yields up to 1
2

(
4
2

)
= 3 non-isomorphic

lattices for a given rank. This family of these lattices with rank r associated to the
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type T subspace system is denoted LT,r.

In calculating the symmetric 2-ranks of these lattices, the algorithm featured in Sec-

tion 4.0.1 will be utilised. An element of a reduced C2 × C2-lattice L is written

as a sublattice of
⊕

Hi, so each element of x ∈ L is partitioned into 4 blocks of

length di x = (x1, x2, x3, x4), where an element of C2 × C2 acts by −1 on two of

these blocks. For instance, if g acts on the second and fourth blocks, it acts as

the matrix Idd1 ⊕ −Idd2 ⊕ Idd3 ⊕ −Idd4 on x. The element (g − e) thus acts by

0d1
⊕ −2Idd2 ⊕ 0d3

⊕ −2Idd4 , and as the augmentation ideal I = 〈g − e〉, for g ∈ G,

the elements in IL have the form (0, 2x2, 2x3, 2x4).

The method used to calculate SymRank(L; 2) is perhaps best illuminated by an ex-

ample.

Example 5.4.7. Let V be a 2-dimensional vector space, with subspaces V1 = 〈e1〉,

V2 = 〈e1 + e2〉, V3 = V4 = 〈e2〉. This is an example of a reduced 4-subspace system,

and the kernel of the map
⊕

Vi → V is spanned by e1 − e2 + e3 and e3 − e4. As in

Example 5.4.6, identify the Vi with the rank 1 Li, thus L is spanned by (1,−1, 1, 0),

(0, 0, 1,−1) and the cyclic permutations of (2, 0, 0, 0). The elements of C2 × C2 act

in the canonical way (g acts as −1 on the second and fourth coordinate and so on).

A Z-basis of this lattice is {(1,−1, 1, 0), (0, 0, 1,−1), (2, 0, 0, 0), (0, 2, 0, 0)}, which will

be denoted as {e′i}. It is claimed that L := L/2L+ IL is generated by the images of

e′1 and e′2.

As (g − id) · (1,−1, 1, 0) = (0,−2, 0, 0), and (h − id) · (1,−1, 1, 0) = (0, 0, 2, 0), then

the images of both e′4 and e′3 are 0 in L. Now consider the point x = (a1,−a1, a1 +

a2,−a2) ∈ 〈e′1, e′2〉. If x ∈ IL then a1 = 0, as G acts trivially on the first block. As e′2

contains entries not divisible by 2, it is not in IL either, so rank(L) = 2.
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Finally, if x was fixed under any element of G,

g · x = x⇒ a1 = a2 = 0,

h · x = x⇒ a1 + a2 = a2 = 0,

gh · x = x⇒ a1 = a1 + a2 = 0.

So x is not fixed under any element of G. Therefore, in the language of Theorem

4.0.1, rank(V2) = 2, rank(Vi) = 0 all other i, so SymRank(L; 2) = (2 − 0) · 22 = 8.

For an explicit generating invariant set, take the orbits of e1 and e2; each have size 4.

In [32, p.22], subspace systems are represented by block matrices. This example is a

“Type I” subspace system (with n = 1). The representation of this example is the

following

V1 V2 V3 V4

1 1 0 0

0 1 1 1

The two rows represent the basis vectors e1 and e2 respectively, and the 4 columns,

the description of the basis vectors of each Vi. A more detailed guide on interpreting

the following tables can be found in Appendix A.

The steps to generalize this to any n are straightforward. The rows still represent

the basis vectors e1 – e2n. The matrix J+
n (0) is the Jordan block of order n, with
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eigenvalue 0. L is then spanned by

ei − en+i + e2n+i, 1 ≤ i ≤ n

e2n+1 − e3n+1,

ei + e2n+i+1 − e3n+i+1, 1 ≤ i ≤ n− 1,

2ei 1 ≤ i ≤ 4n.

The subspace system is

V1 V2 V3 V4

In In 0 J+
n (0)

0 In In In

Using the exact argument as before, the cyclic permutations of (2, 0, . . . , 0) lie in the

augmentation ideal. A point that lies in the span of the other vectors can be written

as x = (a1 + b2, . . . , an + bn−1, a1 + b1, . . . , an + bm,−a1, . . . ,−an,−b1 − b2, . . . ,−bn),

where ai, bi ∈ Z. Taking each element of C2 × C2 in turn,

g · x = x⇒ ai + bi = 0,−bi − bi+1 = 0, bn = 0,

h · x = x⇒ ai = 0,−bi − bi+1 = 0, bn = 0,

gh · x = x⇒ ai = 0, ai + bi = 0.

All of which mean x = 0, so SymRank(L; 2) = 8n. As before, taking the orbits of

this spanning set gives a generating invariant set.
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L SymRank(L, 2)
L0,2n 8n
LI,2n 8n− 2r, r = 0, 1, 2
LII,2n+1 8n+ 2r, r = 1, 2
LIII,2n 8n
LIII∗,2n+2 8n+ 2r + 4, r = 0, 1, 2
LIV,2n+1 8n+ 4
LIV∗,2n+3 8n+ 2r + 6, r = 0, 2, 3
LV,2n−1 8n− 2r − 2, r = 1, 2
LV∗,2n+3 8n+ 4r + 2, r = 1, 2

Table 5.2: Symmetric p-ranks of the reduced C2 × C2-lattices.

Remark 5.4.8. The identification of the Hi lattices to the Vi subspaces (permuta-

tion of the columns of the subspace system) is crucial; a different choice gives non-

isomorphic C2×C2-lattices, and therefore potentially different symmetric 2-ranks. The

table of symmetric 2-ranks in 5.2 reflects this by the different values for each type,

corresponding to different choices of Vi 7→ Hi.

The values of the symmetric 2-rank of each lattice is given in Table 5.2 be-

low, and the techniques used were identical to the example. A list of the inde-

composable 4-subspaces systems can be found in Table A.2 (from [32]) in the ap-

pendix. The classification is complete upon adding SymRank(Diag(ZG), 2) = 4,

SymRank(Diag(Z), 2) = 1 for the trivial lattice, and SymRank(Diag(Li), 2) = 2 for

the non-trivial rank 1 lattices.

Corollary 5.4.9. For an algebraic group G over k, char(k) 6= 2, satisfying (2.31)

and where F = C2 × C2, and (G◦)∗ containing no trivial rank 1 summands,

edk(G; 2) ≤ 3 · dim (G) + 2. (5.10)
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Proof. Inspecting Table 5.2 shows that for all reduced lattices, SymRank(L; 2) ≤

4 · rank(L). Together with SymRank(A1; 2) = 2 for all the non-trivial rank 1 lattices,

then

edk(G; 2) ≤ SymRank(L; 2)− rank(L) + 2

≤ 4 · rank(L)− rank(L) + 2

= 3 · rank(L) + 2.

5.5 D2p

Lastly our attention turns to the dihedral group D2p, for p an odd prime. They have

Sylow p-subgroups of C2 and Cp, so have finite representation type, which is described

in [21], which this section will be using. The essential p-dimension of extensions of

D2p by a torus has already been covered in Section 5.3 thanks to Proposition 5.1.3,

as its Sylow p-subgroup is Cp. However there is something more to say about the

essential dimension. As D2p is a subgroup of PGL2, it acts faithfully on P1. Recall

the definition of a versal variety from the discussion after Proposition 3.2.5.

Lemma 5.5.1. Let G be an extension of an algebraic torus T by D2p over a field k,

char(k) 6= 2 or p, and let V be a representation of G that is faithful on T . Then there

exists a versal generically free G-variety of dimension dim(V ) + 1.

Proof. Let W be the faithful 2 dimensional representation of D2p. Proposition 3.5.2
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says that V ×W is a generically free representation of G. Now D2p acts faithfully on

P(W ) = P1, by virtue of D2p being a subgroup of PGL2(k). As projectivisation is a

G-compression, V × P1 is a versal generically-free G-variety.

Table 5.3 contains the relevant information on the indecomposable D2p-lattices.

The description of each lattice L are from [21], can be found in Appendix B.2, along

with all the calculations of H2(G; Diag(L)), and the symmetric rank SymRank(φ),

for φ : D2p → GL(L).

L rank(L) H2(G; Diag(L)) edk(G; p) SymRank(φL) KF

Z 1 {1} 1 1 ×

Z− 1 Z/2Z 2 2 ×

N+ p− 1 {1} 2 p ×

N− p− 1 Z/pZ 2 2p X

M+ p {1} 1 p ×

M− p Z/2Z 1 2p X

M̃+ p+ 1 {1} 1 p+ 3 ×

M̃− p+ 1 {1} 1 2p X

Table 5.3: Summary table for all indecomposable D2p-lattices.

For a field k, char(k) 6= 2, p, then bounds on edk(G) for G ∈ ExtD2p can be calculated

by the information in Table 5.3. Firstly decompose the character lattice L := T ∗, into

indecomposable D2p-lattices L =
⊕

Li. For a lower bound, edk(G; p) = edk(G
′; p),

where G′ is an extension of Cp by a split torus, so can be found using the results in Sec-

tion 5.3. For an upper bound, note that for two lattices L, M , SymRank(φL⊕φM) ≤

151



SymRank(φL) + SymRank(φM), so
∑

i SymRank(φLi)− rank(Li) is the dimension of

a faithful representation, generically free if KF is satisfied. If KF is not satisfied, then

Lemma 5.5.1 states the edk(G) ≤ SymRank(φL)− rank(L) + 1.

As an illustration, take L := M̃+. It has trivial H2 group ,so the only extension G is

the semidirect product, D2p o Diag(M̃+). As a Cp-lattice, it decomposes as ZCp ⊕ Z,

thus SymRank(φM̃+
) = rank(M̃+), so edk(G; p) = 1. As SymRank(φM̃+

) = p + 3,

but KF isn’t satisfied, there exists a generically free representation of G of dimension

p+ 3, so edk(G) ≤ (p+ 3)− (p+ 1) = 2. Thus 1 ≤ edk(G) ≤ 2.

For each indecomposable D2p-lattice L, the following is a list of the bounds of ed(G; p),

for G an extension of D2p by Diag(L).

L ed(G)

Z 1

Z− 2

N+ 2

N− 2 – 2p+ 1

L ed(G)

M+ 1

M− 1 – p

M̃+ 1 – 2

M̃− 1 – p− 1

Table 5.4: Bounds on the essential dimension of extensions of Diag(L) by D2p, where
L is an indecomposable D2p lattice.

Note that the difference in bounds are wildly different depending on the integral

representation chosen. Each lattice comes in a “±” pair, for the “+” lattice the gap

in the bounds is significantly smaller.

In particular, note this gives exact values of edk(G) for any G that is an extension of

D2p by Diag(L), where L = Zr1 ⊕ Zr2− ⊕ (N+)r3 ⊕ (M+)r4 .
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Appendix A

Reference Tables

Gi Root system edk(Gi; p)
p = 2 p = 3 p = 5 p = 7

G23 H3 3 1 1 0

G24 J (4)
3 3 1 0 1

G25 L3 2 3 0 0
G26 M3 3 3 0 0

G27 J (5)
3 3 3 1 0

G28 F4 4 2 0 0
G29 N4 4 1 1 0
G30 H4 4 2 2 0
G31 O4 4 2 1 0
G32 L4 4 4 1 0
G33 K5 5 3 1 0
G34 K6 6 3 1 1
G35 E6 5 3 1 0
G36 E7 7 3 1 1
G37 E8 8 4 2 1

Table A.1: edk(Gi; p) for each complex reflection group in Table 4.2, the first two
columns of which are taken from [25].
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Type V1 V2 V3 V4

0
In 0 In X

0 In In In

I
In In 0 J+

n (0)

0 In In In

II
In+1 In+1 I↓n 0

0 I←n In In

III
In+1 0 I↑n I↓n

0 In In In

III*
In 0 I←n I→n

0 In+1 In+1 In+1

Type V1 V2 V3 V4

IV
In+1 0 In+1 I↑n

0 In+1 In+1 I↓n

IV*
In+1 0 In+1 I←n+1

0 In+1 In+1 I→n+1

V

In 0 J+
n (0) In

0 In In J+
n (0)

0 0 e1 e1

V*

I←n I←n I→n 0

0 I→n I←n I←n

e1 e1 e1 e1

Table A.2: The indecomposable 4 subspace systems, used to calculate the symmetric
2-ranks of the indecomposable reduced C2 × C2-lattices.

Table A.2 shows the indecomposable 4 subspace systems. J+
n (0) is the Jordan

block of order n with eigenvalue 0, ei to the standard basis vector, the directional

arrow in the In matrices refers to a zero column or row added to the matrix from that

direction, e.g.

I→2 =


1 0 0

0 1 0

0 0 0

 ,

and finally

X =



1 0 . . . 0 1

0 1 . . . 0 1

...
. . .

...

0 . . . 1 1


.
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Appendix B

Calculations

B.1 Cp2-lattices

Throughout, W is the dimension 1 faithful representation of Cp2 . Only the split case

is considered, as the non-split case is dealt with by Proposition 5.3.1. KF fails on

every one as H acts trivially on the quotient N . A generating set in each case is

simply the image of the standard permutation lattice P in L = P/N .

B.1.1 M1

M1 is the trivial lattice Z, and T := Diag(Z) = k×, with trivial G-action, so T G = T .

As Im(NG(t
1
p2 )) = t, H2(G;T ) = {1}. Clearly SymRank(Z; p) = SymRank(Z) = 1, so

VΛ×W is generically free and has dimension 2, so 1 ≤ edk(G; p) = edk(G) ≤ 2−1 = 1.
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B.1.2 M2

M2 = ZH, T := Diag(ZH). Then T G = (t, . . . , t) = Im(NG(t
1
p2 )), so H2(G;T ) = {1}.

Then SymRank(ZH; p) = SymRank(ZH) = rank(ZH), so from the same argument

as the trivial module Z, edk(G; p) = edk(G) = 1.

B.1.3 M3

M3 = ZH/δH = Ap−1. An element of Diag(M3) has the form (t1, . . . , tp−1, t
−1
1 . . . t−1

p−1),

so t ∈ T G has ti = tj = ζ, where ζ is a pth root of unity. As NG(t) =
∏p−1

i=1 ti ·∏p−1
i=1 ti

−1 = 1, H2(G;T ) = Z/pZ. KG fails, as G acts trivially on (1, . . . , 1), but

edk(G; p) = edk(G) = 2 (see discussion at the start of Section 5).

B.1.4 M4

See B.1.2, the same arguments apply.

B.1.5 M5

An element (t1, . . . , tp2) of Diag(M5) is of the form has
∏p2

0 ti = 1, so T G = µp2 . As

Im(NG(T )) = 1, then H2(G;T ) = Z/p2Z. M5 is not a permutation lattice, so the

image of the basis of ZG is a generating invariant set, so SymRank(M5) = p2. KF is

not satisfied, as G acts trivially on kerφ = 〈(1, . . . , 1)〉, so 1 ≤ edk(Diag(M5)oCp2) ≤

2. M5 decomposes as (ZH)p−1 ⊕ Ap−1 as a H- lattice.
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B.1.6 M6

Elements of Diag(M6) satisfy
∏p2

i ti · tpp2+1 = 1. Diag(T )G := (t, . . . , t, t−p) =

NG((t
1
p2 , . . . , t

1
p2 , t−

1
p )), so H2(G;T ) = 1. SymRank(M6) = p2+1, and kerφ = 〈δG−p〉

which has trivial G-action so KF fails. As a H-lattice decomposes as Z ⊕ Ap−1 ⊕

ZHp−1.

B.1.7 M7

The relations in Diag(M7) are
∏p

i tpi+j = 1 for 1 ≤ j ≤ p. So T G = (t, . . . t),

where tp = 1. As Im(NG(T )) = 1, then H2(G;T ) = Z/pZ. SymRank(M7) = p2, so

edk(G) ≥ p. As a H-lattice, M7 decomposes to App−1.

B.1.8 M8

Diag(M8)G = (t, . . . , t) = Im(NG(t
1
p2 , . . . , t

1
p2 ), so H2(G; Diag(M8)) = 1.

SymRank(M8) = p2, and M8 decomposes as a H-lattice as Ap−1
p−1 ⊕ ZH.

B.1.9 M9,r

The points t = (t1, . . . , tp2 , s1, . . . , sp) of Diag(M9,r) satisfy∏p
i=1 tpi+j =

∏r
k=1 s

(−1)k−1( r
k−1 )

k+j , for 0 ≤ j ≤ p − 1. The fixed points of T under

G have the form (t, . . . , t, s, . . . , s), and as the alternating sum of binomial coeffi-

cients is 0, the relation forces tp = 1. As
∏p2

i=1 ti =
∏p−1

j=0

∏r
k=1 s

(−1)k−1( r
k−1 )

k+j =
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∏p
j=1

∏r
k=1 s

∑r
k=1(−1)k−1( r

k−1 )
j = 1, then NG(T ) = (1, . . . , 1, s, . . . , s), so H2(G;T ) =

Z/pZ.

B.1.10 M10,r

The points (t, . . . , t, s, . . . , s) ∈ T := Diag(M10,r) satisfy the condition∏p−1
i=0 tip+jt

−1
ip+j+1 =

∏r+1
k=0 s

(−1)k−1( r
k−1 )

k+j , (0 ≤ j ≤ p − 1) because substituting ti = tj

and si = sj yields 1 on both sides of the equation (alternating sum of binomial

coefficients on the right hand side, and tip+jt
−1
ip+j+1 = 1). So the G fixed points

of T := Diag(M10,r) are of the form (t, . . . , t, s, . . . , s), however this the image of

(t
1
p2 , . . . , t

1
p2 , s

1
p2 , . . . , s

1
p2 ) under NG, so H2(G;T ) = {1}.

B.1.11 M11,r

The conditions on T := Diag(M11,r) are
∏p−1

i=0 tpi+j =
∏r

k=0 s
(−1)k( rk )
k+j (0 ≤ j ≤ p− 1),

and
∏p−1

i=0 si = 1. For a point (t, . . . , t, s, . . . , s) ∈ T G, the second condition forces

sp = 1, and the first forces
∏p−1

i=0 tpi+j = 1, so tp = 1, so T G = (ζ1, . . . , ζ1, ζ2, . . . , ζ2),

where the ζi are p-th roots of unity. As Im(NG(T )) = 1, then H2(G;T ) = (Z/pZ)2.

B.1.12 M12,r

The conditions on T := Diag(M12,r) are
∏p−1

i=0 tpi+jt
−1
pi+j+1 =

∏r+1
k=0 s

(−1)k( r+1
k )

k+j

(0 ≤ j ≤ p − 1), and
∏p−1

i=0 si = 1. For a point (t, . . . , t, s, . . . , s) ∈ T G, the second

condition forces sp = 1, but the first is consistent with the conditions ti = tj, so
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σ

τ

σ

τ

Figure B.1: N+ and N− symmetry when p = 3.

T G = (t, . . . , t, ζ, . . . , ζ), where ζ is a p-th roots of unity.

As Im(NG(t
1
p2 , . . . , t

1
p2 , s1, . . . , sp)) = (t, . . . , t, 1, . . . , 1), then H2(G;T ) = Z/pZ.

B.2 D2p-lattices

H2(D2p;T ) can be calculated using the same technique for cyclic groups.

B.2.1 N±

These are both lattices of rank p − 1, that are symmetries of the Ap−1 root lattice.

N+ is generated by the following two matrices

ρ1(σ) = A :=



0 −1

1 −1

. . . −1

1 −1


, ρ1(τ) = B :=



1

. .
.

1

1


,

where N− is generated by A and −B.

Example B.2.1. When p = 3, N± are the following automorphisms of A2.
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As neither lattice are permutation, SymRank(N±) > p − 1. For N+, an orbit

of size p generates, as the standard basis vectors {ei} are contained in the orbit of

e1 so SymRank(N+) = p. For N−, note that for
∑

i σ
ix = 0 for any x ∈ N−, so

{σix}i generates a lattice of rank at most p − 1. Also, any x ∈ Fix(τ) has the form

(a1, . . . a p−1
2
,−a p−1

2
, . . . , a1), and for each σix, the sum of the coordinates is either 0

or a multiple of p, so modulo p, {σix} does not generate a rank p − 1 lattice. So

SymRank(N−) ≥ 2p. Again, taking the orbit of e1 gives a generating set of size 2p.

A simple calculation also shows H2(F ; Diag(N+)) = 1, H2(F ; Diag(N−)) = Z/pZ.

The representation of dimension p of F o Diag(N+) is not generically free, using the

same argument in M3 in Section 5.3. So using Lemma 5.5.1, there exists a generically

free G-variety of dimension p+1, which is the true value as H := CpoDiag(Ap−1) 6 G,

where edk(H) = 2 and dim(H) = dim(G), so by Proposition 3.2.8 and the previous

discussion, edk(G) = 2. For N−, KF is satisfied, as F acts faithfully on e1 + (−e1).

Also, T acts faithfully on P(V ), as the equations χ(t) = χ′(t) for all χ, χ′ ∈ T ∗ imply

tpi = t2i = 1 for all i, so there exists a generically free G- variety of dimension 2p− 1.
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B.2.2 M±

These have rank p, and arise as symmetries of the Ip root lattice. M+ is generated

by the following two matrices

ρ2(σ) = A :=



0 1

1 0

. . .
...

1 0


, ρ2(τ) = B :=



1 0

. .
. ...

1 0

0 . . . 0 1


,

where M− is generated by A and −B. Clearly, M+ is a permutation lattice. Any

point l ∈ M− fixed under −B has that its coordinates sum to 0, so
∑

f∈F f · x = 0

and thus its orbit generates a sublattice of rank less than p. Also, Fixσ = 〈(1, . . . , 1)〉,

so any τ -fixed point lies in the sublattice generated by {f · x} when taken modulo p.

Thus any combination of this fixed points fails to generate M−. As before, the orbit

of e1 of size 2p, generates the lattice, so SymRank(M−) = 2p.

Any element in Diag(M+)F := (t, . . . , t) is the image of (t
1
p , . . .) under the map

NF , so H2 is trivial. For M−, Im(NF ) is trivial, and Diag(M+)F = ±(1, . . . , 1), so

H2 = Z/2Z.

Finally, as M+ is permutation, edk(G) = 1, and for M−, F acts faithfully on e1+(−e1),

so the representation of dimension 2p is generically free. Note that diag(−1, . . . ,−1)

acts trivially on P(V ).
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B.2.3 M̃±

These have rank p+ 1, M̃+ being generated by the following two matrices

ρ3(σ) = A :=



0 1 0

1 0 0

. . .
...

...

1 0

0 . . . 0 0 1


, ρ3(τ) = B :=



1 1

. .
. ...

1 1

1 1

0 . . . 0 0 −1


,

and M̃− is generated by A and −B. Both are found in the D∗p+1 lattice.

Proposition B.2.2. [21, Thm. 3.4] M̃+ ⊕ Z ' Z[G/〈σ〉]⊕ Z[G/〈τ〉]

This means M̃+ is a stably permutation lattice, and SymRank(M̃+) = p+ 2. For

M̃−, note that Fix(τ) has rank p−1
2

+1, and Fix(σ) has rank 2, so Fix(τ)∪Fix(σ) cannot

generate a full rank sublattice if p > 3. If p = 3, then Fix(τ)∪Fix(σ) = 〈e1−e2,−2e1−

e3 + 2e4, e1 + e2 + e3, e4〉, which doesn’t contain e2. Therefore SymRank(M̃−) ≥ 2p,

which is achieved by the size 2p orbit of x :=
∑p

i= p+1
2

ei− ep+1. To see this, note that

x− τx = e p+1
2

, so ei = σj(x− τx) for i ∈ [1, . . . , p], given a suitable choice of j, and

finally from the definition of x, ep+1 = −x+
∑p

i= p+1
2

ei.

H2 is trivial for both. For M̃+, Diag(M̃+)F = (t, . . . , t, 1) = ImNF (t
1
2 , 1, . . . , 1). In

the case of M̃−, Diag(M̃−)F = (t, . . . , t, t−2) = ImNF (1, . . . , 1, t−
1
p ).

The representation of size p + 2 given by the invariant generating set of M̃+ is not

generically free, Proposition 3.5.2 tells us there exists a generically free representation

of dimension p + 3. When p = 3, T acts faithfully on P(V ), so there exists a versal
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generically free G-variety of dimension p+ 2, though this isn’t the case for p > 3, as

diag(ζ, . . . , ζ) acts trivially on P(V ), where ζ is a (p− 2)th root of unity. For M̃−, the

condition KF is satisfied, as F acts faithfully on (for instance)
∑p−1

i= p+1
2

σi(x− τx)−τx.

Thus there exists a generically free representation of size 2p. Lastly, as the element

diag(1, . . . , 1, t) ∈ T acts trivially on P(V ), 2p is the best lower bound known.
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Appendix C

Code

C.1 Magma

C.1.1 Merkurjev’s algorithm

SeqVkranks:= function(L,p) #Outputs the ranks of the V_k’s as a

sequence of integers.

G:=AutomorphismGroup(L);

H:=SylowSubgroup(G,p);

k:=Divisors(Order(H));

Seq:=[];

for r in k do

h:= [Matrix(g) - Matrix(Identity(H)) : g in Generators(H)];

#Generators of the augmentation ideal.
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P:=p*Matrix(Identity(H)); #Generates the pL.

Q,f:=quo<L|h,P>; #Quotient module L/(p+I)L.

M:=&cat[[k: k in Conjugates(H,K)]: K in LowIndexSubgroups(H,r)];

#Gives a list of subgroups upto index r by calling the list of

conjugacy reps, and taking all the conjugate subgroups.

C:= [];

for m in M do #For all groups of index less than r

A:= Nullspace(Matrix(Identity(H))-Matrix(Identity(H))); #A is the

fixed spaces of a particular group.

for g in Generators(m) do

A:= Nullspace(Identity(H)-Matrix(g)) meet A; #Recursively find

the intersection of all fixed spaces of all elements.

end for;

n:=Rank(A);

if n ne 0 then

for i in [1..Rank(A)] do;

C:=Append(C,Matrix(A.i));

end for;

end if;

end for;

if C ne [] then

Sublattice:=sub<L | Matrix(C)>;

SublatticeRank:=Rank(Sublattice);

Images:=[];

for l in [1..SublatticeRank] do

Images:= Append(Images,f(Sublattice.l));
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end for;

Qsub:= sub<Q|Images>;

Seq:=Append(Seq, #Generators(Qsub)); #Adds the number of

distinct images to the list Seq.

else Seq:=Append(Seq,0);

end if;

end for;

return Seq;

end function;

Summation:=function(Seq,p) #Function that takes the sequence outputted

in SeqVkranks and calculates the sum (rank V_k- rankV_{k-1})*p^k.

n:=#Seq;

Sum:=p^(n-1)*Seq[n];

for i in [1..n-1] do

Sum:= Sum + (p^(i-2)-p^(i-1))*Seq[i];

end for;

return Sum;

end function;

SympRank:=function(L) #Outputs the symmetric p ranks for all primes

dividing the order of the aut group.

G:=AutomorphismGroup(L);

rank:=Rank(L);

n:=Order(G);

for p in PrimeDivisors(n) do

166



Seq:=SeqVkranks(L,p);

print "Symmetric ", p, " rank is ", Summation(Seq,p);

end for;

return 0;

end function;

C.2 GAP

C.2.1 Functions for symmetric p-rank

The following function calculates the fixed points of the integral matrix group G.

fixed_points := function(G)

local gens, nullspaces, fixedpoints, i;

gens:= GeneratorsOfGroup(G);

nullspaces:= List(gens, g->NullspaceIntMat(g-

IdentityMat(DimensionOfMatrixGroup(G),Rationals)));

fixedpoints:=nullspaces[1];

if Size(nullspaces) > 1 then

for i in [1..Size(nullspaces)] do

fixedpoints:=BaseIntersectionIntMats(fixedpoints,

nullspaces[i]); od; fi;

return(fixedpoints);

end;

This function outputs the determinant of the Smith Normal Form of an integral
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matrix. If {v} ∈ Zn form the rows of this matrix, then it is the index of the sublattice

generated by {v} in Zn.

SNFdet:=function(v)

local n;

if Size(v)=0

then return 0; fi;

n:=Size(v[1]);

if Size(v)<n

then return 0; fi;

return Determinant(SmithNormalFormIntegerMat(v){[1..n]});

end;

A function that returns the value 1 if n is prime to p.

index := function(n,p)

if n=0 then return 0;

fi;

if GcdInt(n,p)=1 then return 1;

else return 0;

fi;

end;

Given a set of {v}, v ∈ Zn, this function outputs the smallest invariant p-generating

sets amongst all orbits of the elements in {v}.

p_generating_set := function(G,p,V) #function to calculate the minimum
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p-generating invariant set of the orbits of a subset V of the lattice.

local i, sylow_subgroup, orbit, orbit_collection, index_of_sublattices,

p_1, p_2;

sylow_subgroup:=SylowSubgroup(G,p);

orbit:=Orbit(sylow_subgroup,V[1],OnPoints);

orbit_collection:=List([O]); #List of orbits of points in V

for i in [1..Size(V)] do

if V[i] in O then

orbit := orbit;

else

orbit:=Union(orbit,Orbit(sylow_subgroup,V[i],OnPoints));

Add(orbit_collection,Orbit(sylow_subgroup,V[i],OnPoints));fi;od;

orbit_collection:=Combinations(orbit_collection);

orbit_collection:=orbit_collection{[2..Size(orbit_collection)]};

index_of_sublattices:=List(orbit_collection,o->index(SNFdet(Union(o)),p));

p_1:=Positions(M,1); #All invariant subsets that p-generate.

orbit_collection:=orbit_collection{p_1};

orbit_collection:=List(orbit_collection,o->Size(Union(o)));

p_2:=Positions(index_of_sublattices,Minimum(index_of_sublattices));

orbit_collection:=orbit_collection{p_2};

return(orbit_collection[1]);

end;

For a subset ∆ ⊂ Zn and integral matrix group G < GLn(Z), this function returns 1

if G acts faithfully on the kernel Z[∆]→ Zn, known as condition KF .
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Kernel_faithful:=function(G,V) #returns 1 if condition K_F

is satisfied for the action of G on the subset V

local i, dim, linear_rels, is_faithful, linear_rel, List_V,

g_action, elements, sols;

dim:=DimensionOfMatrixGroup(G);

linear_rels:=[];

for i in [1..Size(V)] do

List_V:=List(V);

Remove(List_V,i);

sols:=SolutionIntMat(List_V,V[i]); #Linear relations in the set.

if sols = fail then

linear_rels:=linear_rels;

else

Add(sols,-1,i); #Each element ker(phi) in the original basis.

Add(linear_rels,sols);fi;od;

linear_rels:=BaseIntMat(linear_rels); #Span(ker(phi))

in original basis.

g_action:=[];

elements:=List(Elements(G));

for i in [1..Size(elements)] do

Add(g_action,PermListList(V,V*elements[i]));od; #G action on ker(phi).

g_action:=List(g_action,l->List(linear_rels,m->Permuted(m,l)));

#Orbit of ker(phi) under G.

linear_rels:=DuplicateFreeList(linear_rels);

if Size(linear_rels)=Size(G) then #If true then action is faithful.

is_faithful:=true;
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else

is_faithful:=false;fi;

return(is_faithful); # Returns whether action is faithful or not.

end;

C.2.2 Verification calculations

This section contains the GAP code necessary to calculate the symmetric p-ranks in

Section 4.3.

W (J (4)
3 )

A description of the automorphism group of the lattice Q6(1), see the description in

4.3.2. The calculation below shows the Sylow 7-subgroup fixes no non-trivial points

in the lattice.

gap> DisplayImfInvariants(6,5,1);

#I Z-class 6.5.1: Size = 2^5*3*7

#I isomorphism type = C2 x PGL(2,7)

#I elementary divisors = 1^3*7^3

#I orbit size = 42, minimal norm = 4

gap> G:=ImfMatrixGroup(6,5,1);;

gap> sylow7sbgp:=SylowSubgroup(G,7);;

gap> fixed_points(sylow7sbgp);

[ ]
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gap> Id_6:=IdentityMat(6,Rationals);;

gap> 7genset:=Orbit(sylow7sbgp,Id_6[1],OnPoints);;

gap> Size(7genset);SNFdet(7genset);

7

1

W (J (5)
3 )

The description of the rank 12 lattice Λreal(J (5)
3 ), described in 4.3.4. The algorithm

in C.1.1 is implemented to find the symmetric p-ranks of the automorphism group.

L:=Lattice(D, 12, 2);

LatticeName(D,12,2);

SympRank(L);

(C2 x C3.Alt6).(C2 x C2).d12 12

Symmetric 2 rank is 32

Symmetric 3 rank is 54

Symmetric 5 rank is 12

0

W (H4)

The following contains a description of the lattice Q8(1) = Λreal(H4) (see 4.3.5), along

with examples of a 2- and 3-generating set.
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gap> DisplayImfInvariants(8,7,1);

#I Z-class 8.7.1: Size = 2^7*3^2*5^2

#I isomorphism type = (SL(2,5) Y SL(2,5)):(C2 x C2)

#I elementary divisors = 1^4*5^4

#I orbit size = 120, minimal norm = 4

gap> G:=ImfMatrixGroup(8,7,1);;

gap> sylow2sbgp:=SylowSubgroup(G,2);;

gap> Id_8:=IdentityMat(8,Rationals);;

gap> 2genset:=Orbit(sylow2sbgp,Id_8[1],OnPoints);;

gap> Size(2genset);SNFdet(2genset);

64

1

gap> sylow3sbgp:=SylowSubgroup(G,3);;

gap> orbit_1:=Orbit(sylow3sbgp,Id_8[5],OnPoints);;

gap> orbit_2:=Orbit(sylow3sbgp,Id_8[7],OnPoints);;

gap> 3genset:=Union(orbit_1,orbit_2);;

gap> Size(3genset);SNFdet(3genset);

18

1

W (O4)

Showing that every group isomorphic to C5 in W (E8) has symmetric 5-rank of 10 or

lower, by finding invariant 5-generating sets, as described in Proposition 4.3.28.
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gap> DisplayImfInvariants(8,3,1);

#I Z-class 8.3.1: Size = 2^14*3^5*5^2*7

#I isomorphism type = W(E8)

#I elementary divisors = 1^8

#I orbit size = 240, minimal norm = 2

gap> G:=ImfMatrixGroup(8,3,1);;

gap> sylow5sbgp:=SylowSubgroup(G,5);;

gap> J:=ConjugacyClassesSubgroups(sylow5sbgp);;

gap> List_of_gen_sets:=List(J,j->Size(Union(p_generating_set(j[1],5, Union

(W,fixed_points(j[1])))))); #for each group finds a small 5-generating set

#These give invariant 5-generating sets

[ 8, 8, 10, 10, 10, 10, 8, 25 ]

Note the last set of size 25 is that of the Sylow 5-subgroup of W (E8), which is C5×C5.

W (K5)

The next two sections contain the descriptions in GAP of the lattices Λreal(K5) and

Λreal(K6) = K12 (see Section 4.3.8). An example of a p-generating set of minimal size

is also given, for p = 2, 3, 5 and 7. These conclude the proofs of Propositions 4.3.33,

4.3.31, 4.3.34 and 4.3.35 respectively.

gap> DisplayImfInvariants(10,4,1);

#I Z-class 10.4.1: Size = 2^8*3^5*5

#I isomorphism type = (C6 x SU(4,2)):C2

#I elementary divisors = 1^5*3^3*6^2
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#I orbit size = 270, minimal norm = 4

gap> sylow2sbgp:=SylowSubgroup(G,2);;

gap> 2genset:=Orbit(sylow2sbgp,W[1],OnPoints);;

gap> Size(2genset);SNFdet(2genset);

128

1

gap> G:=ImfMatrixGroup(10,4,1);;

gap> sylow3sbgp:=SylowSubgroup(G,3);;

gap> Id_10:=IdentityMat(10,Rationals);;

gap> 3genset:=Orbit(sylow3sbgp,Id_10[3],OnPoints);;

gap> Size(3genset);SNFdet(3genset);

81

1

gap> sylow5sbgp:=SylowSubgroup(G,5);;

gap> orbit_1:=Orbit(sylow5sbgp,Id_10[9],OnPoints);;

gap> orbit_2:=Orbit(sylow5sbgp,Id_10[10],OnPoints);;

gap> 5genset:=Union(orbit_1,orbit_2);;

gap> Size(5genset);SNFdet(5genset);

10

1
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W (K6)

gap> DisplayImfInvariants(12,5);

#I Q-class 12.5: Size = 2^10*3^7*5*7

#I isomorphism type = C6.PSU(4,3).(C2 x C2)

#I elementary divisors = 1^6*3^6

#I orbit size = 756, minimal norm = 4

gap> G:=ImfMatrixGroup(12,5);;

gap> sylow2sbgp:=SylowSubgroup(G,2);;

gap> Id_12:=IdentityMat(12,Rationals);;

gap> 2genset:=Orbit(sylow2sbgp,Id_12[6],OnPoints);;

gap> Size(2genset);SNFdet(2genset);

128

1

gap> sylow3sbgp:=SylowSubgroup(G,3);;

gap> 3genset:=Orbit(sylow3sbgp,Id_12[1],OnPoints);;

gap> Size(3genset);SNFdet(3genset);

243

1

gap> sylow5sbgp:=SylowSubgroup(G,5);;

gap> fixedpoints:=fixed_points(sylow5sbgp){[1,2]};;

gap> orbit_1:=Orbit(sylow5sbgp,Id_12[1],OnPoints);;

gap> orbit_2:=Orbit(sylow5sbgp,Id_12[12],OnPoints);;
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gap> 5genset:=Union(fixedpoints,Union(orbit_1,orbit_2));;

gap> Size(5genset);SNFdet(5genset);

12

3

gap> sylow7sbgp:=SylowSubgroup(G,7);;

gap> orbit_1:=Orbit(sylow7sbgp,Id_12[1],OnPoints);;

gap> orbit_2:=Orbit(sylow7sbgp,Id_12[3],OnPoints);;

gap> 7genset:=Union(orbit_1,orbit_2);;

gap> Size(7genset);SNFdet(7genset);

14

1
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