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Abstract: Natural environmental gradients encompass systematic variation in abiotic
factors that can be exploited to test competing explanations of biodiversity patterns.
The Species-Energy (SE) hypothesis attempts to explain species richness gradients as
a function of energy availability. However, limited empirical support for SE is often
attributed to idiosyncratic, local-scale processes distorting the underlying species-
energy relationship. Meanwhile, studies are also often confounded by factors such as
sampling biases, dispersal boundaries, and unclear definitions of energy availability.
Here, we use spatially-structured observations of 8,460 colonies of photo-symbiotic
reef-building corals and a null-model to test whether energy can explain observed
coral species richness over depth. Species richness was left-skewed, hump-shaped,
and unrelated to energy availability. While local-scale processes were evident, their
influence on species richness was insufficient to reconcile observations with model
predictions. Therefore, neither energy availability in isolation, nor in combination
with local deterministic processes were able to explain coral species richness across
depth. Our results demonstrate that local-scale processes do not necessarily explain
deviations in species richness from theoretical models, and that the use of
idiosyncratic small-scale factors to explain large-scale ecological patterns requires the

utmost caution.

Keywords: Corals, species richness gradients, Species Energy Hypothesis,

community assembly processes, biodiversity, depth.

Background

Despite decades of research and more than 100 proposed explanations[1, 2], the

processes that generate and maintain species richness gradients remain poorly
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understood[2-5]. An important contributor to this lack of understanding is the paucity
of species abundance data with sufficient coverage and resolution to identify
underlying patterns and thereby help distinguish between competing possible
causes[4-6]. Ecosystem-specific differences in interspecific responses to
environmental factors further limits our ability to separate general ecological
processes from local-scale idiosyncratic effects[7]. Moreover, differences in dispersal
boundaries[8], area effects[3, 9], sampling bias[2, 10], and the proportion of gradients
sampled[5] have all contributed to a lack of consensus regarding the processes that
generate and maintain species richness gradients.

The Species Energy hypothesis (SE) proposes that species richness gradients
can be explained by spatial variability in energy availability, predicting a monotonic
decline in richness with decreasing energy[11]. Theoretically, more energy allows
more individuals to co-exist, thereby allowing more species to maintain large enough
populations to avoid local extinction via demographic stochasticity. Despite many
empirical studies, however, there is still little agreement on the importance of SE in
structuring ecological communities in nature, although controlled experiments have
demonstrated the potential[12]. Instead of a monotonic pattern of species richness
declining with energy availability, field studies often report lower richness where
energy levels are greatest [2, 6, 13-15]. Potentially confounding these patterns further,
species richness across gradients can be strongly influenced by the scale at which they
are measured [3, 16, 17], an important consideration because most empirical studies
of this nature occur at small scales. Limited support for SE in empirical studies at
local scales is often attributed to disproportionately strong local-scale community
assembly processes occurring at the high energy region of the domain, thereby

modifying the shapes of species richness curves from monotonic to a hump-shaped

http://mc.manuscriptcentral.com/bl
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unimodal pattern[18-20]. While the inclusion of local modifying factors can help
explain a lack of support for theoretical predictions, the role of deterministic
community assembly processes in species richness gradients remains contentious[21-
24].

One way to resolve this issue is to test the predictions of the SE hypothesis
using a diverse biological community where all individuals occur along a
geographically short but clearly-defined energy gradient. Doing so helps remove
confounding factors such as area effects and dispersal boundaries, the identity of the
limiting energetic resource, and incomplete sampling of the full gradient. Coral reefs
provide such an opportunity because light declines exponentially with depth, and is
also the primary limiting energetic resource for photo-symbiotic reef-building corals:
light provides corals with the vast majority of their energy requirements via
photosynthesis[25, 26], and the influence of energy availability on coral community
composition is well understood[27, 28]. Although some corals can supplement their
energetic budget with heterotrophic feeding [29], light availability is closely linked to
the physiological process of calcification [30, 31], and heterotrophy cannot replace
the photosynthetic acquisition of energy. Moreover, photo-symbiotic reef-building
corals occur over a relatively short depth range because light irradiance at a depth of
only 60 m is typically only ~1% of surface irradiance even in clear tropical waters.
Consequently, virtually the entire gradient can be sampled, thereby minimising any
potential effects of sampling a truncated energy distribution[32].

Coral community assembly may also be influenced by local-scale processes,
such as competitive interactions and environmental disturbance[33, 34]. Predictable
changes in the energetic and environmental conditions over depth are thought to

influence the intensity and nature of these processes over this gradient[35, 36],
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making coral reefs an ideal model ecosystem to test the effects of local-processes on
species richness [28, 35-37]. Specifically, the hump-shaped pattern commonly
observed in empirical studies is typically attributed to deterministic community
assembly processes being strongest at the shallowest sites, where the energetic
resource is also most abundant[ 18, 20, 35, 36]. For example, shallow-water corals are
disproportionately exposed to the damaging effect of wave energy, which declines
rapidly with depth[38, 39]. High disturbance frequency might therefore select for a
limited subset of species that could co-exist at shallow sites, resulting in decreased
species richness. Specifically, consistently high wave energy should select for species
capable of either withstanding hydrodynamic forces, or which can rapidly recovery
following disturbance[33, 35, 37]. Conversely, higher levels of the energetic resource
are thought to promote increased growth, which in turn promotes competitive
interactions, and ultimately accelerated rates of competitive exclusion[20]. These
processes underpin the Hump-Backed Model (HBM), which seeks to explain hump-
shaped species richness patterns often observed along a productivity gradient [18-20].
In both cases, species richness would be supressed by deterministic processes at a
local scale, but are reliant on these processes being disproportionately more influential
only in the shallowest sites. However, support for these ideas remains scarce,
primarily due to the difficulty of obtaining suitable data to test them[24].

Here, we census photo-symbiotic reef-building corals over a depth range of 0
to 45 m, encompassing 98% of the light gradient, to test predictions of the SE
hypothesis of a monotonic decline in species richness over depth. We then use the
nested spatial structure of these data and a null-model approach to estimate the

influence of local-scale community assembly processes over depth.
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125 Methods

126  Field Surveys

127 Coral surveys were conducted between April 2015 and November 2016 on six reefs in
128  Kimbe Bay, Papua New Guinea, located in the Indo-Australasian Archipelago (IAA)
129  centre of coral diversity[40]. Corals were censused using vertical point count

130 transects[41], spanning nine separate depth bins at five metre intervals from the

131 surface (i.e. 0-5 m) to 45 metres (40-45 m). At each reef, at least nine up-slope point
132 count transect surveys were conducted, with at least one count station completed in
133 each depth bin. Count stations consisted of twelve coral colonies ranging outwards
134 from a randomly selected central colony via the nearest neighbour. At least 144

135 colonies (mean = 177) were recorded and identified to species in each depth bin, at
136 each of the six reefs (total n = 8,460 colonies, 705 count stations, > 864

137 colonies/depth bin). For full methodology, see electronic supplementary material.
138 Species Richness Analysis

139 To correct for sampling effort[ 10], species richness estimates for each depth
140  bin were generated using species accumulation curves. Curves were generated using
141 the function ‘specaccum’ within the package ‘Vegan’ in R[42, 43]. Each curve was
142 re-assembled 999 times randomly with replacement to capture the possible variation
143 in species richness, before being subsampled at 70 counts (840 individual colonies).
144 This sample size allowed species estimates to be compared without requiring

145  extrapolation of the accumulation curves beyond the empirical data. The resulting
146 8,991 data points were retained, and the mean of each depth taken to represent the
147 empirical species richness.

148 Species Energy Model: Light irradiance was used to estimate available photosynthetic

149  energy for use in the SE model. At each reef, light intensity was recorded at 5 metre
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150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Submitted to Biology Letters

intervals along the depth gradient using an Odyssey submersible photosynthetic
irradiance recording system logger[44]. Levels were recorded during November 2015,
at 1200 hours, and each estimate was the mean of at least 3 estimates of irradiance
recorded a minimum of 30 seconds apart and expressed as a percentage of the surface
light level at each reef. These values were used to estimate a standard light attenuation
curve over depth for the study location. The predictor value of energy in the SE model
was then calculated as the percentage of surface irradiation available at each depth. A
one factor general linear model was used to test the capacity of light irradiance to
predict the mean estimated species richness over depth.

Local Assembly Processes: We used a null model to generate expected values of local
species richness for any given species pool which we compared to observed species
richness. Negative deviations from the null expectation indicate the strength of local
scale deterministic processes, and how the influence of these processes change over
the depth gradient. This approach enabled examination of the influence of local-scale
processes on species richness in isolation from larger-scale processes[24, 45]. For
each of the nine depth bins, a species pool was assembled consisting of all species
recorded, and the relative abundance of each species. Null assemblages were then
generated at each depth by selecting 12 individuals from the available species pool,
with the selection probability reflecting its abundance. At each depth bin, 10,000
virtual count stations of 12 colonies were assembled, and the mean species richness
per count extracted. Empirical values were compared to null expectations at each
depth, and the discrepancy between the two values was taken as a measure of the

intensity of local-scale deterministic community assembly processes.

Results and Discussion
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Observed species richness showed a left-skewed hump, peaking at the 12.5 m
depth bin (Fig. 1a), a result not predicted by the SE model (Fig. 1b, SE: r> = <0.01).
Over the full depth gradient, there was little support for the monotonic decline in
richness predicted by the SE model, primarily because the model was unable to
predict the observed low species richness in the shallow high-energy section of the
domain (Fig. 2a). This discrepancy could be accounted for if deterministic community
assembly processes were disproportionately stronger only in the shallowest sites, as
theorised by the HBM (Fig. 2b). Species richness at the count station scale was
significantly lower than expected at all depths (Fig. 2c¢), indicating that species are
strongly influenced by local-scale community assembly processes. However, the
influence of these processes was not significantly stronger in the shallow depths (Fig.
2¢). Therefore, deterministic processes are unable to account for the mismatch
between the SE prediction and the observed data.

Declines in species richness in high energy sections of domains have been
observed in many ecosystems[2, 6, 13-15] and although the suggestion that the pattern
is universal is not new[46], what creates and maintains such patterns remains
unsubstantiated[ 15, 20, 21]. Explanations of observed species richness patterns as
functions of SE and HBM generally require post-hoc modifications through the
invocation of idiosyncratic additional factors to reconcile these observations with
theoretical predictions[7, 23, 47, 48]. Often, the processes underpinning these post-
hoc modification are poorly understood, making clear mechanistic predictions
difficult. For example, competitive interactions are thought to strongly influence the
structure and richness of a coral community by affecting the physiological fitness of
individual coral colonies[20, 35-37]. However, the real-world impact of competition

on key demographic traits (such as growth rate) is insignificant, or more complex than

http://mc.manuscriptcentral.com/bl
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anticipated[49]. In the absence of clear and testable mechanistic predictions,
deviations from empirical observations are uninformative for testing these
theories[21, 50-52]. The persistence of these theories is impeding the development of
alternative hypotheses to explain patterns of biodiversity [21, 22, 50].

The challenge of explaining the commonly-observed pattern of lower species
richness at the highest energy portions of a gradient was first discussed in the early
1990s[15, 46]. Potential explanations include the combined effects of multiple
energetic factors[53], scale effects[17], and local disturbance regimes[18, 20, 35].
Consequently, discerning the relative effects of such processes has proven difficult.
By using observations free of the common factors that can confound such studies, we
show that the species richness gradient in reef corals over depth is not predicted by
the SE hypothesis. We also find no support for the contention that lower species
richness at the high-energy end of the gradient is due to local deterministic processes
such as increased disturbance frequency or competitive exclusion. Instead, we
propose that future studies should focus on generating theoretically sound mechanistic
predictions which can be tested across multiple spatial scales. While other authors
have made similar suggestions[21, 50-52], our results further highlight the need to
robustly test predictions of theoretical models, rather than relying on post-hoc
explanations of poorly-fitting models to help us understand important and widespread

patterns in nature.
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Figure 2: Influence of local-scale community assembly processes. To fit the observed data to the SE
prediction (black line), species richness must be disproportionately reduced at depths below 10 m (a).
Count-scale species richness must therefore negatively deviate from the null expectation at the shallowest
depths (b). Although species richness within counts is lower than null expectations at all depths (c), the
trend is unable to reconcile the observed species richness with the SE prediction (b,c). Model fit predictions
for the SE are represented in black (a), and deviance of predicted count station richness versus observed
means are normalised to between 0 and -1 for both predicted (b) and empirical (c) values. Null values are
shown as a red bar (b,c). Pink polygons overlay the depths where deviance must be significantly greater
than at other depths to meet the SE prediction. Frequency distributions of all count scale richness values are
shown in pale blue (c), while 95% confidence intervals of the mean are represented by solid blue bars, and
quartiles by fine blue lines.
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