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Abstract

Sub-Saharan Africa (SSA) could face food shortages in the future because of its growing 

population. Agricultural expansion cause forest degradation in SSA through livestock grazing, 

reducing forests carbon (C) sinks and increasing greenhouse gas (GHG) emissions. Therefore 

intensification should produce more food while reducing pressure on forests. This study assessed 

the potential for the dairy sector in Kenya to contribute to low-emissions development by 

exploring three feeding scenarios. The analyses used empirical spatially-explicit data, and a 

simulation model to quantify milk production, agricultural emissions and forest C loss due to 

grazing. The scenarios explored improvements in forage quality (Fo), feed conservation (Fe) and 

concentrate supplementation (Co): FoCo fed high quality Napier grass (Pennisetum purpureum), 

FeCo supplemented maize silage, and FoFeCo a combination of Napier, silage and concentrates. 

Land shortages and forest C loss due to grazing were quantified with land requirements and feed 

availability around forests. All scenarios increased milk yields by 44-51%, FoCo reduced GHG 

emissions intensity from 2.4±0.1 to 1.6±0.1 kg CO2eq per kg milk, FeCo reduced it to 2.2±0.1, 

whereas FoFeCo increased it to 2.7±0.2 kg CO2eq per kg milk because of land use change 

emissions. Closing the yield gap of maize by increasing N fertiliser use reduced emission 

intensities by 17% due to reduced emissions from conversion of grazing land. FoCo was the only 

scenario that mitigated agricultural and forest emissions reducing emissions intensity by 33% and 

overall emissions by 2.5% showing that intensification of dairy in a low income country can 

increase milk yields without increasing emissions. There are however risks of C leakage if 

agricultural and forest policies are not aligned leading to loss of forest to produce concentrates. 

This approach can aid the assessment of the climate-smartness of livestock production practices 

at the national level in East Africa.

Keywords

forest disturbance, greenhouse gas emissions, livestock grazing, LivSim, smallholder farming, 

sustainable intensification

1. Introduction

Low agricultural productivity and population growth in Sub-Saharan Africa (SSA) threaten current 

and future food security and increase the risk of degrading natural ecosystems (Grassi et al., 

2017; Herrero et al., 2016). The majority of food in SSA is produced on farms with low 

productivity, stagnating crop yields due to nutrient-depleted soils, and small farm sizes (Samberg A
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et al., 2016; Sanchez, 2015). Food production on smallholder farms has to be intensified 

sustainably to reduce malnutrition and needs to adapt to erratic weather patterns and prolonged 

drought spells (Challinor et al., 2016; van Ittersum et al., 2013). Climate-smart agriculture (CSA) 

was conceived as a concept for agricultural systems to adapt to climate change, mitigate 

anthropogenic impacts on the climate while safeguarding food security (FAO, 2013). Agriculture 

is the main cause of forest loss in SSA, resulting in reduced forest carbon (C) sinks and 

increased greenhouse gas (GHG) emissions (Carter et al., 2015). In addition to the conversion of 

forests into farm land, timber logging and fuelwood extraction, livestock grazing contributes to 

reduced forest C sinks by preventing tree regrowth (Brandt et al., 2018a; Hosonuma et al., 2012; 

Pearson et al., 2017). Unlike in most high-income countries, in SSA forest grazing is a common 

practice among cattle farmers and serves as an alternative source of feed when feed stocks on 

agricultural land are depleted (Sankhayan & Hofstad, 2001; Schiere et al., 2002). Together, these 

anthropogenic activities modify forest structure, reduce C sequestration, affect water and nutrient 

cycling (Lawrence & Vandecar, 2015), and biodiversity (Barlow et al., 2016), which ultimately 

feedback negatively on agricultural production. 

To address these increasing pressures, several SSA countries are developing policies and 

instruments that combine elements of CSA and development targets for the agricultural sector. 

Kenya, as a good example of such countries, has recently developed a national CSA strategy, 

which aims to transform the country’s agricultural sector towards a ‘climate-smart food production 

system’. Agriculture is not only Kenya’s economic backbone, but it also contributes approximately 

40% of the country’s GHG emissions budget. About 90% of the agricultural emissions are 

associated with livestock production (Government of Kenya, 2015a). As part of its ambitious 

economic development plan, Kenya seeks to develop its dairy sector to be able to meet the 

increasing demand for milk driven by a booming rural and urban population (Government of 

Kenya, 2010). Dairy production engages approximately two million smallholder farmers, who 

contribute about 80% to the total milk production in Kenya (Udo et al., 2016). Increasing the 

production by larger herd sizes would rise the demand for feeds, increase GHG emissions from 

enteric fermentation, animal manure, and soil emissions from feed production and the more 

intensive utilisation of pastures. A plan to increase the country’s milk production is constrained by 

the current low yields of feed crops, small farm sizes and insufficient arable land, which result in 

increased pressure on natural forests and the risk of forest loss (Bosire et al., 2016; Brandt et al., 

2018a). To develop dairy production in accordance with CSA objectives, the dairy sector will have 

to intensify the milk production sustainably so that the increase in production does not lead to 

higher demands for agricultural land and to the resulting expansion into natural ecosystems.A
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The ‘Nationally Determined Contribution’ (NDC) and the national dairy master plan of Kenya 

define specific targets for climate change mitigation and for the development of the livestock 

sector. According to these national policies, the increase of total GHG emissions in Kenya has to 

be lowered by 30% relative to projected business as usual emissions between 2010-2030 

(Government of Kenya, 2015b). Within the same period, milk yields per cow are expected to 

increase by 150% to ensure that local dairy production meet the increased requirements for food 

and nutrition due to population growth (Government of Kenya, 2010). Furthermore, a newly 

developed ‘Nationally Appropriate Mitigation Action’ (NAMA) for the dairy sector in Kenya sets up 

a low-emission development pathway, which aims to increase on-farm productivity by promoting 

the adoption of high quality feeds (Government of Kenya, 2017). 

Forest degradation is the largest component (75%) of the forest emissions in Kenya, where 

deforestation rates have been around 35,000 hectares per year in the last three decades 

(Pearson et al. 2017, Carter et al. 2017). In a recent analysis, Brandt et al. (2018b) reported 

potential synergies between milk yield increases and GHG mitigation benefits on agricultural land 

to be realized by improving the quality of dairy feeds. In addition, intensified smallholder dairy 

farms located close to forests were associated with a reduced risk of local forest degradation 

(Brandt et al., 2018a). The analyses also showed that changes in livestock diets may require the 

conversion of grazing land to cultivate more nutritious feeds, which would cause GHG emissions 

from land use change (LUC) and reduce the effectiveness of the feed improvements for climate 

change mitigation (Brandt et al., 2018b). Promoting dairy production in regions without 

agricultural land available for feed cultivation could, therefore, increase the risk of C leakage as 

farmers may use adjacent forests for grazing. In these cases, closing the yield gap of feed crops 

may reduce the demand for additional land and, thus, alleviate the pressure on forests. To date, 

there are no assessments that integrate the effects of dairy intensification and GHG mitigation 

measures on forests in SSA. However, the integration of these land use sectors is crucial for 

effective CSA targeting and planning with the added value of preventing C leakage. This study 

was designed to answer two main questions: i) Can feed improvement strategies reduce total 

GHG emissions from agricultural production? and ii) Can emission intensities from dairy 

production be mitigated? We addressed this questions by exploring the potentials of improved 

dairy feeds, including closing the yield gap of fodder maize and decreasing forest C loss due to 

livestock grazing in the dairy production region of Kenya. We used empirical data from Kenya’s 

dairy production region, and the livestock production model LivSim (Rufino et al., 2009) to 

calculate milk yields and GHG emissions for three different intensification scenarios. Remote-

sensing data were used to quantify forest C change and to approximate, for the first time, an A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

estimation of forest C loss related to livestock grazing. The scenarios considered in this study are 

aligned with current policy objectives of dairy intensification and mitigation of GHG emissions in 

the agricultural and forestry sectors.

2. Material and methods

2.1 Study area

The intensive dairy sector is located in the Central and Western highlands of Kenya covering 

about 65,000 km2 and characterized by smallholder crop-livestock production (Herrero et al., 

2014). The area shows the highest densities of human and livestock populations throughout 

Kenya (Imo, 2012), and produces the majority of milk that is marketed in the country. This region 

is also home to the last Afromontane forests, often called ‘the water towers’ because of their 

important role supplying water to urban centres (Jacobs et al., 2017). These forests include the 

Aberdare range, the Cherangani Hills, the Mau Forest, Mount Elgon, and the Mount Kenya 

Forest. All these forests are under enormous pressure from population growth and forest 

degradation due to the unsustainable use of forest resources (Drigo et al., 2015; Imo, 2012).

2.2 Analytical framework

Three steps were followed in the analyses (Fig. 1): First, spatially-explicit data on net forest C 

loss and gain were pre-processed. Furthermore, to derive forest C loss due to dairy cattle 

grazing, forest C loss from forest fires was excluded and fuelwood extraction subtracted from net 

forest C loss. Second, to quantify the relationship between smallholder farming practices and 

forest C change, farm indicators and farm types derived from a farm survey conducted by Brandt 

et al., (2018b) were related to net forest C loss, gain and change. Third, the livestock simulation 

model LivSim was applied to compute spatially-explicit data on milk production, agricultural GHG 

emissions from dairy production, and the requirement of land to produce feeds. The composition 

of feeds in the baseline and three feed improvement scenarios reflects typical diets for dairy cows 

in Kenya. The scenarios include i) improving forage quality (FoCo) by supplementing larger 

quantities of Napier grass (Pennisetum purpureum) with concentrates, ii) using feed conservation 

(FeCo) by producing maize silage and feeding concentrates, closing the yield gap of fodder 

maize, and iii) a combination of Napier grass, maize silage and concentrates (FoFeCo). For these 

scenarios, the amount of additional land required to cultivate these high quality feeds was 

computed to estimate potential deficits of agricultural land for each pixel. Datasets of different 

resolution were resampled to a pixel resolution of 1 km2. Subsequently, the deficit of agricultural 

land to feed dairy cattle around forests was related to forest C loss due to the grazing for each 

feed improvement scenario to quantify mitigation potentials.A
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2.3 Pre-processing (Step 1)

This step was required to produce a new dataset that quantifies the forest C losses due to 

grazing cattle. Spatially-explicit datasets of the changes in aboveground biomass between 2003-

2014 were used to quantify annual forest C changes (Baccini et al., 2017). These datasets 

include net gains (C gain) and losses of C (C loss) at a pixel resolution of 463x463 m and 

resampled to 1 km2 (Fig. 1, step 1). A forest mask was applied to restrict the C change data to 

forests in 2016 to derive net forest C loss and net forest C gain. The forest mask was based on 

the land cover dataset of Africa with a pixel resolution of 20x20 m (ESA, 2017). In addition, a 

dataset of tree plantations from the Government of Kenya (2015c) was used to limit the forest 

mask to natural forests. 

Forest wildfires emit substantial amounts of C (Hurteau et al., 2008), and leave open forests 

accessible for opportunistic livestock grazing. However, the C loss due to forest fires can neither 

be attributed to the presence of cattle in forests nor can this C loss be mitigated through 

improvements of cattle feeding. Therefore, pixels that indicate burnt forest between 2003 - 2014 

were excluded from forest C loss (Fig.1, step 1) by using daily fire alert data from the ‘Moderate 

Resolution Imaging Spectroradiometer’ (MODIS, MCD14ML) (Giglio, 2015) and the ‘Visible 

Infrared Imaging Radiometer Suite’ (VIIRS) (Schroeder et al., 2014).

Fuelwood consumption in Kenya exceeds the capacity of forests to regrow and is responsible for 

about one third of the total forest emissions (Bailis et al., 2015; Pearson et al., 2017). To account 

for this source of forest C loss, a spatially-explicit dataset of non-renewable biomass (NRB) 

harvested annually as fuelwood was used at a pixel resolution of 100x100 m (Drigo et al., 2015). 

The NRB dataset was subtracted from the net forest C loss data after restricting it to forests by 

using the same forest mask applied previously to derive forest C loss-cattle grazing (Fig.1, step 

1). The proportion of dairy cattle was calculated by excluding beef cattle using county-level data 

on cattle types (Government of Kenya, 2014). The forest ‘C loss-cattle’ data was multiplied by the 

proportion of dairy cattle to calculate forest C loss that could be attributed to dairy cattle. The 

estimate of forest C loss due to grazing cattle is the first approximation of this C loss component 

and is based on our previous empirical work with observations of cattle grazing in the forest 

(Brandt et al., 2018a). To our knowledge there are no other spatially-explicit data available that 

quantify the effects of livestock on carbon dynamics in East African montane forests.

To account for the propagation of uncertainties from input datasets such as net forest C loss and 

forest NRB used to quantify forest C loss from cattle grazing, the method by Lee & Forthofer 

(2006) was followed and is expressed in equation 1. A
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Equation 1: var(forest C loss-cattle grazing) = var(net forest C loss) + var(forest NRB) – 2 * 

cov(net forest C loss, forest NRB) (1)

where: var(forest C loss-cattle grazing) is the variance associated with C loss from forest grazing, 

var(net forest C loss) is the variance  of net forest C losses, var(forest NRB) is the variance of 

fuelwood extraction and cov(net forest C loss, forest NRB) is the covariance of net forest C loss 

and loss from fuelwood extraction.

Relative standard deviations (SD) reported in Baccini et al. (2017) and Bailis et al. (2015) were 

used to quantify input variance and to estimate propagated uncertainties.

2.4 Spatial relationship between dairy farms and forest C change (Step 2)

The effects of smallholder dairy farms on forest C change were based on empirical relationships 

established for the study area by Brandt et al. (2018a). These analyses related farming practices 

and farm characteristics to forest disturbance derived from a remote-sensing based time-series 

analysis, validated in the field (Brandt et al., 2018a). The empirical data were obtained through a 

farm survey conducted in 2016 sampling 216 smallholder farms, located in close vicinity to 

forests. Farm indicators included fuelwood extraction, milk yields, feed types in the cattle diet 

such as grass from on-farm pastures, fodder crops, and dairy concentrate, farm area allocated to 

fodder crops and pastures, total farm size, and total numbers of cattle, number of improved dairy 

cattle. Improved dairy cattle are cross breeds between Bos taurus and Bos indicus, most 

commonly using artificial insemination with semen from Friesian bulls. Further, farms were 

clustered into farm types: ‘small and resource-poor farms’, ‘large and inefficient farms’, and 

‘intensified farms’. The results indicated that farms with more cattle and lower milk yields were 

associated with stronger forest disturbance effects and that farms, which used improved diets and 

attained higher milk yields caused less forest disturbance.

Farm indicators and farm types were linked to the forest C change data from remote sensing 

using circular buffers around farm centroids (Fig.1, step 2) to test whether similar forest 

disturbance effects were detectable. A radius (r) of 5 km was selected for these buffers or ‘farm 

neighbourhoods’, because this radius determined the maximum neighbourhood size for which 

farm indicators and farm types were significantly correlated with forest disturbance (Brandt et al. 

2018a). Forest C change included only the C loss correlated with dairy cattle (i.e. forest C 

change-cattle grazing). Farm indicators were correlated with net forest C loss, net forest C gain, 

forest NRB, forest C loss-cattle grazing, and forest C change-cattle grazing. Collinearity between 

the selected farm indicators was previously checked by Brandt et al (2018a) and those that were A
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highly correlated (Spearman’s rho ≥ 0.7) were excluded. Differences between farm types were 

tested by using the non-parametric pairwise Wilcoxon rank sum.

2.5 Quantifying the mitigation potential of dairy feed improvements (Step 3)

2.5.1 Livestock modelling and feed scenarios

The livestock production model LivSim (Rufino et al., 2009) was used to quantify milk production 

and agricultural GHG emissions from smallholder dairy production. GHG emissions were 

quantified by following IPCC tier 2 methodology (IPCC, 2006) and included methane (CH4) 

emissions from enteric fermentation, CH4 emissions from manure management, direct and 

indirect nitrous oxide (N2O) emissions from manure management, direct and indirect N2O 

emissions from managed soils, including fertiliser application, and N2O and carbon dioxide (CO2) 

emissions from LUC. Under each scenario, manure management varied depending on the 

amount of cropland required to cultivate Napier grass and fodder maize. For instance, in 

scenarios with reduced grazing, (FoCo and FoFeCo) the amount of manure dropped onto 

pastures is reduced and more manure is stored on heaps for further use as organic fertiliser. The 

approach accounted explicitly for emissions from synthetic fertiliser application, and did not 

include emissions from the production and transport of fertilisers due to lack of data. 

Improving diets often require the cultivation of energy and protein-dense feeds with higher 

digestibility to increase milk yields (Hristov et al., 2013). Producing these feeds may require 

additional cropland and may cause the conversion of grazing or forest land. The analysis 

accounted for conversion of grazing land to croplands and to estimate the impacts of concentrate 

production, we emissions from their production and calculated the land footprint for each 

scenario. To calculate the emissions from concentrate production we used average composition 

and the emission factor reported by Weiler et al (2014). For the land footprint we used yields for 

the different ingredients from FAOSTATS (2019) Milk yield and GHG emissions were computed 

by simulating dairy cows over a lifetime of 13 years (Rufino et al. 2009 and Table S1-2). Model 

outputs were up-scaled following the method of Brandt et al. (2018b) and represented in Fig. S1. 

Subsequently, model outputs were mapped by using spatially-explicit data on livestock production 

systems (LPS), cattle density (Robinson et al., 2011; 2014), and dairy herd composition (Bebe et 

al., 2002; Government of Kenya, 2014).

Milk yields and GHG emissions were calculated for the baseline and scenarios (Fig.1, step 3). 

The baseline represented a typical diet for smallholder dairy cattle in Kenya with a large 

proportion of low quality grass and crop residues (Table S3). The analyses focused on scenarios 

reported in Brandt et al. (2018b): i) improving forage quality by adding Napier grass, ii) conserving A
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feed as maize silage, and iii) increasing the supplementation of dairy concentrates. These 

strategies were combined into the three scenarios: ‘forage quality and concentrate 

supplementation’ (FoCo), ‘feed conservation and concentrate supplementation’ (FeCo), and 

‘forage quality, feed conservation and concentrate supplementation’ (FoFeCo). The baseline 

feeds for each LPS were replaced by 25% and 50% higher quality feeds (on a dry matter basis) 

and rations of concentrate were increased to 3 kg day-1 and 6 kg day-1 during early lactation 

representing medium intensification and high intensification levels, respectively (Table S3). 

Changes in feeds relative to the baseline for each LPS are shown in Fig. S2. The choice of 

scenarios was based on their mitigation potentials: i) FoFeCo with low potential at high 

intensification, ii) FeCo with medium potential at medium intensification and iii) FoCo with high 

potential at medium intensification level. The mitigation potential was assessed through milk 

production and GHG emissions intensity, including land use change but avoiding deforestation. 

The ranges of GHG emission parameters were sampled by using Latin hypercube sampling 

(LHS) (Xu et al., 2005) to estimate overall emission uncertainties of the baseline. Each parameter 

was sampled separately through LHS while all others were kept at their mean values. Emission 

uncertainties of the scenarios were estimated one parameter at a time, sampling at the minimum 

and the maximum of the parameter ranges.

2.5.2 Closing yield gaps of maize

For each scenario, the cultivation of Napier grass and maize requires a certain amount of land. 

Brandt et al. (2018b) reported that scenarios which include maize silage require additional 

cropland to grow maize to prevent detrimental effects on food security since maize is mainly used 

for human consumption. In the highlands of Kenya, the yield gap of maize ranges between 30-

82% suggesting a high potential to intensify maize production (van Ittersum et al., 2013). Closing 

the yield gap of maize would help reduce the additional land demand calculated in the scenarios. 

Carbon emissions from LUC would be lowered at the expense of N2O emissions from soils due to 

increased rates of fertiliser application.

For this study, we selected the water-limited yield potential (Yw) as the benchmark indicator for 

maize accounting for yield-limiting factors such as water supply, soil properties (e.g. water holding 

capacity), and topography (e.g. runoff). The actual maize yields of the baseline were increased to 

reach 50% and 80%. Farm yields often reach a saddle point around 80% of Yw, where it is not 

feasible for farmers to increase any further (van Ittersum et al., 2013). Actual yields (Ya) of maize 

cultivated in the Kenyan highlands were obtained from Castellanos-Navarrete et al. (2015), 

Monfreda et al. (2008), and Weiler et al. (2014). Data on Yw of maize and the nitrogen (N) input A
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required to realise Yw at 50% and 80% in Kenya were obtained from the ‘Global Yield Gap Atlas’ 

(GYGA). These estimates are based on agro-climatic zones used to upscale location-specific 

yield estimates from crop simulation modelling (van Wart et al., 2013a; 2013b). Yw and N input 

were linked to the LPS classification used in this study to upscale milk yield and GHG emissions. 

N input is the nitrogen requirement to achieve a target maize yield of either 50% or 80% water-

limited yield potential. The value of N input was increased by a factor to account for Nitrogen Use 

Efficiencies of 33% for fertiliser N and 20% for manure N and used as an approximation of the 

crop’s nitrogen uptake in aboveground biomass, which in Kenya can be between 69-185 kg N ha-

1 (Table S4; Ten Berge et al., 2019). FeCo and FoFeCo which included maize silage were 

calculated for Ya, Yw at 50% and 80% (Fig. 1, step 3).

2.5.3 Land requirements to feed dairy cattle

Land requirements were calculated for each scenario by comparing the extent of grazing land 

and land demand to cultivate feeds per pixel using the R library ‘raster’ (v. 2.5) (Hijmans, 2016; R 

Core Team, 2016). Only existing grazing lands were assumed to be available to cultivate 

additional Napier grass and maize, and we consequently calculated emissions from LUC using 

emission factors from Don et al. (2011). Demands for additional cropland were quantified based 

on the actual yields per feed type, water-limited yield potentials of maize, crop-specific feed intake 

per dairy cow (see Table S5), and the density of dairy cattle per 1x1 km pixel extracted from 

Robinson et al., (2014). Available land was quantified by using a spatially-explicit dataset on 

grazing land (Velthuizen et al., 2007). Each pixel where the demand for cropland to produce 

feeds exceeded the extent of grazing land available was labelled as a pixel with land deficit. 

Spatially-explicit polygons of land deficit were created for each scenario (Fig.1, step 3) (SI section 

4).  On-farm land requirements to produce concentrate ingredients were not included because 

dairy farmers purchase concentrates from the market and some ingredients are imported from 

outside Kenya (Weiler et al., 2014). However, to get an indication of the potential impact of 

concentrate production on indirect land use change, the land footprint associated with the annual 

amount of concentrate required was calculated using crop yields from FAOSTATS (2019). 

Although deforestation in Kenya is limited to about 35,000 ha-1 yr-1, we estimated the C emissions 

that would result from a worst-case-scenario of conversion of forests to cropland to produce the 

concentrate ingredients, using an emission factor of 112.7±3.9 Mg CO2eq ha-1 from Carter et al. 

(2017).

The datasets on forest C loss-cattle grazing, forest C gain, and the polygons of agricultural land 

deficit were used to relate forest C change to the production of feed crops on agricultural land. All A
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pixels with forest C loss-cattle grazing, and forest C gain were assumed to be the baseline ‘forest 

C change’ related to the grazing of dairy cattle. In the scenarios, it was assumed that the deficit of 

land to produce feed crops cause grazing in adjacent forests. Brandt et al. (2018a) reported 

negative effects of livestock management on forest disturbance for farm neighbourhoods with a 

radius of 5 km. Therefore, polygons of land deficit were buffered using this distance. For each 

scenario, pixels of forest C loss-cattle grazing that intersected with polygons of land deficit 

represented potential forest C losses due to grazing. Finally, the sum of ‘forest C change’ due to 

grazing was calculated for each scenario and compared to the baseline to quantify the mitigation 

potential in forests (Fig.1, step 3).

3. Results

3.1 Smallholder farms and forest C change

The empirical analysis of the farm data collected in the study region showed that number of cattle 

on farm was positively correlated to forest C loss due to grazing (ρ=0.15, p<0.05) and negatively 

correlated to the forest C change-cattle grazing (ρ=-0.17, p< 0.05), (Fig. 2). The number of 

improved dairy cattle per farm and milk yield were negatively correlated to forest C loss due to 

grazing (ρ=-0.37, -0.26, p<0.001) and positively correlated to C change due to grazing (ρ=0.39, 

0.27, p<0.001). The farm indicators of feed intensification ( proportion of fodder crops in the diet, 

supplementation of concentrates, and farm area allocated to fodder crops) were negatively 

correlated to forest C loss due to grazing (ρ=-0.39, -0.21, -0.34 , p<0.001) and positively 

correlated to forest C change (ρ=0.41, 0.22, 0.36, p<0.001). Fuelwood extraction was positively 

correlated with non-renewable biomass harvest (forest NRB, ρ=0.47, p<0.001).

Farm types had different effects on net forest C loss, forest NRB, forest C loss-cattle grazing, and 

forest C change-cattle grazing (Fig. 3). The results reported here refer to the area of influence of 

the dairy farms, empirically determined to be 5 km from the forest edge. Intensified farms were 

associated with significantly less forest C loss, less forest C loss-cattle grazing, and higher forest 

C change-cattle grazing (means = 1,676.4, 512.0, and -54.6 kg C ha-1 yr-1 respectively) than small 

and resource-poor farms (means = 2,476.5, 855.5, and -565.8 kg C ha-1 yr-1 respectively) and 

large and inefficient farms (means = 2,564.6, 980.6, and -842.0 kg C ha-1 yr-1 respectively) 

(p<0.05, Fig. 3a, c, d). Large and inefficient farms were associated with significantly higher forest 

NRB (mean = 656.2 kg C ha-1 yr-1) than small and resource-poor farms (mean = 501.0 kg C ha-1 

yr-1) and intensified farms (mean = 463.1 kg C ha-1 yr-1) (p<0.05, Fig. 3b).

3.2 Agricultural and forest mitigation potentials A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

3.2.1 Agricultural GHG emissions

All forests located in the study area were affected by C losses and gains between 2003–2014, 

losing 781.6 Mg and on average 8.9 kg CO2eq ha-1 yr-1 due to the grazing dairy cattle (Fig. 4a, B). 

Changes in feeding, and closing the yield gap of maize used for silage production could reduce 

the amount of forest C loss. This effect is shown for the scenario FeCo, which combined feed 

conservation based on maize silage and concentrate supplementation (Fig. 4c). However, deficit 

of arable land in the vicinity of forests to cultivate maize would lead to forest C loss due to cattle 

grazing to cover the feed shortage. Closing the yield gap of maize may reduce the amount of land 

required to grow additional maize and, therefore, could alleviate the land deficit as shown for the 

Maasai Mau Forest region (Fig. 4c-e). 

Across the study area, the scenarios increased total agricultural GHG emissions in relation to the 

baseline by 3.2–69.4% (±2.8–6.5) (Fig. 5a). The lowest increase of GHG emissions was for the 

FoCo scenario. The highest increase in emissions was for the FoFeCo scenario and with actual 

maize yields (baseline Ya), although GHG emissions from enteric fermentation were reduced by 

1.9–21.1%. The FoCo and FoFeCo scenarios had the lowest and highest effect on the reducing 

emissions from enteric fermentation. Emissions from manure management increased by up to 

100% for the FoFeCo scenario. More N was excreted by cattle when the proportion of Napier 

grass in the cattle diet increased, which led to higher N2O emissions. GHG emissions from soils 

used to produce cattle feeds increased by 48.3–266.5%. The FoFeCo scenario, which included 

maize to produce silage and a water-limited yield potential of Yw-80 led to highest increases in 

feed-related emissions (Fig. 5a, 6) due to high fertiliser N application rates of up to 108.2–167.9 

kg N ha-1 required to achieve higher yields. The scenarios that included silage (FeCo and 

FoFeCo) also had higher emissions from LUC compared with the FoCo scenario. Maize required 

more land than Napier grass increasing LUC emissions from the conversion of grazing lands into 

cropland (Fig. 5a). However, by increasing maize yield (i.e. Ya to Yw-80) LUC emissions from 

FeCo and FoFeCo scenarios were reduced by 69.0–75.3% . The reduction of emissions from 

LUC was 2.6–4.9 times higher than the increase of emissions from additional fertiliser N. Despite 

the reduction of emissions from enteric fermentation and LUC by closing the yield gap of maize, 

none of the feed scenarios would achieve a net GHG reduction from agricultural land. However, 

reductions in GHG emission intensities from forest C change would be achieved under FoCo, and 

FeCo and FoFeCo when closing yield gaps (Tables S7 and S8).

3.2.2 Land footprintA
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The land footprint analysis indicates that under current average yields and for the medium 

intensification scenarios (FoCo and FeCo) over 500,000 ha would be required for concentrate 

production, while under the high intensification scenario (FoFeCo) land requirement would be 

approximately 1.1 million ha. These are significantly larger areas than the estimated 42,000 ha 

required for the current consumption of concentrates (average 1% of the dry matter intake). 

Concentrate production could possibly be done within existing agricultural land by increasing 

current yields. However, if this land demand would cause deforestation of secondary forests in 

Kenya, this would lead to C emissions of approximately 57±2 Mt CO2eq for the medium 

intensification and of 118±4 Mt CO2eq for the high intensification scenario. To put this additional 

land demand into context, at present croplands and grazing lands make up approximately 5 

million ha of the area where dairy is practised, and the C emissions of such massive land use 

change would be more than double annual emissions (32 Mt CO2eq) of the Kenyan agricultural 

sector (Government of Kenya, 2015b). 

3.2.3 Forest C change

Forest C loss due to grazing was reduced in all scenarios by 374.4 – 2,113.3 Mg CO2eq yr-1 (± 

98.0 – 493.3) relative to the baseline (Table S6). The scenarios with maize silage and actual 

maize yields (FeCo–Ya: 374.4±401.7 Mg CO2eq yr-1 and FoFeCo-Ya: 730.7±493.3 Mg CO2eq yr-

1) showed the lowest reduction of 48-93% for forest C loss due to grazing. Realising the water-

limited yield potential Yw at 50% and 80% lowered forest C loss due to grazing 2-3 fold (FoFeCo–

Yw50%: 789.5±78.9 Mg CO2eq yr-1 and FeCo–Yw80%: 1,762.1±392.5 Mg CO2eq yr-1) as the 

deficit of land were reduced and the production of maize on agricultural land in the vicinity of 

forests increased throughout the study area. Hence, closing the yield gap of maize could increase 

the forest C sink. The smallest deficit of arable land, the lowest forest C loss due to grazing and, 

therefore, the highest forest C sink potential was calculated for the FoCo scenario. This scenario 

showed the highest mitigation potential for agricultural land and for forests due to the highest 

reduction of GHG emission intensities by 33% and forest C loss by 270% while increasing milk 

production by 45% (Fig. 6).

3.2.4 Greenhouse gases emission intensities

The GHG emission intensity of the baseline was 2.36±0.05 kg CO2eq kg fat and protein corrected 

milk (FPCM)-1 (Fig. 5b, Table 3). For the baseline and the scenarios emission sources included 

those from enteric fermentation, manure and soil management (cultivation of feed crops), fertiliser 

application, concentrate and C emissions from LUC. Most scenarios reduced GHG emissions 

intensities. The only exception was the FoFeCo scenario, with actual maize yield (Yo) which A
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increased GHG emission intensity by about 11% (2.64±0.10 kg CO2eq kg FPCM-1). Realising Yw 

at 50 and 80% reduced emission intensity by 1-17% compared to the baseline. The lowest 

emission intensity was shown for the FoCo scenario (1.68±0.05 kg CO2eq kg FPCM-1), with a 

reduction of 33%. Milk production increased in all scenarios by 44.0–51.0% relative to the 

baseline. 

4. Discussion

4.1 Intensification of smallholder dairy farms and forest C change

In this study, cattle numbers on smallholder farms in Kenya’s dairy production region were 

positively linked to the loss of forest C, which was related to cattle grazing in adjacent forests. 

This is the first study that provides a quantitative measure of the impact of cattle production on 

tropical forests at sectoral scale in East Africa. Hosonuma et al. (2012) reported that 8-12% of the 

forest disturbance across SSA can be attributed to livestock grazing in forests. The empirical 

study by Brandt at al. (2018a) found that cattle grazing across a tropical montane forest in Kenya 

was associated with forest disturbance, with evidence found on 75% of the spots visited during a 

forest survey. Furthermore, this study reported an increased risk of forest disturbance by up to 

5% due to higher total numbers of cattle on larger farms located adjacent to the forest. The use of 

montane forests by smallholder farmers to graze livestock was also reported for Ethiopia 

(Baudron et al., 2017; Duriaux Chavarría et al., 2018), who found positive effects on dietary 

diversity and nutrient balances on farms located in the vicinity of the forests (distance = 5.5 km) 

used for grazing. The authors argue that the amount of herbaceous biomass removed from the 

forest through grazing is likely lower than the regrowth rates, although they did not quantify the 

impact of forest grazing on C loss. The results of our study show a net forest C loss due to dairy 

cattle within the neighbourhoods of non-intensified smallholder farms ranging in average between 

566-842 kg C ha-1 yr-1. Although these C losses are small, cattle grazing prevents forest 

regeneration, which affects the long term forest C sink. 

In addition, our study found that farm indicators of improved cattle feeding and intensified milk 

production on smallholder farms were associated with lower forest C loss due to cattle grazing. 

Intensification of smallholder agriculture is postulated to reduce the pressure on forest 

ecosystems, because farm productivity could reduce the demand for land (Campbell et al., 2014). 

This process of intensification based on more nutritious feeds and improved dairy cattle moving 

away from extensive systems would reduce the negative impact on local, natural ecosystems 

such as forests (Wollenberg et al., 2011). Vallin et al. (2013) showed that intensification of 

livestock production could lower GHG emissions from deforestation in SSA, by improving A
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management practices such as better quality feeds. Similarly, Caviglia-Harris (2018) reported that 

the intensification of dairy production in Brazil could reduce the pressure on forests through 

pasture intensification. In Kenya, Brandt et al. (2018a) quantified a 7% lower risks of forest 

disturbance when farms adjacent to forests had improved dairy cattle, attained higher milk yields 

and fed higher quality feeds. Thus, this study adds an important contribution to the current 

estimates of agricultural mitigation potentials providing empirical evidence of the connection 

between intensification of dairy and impacts on forest, and showing the potential to mitigate these 

GHG emissions from forests. 

4.2 Mitigation across the land use sector

The increase of livestock productivity through higher feed quality supports agricultural mitigation 

mainly through an increased feed conversion efficiency lowering CH4 emissions from enteric 

fermentation (Herrero et al., 2016; Hristov et al., 2013; Knapp et al., 2014). For instance, in Costa 

Rica Wattiaux et al., (2016) show the efficacy of improving feed quality in mitigating against the 

increase in GHG emissions in intensified dairy farms. Similarly, our results of different feeding 

scenarios show promising potential to improve GHG emission intensity for the dairy sector of East 

Africa. We present evidence that closing the yield gaps of feed crops could play a role in limiting 

CO2 emissions from LUC by reducing land demand and forest emissions due to grazing, which 

was previously argued using results from global modelling studies (Herrero et al., 2016; Valin et 

al., 2013; Weindl et al., 2017). In our study, the effect of avoided forest cattle grazing on the 

reduction of emission intensity from forest C change range from 0.02-0.06 CO2 eq per kilogram of 

milk, which is small compared to the reduction of emission intensities from agricultural land alone. 

However, as demand for livestock products increase in Africa and the dairy sector intensifies 

further, competing demands for land are likely to create more trade-offs in climate change 

mitigation strategies. Therefore, the approach presented here is a step forward to quantify the 

effect of intensification of feeding practice in dairy farms and at landscape level, including forests 

as important C sink. 

The increased N2O emissions due to higher fertiliser N application rates to close the yield gap of 

maize can be offset by reduced CO2 emissions from LUC on agricultural land due to lower land 

requirements as shown in this study (cf. Fig. 5a), and modelled at coarser continental level 

(Havlik et al., 2014; Valin et al., 2013). The potential to close the yield gap of maize in Kenya is 

high (van Ittersum et al., 2013); maize is a staple crop in East Africa and is widely used to feed 

livestock as crop residue (Valbuena et al., 2012). However, the production of maize throughout 

the whole region does not meet the demand due to very low input use and poor productivity with A
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average yields lower than 2 t ha-1 (van Ittersum et al., 2016). Therefore, Kenya relies on imported 

maize for human consumption importing over 700,000 tonnes each year (USDA, 2017). 

Consequently, increasing maize yields could contribute directly to food security and to the 

intensification of the livestock sector as shown in this study. Given the competing demands for 

land, yield intensification will increase the feasibility to implement feed improvement strategies, 

especially in regions with high human population and livestock densities (Brandt et al., 2018b; 

Gerssen-Gondelach et al., 2017). Smallholder farmers across the Kenyan highlands often lack 

the land required to grow sufficient feeds of high quality (Bebe, 2008), which leads to off-farm 

grazing on common land such as forests. This study shows that improvements of quality and 

productivity of feed crops can reduce GHG emission intensities and emissions from agricultural 

land, and reduce the loss of C from forests due to grazing.

Producing maize silage, such as in the FeCo and FoFeCo scenarios, would lead to reductions of 

forest C loss due to forest degradation, especially when yield gaps are closed. Realising the 

water-limited yield potential for maize at least at 50%, could turn forests into C sinks as the C gain 

exceeds the C loss due to cattle grazing. Increasing livestock productivity could result in land 

sparing as indicated in the global studies by Havlik et al. (2014), Kreidenweis et al. (2018) and 

Valin et al. (2013). This study adds empirical evidence to the results of these coarse modelling 

exercises by including spatial relationships between local farm practices, land availability and 

forest C change. The characteristics of these relationships might be context-specific and 

determined by market and infrastructure development, and therefore should be included into 

assessments of climate change mitigation that aim to determine the potentials for sustainable 

intensification at sectoral level. 

Land requirements and the potential deficit of arable land would be lowest for the FoCo scenario, 

which includes improves forage quality by cultivating Napier grass and adding more concentrate 

to the diet. Under this scenario, there would be much less cattle grazing inside forests to meet 

feed deficits on agricultural land. Therefore, the forest C loss would be reduced almost three fold, 

showing the largest forest C sink potential among all scenarios. Yet the total amount of 

concentrates needed under all scenarios (Table 1, 2), and because of the low current yields could 

cause indirect land use changes increasing largely absolute GHG emissions. Nevertheless, in 

this assessment the FoCo scenario could result in a net benefit for Agriculture, Forest and Other 

Land Uses (AFOLU) mitigation by reducing GHG emissions across the agricultural and forest 

sectors effectively, since total agricultural GHG emissions and forest C change combined would 

be 2.5% lower than in the baseline. The current national dairy master plan and the dairy NAMA 

seek for feed options that realise milk yield gains and mitigation benefits (Government of Kenya, A
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2010; 2017). The feed intensification strategies combined within the FoCo scenario represent 

promising technical ‘win-win’ options for the dairy sector.

4.3 Policy relevance: targeting and financing the implementation of CSA practices

This study adds value to current policy debates in SSA on the contribution of the agriculture and 

forestry land use sectors to climate change mitigation by quantifying the intersection between 

smallholder intensification in the Kenyan dairy sector and the reduction of emissions from forests. 

The approach followed can shed light on the effectiveness of CSA practices to mitigate AFOLU 

emissions in the context of developing agricultural production at sectoral level. Several multi-

objective modelling tools have been developed to support decision-making processes, which aim 

to prioritise CSA practices based on evidence by integrating qualitative and quantitative 

information at various spatial and temporal scales (e.g. Brandt et al., 2017; Dunnet et al., 2018). 

This study provides critical empirical data for such tools to explore the feasibility of CSA practices 

by considering land availability and feasibility to mitigate GHG emissions from agricultural land 

and forests. 

Policy instruments such as NAMAs and NDCs aim to enable the development of climate-smart 

food production and must, therefore, rely on compelling evidence that shows the potential of ‘win-

win’ solutions to benefit smallholder farmers and to contribute to climate mitigation goals (Grassi 

et al., 2017; Lipper et al., 2014). In addition, mitigation policies need to support the creation of 

economic incentives, which are required to foster the implementation of CSA practices and to 

reduce potential adoption barriers (Lipper et al., 2014). However, local and national policies need 

to incentivise development without causing rebound effects that can offset any potential gains in 

GHG emissions at farm or regional scales. Such offsets may be driven by feedbacks between 

improved farm practices and market responses triggering regional expansion of dairy farming. 

This means that effective policies have to incorporate mechanisms to avoid negative effects on 

forests and climate. In addition, climate financing schemes require quantitative information on 

productivity gains and mitigation potentials of specific practices to inform decisions on 

investments targeted at farm level with positive impact at landscape level (Reed et al., 2016). 

Agricultural practices may affect the functionality of tropical forests and their C dynamics by 

removing biomass through cattle grazing, which prevents forest regeneration (Hosonuma et al., 

2012; Pearson et al., 2017). The added value of this analysis is that it integrates direct effects of 

farm intensification on agricultural land and the indirect effects on forest use and emissions. 

These results highlight the need for policymakers in agricultural and forests sectors to work 

together and to develop more integrated policy frameworks based on the CSA concept and A
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policies on ‘Reducing emissions from deforestation and forest degradation’ (REDD+) as 

discussed by Carter et al. (2018). 

4.4 Limitations of this study and future research

To our knowledge this is the first assessment that quantifies the local impact of livestock on forest 

C change by linking spatially-explicit data from dynamic livestock modelling and farm surveys to 

remote-sensing data for the region. The spatial distance of the relationship between farming 

practices and forest C loss (5 km) was determined empirically (Brandt et al., 2018b) and should 

be taken with caution when extrapolating to other regions. This distance may depend on the 

region-specific land use dynamics. Thus, more research is necessary to characterize local 

interactions between farms and forests by using information on local farming practices and 

landscape configurations. Measurements obtained from grazing experiments for different forest 

and livestock types are required to estimate the direct impact of cattle on above and belowground 

carbon stocks in forests (Schulz et al., 2016) and resulting GHG emissions. Livestock movement 

patterns can be traced through telemetry analyses to gain knowledge about distances that cattle 

walk and the time they spend inside forests (Gao et al., 2016). Aggregated spatially and 

temporally, this ground information could be used to calibrate and validate the estimates of forest 

C change related to livestock grazing derived from remote-sensing data.

The increases of maize yields in this study were based on increased application rates of synthetic 

N fertiliser. Realising the water-limited yield potential of maize at 80% requires high N inputs of up 

to 69-185kg N ha-1 (ten Berge et al., 2019; van Bussel et al., 2015). Fertiliser, transport and 

labour costs of high N application rates, however, may render the intensification of feed 

production economically unfeasible or simply unattractive for smallholder farmers, if economic 

returns from milk sales do not justify these investments. Consequently, moderate application 

rates of synthetic fertiliser of 60–90 Kg N ha-1 could be more realistic from a farmer’s point of view 

in the Kenyan highlands (Mucheru-Muna et al., 2007; 2014). Therefore, reliable market prices for 

milk and improved access to markets are required for smallholders to adopt practices, which aim 

at closing the yield gap of crops such as maize. To increase the adoption of practices that 

improve the quality of dairy feeds, assessments of agricultural productivity and climate change 

mitigation have to be coupled with cost-benefit analyses that take into account seasonal variation 

of costs and returns and farm distance to markets to find optimal cost-benefit ratios for 

smallholder farmers (Kibiego et al., 2015). Moreover, apart from abiotic and biotic factors such as 

climate, soil condition and cultivar traits, crop management practices determine the potential to 

improve maize yields (Kiboi et al., 2017; Rattalino Edreira et al., 2018). Hence, the dissemination A
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of tailored knowledge about best practices in a certain farming context through agricultural 

extension or web and mobile-based information services are crucial.

Greater efforts to intensify smallholder agriculture sustainably have to be undertaken by 

agricultural development programs to improve crop and livestock yields and to achieve food 

security in SSA (van Ittersum et al., 2016). More food produced from existing agricultural land will 

be required to feed the continent’s fast growing population. Considering the shrinking of farm 

sizes and the increasing shortage of arable land in SSA (Vanlauwe et al., 2014), research at 

landscape level has to be strengthened to explore the boundaries within which smallholder 

agriculture can be intensified sustainably to safeguard food security. This study estimated very 

high emissions from C leakage effects that could result from the displacement of GHG emissions 

due to the increased demand for dairy concentrates, which could trigger cropland expansion into 

natural ecosystems outside the dairy production area as indicated by other studies (Styles et al., 

2018). To account for the increased demand of land, we calculated the land footprint due to the 

amount of concentrate required across scenarios. This measure is only an indication of the 

displacement of C emissions that could arise from the feed intensification explored here. The 

estimated land requirement indicates a 10-20% increase in the amount of land (0.5-1.1 million ha) 

currently dedicated to feed the dairy cows in the study area, which would be a risk for C leakage. 

We estimate that cropland expansion into Kenya forests to produce the ingredients for 

concentrates could produce GHG emissions equivalent to 2-4 fold the annual emissions from the 

whole agricultural sector. Because forest policies are likely to become more stringent in the 

future, it is more likely that the demand of concentrates is met by intensifying the use of croplands 

and grasslands.

To properly capture off-farm C emissions there is a need for a detailed mapping of the 

concentrate value chain and a consequential life cycle assessment as applied in the case study 

of Styles et al. (2018). The market-oriented stimulation of the agricultural sectors could lead to 

rebound effects due to reduced production costs, higher demand and, therefore, increasing 

production further (Kreidenweis et al., 2018; Valin et al., 2013). A higher demand for grain-based 

concentrates may spark the land use competition to cultivate livestock feeds versus food, 

especially without closing yield gaps. Thus, analyses of AFOLU mitigation need to integrate 

effects along supply chains, aggregate effects from farm, landscape and up to sectoral level. 

Such assessments should be coupled with economic models to provide estimates of effective 

mitigation potentials by incorporating feedbacks between markets and agricultural development.

5. ConclusionsA
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Improving the quality of dairy feeds can have climate change mitigation benefits for agriculture 

and forests and can contribute to food security by increasing milk yields in Kenya. Closing the 

yield gap of maize could increase the feasibility to adopt better feeding practices, and can reduce 

GHG emission intensities from milk production and the loss of C in local forests. The largest 

mitigation benefits across land use sectors could be achieved improving forage quality and 

supplementating concentrate. There might be additional risks of land use change associated with 

the production of concentrates that deserve to be studied in more detail. These findings 

emphasise the importance of assessing the impact of specific CSA practices prior to their 

recommendation for climate mitigation programmes. Targeting and prioritisation at high spatial 

resolution to identify mitigation potentials across land use sectors can reveal implementation 

constraints such as land availability. Top-down assessments conducted at coarse continental 

scales do not capture local and landscape level contexts, which may render the implementation 

of targeted interventions unfeasible or may reduce the effectiveness of mitigation outcomes. 

Integrated mitigation and development policy frameworks and climate financing instruments could 

benefit from the approach presented here to prioritise the most effective CSA practices and to 

invest into options that show the most promising potentials for sectoral development and climate 

mitigation.
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Tables

Table 1: Amount of concentrate, and cow population for each livestock production system (LPS) 

of the study area under the medium (FoCo and FeCo) and high intensification (FoFeCo) 

scenarios.

Concentrate useLPS Population 

dairy cows (#)

Productive 

dairy cows 

(#)

Baseline 

(tonnes)

FoCo and FeCo 

(tonnes)

FoFeCo 

(tonnes)

MRA 246,237 147,742 16,965 66,484 132,968

MRH 111,205 66,723 2,513 30,025 60,051

MRT 2,443,342 1,466,005 16,965 659,702 1,319,405

MIA 28,845 17,307 16,965 7,788 15,576

MIH 20,376 12,225 3,142 5,501 11,003

MIT 142,081 85,249 6,283 38,362 76,724

Total 2,992,086 1,795,251 62,834 807,863 1,615,726

MRA: Mixed rainfed system in arid areas, MRH: mixed rainfed system in humid areas, MRT: mixed rainfed 

system in tropical highlands, MIA: mixed irrigated system in arid areas, MIH: mixed irrigated system in 

humid areas, MIT: mixed irrigated system in tropical highlands. 
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Table 2: Calculation of land footprint (ha) as the amount of land to produce the concentrates for 

dairy cows under the baseline and medium (FoCo and FeCo) and high intensification scenarios 

(FoFeCo). The land footprint accounts for the composition of the concentrates, with the 

ingredients from Weiler et al., (2014).

Ingredientsa Yieldb Area Baseline FoCo and FeCo FoFeCo

t ha-1 ha tonnes ha tonnes hac tonnes hac

Rice bran 2.68 97,659 16,965 6,330 218,123 75,059 436,246 156,448

Lime 10.78 1,693 2,513 233 32,315 2,764 64,629 5,762

Wheat grain 1.93 85,732 16,965 8,790 218,123 104,227 436,246 217,244

Maize 1.52 2,092,459 16,965 11,161 218,123 132,341 436,246 275,843

Sunflower cake 0.97 11,840 3,142 3,239 40,393 38,404 80,786 80,046

Cotton seed cake 0.50 25,980 6,283 12,567 80,786 149,006 161,573 310,578

Total 2,315,363 62,834 42,321 807,863 501,800 1,615,726 1,045,921
a Composition of concentrates includes 27% rice bran, 4% lime, 27% wheat, 27% maize, 5% sunflower 

cake and 10% cotton seed cake. b Yields and areas harvested for the whole Kenya from FAOSTAT (2017). 

Rice bran imported from Uganda; the rest of the ingredients produced in Kenya. cArea calculated as the 

area required to produce the tonnage of ingredients, minus the area allocated in the baseline.
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Table 3: Dry matter intake, feed intake (per cow per year), milk yields (kg of fat corrected milk per 

cow per year), yield increase and GHG emission intensity for each livestock production system 

(LPS) and feeding scenario (Baseline, FeCo, FoFeCo and FoCo), including three level of yield 

gaps for fodder maize (Yo: actual yields, Y50: closing gap at 50%, and Y80: closing gap at 80%).

LPS DMI Milk yield Milk yield GHG emission 
Pasture Napier grass Maize stover Maize silage Concentrate increase intensity

 kg head-1yr-1  kg head-1yr-1  kg head-1yr-1  kg head-1yr-1  kg head-1yr-1  kg head-1yr-1 kg FPCM head-1yr-1
(%) kg CO2eq kg milk-1

MRA Baseline Yo 3,565 1,837 818 874 - 35 1,729 - 2.64
FeCo Yo 4,391 1,837 818 402 883 450 2,489 44.0 2.38

Y-50 4,391 1,837 818 402 883 450 2,489 44.0 2.04
Y-80 4,391 1,837 818 402 883 450 2,489 44.0 1.93

FoFeCo Yo 5,321 72 2,583 - 1,765 900 2,610 51.0 2.90
Y-50 5,321 72 2,583 - 1,765 900 2,610 51.0 2.45
Y-80 5,321 72 2,583 - 1,765 900 2,610 51.0 2.23

FoCo Yo 3,980 955 1,701 874 - 450 2,507 45.0 1.76
MRH Baseline Yo 3,621 1,233 1,321 1,031 - 36 1,881 - 2.40

FeCo Yo 4,454 1,233 1,321 554 896 450 2,708 44.0 2.16
Y-50 4,454 1,233 1,321 554 896 450 2,708 44.0 1.97
Y-80 4,454 1,233 1,321 554 896 450 2,708 44.0 1.94

FoFeCo Yo 5,883 - 3,113 77 1,793 900 2,840 51.0 2.64
Y-50 5,883 - 3,113 77 1,793 900 2,840 51.0 2.24
Y-80 5,883 - 3,113 77 1,793 900 2,840 51.0 2.20

FoCo Yo 4,035 337 2,217 1,031 - 450 2,727 45.0 1.71
MRT Baseline Yo 3,573 1,275 1,523 740 - 35 1,932 - 2.33

FeCo Yo 4,437 1,275 1,523 304 885 450 2,782 44.0 2.10
Y-50 4,437 1,275 1,523 304 885 450 2,782 44.0 1.94
Y-80 4,437 1,275 1,523 304 885 450 2,782 44.0 1.89

FoFeCo Yo 5,961 - 3,292 - 1,769 900 2,917 51.0 2.56
Y-50 5,961 - 3,292 - 1,769 900 2,917 51.0 2.19
Y-80 5,961 - 3,292 - 1,769 900 2,917 51.0 2.12

FoCo Yo 3,988 390 2,408 740 - 450 2,801 45.0 1.67
MIA Baseline Yo 3,565 1,837 818 874 - 35 1,736 - 2.62

FeCo Yo 4,391 1,837 818 402 883 450 2,500 44.0 2.36
Y-50 4,391 1,837 818 402 883 450 2,500 44.0 2.05
Y-80 4,391 1,837 818 402 883 450 2,500 44.0 1.93

FoFeCo Yo 5,321 72 2,583 - 1,765 900 2,621 51.0 2.88
Y-50 5,321 72 2,583 - 1,765 900 2,621 51.0 2.43
Y-80 5,321 72 2,583 - 1,765 900 2,621 51.0 2.24

FoCo Yo 3,980 955 1,701 874 - 450 2,517 45.0 1.77
MIH Baseline Yo 3,621 1,233 1,321 1,031 - 36 1,880 - 2.40

FeCo Yo 4,454 1,233 1,321 554 896 450 2,708 44.0 2.16
Y-50 4,454 1,233 1,321 554 896 450 2,708 44.0 1.98
Y-80 4,454 1,233 1,321 554 896 450 2,708 44.0 1.95

FoFeCo Yo 5,883 - 3,113 77 1,793 900 2,839 51.0 2.64
Y-50 5,883 - 3,113 77 1,793 900 2,839 51.0 2.28
Y-80 5,883 - 3,113 77 1,793 900 2,839 51.0 2.20

FoCo Yo 4,035 337 2,217 1,031 - 450 2,726 45.0 1.73
MIT Baseline Yo 3,573 1,275 1,523 740 - 35 1,931 - 2.34

FeCo Yo 4,437 1,275 1,523 304 885 450 2,781 44.0 2.11
Y-50 4,437 1,275 1,523 304 885 450 2,781 44.0 1.97
Y-80 4,437 1,275 1,523 304 885 450 2,781 44.0 1.92

FoFeCo Yo 5,961 - 3,292 - 1,769 900 2,916 51.0 2.57
Y-50 5,961 - 3,292 - 1,769 900 2,916 51.0 2.28
Y-80 5,961 - 3,292 - 1,769 900 2,916 51.0 2.25

FoCo Yo 3,988 390 2,408 740 - 450 2,801 45.0 1.69

Feed typesScenario
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Figures

Fig. 1: Calculation of mitigation potentials of feed improvement scenarios, including closing the 

yield gap of maize, on agricultural land and in forests. Carbon (C) loss-grazing = C loss due to 

dairy cattle grazing in forests, Carbon change-grazing = Forest C change, which includes net 

forest C gain minus the C loss fraction related to dairy cattle grazing in forests, LivSim = livestock 

simulation model. Publically available datasets and model include references, empirical and new 

datasets are indicated using italics.

Fig. 2: Correlation between farm indicators and forest carbon C change variables: net forest C 

loss, net forest C gain, non-renewable biomass use related to fuelwood harvest in forests (forest 

NRB), forest C loss-cattle grazing, and forest C change-cattle grazing, which includes forest C 

gain and the forest C loss-cattle grazing. Circle size indicates the strength of significant 

correlations. Blue = positive correlation, red = negative correlation.

Fig. 3: (a) Net forest C loss, (b) forest C loss from fuelwood extraction (forest NRB), (c) forest C 

loss-cattle grazing, and (d) forest C change-cattle grazing, which is forest C gain minus the forest 

C loss-cattle grazing for three farm types. Farm types are: small = small and resource-poor farms, 

large = large and inefficient farms, intensified = intensified farms. Negative values in panel D 

indicate forest C loss. Different letters above whiskers indicate significant differences between 

farm types using pairwise Wilcoxon rank sum tests (p-values were corrected for multiple testing).

Fig. 4: Forest C loss due to dairy cattle and forest C gain. (a) Baseline forest C loss-cattle grazing 

and forest C gain for the dairy region of Kenya. (b) Baseline forest C loss-cattle grazing and forest 

C gain for the Maasai Mau Forest. (c-e) Forest C loss-cattle grazing due to the deficit of grassland 

for the scenario FeCo, which combines feed conservation based on maize silage and concentrate 

supplementation. (c) Deficit of arable land and the forest C loss-cattle grazing with actual maize 

yields (Ya). Achieving water-limited yield potential (Yw) of maize at 50% (d) and 80% (e) may 

reduce the deficit of arable land by 7,729 and 14,158 ha respectively.

Fig. 5: Agricultural GHG emissions and forest carbon C change related to dairy production. (a) 

Combined GHG emissions including those from forest C change due to cattle grazing, (b) GHG 

emission intensity per kg fat and protein corrected milk (FPCM). Bars indicate baseline and three 

scenarios at medium (FoCo, FeCo) or high (FoFeCo) intensification levels. FoCo and FoFeCo 

included maize silage, where we show actual maize yields (Ya) and Yields at 50% (Yw-50) and A
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80% (Yw-80) of water-limited yield potentials (Yw). Error bars indicate relative standard 

deviations.

Fig. 6: Changes in total agricultural GHG emissions and forest carbon (C) change combined, 

which is forest C gain minus C loss due to cattle grazing. Bars show changes in GHG emissions 

for different scenarios and the baseline. Ya = actual baseline yields of maize, Yw-50 = Yw 

realised at 50%, Yw-80 = Yw realised at 80%. Bubbles indicate the percentage milk yield 

increase for each scenario.
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