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Abstract

To solve a real-world problem, the modeler usually needs to make a trade-off between
model complexity and usefulness. This is also true for robust optimization, where a wide
range of models for uncertainty, so-called uncertainty sets, have been proposed. However,
while these sets have been mainly studied from a theoretical perspective, there is little
research comparing different sets regarding their usefulness for a real-world problem.

In this paper we consider a network design problem in a telecommunications context.
We need to invest into the infrastructure, such that there is sufficient capacity for future
demand which is not known with certainty. There is a penalty for an unsatisfied realized
demand, which needs to be outsourced. We consider three approaches to model demand:
using a discrete uncertainty set, using a polyhedral uncertainty set, and using the mean of
a per-commodity fitted zero-inflated uniform distribution. While the first two models are
used as part of a robust optimization setting, the last model represents a simple stochastic
optimization setting. We compare these approaches on an efficiency frontier real-world
data taken from the online library SNDlib and observe that, contrary to current research
trends, robust optimization using the polyhedral uncertainty set may result in less efficient
solutions.

Keywords: network design; robust optimization; optimization in telecommunications

1 Introduction

Network design models have found wide application in the planning, design and opera-
tions management of transportation, power & energy distribution, supply chain logistic and
telecommunications networks. Usually, they are based on mixed-integer programming mod-
els, and many such models have been developed over the decades for network design and
expansion problems, see, e.g., Magnanti and Wong (1984); Minoux (1989); Bertsekas (1998).

In telecommunications for instance, network design models can be used to curb conges-
tion and to provide an acceptable quality of service to the subscribers. Effort to provide an
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acceptable service has resulted in capital expenditure of billions of USD in global telecoms in-
vestment. Optimization of investments has thus attained a key strategic role in this industry.
Moreover, these decisions need to be made well ahead of time based on a forecast of future
traffic demand.

Unfortunately, traffic demand has proven to be difficult to predict accurately. In order to
factor in this uncertainty and design a network that is immune to traffic variability, robust op-
timization approaches have been proposed. For this purpose, a number of uncertainty models
have already been developed and investigated (see Goerigk and Schöbel (2016); Ben-Tal et al.
(2009); Bertsimas et al. (2011)). The drawback of classic approaches, however, is that the un-
certainty set is assumed to be given, i.e., the decision maker can advise us how the uncertainty
is shaped. Moreover, an inappropriate choice of uncertainty set may result in models that are
too conservative or in some cases computationally intractable. As the decision maker cannot
be expected to make this choice in practice, data-driven and learning approaches have been
recently proposed (see Bertsimas et al. (2017); Chassein et al. (2019)).

To the best of our knowledge, we follow this approach for the first time for network design
problems, by comparing which uncertainty set actually fits real-world data. We compare two
robust optimization approaches for a network capacity expansion model with outsourceable
demand (see, e.g., Bertsekas (1998); Bektaş et al. (2010)). In this setting, we need to invest into
the network infrastructure now, so that each commodity can be routed to satisfy its uncertain
demand later. Demand which cannot be satisfied is outsourced, which is modeled through a
linear penalty on its amount.

The two approaches under consideration are (1) a discrete uncertainty set which assumes
that all demands are in closed form; and (2) a polyhedral set with wider range of possible
scenarios which results in a heuristic mix-integer program to solve the resulting robust prob-
lem. These two are compared on real-world data taken from SNDlib and also compared with
performance of a third model outside the robust framework, a simple stochastic optimization
approach.

The rest of this paper is organized as follows. Section 2 presents a literature review of
related research. In Section 3, we introduce the problem description of robust network capacity
expansion with outsourcing and mathematical models for both the discrete and polyhedral
uncertainty sets with detailed construction of the robust counterparts. Experimental results
and main findings using data from the SNDlib (see Orlowski et al. (2010)) are discussed in
Section 4. Finally, Section 5 concludes our work and points out future research directions.

2 Literature Review

The study of uncertainties in decision problems has resulted in two broad areas of research,
namely stochastic (see, e.g., Birge and Louveaux (2011)) and robust (see, e.g., Ben-Tal et al.
(2009)) optimization frameworks. While the stochastic approach usually assumes that a proba-
bility distribution of the uncertain data is known with precision, the robust approach assumes
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that the uncertain data lies within a predetermined set. The renewed interest in the latter can
be attributed to the works of Ben-Tal and Nemirovski (1999) and Ghaoui et al. (1998) with
many other collaborators.

The two frameworks also have a dynamic context, where a part of the decision has to be
made after the realization of the uncertain data. This is known as two-stage stochastic and
robust optimization. Depending on the context, two-stage robust problems are also known
as adjustable robust counterparts (ARC). Here, the decision variables are partitioned into two
sets: the non-adjustable ones (”here and now” decisions) which must be fixed in advance
before the realization of the uncertainty sets and the adjustable ones (”wait and see” decisions),
which are computed after the uncertain parameters are revealed (Ben-Tal et al. (2004)).

As the ARC is more representative of real life situations where decisions are made over
multiple periods, this framework has attracted interest from the research community. How-
ever, its its general form is known to be computationally intractable, which has led to an ap-
proximate model using affine decision rules (ADR). In this affine adjustable robust counterpart
(AARC), the adjustable part of the decision is assumed to be an affine linear function of the un-
certain data (Ben-Tal et al. (2004)). This emulates a linear feedback as a controller to adjust for
the desired output.

Just like in many other fields, robust optimization has found increasing use and applica-
tion in the network design area. Atamturk and Zhang (2007) considered a two-stage robust
network flow problem under demand uncertainty following the work of Ben-Tal et al. (2004),
while Ouorou and Vial (2007) introduced affine routing in the their robust network capacity
planning model. Ordóñez and Zhao (2007) looked at network capacity expansion under both
demand and cost uncertainty. Koster et al. (2013) considered a robust network design problem
with static routing in the setting of Bertsimas and Sim (2004). Poss and Raack (2012) apply
the AARC to robust network design with polyhedral uncertainty and Babonneau et al. (2013)
used a refined version of ADR in their robust capacity assignment for networks with uncertain
demand. Recently, Pessoa and Poss (2015) used a cutting plane algorithm while taking into
consideration the uncertainty in unmet demand outsourced cost.

Regarding uncertainty sets, polyhedral sets are most frequently used in radio network de-
sign, along with hose models from the works of Duffield et al. (1999); Fingerhut et al. (1997),
budget uncertainty by Atamturk and Zhang (2007) and cardinal constrained uncertainty by
Bertsimas and Sim (2004), and interval uncertainty among others.

Little research compares these models. Atamturk and Zhang (2007) compared their single-
stage robust model using budget uncertainty with a scenario-based two-stage stochastic ap-
proach. Chassein et al. (2019) constructed different uncertainty sets from real world data and
compared performance within and outside sample for shortest path problems. Our focus is
to compare the discrete and the polyhedral uncertainty sets in network capacity expansion, to
arrive at which one better fits real-world data, while also comparing to the performance of a
simple stochastic model using the mean demand.
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3 Problem Description

We consider a multi-commodity network flow design problem where incremental capacities
are installed in response to uncertain traffic demand. The problem is modeled in a way that
allows for capacity expansion such that routing of traffic for the different commodities over
the arcs subject to design and network constraints is possible while minimizing the total cost
involved. We refer to this model as the robust network capacity expansion problem (RNCEP).

3.1 The Basic RNCEP

The network under consideration can be represented by a directed graph, G = (V,A). Each
of the arcs a ∈ A has an original capacity ua. The original capacity on each arc a can be
upgraded at a cost ca per each additional unit xa of capacity. There is a set of commodities
K = {1, . . . ,K} =: [K] which need to be routed across the network, each commodity k ∈ K
consisting of a demand dk ≥ 0, a source node sk ∈ V , and a sink node tk ∈ V . Additionally, let σ
be the cost of not satisfying one unit of demand over the planning horizon (i.e., by outsourcing
it). If all demands are known, the nominal network capacity expansion problem can then be
formulated as follows:

min
∑
a∈A

caxa + σ
∑
k∈K

dk − ∑
a∈δ−(tk)

fka +
∑

a∈δ+(tk)

fka


+

(1)

s.t.
∑

a∈δ−(v)

fka −
∑

a∈δ+(v)

fka ≥ 0 ∀k ∈ K, v ∈ V \ {sk, tk} (2)

∑
k∈K

fka ≤ ua + xa ∀a ∈ A (3)

fka ≥ 0 ∀k ∈ K, d ∈ U , a ∈ A (4)

xa ≥ 0 ∀a ∈ A (5)

Here, [y]+ denotes max{0, y}, while δ+(v) and δ−(v) are the sets of the outgoing and incoming
arc at node v ∈ V , respectively. Variables fka denote the flow of commodity k ∈ K along edge
a ∈ A, while xa models the amount of capacity being added to arc a. The objective function (1)
is to minimize the sum of capacity expansion cost and outsourcing costs. Constraints (2) are
a variant of flow constraints, where we allow an arbitrary amount of flow to leave the source
node sk. Through the objective, only the flow arriving in tk is counted. It is allowed to diminish
the flow outside of sk and tk; note that there is an optimal solution where this does not happen.
We do not assume equality in Constraints (2) to apply our robust optimization approach in the
following section. Finally, Constraints (3) model the capacity on each edge.

The actual demand values ddd are uncertain, and can take any value in a predetermined
uncertainty set U . The two sets under consideration in this work are the discrete uncertainty set,
which can be represented as U = {ddd1, . . . , dddN}, and the polyhedral uncertainty set, which can be
represented as U =

{
ddd ∈ RK+ : V ddd ≤ bbb, dk ∈ [dk, dk]

}
.
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The robust network capacity expansion problem then is to find a minimum installation cost
of additional capacities while satisfying all potential traffic demands such that actual flows do
not exceed cumulative link capacities whatever the realization of demands in U . Thus, the
RNCEP is a two stage robust problem with recourse applying the general framework of Ben-
Tal et al. (2004). The capacity expansion represented by variables xxx is the first stage decision
variable which has to be fixed before the realization of ddd ∈ U . Once the uncertain demand data
is revealed, the traffic adjustment takes place by routing a multi-commodity flow with second
stage variable fka (ddd). This can be modeled as follows:

min
∑
a∈A

caxa + max
d∈U

σ
∑
k∈K

dk − ∑
a∈δ−(tk)

fka (ddd) +
∑

a∈δ+(tk)

fka (ddd)


+

(6)

s.t.
∑

a∈δ−(v)

fka (ddd)−
∑

a∈δ+(v)

fka (ddd) ≥ 0 ∀k ∈ K, ddd ∈ U , v ∈ V \ {sk, tk}

(7)∑
k∈K

fka (ddd) ≤ ua + xa ∀ddd ∈ U , a ∈ A

(8)

fka (ddd) ≥ 0 ∀k ∈ K, ddd ∈ U , a ∈ A
(9)

xa ≥ 0 ∀a ∈ A
(10)

Here, we have modified Constraints (1-5) to take all scenarios into account. Being a robust
model, we consider the worst-case costs in Objective (6), while all constraints need to hold
for all scenarios ddd ∈ U . In the following, we reformulate the general model (6-10) for specific
uncertainty sets.

3.2 Robust Optimization with Discrete Uncertainty

3.2.1 Model

Let U = {ddd1, . . . , dddN} be a discrete uncertainty set, where N is the number of scenarios. In this
case, variables fka (ddd) become fk,ia for all i ∈ [N ]. The robust objective function (6) is reformu-
lated using additional variables hk,i := [dik−

∑
a∈δ−(tk) f

k,i
a +

∑
a∈δ+(tk) f

k,i
a ]+ for k ∈ K, i ∈ [N ],

and τ := maxi∈[N ]

∑
k∈K h

k,i. The problem then becomes:

min
∑
a∈A

caxa + στ (11)

s.t. τ ≥
∑
k∈K

hk,i ∀i ∈ [N ] (12)

hk,i ≥ dik −
∑

a∈δ−(tk)

fk,ia +
∑

a∈δ+(tk)

fk,ia ∀i ∈ [N ], k ∈ K (13)
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∑
a∈δ−(v)

fk,ia −
∑

a∈δ+(v)

fk,ia ≥ 0 ∀k ∈ K, i ∈ [N ], v ∈ V \ {sk, tk} (14)

∑
k∈K

fk,ia ≤ ua + xa ∀i ∈ [N ], a ∈ A (15)

fk,ia ≥ 0 ∀k ∈ K, i ∈ [N ], a ∈ A (16)

hk,i ≥ 0 ∀k ∈ K, i ∈ [N ] (17)

xa ≥ 0 ∀a ∈ A (18)

Here, Constraints (14) and (15) correspond to Constraints (7) and (8), whereas the additional
Constraints (12) and (13) are used to ensure variables τ and hk,i have the intended effect. Note
that, as we minimize, the maximum operator can be expressed by using≥-constraints over the
set.

3.2.2 Constructing Data-Based Discrete Uncertainty

To construct discrete uncertainties uncertainties, we assume that scenarios

R = {rrr1, . . . , rrrN}

of real demands with rrri ∈ RK+ are given, along with the respective source and sink nodes. The
trivial approach would be to use directly U = R. However, previous research (see Chassein
et al. (2019)) has shown that this may result in an overfitting to the available data. Instead,
we consider different scalings. For a fixed commodity k ∈ K, let N ′ ≤ N denote the absolute
frequency that ri,k > 0 over all i ∈ [N ]. Then

r̂k =
1

N ′

∑
i∈[N ]

ri,k

be the average of the demand scenarios for each k ∈ K. For a given λ ∈ [0, 1], we set di,k(λ) =

λri,k + (1− λ)r̂k and
U(λ) =

{
ddd1(λ), . . . , dddN (λ)

}
.

The case λ = 0 means that we ignore uncertainty and use the average case, while λ = 1 uses
the original demand scenariosR.

3.3 Robust Optimization with Polyhedral Uncertainty

3.3.1 Model

We now assume the demand uncertainty is given through a general polyhedron of the form

U =
{
ddd ∈ RK+ : V ddd ≤ bbb, dk ∈ [dk, dk]

}
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where V = (vik) is a matrix in RM×K and bbb is a vector in RM (i.e., there are M linear con-
straints on the demand vector). To find a tractable robust counterpart, we apply the frame-
work of affine decision rules (ADR) by restricting the flow variables to be affine functions of
the uncertainty, i.e.,

fka (ddd) = φka +
∑
`∈K

Φk,`
a d`

with φka and Φk,`
a being unknown coefficients of the affine linear function in ddd. We now consider

each constraint and the objective of problem (6-10) and reformulate them using strong duality.
By substituting for fka (ddd), the flow constraints (7) become:

∑
a∈δ−(v)

(
φka +

∑
`∈K

Φk,`
a d`

)
−

∑
a∈δ+(v)

(
φka +

∑
`∈K

Φk,`
a d`

)
≥ 0 ∀k ∈ K, v ∈ V \ {sk, tk}, ddd ∈ U ,

which is equivalent to

∑
a∈δ−(v)

φka −
∑

a∈δ+(v)

φka ≥
∑
`∈K

 ∑
a∈δ+(v)

Φk,`
a −

∑
a∈δ−(v)

Φk,`
a

 d` ∀k ∈ K, v ∈ V \ {sk, tk}, ddd ∈ U .

(19)
For each k ∈ K, v ∈ V \ {sk, tk}we can write the worst-case problem as

max
∑
`∈K

 ∑
a∈δ+(v)

Φk,`
a −

∑
a∈δ−(v)

Φk,`
a

 d`

s.t.
∑
`∈K

vi`d` ≤ bi ∀i ∈ [M ] [αk,vi ]

d` ≤ d` ∀` ∈ K [β
k,v
` ]

− d` ≤ −d` ∀` ∈ K [βk,v
`

]

We now consider the dual of this linear optimization problem. In brackets behind every con-
straint of the primal problem, we have listed the corresponding dual variable. The dual prob-
lem then becomes

min
∑
i∈[M ]

biα
k,v
i +

∑
`∈K

(dlβ
k,v
` − d`βk,v` )

s.t.
∑
i∈[M ]

vi`α
k,v
i + β

k,v
` − βk,v` ≥

∑
a∈δ+(v)

Φk,`
a −

∑
a∈δ−(v)

Φk,`
a ∀` ∈ K

αk,vi ≥ 0 ∀i ∈ [M ]

β
k,v
` ≥ 0 ∀` ∈ K

βk,v
`
≥ 0 ∀` ∈ K.

By applying strong duality, we can conclude that the optimal objective value of this dual prob-
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lem is equal to the worst-case of the right-hand side of Constraint (19).
Overall, Constraint (7) is replaced by the following set of constraints and variables:∑

a∈δ−(v)

φka −
∑

a∈δ+(v)

φka ≥
∑
i∈[M ]

biα
k,v
i +

∑
`∈K

(dlβ
k,v
` − d`βk,v` ) ∀k ∈ K, v ∈ V \ {sk, tk}

∑
i∈[M ]

vi`α
k,v
i + β

k,v
` − βk,v` ≥

∑
a∈δ+(v)

Φk,`
a −

∑
a∈δ−(v)

Φk,`
a ∀k, ` ∈ K, v ∈ V \ {sk, tk}

αk,vi ≥ 0 ∀i ∈ [M ], k ∈ K, v ∈ V \ {sk, tk}

β
k,v
` ≥ 0 ∀k, ` ∈ K, v ∈ V \ {sk, tk}

βk,v
`
≥ 0 ∀k, ` ∈ K, v ∈ V \ {sk, tk}

We follow a similar procedure for the other constraints. Constraint (8) can be rewritten as

∑
k∈K

(
φka +

∑
`∈K

Φk,`
a d`

)
≤ ua + xa ∀d ∈ U , a ∈ A

The subproblem

max
∑
`∈K

(
∑
k∈K

Φk,`
a )d`

s.t. ddd ∈ U

has the same structure as before. Using dual variables πai , ρ
a
` , ρ

a
`
, we can replace Constraint (8)

with the following:∑
k∈K

φka +
∑
i∈[M ]

biπ
a
i +

∑
`∈K

(d`ρ
a
` − d`ρa` ) ≤ ua + xa ∀a ∈ A

∑
i∈[M ]

vi`π
a
i + ρa` − ρa` ≥

∑
k∈K

Φk,`
a ∀` ∈ K, a ∈ A

πai ≥ 0 ∀i ∈ [M ], a ∈ A

ρa` ≥ 0 ∀a ∈ A, ` ∈ K

ρa
`
≥ 0 ∀a ∈ A, ` ∈ K

We now consider the positivity constraint (9). This becomes

φka +
∑
`∈K

Φk,`
a d` ≥ 0 ∀k ∈ K, a ∈ A, ddd ∈ U

Using duality with variables ξk,ai , ζ
k,a
` , ζk,a

`
we replace Constraint (9) with the following:

φka ≥
∑
i∈[M ]

biξ
k,a
i +

∑
`∈K

(d`ζ
k,a
` − d`ζk,a` ) ∀k ∈ K, a ∈ A

8



∑
i∈[M ]

vi`ξ
k,a
i + ζ

k,a
` − ζk,a` ≥ −Φk,`

a ∀k, ` ∈ K, a ∈ A

ξk,ai ≥ 0 ∀k ∈ K, a ∈ A, i ∈ [M ]

ζ
k,a
` ≥ 0 ∀k, ` ∈ K, a ∈ A

ζk,a
`
≥ 0 ∀k, ` ∈ K, a ∈ A

Finally, we consider the objective function (6). We need to solve the following problem:

max
∑
k∈K

dk − ∑
a∈δ−(tk)

(
φka +

∑
`∈K

Φk,`
a d`

)
+

∑
a∈δ+(tk)

(
φka +

∑
`∈K

Φk,`
a d`

)
+

s.t.
∑
`∈K

vi`d` ≤ bi ∀i ∈ [M ]

d` ≤ d` ∀` ∈ K

− d` ≤ −d` ∀` ∈ K

We introduce new variables zk ∈ {0, 1} to remove the positivity bracket from the objective.

max
∑
k∈K

dk − ∑
a∈δ−(tk)

(
φka +

∑
`∈K

Φk,`
a d`

)
+

∑
a∈δ+(tk)

(
φka +

∑
`∈K

Φk,`
a d`

) zk

s.t.
∑
`∈K

vi`d` ≤ bi ∀i ∈ [M ]

d` ≤ d` ∀` ∈ K

− d` ≤ −d` ∀` ∈ K

zk ∈ {0, 1} ∀k ∈ K

We set z′k,` := d`zk and get

max
∑
k∈K

z′kk − ∑
a∈δ−(tk)

(
φkazk +

∑
`∈K

Φk,`
a z′k`

)
+

∑
a∈δ+(tk)

(
φkazk +

∑
`∈K

Φk,`
a zk`

)
s.t.

∑
`∈K

vi`d` ≤ bi ∀i ∈ [M ] [qi]

z′k` ≤ d` ∀k, ` ∈ K [rk`]

z′k` ≤ d`zk ∀k, ` ∈ K [sk`]

d` + d`zk − z′k` ≤ d` ∀k, ` ∈ K [tk`]

d` ≤ d` ∀` ∈ K [u`]

− d` ≤ −d` ∀` ∈ K [v`]

zk ∈ {0, 1} ∀k ∈ K [wk]

z′k` ≥ 0 ∀k, ` ∈ K
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By relaxing constraints zk ∈ {0, 1} to zk ∈ [0, 1] for a conservative approximation and dualizing
the problem, we arrive at

min
∑
i∈[M ]

biqi +
∑
k∈K

∑
`∈K

d`tk` +
∑
`∈K

d`u` −
∑
`∈K

d`v` +
∑
k∈K

wk

s.t.
∑
i∈[M ]

vi`qi −
∑
k∈K

rk` +
∑
k∈K

tk` + u` − v` ≥ 0 ∀` ∈ K

−
∑
`∈K

d`sk` +
∑
`∈K

d`tk` + wk ≥
∑

a∈δ+(tk)

φka −
∑

a∈δ−(tk)

φka ∀k ∈ K

rk` + sk` − tk` ≥ 1k=` +
∑

a∈δ+(tk)

Φk,`
a −

∑
a∈δ−(tk)

Φk,`
a ∀k, ` ∈ K

qi ≥ 0 ∀i ∈ [M ]

rk`, sk`, tk` ≥ 0 ∀k, ` ∈ K

u`, v`,w` ≥ 0 ∀` ∈ K

Overall, we get the following affine adjustable robust counterpart to Problem (6-10):

min
∑
a∈A

caxa + σ

∑
i∈[M ]

biqi +
∑
k∈K

∑
`∈K

d`tk` +
∑
`∈K

d`u` −
∑
`∈K

d`v` +
∑
k∈K

wk


s.t.

∑
i∈[M ]

vi`qi −
∑
k∈K

rk` +
∑
k∈K

tk` + u` − v` ≥ 0 ∀` ∈ K

−
∑
`∈K

d`sk` +
∑
`∈K

d`tk` + wk ≥
∑

a∈δ+(tk)

φka −
∑

a∈δ−(tk)

φka ∀k ∈ K

rk` + sk` − tk` ≥ 1k=` +
∑

a∈δ+(tk)

Φk,`
a −

∑
a∈δ−(tk)

Φk,`
a ∀k, ` ∈ K

∑
a∈δ−(v)

φka −
∑

a∈δ+(v)

φka ≥
∑
i∈[M ]

biα
k,v
i +

∑
`∈K

(dlβ
k,v
` − d`βk,v` ) ∀k ∈ K, v ∈ V \ {sk, tk}

∑
i∈[M ]

vi`α
k,v
i + β

k,v
` − βk,v` ≥

∑
a∈δ+(v)

Φk,`
a −

∑
a∈δ−(v)

Φk,`
a ∀k, ` ∈ K, v ∈ V \ {sk, tk}

∑
k∈K

φka +
∑
i∈[M ]

biπ
a
i +

∑
`∈K

(d`ρ
a
` − d`ρa` ) ≤ ua + xa ∀a ∈ A

∑
i∈[M ]

vi`π
a
i + ρa` − ρa` ≥

∑
k∈K

Φk,`
a ∀` ∈ K, a ∈ A

φka ≥
∑
i∈[M ]

biξ
k,a
i +

∑
`∈K

(d`ζ
k,a
` − d`ζk,a` ) ∀k ∈ K, a ∈ A

∑
i∈[M ]

vi`ξ
k,a
i + ζ

k,a
` − ζk,a` ≥ −Φk,`

a ∀k, ` ∈ K, a ∈ A

xa ≥ 0 ∀a ∈ A

qi ≥ 0 ∀i ∈ [M ]

rk`, sk`, tk` ≥ 0 ∀k, ` ∈ K
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u`, v`,w` ≥ 0 ∀` ∈ K

αk,vi ≥ 0 ∀i ∈ [M ], k ∈ K, v ∈ V \ {sk, tk}

β
k,v
` , βk,v

`
≥ 0 ∀k, ` ∈ K, v ∈ V \ {sk, tk}

πai ≥ 0 ∀i ∈ [M ], a ∈ A

ρa` , ρ
a
`
≥ 0 ∀a ∈ A, ` ∈ K

ξk,ai ≥ 0 ∀k ∈ K, a ∈ A, i ∈ [M ]

ζ
k,a
` , ζk,a

`
≥ 0 ∀k, ` ∈ K, a ∈ A

3.3.2 Constructing Data-Based Polyhedral Uncertainty

Constructing a polyhedron that contains the demand scenariosR can be considered as an opti-
mization problem on its own. We would like to determine constraint coefficients (vi1, . . . , viK , bi)

that determine a polyhedron U such that the distance of R to the boundary of U with respect
to a norm ‖ · ‖ is as small as possible.

Recall that the distance between a point ppp and a hyperplane (a1, . . . , aK , b) is given through

|
∑

i∈[K] aipi − b|
‖aaa‖∗

where ‖ · ‖∗ is the dual norm of ‖ · ‖. An optimization model to determine U is hence:

min
∑
i∈[N ]

min
j∈[M ]

(bj −
∑
k∈[K]

ri,kvjk)

s.t.
∑
k∈[K]

ri,kvjk ≤ bj ∀i ∈ [N ], j ∈ [M ]

‖vvvj·‖∗ = 1

where vvvj· denotes the jth row of V . While such an approach is useful for low-dimensional data
(i.e., few commodities K), it is less efficient for high-dimensional data. In fact, the additional
lower and upper bounds [dk, dk] may already suffice to determine a polyhedron where every
point in R is on its boundary. Therefore, we also consider randomly generated hyperplanes.
To this end, we sample each vik randomly uniformly from [0, 1]. Then we set

bi := max
j∈[N ]

∑
k∈[K]

vikr
j,k

to find a tight constraint. In particular, we always contain the sum-constraint where vik = 1/K

for all k ∈ [K].

11



3.4 Stochastic Optimization with Distribution Mean

3.4.1 Model

Let ddd be the vector of mean demands of distributions fitted independently to every commodity
using demand scenariosR = {rrr1, . . . , rrrN}. We reformulate Problem (1-5) using only this single
mean demand scenario. To linearize the positivity brackets [·]+, we introduce variables hk for
every commodity k ∈ K. The problem then becomes:

min
∑
a∈A

caxa + σ
∑
k∈K

hk

s.t. hk ≥ dk −
∑

a∈δ−(tk)

fka +
∑

a∈δ+(tk)

fka ∀k ∈ K

∑
a∈δ−(v)

fka −
∑

a∈δ+(v)

fka ≥ 0 ∀k ∈ K, v ∈ V \ {sk, tk}

∑
k∈K

fka ≤ ua + xa ∀a ∈ A

fka ≥ 0 ∀k ∈ K, a ∈ A

hk ≥ 0 ∀k ∈ K

xa ≥ 0 ∀a ∈ A

3.4.2 Generating Data-Based Distribution Mean

The demand for the stochastic optimization model is generated from the demand scenarios
R using the mean of the zero-inflated uniform distribution in the following way. For a fixed
commodity k ∈ K, let N ′ ≤ N denote the absolute frequency that ri,k > 0 over all i ∈ [N ]. To
fit a uniform distribution, set

rkmin = min
i∈[N ]:ri,k>0

ri,k and rkmax = max
i∈[N ]

ri,k

and the mean of the uniform distribution is r̄k = 1/2(rkmin + rkmax). The remaining absolute
frequency, N − N ′, is considered for observing a zero demand, yielding the mean demand of
the zero-inflated uniform distribution dk = rkN ′/N .

4 Computational Experiments

4.1 Setup

The aim of our experiments is to determine which model gives the best solution to uncertain
network design. On the one hand, the discrete uncertainty model is simpler than the poly-
hedral uncertainty model, and we can expect it to be solvable using more commodities, thus
giving a more detailed description of the uncertainty. The polyhedral model on the other hand

12



Table 1: Experimental Setup
Experiment Nr of σ values σ values nr λ values λ values Nr of hyperplanes

Discrete1 2 12,450 and 24,900 11 0.0 to 1.0
Discrete2 11 0 to 24,900 2 0.5 and 1.0

Stochastic 11 0 to 24,900 1 1.0
Polyhedral

1
11 0 to 24,900 1

Polyhedral
2

8 0 to 17,430 2
Polyhedral

3
7 0 to 14,940 7

will use less commodities, but has a more complex description of the uncertainty available. As
noted in the literature review (Section 2), polyhedral models are popular in current research.

We consider the following experimental setup to address our question. Using a data set
of real-world scenarios, we separate it into a training set and an evaluation set. We construct
different uncertainty sets only based on the training set, and solve the resulting robust (or
stochastic) optimization problems. We then only keep the here-and-now part of the solution,
i.e., the decision xxx on the infrastructure investment. This investment is then assessed on the
evaluation set by calculating optimal flows for each scenario. As the first-stage investment
costs are already fixed, the flow problem only aims at minimizing the outsourced demand. We
then compare investment costs and outsourced demand for all models.

The experimental setup is summarized in Table 1. The Discrete1 experiment fixes two σ

values for varying values of λ, while the Discrete2 experiment fixes λ for varying values of σ.
The Polyhedral1 experiment uses a polyhedron with only one constraint (the sum-constraint)
for all eleven values of σ, Polyhedral2 uses a polyhedron with two hyperplanes and eight
values for σ, while Polyhedral3 uses a polyhedron with eight hyperplanes and seven possible
σ values. The reduced choice for σ values with increasing number of hyperplanes was due to
increased computation times.

The Discrete1 experiment therefore has to solve 22 optimization models, and each of these
22 results was then evaluated on each of the demand scenarios from the evaluation set. The
same was carried out for the other five experiments. The choice of σ, which represent the
penalty for unmet demand, was a key consideration for these models and hence in the exper-
imental setup. If σ is too small there is incentive for unmet demand where almost all demand
are outsourced with no addition of new installed capacity to the network while with a large
σ, the incentive is for negative violation of the constraint which encourages the deployment of
new network capacity.

Several values of σ were tested in a preliminary experiment using discrete uncertainty, see
Table 2. Based on the outcomes, the value range for σ was selected, taking the 95th percentile
of the capacity cost distribution into account.

In total, over 34, 000 numerical experiments were carried out according to the setup. Mod-
els were implemented using Julia and Gurobi version 7.5 on a Lenovo desktop machine with 8
GB RAM and Intel Core i5-65 CPU with 2.50GHz using Windows 10 OS 64-bit. In Gurobi, we
have used a time limit of 9000s for each problem instance and optimality is achieved once the
optimality gap is below 0.01%.

13



Table 2: Impact of σ on outsourced demand.
Objective Commodity Capacity Add Sol Time Outsourced D Penalty(σ)

530,226.88 400 0.00 199.56 127,254.45 100
5,302,268.77 400 0.00 127.48 127,254.45 1,000

49,191,424.59 400 2,191.83 443.11 99,409.83 10,000
68,676,799.21 400 16,139.27 372.44 13,262.58 20,000
72,391,760.98 400 18,151.57 575.90 6,074.70 30,000
74,113,211.23 400 19,736.41 455.89 2,335.66 40,000
74,479,094.31 400 20,873.46 378.29 0.00 50,000
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Figure 1: A full day demand profile.
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Figure 2: A full day commodities profile.

4.2 Data

We tested the discrete, polyhedral and stochastic models using network data instances taken
from the online SNDlib library1, see Orlowski et al. (2010). The particular network data con-
sidered in this work is Germany-50 with 50 nodes and 176 directed arcs (we also included arcs
in opposite directions). There are three levels of aggregation for real-world traffic measure-
ment data available. These are one full day (in 5 minute intervals), one full month (in 1 day
intervals) and one whole year (in 1 month intervals).

For our experiment, we focus on the full day dataset, consisting of N = 288 scenarios. The
peak demand of 7, 649.83 was recorded at 3pm for the demand profile, see Figure 1. We sep-
arate the scenarios into a training set consisting of 24 scenarios, which is generated by taking
every 12th demand scenario (i.e., one scenario per hour), and the evaluation set consisting of
the remaining 264 scenarios. We refer to the training set as MS-24.

Each scenario has a different number of commodities, see Figure 2. Some of the demand
values were found to be very small. While the 99th percentile of all demand values is 0.415,
some values are in the range of 10−6. To simplify the optimization problems, we sort the com-
modities in descending order of demand and then choose a fixed value of commodities for
all demand scenarios that covers over 98% of the original demand data, which is the case for
400 commodities. Table 3 shows the different numbers of commodities against the percentage
of original data captured in the streamlined data. This approach was implemented instead of

1See http://sndlib.zib.de
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Table 3: Impact of choice of K on the presorted original data.
Options with MS-24 Commodity % of Original Data Captured

All Demand 300 97.48%
All Demand 400 98.88%
All Demand 450 99.25%
All Demand 500 99.50%
All Demand 900 99.88%

allowing for varying commodities per demand scenario and allows us to consider all signifi-
cant demands values while discarding very low ones, thus significantly reducing the average
numbers of commodities per demand scenario.

We observed that a model based on a polyhedron with 400 commodities computed from
the training set demand matrix could not be solved in reasonable time, hence the polyhedron
was generated for a reduced number of commodities to allow for an optimal solution in a
reasonable amount of time that will encourage its practical usage in the industry. Instead, we
work with K = 20 that captures the top commodities in the training set. This reflects that
the more complex the model for the uncertainty, the harder becomes the optimization model
itself, and the less data we can use for building our sets. This trade-off is investigated in
our experiments. Additionally, our polyhedrons were calcualted using the random constraint
sampling method from Section 3.3.2, as lower and upper bounds already gave an optimal
solution to the optimization approach for constructing polyhedra.

4.3 Computational Results

We consider the performance of the capacity expansion solutions on the evaluation scenarios.
We used four metrics on these 264 scenarios: The average, the maximum, the average of the
worst 10% (known as conditional-value-at-risk, or CVaR), and the standard deviation. Note
that all these measures were calculated for scenarios that were not known to the models at the
time of solution.

We first of all note that all polyhedral models Polyhedral1 to Polyhedral3 gave the same
results, so we do not differentiate between them in the following. In Figure 3 to Figure 6,
the four metrics are shown against the first-stage investment costs for two values of σ (i.e.,
using Discrete1). As expected, increasing σ results in building more capacity in the network
and hence reducing the amount of demand being outsourced. This is true for both robust
the stochastic models. For the discrete uncertainties, network capacity built increases with
increasing value of λ from 0 (ignoring uncertainty) to 1 (using the real demands) for a fixed σ

value.
In Figure 7 to Figure 10, varying penalty values σ were considered for the three models

while fixing λ for the discrete uncertainty model (using Discrete2). The outsourced demand
τ decreases with an increase in σ value. The implication of higher penalty is that overall risk
is minimized deploying additional infrastructure in capacity for the network rather than out-
sourcing demand. In Figure 5 and Figure 9, the CVaR was observed to decrease with increasing
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Figure 3: Mean outsourced demand. Discrete
model uses varying values of λ.
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Figure 4: Maximum outsourced demand.
Discrete model uses varying values of λ.
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Figure 5: CVaR of outsourced demand. Dis-
crete model uses varying values of λ.
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Figure 7: Mean outsourced demand. All
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Figure 8: Maximum outsourced demand. All
models use varying values of σ.
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Figure 9: CVaR of outsourced demand. All
models use varying values of σ.
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Figure 10: Standard deviation of outsourced
demand. All models use varying values of σ.

robustness of the models. Figure 4 seems to be providing almost the same information as the
CVaR, and it turned out that the two metrics are highly correlated having a correlation coeffi-
cient of 0.9993 with a gradient of approximately 1 as shown in Figure 11. Though the analysis
done was for the discrete model, the same result is consistence with that from the other two
models.

Ideally, a good solution is in the bottom left corner of these plots. We note that some of the
points corresponding to polyhedral models are dominated, and so are the stochastic solutions.
The discrete model produces the best trade-off solutions between investment and outsourcing.
For instance in Figure 9, with the same link capacity investment of $40 million, the stochastic
model has a higher CVaR figure. The data point line for this discrete model with λ = 0.5 is
below that for the stochastic model and this can bee seen in Figure 7 to Figure 10. Hence,
the discrete model provides the best compromise between a too simple and a too complex
approach for the data under consideration.
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y = 0.9992x + 403.99
R² = 0.9986
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Figure 11: CVaR of outsourced demand and max outsourced demand correlation.

5 Conclusion

In the robust optimization literature, the shape of uncertainty is often an assumption made
without any grounding in actually available data. This also holds for network expansion prob-
lems, where polyhedral models have been popular. In this paper, we considered the question
whether such an approach leads to solutions which perform well on unseen data, i.e., what
kind of uncertainty sets are most appropriate for our model.

We developed robust (using discrete and polyhedral uncertainty sets) and stochastic ap-
proaches to a multi-commodity network capacity expansion problem with the option of de-
mand outsourcing. These models were implemented for a real-world network data taken from
the SNDlib and their results were subsequently compared.

In the experimental setup, a number of penalty values for demand outsourcing were con-
sidered while also varying the robustness of the discrete model with different sizes of the
uncertainty set. Increasing the penalty results in additional capital expenditure for network ca-
pacity build as this reduces the amount of demand outsourced as well as the conditional-value-
at-risk (CVaR). However, of these three models, the robust model with discrete uncertainty set
produced the best trade-off solutions on all performance metrics. It was also observed that the
discrete set seems easy to generate (as expected, since the original data is already in this form),
the model is simple and produces optimal result faster. Robust model with polyhedral uncer-
tainty set, on the other hand, is more complex and with more options to describe data, and it
results in computationally more challenging problems. In our case, the extra effort associated
with polyhedral model may not be really worth it in the end. Surprisingly, the simple stochas-
tic optimization model which we have used for benchmarking was relatively competitive, and
thus might be appropriate for use in more complex situations in which the uncertainty-based
robust models are computationally intractable.
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