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Abstract 26 

1. Herbivory is a key process on coral reefs which, through grazing of algae, can help sustain 27 

coral-dominated states on frequently-disturbed reefs and reverse macroalgal regime shifts 28 

on degraded ones.  29 

2. Our understanding of herbivory on reefs is largely founded on feeding observations at 30 

small spatial scales, yet the biomass and structure of herbivore populations is more closely 31 

linked to processes which can be highly variable across large areas, such as benthic habitat 32 

turnover and fishing pressure. Though our understanding of spatiotemporal variation in 33 

grazer biomass is well developed, equivalent macroscale approaches to understanding 34 

bottom-up and top-down controls on herbivory are lacking.  35 

3. Here, we integrate underwater survey data of fish abundances from four Indo-Pacific island 36 

regions with herbivore feeding observations to estimate grazing rates for two herbivore 37 

functions, cropping (which controls turf algae) and scraping (which promotes coral 38 

settlement by clearing benthic substrate), for 72 coral reefs. By including a range of reef 39 

states, from coral to algal dominance and heavily-fished to remote wilderness areas, we 40 

evaluate the influences of benthic habitat and fishing on the grazing rates of fish 41 

assemblages.  42 

4. Cropping rates were primarily influenced by benthic condition, with cropping maximised 43 

on structurally complex reefs with high substratum availability and low macroalgal cover. 44 

Fishing was the primary driver of scraping function, with scraping rates depleted at most 45 

reefs relative to remote, unfished reefs, though scraping did increase with substratum 46 

availability and structural complexity.  47 



5. Ultimately, benthic and fishing conditions influenced herbivore functioning through their 48 

effect on grazer biomass, which was tightly correlated to grazing rates. For a given level of 49 

biomass, we show that grazing rates are higher on reefs dominated by small-bodied fishes, 50 

suggesting that grazing pressure is greatest when grazer size structure is truncated.  51 

6. Stressors which cause coral declines and clear substrate for turf algae will likely stimulate 52 

increases in cropping rates, in both fished and protected areas. In contrast, scraping 53 

functions are already impaired at reefs inhabited by people, particularly where structural 54 

complexity has collapsed, indicating that restoration of these key processes will require 55 

scraper biomass to be rebuilt towards wilderness levels. 56 

 57 

Introduction 58 

 59 

Herbivory is crucial to ecosystem function and community structure across terrestrial and 60 

aquatic ecosystems, playing a key role in cycling nutrients (Metcalfe et al. 2014), regulating 61 

species diversity and productivity (Royo et al. 2010, Rasher et al. 2013, Prieditis et al. 2017), and 62 

controlling habitat regime shifts (Zimov et al. 1995, Keesing and Young 2014, Verges et al. 63 

2014). Herbivory processes are generally measured at local scales relevant to individual 64 

behaviours and population sizes, which limits our understanding of how ecosystems function 65 

across larger spatial scales. Furthermore, anthropogenic pressures typically impact ecosystem 66 

processes, including herbivory, across much larger areas (Jackson 2008). Therefore, developing 67 

our understanding of both natural and anthropogenic drivers on herbivory at broad scales 68 

requires the integration of fine-scale herbivory observations with macroecological datasets. Such 69 

analyses are particularly relevant for coral reef ecosystems, which are facing multiple damaging 70 



human pressures and where herbivory is a key ecosystem function (Hughes et al. 2007, Cheal et 71 

al. 2010). 72 

On tropical coral reefs, the removal of algae by herbivorous fishes is a critical process 73 

which clears space for coral settlement and growth (Bellwood et al. 2004). Herbivorous fishes 74 

can be categorized into browsers, which remove established macroalgae, and a diverse guild of 75 

grazers that feed on surfaces covered with algal turfs and associated microbial communities 76 

(Green & Bellwood 2009). Within the grazers, observations of feeding morphology and 77 

behaviour have identified two distinct grazing functions: cropping and scraping (Bellwood and 78 

Choat 1990, Polunin et al. 1995). Cropping species, primarily members of the Acanthuridae and 79 

Siganidae, remove the upper portions of the algae when feeding, which maintains algae in 80 

cropped states, promoting coral settlement and preventing transitions to fleshy macroalgae 81 

(Arnold et al. 2010). Scraping species in the tribe Scarinae gouge part of the underlying reef 82 

substratum together with microscopic epiphytes and epilithic and endolithic phototrophs when 83 

feeding (Choat and Clements 2018). In doing so, scrapers clear space for the settlement of 84 

benthic organisms, including corals (Bonaldo et al. 2014). Combined, cropping and scraping are 85 

considered essential functions which help sustain coral-dominated states (Bellwood et al. 2004, 86 

Hughes et al. 2007) and potentially reverse algal regime shifts (Graham et al. 2013). 87 

Mature algae can proliferate in the absence of sufficient grazing pressure (Mumby et al. 88 

2006, Burkepile and Hay 2008, Rasher et al. 2013), and correlative analyses of fished reef 89 

ecosystems have provided evidence of grazing biomass thresholds below which reefs become 90 

algae dominated (Graham et al. 2015, Robinson et al. 2018). Herbivorous fish populations are 91 

heavily exploited across much of the tropics (Edwards et al. 2014), which has compromised 92 

grazing functions on reefs which fail to maintain herbivore biomass thresholds (Bellwood et al. 93 



2012, Graham et al. 2015, Robinson et al. 2018). However, fishing effects can be confounded by 94 

the influence of benthic productivity on herbivore populations (Russ et al. 2003, 2015), while 95 

species-specific habitat associations can also structure herbivore assemblages across a range of 96 

spatial scales (Hoey & Bellwood 2008, Doropoulos et al. 2013) and benthic compositions (Hoey 97 

& Bellwood 2011, Heenan et al. 2016). Such bottom-up influences on fish populations may be 98 

particularly strong when fish rely on habitat for both structure and food, such as algal-cropping 99 

fishes which are generally small and particularly dependent on the reef matrix for shelter (Wilson 100 

et al. 2008). Thus, herbivore assemblage structure is mediated by both habitat composition and 101 

fishing intensity but links between these drivers and grazing functions are not well resolved, 102 

particularly at macroecological scales.  103 

 Patterns in herbivore biomass are widely used to imply changes in herbivore functioning 104 

on coral reefs (e.g., Nash et al. 2016a, Robinson et al. 2018). However, biomass data overlooks 105 

size- and species-specific differences in feeding rates and functional roles. Therefore, measures 106 

of grazing impacts have been developed by integrating bite rate data with information on 107 

expected carbon intake for croppers (Marshell & Mumby 2015) or feeding behaviours for 108 

scrapers (Bellwood and Choat 1990, Bellwood et al. 2003). Furthermore, although allometric 109 

grazing ~ body size relationships (Lokrantz et al. 2008, Nash et al. 2013) indicate that the 110 

functional role provided by larger species is disproportionately greater (Bonaldo and Bellwood 111 

2008), grazing potential may also depend on community size structure (Bellwood et al. 2012). 112 

Abundance decreases logarithmically with increasing body size, meaning that the potential 113 

number of bite rates produced by an assemblage of many small-bodied fish may be equivalent to 114 

an assemblage of few large-bodied individuals (Munday and Jones 1998). Size-selective fishing 115 

which removes larger individuals (Robinson et al. 2017) and species (Taylor et al. 2014) is 116 



ubiquitous on many inhabited coral reefs and often leads to greater dominance of small-bodied 117 

fishes. However, contrasting evidence that loss of large fishes impairs bioerosion functions while 118 

compensatory increases in small fishes maintain grazing rates (Bellwood et al. 2012) suggests 119 

that links between size distributions and grazing functions are not fully resolved.  120 

Here, we assess the drivers of herbivore functioning on coral reefs across four regions in 121 

the Indo-Pacific (Fig. S1). Our macroecological-scale analysis spans a benthic gradient from 122 

coral to macroalgal dominance and a fishing gradient from open-access fisheries to no-take 123 

fishing zones and remote wilderness areas. By integrating feeding observations with underwater 124 

visual census (UVC) data on fish abundance, we measured potential grazing rates at the scale of 125 

reef sites, which is highly relevant for understanding how benthic and fishing influences may 126 

alter ecosystem functioning (Nash et al. 2016a). We examine 1) how fishing pressure and benthic 127 

composition influences the grazing rates of two major feeding groups (croppers and scrapers), 128 

and 2) how grazing rates are controlled by both the biomass and size structure of grazing 129 

assemblages. 130 

 131 

Materials and Methods 132 

 133 

Survey methods 134 

We surveyed 72 sites across Seychelles (n = 21), Maldives (11), the Chagos archipelago 135 

(25), and the Great Barrier Reef (GBR) (15) (Supplementary Methods). Grazing fish 136 

assemblages were surveyed using 8 replicate point counts of 7 m radius (Seychelles) or 4 137 

replicate belt transects of 50 m length (Maldives, Chagos archipelago, GBR) conducted on hard-138 

bottom reef slope habitat at 2-10 m depth. All sites were surveyed once, except for Seychelles 139 



where each site was surveyed in 2008, 2011, 2014 and 2017. Because estimates of fish biomass 140 

using point counts and belt transects are comparable (Samoilys and Carlos 2000), these survey 141 

methods can be combined to infer large-scale correlative patterns for coral reefs (McClanahan et 142 

al. 2011, MacNeil et al. 2015). The datasets we analyse have also been combined in previous 143 

studies (Cinner et al. 2016, Graham et al. 2017, Darling et al. 2017). Surveys were designed to 144 

minimise diver avoidance or attracting fish and were conducted by a single observer (NAJG). In 145 

point counts, large mobile species were censused before smaller territorial species. In belt 146 

transects, larger mobile fish were surveyed in a 5-m wide belt while simultaneously deploying 147 

the transect tape, and smaller site-attached damselfish species within a 2-m wide belt were 148 

recorded in the opposite direction. For both survey types, all diurnal, non-cryptic (>8 cm TL) 149 

reef-associated fish were counted and their TL estimated to the nearest centimetre. Length 150 

measurements were calibrated by estimating the length of sections of PVC pipe and comparing it 151 

to their known length prior to data collection each day, which indicated estimates were accurate 152 

within 2-3% (Graham et al 2007). Fish lengths were then converted to body mass (grams) using 153 

published length-weight relationships (Froese and Pauly 2018) and standardised by survey area 154 

to give species-level biomass estimates that were comparable across datasets (kg ha-1). The UVC 155 

dataset included 101 herbivore species (Table S1), with 11 species common to all four regions.   156 

Herbivore species were further categorised as croppers or scrapers according to their 157 

morphology and feeding behaviour (Green and Bellwood 2009). While both groups feed 158 

primarily on the epilithial algal matrix (EAM) covered substrata, they differ in the amount of 159 

material/substratum that is removed during the feeding action. Croppers remove the upper 160 

portions of the algae and associated detritus and microbes leaving the basal portions of the algae 161 

intact on the substratum, while scrapers remove shallow pieces of the substratum together with 162 



the EAM, leaving distinct bite scars (Choat et al. 2002, Wilson et al. 2003, Hoey and Bellwood 163 

2008).  164 

Following fish surveys, benthic habitat composition was surveyed with eight 10-m line 165 

intercept transects (Seychelles), or four 50-m point intercept (benthos recorded every 50 cm) 166 

transects (Chagos archipelago, GBR, Maldives). We recorded the cover of hard corals, 167 

macroalgae and turf algae, as well as non-living substrate (rock, bare substrate, rubble and sand). 168 

The structural complexity of the reef was visually estimated on a six-point scale, ranging from 0 169 

(no vertical relief) to 5 (complex habitat with caves and overhangs) (Polunin and Roberts 1993), 170 

which correlates strongly with a range of other methods for capturing the structural complexity 171 

of coral reefs (Wilson et al. 2007). 172 

 173 

Herbivore feeding observations 174 

Feeding observations of Indo-Pacific grazing fishes provided species-level estimates on 175 

bite rates of croppers and scrapers. Surveys were conducted in the Red Sea, Indonesia by a single 176 

observer (ASH), and in the GBR by two observers (ASH, AGL). We analysed feeding 177 

observations for species observed in the UVC dataset (n = 39) (Supplementary Methods, Table 178 

S1). Briefly, an individual fish of a target species was haphazardly selected and its body length 179 

(total length in cm) estimated. After a ~30 second acclimation period, each individual was 180 

followed for a minimum of 3 minutes during which the number of bites and the feeding 181 

substratum was recorded. A short acclimation period is typical for reef fish behavioural studies 182 

(Choat & Clements 1993, Pratchett 2005, Feary et al. 2018), and here ensured that potential diver 183 

effects were minimized (<5% of fishes responded negatively to diver presence). We estimated 184 

the average feeding rate (bites per minute) for each observed fish. For scrapers, we also 185 



estimated the bite scar size using a separate dataset in which one diver followed individual fish 186 

and recorded the length and width of each bite scar, and estimated the total length of the fish. 187 

 188 

Grazing rate estimates 189 

We used feeding observations to convert UVC biomass estimates into the total grazing 190 

potential of croppers and scrapers. We defined grazing functions separately for each functional 191 

group whereby cropping function was measured as feeding intensity (bite rate data) and scraping 192 

function was measured as area grazed (bite rate and bite area data). We used a Bayesian 193 

hierarchical modelling framework that estimates species- and genera-level functional rates, 194 

which allowed us to estimate grazing rates for UVC species which were not observed in feeding 195 

surveys (n = 63). Cropper function was quantified in terms of potential feeding intensity, the 196 

total number of bites per minute, and derived from a predictive model which accounted for 197 

species- and genera-specific bite rates (Supplementary Methods, Table S2). We then used 198 

allometric relationships to convert bite rates into grams of carbon (g C) removed through EAM 199 

consumption (Marshell and Mumby 2015). For scrapers, we defined scraping function in terms 200 

of potential area of substrata cleared per minute. Feeding observations provided estimates of bite 201 

rates, which we modelled as a function of body size (TL, cm; r = -0.43) according to species- and 202 

genera-specific grazing rates (Supplementary Methods, Fig. S2, Table S2). We used bite area 203 

estimates to convert bite rates into area scraped per minute (m2 minute-1). Cropping and scraping 204 

rates were assigned to all observed species, corrected by fish biomass, then summed within 205 

surveys and averaged to give site-level estimates of potential grazing function (croppers = g C 206 

ha-1 min-1, scrapers = m2 ha-1 min-1). 207 

 208 



Explanatory covariates 209 

First, to account for fishing effects ranging from the remote and protected Chagos 210 

archipelago to heavily-exploited reefs in Seychelles, we estimated fishable biomass as a proxy 211 

for exploitation pressure. This proxy, based on total fish community biomass, is highly sensitive 212 

to exploitation pressure and predicted by human population size, access to markets, and fisheries 213 

management (Cinner et al. 2016), and has been used to represent large-scale fishing gradients in 214 

numerous studies (e.g. McClanahan et al. 2011, Graham et al. 2017). Here, fishable biomass was 215 

only moderately correlated with grazing biomass (Pearson’s r: croppers = 0.50, scrapers = 0.48) 216 

and thus captures information on exploitation pressure for the full reef fish assemblage. Reefs 217 

were also assigned a categorical fishing pressure covariate to distinguish between protected (i.e. 218 

no-take areas), exploited, and remote reefs (Supplementary Methods).  219 

Second, benthic surveys provided site-level estimates of benthic composition. We 220 

estimated structural complexity and the site-level cover for four major habitat-forming groups 221 

(live hard coral, macroalgae, available substrate, and rubble) by averaging across replicates at 222 

each site. Available substrate was the total cover of rock, bare substrate, and turf algae, and 223 

represents the area of substrate available for EAM growth. Though the spatial scale at which fish 224 

and benthic metrics are collected may affect the strength of correlations (Wismer et al 2019), 225 

here benthic surveys were conducted adjacent to fish surveys and thus provided information on 226 

habitat composition at spatial scales which structure herbivorous fish assemblages (Russ et al. 227 

2015, Nash et al. 2016b)  228 

Third, we estimated the biomass of each functional group (kg ha-1) and a large fish 229 

indicator (LFI) as a measure of size structure (Robinson et al. 2017). We use the LFI to measure 230 

the relative abundance of large-bodied fish, which are considered key contributors to grazing 231 



functions because of their high per-capita consumption rates (Lokrantz et al. 2008) and long 232 

foraging movements (Nash et al. 2013). We defined large fish separately for each group as the 233 

length at the 75% quantile of the size distribution in the full dataset, such that the LFI was the 234 

relative abundance of fish greater than 15 cm for croppers and 30 cm for scrapers. Biomass and 235 

the LFI were estimated for each replicate and then averaged for each reef. 236 

 237 

Statistical modelling 238 

We modelled variation in herbivore functioning according to 1) gradients in benthic 239 

habitat composition and fishing pressure and 2) grazing rates estimated from grazer biomass and 240 

assemblage size structure. To place modelled effect sizes on a common scale, we scaled and 241 

centered all continuous covariates to a mean of zero and standard deviation of one and converted 242 

the categorical fishing status covariate into two dummy variables (fished - protected, fished - 243 

remote) (Schielzeth 2010). We used multimodel inference to assess parameter effect sizes. For 244 

each function, we fitted a global linear mixed effects model with five benthic fixed effects (hard 245 

coral, macroalgae, available substrate, rubble, structural complexity) and three fishing fixed 246 

effects (fishable biomass, remote reef, protected reef), for gamma-distributed errors ( ). Potential 247 

covariance among reefs in the same dataset and year was modelled using nested random 248 

intercept terms where, for each observation i at each reef j in dataset k: 249 

 250 

  Eq. 1 251 
 252 

Random intercept terms were used to account for different means and variance estimates 253 

for each dataset, and thus account for potential survey method effects (i.e. point counts in 254 

https://www.codecogs.com/eqnedit.php?latex=grazing_%7Bijk%7D%20%3D%20%5Cbeta_%7B0%7D%20%2B%20%5Cbeta_%7B1%7Dhardcoral_%7Bijk%7D%20%2B%20%5Cbeta_%7B2%7Dsubstrate_%7Bijk%7D%20%2B%20%5Cbeta_%7B3%7Drubble_%7Bijk%7D%20%2B%20%5Cbeta_%7B4%7Dmacroalgae_%7Bijk%7D%20%2B%20%5Cbeta_%7B5%7Dcomplexity_%7Bijk%7D%20%2B%20%5Cbeta_%7B6%7Dfishablebiomass_%7Bijk%7D%20%2B%20%5Cbeta_%7B7%7Dfished.protected_%7Bijk%7D%20%2B%20%5Cbeta_%7B8%7Dfished.remote_%7Bijk%7D%20%2B%20reef_j%20%2B%20dataset_k%20%2B%20%5Cepsilon_%7Bijk%7D%250


Seychelles vs. belt transects in the three other regions) (MacNeil et al. 2015). From the global 255 

model, we fitted all possible subset models (Bartoń 2013) and assessed their support using 256 

Akaike’s Information Criterion corrected for small sample sizes (AICc), where the top-ranked 257 

model had the lowest AICc score (Burnham and Anderson 2003). We inspected variance 258 

inflation factors (VIF) for each covariate, which indicated that global models were not biased by 259 

collinearity (VIF < 2 for all covariates in both cropper and scraper models) (Zuur et al. 2010). 260 

Initial modelling indicated support for multiple competing models (i.e. ∆AICc < 2), so we 261 

visualised relative covariate effect sizes by extracting standardised t-values for all models within 262 

7 AICc units of the top-ranked model and, for each model, rescaling t-values so that 1 is the 263 

strongest predictor in a given model, and weighing that value by the models’ AICc weight (Cade 264 

2015). These scaled t-values represent the relative effect size of each covariate between 0 265 

(unimportant) and 1 (important). Next we generated model predictions to visualise the effect of 266 

each covariate with scaled t-value > 0.4, excluding remaining fixed effects and random effects 267 

and correcting predictions by each models’ AICc weight, with prediction uncertainty represented 268 

by the AICc-weighted sample variance (Robinson et al. 2017). Our multi-model approach 269 

accounts for uncertainty in the ‘best’ fitted model when AICc scores indicate several models are 270 

equally valid (Burnham and Anderson 2003). We avoid potential biases in model-averaged 271 

coefficient sizes by presenting effect sizes as standardised t-values, which are more informative 272 

measures of covariate importance than sums of AICc weights (Cade 2015).  273 

Benthic and fishing influences on assemblage-level grazing rates will be underpinned by 274 

differences in the number and size of grazing fishes (Hoey & Bellwood 2008). Indeed, as grazing 275 

estimates were derived from feeding data combined with UVC biomass data we expected grazer 276 

biomass to correlate strongly with grazing rates. Although size-selective overfishing is expected 277 



to have disproportionate impacts on grazing function (because grazing rates increase with body 278 

size; Lokrantz et al. 2008), depletion of large-bodied fish may be offset by increased abundances 279 

of smaller individuals (Bellwood et al. 2012). Thus, we examined how grazing functions vary 280 

with assemblage size structure by modelling the effects of grazer biomass and the proportion of 281 

large-bodied fishes (LFI; number of individuals > 15 cm for croppers or 30 cm for scrapers) on 282 

grazing rates. For each function, we fitted a generalized linear mixed effects model with 283 

interaction between biomass and LFI, for each observation i at each reef j in dataset k, and 284 

Gamma-distributed errors: 285 

 286 

  Eq. 2 287 

 288 
We weighed model support for each covariate and the interaction between biomass and the LFI 289 

with AICc (Burnham and Anderson 2003), selecting the top-ranked model for interpretation and 290 

visualization. We visualized the continuous interaction by estimating grazing rates across the 291 

range of observed grazer biomass at two LFI values: dominance by small fishes was represented 292 

by an assemblage with LFI = 0.25 (i.e. 25% of individuals were large-bodied), and dominance by 293 

large fishes was represented by an assemblage with LFI = 0.75 (i.e. 75% of individuals were 294 

large-bodied). 295 

All data were analysed in R (R Core Team 2018), using packages lme4 (linear mixed 296 

effect models, Bates et al. 2015), MuMIn (multimodel inference, Bartoń 2013), and rethinking 297 

(Bayesian models, McElreath 2017). 298 

 299 

Results 300 

 301 



For cropping fishes, 9 species were assigned individual bite rates (representing 32.9% of 302 

biomass for this group), and remaining species were assigned genera-specific (54.4%) or an 303 

average cropper bite rate (12.6%). Assemblage-level cropping rates ranged from 0.04 to 5.52 g C 304 

ha-1 min-1, with cropping highest on GBR and Chagos archipelago reefs (Fig. S3A). Irrespective 305 

of region, cropping was maximised in complex habitats with high substrate availability and low 306 

macroalgal cover (Fig. 1A-C), while hard coral or rubble cover were weak influences (Fig. 2). 307 

Cropping rates were weakly affected by fisheries management status, and were similar across 308 

remote, protected and fished reefs (Fig. 2).  309 

 310 

 311 

Figure 1. Predicted effects of benthic and fishing drivers on potential cropping (A-C) and 312 
scraping (D-F) rates. Benthic effects are available substrate (A, D) and structural complexity 313 
(B, E) for both grazing groups, and macroalgae (C) for croppers. Fishing effects are management 314 
status for scrapers (F). Lines and points are grazing rates as predicted by top model sets (≤ 7 315 
AICc units from top-ranking model) holding other covariates to their means, with each model 316 
prediction weighted by its AICc weight and error represented as sample variance. All visualized 317 
covariates had relative effect size ratios > 0.4 (Fig. 2). Decile rugs indicate the spread of 318 
observed data. 319 



 320 

 321 

Figure 2. Relative effect of benthic composition and fishing pressure on modelled grazing 322 
rates for croppers (left) and scrapers (right). Bars are relative effect size ratios of each 323 
covariate for top-ranking model sets (models ≤ 7 AICc units of top-ranked model), scaled to 324 
indicate very weak (0) or very important (1). See Table S3 for covariate effect sizes across the 325 
top-ranking model sets. 326 
 327 

 328 

Feeding data were more highly resolved for scraping herbivores, with all fishes assigned 329 

size-specific bite areas, and either species- (27 of 35 species, 80.9% of UVC) or genera-specific 330 

bite rates (19.1%). Scraping rates were greatest on GBR reefs (> 1 m2 min-1 ha-1) and lowest on 331 

Maldives reefs (< 0.3 m2 min-1 ha-1) (Figure S4B). Scraping rates increased with available 332 

substrate (Fig. 1D) and structural complexity (Fig. 1E), but in contrast to croppers, were 333 

relatively invariant with macroalgal cover (Fig. 2). Remote reefs had the greatest scraping rates, 334 

which were considerably lower on fished and protected reefs (Figs. 1D, 2). After accounting for 335 

these coarse protection effects, scraping was only weakly associated with total fishable biomass 336 

(Fig. 2).  337 



Herbivore biomass is often used as a proxy for the magnitude of their function, but the 338 

relationship between biomass and function is rarely tested. Here, cropping rates were strongly 339 

and positively correlated with cropper biomass (R2 = 0.99, Fig. 3A), indicating that the drivers of 340 

biomass variation would match tightly to the modelled drivers of cropper function. Similarly, 341 

scraping rates increased with scraper biomass but with greater levels of unexplained variation 342 

(R2 = 0.81) which occurred across the biomass gradient (Fig. 3B). Size structure (LFI, the 343 

proportion of large-bodied individuals in each assemblage) modified function ~ biomass 344 

relationships, with potential cropping and scraping functions increasing as assemblages became 345 

dominated by smaller-bodied individuals (Fig. 3, Table 1). Size structure effects were 346 

moderately stronger for scrapers (parameter coefficient = -0.317 ± 0.03 standard error) than 347 

croppers (-0.087 ± 0.001). For example, at average grazer biomass levels (croppers = 65 kg ha-1, 348 

scrapers = 370 kg ha-1), grazing rates were 15% (croppers) and 21% (scrapers) greater in small-349 

bodied assemblages (LFI = 25%) than in large-bodied assemblages (LFI = 75%).  350 

 351 



Figure 3. Association between grazing function, grazer biomass, and assemblage size 352 
structure. Reef-level estimates of cropper algal consumption (A) and scraper area grazed (B) 353 
plotted against UVC biomass (log10 scale), coloured by the LFI. Lines are model fits of grazing ~ 354 
biomass relationships for small-bodied assemblages (solid line: 25% of individuals are large-355 
bodied fish) and large-bodied assemblages (dashed line: 75% of individuals are large-bodied 356 
fish), shaded with two standard errors. Large fishes are defined as ≥ 15 cm for croppers and ≥ 30 357 
cm for scrapers.  358 
 359 
 360 
 361 
Table 1. AIC selection for grazing function ~ grazer biomass + LFI models. Parameter 362 
coefficients, AICc and AICc weights are shown for all competing models, ranked by AICc and 363 
with the top-ranked model in bold. 364 
  365 



Intercept Biomass LFI LFI*biomass AICc ∆AICc AICc weight 
Croppers       

0.024 0.728 -0.087 - -296.935 0 0.748 
0.025 0.727 -0.086 -0.002 -294.759 2.176 0.252 
0.077 0.681 - - -208.064 88.871 0 
0.414 - 0.183 - 226.190 523.125 0 
0.362 - - - 4.000 239.595 0 

Scrapers       
-0.581 0.693 -0.317 0.084 -117.791 0 1 
-0.542 0.654 -0.306 - -100.337 17.454 0 
-0.526 0.522 - - -45.345 72.446 0 
-0.445 - - - 97.598 215.389 0 
-0.446 - 0.074 - 98.559 216.350 0 

 366 
 367 

Discussion 368 

Evaluating herbivory through a macroecology lens provides insights into the functioning 369 

of a broad range of coral reefs, including coral, rubble and algal benthic states in both remote and 370 

exploited ecosystems. We found that herbivore assemblage grazing rates varied substantially 371 

across the Indo-Pacific, and in accordance with top-down (i.e. fishing pressure) and bottom-up 372 

(i.e. benthic habitat) drivers which were specific to each functional group. Cropping rates were 373 

primarily controlled by bottom-up influences, with function maximised in complex habitats that 374 

feature high substrate availability and low macroalgae cover. Conversely, for parrotfishes, 375 

scraping rates were maximised on remote reefs in the Chagos archipelago which is isolated from 376 

fishing pressures, and increased with available substrate and structural complexity. Benthic and 377 

fishing influences were underpinned by the strong dependence of grazing rates on fish biomass, 378 

although we also demonstrate that reefs dominated by small-bodied fishes exert moderately 379 

greater grazing rates. 380 



 Cropping rates were primarily mediated by benthic habitat type, in particular structural 381 

complexity, macroalgae cover, and substrate availability. Our results emphasize the strong 382 

dependence of small-bodied reef fishes on benthic composition (Munday and Jones 1998, 383 

Wilson et al. 2010), and demonstrate that potential cropping function is relatively unaffected by 384 

top-down fishing effects, likely because cropping assemblages are mostly comprised of small-385 

bodied fishes which are not targeted in many reef-associated fisheries (Hicks & McClanahan 386 

2012). Strong relationships between benthic composition and the grazing function of small-387 

bodied reef fish likely reflects the importance of resource availability, which has been shown to 388 

have stronger control on cropping surgeonfishes than fishing pressure (Russ et al. 2018). For 389 

example, the decrease in cropping rates with increasing macroalgae may be due to feeding 390 

avoidance in macroalgal-dominated areas (Hoey & Bellwood 2011), as well as lower 391 

accessibility of turf algae under macroalgal canopies (Roff et al. 2015). In contrast, reefs with 392 

high EAM (i.e. substrate availability) support expansive and easily accessible turf mats which 393 

are targeted by large grazer populations (Williams & Polunin 2001), which in turn limit the 394 

development of larger macroalgae. Strong benthic effects imply that cropper functioning will 395 

respond more strongly to habitat disturbances, such as coral bleaching, severe storms or nutrient 396 

enrichment of algal communities (i.e. algal growth), than to fishing. Indeed, disturbances which 397 

increase substrate availability for turf algal growth, such as coral mortality from heat stress, 398 

typically stimulate an increase in grazer abundance (Wilson et al. 2006, Gilmour et al. 2013, 399 

Russ et al. 2018). However, since structural complexity was also shown to be a strong driver of 400 

cropping rates, and flattening of reef structure has been linked to decreases in nutritional value of 401 

algal turf patches (Tebbett et al. 2019), any positive rebound of cropping function may be 402 

negated if disturbances also erode structural complexity (Graham et al. 2006, Wilson et al. 2019). 403 



Scraping was strongly influenced by fishing pressure at reefs inhabited by humans, with 404 

exploitation suppressing scraping rates far below those supported at remote, unfished reefs. This 405 

effect was stronger than influences of benthic cover and small-scale fishing protection, 406 

suggesting that bottom-up control of scraping assemblages on reefs is a relatively weak influence 407 

on their function, and that small-scale fishing protection does not conserve wilderness levels of 408 

scraping function. Movement of fish across reserve boundaries, particularly larger-bodied 409 

parrotfish which have larger home ranges (Green et al. 2014), and poor compliance with fishing 410 

regulations (Bergseth et al. 2018) likely limited the effectiveness of these small MPAs, many of 411 

which are adjacent to fishing grounds. Indeed, local extirpation of one parrotfish species 412 

(Bolbometopon muricatum) across the Indo-Pacific has also diminished bioerosion and coral 413 

predation functions (Bellwood et al. 2012). Scraping rates also increased moderately with 414 

structural complexity, further underlining the importance of coral reef structure in supporting 415 

herbivory (Nash et al. 2016a). As with croppers, the positive effect of available substrate on 416 

scraping rates is consistent with evidence that many scraping species respond positively to 417 

disturbances that clear substrate area (e.g. coral declines, Wilson et al. 2006), with increases in 418 

scraping function likely to promote coral recovery (Gilmour et al. 2013). 419 

By modelling observed grazing rates and omitting benthic and fishing covariates, we 420 

demonstrated how grazing rates can vary simply as a function of biomass and size structure. 421 

Because grazing rates were positively correlated with grazer biomass and grazing calculations 422 

were derived from body mass estimates, this suggests that benthic and fishing drivers are 423 

proximate drivers of grazing function through their effect on biomass. However, for a given level 424 

of biomass, assemblages dominated by small-bodied fishes had a higher grazing potential than 425 

those dominated by large-bodied fishes. These findings are consistent with evidence that grazing 426 



functions on exploited reefs may be maintained by high densities of small-bodied parrotfish 427 

(Bellwood et al. 2012). Smaller fish have higher mass-specific metabolic rates (Gillooly et al. 428 

2001) and thus may feed more intensively per unit of fish biomass than large fish. Therefore, this 429 

may explain why the LFI relationship was strongest for scraping rates which were modelled 430 

using size-specific feeding data. In contrast, large-bodied fishes comprised a greater fraction of 431 

assemblage biomass on high-biomass reefs (e.g. > 500 kg ha-1, Fig. 3), suggesting that reefs 432 

where grazing functions are maintained by few large individuals may be particularly vulnerable 433 

to fishing effects. 434 

To integrate UVC data across the Indo-Pacific we generalized across cropper species 435 

which are known to perform distinct feeding roles. For example, croppers have well-documented 436 

differences in morphology, diet (e.g. detritivores or turf), and feeding behaviours (Choat et al. 437 

2002, Wilson et al. 2003, Tebbett et al. 2017), though large-scale studies such as ours typically 438 

aggregate all cropping species into a single functional group (e.g. Heenan et al. 2016). We 439 

defined cropping function using species- or genera-specific bite rates, with a high proportion of 440 

individuals assigned average grazing rates (Supplementary Methods, Table S1, Fig. S3). As 441 

such, current practices for estimating cropping function at assemblage scales are largely 442 

reflective of biomass levels rather than species-specific differences in feeding rate. We inferred 443 

feeding rates of 46 unobserved species from nine well-studied species, which limited our 444 

understanding of assemblage-level cropping function. Although small-scale studies of feeding 445 

behaviours (e.g. Marshell & Mumby 2015, Tebbett et al. 2017) inevitably provide greater 446 

taxonomic resolution than large-scale studies which infer feeding behaviours for high numbers of 447 

species (here), uniting behavioural data with community-level ecological surveys is a key 448 

frontier for functional ecology research on coral reefs. Certainly, future macroscale research on 449 



reef grazing functions will require more high resolution databases on cropping feeding 450 

behaviours. Finally, because our UVC datasets excluded fish < 8 cm, we likely underestimated 451 

the grazing potential of small-bodied individuals which only produce minimal bite scars and thus 452 

also contribute to cropping rates (Adam et al. 2018; Hoey 2018). 453 

For scraping functions, which are more consistent among species (Bellwood and Choat 454 

1990, Bonaldo et al. 2014) and more finely resolved with species- and size-specific bite rates, 455 

our results suggest that grazing rates can partially decouple from grazing biomass. Such patterns 456 

support recent findings that grazing metrics which include species-specific feeding behaviours 457 

are better predictors of benthic change than grazing biomass (Steneck et al. 2018). For both 458 

functions, our approach of modelling genera- and species-specific bite rates from observations 459 

collected in several regions enabled us to leverage observational data in a hierarchical framework 460 

which predicts grazing rates of new, related species, given uncertainties in species and genera 461 

(and body size for scrapers). For example, we were able to assign bite rates to species observed 462 

in UVC but not observed in feeding surveys, with estimates that were informed by the feeding 463 

behaviour of closely related congeners. Such models could be further improved with additional 464 

feeding data on other herbivore species in different regions, and could even be developed to 465 

account for temperature effects on grazing rates (Bruno et al. 2015) and examine how herbivory 466 

might respond to ocean warming.  467 

Random intercepts in the predictive models indicated that regional differences in grazing 468 

rates were unexplained by benthic and fishing covariates, which is likely due to unmeasured 469 

processes that control feeding rates and herbivore biomass. For example, herbivore biomass 470 

variation (and thus grazing function) has been linked to differences in benthic (Russ et al. 2003) 471 

and oceanic productivity (Heenan et al. 2016). Similarly, behavioural observations indicate that 472 



grazing intensity is constrained by wave exposure (Bejarano et al. 2017) and sedimentation 473 

(Goatley & Bellwood 2012), while scraping rates can be higher in no-take fishing areas (Nash et 474 

al. 2016b) which may have led us to underestimate grazing function on protected reefs. Grazing 475 

rates may also increase with biodiversity, whereby grazing is maximised when numerous 476 

common species are abundant (i.e. high species richness) and when the identity of dominant 477 

grazing species varies among neighbouring reefs (i.e. high β-diversity) (Lefcheck et al. 2019), or 478 

simply because biodiversity promotes fish biomass (Duffy et al. 2016). Because such 479 

biodiversity effects operate at regional scales, compositional differences may further contribute 480 

to the unexplained variation in our modelled grazing rates. More broadly, our space-for-time 481 

approach and focus on bottom-up and top-down drivers of herbivore grazing precludes detection 482 

of non-linear changes in grazing rates that may arise when herbivore assemblages reorganize in 483 

response to acute disturbances (Han et al. 2016). Temporal analyses which link habitat 484 

suitability, primary productivity, and herbivory would greatly develop our understanding of how 485 

grazing functions influence long-term changes in reef state and, for example, identify grazing 486 

thresholds for maintaining coral-dominated reefs.  487 

By integrating feeding rates with UVC data across a gradient of grazing biomass, we 488 

generated reef-level estimates of potential grazing pressure at four Indo-Pacific coral reefs. Our 489 

study demonstrates how benthic habitat and fishing pressure influence the functional potential of 490 

herbivore assemblages, at relevant scales for understanding ecosystem-level responses to 491 

disturbances such as bleaching (Nash et al. 2016a). Cropping pressure is likely to increase in 492 

response to stressors which clear substrate space for turf growth, though responses to physical 493 

disturbances will vary across species according to their life history characteristics (e.g. 494 

recruitment rates, Russ et al. 2018). Intact reef structure will be critical for maintenance of both 495 



grazing functions, though reefs in close proximity to human populations are unlikely to return to 496 

wilderness levels of scraping pressure, even with protection from fishing (MacNeil et al. 2015). 497 

For a given level of biomass, dominance by smaller-bodied fishes will enhance grazing, though 498 

we stress that biomass was by far the most important predictor of grazing functions and recovery 499 

or protection of fish biomass will help ensure herbivory processes are functionally intact on 500 

degraded coral reefs (Williams et al. 2016).  501 
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