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Abstract— In this work, we examine the feasibility of applying 

Deep Convolutional Generative Adversarial Networks 

(DCGANs) with Single Shot Detector (SSD) as data-processing 

technique to handle with the challenge of pedestrian detection 

in the wild. Specifically, we attempted to use in-fill completion 

(where a portion of the image is masked) to generate random 

transformations of images with portions missing to expand 

existing labelled datasets. In our work, GAN’s been trained 

intensively on low resolution images, in order to neutralize the 

challenges of the pedestrian detection in the wild, and 

considered humans, and few other classes for detection in 

smart cities. The object detector experiment performed by 

training GAN model along with SSD provided a substantial 

improvement in the results. This approach presents a very 

interesting overview in the current state of art on GAN 

networks for object detection. We used Canadian Institute for 

Advanced Research (CIFAR), Caltech, KITTI data set for 

training and testing the network under different resolutions 

and the experimental results with comparison been showed 

between DCGAN cascaded with SSD and SSD itself.  

Keywords – Single Shot Detector, Pedestrian Detection, Deep 

Convolutional Generative Adversarial Networks, Smart Cities, 

Surveillance in the Wild. 

I. INTRODUCTION 

Generative Adversarial Networks (GANs) [1] have been of 

specific interest in the deep learning paradigm, especially 

for image processing, synthesis and generation. A high-level 

formulation of this task is to learn how to create realistic 

data based on ground truth. The problem is disintegrated 

into two networks. A generator network is in charge for 

generating an image given from a randomly generated 

source of noises (e.g. a noise vector). A discriminator is in 

charge to identify apart a real image (from a large corpus), 

and the randomly generated example from the generator. In 

simplest way the problem we dealt with is, a gradient is 

computed based on the classification and, the loss is 

backpropagated through generator and discriminator 

networks. Our work investigates the feasibility of applying 

GANs to datasets in object detection for smart cities. We 

provide GAN a set of visual objects from CIFAR dataset 

known to appear in an image and providing the task to the 

GAN with arranging the visual object and filling in the 

context around them in a realistic manner. The discriminator 

is assigned with the task of discriminating between the real 

image containing the visual objects provided in the dataset, 

and the generated image, with the generated background 

pixels between the visual objects. 

 The main motivation of this work starts from the training 

data for object detection [1, 18-23] is often it is harder to 

collect the data and it is much harder to compare and 

classify the data, (using variations of existing labelled data 

to artificially increase dataset size) also it is a common 

technique in supervised learning. In our work, we mainly 

focus on GANs especially in wide amount of data technique 

to improve an existing object detection task. 

II. RELATED WORK 

A. Generative Adversarial Networks 

The Generative Adversarial Networks (GANs) [1] is an 

outline for learning generative models. Mathieu et al. [9] 

and Dentonet al. [10] adopted GANs for the application of 

image generation. In [11] and [12], GANs were employed to 

learn a mapping from one manifold to another for style 

transfer and inpainting, respectively. The idea of using 



 

Fig 1. The DCGAN architecture. 
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Fig2. The generated high-res images from low-res ones.  

 

 

Fig3. The SSD architecture. 

GANs for unsupervised representation learning was 

described in [13]. GANs were also applied to image super 

resolution in [14]. To the best of our knowledge, this work 

makes the first attempt to accommodate GANs on the object 

detection task to address the small-scale problem by 

generating super-resolved representations for small objects. 

B. Generative Models  

Recently several attempts have been made to improve image 

generation using generative models. The most popular 

generative model approaches are Generative Adversarial 

Networks (GANs) [1], Variational Autoencoders (VAEs) 

[6], and Autoregressive models [7]. And their variants, e.g. 

conditional GANs, reciprocative Conditional GANs, Deep 

Convolutional GANs (DC-GANs) [8], etc. Radford et al. [8] 

use a Conv-Deconv GAN architecture to learn good image 

representation for several image synthesis tasks. Denton et 

al. [9] use a Laplacian pyramid of generators and 

discriminators to synthesize multi-scale high resolution 

images. Mirza and Osindero [10] train GANs by explicitly 

providing a conditional variable to both the generator and 

the discriminator, using one-hot encoding to control 

generated image features, namely conditional GANs 

(cGANs). Reed et al. [11] use a DC-GAN conditioned on 

text features encoded by a hybrid character-level 

convolutional RNN. Perarnau et al. [2] use an encoder with 

a conditional GAN (cGAN), to inverse the mapping of a 

cGAN for complex image editing, calling the result 

Invertible cGANs. Dumoulin et al. [12] and Donahue et al. 

[13] use an encoder with GANs. Makhzani et al [14] and 

Larsen et al. [15] use a similar idea to [2] but combining a 

VAE and GAN to improve the realism of the generated 

images. 

III. PRELIMINARIES ON DCGAN 

A. Generative Adversarial Networks 

Let y be the original input image, and y’ represent the 

generated image from the generative model give a noise 

vector sampled from x ~ uniform (0.1). Let D(z) and D(z’) 

be the output of the discriminator network for the two 

images and represent the regressed confidence that the input 

is from the number of real images. Intuitively, we seek to 

minimize D(z’) and maximize D(z). The value function id D 

that we can write is now: 

 

   (1) 

 

The complete minimax value function V for G and D now 

becomes as defined by Goodfellow [1]: 

 

   (2) 

 

The challenging task is image decryption. Whereas G can 

choose any point in the generator multiple images to 

consider a valid image, in the decryption task, we first 

consider G with a set of predetermined pixels based on 

ground truth, these pixels can be a random pixel. The 

experiment becomes very challenging because now a very 

small number of multiple images will produce a accurate 

image given to the existing images. This is typically 

achieving by backpropagation through a multi-component 

reconstruction loss. 

Fig 1 shows the architecture used for the generative 

portion of this system. The noise vector x is expanded 

through a series of deconvolutional layers.  Our Network 

input is 19x19 dimension where the labelled visual objects 

are retained in original configuration, and the left-over 



 

Fig 4. The Architecture of DCGAN + SSD. 
 

pixels are sampled and resampled from noise distribution 

heuristically Gaussian approach. The image experiences a 

series of convolutional layers while its retaining the same 

dimensions., we found that in this resolution GANs 

generator part will not congregate nor begin to learn which 

is appropriate in data setting.  

B. DCGAN based Distant Pedestrian Rendering 

Fig.2 shows two columns with images of low resolution raw 

images, and high resolution images which is processed and 

enhanced by GAN. The raw images obtained from the 

video, with a low pixel ratio of 320X100, and with the size 

of the 27kb, on the other hand we had a high resolution 

images where the pixels and the ratio of the image been 

enhanced, after enhancement 1920X1080, after 

enhancement the size of the image also been enhanced to 

451kb, now the enhanced images will present very good 

detection which is shown in the Fig 6, also the Fig 5 shows 

the detections in the images taken from the different 

datasets, the main advantage in this process is the 

processing time in detection is reduced, maximum output in 

detection with the help of enhancement in images is done by 

filling the latent space using GAN.  

The input for generator is given a bit of higher features 

from the images extracted from dataset, which is also an 

advantage for the exact image generation which we used 

from dataset, we can clearly see the images in low 

resolution from Fig 2, where only the features only been fed 

to the generator and the same image is given to the 

adversarial part for discriminator, on the first hand the 

output of the GAN is very efficient with 100%.     

IV.  PROPOSED DCGAN-SSD ARCHITECTURE FOR 

PEDESTRIAN DETECTION  

A. Single Shot Detector 

The SSD method we used in is based on a feed-forward 

convolutional network that produces a fixed-size collection 

of bounding boxes and scores for the presence of object 

class instances in those boxes, followed by a non-maximum 

suppression step to produce the final detections. The early 

network layers are based on a standard architecture used for 

high quality image classification (truncated before any 

classification layers), which we will call the base network2. 

We then add secondary structure to the network to produce 

detections with the following key features: 

In the convolution layers of SSD, each added feature 

layer (or optionally an existing feature layer from the base 

network) can produce a fixed set of detection predictions 

using a set of convolutional filters. These are indicated on 

top of the SSD network architecture in Fig. 4. For a feature 

layer of size m × n with p channels, the basic element for 

predicting parameters of a potential detection is a 3 × 3 × p 

small kernel that produces either a score for a category, or a 

shape offset relative to the default box coordinates. At each 

of the m × n locations where the kernel is applied, it 

produces an output value. The bounding box offset output 

values are measured relative to a default box position 

relative to each feature map location. 

B. DCGAN Enhanced SSD 

Object detection is considered as a major challenge of the 

image classification task, where the main goal is to classify 

and localize every object from input image. The object 

detection problem is considered as a major challenge in 

computer vision and, made some progress in recent years 

because of advanced machine learning tools like deep 

learning and GANs [1]. The main advances of region 

proposal methods are two state of art methods You only 

look once (YOLO) and SSD [4], improved the object 

detection in computer vision. When we cascade 

DCGAN+SSD the main advantage is, the combination 

reduces the scale factors in the images, and also with SSD 

we add convolutional feature layers to the end of curtailed 

base network. These layers in GAN and SSD reduce the size 

progressively at different scales. The model of making 

predictions varies for each feature layer that operates in 

SSD. 

The most communal technique for validating the 

eminence of unsupervised illustration learning algorithms is 

to apply them as a feature extractor on supervised datasets 

and validate the performance of linear models tailored on 

top of these features as shown in Fig 3 the convolutional 

layers are build to resize the images and there is no room for 

enhancement of images or to fill the feature space. However 

the Fig 4 demonstrates the changes in the convolutional 

layers and these layers in the GAN is build to enhance the 

image quality under any size, so that the feature space is 

filled with feature maps, this help in better detection quality. 

With datasets we used gave a strong starting point 



performance has been verified from a well-tuned single 

layer feature extraction pipeline[1]. When using a high 

amount of feature maps (4800), to compromise the latent 

space with the help of GAN and the detection through SSD, 

this technique achieves 80.7% of accuracy. An unsupervised 

multi-layered and multi box detection model using DCGAN 

& SSD with base algorithm gave us nearly 90% accuracy. 

To validate the quality of the depictions learned by 

DCGANs for supervised tasks, we use pretrained SSD 

which has been trained with ImageNet dataset, so SSD is 

basically a pretrained network what we used in our 

experiment. We use the pretrained network to save the 

computational time, and then use the discriminator’s 

convolutional features from all layers, maxpooling each 

layers representation to produce a 4 × 4 spatial grid for 

32x32 size images. These features are then flattened and 

concatenated to form a dimensional vector and a regularized 

linear classifier is trained on top of them. This achieves 

better accuracy, than by using SSD on its own, we like to 

make a point even the SSD is a very good detector, but 

when it combines with other classifiers, it performs much 

better. Notably, the SSD detector performance lags in the 

scale factor, which is compromised by DCGAN in ou 

experiment, where the DCGAN can improvise the scale 

factor in SSD by providing the detector with super 

resolution images, it does result in a larger total feature 

vector size due to the highest layers given for feature 

vectors of 4 × 4 spatial locations. The performance of 

DCGANs is still less than that of Exemplar CNNs [16], a 

technique which trains normal discriminative CNNs in an 

unsupervised fashion to differentiate between specifically 

chosen, aggressively augmented, exemplar samples from the 

source dataset. Further improvements could be made by 

finetuning the discriminator’s representations, but we leave 

this for future work. Additionally, since our DCGAN was 

never trained on CIFAR-10 this experiment also 

demonstrates the domain robustness of the learned features. 

In Convolutional detector, each feature layer can 

absolutely produce a fixed set of predictions in detection 

with the help of convolutional filters.  These filters have 

been mentioned on top of the SSD architecture in Fig.1, 

SSD were associated with a set of bounding boxes which it 

got default sizes with each cell from each feature map. The 

default size bounding boxes tile in a convolutional manner 

with the feature map, so that the position of each bounding 

box is related to its sizes in the cell, and also the class 

indicate the presence of feature cell in the bounding boxes. 

C. More Details of the Proposed DCGAN +SSD 

Leaky ReLU (negative_slope = 0.01, inplace = false) it 

applies element-wise 

 

 
 

negative_slope – controls the angle of the negative slope by 

default 1e-2 inplace – can optionally do the operation inplace 

by default false.  

Basically for the convolutions the Leaky ReLU works 

better than simple ReLU, we use Leaky ReLU for our 

consecutive generator layers and we use sigmoid 

rectification for the output of the discriminator. A 

discriminator is the second brain of our network and, the 

generator is the first brain of our network. We set a new 

target to 1 always and, calculate the loss between the output 

of the discriminator value between 0 and 1, the error is back 

propagated in generator not in discriminator, to update the 

weight of generator neural network. 

To measure the error value between 0 and 1 we use a 

different criterion, based on ground truth that will be only 

between 0 and 1. Therefore, the criterion of neural network 

is, 

 

Criterion = nn.CE Loss 

 

The CE Loss is nothing but, it creates criterion that 

measures the Cross Entropy between the target and the 

output. 

 

 
 

Or in the case of the weights arrangements being specified, 

or in case of pre-trained network. 

 

 
 

This is used for measuring the error of reconstruction for 

example an auto encoder which we used in our experiments, 

Note: the target t[i] should be numbers between 0 and 1. 

The Experiment undergone 25 epochs for our images 

and SSD is given to Epoch 25 for object detection in 

humans, vehicles and animals. 
 

V. EXPERIMENTRAL RESULTS 

A. Experimental Condition 

This experiment uses Canadian Institute For Advanced 

Research 10 (CIFAR 10) dataset. The validation task for 

this dataset is to analyse the detection quality through 

bounding box evaluation image dataset. CIFAR 10 dataset 

contains 60000 objects from 89 categories, this dataset 

approximately consists of 4000 detected visual objects, 

across approximately 2000 images. The specific metric will 

optimize for the F1 score used as a detection threshold of 

0.5, to avoid occlusion problem, and non – maximum 

suppression threshold of 0.2. The non-maximum 

suppression is important in detection where there are 

multiple bounding boxes detects the same objects multiple 

times. A very common approach to improve this is to sort 



  

  

  

Fig.5 Sample images from different dataset’s with annotations. 

 

  

  

  

(a) SSD only (b) DCGAN+SSD 

Fig.6 Detection examples for comparison. (a) Results with SSD 

only; b) Results with DCGAN+SSD. 

Table 1. Experimental results for comparison with datasets 

Method CALTECH CIFAR KITTI VOC 

DCGAN+SSD 93.6 87.9 92.3 88.9 

SSD 65.8 53.5 58.3 49.5 

 

 

out the bounding boxes by its score and squeeze the 

bounding boxes with its least score and an overlap of least 

non-maximum suppression threshold, which is 0.2 for our 

experiment in cooperation with our existing result. In 

accordance with the F1 score, accuracy has been reported 

for our baseline model in Table 1. We also shown that the 

larger datasets can also be improved significantly with our 

score quality. 

The experimental results the working of DCGAN under 

low resolution images, where the DCGAN upgrades the 

pixels and brings it up to the detection quality before the 

images are fed to SSD for better detection. As a part of the 

experiment, we identified the difference when SSD works 

on its own and when it works with the DCGAN, the Fig 6. 

Shows the difference between the detection only with SSD 

and with DCGAN + SSD. 

 The Generative Adversarial Network was implemented 

on two different tasks: first we implemented to recreate the 

state of art GAN results using a multiple object encoding, to 

identify the objects and recreate the object using the object 

encoder by using GAN. We trained a GAN on CIFAR, 

Caltech, KITTI, VOC dataset, Fig.7 shows the performance 

of DCGAN+SSD and SSD only with different datasets, 

using an implementation with image sizes of 32x32, along 

with the batch size of 72, and 25 epochs, across a total of 

60,000 images. We then applied the encoding task as 

described in the previous section, with the results in Fig 6, 

where we demonstrate the high reliability photo-realism 

between 0 to 25 of GAN training, specifically, we 

implemented Pytorch and Tensorflow implementation of 

deep convolutional GAN (DCGAN) as mentioned in [6]. 

 During the experiment the research underwent many 

issues on attempting to train a GAN model on images under 

different resolutions larger than 64x64 and on resolutions 

like 100x100, and 128x128, there is no convergence in the 

generator model. Eventually we identify that it was not 

feasible to achieve the original data processing goal. 

B. Details of Datasets 

The CIFAR, Caltech, KITTI dataset contains of 60000 

32x32 colour images in 10 classes, with more than 6000 

images per class. It consist of 50000 training images and 

10000 test images, Each file contains 10000 such 3073-byte 

"rows" of images, although there is nothing delimiting the 

rows. Therefore each file should be exactly 30730000 bytes 

long. [17].  

The dataset is alienated into five training sets and one 

test set, each with 10000 images. The test set encompasses 

1000 random images from each class. The training sets 

holds the remaining images in different order, but some 

training sets may consists of more images from one class 

when compare to another class. Between them, the 

training sets contain around 5000 images from each class. 

Fig.5 shows the sample images in the dataset. 

C. Experimental Results 

In our experiments, we used CIFAR, Caltech, and KITTI 

dataset to carry out our validation and examine if the 

proposed GAN + SSD architecture outperforms the single 

SSD, particularly on distant object or pedestrian detection. 



 
1) DCGAN+SSD 

 
2) SSD only 

Fig.7 Test results on precision and recall rates on different 

datasets. 

 

In our experiments, DCGAN was implemented in two 

steps. First, we implemented the DCGAN codes based on 

PyTorch and Tensorflow, as illustrated in [6], which 

recreates the state-of-the-art GAN results using multiple 

object encoding. We trained our DCGAN on the CIFAR, 

Caltech, KITTI dataset, with all image size of 32×32, along 

with the batch size of 72, and 25 epochs, across a total of 

60,000 images. 

Fig.6 shows the detection results on the CIFAR, Caltech, 

KITTI, VOC dataset, using DCGAN+SSD and SSD only, 

respectively. Fig.6-a) is the results from SSD only, where a 

number of objects were missed in the detection. Fig.6-b) 

shows the results from DCGAN+SSD, where a number of 

missed objects in Fig.6-a) were detected successfully. The 

Fig 7 shows the recall ratio curve when we use the SSD 

only and DCGAN with SSD, the performance is notable. 

Particularly, objects at distance were detected in these 

images, which were mostly missed by the SSD only 

method. 

In our experiments, DCGAN was implemented in two 

steps. First, we implemented the DCGAN codes based on 

PyTorch and Tensorflow, as illustrated in [6], which 

recreates the state-of-the-art GAN results using multiple 

object encoding. We trained our DCGAN on the CIFAR-10 

ReLU for generator input and other respective layers of 

generator and for output from the generator we used Tanh in 

generator. For discriminator we use convolution itself, other 

parameters used in channels of the generator created by 

generated images, number of feature maps, kernel size, 

stride, padding, bias and for discriminator rectification we 

use Leaky ReLU, Leaky ReLu is very close to ReLU, but 

besides having max(0,x), it has negative slope multiplied by 

min(0,x). 

 

VI. CONCLUSION 

In this work, we proposed a new architecture by cascading 

DCGANs with SSD to detect pedestrians and objects at 

distance, particularly for smart cities applications. With 

generative adversarial networks by implementing the 

DCGAN [6], more robust discriminative features are 

extracted around tiny objects and hence as a consequence, 

the detection rate is improved drastically. With such an 

apparent evidence to demonstrate its advantages, we can 

expect the proposed architecture will be valuable for smart 

cities applications that need to detect objects in the wild, 

particularly those tiny objects at distance, to secure life and 

avoid accidents. While GANs have been very successful in 

many other applications, our work successfully append it to 

a robust solution to the real world challenges in smart cities. 

The resulting models will also be deployed to other 

computer vision and transfer learning tasks such as image 

description generation [24], semantic image segmentation 

from dermoscopic and microscopic images [25, 26], and 

facial and gesture expression recognition in the wild [27]. 
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