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25 Abstract: Natural environmental gradients encompass systematic variation in abiotic 

26 factors that can be exploited to test competing explanations of biodiversity patterns. 

27 The Species-Energy (SE) hypothesis attempts to explain species richness gradients as 

28 a function of energy availability. However, limited empirical support for SE is often 

29 attributed to idiosyncratic, local-scale processes distorting the underlying species-

30 energy relationship. Meanwhile, studies are also often confounded by factors such as 

31 sampling biases, dispersal boundaries, and unclear definitions of energy availability. 

32 Here, we use spatially-structured observations of 8,460 colonies of photo-symbiotic 

33 reef-building corals and a null-model to test whether energy can explain observed 

34 coral species richness over depth. Species richness was left-skewed, hump-shaped, 

35 and unrelated to energy availability. While local-scale processes were evident, their 

36 influence on species richness was insufficient to reconcile observations with model 

37 predictions. Therefore, neither energy availability in isolation, nor in combination 

38 with local deterministic processes were able to explain coral species richness across 

39 depth. Our results demonstrate that local-scale processes do not necessarily explain 

40 deviations in species richness from theoretical models, and that the use of 

41 idiosyncratic small-scale factors to explain large-scale ecological patterns requires the 

42 utmost caution.

43

44 Keywords: Corals, species richness gradients, Species Energy Hypothesis, 

45 community assembly processes, biodiversity, depth.

46

47 Background

48 Despite decades of research and more than 100 proposed explanations[1, 2], the 

49 processes that generate and maintain species richness gradients remain poorly 
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50 understood[2-5]. An important contributor to this lack of understanding is the paucity 

51 of species abundance data with sufficient coverage and resolution to identify 

52 underlying patterns and thereby help distinguish between competing possible 

53 causes[4-6]. Ecosystem-specific differences in interspecific responses to 

54 environmental factors further limits our ability to separate general ecological 

55 processes from local-scale idiosyncratic effects[7]. Moreover, differences in dispersal 

56 boundaries[8], area effects[3, 9], sampling bias[2, 10], and the proportion of gradients 

57 sampled[5] have all contributed to a lack of consensus regarding the processes that 

58 generate and maintain species richness gradients.  

59 The Species Energy hypothesis (SE) proposes that species richness gradients 

60 can be explained by spatial variability in energy availability, predicting a monotonic 

61 decline in richness with decreasing energy[11]. Theoretically, more energy allows 

62 more individuals to co-exist, thereby allowing more species to maintain large enough 

63 populations to avoid local extinction via demographic stochasticity. Despite many 

64 empirical studies, however, there is still little agreement on the importance of SE in 

65 structuring ecological communities in nature, although controlled experiments have 

66 demonstrated the potential[12]. Instead of a monotonic pattern of species richness 

67 declining with energy availability, field studies often report lower richness where 

68 energy levels are greatest [2, 6, 13-15]. Potentially confounding these patterns further, 

69 species richness across gradients can be strongly influenced by the scale at which they 

70 are measured [3, 16, 17], an important consideration because most empirical studies 

71 of this nature occur at small scales. Limited support for SE in empirical studies at 

72 local scales is often attributed to disproportionately strong local-scale community 

73 assembly processes occurring at the high energy region of the domain, thereby 

74 modifying the shapes of species richness curves from monotonic to a hump-shaped 
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75 unimodal pattern[18-20]. While the inclusion of local modifying factors can help 

76 explain a lack of support for theoretical predictions, the role of deterministic 

77 community assembly processes in species richness gradients remains contentious[21-

78 24].

79 One way to resolve this issue is to test the predictions of the SE hypothesis 

80 using a diverse biological community where all individuals occur along a 

81 geographically short but clearly-defined energy gradient. Doing so helps remove 

82 confounding factors such as area effects and dispersal boundaries, the identity of the 

83 limiting energetic resource, and incomplete sampling of the full gradient. Coral reefs 

84 provide such an opportunity because light declines exponentially with depth, and is 

85 also the primary limiting energetic resource for photo-symbiotic reef-building corals: 

86 light provides corals with the vast majority of their energy requirements via 

87 photosynthesis[25, 26], and the influence of energy availability on coral community 

88 composition is well understood[27, 28]. Although some corals can supplement their 

89 energetic budget with heterotrophic feeding [29], light availability is closely linked to 

90 the physiological process of calcification [30, 31], and heterotrophy cannot replace 

91 the photosynthetic acquisition of energy. Moreover, photo-symbiotic reef-building 

92 corals occur over a relatively short depth range because light irradiance at a depth of 

93 only 60 m is typically only ~1% of surface irradiance even in clear tropical waters. 

94 Consequently, virtually the entire gradient can be sampled, thereby minimising any 

95 potential effects of sampling a truncated energy distribution[32].

96 Coral community assembly may also be influenced by local-scale processes, 

97 such as competitive interactions and environmental disturbance[33, 34]. Predictable 

98 changes in the energetic and environmental conditions over depth are thought to 

99 influence the intensity and nature of these processes over this gradient[35, 36], 
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100 making coral reefs an ideal model ecosystem to test the effects of local-processes on 

101 species richness [28, 35-37]. Specifically, the hump-shaped pattern commonly 

102 observed in empirical studies is typically attributed to deterministic community 

103 assembly processes being strongest at the shallowest sites, where the energetic 

104 resource is also most abundant[18, 20, 35, 36]. For example, shallow-water corals are 

105 disproportionately exposed to the damaging effect of wave energy, which declines 

106 rapidly with depth[38, 39]. High disturbance frequency might therefore select for a 

107 limited subset of species that could co-exist at shallow sites, resulting in decreased 

108 species richness. Specifically, consistently high wave energy should select for species 

109 capable of either withstanding hydrodynamic forces, or which can rapidly recovery 

110 following disturbance[33, 35, 37]. Conversely, higher levels of the energetic resource 

111 are thought to promote increased growth, which in turn promotes competitive 

112 interactions, and ultimately accelerated rates of competitive exclusion[20]. These 

113 processes underpin the  Hump-Backed Model (HBM), which seeks to explain hump-

114 shaped species richness patterns often observed along a productivity gradient [18-20]. 

115 In both cases, species richness would be supressed by deterministic processes at a 

116 local scale, but are reliant on these processes being disproportionately more influential 

117 only in the shallowest sites. However, support for these ideas remains scarce, 

118 primarily due to the difficulty of obtaining suitable data to test them[24]. 

119 Here, we census photo-symbiotic reef-building corals over a depth range of 0 

120 to 45 m, encompassing 98% of the light gradient, to test predictions of the SE 

121 hypothesis of a monotonic decline in species richness over depth. We then use the 

122 nested spatial structure of these data and a null-model approach to estimate the 

123 influence of local-scale community assembly processes over depth.

124
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125 Methods

126 Field Surveys

127 Coral surveys were conducted between April 2015 and November 2016 on six reefs in 

128 Kimbe Bay, Papua New Guinea, located in the Indo-Australasian Archipelago (IAA) 

129 centre of coral diversity[40]. Corals were censused using vertical point count 

130 transects[41], spanning nine separate depth bins at five metre intervals from the 

131 surface (i.e. 0-5 m) to 45 metres (40-45 m). At each reef, at least nine up-slope point 

132 count transect surveys were conducted, with at least one count station completed in 

133 each depth bin. Count stations consisted of twelve coral colonies ranging outwards 

134 from a randomly selected central colony via the nearest neighbour. At least 144 

135 colonies (mean = 177) were recorded and identified to species in each depth bin, at 

136 each of the six reefs (total n = 8,460 colonies, 705 count stations, > 864 

137 colonies/depth bin). For full methodology, see electronic supplementary material.

138 Species Richness Analysis

139 To correct for sampling effort[10], species richness estimates for each depth 

140 bin were generated using species accumulation curves. Curves were generated using 

141 the function ‘specaccum’ within the package ‘Vegan’ in R[42, 43]. Each curve was 

142 re-assembled 999 times randomly with replacement to capture the possible variation 

143 in species richness, before being subsampled at 70 counts (840 individual colonies). 

144 This sample size allowed species estimates to be compared without requiring 

145 extrapolation of the accumulation curves beyond the empirical data. The resulting 

146 8,991 data points were retained, and the mean of each depth taken to represent the 

147 empirical species richness.

148 Species Energy Model: Light irradiance was used to estimate available photosynthetic 

149 energy for use in the SE model. At each reef, light intensity was recorded at 5 metre 
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150 intervals along the depth gradient using an Odyssey submersible photosynthetic 

151 irradiance recording system logger[44]. Levels were recorded during November 2015, 

152 at 1200 hours, and each estimate was the mean of at least 3 estimates of irradiance 

153 recorded a minimum of 30 seconds apart and expressed as a percentage of the surface 

154 light level at each reef. These values were used to estimate a standard light attenuation 

155 curve over depth for the study location. The predictor value of energy in the SE model 

156 was then calculated as the percentage of surface irradiation available at each depth. A 

157 one factor general linear model was used to test the capacity of light irradiance to 

158 predict the mean estimated species richness over depth.

159 Local Assembly Processes: We used a null model to generate expected values of local 

160 species richness for any given species pool which we compared to observed species 

161 richness. Negative deviations from the null expectation indicate the strength of local 

162 scale deterministic processes, and how the influence of these processes change over 

163 the depth gradient. This approach enabled examination of the influence of local-scale 

164 processes on species richness in isolation from larger-scale processes[24, 45]. For 

165 each of the nine depth bins, a species pool was assembled consisting of all species 

166 recorded, and the relative abundance of each species. Null assemblages were then 

167 generated at each depth by selecting 12 individuals from the available species pool, 

168 with the selection probability reflecting its abundance. At each depth bin, 10,000 

169 virtual count stations of 12 colonies were assembled, and the mean species richness 

170 per count extracted. Empirical values were compared to null expectations at each 

171 depth, and the discrepancy between the two values was taken as a measure of the 

172 intensity of local-scale deterministic community assembly processes. 

173

174 Results and Discussion
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175 Observed species richness showed a left-skewed hump, peaking at the 12.5 m 

176 depth bin (Fig. 1a), a result not predicted by the SE model (Fig. 1b, SE: r2 = <0.01). 

177 Over the full depth gradient, there was little support for the monotonic decline in 

178 richness predicted by the SE model, primarily because the model was unable to 

179 predict the observed low species richness in the shallow high-energy section of the 

180 domain (Fig. 2a). This discrepancy could be accounted for if deterministic community 

181 assembly processes were disproportionately stronger only in the shallowest sites, as 

182 theorised by the HBM (Fig. 2b). Species richness at the count station scale was 

183 significantly lower than expected at all depths (Fig. 2c), indicating that species are 

184 strongly influenced by local-scale community assembly processes. However, the 

185 influence of these processes was not significantly stronger in the shallow depths (Fig. 

186 2c). Therefore, deterministic processes are unable to account for the mismatch 

187 between the SE prediction and the observed data.

188 Declines in species richness in high energy sections of domains have been 

189 observed in many ecosystems[2, 6, 13-15] and although the suggestion that the pattern 

190 is universal is not new[46], what creates and maintains such patterns remains 

191 unsubstantiated[15, 20, 21]. Explanations of observed species richness patterns as 

192 functions of SE and HBM generally require post-hoc modifications through the 

193 invocation of idiosyncratic additional factors to reconcile these observations with 

194 theoretical predictions[7, 23, 47, 48]. Often, the processes underpinning these post-

195 hoc modification are poorly understood, making clear mechanistic predictions 

196 difficult. For example, competitive interactions are thought to strongly influence the 

197 structure and richness of a coral community by affecting the physiological fitness of 

198 individual coral colonies[20, 35-37]. However, the real-world impact of competition 

199 on key demographic traits (such as growth rate) is insignificant, or more complex than 
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200 anticipated[49]. In the absence of clear and testable mechanistic predictions, 

201 deviations from empirical observations are uninformative for testing these 

202 theories[21, 50-52]. The persistence of these theories is impeding the development of 

203 alternative hypotheses to explain patterns of biodiversity [21, 22, 50].

204 The challenge of explaining the commonly-observed pattern of lower species 

205 richness at the highest energy portions of a gradient was first discussed in the early 

206 1990s[15, 46]. Potential explanations include the combined effects of multiple 

207 energetic factors[53], scale effects[17], and local disturbance regimes[18, 20, 35]. 

208 Consequently, discerning the relative effects of such processes has proven difficult. 

209 By using observations free of the common factors that can confound such studies, we 

210 show that the species richness gradient in reef corals over depth is not predicted by 

211 the SE hypothesis. We also find no support for the contention that lower species 

212 richness at the high-energy end of the gradient is due to local deterministic processes 

213 such as increased disturbance frequency or competitive exclusion. Instead, we 

214 propose that future studies should focus on generating theoretically sound mechanistic 

215 predictions which can be tested across multiple spatial scales. While other authors 

216 have made similar suggestions[21, 50-52], our results further highlight the need to 

217 robustly test predictions of theoretical models, rather than relying on post-hoc 

218 explanations of poorly-fitting models to help us understand important and widespread 

219 patterns in nature.
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Figure 2: Influence of local-scale community assembly processes. To fit the observed data to the SE 
prediction (black line), species richness must be disproportionately reduced at depths below 10 m (a). 

Count-scale species richness must therefore negatively deviate from the null expectation at the shallowest 
depths (b). Although species richness within counts is lower than null expectations at all depths (c), the 

trend is unable to reconcile the observed species richness with the SE prediction (b,c). Model fit predictions 
for the SE are represented in black (a), and deviance of predicted count station richness versus observed 
means are normalised to between 0 and -1 for both predicted (b) and empirical (c) values. Null values are 
shown as a red bar (b,c). Pink polygons overlay the depths where deviance must be significantly greater 

than at other depths to meet the SE prediction. Frequency distributions of all count scale richness values are 
shown in pale blue (c), while 95% confidence intervals of the mean are represented by solid blue bars, and 

quartiles by fine blue lines. 
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