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ABSTRACT  

Whilst the solubility of a substance is a fundamental property of widespread significance, its 

prediction from first principles (starting from only the knowledge of the molecular structure of the 

solute and solvent) remains a challenge. Recently, we proposed a robust and efficient method to 

predict the solubility from the density of states (DOS) of a solute-solvent system using classical 

molecular simulation. The efficiency, and indeed the generality, of the method has now been 

enhanced by extending it to calculate solution chemical potentials (rather than probability 

distributions as done previously), from which solubility may be accessed. The method has been 

employed to predict the chemical potential of Form 1 of urea in both water and in methanol for a 

range of concentrations at ambient conditions, and for two charge models. The chemical potential 

calculations were validated by thermodynamic integration with the two sets of values being in 

excellent agreement. The solubility determined from the chemical potentials for urea in water 

ranged from 0.46-0.50 mol kg-1, whilst that for urea in methanol ranged from 0.62-0.85 mol kg-1, 

over the temperature range 298-328 K. In common with other recent studies of solubility prediction 
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from molecular simulation, the predicted solubilities differ markedly from experimental values, 

reflecting limitations of current forcefields. 

1. INTRODUCTION 

Solubility is a fundamental property in chemistry, arising from a complex interplay of 

solute−solute, solute−solvent and solvent−solvent interactions. It is of considerable importance 

across a spectrum of physico-chemical phenomena with application domains including the 

structure and organisation of biomolecules in the body as well as deposition of bone and 

pathologies such as amyloid formation, geology, materials development, toxicology, food 

processing, the oil industry1, pharmaceutical development,2 and the fate of pollutants to name a 

few.  Consequently, for any interventions, the ability to accurately and efficiently predict the 

solubility would be a significant utility.  Such a predictive ability would also give access to 

solubilities at conditions inaccessible to experiment e.g. at high temperatures and pressures, or for 

compounds which are difficult or dangerous to handle manually. Further, for some applications, 

e.g. the development of pharmaceuticals, there is a need to predict the solubility of molecules that 

have yet to be synthesised, though this would first require the prediction of the crystalline structure 

which is becoming feasible3.  

A route to predicting solubility from molecular simulation can employ a direct coexistence 

approach, wherein we monitor either dissolution from a crystal surface or the growth of a crystal 

surface exposed to a supersaturated solution, to equilibrium4.  Whilst this is promising, there are 

limitations, a key one being the relatively long simulation time required to reach equilibrium  (on 

the order of microseconds)4 which is barely accessible. In contrast, the chemical potential route to 

solubility prediction is more robust and efficient. At the solubility limit, the chemical potential of 

the solute in solution 𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑇, 𝑝) and that in the solid phase 𝜇𝑠𝑜𝑙𝑖𝑑(𝑇, 𝑝) are equal   
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𝜇𝑠𝑜𝑙𝑖𝑑(𝑇, 𝑝) = 𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑇, 𝑝) - Equation (1) 

where 𝑇 and 𝑝 are temperature and pressure respectively. While 𝜇𝑠𝑜𝑙𝑖𝑑  is readily calculated by 

employing the Einstein molecule5 (or crystal6) method described below, calculating 𝜇𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is 

typically more involved. The objective, therefore, is to ascertain the solution concentration when 

the identity in Equation (1) holds. Determining the concentration at a given chemical potential can 

in principle be achieved by performing simulations in the grand or semi-grand canonical 

ensemble7. In the grand-canonical approach the solute molecules are inserted (or grown) or 

removed (or gradually annihilated) from the solvent, or the solvent molecule is transformed into a 

solute until equilibrium is achieved. While this method may work well for spherical solutes7–9 or 

where the solvent and solute molecules are structurally similar and can be readily transformed, 

large flexible solute molecules that bear little resemblance to the solvent pose a challenge. The 

alternative approach, determining the chemical potential as a function of concentration and looking 

for intersection with the chemical potential of the solid10 is more general and established. The 

methods here include thermodynamic integration11–15 (TI), perturbation16–19 or expanded ensemble 

calculations20,21. These calculations, however, are very demanding in terms of compute resource. 

For example, TI requires dozens of simulations to calculate a single chemical potential value for 

one particular concentration at a specified (T,p). Such a calculation would then need to be repeated 

for each concentration, for the particular (T,p) of interest. Further, these methods too are challenged 

by larger molecules, although the use of soft-core potentials22 or the recently employed cavity 

method13 go some way in overcoming this.  

Recently we proposed a novel method to predict solubility directly from a system’s density of 

states (DOS) that, in principle, can deal with larger molecules and enable solubilities to be 

calculated for a range of temperatures and pressures from a single DOS calculation23. The DOS 
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gives access to most properties of a system, including the probability of the system existing at 

different concentrations as a function chemical potential from which solubility can be determined. 

The approach employed a variant of the Wang—Landau algorithim24,25, where solution 

simulations are bridged to the vapour phase for the required insertion/deletion moves, so that 

insertion of even large molecules may be facilitated. Further, as the density of states is independent 

of temperature and pressure, the DOS gives access to solubility for wide range of conditions from 

a single DOS calculation. The method was employed to predict the solubility of NaCl23. 

In this contribution we extend the DOS-based solubility prediction methodology, moving the 

focus from calculating co-existence distributions to a more efficient approach of predicting 

solubility from chemical potentials calculated from DOS (effectively switching the independent 

variables). In the original DOS solubility approach, one identifies the location of the probability 

distribution in the discrete solution concentration space (N, N+1, N+2, N+3... systems) at a 

particular chemical potential – the chemical potential of the solid phase. To accurately capture this 

distribution, the DOS must be determined for all concentrations that have a non-zero probability 

of existing at the given chemical potential. When the solubility limit is unknown a priori, it is then 

necessary to include a large spectrum of discrete solute concentrations within the DOS calculation 

as one does not know the location of the probability distribution in concentration space. Much of 

this information, however, is redundant, since the important concentrations are only those that 

contribute to the distribution peak identifying the solubility concentration. In the original DOS-

based solubility study, we exploited prior knowledge of the solubility of the NaCl model and 

covered a selective region of the concentration space with 12 discrete concentrations.  

Here we reformulate the DOS-based solubility prediction method to calculate chemical 

potentials as a function of concentration, rather than the other way around. The free energy of 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
17

28
1



5 

 

solution of a given concentration is directly accessible (to within an additive constant) from its 

density of states as calculated by our approach. If several such free energies are determined, an 

analytical function may be fitted to these as a function of solute concentration, with the chemical 

potential being simply its derivative. While a certain number of free energies (equating to the 

number of discrete concentrations) must be determined to produce an accurate fit, the number of 

required determinations are in general substantially fewer than would be required for the 

distribution route. It is pertinent to note that while this method is presented in the context of 

calculating solution chemical potentials and predicting solubilities, it is in fact a general approach 

for calculating the chemical potential of pure fluid phases. We demonstrate and apply the method 

to predict the solubility of Form I of the organic molecular crystal urea in both methanol and water 

for a range of temperatures. Urea was chosen as it is a small, bio-relevant molecule (being the end 

product of metabolism, a source of nitrogen in fertilisers, and extensively used in plastics) which 

has a high solubility; the high solubility makes the solubility prediction quite demanding as the 

solution chemical potential must be determined for a large range of concentrations. Further, the 

chemical potentials calculated using DOS have been validated by thermodynamic integration.  

 

2. THEORY 

Chemical potential of solution from DOS 

The isothermal-isobaric partition function of a system of 𝑁𝑠𝑜𝑙 solute molecules (each comprising 

𝑛𝑠𝑜𝑙 solute atoms) and 𝑁𝑠𝑜𝑙𝑣 solvent molecules (each comprising 𝑛𝑠𝑜𝑙𝑣 solvent atoms) is given by  
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𝑄(𝑇, 𝑝, 𝑁𝑠𝑜𝑙 , 𝑁𝑠𝑜𝑙𝑣)

=
Λ𝑠𝑜𝑙

−3𝑛𝑠𝑜𝑙𝑁𝑠𝑜𝑙Λ𝑠𝑜𝑙𝑣
−3𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣

(𝑛𝑠𝑜𝑙𝑁𝑠𝑜𝑙)! (𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣)!

× ∫ 𝑒−𝛽𝑝𝑉d𝑉 ∫ 𝑒−𝛽𝑈(𝒓𝑠𝑜𝑙

𝑛𝑠𝑜𝑙𝑁𝑠𝑜𝑙 ,𝒓𝑠𝑜𝑙𝑣

𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣)d𝒓𝑠𝑜𝑙
𝑛𝑠𝑜𝑙𝑁𝑠𝑜𝑙d𝒓𝑠𝑜𝑙𝑣

𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣 

- Equation (2) 

where the configurational integral is over all solute (𝒓𝑠𝑜𝑙) and solvent (𝒓𝑠𝑜𝑙𝑣) atomic positions and 

all momentum degrees of freedom have been integrated out analytically and appear as the solute 

(Λ𝑠𝑜𝑙) and solvent (Λ𝑠𝑜𝑙𝑣) de Broglie wavelengths.  

Given the degeneracy of the configurational microstates, Equation 2 can be rewritten as 

𝑄(𝑇, 𝑝, 𝑁𝑠𝑜𝑙 , 𝑁𝑠𝑜𝑙𝑣) =
1

Λ𝑠𝑜𝑙
3𝑛𝑠𝑜𝑙𝑁𝑠𝑜𝑙Λ𝑠𝑜𝑙𝑣

3𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣
∑ ∑ Ω𝑐𝑜𝑛𝑓(𝑉, 𝐸)𝑒−𝛽(𝐸+𝑝𝑉)

𝐸𝑉

 - Equation (3) 

where Ω𝑐𝑜𝑛𝑓 is the configurational density of states25  

Ω𝑐𝑜𝑛𝑓(𝑉, 𝐸) =
1

(𝑛𝑠𝑜𝑙𝑁𝑠𝑜𝑙)! (𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣)!

× ∫ 𝛿 (𝐸 − 𝑈(𝒓𝑠𝑜𝑙
𝑛𝑠𝑜𝑙𝑁𝑠𝑜𝑙 , 𝒓𝑠𝑜𝑙𝑣

𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣))  d𝒓𝑠𝑜𝑙
𝑛𝑠𝑜𝑙𝑁𝑠𝑜𝑙d𝒓𝑠𝑜𝑙𝑣

𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣 

- Equation (4) 

and the integrals over all states have been replaced with summations over all volumes and energy 

levels, and 𝛿 is the Dirac delta function. In the case where the solute is treated as a rigid body (as 

is the case in this study), the configurational density of states becomes 

Ω𝑐𝑜𝑛𝑓 =
1

𝑁𝑠𝑜𝑙! (𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣)!

× ∫ 𝛿 (𝐸 − 𝑈(𝑹𝑠𝑜𝑙
𝑁𝑠𝑜𝑙 , 𝜽𝑠𝑜𝑙

𝑁𝑠𝑜𝑙 , 𝒓𝑠𝑜𝑙𝑣
𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣))  d𝑹𝑠𝑜𝑙

𝑁𝑠𝑜𝑙d𝜽𝑠𝑜𝑙
𝑁𝑠𝑜𝑙d𝒓𝑠𝑜𝑙𝑣

𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣 

- Equation (5) 

where the configurational integral is now over the solute molecule position (𝑹𝑠𝑜𝑙) and orientation 

(𝜽𝑠𝑜𝑙), and over atomic coordinates of the solvent molecules.  

The free energy of such a system of solute and solvent is related to its partition function by 
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𝐺(𝑇, 𝑝, 𝑁𝑠𝑜𝑙 , 𝑁𝑠𝑜𝑙𝑣) = −
1

𝛽
ln 𝑄(𝑇, 𝑝, 𝑁𝑠𝑜𝑙 , 𝑁𝑠𝑜𝑙𝑣) =

−
1

𝛽
ln [

1

Λ𝑠𝑜𝑙

3𝑛𝑠𝑜𝑙𝑁𝑠𝑜𝑙Λ𝑠𝑜𝑙𝑣

3𝑛𝑠𝑜𝑙𝑣𝑁𝑠𝑜𝑙𝑣
∑ ∑ Ω𝑐𝑜𝑛𝑓(𝑉, 𝐸)𝑒−𝛽(𝐸+𝑝𝑉)

𝐸𝑉 ]  - Equation (6) 

Given that the density of states is independent of temperature and pressure, Equation 6 can in 

principle be used to determine the free energy for a range of temperatures and pressures, all from 

a single density of states calculation. Should the free energy be determined for a series of 

concentrations (enforcing the condition that number of solvent particles is fixed, and only the 

number of solute particles is allowed to vary), the solution chemical potential is found by fitting a 

polynomial (or another such analytical function) as a function of 𝑁𝑠𝑜𝑙, and analytically taking the 

derivative. As noted by Vega et al10, a more accurate fit can be achieved by splitting the free energy 

into an ideal (𝐺𝑖𝑑), and an excess (𝐺𝑒𝑥) component 𝐺 = 𝐺𝑖𝑑 + 𝐺𝑒𝑥 and fitting to the excess, rather 

than full free energy. The rationale behind this is that at low concentrations, the free energy profile 

is dominated by the log term of the ideal free energy, while the excess free energy varies more 

smoothly. For the systems studied here, we found that the excess free energy can be fitted to a 

good approximation to a second order polynomial, such that 

𝐺𝑒𝑥 = 𝑎0𝑁𝑠𝑜𝑙
2 + 𝑎1𝑁𝑠𝑜𝑙 + 𝑎2 - Equation (7) 

where 𝑎0, 𝑎1 and 𝑎2 are coefficients to be determined be least squares fitting. While we believe 

that this will generally be a good choice, care must be taken that the fitted function does indeed 

capture the behaviour of the excess free energy. The excess chemical potential is then 

𝜇𝑒𝑥 = 2𝑎0𝑁𝑠𝑜𝑙 + 𝑎1 - Equation (8) 

and the full chemical potential is recovered by  

𝜇 = 𝜇𝑒𝑥 +
1

𝛽
ln

𝑁𝑠𝑜𝑙

𝑉
 - Equation (9) 
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where the righthand term is the ideal chemical potential. Here the de Broglie wavelength of the 

solute has been chosen to be unity for convenience, as it is common to both the solid and the solute 

in solution. Further, the de Broglie wavelength of the solvent is not present in Equation 9 provided 

that the number of solvent molecules remains constant, as is the case in this study. 

The challenge then is to calculate the density of states of the solute and solvent system for a range 

of concentrations. This is accomplished by the 3-d DOS method developed by us previously26. For 

completeness, we present the salient aspects of the approach here (see also Figure 1). The key 

feature is that the particle insertion/deletion moves that link the N, N+1, N+2 N+.. systems are 

carried out in the gas phase with a bridge to the discrete solution systems.  There are 4 components 

to the DOS determination which are then stitched together:  

i) DOS of the solute in solution for each concentration of interest, ensuring that the 

selected windows cover the energies and volumes accessible to the temperatures and 

pressures of interest for each concentration. 

ii) DOS for each concentration of interest in windows that extend the energies to those 

accessible to the system in a supercritical state. 

iii) DOS of the solute in solution for each concentration of interest in windows limited to 

energies in the supercritical state that extend the volume of those windows into the gas 

phase.  

iv) A single 2-d DOS calculation in the gas phase involving multiple systems of varying 

solute concentration connected by grand-canonical like insertion/deletion moves 

between the different concentration windows (Figure 1). 
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9 

 

 

Figure 1. 3-d DOS for a solute-solvent system. The DOS of the solute in solution is calculated for 

each concentration of interest (𝑁𝑖 , 𝑁𝑗 , 𝑁𝑘 , 𝑁𝑙 , ..) over the range of energies and volumes that would 

be accessible to the system over the temperature and pressure ranges of interest (blue regions). A 

second set of DOS windows are calculated, which extend the energy range sampled in the original 

windows to energies which would be accessible at a temperature and pressure above the critical 

point (orange regions). A third set of DOS is calculated over windows which extend the volume 

range sampled in the supercritical state to also cover the volume corresponding to low-density gas 

phase (yellow regions). Finally, in the gas phase, a single DOS of the full set of concentration 

windows employing solute insertion/deletion moves to transition between the concentrations (grey 

regions).  

 

The advantage of calculating the DOS in this way is two-fold: firstly, by first transitioning the 

system to a supercritical state we bypass a first order transition which would introduce 

irreversibility and associated hysteresis; secondly, as the insertion/deletion moves are performed 

in the gas phase, such moves become feasible for larger molecules (with scope to simply reduce 

the gas density as required to facilitate move acceptance).  

𝑉 

𝐸 

ln Ω(𝐸, 𝑉) 

𝑁𝑖 

𝑁𝑗 

𝑁𝑘 

𝑁𝑙 
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Chemical potential of solution from TI 

As a check on the DOS calculation, the solution chemical potentials of urea in water and urea in 

methanol were also calculated using the established TI approach. TI calculations extract free 

energy as the reversible work in going from one state to another, where the progress of the 

transition between states is controlled by a coupling parameter 𝜆 

Δ𝐺(𝐴 → 𝐵) = ∫
𝛿𝐺(𝜆)

𝛿𝜆
d𝜆 = ∫ 〈

𝛿𝑈(𝜆)

𝛿𝜆
〉 d𝜆 - Equation (10) 

where the angular brackets represent an ensemble average and we assume that that the kinetic 

component of the partition function is unperturbed. If 𝑈 varies linearly with respect to lambda i.e. 

𝑈(𝜆) = 𝑈𝐴(1 − 𝜆) + 𝑈𝐵(𝜆), Equation 10 becomes 

Δ𝐺(𝐴 → 𝐵) = ∫〈𝑈𝐵(𝜆) − 𝑈𝐴(𝜆)〉d𝜆 - Equation (11) 

For calculating solution chemical potentials, the solute molecule starts in an ideal state, and is 

gradually grown within the solution using the 𝜆 parameter to switch on the interactions between 

the emerging solute molecule and the rest of the system27.  

 

Chemical potential of solid 

The chemical potential of solid urea was calculated using the Einstein molecule method. The 

reference state in this calculation is an ideal Einstein lattice of (rigid) urea molecules, which are 

restrained to their lattice sites by harmonic potentials of the form  

𝑈𝑝𝑜𝑠 = ∑ 𝑘(𝒓𝑖,𝐶 − 𝒓 𝑖,𝐶,0)
2𝑁𝑠𝑜𝑙𝑖𝑑

𝑖  - Equation (12) 

where 𝑁𝑠𝑜𝑙𝑖𝑑 is the number of molecules in the solid, k is the spring stiffness, and 𝒓𝑖,𝐶 and 𝒓𝑖,𝐶,0 

are the instantaneous and mean lattice positions of the carbon atom of urea molecule 𝑖 , 

respectively. Here the restraints are attached to the central carbon atom as a good approximation 
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of the molecule’s centre of mass. To prevent diffusion of the centre of mass of the system, the 

position of one of the carbon atoms in the system is kept fixed. The chemical potential of this 

Einstein molecule reference state is given by28  

𝛽𝜇0 =
3

2
(1 −

1

𝑁𝑠𝑜𝑙𝑖𝑑
) ln

𝛽𝑘

𝜋
+

1

𝑁𝑠𝑜𝑙𝑖𝑑
ln

𝑁𝑠𝑜𝑙𝑖𝑑

𝑉𝑠𝑜𝑙𝑖𝑑
 - Equation (13) 

where 𝑉𝑠𝑜𝑙𝑖𝑑 is the volume of the solid. The de Broglie wavelength terms were again chosen here 

to be unity as they are common to both the solid and the solute in solution. 

The above reference state is transformed into the full, unrestrained crystal by three successive 

steps, such that the total chemical potential of the crystal is given by 

𝜇𝑠𝑜𝑙𝑖𝑑 = 𝜇0 + Δ𝜇1 + Δ𝜇2 + Δ𝜇3 + 𝜇𝑠𝑦𝑚 - Equation (14) 

The first stage is the chemical potential difference for restraining the orientation of the urea 

molecules in the Einstein molecule lattice using two additional tethers per urea molecule  

𝑈𝑜𝑟 = ∑ 𝑘(𝒓𝑖 − 𝒓𝑖,0)
2𝑁𝑜𝑟

𝑖  - Equation (15) 

where 𝑁𝑜𝑟  is the number of orientational restraints introduced. In the case of urea, these 

restraints are attached to each of the nitrogen atoms. The change in the chemical potential 

associated with this step is then calculated by thermodynamic integration (Equation 10) as outlined 

earlier. The restraint spring constant was scaled directly yielding  

Δ𝜇1 =
1

𝑁𝑠𝑜𝑙𝑖𝑑
∫ 〈∑ 𝑘(𝒓𝑖 − 𝒓𝑖,0)

2𝑁𝑜𝑟
𝑖 〉𝑘  d𝑘

𝑘

0
 - Equation (16) 

We introduced an extra constant c and changed the limits of the integral to improve the 

accuracy as proposed by others6,29  

Δ𝜇1 =
1

𝑁𝑠𝑜𝑙𝑖𝑑
∫ 〈∑ (𝒓𝑖 − 𝒓𝑖,0)

2𝑁𝑜𝑟
𝑖 〉𝑘 (𝑘 + 𝑐) d ln(𝑘 + 𝑐)

ln(𝑘+𝑐)

ln(𝑐)
 - Equation (17) 
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In the second stage we introduce the intermolecular interactions. The difference between the 

chemical potential of the ideal, non-interacting crystal and the fully interacting one (Δ𝜇2) was 

calculated by free energy perturbation  

βΔ𝜇2 =
1

𝑁𝑠𝑜𝑙𝑖𝑑
(𝛽𝑈𝑙𝑎𝑡𝑡𝑖𝑐𝑒 − ln〈𝑒−𝛽(𝑈𝑠𝑜𝑙𝑖𝑑−𝑈𝑙𝑎𝑡𝑡𝑖𝑐𝑒)〉) - Equation (18) 

where the average is evaluated over configurations sampled employing the ideal potential energy 

function (i.e. one that only evaluates the tethered and intramolecular interactions), 𝑈𝑠𝑜𝑙𝑖𝑑 is the 

instantaneous energy of the solid evaluated using the full system potential energy function and 

𝑈𝑙𝑎𝑡𝑡𝑖𝑐𝑒 is the energy of the perfect lattice. The final step involved removing all restraints from the 

system, whilst calculating the corresponding change in chemical potential Δ𝜇3 by thermodynamic 

integration 

Δ𝜇3 = −
1

𝑁𝑠𝑜𝑙𝑖𝑑
∫ 〈∑ (𝒓𝑖 − 𝒓𝑖,0)

2𝑁𝑡𝑒𝑡ℎ𝑒𝑟𝑠
𝑖 〉𝑘 (𝑘 + 𝑐) d ln(𝑘 + 𝑐)

ln(𝑘+𝑐)

ln(𝑐)
 - Equation (19) 

where 𝑁𝑡𝑒𝑡ℎ𝑒𝑟𝑠  is the total number of restrained atoms. The last term in Equation 14, 𝜇𝑠𝑦𝑚 , 

accounts for the orientation field not having the same symmetry as the molecule of interest5. As 

urea has a point group of 𝐶2𝑣, β Δ𝜇𝑠𝑦𝑚 = − ln 2. 

3. TECHNICAL DETAILS 

The solubility of urea in methanol, and urea in water was calculated as a function of temperature 

using the above methodology. The methanol solubility calculations employed 125 methanol and 

between 1 and 20 urea molecules, spanning a concentration range of ~0.25-5.00 mol kg-1. For the 

aqueous solubility, we employed 216 water molecules and between 1 and 20 urea molecules, 

spanning a concentration range of ~0.26-5.14 mol kg-1. The urea, methanol and water molecules 

were modelled using the Amber GAFF force field30 and the TIP3P water model31. Two sets of 

partial charges were employed for the urea molecule – the Caldwell set originally shipped with 
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Amber30 (referred to as set A), and a reportedly improved set32 fitted against properties of solid 

urea (referred to as set B). Both charge sets are given in Table 1. 

Table 1. The Caldwell (set A) and improved charges (set B) employed for urea. 

GAFF Atom Type Set A / e Set B / e 

o -0.612 -0.660 

n -0.924 -0.888 

c 0.880 0.884 

hn 0.395 0.388 

 

The urea molecule was treated as a rigid body, an approximation that enables more efficient 

sampling of phase space without markedly compromising the accuracy of the calculations. This is 

a fair assumption given that the urea molecule is a relatively rigid molecule. The geometry of the 

rigid urea molecules using charge sets A and B was constructed using the bonded parameters 

provided by GAFF30 and those provided in ref 29 respectively. All van der Waals interactions 

where truncated after 0.85 nm and the standard long-range correction applied, while Ewald 

summations with a direct space cut off of 0.85 nm and a precision of 1.0e-5 were employed for the 

electrostatic interactions. For the density of states calculations, an energy bin size of 10 kJ mol-1 

was used, while a logged volume bin size of 0.008 and 0.011 was used for the methanol and 

aqueous systems respectively. The Wang-Landau modification factor was initially set to 1.0 and 

was allowed to decrease to 1.907x10-6 at which point the results were well converged. For the 

thermodynamic integration calculations, a general scheme utilising soft core potentials22 was 

followed27. A 16-point gaussian quadrature was employed to evaluate both the van der Waal and 

Coulomb integrals. All solution-phase calculations were performed using an in-house Monte Carlo 

simulation code. 

The chemical potential of the solid phase of urea was calculated at 298, 308, 318, 328 K using a 

simulation cell comprising 4 x 4 x 4 unit cells with periodic boundaries. The structure of crystalline 
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urea Form I was taken from the Cambridge Structural Database33 (reference code UREAXX29). 

Equilibration of the crystal at each temperature of interest was performed using the DLPOLY 

4.0734 molecular dynamics (MD) simulation code in the constant stress ensemble (NT) in which 

the cell vectors and angles are allowed to vary. These simulations were run for 100,000 steps with 

a timestep of 5 fs using the Nose-Hoover thermostat (coupling constant T = 0.1ps) and barostat 

(coupling constant p = 1.0ps). In each case, the simulation box angles, while permitted to change, 

remained orthogonal to a good degree. The Einstein-crystal thermodynamic integration 

simulations were performed using our in-house Monte Carlo code. The starting configuration for 

the Einstein crystal calculations was a perfect lattice constructed using the equilibrated cell 

dimensions for each respective temperature. Spring constants of 8000 kT Å-2 and 10000 kT Å-2 

where used for calculations employing charge models A and B respectively. The integrals in 

Equations 17 and 19 were evaluated using a 32- and 16- point Gauss-Lengendre quadrature 

respectively.  

 

4. RESULTS AND DISCUSSION 

The density of states of urea in water, and of urea in methanol were calculated for a range of 

concentrations. These were then employed to calculate the solute free energy (Equation 6), and 

hence the solution chemical potentials, by employing the fitting procedure outlined in Section 2. 

The coefficients produced by the fitting procedure are presented in Tables 2 and 3.  

Table 2. The coefficients calculated by fitting the excess free energies (calculated by the DOS 

approach) of urea in water to Equation 8 for charge sets A and B. 

 𝒂𝟎 / kJ mol-1 𝒂𝟏 / kJ mol-1 𝒂𝟐 / kJ mol-1 

𝑻 A B A B A B 

298 -0.055 (5) -0.045 (2) -52.89 (11) -62.15 (5) -328.82 (45) -147.37 (22) 
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308 -0.054 (5) -0.043 (2) -52.08 (12) -61.26 (5) -392.45 (49) -213.21 (22) 

318 -0.054 (6) -0.041 (3) -51.28 (13) -60.37 (5) -455.67 (54) -278.37 (22) 

328 -0.053 (7) -0.041 (3) -50.49 (14) -59.49 (6) -518.31 (59) -343.12 (24) 

 

Table 3. The coefficients calculated by fitting the excess free energies (calculated by the DOS 

approach) of urea in methanol to Equation 8 for charge sets A and B. 

 𝒂𝟎 / kJ mol-1 𝒂𝟏 / kJ mol-1 𝒂𝟐 / kJ mol-1 

𝑻 A B A B A B 

298 -0.049 (3) -0.053 (11) -53.80 (6) -62.16 (23) -305.57 (23) -136.03 (96) 

308 -0.050 (3) -0.052 (10) -52.77 (7) -61.11 (22) -372.22 (28) -204.76 (90) 

318 -0.051 (4) -0.051 (10) -51.77 (8) -60.06 (21) -438.34 (35) -272.43 (87) 

328 -0.052 (4) -0.052 (10) -50.81 (10) -59.02 (21) -503.90 (40) -339.48 (87) 

 

The chemical potentials of urea in methanol and in water as a function of urea concentration at 

298 K are tabulated in Tables 4 and 5 and shown graphically in Figure 2. In addition, the chemical 

potentials of both systems were determined by thermodynamic integration and are also shown in 

Figure 2.  

Table 4. The ideal, excess and total solution chemical potentials of urea in water as a function of 

increasing concentration using charge sets A and B calculated at 298K. The slight difference in 

𝜇𝑖𝑑 arises from models A and B having slightly different volumes. 

 
𝝁𝒊𝒅 / kJ mol-1 𝝁𝒆𝒙 / kJ mol-1 𝝁 / kJ mol-1 

𝑵𝒔𝒐𝒍𝒖𝒕𝒆 A B A B A B 

1 -21.79 -21.79 -53.00 (11) -62.24 (5) -74.79 (11) -84.03 (5) 

3 -19.12 -19.13 -53.22 (11) -62.42 (5) -72.34 (11) -81.54 (5) 

7 -17.12 -17.12 -53.66 (13) -62.78 (6) -70.78 (13) -79.90 (6) 

10 -16.31 -16.31 -53.98 (15) -63.04 (7) -70.29 (15) -79.35 (7) 

15 -15.42 -15.42 -54.53 (19) -63.49 (9) -69.95 (19) -78.92 (9) 

20 -14.82 -14.82 -55.08 (23) -63.94 (11) -69.90 (23) -78.76 (11) 
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Table 5. The ideal, excess and total solution chemical potentials of urea in methanol as a function 

of increasing concentration using charge sets A and B calculated at 298K. The slight difference in 

𝜇𝑖𝑑 arises from models A and B having slightly different volumes. 

 
𝝁𝒊𝒅 / kJ mol-1 𝝁𝒆𝒙 / kJ mol-1 𝝁 / kJ mol-1 

𝑵𝒔𝒐𝒍𝒖𝒕𝒆 A B A B A B 

1 -22.34 -22.34 -53.90 (6) -62.27 (23) -76.24 (6) -84.60 (23) 

3 -19.65 -19.66 -54.09 (6) -62.48 (24) -73.75 (6) -82.13 (24) 

7 -17.61 -17.62 -54.49 (7) -62.9 (28) -72.10 (7) -80.53 (28) 

10 -16.78 -16.79 -54.78 (8) -63.22 (32) -71.56 (8) -80.01 (32) 

15 -15.86 -15.87 -55.27 (10) -63.75 (40) -71.13 (10) -79.62 (40) 

20 -15.23 -15.24 -55.76 (12) -64.28 (49) -71.00 (12) -79.52 (49) 

 

As can be seen in Figure 2, there is an excellent agreement between the DOS-based calculation 

and the TI methodology for both solvent systems and both charge sets, within the uncertainties of 

each method. This good agreement gives confidence that the DOS approach is able to accurately 

calculate the chemical potential of molecular systems, given that it was first tested on the simple 

ionic system NaCl23.  Although urea is a relatively small molecule, the vapourisation pathway 

employed in the DOS approach appears to transfer well to molecules, without any modification. 

As previously anticipated, our current experience suggests that the DOS approach should scale 

further to more complex and flexible organic molecules without any significant technical 

difficulties.   
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Figure 2. Chemical potential (total) of urea in water using charge sets A (top left) and B (top 

right), and of urea in methanol using charge sets A (bottom left) and B (bottom right) as a function 

of urea mole fraction (𝑥𝑈𝑟𝑒𝑎). DOS results are plotted as green data points, whilst thermodynamic 

integration results are plotted as red crosses. The dashed horizontal line represents the chemical 

potential of the solid phase at 298 K, calculated using the Einstein molecule method. 

 

For both solvent systems, the solution chemical potentials as a function of urea concentration were 

further calculated at 308 K, 318 K and 328 K by reweighting the DOS used in the 298 K 

calculations (Figure 3). As would be expected, the chemical potential is seen to increase smoothly 

as a function of temperature for all systems considered. 
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Figure 3. The chemical potentials of urea in water using charge sets A (top left) and B (top right) 

and of urea in methanol using charge sets A (bottom left) and B (bottom right) as a function of 

urea mole fraction (𝑥𝑈𝑟𝑒𝑎). 

 

The chemical potential of the solid phase calculated using the Einstein molecule method as a 

function of temperature is presented in Tables 6 (charge set A) and 7 (charge set B).  

 

Table 6. The individual components of the total solid phase chemical potential as a function 

temperature calculated by the Einstein molecule method for charge set A. 

𝑻 𝜷𝝁𝒔𝒚𝒎 𝜷𝝁𝟎 𝜷𝚫𝝁𝟏 𝛃𝚫𝝁𝟐 𝛃𝚫𝝁𝟑 𝜷𝝁𝒔𝒐𝒍𝒊𝒅 

298 -1.717 28.836 45.289 -103.255 -42.587 (4) -73.435 (4) 
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308 -1.775 29.803 46.805 -103.204 -44.332 (5) -72.703 (5) 

318 -1.833 30.771 48.326 -103.137 -46.101 (5) -71.974 (5) 

328 -1.890 31.738 49.841 -103.069 -47.871 (5) -71.251 (5) 

 

Table 7. The individual components of the total solid phase free energies as a function of 

temperature calculated by the Einstein molecule method for charge set B. 

𝑻 𝜷𝝁𝒔𝒚𝒎 𝜷𝝁𝟎 𝜷𝚫𝝁𝟏 𝛃𝚫𝝁𝟐 𝛃𝚫𝝁𝟑 𝜷𝝁𝒔𝒐𝒍𝒊𝒅 

298 -1.717 29.658 46.313 -113.245 -43.425 (5) -82.416 (5) 

308 -1.775 30.653 47.866 -113.222 -45.161 (4) -81.638 (4) 

318 -1.833 31.649 49.417 -113.170 -46.940 (4) -80.877 (4) 

328 -1.890 32.644 50.966 -113.124 -48.713 (5) -80.118 (5) 

 

The solubility at each temperature was then determined by finding the point of intersection 

between the solid and solution curves. Rather than plotting the solid and solution chemical 

potential curves and interpolating to where they intersect by eye, we have instead fitted polynomial 

equations to these terms. Given that the excess solution chemical potential is already expressed as 

a polynomial (Equation 8) and the solid chemical potential is constant, only the ideal part (Equation 

9) must be fit. Further, as it is only the volume in Equation 9 that is unknown as a function of 

solute concentration, and the volume varies much more slowly than the ideal chemical potential, 

only the volume was fit to a polynomial of the form 

𝑉𝑠𝑜𝑙 = 𝑏0𝑁𝑠𝑜𝑙
2 + 𝑏1𝑁𝑠𝑜𝑙 + 𝑏2 - Equation (20) 

where 𝑏0, 𝑏1 and 𝑏2 are coefficients determined from least squares fitting (Tables 8 and 9).  

Table 8. The coefficients calculated by fitting the solution phase volumes (calculated from the 

DOS) of urea in water, to Equation 20 for charge sets A and B. 

 𝒃𝟎 / Å3 𝒃𝟏 / Å3 𝒃𝟐 / Å3 

𝑻 A B A B A B 

298 0 0 68.98 (20) 69.08 (50) 6534 (2) 6541 (6) 

308 0 0 69.47 (11) 69.56 (26) 6593 (1) 6595 (3) 
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318 0 0 69.88 (12) 70.06 (15) 6658 (1) 6659 (2) 

328 0 0 70.22 (17) 70.49 (11) 6729 (2) 6727 (1) 

 

Table 9. The coefficients calculated by fitting the solution phase volumes (calculated from the 

DOS) of urea in methanol to Equation 20 for charge sets A and B.  

 𝒃𝟎 / Å3 𝒃𝟏 / Å3 𝒃𝟐 / Å3 

𝑻 A B A B A B 

298 0.30 (4) 0.14 (8) 53 (1) 58 (2) 8187 (4) 8181 (7) 

308 0.31 (7) 0.22 (2) 53 (1) 56    8295 (6) 8287 (2) 

318 0.27 (7) 0.29 (6) 54 (1) 55 (1) 8404 (6) 8403 (5) 

328 0.20 (6) 0.25 (7) 55 (1) 55 (1) 8518 (5) 8517 (6) 

 

Combining Equations 1, 9 and 20 yields 

2𝑎0𝑁𝑠𝑜𝑙 + 𝑎1 +
1

𝛽
ln

𝑁𝑠𝑜𝑙

𝑏0𝑁𝑠𝑜𝑙
2 +𝑏1𝑁𝑠𝑜𝑙+𝑏2

= 𝜇𝑠𝑜𝑙𝑖𝑑 - Equation (21) 

which can be readily solved for the solubility concentration (𝑁𝑠𝑜𝑙) by applying the Newton—

Raphson algorithm. The solubilities calculated by this approach are tabulated in Table 10 and 

shown graphically in Figure 4. 

 

Figure 4. The solubility of urea in methanol (left) and in water (right) as a function of temperature 

using charge sets A (green points) and B (red points). 
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Table 10. The solubility of urea in water and urea in methanol for the two employed charge sets 

as a function of temperature calculated by the DOS approach. 

 Water / mol kg-1 Methanol / mol kg-1 

𝑻 A B A B 

298 0.46 (3) 0.50 (1) 0.85 (3) 0.62 (9) 

308 0.61 (4) 0.66 (2) 1.02 (5) 0.77 (11) 

318 0.80 (6) 0.83 (3) 1.24 (8) 0.92 (13) 

328 1.04 (10) 1.04 (4) 1.51 (12) 1.10 (17) 

 

For both solvent systems and for both charge sets, the calculated solubility of the model is 

markedly lower than experiment for all temperatures. The predicted solubility of urea in methanol 

at 298K is 0.85 mol kg-1 and 0.62 mol kg-1 for charge sets A and B respectively, which is roughly 

5 fold lower than the experimental solubility of 4.01 mol kg-1 35. Similarly, the solubility of urea 

in water at 298K was calculated to be 0.46 mol kg-1 and 0.50 mol kg-1 for charge sets A and B 

respectively, which is close to 45 fold lower than the experimental solubility of 20.15 mol kg-1 35. 

The solubility of urea in water was little affected on changing the partial atomic charges of urea. 

In contrast, the solubility in methanol was roughly 1.5X larger when using charge set A compared 

to set B. It is unclear why the change in charge sets improves the solubility in methanol relative to 

experiment, and yet does nothing in water. Further, it is notable that the charge set that was 

explicitly derived to better reproduce the structure of solid urea yielded the least accurate set of 

solubilities.  

The predicted solubility of urea as a function of temperature for both solvent systems increases 

smoothly as a function of temperature (Figure 4), as is in line with experiment35. We investigated 

whether relative trends in solubility as a function of temperature (rather than absolute values) 

might be a decent match to the relative trends observed experimentally. The relative solubility was 

calculated as 𝑆𝑟𝑎𝑡𝑖𝑜(𝑇) = 𝑆(𝑇) 𝑆298⁄  where 𝑆298 is the solubility at 298 K, for both the solubilities 
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calculated here and for an experimental data set35 (Figure 5). If the trend in relative solubilities is 

accurately captured by the model, plots of the calculated and experimental ratios are expected to 

coincide. It can be seen that the curves Figure 5 are indeed somewhat similar, although not quite 

coincidental. The curves deviate by between 0.2-0.4% (which is significantly better than the 45-

fold difference in the absolute aqueous solubilities), thus suggesting that the relative solubilities 

offer a better agreement than the absolute values. This opens the possibility that while the currently 

available models may not be able to predict solubilities in absolute terms, they may have utility at 

least in calculating trends in solubilities. 

What might be the source of error for the gross disparity between predicted and experimental 

solubility values? The solution phase chemical potentials were calculated by both the DOS 

approach and the TI methodology, both of which were found to be in excellent agreement (to 

within the statistical uncertainties of each method). The solid chemical potentials were calculated 

using the established Einstein molecule method that we also applied to methanol and sodium 

chloride crystals, and reproduced results that others have reported5. It thus appears that the model 

interaction parameters may not be accurate enough. A number of other recent solubility prediction 

studies have published predicted solubilities differing markedly from experimental values (the 

most frequently reported being NaCl, whose calculated solubility is of the order of 2-10 fold less 

than experiment36) and attribute the disparity to limitations in the existing forcefield parameters 

and possibly functional form14,37. It appears that whilst current parameters may be able to 

reasonably reproduce other aspects of phase behaviour such as melting points13,36–38, solid-state 

phase transitions39, and interfacial properties40,41, solubility prediction is clearly challenging 

current parameters. In general, the observed trend in the solubility predictions is that solubility is 

under-predicted suggesting something systematic may be missing from the forcefields. Perhaps 
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this challenging behaviour should be expected as the solubility predictions probe the second 

derivatives of free energy, the first derivative being the chemical potential itself (variation in free 

energy as a function of number molecules) and the second derivative being the variation in 

chemical potential as function of concentration. 

 

Figure 5. Predicted (blue curve: charge set  A; black curve: charge set B) and experimental35 

(green curve) reduced solubilities (relative to the respective solubility at 298K) as a function of 

temperature for urea in methanol (left) and in water (right). 

 

These results highlight the critical need to have a robust and efficient method for predicting 

solubility from molecular simulation, as such a method will be invaluable in not only testing, but 

also helping to optimise existing force fields. A higher quality of force field is clearly required if 

solubility predictions from classical molecular simulations are to be routinely performed (or more 

importantly, trusted). This must be one of the major focuses of future work. The DOS method 

proposed here is robust and is expected to scale to larger and more flexible molecules without 

much technical challenge.  Should there be any difficulties it could be combined with 

configurational bias Monte Carlo simulation moves42, which would enhance sampling of the 

internal degrees of freedom of flexible molecules. 
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A key feature of the proposed method is its marked efficiency relative to both the (our) previously 

reported solubility prediction using density of states approach via co-existence distributions and 

well-established methods such as exponential averaging and thermodynamic integration. With 

regards to the comparison with established methods, the density of state methods have the generic 

advantage of being able to access chemical potentials over a range of temperatures and pressures 

from a single DOS calculation, whereas established methods would need the simulations to be 

repeated for each new condition of interest. This is of particular importance to those application 

domains whereby the solubility profile of a solute must be known for multiple temperatures and 

humidity’s. A prime example is in drug development whereby pharmaceutical molecules are 

typically developed at ambient lab conditions (25 C) but are exposed to elevated temperatures 

when stored in warmer climates, and when ingested into the body (37 C) – the solubility over the 

entirety of such a range would be readily accessible from a single DOS calculation, whereas 

traditional techniques could require at least twice as many calculations.  

With the DOS-based co-existence distribution method (our previous study), it is necessary to 

approximately locate the co-existence distribution in solute concentration (Nsol)-space and then 

sample the DOS at all concentrations that have a non-zero contribution to the co-existence 

distribution. With the current (DOS-based chemical potential) approach, the number of free energy 

determinations need not be extensive as we fit an analytical function to determine the chemical 

potential as a function of concentration. For example, in the co-existence distribution study on 

NaCl, we carried out simulations at 11 different solute concentrations, with prior knowledge of the 

NaCl predicted solubility using the selected potentials. For the current urea solubility study, we 

were able to cover the appropriate solubility range (with decent accuracy) with simulations  at only 

6 solute concentrations.  
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In conclusion, we have demonstrated that the chemical potentials route from DOS is significantly 

more efficient for predicting solubility than via DOS-based co-existence distributions. This is a 

further enhancement in efficiency for the DOS-based solubility prediction approach. Furthermore, 

we were able to predict the solubilities of urea in methanol and of urea in water as a function of 

temperature from knowledge of a single density of states surface, the latter being estimated from 

a relatively modest number of simulations compared to what would be required for more 

traditional approaches. Both accuracy and precision have been shown to be comparable with more 

established methods such as thermodynamic integration. In common with other recent studies, the 

predicted solubilities differ markedly from experimental values, reflecting limitations of current 

forcefields.  
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(9)  Moučka, F.; Lísal, M.; Smith, W. R. Molecular Simulation of Aqueous Electrolyte 

Solubility. 3. Alkali-Halide Salts and Their Mixtures in Water and in Hydrochloric Acid. 

J. Phys. Chem. B 2012, 116 (18), 5468–5478. 

(10)  Aragones, J. L.; Sanz, E.; Vega, C. Solubility of NaCl in Water by Molecular Simulation 

Revisited. J. Chem. Phys. 2012, 136 (136), 244508. 

(11)  Straatsma, T. P.; Berendsen, H. J. C. Free Energy of Ionic Hydration: Analysis of a 

Thermodynamic Integration Technique to Evaluate Free Energy Differences by Molecular 

Dynamics Simulations. J. Chem. Phys. 1988, 89 (9), 5876–5886. 

(12)  Straatsma, T. P.; McCammon, J. A. Computational Alchemy. Annu. Rev. Phys. Chem. 

1992, 43 (1), 407–435. 

(13)  Li, L.; Totton, T.; Frenkel, D. Computational Methodology for Solubility Prediction: 

Application to the Sparingly Soluble Solutes. J. Chem. Phys. 2017, 146 (21), 214110. 

(14)  Bellucci, M. A.; Gobbo, G.; Wijethunga, T. K.; Ciccotti, G.; Trout, B. L. Solubility of 

Paracetamol in Ethanol by Molecular Dynamics Using the Extended Einstein Crystal 

Method and Experiments. J. Chem. Phys. 2019, 150 (9), 094107. 

(15)  Wand, C. R.; Fayaz-Torshizi, M.; Jiménez-Serratos, G.; Müller, E. A.; Frenkel, D. 

Solubilities of Pyrene in Organic Solvents: Comparison between Chemical Potential 

Calculations Using a Cavity-Based Method and Direct Coexistence Simulations. J. Chem. 

Thermodyn. 2019, 131, 620–629. 

(16)  Kirkwood, J. G. Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 1935, 3 (5), 300–

313. 

(17)  Zwanzig, R. W. High‐Temperature Equation of State by a Perturbation Method. I. 

Nonpolar Gases. J. Chem. Phys. 1954, 22 (8), 1420–1426. 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
17

28
1



28 

 

(18)  Chipot, C.; Pohorille, A. Calculating Free Energy Differences Using Perturbation Theory; 

Springer, Berlin, Heidelberg, 2007; pp 33–75. 

(19)  Cabeza de Vaca, I.; Zarzuela, R.; Tirado-Rives, J.; Jorgensen, W. L. Robust FEP Protocols 

for Creating Molecules in Solution. J. Chem. Theory Comput. 2019, acs.jctc.9b00213. 

(20)  Lyubartsev, A. P.; Martsinovski, A. A.; Shevkunov, S. V.; Vorontsov‐Velyaminov, P. N. 

New Approach to Monte Carlo Calculation of the Free Energy: Method of Expanded 

Ensembles. J. Chem. Phys. 1992, 96 (3), 1776–1783. 

(21)  Lyubartsev, A. P.; Laaksonen, A.; Vorontsov-Velyaminov, P. N. Free Energy Calculations 

for Lennard-Jones Systems and Water Using the Expanded Ensemble Method A Monte 

Carlo and Molecular Dynamics Simulation Study. Mol. Phys. 1994, 82 (3), 455–471. 

(22)  Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van Gunsteren, W. F. 

Avoiding Singularities and Numerical Instabilities in Free Energy Calculations Based on 

Molecular Simulations. Chem. Phys. Lett. 1994, 222 (6), 529–539. 

(23)  Boothroyd, S.; Kerridge, A.; Broo, A.; Buttar, D.; Anwar, J. Solubility Prediction from 

First Principles: A Density of States Approach. Phys. Chem. Chem. Phys. 2018, 20 (32), 

20981–20987. 

(24)  Wang, F.; Landau, D. Efficient, Multiple-Range Random Walk Algorithm to Calculate the 

Density of States. Phys. Rev. Lett. 2001, 86 (10), 2050–2053. 

(25)  Shell, M. S.; Debenedetti, P. G.; Panagiotopoulos, A. Z. Generalization of the Wang-

Landau Method for off-Lattice Simulations. Phys. Rev. E 2002, 66 (5 Pt 2), 056703–

056709. 

(26)  Boothroyd, S.; Kerridge, A.; Broo, A.; Buttar, D.; Anwar, J. Why Do Some Molecules 

Form Hydrates or Solvates? Cryst. Growth Des. 2018, 18 (3), 1903–1908. 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
17

28
1



29 

 

(27)  Shirts, M. R.; Pande, V. S. Solvation Free Energies of Amino Acid Side Chain Analogs 

for Common Molecular Mechanics Water Models. J. Chem. Phys. 2005, 122, 134508. 

(28)  Aragones, J. L.; Valeriani, C.; Vega, C. Note: Free Energy Calculations for Atomic Solids 

through the Einstein Crystal/Molecule Methodology Using GROMACS and LAMMPS. J. 

Chem. Phys. 2012, 137 (14), 146101. 

(29)  D. Frenkel; B. Smit. Understanding Molecular Simulation: From Algorithms to 

Applications, 2nd ed.; Academic Press: London, 2002. 

(30)  Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and 

Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157–1174. 

(31)  Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. 

Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 

1983, 79 (2), 926–935. 

(32)  Ozpinar, G. A.; Peukert, W.; Clark, T. An Improved Generalized AMBER Force Field 

(GAFF) for Urea. J. Mol. Model. 2010, 16 (9), 1427–1440. 

(33)  Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C.; IUCr. The Cambridge Structural 

Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016, 72 (2), 171–179. 

(34)  Todorov, I. T.; Smith, W.; Trachenko, K.; Dove, M. T. DL_POLY_3: New Dimensions in 

Molecular Dynamics Simulations via Massive Parallelism. J. Mater. Chem. 2006, 16 (20), 

1911–1918. 

(35)  Lee, F.-M.; Lahti, L. E. Solubility of Urea in Water-Alcohol Mixtures. J. Chem. Eng. 

Data 1972, 17 (3), 304–306. 

(36)  Benavides, A. L.; Aragones, J. L.; Vega, C. Consensus on the Solubility of NaCl in Water 

from Computer Simulations Using the Chemical Potential Route. J. Chem. Phys. 2016, 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
17

28
1



30 

 

144 (12), 124504. 

(37)  Li, L.; Totton, T.; Frenkel, D. Computational Methodology for Solubility Prediction: 

Application to Sparingly Soluble Organic/Inorganic Materials. J. Chem. Phys. 2018, 149 

(5), 054102. 

(38)  Anwar, J.; Frenkel, D.; Noro, M. G. Calculation of the Melting Point of NaCl by 

Molecular Simulation. J. Chem. Phys. 2003, 118 (2), 728. 

(39)  Anwar, J.; Zahn, D. Polymorphic Phase Transitions: Macroscopic Theory and Molecular 

Simulation. Adv. Drug Deliv. Rev. 2017, 117, 47–70. 

(40)  Handel, R.; Davidchack, R. L.; Anwar, J.; Brukhno, A. Direct Calculation of Solid-Liquid 

Interfacial Free Energy for Molecular Systems: TIP4P Ice-Water Interface. Phys. Rev. 

Lett. 2008, 100 (3), 036104. 

(41)  Davidchack, R. L.; Handel, R.; Anwar, J.; Brukhno, A. V. Ice Ih-Water Interfacial Free 

Energy of Simple Water Models with Full Electrostatic Interactions. J. Chem. Theory 

Comput. 2012, 8 (7), 2383–2390. 

(42)  Mooij, G. C. A. M.; Frenkel, D.; Smit, B. Direct Simulation of Phase Equilibria of Chain 

Molecules. J. Phys. Condens. Matter 1992, 4 (16), L255–L259. 

 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
17

28
1


	1
	2
	3
	4
	5
	Manuscript File

