1 Impac	t of overexpres	sion of 9- <i>cis</i> -epo	xycarotenoid dioxygenase	on
---------	-----------------	----------------------------	--------------------------	----

2 growth and gene expression under salinity stress

3 4 5	Cristina Martínez-Andújar ^{a*} , Ascensión Martínez-Pérez ^a , Almudena Ferrández- Ayela ^b , Alfonso Albacete ^a , Purificación A. Martínez-Melgarejo ^a , Ian C. Dodd ^c , Andrew J. Thompson ^d , José Manuel Pérez ^b and Francisco Pérez-Alfocea ^a
6 7 8 9 10	^a Department of Plant Nutrition, CEBAS-CSIC, Murcia, Spain ^b Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Alicante, Spain ^c The Lancaster Environment Centre, Lancaster University, Lancaster, UK ^d Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
11	*Corresponding author: <u>cmandujar@cebas.csic.es</u>
12	Number of tables: 2
13	
14	Number of figures: 7
15	
16	Word count: 6400
17	
18	Supplementary data: 6
19	
20	
21	
22	
23	
24	
25	

26 Impact of overexpression of 9-cis-epoxycarotenoid dioxygenase on 27 growth and gene expression under salinity stress

28

29 Highlights:

- Constitutive ABA overproduction reduces shoot and root growth and close
 stomata, under optimal conditions.
- Constitutive ABA overproduction reduces the percentage loss in shoot and root
 growth and increases the total root length, under salinity conditions.
- The differential growth response in ABA overproducing plants between optimal and suboptimal conditions is related to differentially altered growth regulatory gene networks between both conditions.
- 37
- 38
- 39
- 40
- ...
- 41
- 42
- 43
- 44

To better understand abscisic acid (ABA)'s role in the salinity response of tomato 47 48 (Solanum lycopersicum L.), two independent transgenic lines, sp5 and sp12, constitutively overexpressing the LeNCED1 gene (encoding 9-cis-epoxycarotenoid 49 dioxygenase, a key enzyme in ABA biosynthesis) and the wild type (WT) cv. Ailsa 50 Craig, were cultivated hydroponically with or without the addition of 100 mM NaCl. 51 Independent of salinity, LeNCED1 overexpression (OE) increased ABA concentration 52 53 in leaves and xylem sap, and salinity interacted with the LeNCED1 transgene to enhance ABA accumulation in xylem sap and roots. Under control conditions, 54 LeNCED1 OE limited root and shoot biomass accumulation, which was correlated with 55 56 decreased leaf gas exchange. In salinized plants, LeNCED1 OE reduced the percentage loss in shoot and root biomass accumulation, leading to a greater total root length than 57 WT. Root qPCR analysis of the sp12 line under control conditions revealed upregulated 58 genes related to ABA, jasmonic acid and ethylene synthesis and signalling, gibberellin 59 and auxin homeostasis and osmoregulation processes. Under salinity, LeNCED1 OE 60 61 prevented the induction of genes involved in ABA metabolism and GA and auxin deactivation that occurred in WT, but the induction of ABA signalling and stress-62 adaptive genes was maintained. Thus, complex changes in phytohormone and stress-63 related gene expression are associated with constitutive upregulation of a single ABA 64 biosynthesis gene, alleviating salinity-dependent growth limitation. 65

66 Keywords

Abscisic acid, 9-*cis*-epoxycarotenoid dioxygenase, plant hormones, root gene
expression, salt stress, tomato (*Solanum lycopersicum*).

69 1. Introduction

70 Salinity is one of the major limiting factors for crop productivity, causing land 71 abandonment for agricultural purposes in arid and semi-arid areas throughout the world 72 [1]. In aiming to develop more stress-tolerant plants, manipulating both metabolism and signalling of different plant hormones has been a main biotechnological target [2, 3]. It 73 is clearly important to understand the effects of gene manipulation on whole-plant and 74 crop physiology to check its agronomic interest. The plant hormone abscisic acid 75 76 (ABA) is a good candidate for such genetic manipulation since it is involved in local and systemic responses to various abiotic stresses (drought, salinity, cold and high 77 78 temperature stresses) and regulating plant water status [4, 5]. ABA is also involved in 79 regulating developmental processes such as flower, fruit, root and seed development [6-8] some of which may be considered as stress-adaptive responses, mainly changes in 80 root system architecture [9]. Tomato for the fresh fruit market is predominantly grown 81 on rootstocks, and thus resistance to salinity stress can be potentially delivered through 82 breeding improved rootstock genotypes [10]. A greater understanding of the genetic and 83 84 molecular basis of resistance delivered through the root genotype will facilitate this breeding effort. 85

The first committed step in ABA biosynthesis in plants, catalyzed by 9-*cis*epoxycarotenoid dioxygenase (NCED) [11], is a target to manipulate endogenous ABA accumulation and to study its physiological effects. The tomato *LeNCED1* gene is strongly up-regulated under water-stress in leaf and root tissues [12]. Overexpression of *NCED1* in tomato and tobacco [13, 14] and *NCED3* in Arabidopsis [15] and rice [16] increased ABA levels in different tissues and reduced transpiration in the absence of stress. Improved drought and salinity (survival) tolerance was observed in *NCED* overexpressing tobacco, Arabidopsis and rice [13, 15], while increased biomass was
reported in creeping bent grass (*Agrostis palustris*) grown under drought and high
salinity [17].

Salinity rapidly (within a day) induces ABA accumulation in roots, xylem sap and 96 leaves of the tomato plant [18, 19] and this hormone accumulation is associated with 97 stomatal closure and growth inhibition. Physiological correlations in recombinant 98 inbred tomato populations suggest a involvement of ABA in regulating leaf biomass in 99 both the absence of stress, but also under salinity [2], although the underlying 100 mechanisms remain an open question. In different plant species, ABA-deficient mutants 101 102 had both positive and negative effects on growth, depending on the plant organ, timing 103 of exposure and growing conditions [20-22]. Multiple studies indicate that salt-induced growth inhibition is more severe in ABA-deficient mutants [23-26]. 104

105 Overexpressing LeNCED1 in tomato using the strong constitutive chimaeric Gelvin 106 superpromoter (sp) resulted in the "high-ABA lines" termed sp12 and sp5 (used in this study), which displayed moderately elevated ABA levels throughout the plants [14, 27]. 107 108 Under well-watered conditions, NCED OE plants had similar ABA levels and stomatal 109 conductance as moderately drought stressed WT plants [27]. In the case of well-watered sp5 plants, they also had a greater leaf area, and similar long-term biomass 110 accumulation when compared to WT plants, and their significantly lower stomatal 111 112 conductance with only a minor effect on assimilation rate greatly increased leaf water use efficiency [27]. It was proposed that any penalty in assimilation rate was 113 compensated by improved leaf water status and turgor-driven growth, and antagonism 114 of ethylene-induced epinastic growth inhibition [27]. However, young plant 115 establishment was delayed in sp5, and stronger ABA accumulation in leaves and xylem 116

with the *rbcS3C* promoter caused multiple negative phenotypes: photobleaching of young seedlings, interveinal leaf flooding, reduced chlorophyll and carotenoid content, and greatly reduced growth [28]. This suggests, in a crop improvement context, that the optimal rate of ABA biosynthesis in some environments may be above the naturally evolved rate when considering agronomic traits such as yield, water use efficiency and resistance to abiotic stress; however, exceeding the optimal amount does reduce growth.

Here we test the hypothesis that constitutive ABA overproduction alters the salinity response of tomato, and whether this is related to phytohormone levels and the associated ABA and stress signalling components before and during stress. Gasexchange parameters, ionomic and hormone profiling, and the expression of a set of genes used as abiotic stress-responsive biomarkers in roots [29] were determined.

128 2. Material and methods

129 2.1. Plant material, germination and growth conditions

The two independent tomato transgenic lines sp5 and sp12 in the genetic background of 130 131 the wildtype (WT) cultivar Ailsa Craig (AC) were previously reported [14]. These lines 132 constitutively overexpress the LeNCED 1 gene [14] under the control of the Gelvin superpromoter (sp) and contain elevated levels of ABA compared to WT, with sp5 133 134 accumulating more ABA than sp12 [27]. Since germination rates differed between 135 genotypes, different sowing dates were used to synchronise development of the three genotypes: sp12 and sp5 seeds were sown one and two weeks before the WT, 136 137 respectively. For all genotypes, seeds were sown in commercial vermiculite, watered 138 with deionized water and kept at 26-28°C and 80-90% relative humidity in the dark until germination. After 2-3 true leaves had emerged, uniformly-sized seedlings were 139 transferred to a hydroponic culture system in a controlled environment chamber. Plants 140

were floated in 20 L plastic black containers containing aerated half-strength modified 141 142 Hoagland solution. A factorial design of three genotypes x two salt treatments x six replicates was performed and the six replicates were randomly distributed in each 143 container. The environment was controlled to a 16/8 h day/night cycle with a 144 photosynthetic photon flux density (PPFD) of 245 μ umoles m⁻² s⁻¹. Day/night 145 temperature was 25/18°C and relative humidity was maintained in the range 40-60%. 146 After one week within the hydroponic system, the plants were exposed to 0 (control 147 treatment) or 100 mM of NaCl (salt treatment) added to the nutrient solution for 21 148 days. In both salt and control treatments, the nutrient solution was refilled daily and 149 replaced twice every week. 150

151 Vegetative growth (shoot and root fresh weight, FW) was assessed and tissues sampled after 11 and 21 (end of the experiment) days of salinity treatment (DST¹). Shoots and 152 roots were separated immediately and weighed to determine biomass. Young fully 153 expanded leaves and young roots were immediately frozen in liquid nitrogen for 154 hormonal and gene expression analysis. Mature leaves were weighed and stored in a 155 156 65°C oven for at least 48 hours to dry them for ionomic analysis. To collect root xylem sap, control plants were detopped under the cotyledonary node and a short silicone tube 157 fitted to the stump to collect spontaneously exuded xylem sap, which was removed with 158 a pipette and placed in pre-weighed microcentrifuge tube. In salinized plants, xylem sap 159 160 was collected by placing the roots in a Scholander-type pressure chamber and applying pneumatic pressure (0.2 - 0.8 MPa depending on the plant genotype). Leaves, roots and 161 162 xylem sap samples were stored at -80°C for further analyses.

¹ DST: Days of salinity treatment

164 2.2.Plant water relations measurements

165 Throughout the experiment, photosynthesis (A^2) and stomatal conductance (gs^3) were 166 measured in youngest fully expanded leaves using a CIRAS-2 (PP Systems, 167 Massachusetts, USA) between 09.00 h and 12.00 h (considering that light were turned 168 on at 08.00 h). CO₂ was set at ambient levels (400 ppm) and radiation matched the 169 chamber conditions (245 µmol m⁻² s⁻¹ PPFD).

Leaf water potential of the youngest fully expanded leaf was measured by thermocouple 170 psychrometry as previously described [30]. Discs of 8 mm diameter were punched from 171 172 leaves, placed immediately on clean sample holders and then wrapped in aluminium foil 173 to minimize water loss. After 20 discs had been collected (approximately 15 min), they were unwrapped and then loaded into C52 chambers (Wescor Inc., Logan, UT, USA), 174 175 incubated for 3 h and then voltages were read with a microvoltmeter (model HR-33T; Wescor Inc., Logan, UT, USA). Voltages were converted into water potentials based on 176 calibration with salt solutions of known osmotic potential. 177

178 2.3. Plant hormone extraction and analysis

Trans-zeatin (*t*-Z), indole acetic acid (IAA), abscisic acid (ABA), jasmonic acid (JA),
salicylic acid (SA), gibberellin A₃ (GA₃) and the ethylene precursor 1aminocyclopropane-1-carboxylic acid (ACC) were extracted and analysed as described
previouslyAlbacete, Ghanem, Martínez-Andújar, Acosta, Sánchez-Bravo, Martínez,
Lutts, Dodd and Pérez-Alfocea [18], with some modifications. Fresh plant material (0.1
g FW of leaf or root) was homogenized in liquid nitrogen and incubated in 1 mL of cold
(-20°C) extraction mixture of methanol/water (80/20, v/v) for 30 min at 4°C. Solids

² A: Photosynthetic rate

³ gs: Stomatal conductance

were separated by centrifugation (20 000 g, 15 min at 4°C) and re-extracted for 30 min 186 at 4°C with 1 mL of the extraction solution. Pooled supernatants were passed through 187 Sep-Pak Plus C18 cartridge (previously conditioned with 3 mL of extraction buffer) to 188 remove interfering lipids and some plant pigments. The supernatant was collected and 189 evaporated under vacuum at 40°C. The residue was dissolved in 1 mL methanol/water 190 (20/80, v/v) solution using an ultrasonic bath. The dissolved samples were filtered 191 through 13 mm diameter Millex filters with 0.22 µm pore size nylon membrane 192 (Millipore, Bedford, MA, USA) and placed into dark microcentrifuge tubes. 193

Ten μ L of filtrated extract (xylem, leaf or root) were injected in a U-HPLC-MS system consisting of an Accela Series U-HPLC (ThermoFisher Scientific, Waltham, MA, USA) coupled to an Exactive mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA) using a heated electrospray ionization (HESI) interface. Mass spectra were obtained using the Xcalibur software version 2.2 (ThermoFisher Scientific, Waltham, MA, USA). For quantification of the plant hormones, calibration curves were constructed for each analysed component (0, 1, 10, 50, and 100 μ g L⁻¹).

201 2.4. Ion extraction and analysis

To quantify Ca, K, Mg, Na, P, S, Mn, B and Zn concentrations, 0.1 g of dried and ground plant material (leaf or roots) was weighed and digested in a HNO₃:HClO₄ (2/1, v/v) solution. Ion analysis of root xylem sap, leaf and root tissue samples were performed in an inductively coupled plasma spectrometer (ICP-OES, ThermoFisher ICAP 6000 Series).

207

209 2.5. RNA isolation, cDNA synthesis and real-time quantitative PCR

Sample collection and RNA extractions were performed as described elsewhere [29].
Briefly, total RNA from ~150 mg of frozen tomato roots from each genotype and
treatment was extracted in triplicate using Tri-Reagent (Sigma-Aldrich, St. Louis,
USA), and the first strand cDNA was synthesized from 1 µg purified RNA using the
iScript Reverse Transcription Supermix (Bio-Rad, USA). The resulting cDNA was
diluted by adding 40 µL of sterile distilled water.

Primers were designed to amplify 79 to 143 bp of the cDNA sequences (Table 1) as 216 217 described before Ferrández-Ayela, Sánchez-García, Martínez-Andújar, Kevei, Gifford, 218 Thompson, Pérez-Alfocea and Pérez-Pérez [29]. To avoid amplifying genomic DNA, 219 forward and reverse primers were designed to hybridize across consecutive exons. Real-220 time quantitative PCR reactions were prepared with 5 µL of the SsoAdvanced SYBR Green Supermix (Bio-Rad, USA), 1 µM of specific primer pairs, 0.8 µL of cDNA and 221 222 DNase-free water (up to 10 µL of total volume reaction). PCR amplifications were carried out in 96-well optical reaction plates on a CFX96 Touch Real-Time PCR 223 224 Detection System (Bio-Rad, USA). Three biological and two technical replicates were 225 performed per genotype and treatment. The thermal cycling program started with a step of 30 s at 95°C, followed by 40 cycles (5 s at 95°C, 10 s at 55°C and 20 s at 72°C), and 226 a melt curve (from 65°C to 95°C, with increments of 1°C every 5 s). Dissociation 227 228 kinetic analyses and agarose gel loading and sequencing of the PCR product confirmed its specificity. 229

Primer pair validation and relative quantification of gene expression levels were performed by using the comparative Ct method [31]. Data were represented as the relative gene expression normalized to the Ct value for the tomato housekeeping gene 233 ACTIN2 (Solyc04g011500) as previously described [29]. In each gene, mean fold-234 change values relative to the expression levels of WT were used for graphic 235 representation. Δ Ct values were analyzed using SPSS 21.0.0 (SPSS Inc., USA) by 236 applying the Mann-Whitney U test for statistical differences between samples (P-value 237 ≤ 0.05).

238 2.6. In vitro culture

To investigate root growth of young seedlings in more detail, surface-sterilized (washed 239 in 5% NaOCI) tomato seeds of the WT and the sp12 line were germinated in vitro using 240 nutrient solution [32] diluted 350 times and supplemented with 10 g L^{-1} agar and 1% 241 sucrose. Seedlings were transferred to control and salt (50 mM NaCl) conditions when 242 the two cotyledons were developed (after 6 days for WT and 9 days for sp12). After 30 243 days of treatment, total root length (TRL⁴) was evaluated using WinRHIZO software 244 (Pro 2016, Regent, Canada). Root exudates were collected in sterile tubes following 245 246 centrifugation of the agar medium (20,000 g, 15 min at 4°C) and the supernatant used for hormonal analysis. 247

248 2.7. Statistical analysis

Data were subjected to 2-way analysis of variance (ANOVA) to test the main effects of genotype, treatment and their interaction. Analyses initially comprised all three genotypes, and then pairwise comparisons were made. Genotypic means were compared using Tukey's test at 0.05 of confidence level. Correlation analyses determined relationships between different plant variables. All analyses were performed using SPSS for Windows (Version 22.0, SPSS Inc., Chicago, IL, USA).

⁴ TRL: Total root length

255 **3. Results**

256 *3.1. Plant growth*

257 Plants grown for 21 days after reaching the 2-3 leaf stage were harvested. Under control conditions, LeNCED1 overexpression significantly decreased shoot biomass by 35-50% 258 259 compared to the WT (Fig. 1A); for root biomass, sp5 plants showed a significant decrease of 47% compared to WT, but sp12 did not differ statistically to WT (Fig. 1B). 260 Salinity reduced shoot and root growth by 70% and 40% respectively in WT plants, but 261 in sp5 and sp12 the reduction was lower: 53% and 50% reduction in the shoot 262 (P=0.007) and 14 and 27% reduction in roots, although this was not significant (Figs. 263 1A, B). Salinity increased root/shoot ratio, but there were no significant genotypic 264 265 effects (data not shown). With salinity, all genotypes had statistically similar biomass (Figs. 1A-C). Thus LeNCED1 overexpression decreased plant growth under control 266 267 conditions at this stage of plant development, but salinity had a smaller inhibitory effect on sp5 and sp12 growth than it did on WT growth. No differences in leaf water content 268 were found between genotypes, irrespective of the salinity treatment (data not shown). 269

270 *3.2. Leaf gas exchange*

Compared to the WT, *LeNCED1* overexpression had no statistically significant effect on photosynthetic rate under control or salinity conditions (Fig. 2A), but it significantly reduced stomatal conductance by 40-50% when both treatments were considered together (Fig. 2B). While salinity had the greatest effect on photosynthesis rate ($P \le$ 0.001), genotype had the greatest effect on stomatal conductance ($P \le 0.022$), and leaf gas exchange of all genotypes responded similarly to salinity (no significant genotype × treatment interaction).

279 3.3. Plant hormones

280 Abscisic acid

281 Under control conditions, sp5 plants had significantly higher ABA concentrations in roots (by 1.3-fold at 21 DTS) (Fig. 3F), xylem sap (by 3.5-fold at 21 DTS, Fig. 3E) and 282 283 leaves (by 1.6-fold at 11 DTS and 1.4-fold at 21 DTS, Fig. 3A, D), compared to the 284 WT. In sp12, ABA concentrations were similar in roots (Fig. 3C, F), significantly 285 higher in xylem sap at 11 DST (1.9-fold, Fig. 3B) and slightly higher in leaves (1.2-286 fold, Fig. 3A, D) compared to the WT. Salinity increased xylem sap (Fig. 3B, E) and 287 leaf (Fig. 3A, D) ABA concentrations in all genotypes, but in roots ABA only significantly accumulated in sp5 after 11 DST (Fig. 3C and Table S3). While salinity-288 289 induced leaf ABA accumulation was similar in all genotypes (no significant genotype \times salinity treatment interaction, Fig. 3A, D and Table S3), xylem sap ABA concentration 290 291 only significantly increased in sp12 and sp5 at 11 DST (Fig. 3B); this was confirmed in the genotype \times salinity treatment interaction in xylem sap ABA at 11 DST (Fig. 3B). 292

Overall, *NCED* OE provoked significant ABA accumulation in xylem and leaves in sp12 and sp5, but in the roots the additional ABA accumulation was specific to sp5 at 11 DST (Fig. 3C). Additionally, it was apparent that both sp12 and sp5 gave a stronger increase in xylem sap ABA concentration in response to salinity than WT, but this was restricted to 11 DST (Fig. 3B).

Under control and salt conditions, there were no significant genotypic differences in 300 root, xylem and foliar JA concentrations on either sampling time (Fig. 4A-F and Table 301 S3). Salinity significantly increased xylem JA concentration after 11 DTS ($P \leq 0.001$, 302 Fig. 4B), but not after 21 DTS (Fig. 4E). Salt treatment decreased root JA 303 concentrations in all genotypes at 11 DST ($P \le 0.041$) and 21 DST ($P \le 0.002$) (Figs. 304 4C, F), but had no consistent effect on foliar JA concentrations (Fig. 4A, D). Overall the 305 306 salinity-induced reduction in JA in the roots, independent of genotype, was the clearest observation. 307

308 Salicylic acid

Under control conditions, the sp5 line had significant increased xylem (11 DTS) and
foliar SA concentration (21 DTS) compared to the WT. Salinity significantly decreased
root SA concentrations, but increased xylem SA concentrations, while having no effect
on foliar SA concentrations (Table S1 and S4). The highest root, xylem sap and leaf SA
concentrations occurred in sp5 plants at 21 DST (Table S1).

314 *Gibberellic acid*

Under control conditions, xylem GA₃ concentrations were 2-fold higher in the *NCED* OE lines at 11 DTS, but in sp12 returned to WT levels at 21 DTS. Salinity had no significant effect on xylem GA₃ concentration (Table S4). Xylem GA₃ levels in sp5 were higher than in WT plants only at 21 DST (Table S1). This hormone was not detected in other tissues.

320 *1-Aminocyclopropane-1-carboxylic acid*

321 Under control conditions, ACC concentrations were significantly lower in sp12 (xylem)

and sp5 (leaf and xylem) plants at 11 DST, compared to the WT (Table S1). Significant

salt treatment effect was found only in root ACC concentrations ($P \le 0.0001$ at 11 DST,

324 $P \le 0.001$ at 21 DST, Table S4). While salinized sp5 plants had the highest root ACC

325 concentrations in both harvest points, sp12 had the highest xylem (11 DTS) and leaf (21

326 DST) ACC concentrations (2-fold) (Table S1).

327 Cytokinins

Under control conditions, sp5 had lower root concentrations of *trans*-zeatin (*t*-Z) than the WT, but significant differences occurred only at 21 DST (Table S1). Salinity increased xylem and leaf (only in sp12) *t*-Z concentrations (Table S1, Table S4), but decreased root *t*-Z concentrations in WT and sp12 roots after 21 DST.

332 Indole-3-acetic acid

Under control conditions, there were no significant genotypic effects on IAA
concentrations (Table S1, S4). Salinity decreased root (AC and sp12) and leaf (sp12)
IAA concentrations at 21 DST, while xylem IAA concentrations increased only in sp12
plants at the second harvest point (Table S1).

337

338

339 *3.4. Nutrients*

340 Salinity treatment increased leaf, xylem sap and root Na⁺ concentrations by 55-, 200-341 and 44-fold respectively (averaging across both measurement times). Salinized sp5 plants had the lowest xylem Na⁺ concentrations at 21 DST, but significant differences
were found only compared to sp12 plants (Table S2). In salinized plants, xylem sap Na⁺
concentrations significantly decreased in sp5 at 21 DST. K⁺ concentrations decreased in
both leaf and roots, while they decreased xylem compared to control conditions (Table
S2).

After 21 DTS, sp5 had the highest root Mg and Mn concentrations compared to the WT
(Table S2). Roots of salinized sp5 consistently had the highest Fe concentrations (Table
S2). Under control conditions, P and S concentrations did not differ among genotypes
while salinized sp12 plants had significantly higher xylem P concentrations at 21 DST
(Table S2).

352 *3.5.* In vitro total root length (TRL) and ABA concentration in root exudates

Under control conditions, TRL of sp12 was 2.5-fold less than the WT, while TRL of sp12 was more than double than that of the WT under saline conditions. Salinity decreased TRL of WT seedlings by 80%, while TRL of sp12 roots was not affected (Fig. S1A). Under control conditions, ABA concentration in the growing medium surrounding the roots was higher in samples collected from sp12 (0.85 nM), than WT (0.005 nM) plates. Under salinity, ABA was only detected in WT exudates (8.3 nM) (Fig. S1B).

360 3.6. Root gene expression responses

Since *NCED* OE prevented salinity-induced root growth inhibition, the expression of a
set of ABA, stress and root-development related genes was analyzed in this organ in the
WT and the sp12 line under both control and salinity conditions.

365 Under control conditions, the ABA-signalling related genes WRKY70/WRKY6, ATHB12 366 and AREB1 were significantly upregulated in sp12 roots compared to the WT. Additionally, salinity induced ATHB12 and AREB1 expression to a higher level in sp12 367 368 than in WT, but there was no difference for WRKY70/WRKY6 (Fig 5A, 6). WT and sp12 roots had similar expression of ABA-biosynthetic (ZEP1, FLC/AAO, DXS) and 369 catabolic (CYP707A, ABA 8'-hydroxylase) genes (Fig. 5A, 6) under control conditions. 370 In contrast, salinity upregulated those genes in WT roots (3 to 300-fold), while they 371 remained unchanged in sp12 roots compared to control conditions. Thus, in comparison 372 373 to WT, sp12 roots show enhanced expression of some ABA-signalling related genes 374 under control and salinity and salinity conditions. However, the salinity-induced 375 increase in expression of ABA biosynthesis and catabolism genes observed in WT, does 376 not occur in sp12 (Fig. 5A, 6).

377 Stress-related genes

Under control conditions, the osmotic stress-related genes *TAS14*, *PIP1.2*, *PRO2/P5CS KIN2* and *MYB* were significantly upregulated in sp12 roots compared with the WT (Fig. 5B, 6). Salinity upregulated the *PRO2/P5CS*, *KIN2* and especially *TAS14* genes in sp12 roots compared to control conditions, while *MYB* was inhibited, and *PIP1.2* was not affected. All these genes reached similar expression levels under salinity in both genotypes, except *PRO2/P5CS* expression that was 35% lower in sp12 roots than in the WT (Fig. 5B, 6).

385 *Ethylene-related genes*

Under control conditions, the expression of the ethylene biosynthesis gene ACSIA 386 387 (encoding 1-aminocyclopropane-1-carboxylate synthase 1) was 9-fold higher in sp12 than in WT. After salinity treatment, ACS1A expression was induced >100-fold in WT, 388 and in sp12 it also increased to match the WT level. JERF1 (jasmonate and ethylene 389 response factor), a member of the ERF family, was expressed 3.5-fold more in sp12 390 than in WT under control conditions, and, upon salinity treatment, the WT increased 391 expression to match the sp12 control level, but the sp12 level remained unchanged (Fig. 392 5C, 6). Thus, NCED OE increased expression of ethylene synthesis and signaling 393 components under control conditions, but the expression become similar between the 394 395 two genotypes under salinity treatment (Fig. 5C, 6).

396 *Auxin-related genes*

397 Under control conditions, the auxin-related genes IAASGH3 (indole-3-acetic acid-amido synthase GH3) and ARF6 tended to be upregulated in sp12 compared to WT roots, 398 399 while LAX2, DFL1 and GH3.3 were not affected (Fig. 5D, 6). Under salinity, IAASGH3 and GH3.3 were the most highly expressed genes in both genotypes (500- and 60-fold, 400 respectively). Among other auxin-related genes, LAX2, DFL1 and ARF6, their 401 402 expression did not increase significantly under salinity treatment, whereas it did in WT. Together, these observations suggest that NCED OE led to the removal of active auxins 403 by conjugation (IAAsGH3) under control conditions, and to the prevention of the 404 405 salinity-induced activation of auxin signalling observed in WT.

406 *JA-related genes*

407 Under control conditions, the JA biosynthetic and responsive genes *LOX* and *JA1* were
408 down-regulated while *JA2* was strongly (70-fold) upregulated in sp12 roots compared to

WT (Figs. 5E, 6). Salinity reduced *LOX* expression in both genotypes and had no effect
on the *JA1* transcription factor, which was 50% down-regulated in sp12 compared to
WT. In contrast, the *JA2* transcription factor was strongly and similarly up-regulated
(140-200-fold) in both WT and sp12 under salinity (Figs 5E, 6).

413 *GA-related genes*

Under control conditions, the GA biosynthesis gene GA20ox-1 was down-regulated, and the GA deactivation gene GA2ox-3 gene was upregulated (3-fold) in sp12 compared to WT roots (Fig. 5F, 6), suggesting that sp12 roots might have less GA, although GA was not present at detectable levels in roots of WT or sp12 (Table S1). Salinity upregulated GA2ox-3, but downregulated GA20ox-1 (7.5-fold) in WT plants. However, neither the expression of GA2ox-3 nor that of GA20ox-1 responded to salinity in sp12 (Figs. 5F, 6).

To summarise, NCED OE in the absence of stress (no added salinity) induced stress-420 adaptive gene expression responses related to some processes, i.e. ABA signalling, 421 osmotic adjustment, ACC and JA synthesis and GA and IAA deactivation. In some of 422 423 these cases, salinity treatment did not result in any further increases in gene expression 424 in sp12, presumably because expression in the absence of stress was already high (i.e. JA2, KIN2). In other cases there was an additive effect, where gene expression was 425 426 higher in sp12 in both control and salinity treatments (i.e. ATHB12, AREB1). However, NCED OE also prevented salinity-induced gene expression of ABA metabolism, IAA 427 428 signalling and GA deactivation, suggesting that sp12 had constitutive mechanisms that 429 led to avoidance (or lack of perception of) some aspects of salinity stress.

430 **4. Discussion**

431 Constitutive ABA overproduction via *NCED* OE induced complex changes in root gene
432 expression and plant hormone levels and ultimately biomass and root development (Fig.
433 7). It is important to understand how these changes may affect resistance to salinity
434 stress.

435

436 4.1. LeNCED1 overexpression limits growth of young plants in the absence of
437 imposed stress, but maintains shoot growth and enhances total root length under

438 salinity stress

439 *Control treatment*

440 Limited root and shoot growth of the NCED OE lines under control conditions (Fig. 1) was likely due to the higher ABA concentrations which can act to reduce growth 441 442 directly through signalling pathways [33], may limit photosynthesis by inducing partial stomatal closure (there was a non-significant reduction in assimilation under control 443 444 treatment; Fig. 2A), may deplete protective xanthophylls, or may perturb water relations. Although, early seedling establishment until the four-leaf stage was delayed, 445 previously sp5 plants compared to WT had increased leaf area and maintained their 446 447 biomass accumulation when grown for 10 weeks [12], indicating developmental differences in response to elevated ABA. The study reported here was performed with 448 younger plants that may be more sensitive to ABA-mediated growth inhibition, so it 449 450 will also be important to determine growth responses to salinity in older plants.

451 *Salinity effects*

452 Despite the reduction in biomass for sp12 and sp5 under control conditions, salinized 453 plants achieved similar growth and photosynthesis than WT (Figs. 1, 2). Thus, the sp12 454 and sp5 plants gave a smaller growth reduction percentage comparing control and

salinity treatments. Remarkably, sp12 produced 2.5-fold more TRL than WT under 455 456 salinity, thus root system development was much less sensitive to salinity in sp12. This is in agreement with previous work on ABA deficient mutants where basal ABA 457 production was shown to be required to maintain leaf and root growth under both 458 salinity [23, 26] and drought [8] conditions. Our study goes further to show that higher 459 levels of ABA through transgenesis can reduce the impact of salinity on growth, 460 particularly TRL (Fig. 1, S1), and this is an improvement in relation to the WT 461 462 response.

463 *4.2.* The impact of LeNCED1 overexpression on ABA accumulation

464 Constitutive *LeNCED1* gene expression increased leaf and especially xylem ABA 465 concentrations in sp12 and sp5, and there was a stronger interaction between xylem 466 ABA and salinity treatment in the sp12 and sp5 lines than in the WT (Fig. 3). Xylem 467 ABA in recently detopped plants could have arisen partly through synthesis in the shoot 468 (i.e. ABA imported before detopping), or from the root according to models of 469 recirculation [34]. But grafting experiments clearly showed that root-synthesized ABA 470 is not required for stomatal closure [35].

471 However, for roots, ABA concentration was not elevated in sp12 or sp5 in control treatment, nor did it increase under salinity in WT or sp12, but only in salinity-treated 472 sp5 (Fig. 3, Table S3). This is surprising because in other studies the root ABA 473 concentration was ~50% higher in sp12 roots compared to WT in both grafted whole 474 plants and in root cultures[36], and 80% higher in roots from non-grafted whole plants 475 [27]; indeed, the LeNCED1 gene expression was previously confirmed to be elevated 476 108-fold and 203-fold relative to WT in cultured roots of sp12 and sp5, respectively 477 [36]. Salinity is also known to increase root ABA by 60-80% in other studies [26]. So, 478

in the present study there may have been unknown environmental interactions that
prevented salinity and the *NCED* OE from causing additional accumulation of root
ABA.

482

483 *4.3. NCED OE prevents salinity-induced gene expression for ABA metabolism genes*

ABA might regulate its own accumulation via feedback mechanisms that regulate 484 485 catabolism via changes in the expression of CYP707A [37-39]. Also ABA is reported to 486 stimulate expression of ABA biosynthesis genes in Arabidopsis by positive feedback [40]. As mentioned above, we found that, in sp12 roots, there was no accumulation of 487 488 ABA relative to WT, excluding the possibility of feedback mechanisms mediated by ABA concentration in the root. In fact, expression of ZEP1, FLC/AAO and DXS were 489 not significantly higher in sp12 than in WT roots under control or saline conditions (Fig. 490 5A), indicating no positive feedback. Nevertheless, surprisingly, the sp12 transgene 491 492 prevented the induction of expression of ABA biosynthesis (ZEP1, FLC/AAO, DXS) 493 and catabolism genes (CYP707A) that occurred under salinity in WT roots (Fig. 5A). 494 We speculate that a change in distribution of ABA, an increase in the flux of ABA, or a difference in ABA content not detected at the 11 or 21 DST time points in sp12, may 495 496 have triggered an unknown negative feedback signal or other adaptation that prevented the salinity treatment from activating these genes. Root, leaf and xylem sap Na⁺ 497 498 concentration was elevated to a similar level in both sp12 and WT under salinity 499 treatment (Table S2), so it is unlikely that stress avoidance was the reason for the 500 absence of salinity-induced gene expression.

503 Arabidopsis CYP707A loss-of-function mutants had enhanced ABA levels and lower 504 transpiration rates, with a similar phenotype to NCED OE lines including up-regulation of some ABA-inducible stress-related genes (TAS14, ATHB12, AREB1) under salinity 505 [38]. These loss-of-function mutants were hypersensitive to exogenous ABA, 506 presumably because of reduced catabolism of the applied ABA, while 507 508 Pro35S:CYP707A OE plants were ABA-insensitive, consistent with their expected ABA catabolism. Thus, the large increase in CYP707A expression that we observed 509 510 under salinity treatment in WT roots (Fig. 5A) would depress ABA levels. Furthermore, 511 the salinity treatment induced gene expression for both ABA synthesis (ZEP1, 512 FLC/AAO, DXS) and catabolism (CYP707A) in WT roots, and the ABA level remained the same, suggesting an increased flux (high synthesis and high catabolism), or a 513 balancing of import /export of ABA provided a homeostatic mechanism. 514

515 4.5. Expression of ABA signaling-related genes is enhanced in non-stressed sp12 roots

516 Upregulation of various genes under control treatment (WRKY70/WRKY6, ATHB12 and AREB1) in sp12 suggests enhanced constitutive ABA signalling compared to WT plants 517 518 (Fig. 5A). WRKY proteins have been associated with stomatal regulation and stress 519 tolerance, and modulate gene expression in the ABA signalling pathway [41], with ABA, drought, salinity and AREB OE upregulating the WRKY70/WRKY6 gene [42]. 520 521 Thus, WRKY70/WRKY6 could be a signaling intermediate involved in the reduction of 522 stomatal conductance in sp12. ATHB12 is an ABA and abiotic stress inducible homeodomain-leucine zipper protein that negatively regulates stem elongation by 523 down-regulating the GA20ox1 gene (Fig. 5F) and GA synthesis [43]. However, 524

ATHB12 overexpression also promotes both leaf and root growth through increased cell expansion and endoreduplication in Arabidopsis [44], and it is possible that *ATHB12* could have a role in the enhanced leaf area as reported previously in sp5 plants [27].

528

529 4.6. Sp12 plants upregulate stress protection-related processes under control
530 conditions

531 Several osmotic stress-related genes (PRO2/P5CS, TAS14, PIP1.2 KIN2 and MYB) were also upregulated in sp12 roots under control conditions compared to WT (Fig. 5B). 532 These genes are induced by ABA, abiotic stresses and in AREB OE plants and they 533 contribute to drought and salinity tolerance through proline (PRO2/P5CS), sugar and K⁺ 534 (dehydrin TAS14) mediated osmoregulation [42, 45-47], CO₂ transport facilitation 535 (aquaporin PIP1.2), Ca²⁺ regulation (LEA protein KIN2), and stress-mediated ABA 536 biosynthesis (MYB) [48]. Although these proteins may play a protective role in sp12 537 roots before and during the stress, both sp12 and WT plants had similar leaf water and 538 osmotic potential (Fig. S2), and K⁺ and Ca²⁺ concentrations (Table S2). Constitutive 539 expression of these genes may limit the growth of sp12 under control conditions, 540 depending on the developmental stage and endogenous sensitivity to these factors. 541

542 *4.7. Ethylene synthesis and/or signaling are induced in sp12 roots*

Although ABA downregulates production of the growth inhibitor ethylene [8, 49, 50], the *ACS1A* gene was surprisingly induced under control conditions in sp12 roots (Fig. 5C). Nevertheless, ACC did not accumulate in sp12 roots (Table S1), likely due to its rapid conversion into ethylene or alternative conjugation pathways. While upregulation of the ethylene-responsive transcription factor *JERF1* gene (Fig. 5C) suggested enhanced ethylene signalling, ABA and salinity may also directly induce the *JERF1*gene [51-53]. Interestingly, *JERF1* overexpression before or during stress increased or
maintained leaf and root growth of salinized plants by interacting with stress responsive
(i.e. proline synthesis) and ABA biosynthesis genes [52-54]. Thus, constitutive
induction of *JERF1* may enhance salinity tolerance in sp12.

Salinity significantly increased *ACS1A* gene expression in both WT and sp12 plants,
consistent with enhanced ACC concentrations throughout the plant [18] (Table S1).
Pronounced salinity-induced root ACC accumulation suggests that ACC may act as a
root-to-shoot signal [55], although reciprocal grafting studies with transgenic plants in
which ACC synthase is down-regulated [56, 57] are required.

558 4.8. Changes in auxin inactivation and signalling in sp12 are consistent with
559 repression of lateral roots under control conditions while inducing them under salinity

560 Salinity reduces primary root growth and induces lateral root development to enhance resource capture while limiting salt acquisition, a hormonally regulated process in 561 562 which auxin is key [1, 9]. While ARF-mediated transcription factors are required for 563 lateral root formation [58], the GH3 gene family encodes proteins that regulate auxin, jasmonic acid, and salicylic acid levels via amino acid conjugation for 564 565 degradation/storage (auxins) or activation (jasmonates) [59, 60]. Interestingly, salinity induced auxin-related genes (IAAsGH3, LAX2, DFL1, ARF6, GH3.3) (Fig. 5D) in WT 566 roots, suggesting that auxin conjugation (IAAsGH3, DFL1 and GH3.3) increased root 567 568 activity and potentially lateral root formation.

569 Constitutive ABA production (sp12) upregulated the auxin deactivation pathway 570 (*IAAsGH3*) under control conditions, but downregulated other genes (*LAX2*, *DFL1*,

ARF6, but not IAAsGH3 and GH3.3) under salinity (Fig. 5D). Upregulation of 571 572 *IAAsGH3* and *GH3.3* could limit root growth in sp12 (control) and WT (salinity) plants. However, greater root development of sp12 under salinity (Fig.S1A) can be explained 573 by down-regulation of LAX2, DFL1 and ARF6, along with induced IAAsGH3 and 574 GH3.3, suggesting that these genes have a limited role in auxin-mediated lateral root 575 formation or that the IAASGH3 (SIGH3.3) is required for this process, as in 576 577 Arabidopsis. Although ABA, IAA and salinity induce the *GH3.3* (Solyc01g107390) gene in tomato [29, 61], its Arabidopsis homologue is required for adventitious root 578 development by modulating JA catabolism downstream of the auxin signal [62]. Hence, 579 580 further experiments are required to determine whether salinity stress and GH3.3 581 expression are linked, and whether this gene affects tomato root architecture.

ABA or abiotic stress also induces some *MYB* transcription factors involved in lateral 582 root formation [63, 64]. Under control conditions, MYB gene induction was 2.5-fold 583 higher in sp12, but salinity repressed MYB expression in both genotypes (Fig. 5B). 584 Under control conditions, genotypic differences in total root length (Fig. S1A) were 585 586 inversely related to MYB expression, but not under salinity where MYB down-regulation was related to enhanced root growth of sp12, but not WT plants (Fig. S1A). Similarly, 587 elevated endogenous ABA and overexpression of MYB transcription factors PtrSSR1 588 589 and *R2R3* inhibited lateral root emergence and plant growth under normal conditions in 590 Arabidopsis and tomato, but improved salt tolerance [65-67]. Thus, MYB factors seem to integrate ABA level to regulate root development and sensitivity to salt stress. 591

592 4.9. Antagonistic ABA-JA interactions in sp12 roots

593 Firstly, the *LOX* and *JA1* genes involved in JA biosynthesis and plant defense were 594 downregulated in sp12 roots (Fig. 5E), probably due to ABA synthesis [68, 69].

Secondly, although JA synthesis/signalling is required for root ABA accumulation [70], 595 the inverse response does not apply as genotype (and thus ABA status) did not affect JA 596 levels (Fig. 4). In contrast, salinity consistently down-regulated the LOX gene and 597 decreased root JA levels (Fig. 4C, F), while transiently increased xylem JA 598 concentrations (Fig. 4B). Although root-to-shoot JA transport can induce stomatal 599 closure in tomato [71]. JA concentrations were not correlated with stomatal conductance 600 (Table 2). Nevertheless, the NAC transcription factor JA2 is activated by JA, ABA, 601 602 drought and salinity [29, 72, 73], and promotes stomatal closure by inducing expression of the ABA biosynthetic gene NCED1. Indeed, the JA2-NCED1 transcriptional module 603 604 might act as a regulatory loop to monitor endogenous ABA status [72, 73], contributing to stomatal closure in sp12 under control conditions. However, full activation of the 605 JA2-NCED1 module by dehydration requires a basal level of ABA, while transient 606 607 accumulation of JA and SA are involved in ABA biosynthesis [74].

608

609

610 4.10. Salinity induced gene expression of GA deactivation in sp12 roots

Salinity induces the GA2ox-3 gene, encoding a putative GA2 oxidase-3 involved in GA catabolism [75] in tomato roots [29]. Moreover, it was also strongly induced in sp12 roots in control conditions, which may explain their reduced growth, even if root GA concentrations were not detected (Table S1). Limited salinity induction of this catabolic gene in sp12 is consistent with the relative maintenance or increase of root growth, compared to WT (Fig. 1, S1A). Conversely, the opposite response of the GA biosynthetic gene GA2ox1 supports the idea that GA metabolism and signalling

620 5. Conclusions

Based on these results, the additional ABA synthesized by NCED OE lines (Fig. 7) 621 under control conditions closes stomata (ABA, JA and ethylene), reduces shoot and root 622 623 growth (associated with GA and IAA deactivation) and activates osmotic-related responses (dehydrins and LEA proteins, proline, aquaporins, transcription factors). 624 Under saline conditions, growth of the NCED OE lines is less affected than WT, and 625 626 TRL outperforms WT. NCED OE appears to dampen the normal plant response of 627 upregulating genes for ABA synthesis and catabolism, but maintains the induction of other stress-adaptive processes (dehydrins, aquaporins, JA2, JERF1, root growth). 628 629 Further research is required to fully understand and exploit molecular responses of roots to salinity; this will inform strategies for engineering and selecting genotypes with 630 631 optimum hormonal and signaling behavior under saline conditions.

632

633 Acknowledgements

The authors are very grateful to María del Puerto Sánchez-Iglesias for her technical assistance on hormonal analysis. Research was also supported by the Spanish MINECO-FEDER (projects AGL2014-59728-R and RTI2018-099113-B-I00) and by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement # 289365 (project ROOTOPOWER). AJT was partly supported by BBSRC (grant BB/L01954X/1).

641 **References**

640

- [1] R. Munns, M. Gilliham, Salinity tolerance of crops what is the cost?, New Phytologist,
 208 (2015) 668-673.
- 644 [2] A.A. Albacete, C. Martínez-Andújar, F. Pérez-Alfocea, Hormonal and metabolic regulation

of source–sink relations under salinity and drought: From plant survival to crop yield stability,
Biotechnology Advances, 32 (2014) 12-30.

- [3] Z. Peleg, E. Blumwald, Hormone balance and abiotic stress tolerance in crop plants, Current
 Opinion in Plant biology, 14 (2011) 290-295.
- [4] J. Zhang, W. Jia, J. Yang, A.M. Ismail, Role of ABA in integrating plant responses to
 drought and salt stresses, Field Crops Research, 97 (2006) 111-119.
- [5] J. K. Zhu, Salt and drought stress signal transduction in plants, Annual review of plant
 biology, 53 (2002) 247-273.
- [6] U. Chandrasekaran, W. Xu, A. Liu, Transcriptome profiling identifies ABA mediated
 regulatory changes towards storage filling in developing seeds of castor bean (*Ricinus communis* L.), Cell & Bioscience, 4 (2014) 33.
- [7] W.J. Davies, G. Kudoyarova, W. Hartung, Long-distance ABA signaling and its relation to
 other signaling pathways in the detection of soil drying and the mediation of the plant's
 response to drought, Journal of Plant Growth Regulation, 24 (2005) 285-295.
- [8] R.E. Sharp, M.E. LeNoble, ABA, ethylene and the control of shoot and root growth underwater stress, Journal of Experimental Botany, 53 (2002) 33-37.
- 661 [9] J. Jung, S. McCouch, Getting to the roots of it: Genetic and hormonal control of root 662 architecture, Frontiers in Plant Science, 4 (2013).
- [10] A. Albacete, C. Martinez-Andujar, A. Martinez-Perez, A.J. Thompson, I.C. Dodd, F.
 Perez-Alfocea, Unravelling rootstock x scion interactions to improve food security, J Exp Bot,
 66 (2015) 2211-2226.
- 666 [11] I.B. Taylor, T. Sonneveld, T.D.H. Bugg, A.J. Thompson, Regulation and manipulation of 667 the biosynthesis of abscisic acid, including the supply of xanthophyll precursors, Journal of 668 plant growth regulation, 24 (2005) 253-273.
- [12] A.J. Thompson, A.C. Jackson, R.A. Parker, D.R. Morpeth, A. Burbidge, I.B. Taylor,
 Abscisic acid biosynthesis in tomato: regulation of zeaxanthin epoxidase and 9-cisepoxycarotenoid dioxygenase mRNAs by light/dark cycles, water stress and abscisic acid, Plant
 Molecular Biology, 42 (2000) 833-845.
- [13] X. Qin, J.A.D. Zeevaart, Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in
 Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought
 tolerance, Plant Physiology, 128 (2002) 544-551.
- 676 [14] A.J. Thompson, A.C. Jackson, R.C. Symonds, B.J. Mulholland, R.A. Dadswell, P.S. Blake,
- A. Burbidge, I.B. Taylor, Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase
 gene causes over-production of abscisic acid, The Plant Journal, 23 (2000) 363-374.
- [15] S. Iuchi, M. Kobayashi, T. Taji, M. Naramoto, M. Seki, T. Kato, S. Tabata, Y. Kakubari,
- K. Yamaguchi Shinozaki, K. Shinozaki, Regulation of drought tolerance by gene manipulation
 of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in
- 682 Arabidopsis, The Plant Journal, 27 (2001) 325-333.
- [16] Y. Huang, Y. Guo, Y. Liu, F. Zhang, Z. Wang, H. Wang, F. Wang, D. Li, D. Mao, S. Luan,
 M. Liang, L. Chen, 9-cis-epoxycarotenoid dioxygenase 3 regulates plant growth and enhances
 multi-abiotic stress tolerance in rice, Frontiers in Plant Science, 9 (2018).
- 686 [17] C.R. Aswath, S.H. Kim, S.Y. Mo, D.H. Kim, Transgenic plants of creeping bent grass 687 harboring the stress inducible gene, *9-cis-epoxycarotenoid dioxygenase*, are highly tolerant to 688 drought and NaCl stress, Plant Growth Regulation, 47 (2005) 129-139.
- 689 [18] A. Albacete, M.E. Ghanem, C. Martínez-Andújar, M. Acosta, J. Sánchez-Bravo, V.
- 690 Martínez, S. Lutts, I.C. Dodd, F. Pérez-Alfocea, Hormonal changes in relation to biomass
- partitioning and shoot growth impairment in salinized tomato (*Solanum lycopersicum* L.) plants,
 Journal of Experimental Botany, 59 (2008) 4119-4131.

- 693 [19] M.E. Ghanem, A. Albacete, C. Martínez-Andújar, M. Acosta, R. Romero-Aranda, I.C. 694 Dodd, S. Lutts, F. Pérez-Alfocea, Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.), Journal of Experimental Botany, 59 (2008) 3039-3050. 695
- 696 [20] B.J. Mulholland, C.R. Black, I.B. Taylor, J.A. Roberts, J.R. Lenton, Effect of soil 697 compaction on barley (Hordeum vulgare L.) growth: I. Possible role for ABA as a root-sourced chemical signal, Journal of Experimental Botany, 47 (1996) 539-549. 698
- [21] B.J. Mulholland, A. Hussain, C.R. Black, I.B. Taylor, J.A. Roberts, Does root sourced 699 700 ABA have a role in mediating growth and stomatal responses to soil compaction in tomato (Lycopersicon esculentum)?, Physiologia Plantarum, 107 (1999) 267-276. 701
- [22] I.N. Saab, R.E. Sharp, J. Pritchard, G.S. Voetberg, Increased endogenous abscisic acid 702 maintains primary root growth and inhibits shoot growth of maize seedlings at low water 703 704 potentials, Plant Physiology, 93 (1990) 1329-1336.
- 705 [23] G. Chen, X. Fu, S. Herman Lips, M. Sagi, Control of plant growth resides in the shoot, and 706 not in the root, in reciprocal grafts of flacca and wild-type tomato (Lysopersicon esculentum), in the presence and absence of salinity stress, Plant and Soil, 256 (2003) 205-215. 707
- 708 [24] W. Li, C. de Ollas, I.C. Dodd, Long-distance ABA transport can mediate distal tissue responses by affecting local ABA concentrations, Journal of integrative plant biology, 60 (2018) 709 710 16-33
- [25] P. Mäkelä, R. Munns, T.D. Colmer, S.-P. Peltonen, Growth of tomato and an ABA 711 712 deficient mutant (sitiens) under saline conditions, Physiologia Plantarum, 117 (2003) 58-63.
- 713 [26] B.J. Mulholland, I.B. Taylor, A.C. Jackson, A.J. Thompson, Can ABA mediate responses of salinity stressed tomato, Environmental and Experimental Botany, 50 (2003) 17-28. 714
- 715 [27] A.J. Thompson, J. Andrews, B.J. Mulholland, J.M.T. McKee, H.W. Hilton, J.S. Horridge, 716 G.D. Farquhar, R.C. Smeeton, I.R.A. Smillie, C.R. Black, I.B. Taylor, Overproduction of 717 abscisic acid in tomato Increases transpiration efficiency and root hydraulic conductivity and 718 influences leaf expansion, Plant physiology, 143 (2007) 1905-1917.
- [28] S.A. Tung, R. Smeeton, C. White, C.R. Black, I.B. Taylor, H.W. Hilton, A.J. Thompson, 719 720 Over-expression of LeNCED1 in tomato (Solanum lycopersicum L.) with the rbcS3C promoter 721 allows recovery of lines that accumulate very high levels of abscisic acid and exhibit severe 722 phenotypes, Plant, Cell & Environment, 31 (2008) 968-981.
- [29] A. Ferrández-Ayela, A. Sánchez-García, C. Martínez-Andújar, Z. Kevei, M. Gifford, A.J. 723 724 Thompson, F. Pérez-Alfocea, J.M. Pérez-Pérez, Identification of novel stress-responsive 725 biomarkers from gene expression datasets in tomato roots, Functional Plant Biolgy, 43 (2016) 726 14.
- 727 [30] I.C. Dodd, W.J. Davies, The relationship between leaf growth and ABA accumulation in the grass leaf elongation zone, Plant Cell Environ, 19 (1996) 1047-1056. 728
- 729 [31] T.D. Schmittgen, K.J. Livak, Analyzing real-time PCR data by the comparative CT 730 method, Nature Protocols, 3 (2008) 1101-1108.
- [32] D.R. Hoagland, D.I. Arnon, The water-culture method for growing plants without soil, 731 College of Agriculture, University of California, Berkeley, Calif., 1950. 732
- [33] L. Lopez-Molina, S. Mongrand, N.-H. Chua, A postgermination developmental arrest 733 checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in 734 Arabidopsis, Proceedings of the National Academy of Sciences, 98 (2001) 4782-4787. 735
- [34] W. Hartung, A. Sauter, E. Hose, Abscisic acid in the xylem: where does it come from, 736 737 where does it go to?, Journal of Experimental Botany, 53 (2002) 27-32.
- [35] N.M. Holbrook, V.R. Shashidhar, R.A. James, R. Munns, Stomatal control in tomato with 738
- 739 ABA-deficient roots: response of grafted plants to soil drying, Journal of Experimental Botany, 740 53 (2002) 1503-1514.
- [36] A.J. Thompson, B.J. Mulholland, A.C. Jackson, J.M.T. Mckee, H.W. Hilton, R.C. 741 Symonds, T. Tsonneveld, A. Burbidge, P. Stevenson, I.B. Taylor, Regulation and manipulation 742
- 743 of ABA biosynthesis in roots, Plant, Cell & Environment, 30 (2007) 67-78.
- 744 [37] L. Sun, Y. Sun, M. Zhang, L. Wang, J. Ren, M. Cui, Y. Wang, K. Ji, P. Li, Q. Li, P. Chen,
- 745 S. Dai, C. Duan, Y. Wu, P. Leng, Suppression of 9-cis-epoxycarotenoid dioxygenase, which
- 746 encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato, 747
 - Plant Physiology, 158 (2012) 283-298.

- 748 [38] T. Umezawa, M. Okamoto, T. Kushiro, E. Eiji Nambara, Y. Oono, M. Seki, M. Kobayashi, T. Koshiba, Y. Kamiya, K. Shinozaki, CYP707A3, a major ABA 8' -hydroxylase involved in 749
- 750 dehydration and rehydration response in Arabidopsis thaliana, The Plant Journal, 46 (2006) 751 171-182.
- 752 [39] Y. Wang, Y. Wang, K. Ji, S. Dai, Y. Hu, L. Sun, Q. Li, P. Chen, Y. Sun, C. Duan, Y. Wu, H. Luo, D. Zhang, Y. Guo, P. Leng, The role of abscisic acid in regulating cucumber fruit 753 754 development and ripening and its transcriptional regulation, Plant Physiology and Biochemistry,
- 755 64 (2013) 70-79.
- [40] L. Xiong, K.S. Schumaker, J.-K. Zhu, Cell signaling during cold, drought, and salt stress, 756 757 The plant cell, 14 (2002) 165-183.
- [41] H. Chen, Z. Lai, J. Shi, Y. Xiao, Z. Chen, X. Xu, Roles of Arabidopsis WRKY18, 758 759 WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic 760 stress, BMC Plant Biology, 10 (2010) 281.
- [42] S. Orellana, M. Yañez, A. Espinoza, I. Verdugo, E. González, S. Ruiz-Lara, J. Casaretto, 761 762 The transcription factor SIAREB1 confers drought, salt stress tolerance and regulates biotic and 763 abiotic stress-related genes in tomato, Plant, Cell and Environment, 33 (2010) 2191-2208.
- [43] O. Son, Y.-S. Hur, Y.-K. Kim, H.-J. Lee, S. Kim, M.-R. Kim, K.H. Nam, M.-S. Lee, B.-Y. 764
- 765 Kim, J. Park, J. Park, S.-C. Lee, A. Hanada, S. Yamaguchi, I.-J. Lee, S.-K. Kim, D.-J. Yun, E.
- Söderman, C.-I. Cheon, ATHB12, an ABA-inducible homeodomain-leucine zipper (HD-Zip) 766 767 protein of Arabidopsis, negatively regulates the growth of the inflorescence stem by decreasing 768 the expression of a gibberellin 20-oxidase gene, Plant and Cell Physiology, 51 (2010) 1537-
- 769 1547.
- 770 [44] Y.S. Hur, J.H. Um, S. Kim, K. Kim, H.J. Park, J.S. Lim, W.Y. Kim, S.E. Jun, E.K. Yoon, 771 J. Lim, M. Ohme-Takagi, D. Kim, J. Park, G.T. Kim, C.I. Cheon, Arabidopsis thaliana 772 homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by 773 promoting cell expansion and endoreduplication, New Phytologist, 205 (2015) 316-328.
- 774 [45] J.A. Godoy, R. Lunar, S. Torres-Schumann, J. Moreno, R.M. Rodrigo, J.A. Pintor-Toro, 775 Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed 776 tomato plants, Plant Molecular Biology, 26 (1994) 1921-1934.
- 777 [46] P.B. Kavi-Kishor, N. Sreenivasulu, Is proline accumulation per se correlated with stress 778 tolerance or is proline homeostasis a more critical issue?, Plant, Cell & Environment, 37 (2014) 779 300-311.
- 780 [47] A. Muñoz-Mayor, B. Pineda, J.O. Garcia-Abellán, T. Antón, B. Garcia-Sogo, P. Sanchez-781 Bel, F.B. Flores, A. Atarés, T. Angosto, J.A. Pintor-Toro, V. Moreno, M.C. Bolarin, 782 Overexpression of dehydrin *tas14* gene improves the osmotic stress imposed by drought and 783 salinity in tomato, Journal of Plant Physiology, 169 (2012) 459-468.
- 784 [48] L. Xiong, M. Ishitani, J.K. Zhu, Interaction of osmotic stress, temperature, and abscisic 785 acid in the regulation of gene expression in Arabidopsis, Plant Physiology, 119 (1999) 205-211.
- [49] M.E. LeNoble, W.G. Spollen, R.E. Sharp, Maintenance of shoot growth by endogenous 786
- ABA: genetic assessment of the involvement of ethylene suppression, Journal of Experimental 787 788 Botany, 55 (2004) 237-245.
- [50] R.E. Sharp, M.E. LeNoble, M.A. Else, E.T. Thorne, F. Gherardi, Endogenous ABA 789 790 maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene, Journal of Experimental Botany, 51 (2000) 1575-1584. 791
- 792 [51] M. Müller, S. Munné-Bosch, Ethylene response factors: a key regulatory hub in hormone and stress signaling, Plant Physiology, 169 (2015) 32-41. 793
- 794 [52] L. Wu, X. Chen, H. Ren, Z. Zhang, H. Zhang, J. Wang, X.-C. Wang, R. Huang, ERF 795 protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-796 related gene enhances the tolerance under salinity and cold in tobacco, Planta, 226 (2007) 815-797 825.
- 798 [53] H. Zhang, Z. Huang, B. Xie, Q. Chen, X. Tian, X. Zhang, H. Zhang, X. Lu, D. Huang, R.
- Huang, The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription 799
- 800 factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco,
- 801 Planta, 220 (2004) 262-270.

- [54] Z. Zhang, R. Huang, Enhanced tolerance to freezing in tobacco and tomato overexpressing
 transcription factor *TERF2/LeERF2* is modulated by ethylene biosynthesis, Plant Molecular
 Biology, 73 (2010) 241-249.
- 805 [55] I.C. Dodd, J.C. Theobald, S.K. Richer, W.J. Davies, Partial phenotypic reversion of ABA-
- 806 deficient flacca tomato (*Solanum lycopersicum*) scions by a wild-type rootstock: normalizing
- shoot ethylene relations promotes leaf area but does not diminish whole plant transpiration rate,
 Journal of Experimental Botany, 60 (2009) 4029-4039.
- [56] P. Oeller, M. W Lu, L. Taylor, D.A. Pike, A. Theologis, Reversible inhibition of tomato
 fruit senescence by antisense RNA, Plant science, 254 (1991) 437-439.
- [57] A.P. Sobolev, A. Neelam, T. Fatima, V. Shukla, A.K. Handa, A.K. Mattoo, Genetic
 introgression of ethylene-suppressed transgenic tomatoes with higher-polyamines trait
 overcomes many unintended effects due to reduced ethylene on the primary metabolome,
 Frontiers in Plant Science, 5 (2014).
- [58] P. Overvoorde, H. Fukaki, T. Beeckman, Auxin control of root development, Cold spring
 harbor perspectives in biology, 2 (2010) a001537.
- [59] P.E. Staswick, B. Serban, M. Rowe, I. Tiryaki, M.T. Maldonado, M.C. Maldonado, W.
 Suza, Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole3-acetic acid, The Plant Cell, 17 (2005) 616-627.
- [60] P.E. Staswick, I. Tiryaki, M.L. Rowe, Jasmonate response locus *JAR1* and several related
 Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on
 jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation, Plant Cell, 14 (2002)
 1405-1415.
- [61] R. Kumar, P. Agarwal, A.K. Tyagi, A.K. Sharma, Genome-wide investigation and
 expression analysis suggest diverse roles of auxin-responsive *GH3* genes during development
 and response to different stimuli in tomato (*Solanum lycopersicum*), Molecular genetics and
 genomics, 287 (2012) 221-235.
- [62] L. Gutierrez, G. Mongelard, K. Flokova, D.I. Pacurar, O. Novak, P. Staswick, M.
 Kowalczyk, M. Pacurar, H. Demailly, G. Geiss, C. Bellini, Auxin controls Arabidopsis
 adventitious root initiation by regulating jasmonic acid homeostasis, Plant Cell, 24 (2012) 25152527.
- [63] C. Dubos, R. Stracke, E. Grotewold, B. Weisshaar, C. Martin, L. Lepiniec, MYB
 transcription factors in Arabidopsis, Trends in Plant Science, 15 (2010) 573-581.
- 834 [64] R. Finkelstein, Abscisic acid synthesis and response, The Arabidopsis Book / American
 835 Society of Plant Biologists, 11 (2013) 166.
- [65] S. AbuQamar, X. Chen, R. Dhawan, B. Bluhm, J. Salmeron, S. Lam, R.A. Dietrich, T.
 Mengiste, Expression profiling and mutant analysis reveals complex regulatory networks
 involved in Arabidopsis response to Botrytis infection, Plant Journal, 48 (2006) 28-44.
- 839 [66] Q. Fang, T. Jiang, L. Xu, H. Liu, H. Mao, X. Wang, B. Jiao, Y. Duan, Q. Wang, Q. Dong,
- 840 L. Yang, G. Tian, C. Zhang, Y. Zhou, X. Liu, H. Wang, D. Fan, B. Wang, K. Luo, A salt-stress-
- regulator from the Poplar R2R3 MYB family integrates the regulation of lateral root emergence
 and ABA signaling to mediate salt stress tolerance in Arabidopsis, Plant Physiology and
 Biochemistry, 114 (2017) 100-110.
- [67] Y. Zhao, L. Xing, X. Wang, Y.-J. Hou, J. Gao, P. Wang, C.-G. Duan, X. Zhu, J.-K. Zhu,
 The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent
 transcription of auxin-responsive genes, Science Signaling, 7 (2014) ra53-ra53.
- [68] J.P. Anderson, E. Badruzsaufari, P.M. Schenk, J.M. Manners, O.J. Desmond, C. Ehlert,
 D.J. Maclean, P.R. Ebert, K. Kazan, Antagonistic interaction between abscisic acid and
 jasmonate-ethylene signaling pathways modulates defense gene expression and disease
 resistance in Arabidopsis, The Plant Cell, 16 (2004) 3460-3479.
- 851 [69] K. Xie, L. Li, H. Zhang, R. Wang, X. Tan, Y. He, G. Hong, J. Li, F. Ming, X. Yao, F. Yan,
- 852 Z. Sun, J. Chen, Abscisic acid negatively modulates plant defense against rice black-streaked
- dwarf virus infection by suppressing the jasmonate pathway and regulating ROS levels in rice,
- Plant Cell and Environment, (2018) 1-11.

- [70] C. De Ollas, V. Arbona, G.-C. Aurelio, Jasmonoyl isoleucine accumulation is needed for
 abscisic acid build-up in roots of Arabidopsis under water stress conditions, Plant Cell Environ,
 38 (2015) 2157-2170.
- [71] C. De Ollas, V. Arbona, A. Gómez-Cadenas, I.C. Dodd, Attenuated accumulation of
 jasmonates modifies stomatal responses to water deficit, Journal of Experimental Botany, 69
 (2018) 2103-2116.
- [72] M. Du, Q. Zhai, L. Deng, S. Li, H. Li, L. Yan, Z. Huang, B. Wang, H. Jiang, T. Huang, C.B. Li, J. Wei, L. Kang, J. Li, C. Li, Closely related NAC transcription factors of tomato
 differentially regulate stomatal closure and reopening during pathogen attack, The Plant Cell, 26
 (2014) 3167-3184.
- [73] P. Iovieno, P. Punzo, G. Guida, C. Mistretta, M.J. Van Oosten, R. Nurcato, H. Bostan, C.
 Colantuono, A. Costa, P. Bagnaresi, M.L. Chiusano, R. Albrizio, P. Giorio, G. Batelli, S. Grillo,
 Transcriptomic changes drive physiological responses to progressive drought stress and
 rehydration in tomato, Frontiers in Plant Science, 7 (2016).
- 869 [74] V.A. Muñoz-Espinoza, M.F. López-Climent, J.A. Casaretto, A. Gómez-Cadenas, Water
 870 stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid,
 871 jasmonic acid and salicylic acid Interactions, Frontiers in plant science, 6 (2015).
- [75] I. Rieu, S. Eriksson, S.J. Powers, F. Gong, J. Griffiths, L. Woolley, R. Benlloch, O.
 Nilsson, S.G. Thomas, P. Hedden, A.L. Phillips, Genetic analysis reveals that C19-GA 2oxidation Is a major gibberellin inactivation pathway in Arabidopsis, The Plant Cell, 20 (2008)
 2420-2436.
- [76] A.J. Matilla, N. Carrillo-Barral, M.d.C. Rodríguez-Gacio, An Update on the role of *NCED* and *CYP707A* ABA metabolism genes in seed dormancy Induction and the response to after-
- ripening and Nitrate, Journal of Plant Growth Regulation, 34 (2015) 274-293.

879

880

- 881 Figure legends
- **Figure 1**. Mean +/- standard errors of shoot fresh weight (A), root fresh weight (B) and

total fresh weight (C) of WT (AC) and NCED OE plants (sp12 and sp5) growing under

control and salt conditions (100 mM NaCl) for 21 days. Different letters indicate

significant differences among genotypes and treatments according to the Tukey test (n =

- 886 6, P < 0.05). Results of two way ANOVA (p values reported) for genotype (G),
- treatment (T) and their interaction (G x T) are indicated in the top right of the panel. *,
- ** and *** indicate statistically significant difference at p<0.05, p<0.01 and p<0.001,
- respectively.

Figure 2. Mean +/- standard errors of photosynthesis (*A*) (A) and stomatal conductance

891 (g_s) (B) of WT (AC) and NCED OE plants (sp12 and sp5) growing under control and

salt conditions (100 mM NaCl) for 14 days. Different letters indicate significant

differences among genotypes and treatments according to the Tukey test (n=6, P < 0.05). Results of two way ANOVA (p values reported) for genotype (G), treatment (T) and their interaction (G x T) are indicated in the top right of the panel. *, ** and *** indicate statistically significant difference at p<0.05, p<0.01 and p<0.001, respectively.

Figure 3. A Mean +/- standard errors of abscisic acid (ABA) concentrations in leaf (A, 897 D), root xylem sap (B, E) and root (C, F) of the WT (AC) and NCED OE plants (sp12) 898 and sp5) growing under control and salt conditions (100 mM NaCl) for 11 (A, B, C) and 899 21 (D, E, F) days. Different letters indicate significant differences among genotypes and 900 treatments according to the Tukey test (n=6, P < 0.05). Results of two way ANOVA for 901 each time point (p values reported) are indicated in the top left of the panel. *, ** and 902 *** indicate statistically significant difference at p<0.05, p<0.01 and p<0.001, 903 respectively. DST= days of salt treatment. 904

905

Figure 4. Mean +/- standard errors of jasmonic acid (JA) concentrations in leaf (A, D), 906 907 root xylem sap (B, E) and root (C, F) of the WT (AC) and NCED OE plants (sp12 and sp5) growing under control and salt conditions (100 mM NaCl) for 11 (A, B, C) and 21 908 (D, E, F) days. Different letters indicate significant differences among genotypes and 909 treatments according to the Tukey test (n=6, P < 0.05). Results of two way ANOVA for 910 each time point (p values reported) are indicated in the top left of the panel. *, ** and 911 *** indicate statistically significant difference at p<0.05, p<0.01 and p<0.001, 912 913 respectively. DST= days of salt treatment.

Figure 5. Real-time PCR quantification of the expression of selected genes in roots of
WT (AC) and *NCED* OE plants (sp12) growing under control and salt conditions (100
mM NaCl) for 21 days (a-f). Bars indicate the relative expression levels. Different

917 lowercases letters indicate significant differences between WT (AC) and sp12 within
918 control treatment, and different uppercases letters indicate significant differences
919 between WT (AC) and sp12 within salt treatment. * indicate significant differences
920 between control and salt treatment within each genotype according to the Mann921 Whitney U test (p<0.05).

Figure 6. Relative expression for the analysed genes of sp12 plants compared to WT (AC) plants under control (blue) and salt (red) conditions. Colour intensity indicates down- regulation (low intensity, -), unchanged (intermediate intensity, 0) and upregulation (high intensity, +) gene expression.

926 Figure 7. Proposed model to explain growth and adaptive responses in NCED OE (sp12 927 line) plants through up (filled lines) and down (dashed lines) regulation of genes and 928 physiological processes under control (blue and green color lines) and saline (red and green color lines) conditions. NCED OE plants respond to ABA in absence of stress by 929 930 upregulating ABA, jasmonic acid (JA) and ethylene-related genes (WRKY6/WRK70, ATHB12, AREB1, JA2, ACS1A, JERF1) associated with stomatal closure, gibberellin 931 (GA) and auxin homeostasis genes (upregulating GA2ox-3 and IAASGH3, inhibiting 932 933 GA20ox-1) associated with growth limitation and activating osmotic-related responses (dehydrin TAS14, proline synthesis PRO2/P5CS, aquaporin PIP1.2, LEA protein KIN2, 934 transcription factor MYB). Moreover, NCED OE decreases sensitivity of growth to 935 936 saline stress by downregulating ABA metabolism (CYP707A, ZEP1, FLC/AAO, DXS) and alleviating GA (GA2ox-3) and auxin (ARF6, LAX2, DFL1) deactivation, but 937 maintaining or inducing ABA signalling (ATHB12 and AREB1) and stress-adaptive 938 processes (dehydrin TA14, aquaporin PIP1.2, KIN2, JA2, JERF1). Specific genes in red 939 indicate up (bold characters) and down (normal characters) regulation under salinity, 940

- 941 compared to WT. Arrow and bar heads indicate positive and negative regulation,
- 942 respectively.

944 Supplementary Figure legends

Figure S1. Total root length (A) and ABA concentration (B) in the exudate of WT (AC) and *NCED* OE plants (sp12) cultivated in vitro under control and salt conditions (50 mM NaCl) for 30 days. Different letters indicate significant differences among genotypes and treatments according to the Tukey test (P < 0.05). Results of two-way ANOVA (p values reported) for genotype (G), treatment (T) and their interaction (G x T) are indicated in the top right of the panel. ** and *** indicate statistically significant difference-p<0.01 and p<0.001, respectively. nd=non-detected.

Figure S2. Leaf water potential (A), osmotic potential (B) and turgor (C) of the WT (AC) and *NCED* OE plants (sp12) growing under control and salt conditions (100 mM NaCl) for 15 days. Different letters indicate significant differences among genotypes and treatments according to the Tukey test (P < 0.05). Results of two-way ANOVA (p values reported) for genotype (G), treatment (T) and their interaction (G x T) are indicated in the top right of the panel. ** and *** indicate statistically significant difference-p<0.01 and p<0.001, respectively.

959

961 Table 1. List of genes analysed and primers used for PCR amplification.

Gene locus	Protein product (synonyms)	Oligonucleotide s	sequences (5' to 3')	Produgtagp
Solyc09g015770*	WRKY transcription factor (WRKY70, WRKY6)	GTTATAAACAATTCTGATGTCGTCG	TCTGATTCTGAAGTTTTCCTTCTC	<u>964</u> ¹ 965
Solyc01g096320	Homeobox leucine zipper protein (ATHB12)	AACTCGAAAGGGATTACAGTATAC	ATTTCTTTCAGCTTTTGTAACCTGAAT	1966
Solyc04g078840*	BZIP transcription factor (AREB1)	GGAGAATGATAAAAAATAGAGAGTC	CATTTCTAACATTTCTTCCTGTTTC	967 143 68
Solyc02g090890	zeaxanthin epoxidase (ZEP1)	CAATTGATTTGGATGTTGCTGAAG	GTATCAAACTTGCAATACCAGTTG	1 9269
Solyc07g066480	molybdenum cofactor sulfurase (FLC/AAO)	CACTAAAGCTTGTCGGTGAGAC	TCCTTTACTGAGAGCATATTCCCT	1970
Solyc01g067890	1-D-deoxyxylulose 5-phosphate synthase (DXS)	GTGGTTTCAGATTCTTCTAAGGC	GTGACCTTTTCTTGACCTCATG	1 972
Solyc08g043170*	Delta 1-pyrroline-5-carboxylate synthetase (PRO2, P5CS)	TTAGAGATCCAGATTTTAGGAGAC	CAAAATATTCCAGAAGAGTCCTCAT	1 <u>9</u> 73
Solyc02g084850*	Dehydrin-like protein (TAS14/RAB18)	GCACTGGTGGAGAATATGGAAC	TCCATCATCCTCCGACGAGC	¹ 974
Solyc01g094690*	Water channel protein (PIP1.2, AQP2)	TGTATTGACTGTTATGGGTTATTC	GTTAATGTGTCCACCTGATATG	1976
Solyc03g095510*	Protein kinase 2 (KIN2)	GATTTTGGAGAAAGATCACGCTG	GGTATAGTCTGTATTTGGTCTGGA	¹ 978
Solyc10g084370	MYB transcription factor (MYB)	AATTCTACTCCCACCGACGC	TTCCAATCACGGTCAAACAGTTG	19479
Solyc04g078900	ABA 8'-hydroxylase (CYP707A1)	TGTCCAGGGAATGAACTTGC	CAATGGGACTGGGAATGGTC	980 1981
Solyc08g081540	1-aminocyclopropane-1-carboxylate synthase 1a (ACS1A)	CCAAGAATGGATGGTGAATAAT	TAAACCTTGCAACTGCTTGTCTA	19182
Solyc06g063070	Ethylene Response Factor A.3 (JERF1)	CCCTTGAGGTCTAAGTTTATTG	TCACGGATTTGGGGGCCAAATG	1983 1984
Solyc02g064830	Auxin-responsive GH3 family protein (IAAsGH3)	AGGAAATTCAACCTGATATTCAACG	GCAGATGTCCCCGAGCTGGT	19985
Solyc01g111310	Auxin Efflux Facilitator (LAX2)	AGTTGGACTGCTTATCT	TCAAACCACTGAATGACGT	10186
Solyc07g063850	GH3.8 (DFL1)	CTCGTATCGCCAATGGTGATAA	CACCAGACGTACCAGAACT	⁸ 988
solyc 07g043610	Auxin Response Factor 6 (ARF6)	GGCAGCTTGTAATTGTTGACC	ACATTGTTCACAAACTCCTGCCA	/9 89
Solyc01g107390*	Auxin and ethylene responsive GH3-like protein (GH3.3)	CCGGTCGTAACTTATGAAGATC	CTGACGTTCCAGAGCTAGTG	¹ 991
Solyc03g096460	Lipoxigenase (LOX)	GGAGTAGCAGCTCAAGTTAAC	TGTGTAAACACAATCTTCAGCAG	1992
solyc05g007180	Homeobox-leucine zipper protein (ATHB13, HAT7, JA1)	CAAATTTCATGCTACAAACTCCTC	CCCAAAAATGAAGCAATACCATGG	¹ 993
Solyc12g013620*	NAC domain-containing protein (JA2)	TATTTATGTAAGAAAGTTGCTGGAC	CCAAATGTCGCCTTACTAGGTA	10995
Solyc03g006880	Gibberellin 20-oxidase (GA20ox-1)	CACTCTCTTTTCGTTACTCCG	AATATTCTTGATAAACATTCCCGAG	1996 1497
Solyc01g079200	Gibberellin 2-beta-dioxigenase 2 (GA2ox-3)	TCAATGGAGATAAAGGTGATCTTG	GTAATCATTTGTCACCGAGCTGAA	1 9998

1000 *Genes previously described in [29].

Table 2. Linear correlation coefficients between shoot fresh weight (SFW), root fresh weight (RFW), photosynthesis (A), stomatal conductance (g_s), abscisic acid (ABA) and jasmonic acid (JA) concentrations in leaf, root xylem sap and root of WT and *NCED* OE plants (sp12 and sp5) growing under control and salt conditions (100 mM NaCl) after 15 days of treatment. *, ** indicate that correlations are significant at p<0.05 and p<0.01, respectively.

				1006
	SFW	RFW	Α	$\overline{\mathbf{g}}_{s}$
		Control		
ABA leaf	-0.778**	-0.727**	-0.586*	-0.340
ABA xylem	-0.794**	-0.713**	-0.511	-0.606*
ABA root	-0.573	-0.675*	-0.070	-0.450
JA leaf	0.039	-0.130	-0.041	0.153
JA xylem	0.361	-0.047	0.141	0.128
JA root	-0.321	-0.380	-0.537	-0.133
Α	0.474	0.132		0.316
g_s	0.535	0.081		
		Salt		
ABA leaf	-0.459	-0.467	0.220	-0.548*
ABA xylem	-0.283	-0.301	0.276	-0.291
ABA root	-0.264	-0.209	0.238	-0.299
JA leaf	-0.382	-0.440	-0.157	-0.359
JA xylem	0.348	0.467	-0.167	-0.283
JA root	0.244	0.223	0.128	0.294
Α	0.113	0.190		0.245
g s	0.260	0.252		

Supplementary data 1020

1021 1022 1023 1024 Table S1. Salicylic acid (SA), gibberellin A₃ (GA₃), 1-Aminocyclopropane-1-carboxylic acid (ACC), trans-zeatin (t-Z) and indole-3-acetic acid (IAA) concentrations in the leaf, root xylem sap and root of the WT (AC) and NCED OE plants (sp12 and sp5) growing under control and salt conditions (100 mM NaCl) after 11 and 21 days of treatment. Hormone concentrations are given in ng.ml⁻¹ (xylem) and ng.gFW⁻¹ (leaf and

roots). Different letters indicate significant differences among genotypes (n = 6, P < 0.05) within each treatment. * indicate significant differences between control and salt treated plants according to the Tukey test (P < 0.05) within each treatment. 0.05). nd = non detected. DST = days of salt treatment.

					11 DTS		
			Control			Salt	
		Leaf	Xylem	Root	Leaf	Xylem	Root
SA	AC	43.55±2.31	3.22±0.73 b	63.59±7.13	29.47±3.25 B	14.23±2.15 *	33.80±5.46AB*
	sp12	50.88±7.54	7.68±1.58 ab	45.22±8.98	21.60±1.26B*	19.10±1.09*	19.62±1.09 B*
	sp5	53.67±8.88	9.78±3.47 a	74.52±12.89	44.73±5.07 A	10.59±4.06	57.27±8.07 A
GA ₃	ÂC	nd	1.57±0.16 b	nd	nd	3.17±0.73	nd
-	sp12	nd	2.62±0.50 a	nd	nd	1.56±0.18	nd
	sp5	nd	3.08±0.30 a	nd	nd	3.03±1.66	nd
ACC	ĀC	37.98±1.62 a	8.50±1.20 a	93.77±11.44	57.42±6.11	7.37±1.16	292.52±64.54*
	sp12	37.84±0.61 a	4.36±0.02 b	96.87±8.62	44.93±3.03	10.73±1.81*	138.12±7.41
	sp5	31.85±1.46 b	4.72±0.42 b	60.12±1.61	38.09±7.16	8.07±1.92	343.86±107.03*
t-Z	ÂC	46.85±3.25	4.44±0.49 b	253.51±16.13	58.01±7.97 AB	48.80±7.31*	206.17±17.29
	sp12	49.36±6.03	5.53±0.98 ab	226±6.27	85.06±4.09 A*	38.15±6.27*	201.70±14.98
	sp5	38.89±5.15	12.18±5.49 a	206±27.50	41.51±15.06 B	22.51±10.06	181.41±11.92
IAA	ÂC	15.32 ± 0.08	3.16±0.07	17.84±0.55	15.03 ± 0.07	3.32±0.15	15.93±0.61
	sp12	15.32±0.55	3.07±0.01	17.49±0.57	15.11±0.20	3.30±0.05	16.39±0.26
	sp5	15.24±0.22	3.08±0.01	16.64±0.20	15.16±0.09	3.07±0.00	14.27±0.15
				21 🛙	DTS		
			Control			Salt	
		Leaf	Xylem	Root	Leaf	Xylem	Root
SA	AC	28.15±0.77 b	10.60 ± 2.54	48.40±3.81 ab	31.59±.87AB	22.51±3.72 B	36.63±3.76 B
	sp12	26.19±1.40 b	11.40±5.35	42.03±4.02 b	17.43±1.21B	24.98±4.92B	31.06±0.99 B
	sp5	41.51±3.34 a	12.44±4.19	59.38 ±3.81 a	46.60±3.58A	40.98±6.14A*	66.68±12.29 A
GA ₃	AC	nd	1.63±0.11 b	nd	nd	2.22±0.22 B	nd
	sp12	nd	1.97±0.19 b	nd	nd	1.84±0.24 B	nd
	sp5	nd	4.82±0.41 a	nd	nd	4.56±0.84 A	nd
ACC	AC	47.19±0.47	5.47±0.50	117.96±7.17	70.44±10.32B	9.60±1.52	155.06±6.64 B
	sp12	47.79±0.39	9.53±4.85	99.69±10.50	129.13±0.59 A*	19.72±6.10	157.06±24.61B*
	sp5	47.54±0.65	6.02±1.69	90.16±11.72	47.36±0.66 B	8.68±1.73	261.89±57.55A*
t-Z	ĂĊ	64.17±2.76 ab	14.69 ± 4.48	261.16±13.28 a	95.27±6.76 AB*	52.49±8.98*	192.77±7.77A*
	sp12	54.78±7.31 b	17.83±12.27	239.03 ab	103.48±10.33 A*	49.37±0.6	139.74±10.71B*
	sp5	72.68±3.56 a	16.73±10.31	190.19±10.96 b	72.36±5.66 B	36.84±13.42	188.37±13.40A
IAA	ĀC	9.75±0.03	3.08±0.00	10.51±0.17 ab	9.81±0.10 AB	3.21±0.04 B	9.92±0.05*
	sp12	9.95±0.07	3.09±0.01	10.83±0.34a	9.66±0.04 B*	3.62±0.16 A*	9.94±0.08*
	sp5	9.87±0.02	3.09±0.02	9.96±0.06b	9.91±0.02A	3.09±0.02 B	9.81±0.06

1025
1026
1027**Table S2.** Potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), phosphorus (P), sulphur (S), manganese (Mn), boron (B),
zinc (Zn) and iron (Fe) concentrations in the leaf, root xylem sap and root of the WT (AC) and NCED OE plants (sp12 and sp5)
growing under control and salt conditions (100 mM NaCl) after 11 and 21 days of treatment. Ion concentrations are given in mg.1⁻¹
(xylem) and mg.gDW⁻¹ (leaf and roots). Different letters indicate significant differences among genotypes (n = 6, P < 0.05) within
each treatment. * indicate significant differences between control and salt treated plants according to the Tukey test (P < 0.05). nd =
non detected. DST = days of salt treatment.

				11 DTS			
			Control			Salt	
		Leaf	Xylem	Root	Leaf	Xylem	Root
K	AC	18.42±0.74	587.49±66.71	19.96±0.99	8.92±0.24 *	1109.46±84.64 *	12.42±0.98 *
	sp12	18.43±0.65	474.47±60.21	20.44±1.01	8.98±0.65 *	813.76±111.303	9.81±0.93 *
	sp5	17.20±2.58	487.35±40.74	20.55±1.67	8.27±1.25 *	789.62±250.98	12.55±0.66 *
Na	ÅC	0.21±0.02	7.60±1.04	0.42 ± 0.09	14.37±0.81 *	1583.20±148.19 A*	13.61±0.63 *
	sp12	0.28±0.03	4.11 ± 1.48	0.47 ± 0.14	14.27±0.26 *	1651.95±135.26A*	13.89±2.44 *
	sp5	0.28±0.03	5.75±1.77	0.17 ± 0.03	14.78±1.26 *	855.11±358.44 B*	12.17±0.99 *
Са	AC	14.80 ± 0.50 ab	160.18 ± 15.10 a	3.70 ± 0.29	11 64±0 36 A*	37054 ± 8927	1 74±0 11 *
0.	sp12	15.18 ± 0.68 a	106.76 ± 6.53 h	423 ± 021	11 39±0 46 AB*	95.60 ± 4.62	1.70 ± 0.23 *
	sp12	12 27+0 76 h	105 91+18 46 h	3 26+0 22	9 65+0 76 B*	220 48+26 97	1 83+0 09 *
Μσ	AC	3 13+0 19 ab	55 54+8 66	2520=0.22 255 ± 0.23	2 03+0 13 A*	136 12+89 27	3 60+0 15
1116	sn12	339+014a	40 49+2 16	2.55 ± 0.25 2 18+0 07	2 34+0 07 A*	49 21+9 63	3.68 ± 0.11
	sp12	2.39 ± 0.14 u 2.42 ± 0.06 h	3474+462	2.10 ± 0.07 2.77 ± 0.24	1.42 ± 0.04 R*	95 26+40 59	4.03 ± 0.25
D	AC	2.42 ± 0.000	52 67+2 60	2.77 ± 0.24	360 ± 0.15	185 68+38 56 *	4.03 ± 0.23 3.13 ±0.10
r	AC an12	3.73 ± 0.10 2.42±0.00	32.07 ± 2.09	4.02 ± 0.23	3.00 ± 0.13	102.00 ± 14.21	3.13 ± 0.19
	sp12	5.45 ± 0.09	$4/.29\pm 5.1/$	4.85 ± 0.20	5.08 ± 0.11	102.99 ± 14.21	$2.82\pm0.23^{\circ}$
G	sp5	5.61 ± 0.55	43.39±3.90	4.40 ± 0.38	4.03±0.23	118.00±32.87	5.37 ± 0.24
3	AC	3.22 ± 0.07 a	$5/.1/\pm/.89$	1.59±0.14	2.66±0.12*	107.82±26.23	1.18±0.06
	sp12	3.26 ± 0.20 a	36.46±1.85	2.08±0.04	2.35±0.11*	42.33±4.98	$1.11\pm0.11^{*}$
	spo	2./8±0.04 b	41.24±9.50	1.80 ± 0.24	2.60 ± 0.03	68.54±21.62	$0.93\pm0.26*$
Mn	AC	0.04 ± 0.00 ab	0.53±0.05	0.09 ± 0.01 ab	0.04±0.00 AB	3.32±0.78 *	0.09 ± 0.02
	Sp12	0.05±0.00 a	0.45 ± 0.03	0.15±0.02 a	0.05±0.00 A	1.19 ± 0.23	0.10 ± 0.01
	Sp5	0.03±0.00 b	0.49 ± 0.10	0.07±0.03 b	0.03±0.00 B	3.50±0.11 *	0.12 ± 0.03
В	AC	0.06 ± 0.00	0.19 ± 0.14	0.04±0.00 ab	0.06 ± 0.00	0.22 ± 0.11	0.04±0.00 A
	sp12	0.06 ± 0.00	0.07 ± 0.01	0.05±0.01 a	0.07 ± 0.00	0.20 ± 0.00	0.04±0.00 A*
	sp5	0.05 ± 0.00	nd	0.03±0.00 b	$0.06 \pm 0.00*$	0.16 ± 0.02	0.03±0.00 B
Fe	AC	0.06±0.00 b	0.15 ± 0.04	$0.64{\pm}0.07$	0.07 ± 0.02	0.59±0.11*	0.32±0.04 B*
	sp12	0.04±0.00 b	$0.14{\pm}0.03$	0.63 ± 0.05	0.07 ± 0.01	0.39±0.13	0.38±0.05 B*
	sp5	0.10±0.03 a	0.14 ± 0.04	0.66 ± 0.09	0.07 ± 0.02	0.62±0.26*	0.64±0.09 A
Zn	AC	$0.04{\pm}0.00$	0.65 ± 0.04	0.29±0.03	$0.07 \pm 0.00*$	8.13±1.81*	0.23±0.02 B
	sp12	0.05 ± 0.00	0.52 ± 0.05	0.32±0.01	$0.08 \pm 0.00*$	2.08 ± 0.57	0.24±0.01 B
	sp5	$0.04{\pm}0.00$	0.61±0.09	0.33±0.06	$0.07 \pm 0.00*$	4.41±2.22	0.32±0.02 A
				21 DTS			
			Control			G 1/	
			Control			Salt	
		Leaf	Xylem	Root	Leaf	Xylem	Root
K	AC	Leaf 18.28±0.60	Xylem 546.51±53.82	Root 18.18±1.56	Leaf 7.60±0.52 *	Salt Xylem 879.86±72.17 AB	Root 10.64±1.02 *
K	AC sp12	Leaf 18.28±0.60 18.19±0.34	Xylem 546.51±53.82 610.96±91.88	Root 18.18±1.56 18.66±1.09	Leaf 7.60±0.52 * 6.53±0.64 *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A*	Root 10.64±1.02 * 8.86±0.17 *
K	AC sp12 sp5	Leaf 18.28±0.60 18.19±0.34 17.74±1.60	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 1000000000000000000000000000000000000	Root 18.18±1.56 18.66±1.09 19.64±0.91	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 *
K Na	AC sp12 sp5 AC	Leaf 18.28±0.60 18.19±0.34 17.74±1.60 0.31±0.02	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34	Root 18.18±1.56 18.66±1.09 19.64±0.91 0.98±0.68	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B *	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98
K Na	AC sp12 sp5 AC sp12	Leaf 18.28±0.60 18.19±0.34 17.74±1.60 0.31±0.02 0.35±0.02	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82	Root 18.18±1.56 18.66±1.09 19.64±0.91 0.98±0.68 0.31±0.01	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 * 17.75±0.60 *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A *	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59
K Na	AC sp12 sp5 AC sp12 sp5	Leaf 18.28±0.60 18.19±0.34 17.74±1.60 0.31±0.02 0.35±0.02 0.34±0.02	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56	Root 18.18±1.56 18.66±1.09 19.64±0.91 0.98±0.68 0.31±0.01 0.19±0.03	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 * 17.75±0.60 * 19.17±2.32 *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B *	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07
K Na Ca	AC sp12 sp5 AC sp12 sp5 AC	Leaf 18.28±0.60 18.19±0.34 17.74±1.60 0.31±0.02 0.35±0.02 0.34±0.02 16.59±1.02	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56 170.08±41.76	Root 18.18±1.56 18.66±1.09 19.64±0.91 0.98±0.68 0.31±0.01 0.19±0.03 3.11±0.19 b	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 * 17.75±0.60 * 19.17±2.32 * 10.59±0.26 A *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09
K Na Ca	AC sp12 sp5 AC sp12 sp5 AC sp12	Leaf 18.28±0.60 18.19±0.34 17.74±1.60 0.31±0.02 0.35±0.02 0.34±0.02 16.59±1.02 15.60±1.33	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56 170.08±41.76 113.45±14.20	Root 18.18±1.56 18.66±1.09 19.64±0.91 0.98±0.68 0.31±0.01 0.19±0.03 3.11±0.19 b 4.11±0.15 a	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 * 17.75±0.60 * 19.17±2.32 * 10.59±0.26 A * 10.43±0.47 A *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03
K Na Ca	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 Sp12 sp5	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46	$\begin{tabular}{ c c c c c } \hline \hline Xylem \\ \hline S46.51\pm53.82 \\ \hline 610.96\pm91.88 \\ \hline 775.24\pm172.47 \\ \hline 12.69\pm4.34 \\ \hline 8.27\pm1.82 \\ \hline 5.44\pm0.56 \\ \hline 170.08\pm41.76 \\ \hline 113.45\pm14.20 \\ \hline 166.52\pm45.79 \\ \hline \end{tabular}$	Root 18.18±1.56 18.66±1.09 19.64±0.91 0.98±0.68 0.31±0.01 0.19±0.03 3.11±0.19 b 4.11±0.15 a 3.16±0.16 b	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 * 17.75±0.60 * 19.17±2.32 * 10.59±0.26 A * 10.43±0.47 A * 8.37±0.48 B *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03 1.50±0.08
K Na Ca Mg	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC	Leaf 18.28 ± 0.60 18.19 ± 0.34 17.74 ± 1.60 0.31 ± 0.02 0.35 ± 0.02 0.34 ± 0.02 16.59 ± 1.02 15.60 ± 1.33 16.31 ± 0.46 3.75 ± 0.22	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56 170.08±41.76 113.45±14.20 166.52±45.79 39.12±6.82	Root 18.18±1.56 18.66±1.09 19.64±0.91 0.98±0.68 0.31±0.01 0.19±0.03 3.11±0.19 b 4.11±0.15 a 3.16±0.16 b 1.97±0.11	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 * 17.75±0.60 * 19.17±2.32 * 10.59±0.26 A * 10.43±0.47 A * 8.37±0.48 B * 2.09±0.09 A *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03 1.50±0.08 1.57±0.75 B
K Na Ca Mg	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56 170.08±41.76 113.45±14.20 166.52±45.79 39.12±6.82 31.60±2.92	Root 18.18±1.56 18.66±1.09 19.64±0.91 0.98±0.68 0.31±0.01 0.19±0.03 3.11±0.19 b 4.11±0.15 a 3.16±0.16 b 1.97±0.11 2.25±0.15	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 * 17.75±0.60 * 19.17±2.32 * 10.59±0.26 A * 10.43±0.47 A * 8.37±0.48 B * 2.09±0.09 A * 2.23±0.04 A *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30*	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03 1.50±0.08 1.57±0.75 B 1.66±0.11 B*
K Na Ca Mg	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56 170.08±41.76 113.45±14.20 166.52±45.79 39.12±6.82 31.60±2.92 46.56±9.22	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 * 17.75±0.60 * 19.17±2.32 * 10.59±0.26 A * 10.43±0.47 A * 8.37±0.48 B * 2.09±0.09 A * 2.23±0.04 A * 1.14±0.11 B *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03 1.50±0.08 1.57±0.75 B 1.66±0.11 B* 2.62±0.41 A
K Na Ca Mg P	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC	Leaf 18.28 ± 0.60 18.19 ± 0.34 17.74 ± 1.60 0.31 ± 0.02 0.35 ± 0.02 0.34 ± 0.02 16.59 ± 1.02 15.60 ± 1.33 16.31 ± 0.46 3.75 ± 0.22 3.55 ± 0.26 3.15 ± 0.12 3.78 ± 0.09	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56 170.08±41.76 113.45±14.20 166.52±45.79 39.12±6.82 31.60±2.92 46.56±9.22 58.77±6.22	Root 18.18±1.56 18.66±1.09 19.64±0.91 0.98±0.68 0.31±0.01 0.19±0.03 3.11±0.19 b 4.11±0.15 a 3.16±0.16 b 1.97±0.11 2.25±0.15 2.30±0.13 3.89±0.38	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 * 17.75±0.60 * 19.17±2.32 * 10.59±0.26 A * 10.43±0.47 A * 8.37±0.48 B * 2.09±0.09 A * 2.23±0.04 A * 1.14±0.11 B * 3.20±0.15 B *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03 1.50±0.08 1.66±0.11 B* 2.62±0.41 A 3.11±0.22 AB
K Na Ca Mg P	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56 170.08±41.76 113.45±14.20 166.52±45.79 39.12±6.82 31.60±2.92 46.56±9.22 58.77±6.22 77.68±8.48	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26	Leaf 7.60±0.52 * 6.53±0.64 * 7.48±1.80 * 16.39±0.74 * 17.75±0.60 * 19.17±2.32 * 10.59±0.26 A * 10.43±0.47 A * 8.37±0.48 B * 2.09±0.09 A * 2.23±0.04 A * 1.14±0.11 B * 3.20±0.15 B * 2.95±0.31 B *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A*	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03 1.50±0.08 1.57±0.75 B 1.66±0.11 B* 2.62±0.41 A 3.11±0.22 AB 3.00±0.21 B*
K Na Ca Mg P	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40	$\begin{tabular}{ c c c c c } \hline U & U & U & U & U & U & U & U & U & U$	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 1.14 \pm 0.11 B * 3.20 \pm 0.05 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03 1.50±0.08 1.57±0.75 B 1.66±0.11 B* 2.62±0.41 A 3.01±0.22 AB 3.00±0.21 B* 3.86±0.30 A
K Na Ca Mg P	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56 170.08±41.76 113.45±14.20 166.52±45.79 39.12±6.82 31.60±2.92 46.56±9.22 58.77±6.22 77.68±8.48 69.81±9.54 40.95±7.91	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2 95 AB	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03 1.50±0.08 1.57±0.75 B 1.66±0.11 B* 2.62±0.41 A 3.11±0.22 AB 3.00±0.21 B* 3.86±0.30 A 1.47±0.09
K Na Ca Mg P S	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21	$\begin{tabular}{ c c c c c } \hline U & Vylem \\ \hline $546.51\pm53.82 \\ $610.96\pm91.88 \\ $775.24\pm172.47 \\ $12.69\pm4.34 \\ $8.27\pm1.82 \\ $5.44\pm0.56 \\ $170.08\pm41.76 \\ $113.45\pm14.20 \\ $166.52\pm45.79 \\ $39.12\pm6.82 \\ $31.60\pm2.92 \\ $46.56\pm9.22 \\ $58.77\pm6.22 \\ $77.68\pm8.48 \\ $69.81\pm9.54 \\ $40.95\pm7.91 \\ $29.35\pm3.93 \\ \end{tabular}$	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55 5±26 A	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03 1.50±0.08 1.57±0.75 B 1.66±0.11 B* 2.62±0.41 A 3.11±0.22 AB 3.00±0.21 B* 3.86±0.30 A 1.47±0.09 1.61±0.07
K Na Ca Mg P S	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.72 \pm 0.18	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56 170.08±41.76 113.45±14.20 166.52±45.79 39.12±6.82 31.60±2.92 46.56±9.22 58.77±6.22 77.68±8.48 69.81±9.54 40.95±7.91 29.35±3.93 58.10±10.78	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.63 ± 0.11 1.93 ± 0.08	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 55.51±6.91 A* 34.38±21 B	Root 10.64±1.02 * 8.86±0.17 * 10.25±0.65 * 13.84±0.98 15.11±0.59 12.59±0.07 1.55±0.09 1.73±0.03 1.50±0.08 1.57±0.75 B 1.66±0.11 B* 2.62±0.41 A 3.11±0.22 AB 3.00±0.21 B* 3.86±0.30 A 1.47±0.09 1.61±0.07 1.38±0.26*
K Na Ca Mg P S	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01	Xylem 546.51±53.82 610.96±91.88 775.24±172.47 12.69±4.34 8.27±1.82 5.44±0.56 170.08±41.76 113.45±14.20 166.52±45.79 39.12±6.82 31.60±2.92 46.56±9.22 58.77±6.22 77.68±8.48 69.81±9.54 40.95±7.91 29.35±3.93 58.10±10.78 0.92±0.16	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07	Root $10.64\pm1.02^*$ $8.86\pm0.17^*$ $10.25\pm0.65^*$ 13.84 ± 0.98 15.11 ± 0.59 12.59 ± 0.07 1.55 ± 0.09 1.73 ± 0.03 1.50 ± 0.08 1.57 ± 0.75 1.66 ± 0.11 8.66 ± 0.11 8.62 ± 0.41 3.01 ± 0.22 3.00 ± 0.21 8.86 ± 0.30 1.47 ± 0.09 1.61 ± 0.07 $1.38\pm0.26^*$
K Na Ca Mg P S Mn	AC sp12 sp5 AC sp12 sp12 sp2 AC sp12 sp2 AC sp12 sp2 AC sp12 sp2 AC sp12 AC Sp12 AC sp12 AC Sp12 AC sp12 AC sp12 AC Sp12 AC Sp	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.46 ± 0.07	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.01	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0 00 A	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26*	Root $10.64\pm1.02^*$ $8.86\pm0.17^*$ $10.25\pm0.65^*$ $10.25\pm0.65^*$ 13.84 ± 0.98 $15.11\pm0.59^*$ $12.59\pm0.07^*$ $1.55\pm0.09^*$ $1.73\pm0.03^*$ $1.50\pm0.08^*$ $1.50\pm0.08^*$ $1.50\pm0.08^*$ $1.50\pm0.08^*$ $1.50\pm0.08^*$ $1.50\pm0.08^*$ $1.50\pm0.08^*$ $1.50\pm0.08^*$ $1.50\pm0.08^*$ $1.50\pm0.09^*$ $1.50\pm0.08^*$ $1.50\pm0.01^*$ $1.6\pm0.07^*$ $1.8\pm0.26^*$ $0.07\pm0.01^*$ $0.08\pm0.01^*$
K Na Ca Mg P S Mn	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 sp5 sp5 sp5 sp5 sp5 sp5 sp5 sp5 sp5	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00 0.03 \pm 0.00	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.46 ± 0.07 0.74 ± 0.28	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.02	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0.00 A	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26* 0.99±0.25	Root $10.64\pm1.02^*$ $8.86\pm0.17^*$ $10.25\pm0.65^*$ $10.25\pm0.65^*$ 13.84 ± 0.98 $15.11\pm0.59^*$ $12.59\pm0.07^*$ $1.55\pm0.09^*$ $1.73\pm0.03^*$ $1.50\pm0.08^*$ $1.57\pm0.75^*$ $1.66\pm0.11^*$ $2.62\pm0.41^*$ $3.00\pm0.21^*$ $3.86\pm0.30^*$ $1.47\pm0.09^*$ $1.61\pm0.07^*$ $1.38\pm0.26^*$ $0.07\pm0.01^*$ $0.08\pm0.01^*$
K Na Ca Mg P S Mn	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00 0.03 \pm 0.00 0.05 \pm 0.00	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.46 ± 0.07 0.74 ± 0.28 12 ± 0.56	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.02 0.04 ± 0.00	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.05 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0.00 A 0.03 \pm 0.01 B 0.06 \pm 0.01	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26* 0.99±0.25 0.16±0.09	Root $10.64\pm 1.02^*$ $8.86\pm 0.17^*$ $10.25\pm 0.65^*$ $10.25\pm 0.65^*$ 13.84 ± 0.98 $15.11\pm 0.59^*$ $12.59\pm 0.07^*$ $1.55\pm 0.09^*$ $1.55\pm 0.09^*$ $1.50\pm 0.08^*$ $1.50\pm 0.08^*$ $1.57\pm 0.75^*$ $1.66\pm 0.11^*$ $2.62\pm 0.41^*$ $3.00\pm 0.21^*$ $3.00\pm 0.21^*$ $3.86\pm 0.30^*$ $1.47\pm 0.09^*$ $1.61\pm 0.07^*$ $1.38\pm 0.26^*$ $0.07\pm 0.01^*$ $0.08\pm 0.01^*$ $0.11\pm 0.01^*$
K Na Ca Mg P S Mn	AC sp12 sp5 AC sp12 sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp12 sp5 AC sp12 sp12 sp12 sp12 sp12 sp12 sp12 sp12	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00 0.03 \pm 0.00 0.05 \pm 0.00 0.06 \pm 0.00	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.46 ± 0.07 0.74 ± 0.28 1.28 ± 0.56 0.16 ± 0.00	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.02 0.04 ± 0.00	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0.00 A 0.03 \pm 0.01 B 0.06 \pm 0.01	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26* 0.99±0.25 0.16±0.09 0.7+0.04	Root $10.64\pm 1.02^*$ $8.86\pm 0.17^*$ $10.25\pm 0.65^*$ 13.84 ± 0.98 15.11 ± 0.59 12.59 ± 0.07 1.55 ± 0.09 1.73 ± 0.03 1.50 ± 0.08 $1.57\pm 0.75^*$ $1.66\pm 0.11^*$ $2.62\pm 0.41^*$ $3.00\pm 0.21^*$ $3.00\pm 0.21^*$ $3.86\pm 0.30^*$ $1.47\pm 0.09^*$ $1.61\pm 0.07^*$ $1.38\pm 0.26^*$ $0.07\pm 0.01^*$ $0.08\pm 0.01^*$ $0.04\pm 0.00^*$ $0.11\pm 0.01^*$ $0.05\pm 0.00^*$
K Na Ca Mg P S Mn B	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp5 Sp5 AC sp5 Sp5 AC sp5 Sp5 AC sp5 AC sp5 Sp5 AC sp5 AC SD SD SD SD SD SD SD SD SD SD SD	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.46 ± 0.07 0.74 ± 0.28 1.28 ± 0.56 0.16 ± 0.00 0.86 ± 0.53	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.02 0.04 ± 0.00 0.05 ± 0.00 0.04 ± 0.00	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0.00 A 0.03 \pm 0.01 B 0.06 \pm 0.01 0.06 \pm 0.00	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26* 0.99±0.25 0.16±0.09 0.07±0.04 0.44±0 17	Root $10.64\pm 1.02^*$ $8.86\pm 0.17^*$ $10.25\pm 0.65^*$ 13.84 ± 0.98 15.11 ± 0.59 12.59 ± 0.07 1.55 ± 0.09 1.73 ± 0.03 1.50 ± 0.08 1.57 ± 0.75 B 1.66 ± 0.11 B* 2.62 ± 0.41 A 3.10 ± 0.22 AB 3.00 ± 0.21 B* 3.66 ± 0.30 A 1.47 ± 0.09 1.61 ± 0.07 $1.38\pm 0.26^*$ 0.07 ± 0.01 B 0.08 ± 0.01 AB 0.11 ± 0.01 A* 0.04 ± 0.00 AB 0.05 ± 0.00 A
K Na Ca Mg P S Mn B	AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC sp12 sp5 AC	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.46 ± 0.07 0.74 ± 0.28 1.28 ± 0.56 0.16 ± 0.00 0.86 ± 0.53 40.3 ± 0.00	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.02 0.04 ± 0.00 0.35 ± 0.02 0.04 ± 0.00 0.35 ± 0.02 0.04 ± 0.00	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0.00 A 0.03 \pm 0.01 B 0.06 \pm 0.00 0.06 \pm 0.00	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26* 0.99±0.25 0.16±0.09 0.07±0.04 0.44±0.17 0.20±0.02	Root $10.64\pm 1.02^*$ $8.86\pm 0.17^*$ $10.25\pm 0.65^*$ 13.84 ± 0.98 15.11 ± 0.59 12.59 ± 0.07 1.55 ± 0.09 1.73 ± 0.03 1.50 ± 0.08 1.57 ± 0.75 B 1.66 ± 0.11 B* 2.62 ± 0.41 A 3.11 ± 0.22 AB 3.00 ± 0.21 B* 3.86 ± 0.30 A 1.47 ± 0.09 1.61 ± 0.07 $1.38\pm 0.26^*$ 0.07 ± 0.01 B 0.08 ± 0.01 AB 0.11 ± 0.01 A* 0.04 ± 0.00 AB 0.05 ± 0.00 A 0.03 ± 0.00 B
K Na Ca Mg P S Mn B Fe	AC sp12 sp5 AC sp12 sp12 sp2 AC sp2 Sp2 AC sp2 AC sp2 AC sp2 Sp2 AC sp2 Sp2 AC sp2 Sp2 AC sp2 Sp2 Sp2 Sp2 Sp2 Sp2 Sp2 Sp2 Sp2 Sp2 S	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00 0.05 \pm 0.00	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.46 ± 0.07 0.7 ± 0.28 1.28 ± 0.56 0.16 ± 0.00 0.86 ± 0.53 4.03 ± 0.00	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.02 0.04 ± 0.00 0.36 ± 0.05 0.33 ± 0.02	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.05 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0.00 A 0.05 \pm 0.00 A 0.05 \pm 0.00 A	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26* 0.99±0.25 0.16±0.09 0.07±0.04 0.44±0.17 0.20±0.02 0.37±0.00	Root $10.64\pm1.02*$ $8.86\pm0.17*$ $10.25\pm0.65*$ 13.84 ± 0.98 15.11 ± 0.59 12.59 ± 0.07 1.55 ± 0.09 1.73 ± 0.03 1.50 ± 0.08 1.57 ± 0.75 1.66 ± 0.11 8.66 ± 0.11 8.66 ± 0.11 8.66 ± 0.11 8.66 ± 0.11 8.66 ± 0.24 3.00 ± 0.21 8.86 ± 0.30 1.47 ± 0.09 1.61 ± 0.07 $1.38\pm0.26*$ 0.07 ± 0.01 0.08 ± 0.01 0.04 ± 0.001 0.05 ± 0.00 0.05 ± 0.00 0.03 ± 0.00 0.03 ± 0.00 0.30 ± 0.01 0.30 ± 0.01
K Na Ca Mg P S Mn B Fe	AC sp12 sp5 AC sp2 AC sp2 AC sp2 AC sp2 AC sp5 AC sp2 Sp2 AC sp2 AC sp2 AC sp2 Sp2 AC sp2 Sp2 AC sp2 Sp2 AC sp2 AC sp2 AC sp2 Sp2 AC sp2 AC Sp2 AC sp2 AC sp2 AC Sp2 AC Sp2 AC Sp2 AC Sp2 AC Sp2 AC Sp2 AC Sp2 AC Sp2 Sp2 AC Sp2 Sp2 AC Sp2 SD SD SD AC Sp2 AC Sp2 AC Sp2 AC SD SD SD SD AC SD SD SD AC SD SDD	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 0.04 \pm 0.00 ab 0.03 \pm 0.00 b 0.05 \pm 0.00 c	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.46 ± 0.07 0.74 ± 0.28 1.28 ± 0.56 0.16 ± 0.00 0.86 ± 0.53 4.03 ± 0.00 0.31 ± 0.10	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.19 b 4.11 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.02 0.04 ± 0.00 0.05 ± 0.02 0.04 ± 0.00 0.33 ± 0.02 0.45 ± 0.04	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0.00 A 0.05 \pm 0.00 A 0.05 \pm 0.00 A	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26* 0.99±0.25 0.16±0.09 0.07±0.04 0.44±0.17 0.20±0.02 0.37±0.09 0.10±0.06	Root $10.64\pm1.02^*$ $8.86\pm0.17^*$ $10.25\pm0.65^*$ 13.84 ± 0.98 15.11 ± 0.59 12.59 ± 0.07 1.55 ± 0.09 1.73 ± 0.03 1.50 ± 0.08 1.57 ± 0.75 1.66 ± 0.11 8.6 ± 0.11 2.62 ± 0.41 3.00 ± 0.21 3.00 ± 0.21 3.86 ± 0.30 1.47 ± 0.09 1.61 ± 0.07 $1.38\pm0.26^*$ 0.07 ± 0.01 0.08 ± 0.01 0.01 ± 0.01 0.08 ± 0.01 0.01 ± 0.01 0.03 ± 0.00 0.03 ± 0.00 0.30 ± 0.00 0.30 ± 0.01 0.30 ± 0.01 0.33 ± 0.00 0.30 ± 0.01 0.30 ± 0.01 0.30 ± 0.01
K Na Ca Mg P S Mn B Fe	AC sp12 sp5 AC sp2 AC Sp2 AC Sp2 AC Sp2 AC Sp2 AC Sp2 AC Sp2 AC AC Sp2 AC AC Sp2 AC Sp2 AC AC AC AC AC AC AC AC AC AC AC AC AC	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00 0.05 \pm0.00 0.05 \pm 0.00 0.05 \pm0.00 0.05 \pm 0.00 0.05 \pm0.00 0.05 \pm 0.00 0.05 \pm 0.05	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.46 ± 0.07 0.74 ± 0.28 1.28 ± 0.56 0.16 ± 0.00 0.31 ± 0.10 2.38 ± 2.12 1.25 ± 0.25	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.19 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.02 0.04 ± 0.00 0.05 ± 0.02 0.04 ± 0.00 0.33 ± 0.02 0.45 ± 0.04	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0.01 B 0.06 \pm 0.01 0.06 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 *	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26* 0.99±0.25 0.16±0.09 0.07±0.04 0.44±0.17 0.20±0.02 0.37±0.09 0.19±0.06	Root $10.64\pm1.02^*$ $8.86\pm0.17^*$ $10.2\pm0.65^*$ $10.2\pm0.65^*$ 13.84 ± 0.98 15.11 ± 0.59 12.59 ± 0.07 1.55 ± 0.09 1.73 ± 0.03 1.50 ± 0.08 $1.57\pm0.75^{\circ}$ $1.66\pm0.11^{\circ}$ $8.6\pm0.30^{\circ}$ $1.62\pm0.41^{\circ}$ $3.00\pm0.21^{\circ}$ $3.00\pm0.21^{\circ}$ $3.86\pm0.30^{\circ}$ $1.47\pm0.09^{\circ}$ $1.61\pm0.07^{\circ}$ $1.38\pm0.26^{*}$ $0.07\pm0.01^{\circ}$ $0.08\pm0.01^{\circ}$ $0.01\pm0.01^{\circ}$ $0.03\pm0.00^{\circ}$ $0.03\pm0.00^{\circ}$ $0.03\pm0.00^{\circ}$ $0.30\pm0.00^{\circ}$ $0.30\pm0.01^{\circ}$ $0.30\pm0.00^{\circ}$
K Na Ca Mg P S Mn B Fe Zn	AC sp12 sp5 AC sp2 AC AC sp2 AC sp2 AC S AC sp2 AC S AC S AC S AC S S AC S AC S S AC S AC S	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00 0.05 \pm0.00 0.05 \pm 0.00 0.05 \pm0.00 0.05	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.16 ± 0.07 0.74 ± 0.28 1.28 ± 0.56 0.16 ± 0.00 0.86 ± 0.53 4.03 ± 0.00 0.31 ± 0.10 2.38 ± 2.12 1.35 ± 0.35	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.01 0.05 ± 0.02 0.04 ± 0.00 0.36 ± 0.05 0.33 ± 0.02 0.45 ± 0.04 0.22 ± 0.02 0.15 ± 0.02	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.15 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0.00 A 0.03 \pm 0.01 B 0.06 \pm 0.01 0.06 \pm 0.00 0.05 \pm 0.00	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26* 0.99±0.25 0.16±0.09 0.07±0.04 0.44±0.17 0.20±0.02 0.37±0.09 0.19±0.06 1.90±0.19 2.08±0.11	Root $10.64\pm 1.02^*$ $8.86\pm 0.17^*$ $10.25\pm 0.65^*$ 13.84 ± 0.98 15.11 ± 0.59 12.59 ± 0.07 1.55 ± 0.09 1.73 ± 0.03 1.50 ± 0.08 $1.57\pm 0.75^{\circ}$ $1.66\pm 0.11^{\circ}$ $2.62\pm 0.41^{\circ}$ $3.00\pm 0.21^{\circ}$ $3.86\pm 0.30^{\circ}$ $1.47\pm 0.09^{\circ}$ $1.61\pm 0.07^{\circ}$ $1.38\pm 0.26^*$ $0.07\pm 0.01^{\circ}$ $0.08\pm 0.01^{\circ}$ $0.05\pm 0.00^{\circ}$ $0.03\pm 0.00^{\circ}$ $0.30\pm 0.01^{\circ}$ $0.30\pm 0.01^{\circ}$ $0.30\pm 0.01^{\circ}$ $0.30\pm 0.01^{\circ}$
K Na Ca Mg P S Mn B Fe Zn	AC sp12 sp5 AC sp2 AC S S AC Sp2 AC S AC Sp2 AC S AC S S AC S AC S S AC S AC S S AC S AC S	Leaf 18.28 \pm 0.60 18.19 \pm 0.34 17.74 \pm 1.60 0.31 \pm 0.02 0.35 \pm 0.02 0.34 \pm 0.02 16.59 \pm 1.02 15.60 \pm 1.33 16.31 \pm 0.46 3.75 \pm 0.22 3.55 \pm 0.26 3.15 \pm 0.12 3.78 \pm 0.09 3.81 \pm 0.15 3.86 \pm 0.40 3.53 \pm 0.19 3.60 \pm 0.21 3.37 \pm 0.18 0.05 \pm 0.01 0.04 \pm 0.00 0.05 \pm 0.00 0.04 \pm0.00 0.04 \pm 0.00 0.04 \pm 0.00 0.04 \pm 0.00	Xylem 546.51 ± 53.82 610.96 ± 91.88 775.24 ± 172.47 12.69 ± 4.34 8.27 ± 1.82 5.44 ± 0.56 170.08 ± 41.76 113.45 ± 14.20 166.52 ± 45.79 39.12 ± 6.82 31.60 ± 2.92 46.56 ± 9.22 58.77 ± 6.22 77.68 ± 8.48 69.81 ± 9.54 40.95 ± 7.91 29.35 ± 3.93 58.10 ± 10.78 0.92 ± 0.16 0.46 ± 0.07 0.74 ± 0.28 1.28 ± 0.56 0.16 ± 0.00 0.86 ± 0.53 4.03 ± 0.00 0.31 ± 0.10 2.38 ± 2.12 1.35 ± 0.35 0.93 ± 0.23 $1.0.025$	Root 18.18 ± 1.56 18.66 ± 1.09 19.64 ± 0.91 0.98 ± 0.68 0.31 ± 0.01 0.19 ± 0.03 3.11 ± 0.19 b 4.11 ± 0.15 a 3.16 ± 0.16 b 1.97 ± 0.11 2.25 ± 0.15 2.30 ± 0.13 3.89 ± 0.38 4.22 ± 0.26 4.74 ± 0.26 1.62 ± 0.16 1.83 ± 0.11 1.93 ± 0.08 0.06 ± 0.01 0.07 ± 0.02 0.04 ± 0.00 0.05 ± 0.02 0.04 ± 0.00 0.36 ± 0.05 0.33 ± 0.02 0.45 ± 0.04 0.22 ± 0.02 0.19 ± 0.02	Leaf 7.60 \pm 0.52 * 6.53 \pm 0.64 * 7.48 \pm 1.80 * 16.39 \pm 0.74 * 17.75 \pm 0.60 * 19.17 \pm 2.32 * 10.59 \pm 0.26 A * 10.43 \pm 0.47 A * 8.37 \pm 0.48 B * 2.09 \pm 0.09 A * 2.23 \pm 0.04 A * 1.14 \pm 0.11 B * 3.20 \pm 0.05 B * 2.95 \pm 0.31 B * 4.12 \pm 0.25 A * 2.61 \pm 0.07 * 2.40 \pm 0.06 * 2.45 \pm 0.24 * 0.04 \pm 0.00 AB 0.05 \pm 0.01 B 0.06 \pm 0.01 0.06 \pm 0.01 0.06 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.00 0.05 \pm 0.01 0.07 \pm 0.01* 0.07 \pm 0.01* 0.07 \pm 0.01*	Salt Xylem 879.86±72.17 AB 944.38±122.16 A* 591.85±133.38 B 1011.79±134.99B * 1737.00±160.96A * 814.37±197.69B * 133.75±12.94 108.81±7.90 97.62±18.38 51.88±3.37 63.62±12.30* 43.78±7.03 79.65±6.91 B 135.55±25.33 A* 72.47±23.24 B 35.15±2.95 AB 55.51±6.91 A* 34.38±8.21 B 0.98±0.07 1.32±0.26* 0.99±0.25 0.16±0.09 0.07±0.04 0.44±0.17 0.20±0.02 0.37±0.09 0.19±0.06 1.90±0.19 2.08±0.41 2.00±0.52	Root $10.64\pm 1.02^*$ $8.86\pm 0.17^*$ $10.25\pm 0.65^*$ 13.84 ± 0.98 15.11 ± 0.59 12.59 ± 0.07 1.55 ± 0.09 1.73 ± 0.03 1.50 ± 0.08 $1.57\pm 0.75^*$ $1.66\pm 0.11^*$ $2.62\pm 0.41^*$ $3.00\pm 0.21^*$ $3.86\pm 0.30^*$ $1.47\pm 0.09^*$ $1.61\pm 0.07^*$ $1.38\pm 0.26^*$ $0.07\pm 0.01^*$ $0.08\pm 0.01^*$ $0.03\pm 0.00^*$ $0.03\pm 0.00^*$ $0.30\pm 0.01^*$ $0.18\pm 0.01^*$ $0.18\pm 0.01^*$

Table S3. Two way ANOVA for the effects of the genotype and treatment on shoot fresh weight (SFW), root fresh weight (RFW), total fresh weight (TFW), photosynthesis (A), stomatal conductance (gs), abscisic acid (ABA) and jasmonic acid (JA) concentration in leaf, xylem and root. The numbers in the table are the P-values.

5		SFW	RFW	TFW
			AC vs sp12	
5	Genotype	0.014	0.532	0.023
	Treatment	0.0001	0.002	0.0001
_	Genotype x Treatment	0.012	0.313	0.016
7			AC vs sp5	
	Genotype	0.0001	0.001	0.0001
2	Treatment	0.0001	0.004	0.0001
)	Genotype x Treatment	0.003	0.036	0.004
	-		sp5 vs sp12	
)	Genotype	0.166	0.025	0.055
	Treatment	0.0001	0.139	0.0001
	Genotype x Treatment	0.769	0.452	0.616
)		A	g_	
			AC vs snl2	
L	Conotyno	0.072	0 118	
	Treatment	0.072	0.118	
•	Construe y Treatment	0.0001	0.379	
<u>/</u>	Genotype x Treatment	0.000	0.747	
	<u> </u>	0.255	AC VS SPJ	
	Genotype Transformerst	0.555	0.005	
	I reatment	0.005	0.377	
	Genotype x 1 reatment	0.206	0.880	
	<u> </u>	0.7(0	sp12 vs sp3	
	Genotype	0.768	0.271	
	l reatment	0.058	0/1	
	G t T t	0.050	0.252	
	Genotype x Treatment	0.976	0.792	1.5.4
	Genotype x Treatment	0.976 ABAleaf	0.792 ABAxylem	ABAroot
	Genotype x Treatment	0.976 ABAleaf	0.792 ABAxylem <u>AC vs sp12</u> 0.0001	ABAroot
	Genotype Treatment	0.976 ABAleaf	0.792 ABAxylem <i>AC vs sp12</i> 0.0001 0.0001	ABAroot
	Genotype Genotype Treatment Genotyne x Treatment	0.976 ABAleaf 0.012 0.0001 0.981	0.792 <u>ABAxylem</u> <u>AC vs sp12</u> 0.0001 0.0001 0.001	ABAroot 0.353 0.454 0.840
	Genotype Genotype Treatment Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981	0.792 <u>ABAxylem</u> <u>AC vs sp12</u> 0.0001 0.0001 <u>4C vs sp5</u>	ABAroot 0.353 0.454 0.840
	Genotype Treatment Genotype x Treatment Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981	0.792 0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.001 AC vs sp5 0.0001	ABAroot 0.353 0.454 0.840
	Genotype Treatment Genotype x Treatment Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.0001	0.792 0.792 ABAxylem AC vs sp12 0.0001 0.0001 AC vs sp5 0.0001 0.0001	ABAroot 0.353 0.454 0.840 0.001 0.029
	Genotype Treatment Genotype x Treatment Genotype x Treatment Cenotype Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.0001 0.080	0.792 0.792 ABAxylem AC vs sp12 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0001 0.0001 0.0001	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022
	Genotype x Treatment Genotype Treatment Genotype x Treatment Genotype Treatment Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.0001 0.080	0.792 0.792 ABAxylem AC vs sp12 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0001 0.0007 sp12 vs sp5	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022
	Genotype x Treatment Genotype Treatment Genotype x Treatment Genotype Treatment Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.0001 0.080 0.001	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.001 AC vs sp5 0.0001 0.0001 0.0001 0.0001 0.0007 sp12 vs sp5 0.0022	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008
	Genotype x Treatment Genotype Treatment Genotype x Treatment Genotype Treatment Genotype x Treatment Genotype Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.0001 0.080 0.0001 0.0001 0.0001	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0001 0.0007 sp12 vs sp5 0.002 0.0021	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096
	Genotype x Treatment Genotype Treatment Genotype x Treatment Genotype Treatment Genotype x Treatment Genotype Treatment Genotype	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.0001 0.080 0.0001 0.0001 0.0001 0.0001 0.194	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087
	Genotype x Treatment Genotype Treatment Genotype x Treatment Genotype Treatment Genotype x Treatment Genotype Treatment Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.0001 0.0001 0.0001 0.094 LAleaf	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 LAxylem	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 LA root
	Genotype x Treatment Genotype X Treatment Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.080 0.0001 0.194 JAleaf	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 JAxylem 4C vs sp12	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 JAroot
	Genotype x Treatment Genotype x Treatment Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.080 0.0001 0.194 JAleaf 0.141	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 JAxylem AC vs sp12 0.607	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 JAroot 0.025
	Genotype x Treatment Genotype Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.0001 0.080 0.0001 0.0001 0.194 JAleaf 0.141 0.033	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 JAxylem AC vs sp12 0.627 0.022 0.627 0.002	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 JAroot 0.925 0.004
	Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.080 0.0001 0.194 JAleaf 0.141 0.023 0.190	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 JAxylem AC vs sp12 0.627 0.042 0.25	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 JAroot 0.925 0.004 0.856
	Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.0001 0.080 0.001 0.0001 0.094 JAleaf 0.141 0.023 0.190	0.792 ABAxylem AC vs sp12 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 JAxylem AC vs sp12 0.627 0.042 0.265	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 JAroot 0.925 0.004 0.856
	Genotype x Treatment Genotype Treatment Genotype Treatment Genotype Treatment Genotype Treatment Genotype Treatment Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.080 0.0001 0.194 JAleaf 0.141 0.023 0.190	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.022 0.0001 0.221 JAxylem AC vs sp12 0.627 0.042 0.265 AC vs sp5 0.111	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 JAroot 0.925 0.004 0.856
	Genotype x Treatment Genotype Treatment Genotype Treatment Genotype Treatment Genotype Treatment Genotype Treatment Genotype x Treatment Genotype x Treatment Genotype x Treatment Genotype Treatment Genotype Treatment Genotype Treatment Genotype Treatment Genotype Treatment Genotype Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.080 0.0001 0.094 JAleaf 0.141 0.023 0.190 0.120 0.255	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 JAxylem AC vs sp12 0.627 0.627 0.042 0.265 AC vs sp5 0.111 0.011 0.011 0.021	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 JAroot 0.925 0.004 0.856 0.746 0.925
	Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.080 0.0001 0.094 JAleaf 0.141 0.023 0.190 0.120 0.225 0.992	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.001 AC vs sp5 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0221 JAxylem AC vs sp12 0.627 0.042 0.265 AC vs sp5 0.111 0.019 0.192	ABAroot 0.353 0.454 0.840 0 0.022 0.022 0.008 0.096 0.087 JAroot 0.925 0.004 0.856 0.746 0.746 0.752
	Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.080 0.0001 0.094 JAleaf 0.141 0.023 0.190 0.120 0.255 0.983	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 JAxylem AC vs sp12 0.627 0.627 0.627 0.627 0.627 0.625 AC vs sp5 0.111 0.019 0.193	ABAroot 0.353 0.454 0.840 0 0.001 0.029 0.022 0.008 0.096 0.087 JAroot 0.925 0.004 0.856 0.746 0.025 0.753 0.753
	Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.080 0.0001 0.0981 0.0001 0.0001 0.0001 0.194 JAleaf 0.141 0.023 0.190 0.120 0.255 0.983 0.012	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 JAxylem AC vs sp12 0.665 AC vs sp5 0.111 0.019 0.193 sp12 vs sp5	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 JAroot 0.925 0.004 0.856 0.746 0.025 0.753 0.032
	Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.080 0.0001 0.094 JAleaf 0.141 0.023 0.190 0.120 0.255 0.983 0.949 0.949 0.194	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 JAxylem AC vs sp12 0.627 0.042 0.265 AC vs sp5 0.111 0.019 0.193 sp12 vs sp5 0.148 6.455	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 JAroot 0.925 0.004 0.856 0.746 0.025 0.753 0.833 0.833 0.833 0.833 0.833
	Genotype x Treatment Genotype Treatment Genotype x Treatment	0.976 ABAleaf 0.012 0.0001 0.981 0.0001 0.080 0.0001 0.080 0.0001 0.0001 0.094 JAleaf 0.141 0.023 0.190 0.120 0.255 0.983 0.949 0.103 0.949 0.103	0.792 ABAxylem AC vs sp12 0.0001 0.0001 0.0001 AC vs sp5 0.0001 0.0001 0.0007 sp12 vs sp5 0.022 0.0001 0.221 JAxylem AC vs sp12 0.627 0.042 0.265 AC vs sp5 0.111 0.019 0.193 sp12 vs sp5 0.148 0.018 0.019	ABAroot 0.353 0.454 0.840 0.001 0.029 0.022 0.008 0.096 0.087 JAroot 0.925 0.004 0.856 0.746 0.025 0.753 0.833 0.072 0.833 0.072

Table S4. Two way ANOVA for the effects of the genotype and treatment on Salicylic acid (SA), gibberellin A₃ (GA₃), 1-Aminocyclopropane-1-carboxylic acid (ACC), *trans-z*eatin (t-Z) and indole-3-acetic acid (IAA) concentrations in the leaf, root xylem sap and root. The numbers in the table are the *P*-values.

	11 D	ST	
	SA leaf	SA xylem	SA root
Genotype	0.031	0.147	0.005
Treatment	0.001	0.001	0.0001
Genotype X Treatment	0.106	0.242	0.513
		GA ₃ Xylem	
Genotype		0.400	
Treatment		0.751	
Genotype X Treatment		0.052	
	ACC leaf	ACC xylem	ACC root
Genotype	0.498	0.809	0.032
Treatment	0.086	0.095	0.0001
Genotype X Treatment	0.708	0.180	0.016
	t-Z leaf	t-Z xylem	t-Z root
Genotype	0.094	0.623	0.414
Treatment	0.011	0.0001	0.126
Genotype X Treatment	0.375	0.163	0.980
	IAA leaf	IAA xylem	IAA root
Genotype	0.998	0.529	0.222
Treatment	0.423	0.277	0.031
Genotype X Treatment	0.859	0.644	0.337
		21 DST	
	SA leaf	SA xylem	SA root
Genotype	0.002	0.089	0.001
Treatment	0.941	0.0001	0.030
Genotype X Treatment	0.369	0.261	0.643
		GA ₃ Xylem	
Genotype		0.0001	
Treatment		0.790	
Genotype X Treatment		0.274	
	ACC leaf	ACC xylem	ACC root
Genotype	0.015	0.0001	0.028
Treatment	0.428	0.140	0.001
Genotype X Treatment	0.361	0.818	0.095
	t-Z leaf	t-Z xylem	t-Z root
Genotype	0.668	0.746	0.016
Treatment	0.001	0.004	0.000
Genotype X Treatment	0.017	0.786	0.016
	IAA leaf	IAA xylem	IAA root
Genotype	0.884	0.257	0.101
Treatment	0.060	0.003	0.003
Genotype X Treatment	0.009	0.142	0.995

1061

Figure 2

Figure 3

Figure 4

Figure 6

Figure S1

