

Testing biodiversity theory using species richness of reef-building corals across a depth gradient

Journal:	<i>Biology Letters</i>
Manuscript ID	Draft
Article Type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Roberts, Thomas; James Cook University, Australian Research Council Centre of Excellence for Coral Reef Science ; Australian Institute of Marine Science, AIMS@JCU Keith, Sally; Lancaster Environment Centre; University of Copenhagen, Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark Rahbek, Carsten; Center for Macroecology, Evolution and Climate, Bridge, Tom; James Cook University, ARC Centre of Excellence for Coral Reef Studies; Queensland Museum Network, Biodiversity and Geosciences Program Caley, M. Julian; ARC Centre of Excellence in Mathematical and Statistical Frontiers, Queensland University of Technology Baird, Andrew; James Cook University, ARC Centre of Excellence for Reef Studies
Subject:	Ecology < BIOLOGY
Categories:	Marine Biology
Keywords:	Corals, Species Richness Gradients, Species Energy Hypothesis, Biodiversity, Community assembly processes, Depth

SCHOLARONE™
 Manuscripts

Author-supplied statements

Relevant information will appear here if provided.

Ethics

Does your article include research that required ethical approval or permits?:

This article does not present research with ethical considerations

Statement (if applicable):

CUST_IF_YES_ETHICS :No data available.

Data

It is a condition of publication that data, code and materials supporting your paper are made publicly available. Does your paper present new data?:

Yes

Statement (if applicable):

All data required to repeat and validate the study are available in the supplementary materials.

Conflict of interest

I/We declare we have no competing interests

Statement (if applicable):

CUST_STATE_CONFLICT :No data available.

Authors' contributions

This paper has multiple authors and our individual contributions were as below

Statement (if applicable):

TER, AHB, and TCLB conceived the research, TER collected the data, and analysed the data with input from SAK, MJC, and CR. TER led the writing of the manuscript with contributions from all authors.

1 **Title: Testing biodiversity theory using species richness of reef-building corals**
2 **across a depth gradient**

3 **Authors:** T. Edward Roberts^{1,2*}, Sally A. Keith^{3,4}, Carsten Rahbek^{4,5}, Tom C.L.
4 Bridge^{1,6}, M. Julian Caley^{7,8}, Andrew H. Baird¹

5 **Affiliations:**

6 ¹ Australian Research Council Centre of Excellent for Coral Reef Studies, James Cook
7 University, Townsville, QLD 4811, Australia

8 ² AIMS@JCU, Australian Institute of Marine Science, PMB 3, Townsville MC, QLD
9 4810, Australia

10 ³ Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United
11 Kingdom

12 ⁴ Center for Macroecology, Evolution, and Climate, Natural History Museum of
13 Denmark, University of Copenhagen, DK-2100 Copenhagen, Denmark

14 ⁵ Department of Life Sciences, Imperial College London, Ascot SL5 7PY, United
15 Kingdom

16 ⁶ Queensland Museum Network, Townsville, QLD, 4810, Australia

17 ⁷ School of Mathematical Sciences, Queensland University of Technology, Brisbane,
18 Queensland, Australia

19 ⁸Australian Research Council Centre of Excellence for Mathematical and Statistical
20 Frontiers (ACEMS)

21 ***Corresponding author:** T. Edward Roberts (thomas.roberts@my.jcu.edu.au)

22 **Type of Article:** Research Article. **Number of words in main text:** 2499/2500

23

24

25 **Abstract:** Natural environmental gradients encompass systematic variation in abiotic
26 factors that can be exploited to test competing explanations of biodiversity patterns.
27 The *Species-Energy (SE)* hypothesis attempts to explain species richness gradients as
28 a function of energy availability. However, limited empirical support for *SE* is often
29 attributed to idiosyncratic, local-scale processes distorting the underlying species-
30 energy relationship. Meanwhile, studies are also often confounded by factors such as
31 sampling biases, dispersal boundaries, and unclear definitions of energy availability.
32 Here, we use spatially-structured observations of 8,460 colonies of photo-symbiotic
33 reef-building corals and a null-model to test whether energy can explain observed
34 coral species richness over depth. Species richness was left-skewed, hump-shaped,
35 and unrelated to energy availability. While local-scale processes were evident, their
36 influence on species richness was insufficient to reconcile observations with model
37 predictions. Therefore, neither energy availability in isolation, nor in combination
38 with local deterministic processes were able to explain coral species richness across
39 depth. Our results demonstrate that local-scale processes do not necessarily explain
40 deviations in species richness from theoretical models, and that the use of
41 idiosyncratic small-scale factors to explain large-scale ecological patterns requires the
42 utmost caution.

43

44 **Keywords:** Corals, species richness gradients, Species Energy Hypothesis,
45 community assembly processes, biodiversity, depth.

46

47 **Background**

48 Despite decades of research and more than 100 proposed explanations[1, 2], the
49 processes that generate and maintain species richness gradients remain poorly

50 understood[2-5]. An important contributor to this lack of understanding is the paucity
51 of species abundance data with sufficient coverage and resolution to identify
52 underlying patterns and thereby help distinguish between competing possible
53 causes[4-6]. Ecosystem-specific differences in interspecific responses to
54 environmental factors further limits our ability to separate general ecological
55 processes from local-scale idiosyncratic effects[7]. Moreover, differences in dispersal
56 boundaries[8], area effects[3, 9], sampling bias[2, 10], and the proportion of gradients
57 sampled[5] have all contributed to a lack of consensus regarding the processes that
58 generate and maintain species richness gradients.

59 The *Species Energy* hypothesis (*SE*) proposes that species richness gradients
60 can be explained by spatial variability in energy availability, predicting a monotonic
61 decline in richness with decreasing energy[11]. Theoretically, more energy allows
62 more individuals to co-exist, thereby allowing more species to maintain large enough
63 populations to avoid local extinction via demographic stochasticity. Despite many
64 empirical studies, however, there is still little agreement on the importance of *SE* in
65 structuring ecological communities in nature, although controlled experiments have
66 demonstrated the potential[12]. Instead of a monotonic pattern of species richness
67 declining with energy availability, field studies often report lower richness where
68 energy levels are greatest [2, 6, 13-15]. Potentially confounding these patterns further,
69 species richness across gradients can be strongly influenced by the scale at which they
70 are measured [3, 16, 17], an important consideration because most empirical studies
71 of this nature occur at small scales. Limited support for *SE* in empirical studies at
72 local scales is often attributed to disproportionately strong local-scale community
73 assembly processes occurring at the high energy region of the domain, thereby
74 modifying the shapes of species richness curves from monotonic to a hump-shaped

75 unimodal pattern[18-20]. While the inclusion of local modifying factors can help
76 explain a lack of support for theoretical predictions, the role of deterministic
77 community assembly processes in species richness gradients remains contentious[21-
78 24].

79 One way to resolve this issue is to test the predictions of the *SE* hypothesis
80 using a diverse biological community where all individuals occur along a
81 geographically short but clearly-defined energy gradient. Doing so helps remove
82 confounding factors such as area effects and dispersal boundaries, the identity of the
83 limiting energetic resource, and incomplete sampling of the full gradient. Coral reefs
84 provide such an opportunity because light declines exponentially with depth, and is
85 also the primary limiting energetic resource for photo-symbiotic reef-building corals:
86 light provides corals with the vast majority of their energy requirements via
87 photosynthesis[25, 26], and the influence of energy availability on coral community
88 composition is well understood[27, 28]. Although some corals can supplement their
89 energetic budget with heterotrophic feeding [29], light availability is closely linked to
90 the physiological process of calcification [30, 31], and heterotrophy cannot replace
91 the photosynthetic acquisition of energy. Moreover, photo-symbiotic reef-building
92 corals occur over a relatively short depth range because light irradiance at a depth of
93 only 60 m is typically only ~1% of surface irradiance even in clear tropical waters.
94 Consequently, virtually the entire gradient can be sampled, thereby minimising any
95 potential effects of sampling a truncated energy distribution[32].

96 Coral community assembly may also be influenced by local-scale processes,
97 such as competitive interactions and environmental disturbance[33, 34]. Predictable
98 changes in the energetic and environmental conditions over depth are thought to
99 influence the intensity and nature of these processes over this gradient[35, 36],

100 making coral reefs an ideal model ecosystem to test the effects of local-processes on
101 species richness [28, 35-37]. Specifically, the hump-shaped pattern commonly
102 observed in empirical studies is typically attributed to deterministic community
103 assembly processes being strongest at the shallowest sites, where the energetic
104 resource is also most abundant[18, 20, 35, 36]. For example, shallow-water corals are
105 disproportionately exposed to the damaging effect of wave energy, which declines
106 rapidly with depth[38, 39]. High disturbance frequency might therefore select for a
107 limited subset of species that could co-exist at shallow sites, resulting in decreased
108 species richness. Specifically, consistently high wave energy should select for species
109 capable of either withstanding hydrodynamic forces, or which can rapidly recovery
110 following disturbance[33, 35, 37]. Conversely, higher levels of the energetic resource
111 are thought to promote increased growth, which in turn promotes competitive
112 interactions, and ultimately accelerated rates of competitive exclusion[20]. These
113 processes underpin the *Hump-Backed Model (HBM)*, which seeks to explain hump-
114 shaped species richness patterns often observed along a productivity gradient [18-20].
115 In both cases, species richness would be suppressed by deterministic processes at a
116 local scale, but are reliant on these processes being disproportionately more influential
117 only in the shallowest sites. However, support for these ideas remains scarce,
118 primarily due to the difficulty of obtaining suitable data to test them[24].

119 Here, we census photo-symbiotic reef-building corals over a depth range of 0
120 to 45 m, encompassing 98% of the light gradient, to test predictions of the *SE*
121 hypothesis of a monotonic decline in species richness over depth. We then use the
122 nested spatial structure of these data and a null-model approach to estimate the
123 influence of local-scale community assembly processes over depth.

124

125 **Methods**

126 *Field Surveys*

127 Coral surveys were conducted between April 2015 and November 2016 on six reefs in
128 Kimbe Bay, Papua New Guinea, located in the Indo-Australasian Archipelago (IAA)
129 centre of coral diversity[40]. Corals were censused using vertical point count
130 transects[41], spanning nine separate depth bins at five metre intervals from the
131 surface (i.e. 0-5 m) to 45 metres (40-45 m). At each reef, at least nine up-slope point
132 count transect surveys were conducted, with at least one count station completed in
133 each depth bin. Count stations consisted of twelve coral colonies ranging outwards
134 from a randomly selected central colony via the nearest neighbour. At least 144
135 colonies (mean = 177) were recorded and identified to species in each depth bin, at
136 each of the six reefs (total n = 8,460 colonies, 705 count stations, > 864
137 colonies/depth bin). For full methodology, see electronic supplementary material.

138 *Species Richness Analysis*

139 To correct for sampling effort[10], species richness estimates for each depth
140 bin were generated using species accumulation curves. Curves were generated using
141 the function ‘specaccum’ within the package ‘Vegan’ in R[42, 43]. Each curve was
142 re-assembled 999 times randomly with replacement to capture the possible variation
143 in species richness, before being subsampled at 70 counts (840 individual colonies).
144 This sample size allowed species estimates to be compared without requiring
145 extrapolation of the accumulation curves beyond the empirical data. The resulting
146 8,991 data points were retained, and the mean of each depth taken to represent the
147 empirical species richness.

148 *Species Energy Model:* Light irradiance was used to estimate available photosynthetic
149 energy for use in the *SE* model. At each reef, light intensity was recorded at 5 metre

150 intervals along the depth gradient using an Odyssey submersible photosynthetic
151 irradiance recording system logger[44]. Levels were recorded during November 2015,
152 at 1200 hours, and each estimate was the mean of at least 3 estimates of irradiance
153 recorded a minimum of 30 seconds apart and expressed as a percentage of the surface
154 light level at each reef. These values were used to estimate a standard light attenuation
155 curve over depth for the study location. The predictor value of energy in the *SE* model
156 was then calculated as the percentage of surface irradiation available at each depth. A
157 one factor general linear model was used to test the capacity of light irradiance to
158 predict the mean estimated species richness over depth.

159 *Local Assembly Processes*: We used a null model to generate expected values of local
160 species richness for any given species pool which we compared to observed species
161 richness. Negative deviations from the null expectation indicate the strength of local
162 scale deterministic processes, and how the influence of these processes change over
163 the depth gradient. This approach enabled examination of the influence of local-scale
164 processes on species richness in isolation from larger-scale processes[24, 45]. For
165 each of the nine depth bins, a species pool was assembled consisting of all species
166 recorded, and the relative abundance of each species. Null assemblages were then
167 generated at each depth by selecting 12 individuals from the available species pool,
168 with the selection probability reflecting its abundance. At each depth bin, 10,000
169 virtual count stations of 12 colonies were assembled, and the mean species richness
170 per count extracted. Empirical values were compared to null expectations at each
171 depth, and the discrepancy between the two values was taken as a measure of the
172 intensity of local-scale deterministic community assembly processes.

173

174 **Results and Discussion**

175 Observed species richness showed a left-skewed hump, peaking at the 12.5 m
176 depth bin (Fig. 1a), a result not predicted by the *SE* model (Fig. 1b, *SE*: $r^2 = <0.01$).
177 Over the full depth gradient, there was little support for the monotonic decline in
178 richness predicted by the *SE* model, primarily because the model was unable to
179 predict the observed low species richness in the shallow high-energy section of the
180 domain (Fig. 2a). This discrepancy could be accounted for if deterministic community
181 assembly processes were disproportionately stronger only in the shallowest sites, as
182 theorised by the *HBM* (Fig. 2b). Species richness at the count station scale was
183 significantly lower than expected at all depths (Fig. 2c), indicating that species are
184 strongly influenced by local-scale community assembly processes. However, the
185 influence of these processes was not significantly stronger in the shallow depths (Fig.
186 2c). Therefore, deterministic processes are unable to account for the mismatch
187 between the *SE* prediction and the observed data.

188 Declines in species richness in high energy sections of domains have been
189 observed in many ecosystems[2, 6, 13-15] and although the suggestion that the pattern
190 is universal is not new[46], what creates and maintains such patterns remains
191 unsubstantiated[15, 20, 21]. Explanations of observed species richness patterns as
192 functions of *SE* and *HBM* generally require post-hoc modifications through the
193 invocation of idiosyncratic additional factors to reconcile these observations with
194 theoretical predictions[7, 23, 47, 48]. Often, the processes underpinning these post-
195 hoc modification are poorly understood, making clear mechanistic predictions
196 difficult. For example, competitive interactions are thought to strongly influence the
197 structure and richness of a coral community by affecting the physiological fitness of
198 individual coral colonies[20, 35-37]. However, the real-world impact of competition
199 on key demographic traits (such as growth rate) is insignificant, or more complex than

200 anticipated[49]. In the absence of clear and testable mechanistic predictions,
201 deviations from empirical observations are uninformative for testing these
202 theories[21, 50-52]. The persistence of these theories is impeding the development of
203 alternative hypotheses to explain patterns of biodiversity [21, 22, 50].

204 The challenge of explaining the commonly-observed pattern of lower species
205 richness at the highest energy portions of a gradient was first discussed in the early
206 1990s[15, 46]. Potential explanations include the combined effects of multiple
207 energetic factors[53], scale effects[17], and local disturbance regimes[18, 20, 35].
208 Consequently, discerning the relative effects of such processes has proven difficult.
209 By using observations free of the common factors that can confound such studies, we
210 show that the species richness gradient in reef corals over depth is not predicted by
211 the *SE* hypothesis. We also find no support for the contention that lower species
212 richness at the high-energy end of the gradient is due to local deterministic processes
213 such as increased disturbance frequency or competitive exclusion. Instead, we
214 propose that future studies should focus on generating theoretically sound mechanistic
215 predictions which can be tested across multiple spatial scales. While other authors
216 have made similar suggestions[21, 50-52], our results further highlight the need to
217 robustly test predictions of theoretical models, rather than relying on post-hoc
218 explanations of poorly-fitting models to help us understand important and widespread
219 patterns in nature.

220

221 **Acknowledgments**

222 The authors thank Patrick Smallhorn-West, Chancey Macdonald, Richard Coleman,
223 Matt Iacchei, and Sonia Rowley. **Funding:** TER is supported by an AIMS@JCU PhD
224 scholarship. Research funding was provided by the Australian Research Council

225 Centre of Excellence Program Grant Number CE140100020. **Author contributions:**
226 TER, AHB, and TCLB conceived the research, TER collected the data, and analysed
227 the data with input from SAK, MJC, and CR. TER led the writing of the manuscript
228 with contributions from all authors. **Competing interests:** Authors declare no
229 competing interests. **Data and materials availability:** All data required to repeat and
230 validate the study are available in the supplementary materials.

231 **References**

232 [1] Gotelli, N.J., Anderson, M.J., Arita, H.T., Chao, A., Colwell, R.K., Connolly,
233 S.R., Currie, D.J., Dunn, R.R., Graves, G.R., Green, J.L., et al. 2009 Patterns and
234 causes of species richness: a general simulation model for macroecology. *Ecology*
235 *Letters* **12**, 873-886. (doi:10.1111/j.1461-0248.2009.01353.x).

236 [2] Rahbek, C. 1995 The elevational gradient of species richness: a uniform pattern?
237 *Ecography* **18**, 200-205.

238 [3] Rahbek, C. 2004 The role of spatial scale and the perception of large-scale
239 species-richness patterns. *Ecology Letters* **8**, 224-239. (doi:10.1111/j.1461-
240 0248.2004.00701.x).

241 [4] Colwell, R.K. & Lees, D.C. 2000 The mid-domain effect: geometric constraints on
242 the geography of species richness. *Trends in Ecology & Evolution* **15**, 70-76.

243 [5] Willig, M.R., Kaufman, D.M. & Stevens, R.D. 2003 Latitudinal Gradients of
244 Biodiversity: Pattern, Process, Scale, and Synthesis. *Annual Review of Ecology,*
245 *Evolution, and Systematics* **34**, 273-309.
246 (doi:10.1146/annurev.ecolsys.34.012103.144032).

247 [6] Beck, J., McCain, C.M., Axmacher, J.C., Ashton, L.A., Bärtschi, F., Brehm, G.,
248 Choi, S.-W., Cizek, O., Colwell, R.K., Fiedler, K., et al. 2016 Elevational species

249 richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid
250 moths. *Global Ecology and Biogeography*. (doi:10.1111/geb.12548).

251 [7] Field, R., Hawkins, B.A., Cornell, H.V., Currie, D.J., Diniz-Filho, J.A.F., Guégan,
252 J.-F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., et al. 2009 Spatial
253 species-richness gradients across scales: a meta-analysis. *Journal of Biogeography* **36**,
254 132-147. (doi:10.1111/j.1365-2699.2008.01963.x).

255 [8] Karlson, R.H., Cornell, H.V. & Hughes, T.P. 2004 Coral communities are
256 regionally enriched along an oceanic biodiversity gradient. *Nature* **429**, 867-870.

257 [9] Rahbek, C. 1997 The relationship among area, elevation, and regional species
258 richness in neotropical birds. *The American Naturalist* **149**, 875-902.

259 [10] Gotelli, N.J. & Colwell, R.K. 2001 Quantifying biodiversity: procedures and
260 pitfalls in the measurement and comparison of species richness. *Ecology Letters* **4**,
261 379-391.

262 [11] Wright, D.H. 1983 Species-energy theory: an extension of species-area theory.
263 *Oikos*, 496-506.

264 [12] Chase, J.M. 2010 Stochastic community assembly causes higher biodiversity in
265 more productive environments. *Science* **328**, 1388-1391.

266 [13] Bertuzzo, E., Carrara, F., Mari, L., Altermatt, F., Rodriguez-Iturbe, I. & Rinaldo,
267 A. 2016 Geomorphic controls on elevational gradients of species richness. *Proc Natl
268 Acad Sci U S A* **113**, 1737-1742. (doi:10.1073/pnas.1518922113).

269 [14] Colwell, R.K., Rahbek, C. & Gotelli, N.J. 2004 The mid-domain effect and
270 species richness patterns: what have we learned so far? *The American Naturalist* **163**,
271 E1-E23.

272 [15] Rosenzweig, M.L. 1992 Species Diversity Gradients: We Know More and Less
273 Than We Thought. *Journal of Mammalogy* **73**, 715-730. (doi:10.2307/1382191).

274 [16] Caley, M.J. & Schluter, D. 1997 The relationship between local and regional
275 diversity. *Ecology* **78**, 70-80.

276 [17] Chase, J.M. & Leibold, M.A. 2002 Spatial scale dictates the productivity–
277 biodiversity relationship. *Nature* **416**, 427-430.

278 [18] Grime, J. 1973 Control of species density in herbaceous vegetation. *J Environ
279 Manage*.

280 [19] Guo, Q. & Berry, W.L. 1998 Species richness and biomass: dissection of the
281 hump-shaped relationships. *Ecology* **79**, 2555-2559.

282 [20] Huston, M.A. 2014 Disturbance, productivity, and species diversity: empiricism
283 vs. logic in ecological theory. *Ecology* **95**, 2382-2396.

284 [21] Adler, P.B., Seabloom, E.W., Borer, E.T., Hillebrand, H., Hautier, Y., Hector,
285 A., Harpole, W.S., O'Halloran, L.R., Grace, J.B. & Anderson, T.M. 2011 Productivity
286 is a poor predictor of plant species richness. *Science* **333**, 1750-1753.

287 [22] Fox, J.W. 2013 The intermediate disturbance hypothesis should be abandoned.
288 *Trends Ecol Evol* **28**, 86-92. (doi:10.1016/j.tree.2012.08.014).

289 [23] Fraser, L.H., Pither, J., Jentsch, A., Sternberg, M., Zobel, M., Askarizadeh, D.,
290 Bartha, S., Beierkuhnlein, C., Bennett, J.A. & Bittel, A. 2015 Worldwide evidence of
291 a unimodal relationship between productivity and plant species richness. *Science* **349**,
292 302-305.

293 [24] Chase, J.M. & Knight, T.M. 2013 Scale-dependent effect sizes of ecological
294 drivers on biodiversity: why standardised sampling is not enough. *Ecology Letters* **16**,
295 17-26.

296 [25] Anthony, K.R. & Connolly, S.R. 2004 Environmental limits to growth:
297 physiological niche boundaries of corals along turbidity-light gradients. *Oecologia*
298 **141**, 373-384. (doi:10.1007/s00442-004-1647-7).

299 [26] Bongaerts, P., Carmichael, M., Hay, K.B., Tonk, L., Fraude, P.R. & Hoegh-
300 Guldberg, O. 2015 Prevalent endosymbiont zonation shapes the depth distributions of
301 scleractinian coral species. *R Soc Open Sci* **2**, 140297. (doi:10.1098/rsos.140297).

302 [27] Connolly, S.R., Hughes, T.P., Bellwood, D.R. & Karlson, R.H. 2005 Community
303 structure of corals and reef fishes at multiple scales. *Science* **309**, 1363-1365.
304 (doi:10.1126/science.1113281).

305 [28] Volkov, I., Banavar, J.R., Hubbell, S.P. & Maritan, A. 2007 Patterns of relative
306 species abundance in rainforests and coral reefs. *Nature* **450**, 45-49.
307 (doi:10.1038/nature06197).

308 [29] Williams, G.J., Sandin, S.A., Zgliczynski, B.J., Fox, M.D., Gove, J.M., Rogers,
309 J.S., Furby, K.A., Hartmann, A.C., Caldwell, Z.R., Price, N.N., et al. 2018
310 Biophysical drivers of coral trophic depth zonation. *Marine Biology* **165**, 60.
311 (doi:10.1007/s00227-018-3314-2).

312 [30] Gattuso, J.-P., Allemand, D. & Frankignoulle, M. 1999 Photosynthesis and
313 calcification at cellular, organismal and community levels in coral reefs: a review on
314 interactions and control by carbonate chemistry. *American Zoologist* **39**, 160-183.

315 [31] Schneider, K., Levy, O., Dubinsky, Z. & Erez, J. 2009 In situ diel cycles of
316 photosynthesis and calcification in hermatypic corals. *Limnology and Oceanography*
317 **54**, 1995-2002.

318 [32] Nogués-Bravo, D., Araújo, M.B., Romdal, T. & Rahbek, C. 2008 Scale effects
319 and human impact on the elevational species richness gradients. *Nature* **453**, 216-219.
320 (doi:10.1038/nature06812).

321 [33] Connell, J.H., Hughes, T.P. & Wallace, C.C. 1997 A 30-year study of coral
322 abundance, recruitment, and disturbance at several scales in space and time.
323 *Ecological Monographs* **67**, 461-488.

324 [34] Done, T.J. 1983 Coral zonation, its nature and significance. In *Perspectives on*
325 *coral reefs-pages: 107-147* (Australian Institute of Marine Science (AIMS)).

326 [35] Connell, J.H. 1978 Diversity in tropical rain forests and coral reefs. *Science* **199**,
327 1302-1310.

328 [36] Huston, M. 1985 Patterns of species diversity on coral reefs. *Annual Review of*
329 *Ecology and Systematics* **16**, 149-177.

330 [37] Cornell, H. & Karlson, R. 2000 Coral species richness: ecological versus
331 biogeographical influences. *Coral Reefs* **19**, 37-49.

332 [38] Madin, J.S., Baird, A.H., Dornelas, M. & Connolly, S.R. 2014 Mechanical
333 vulnerability explains size-dependent mortality of reef corals. *Ecol Lett* **17**, 1008-
334 1015. (doi:10.1111/ele.12306).

335 [39] Monismith, S.G. 2007 Hydrodynamics of coral reefs. *Annu. Rev. Fluid Mech.* **39**,
336 37-55.

337 [40] Bellwood, D.R. & Hughes, T.P. 2001 Regional-scale assembly rules and
338 biodiversity of coral reefs. *Science* **292**, 1532-1535. (doi:10.1126/science.1058635).

339 [41] Roberts, T.E., Bridge, T.C., Caley, M.J. & Baird, A.H. 2016 The Point Count
340 Transect Method for Estimates of Biodiversity on Coral Reefs: Improving the
341 Sampling of Rare Species. *PLoS One* **11**, e0152335.
342 (doi:10.1371/journal.pone.0152335).

343 [42] Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Stevens, M.H.H., Oksanen,
344 M.J. & Suggs, M. 2007 The vegan package. *Community ecology package* **10**, 631-
345 637.

346 [43] R Core Team. 2016 R: A language and environment for statistical computing.
347 (Vienna, Austria, R Foundation for Statistical Computing.

348 [44] Long, M.H., Rheuban, J.E., Berg, P. & Zieman, J.C. 2012 A comparison and
349 correction of light intensity loggers to photosynthetically active radiation sensors.

350 *Limnology and Oceanography: Methods* **10**, 416-424.

351 [45] Kraft, N.J., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O.,
352 Stegen, J.C., Vellend, M., Boyle, B. & Anderson, M.J. 2011 Disentangling the drivers
353 of β diversity along latitudinal and elevational gradients. *Science* **333**, 1755-1758.

354 [46] Rosenzweig, M.L. 1995 *Species diversity in space and time*, Cambridge
355 University Press.

356 [47] Laiolo, P., Pato, J. & Obeso, J.R. 2018 Ecological and evolutionary drivers of the
357 elevational gradient of diversity. *Ecology Letters* **21**, 1022-1032.

358 [48] Lomolino, M. 2001 Elevation gradients of species-density: historical and
359 prospective views. *Global Ecology and Biogeography* **10**, 3-13.

360 [49] Álvarez-Noriega, M., Baird, A.H., Dornelas, M., Madin, J.S. & Connolly, S.R.
361 2018 Negligible effect of competition on coral colony growth. *Ecology* **99**, 1347-
362 1356. (doi:10.1002/ecy.2222).

363 [50] Grace, J.B., Adler, P.B., Seabloom, E.W., Borer, E.T., Hillebrand, H., Hautier,
364 Y., Hector, A., Harpole, W.S., O'Halloran, L.R. & Anderson, T.M. 2012 Response to
365 comments on "Productivity is a poor predictor of plant species richness". *Science* **335**,
366 1441-1441.

367 [51] Bouchet, P.J., Peterson, A.T., Zurell, D., Dormann, C.F., Schoeman, D., Ross,
368 R.E., Snelgrove, P., Sequeira, A.M., Whittingham, M.J. & Wang, L. 2019 Better
369 Model Transfers Require Knowledge of Mechanisms. *Trends in Ecology & Evolution*.

370 [52] Connolly, S.R., Keith, S.A., Colwell, R.K. & Rahbek, C. 2017 Process,
371 mechanism, and modeling in macroecology. *Trends in ecology & evolution* **32**, 835-
372 844.

373 [53] Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guégan, J.-F., Kaufman,
374 D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T. & O'Brien, E.M. 2003 Energy,
375 water, and broad-scale geographic patterns of species richness. *Ecology* **84**, 3105-
376 3117.

377 [54] Arrigoni, R., Berumen, M.L., Chen, C.A., Terraneo, T.I., Baird, A.H., Payri, C.
378 & Benzoni, F. 2016 Species delimitation in the reef coral genera *Echinophyllia* and
379 *Oxypora* (Scleractinia, Lobophylliidae) with a description of two new species.
380 *Molecular Phylogenetics and Evolution* **105**, 146-159.

381 [55] Benzoni, F., Stefani, F., Stolarski, J., Pichon, M., Mitta, G. & Galli, P. 2007
382 Debating phylogenetic relationships of the scleractinian Psammocora molecular and
383 morphological evidences. *Contributions to Zoology* **76**.

384 [56] Huang, D., Benzoni, F., Fukami, H., Knowlton, N., Smith, N.D. & Budd, A.F.
385 2014 Taxonomic classification of the reef coral families Merulinidae, Montastraeidae,
386 and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). *Zoological Journal of the*
387 *Linnean Society* **171**, 277-355.

388 [57] Veron, J.E.N. 2000 *Corals of the World*.

389 [58] Wallace, C., Done, B.J. & Muir, P.R. 2012 *Revision and catalogue of worldwide*
390 *staghorn corals Acropora and Isopora (Scleractinia: Acroporidae) in the Museum of*
391 *Tropical Queensland*, Australia: Memoirs of the Queensland Museum.

392 [59] Hoeksema, B.W. & Cairns, S. 2018 World List of Scleractinia. (World Register
393 of Marine Species.

394

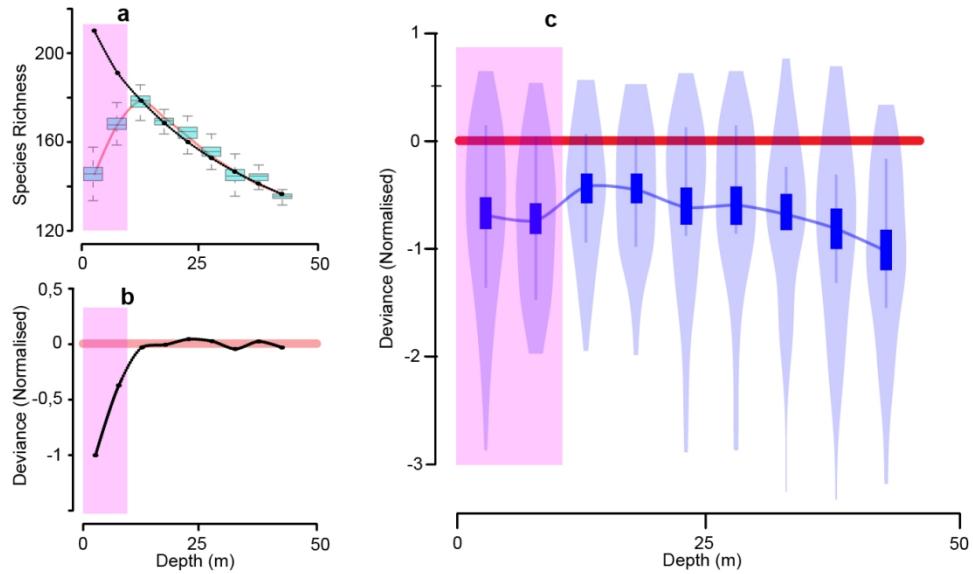


Figure 2: Influence of local-scale community assembly processes. To fit the observed data to the SE prediction (black line), species richness must be disproportionately reduced at depths below 10 m (a). Count-scale species richness must therefore negatively deviate from the null expectation at the shallowest depths (b). Although species richness within counts is lower than null expectations at all depths (c), the trend is unable to reconcile the observed species richness with the SE prediction (b,c). Model fit predictions for the SE are represented in black (a), and deviance of predicted count station richness versus observed means are normalised to between 0 and -1 for both predicted (b) and empirical (c) values. Null values are shown as a red bar (b,c). Pink polygons overlay the depths where deviance must be significantly greater than at other depths to meet the SE prediction. Frequency distributions of all count scale richness values are shown in pale blue (c), while 95% confidence intervals of the mean are represented by solid blue bars, and quartiles by fine blue lines.

120x70mm (300 x 300 DPI)