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Abstract. We consider uniform random permutations of length n conditioned to have no cycle

longer than nβ with 0 < β < 1, in the limit of large n. Since in unconstrained uniform random
permutations most of the indices are in cycles of macroscopic length, this is a singular condi-

tioning in the limit. Nevertheless, we obtain a fairly complete picture about the cycle number

distribution at various lengths. Depending on the scale at which cycle numbers are studied, our
results include Poisson convergence, a central limit theorem, a shape theorem and two different

functional central limit theorems.

1. Introduction

Uniform random permutations are among the oldest and best understood models of probability
theory. One of their most prominent properties is that almost all indices are in macroscopic cycles:
for all ε > 0, the probability that a given index of a uniform permutation of length n is in a cycle of
length less than nε converges to ε as n→∞. Classical results about uniform random permutations
include the convergence of the renormalized cycle structure towards a Poisson-Dirichlet distribution
[19, 24], convergence of joint cycle numbers towards independent Poisson random variables in total
variation distance [3], and a central limit theorem for cumulative cycle numbers [14].
Going beyond uniform random permutations, natural models are those where the probability mea-
sure is still invariant under conjugation with a transposition, i.e. it depends only on the cycle
structure. One variety of such models are those with cycle weights, including the Ewens model [17]
with applications in genetics, or more general cycle weight models [9, 11, 15, 16] with applications
in quantum many body systems [7, 8]. Another variant is to condition on the absence of cycles of
a given length. When the set A ⊂ N of forbidden cycle lengths is independent of the permutation
length n, this goes under the name of A-permutations [26, 27]. The case where the forbidden set of
cycle lengths depends on n is less well understood. We treat a fairly natural class of such models
in the present paper.
Let Sn denote the group of permutations of length n, and Pn the uniform probability measure on
Sn. Each σ ∈ Sn can be decomposed into disjoint cycles, and for m ≤ n we write Cm = Cm(σ)
for the number of cycles of σ that have length m. For any sequence α =

(
α(n)

)
n∈N of nonnegative

integers, let us write
Sn,α = {σ ∈ Sn : Cm = 0 for all m > α(n)}

for the set of permutations having no cycle longer than α(n). The object of our study will be the
(joint) distribution of the random variables (Cm)m≤α(n) under the uniform probability measure
Pn,α on Sn,α.
All of our results hold under the following global assumption: We demand that there exist a1, a2 ∈
(0, 1), such that

na1 ≤ α(n) ≤ na2 . (1.1)

Under this condition, we find the following picture as n→∞: cycles much shorter than α(n)/ log n
behave under Pn,α just like they would under Pn, in the sense that their joint distribution con-
verges, in total variation distance, to a suitable sequence of independent Poisson random variables;
see Theorem 2.2. So in this regime, the conditioning that distinguishes Pn,α from Pn has (asymp-
totically for large n) no effect on the distribution of cycle lengths. This effect starts to emerge
when we study cycles with length of order α(n)/ log n. We can see this quite explicitly for the
special case α(n) = nβ with 0 < β < 1 (see Section 2.2), and more generally in Theorem 2.3.
Finally, for cycles with length cα(n), 0 ≤ c < 1, the influence of the restriction becomes clearly
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visible; for instance, if α(n) = o(
√
n), the number of cycles of length cα(n) is tending to infinity

for c sufficiently close to 1 and a central limit theorem holds, see Theorem 2.4. This behaviour is
new and cannot be observed for classical random permutations.
A further striking difference between Pn and Pn,α is that under the latter, asymptotically almost
all cycles have size of order α(n). We make this precise in Theorem 2.5 where we find the relevant
limit shape for the cumulative cycle numbers on this scale. Moreover, we find in Theorem 2.6 that
the fluctuations around that limit shape satisfy a functional central limit theorem. Interestingly,
the correct limiting process is Brownian bridge, and not the more usual Brownian motion that
appears e.g. for unrestricted permutations at a suitable scaling, see [14] and equation (2.13).
The proofs of our results are based on the saddle point method of asymptotic analysis. In particular,
we benefit from the precise estimates given by Manstavicius and Petuchovas [21] for the probability
that an unconstrained permutation has no long cycles. While it is clear that such results must be
useful for our purposes, it is surprising that they, and extensions of the methods by which they are
proved, provide such a complete picture of the situation.
Let us give an outline of the paper. In Section 2, we state and discuss our results. Section 3
introduces the relevant saddle point method in our context and presents a general asymptotic
equality which is at the base of almost all proofs of our main results. Section 4 then contains those
proofs.

2. Main results

2.1. Notation and standing assumptions. Let us recall that we require (1.1) for all of our
results. Recall Sn, Sn,α, Pn and Pn,α from the introduction, and write En and En,α for the
expectations with respect to Pn and Pn,α, respectively. Recall also that Cm = Cm(σ) denotes the
number of cycles of length m in the cycle decomposition of a permutation σ. The index m will
often depend on n and α(n), but we sometimes omit this dependence when it is clear from the
context.
When two sequences (an) and (bn) are asymptotically equivalent, i.e. if limn→∞ an/bn = 1, we
write an ∼ bn. We also use the usual O and o notation, i.e. f(n) = O(g(n)) means that there
exists some constant c > 0 so that |f(n)| ≤ c|g(n)| for large n, while f(n) = o(g(n)) means that
for all c > 0 there exists nc ∈ N so that the inequality holds for all n > nc.

2.2. Cycle counts. The most basic characteristics of the Cm are their expected values. Let xn,α
be the unique positive solution of the equation

n =

α∑
j=1

xjn,α, (2.1)

and define

µm (n) :=
xmn,α
m

. (2.2)

Proposition 2.1. For all sequences m = (m(n))n∈N with m(n) ∈ N and m(n) ≤ α(n), we have

En,α(n)[Cm(n)] ∼ µm(n)(n)

as n→∞. Furthermore,

1

m
log(mµm) = log xn,α =

1

α

(
log n

α + log log n
α +O

(
log logn

logn

))
(2.3)

for large n.

An example illustrates the amount of information that we can already extract from Proposition 2.1.
Recall that for uniform permutations, En[Cm] = 1

m for all m ≤ n [2, Lemma 1.1]. We fix β ∈ (0, 1)

and let α(n) = nβ . Equation (2.3) then reads

log(mµm) = mn−β
(

(1− β) log n+ log log n+ log(1− β) + o(1)
)
.

We now have the following asymptotic regimes:
(1) For m(n) = o(nβ/ log n), we have limn→∞ µm(n)(n)m(n) = 1. Thus we have

En,α(n)[Cm(n)] ∼
1

m(n)
= En[Cm(n)]. (2.4)
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In particular, the limiting behavior is independent of β. We call this the classical regime.
(2) For m(n) = y nβ/ log n with y > 0, we get limn→∞ µm(n)(n)m(n) = ey(1−β) . Thus

En,α(n)[Cm(n)] ∼
ey(1−β)

m(n)
= ey(1−β) En[Cm(n)]. (2.5)

So in this regime, the number of cycles converges to zero more slowly than in unconstrained
permutations. We therefore see that the constraint becomes visible in this region. Explicitly, we
get

µm(n)(n) ∼ log n

ynβ
ey(1−β) .

The right-hand side above is minimal for y = 1/(1 − β) and then has the value µm(n)(n) ∼
e(1− β) logn

nβ
. Also, we have that µm(n)(n) is increasing as a function of y for y ≥ 1/(1− β).

(3) The next regime occurs when we put m = cnβ for 0 < c ≤ 1. Then

logµm = (c(1− β)− β) log n+ c log log n+ c log(1− β)− log c+ o(1).

We see that µm → 0 when c < β/(1− β), and µm →∞ when c ≥ β/(1− β). So on this scale, the
transition from finite cycle counts to infinite ones occurs. However, the case of infinite cycle counts
can only occur if there exists c ∈ (0, 1] with c ≥ β/(1 − β), which means that β ≤ 1/2. This can
be explained intuitively as follows: Since the maximal cycle length is nβ , a permutation σ ∈ Sn,α
has (at least) n/nβ = n1−β cycles. If β > 1/2 then nβ � n1−β and thus there are significantly
more cycle lengths available than cycles. Therefore, for any given σ ∈ Sn,α, Cm(σ) must be equal
to zero for the vast majority of m ≤ α(n), and in absence of a convincing reason for concentration
effects under Pn,α we should expect to find µm → 0, as we indeed do.
The situation is reversed when β < 1/2. We have in this case nβ � n1−β , and thus there are
always more cycles than available cycle lengths. The pigeon-hole principle now implies that at
least n1−β/nβ = n1−2β cycles have the same length. Since β < 1/2, we have n1−2β → ∞ and
thus maxm Cm ≥ n1−2β → ∞. Note that Theorem 2.4 and equation (2.15) below imply that in
particular Cα(n) →∞, except on a set with exponentially decaying probability.

We will now investigate the joint distributions of the random variables Cj . We start with the
strongest result, which also has the most restrictive assumptions. Recall that the total variation
distance of two probability measures P and P̃ on a discrete probability space Ω is simply given by
‖P− P̃‖TV =

∑
ω∈Ω(P(ω)− P̃(ω))+.

Theorem 2.2. Let b = (b(n))n be a sequence of integers with b(n) = o
(
α(n)(log n)−1

)
. Let

Pn,b(n),α be the distribution of (C1, . . . , Cb(n)) under Pn,α, and let P̃b(n) be the distribution of in-

dependent Poisson-distributed random variables (Z1, . . . Zb(n)) with Ẽb(n)(Zj) = 1
j for all j ≤ b(n).

Then there exists c <∞ so that for all n ∈ N, we have

‖Pn,b(n),α − P̃b(n)‖TV ≤ c
(
α(n)

n
+ b(n)

log n

α(n)

)
.

Let Pn,b(n) be the distribution of (C1, . . . Cb(n)) under Pn. Then it was proven by Arratia and

Tavaré in [4, Theorem 2] that ‖Pn,b(n) − P̃b(n)‖TV → 0 iff b(n) = o(n). Thus the cycles of lengths

o
(
α(n)(log n)−1

)
have a similar behaviour under Pn and under Pn,α. Furthermore, Arratia and

Tavaré show in [3, Theorem 2] that there exists a function F with logF (x) ∼ −x log x as x →∞
so that ‖Pn,b(n) − P̃b(n)‖TV ≤ F (n/b(n)). Thus this total variation distance is converging to zero
superexponentially fast as a function of n/b(n). This fast decay rate is currently only known to
occur for the uniform measure; all other known results (including ours, but see also see [25] for the
Ewans measure) on convergence in total variation distance for measures of random permutations
only come with algebraic decay rates.
We can slightly relax the condition b(n) = o(α(n)(log n)−1) in Theorem 2.2 if we only consider
convergence of finite-dimensional distributions. What is more, we can in this case apply a ’tilt’ as
we would do in large deviations theory in order to get a better understanding of those cases where
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µm → 0 in Proposition 2.1. For ν ∈ R+
0 , consider the tilted cycle numbers C

(ν)
k with distribution

P
[
C(ν1)
m1

= l1, . . . , C
(νk)
mk

= lk

]
=

1

Z

 k∏
j=1

eνj

ν
lj
j

Pn,α [Cm1
= l1, . . . , Cmk = lk]

for all l1, ..., lk ∈ N0, where Z is a normalizing constant.

Theorem 2.3. Let (m1(n))n, . . . , (mk(n))n be sequences of integers with mk(n) ≤ α(n) for all n
and mi(n) 6= mj(n) for i 6= j. Assume that for all j ≤ k,

lim sup
n→∞

µmj(n)(n) <∞. (2.6)

Then, as n→∞, (
C

(µm1
)

m1 , . . . , C
(µmk )
mk

)
d−→ (Z1, . . . , Zk),

where the Zj are independent Poisson distributed random variables with parameter 1.

From equation (2.3) and our assumptions on α(n) in (1.1), it follows that a sufficient condition for
(2.6) is that mj(n) ≤ cα(n) for some c < a1

1−a1 with a1 as in (1.1). The case when mj(n) converges
to a limit is already covered by Theorem 2.2. The most interesting applications of Theorem 2.3 are
in the situation when µmj converges to a limit while mj →∞ as n→∞. For instance, if µm → 0,
Cm converges in distribution to the trivial Poisson distribution with parameter 0, but just like it
is the case in large deviations theory, the tilt allows us to extract much more information about
this convergence. We have in particular that for all j ∈ N0, the probability Pn,α[Cm = j] decays
like µ−jm .
We now treat the case of diverging expected cycle numbers. Here, the standard rescaling leads to
a central limit theorem.

Theorem 2.4. Let (m1(n))n, . . . , (mk(n))n be sequences of integers with mj(n) ≤ α(n) for all n
and all j and mi(n) 6= mj(n) for i 6= j. Assume that µmj(n)(n)→∞ as n→∞ for all j. Assume
finally that in (1.1), we have a1 > 1/7. Define

C̃mj :=
Cmj − µmj√

µmj
.

Then (
C̃m1

, . . . , C̃mk
) d−→ (N1, . . . , Nk) as n→∞,

where (Nj)
k
j=1 are independent, standard normal distributed random variables.

The condition α (n) ≥ n 1
7 +δ is a technical one, and making it allows to avoid significant technical

complications. A forthcoming paper will show that the theorem holds under condition (1.1).

2.3. Cumulative cycle numbers. Let

Km =

m∑
j=1

Cj ,

be the number of cycles with lengths less than m. Since no cycle can be larger than α(n), the
total number of cycles Kα(n) is at least ≥ n/α(n). In [6] it is shown that Kα(n) ∼ n

α(n) , and so the

random variable
Km(n)

n/α(n) gives the fraction of cycles that have length up to m(n). We now define

bt(n) := max

α (n) +

log (t)
α (n)

log
(

n
α(n)

)
 , 0

 , 0 ≤ t ≤ 1. (2.7)

We have the following limit shape of the random function t 7→ Kbt(n):

Theorem 2.5. We have for each ε > 0,

Pn,α

[
sup
t∈[0,1]

∣∣∣∣ Kbt(n)

n/α(n)
− t
∣∣∣∣ > ε

]
→ 0 as n→∞. (2.8)
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When we choose t = 1 in Theorem 2.5, then bt(n) = α(n) and we recover the result in [6].
Furthermore, if we define

νδ := lim
n→∞

Kbδ(n)

Kα(n)
for δ > 0, (2.9)

then νδ can be interpreted as the limit as n → ∞ of the fraction of cycles smaller than bδ(n).
Theorem 2.5 now shows that νδ → δ for all 0 < δ ≤ 1. Since bδ(n) = α(n)

(
1 + o(1)

)
for all δ > 0,

we immediately get that almost all cycles live in a scale of the form α(n)
(
1 + o(1)

)
.

A theorem similar to Theorem 2.5 can be proved for the number of elements in the cycles with size
smaller than m. If we set Sm =

∑m
j=1 jCj , then trivially Sα = n, and we can show that

Pn,α

[
sup
t∈[0,1]

∣∣∣∣Sbt(n)

n
− t
∣∣∣∣ > ε

]
→ 0 as n→∞. (2.10)

The proof, which is similar to the proof of Theorem 2.5, can be found in [23, Theorem 2.7.2]. In
the next theorem we take a closer look at the fluctuations around the limit shape of Kbt(n).

Theorem 2.6. Let

Lt (n) :=
Kbt(n) −

∑bt(n)
j=1

xjn,α
j√

n/α (n)
. (2.11)

Then (Lt (n))t∈[0,1] converges in distribution to the standard Brownian bridge in D [0, 1], where

D [0, 1] is the space of cadlag functions on [0, 1], endowed with the Skorohod topology.

Remark 2.7. (1) As above, we can do the same construction for the indices instead of the cycles.
With Sm being as in the remark after Theorem 2.5, we have that

L̃t (n) :=
Sbt(n) −

∑bt(n)
j=1 xjn,α√

nα (n)

converges to the Brownian bridge in D [0, 1]. The proof is similar to the one of Theorem 2.6, so we
refer to [23, Theorem 2.7.6].
(2) When t = 1 in Theorem 2.6, the variance of the limit is zero. However, it has been shown in
[6] that there exists a different rescaling so that the Gaussian fluctuations persist in the limit: We
have

Kα(n) −
∑α(n)
j=1

xjn,α
j√

n
α(n)(log(n/α(n)))2

d−→ N (0, 1). (2.12)

Of course, no such statement can hold for Sα(n) since Sα(n) −
∑α(n)
j=1 x

j
n,α = Sα(n) − n = 0.

(3) For unrestricted permutations, Delaurentis and Pittel [14] show that the stochastic process∑bntcj=1 Cj − t log (n)√
log (n)


t∈[0,1]

(2.13)

converges in distribution to the Brownian motion in [0, 1]. Interestingly, this holds for restricted
permutations as well, and we have already shown it! Indeed, the convergence in total variation
distance from Theorem 2.2 is strong enough to show that for all t < a1 (cf. (1.1)), convergence
to the Brownian motion also holds when the Cj in (2.13) are those of constrained permutations.
Hence, in the case of constrained permutations, we actually have two functional central limit the-
orems: one for ’short’ cycles and one for the ones very close to the maximal cycle length.
(4) The asymptotic behaviour of the longest cycles in a random permutation is one of the most
frequently asked questions and is in particular still open for random permutations with polynomi-
ally and logarithmically growing cycle weights. We denote by `1(σ) the length of the longest cycle
in a permutation, `2(σ) the length of the second longest cycle in a permutation and so on. We
have for each k ∈ N

1

α(n)
(`1, `2, . . . , `k)

d−→ (1, 1, . . . , 1︸ ︷︷ ︸
k times

). (2.14)
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Further, if α(n) = O(n1/2) and α (n) ≥ n 1
7 +δ for some δ > 0 then

Pn,α
[
(`1, `2, . . . , `k) 6=

(
α(n), . . . , α(n)

)]
→ 0 as n→∞. (2.15)

These statements follow immediately from Theorems 2.4 and 2.5.

3. Generating functions and the saddle-point method

Generating functions and their connection with analytic combinatorics form the backbone of the
proofs in this paper. More precisely, we will determine formal generating functions for all relevant
moment-generating functions and then use the saddle-point method to determine the asymptotic
behaviour of these moment-generating functions as n→∞.
Let (an)n∈N be a sequence of complex numbers. Then its ordinary generating function is defined
as the formal power series

f (z) :=

∞∑
n=0

anz
n.

The sequence may be recovered by formally extracting the coefficients

[zn] f (z) := an

for any n. The first step is now to consider a special case of Pólya’s Enumeration Theorem, see
[22, §16, p. 17], which connects permutations with a specific generating function.

Lemma 3.1. Let (qj)j∈N be a sequence of complex numbers. We then have the following identity
between formal power series in z,

exp

 ∞∑
j=1

qjz
j

j

 =

∞∑
k=0

zk

k!

∑
σ∈Sk

k∏
j=1

q
Cj
j , (3.1)

where Cj = Cj(σ) are the cycle counts. If either of the series in (3.1) is absolutely convergent,
then so is the other one.

Extracting the nth coefficient yields

[zn] exp

 ∞∑
j=1

qjz
j

j

 =
1

n!

∑
σ∈Sn

n∏
j=1

q
Cj
j . (3.2)

Setting qj = 1{j≤α(n)} we obtain

Zn,α :=
|Sn,α|
n!

= [zn] exp

 α∑
j=1

zj

j

 . (3.3)

For distinct integers 1 ≤ mk ≤ α(n), 1 ≤ k ≤ K with k,K ∈ N and s1, ..., sK ∈ R, we obtain

En,α
[
e
∑K
k=1 skCmk

]
=

1

Zn,α
[zn] exp

(
K∑
k=1

(esk − 1)
zmk

mk

)
exp

α(n)∑
j=1

zj

j

 . (3.4)

This equation follows immediately from the definition of En,α and (3.2). Similarly, for 0 = t0 ≤
t1 < · · · < tm ≤ tm+1 = 1, we have

En,α
[
e
∑m
i=1 siKbti (n)

]
=

1

Zn,α
[zn] exp

 m∑
i=0

bti+1
(n)∑

j=bti (n)+1

e
∑m
`=i+1 s`zj

j

 . (3.5)

At this stage, all parameters can depend on the system size n. A way to extract the series
coefficients from expressions such as (3.4) and (3.5) is the saddle point method, a standard tool in
asymptotic analysis. The basic idea is to rewrite the expression (3.2) as a complex contour integral
and choose the path of integration in a convenient way. The details of this procedure depend on
the situation at hand and need to be done on a case by case basis. A general overview over the
saddle-point method can be found in [18, page 551].
We now treat the most general case of the saddle point method that is relevant for the present sit-
uation. Let q = (qj,n)1≤j≤α(n),n∈N be a triangular array. We assume that all qj,n are nonnegative,
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real numbers and that for each n ∈ N there exists a j such that qj,n > 0. We then define xn,q as
the unique positive solution of

n =

α(n)∑
j=1

qj,nx
j
n,q. (3.6)

Let further

λp,n := λp,n,α,q :=

α(n)∑
j=1

qj,nj
p−1xjn,q,

where p ≥ 1 is a natural number. Due to Equation (3.6),

λp,n ≤ n (α (n))
p−1

(3.7)

holds for all p ≥ 1.
Let us write an ≈ bn when there exist constants c1, c2 > 0 such that

c1bn ≤ an ≤ c2bn
for large n. We further say that

fn(t) = O (gn(t)) uniformly in t ∈ Tn

if there are constants c,N > 0 such that supt∈Tn

{∣∣∣ fn(t)
gn(t)

∣∣∣} ≤ c for all n ≥ N .

We will call an array q admissible if the following three conditions are met:

(i): We have

α(n) log xn,q ≈ log
n

α(n)
. (3.8)

(ii): We have

λ2,n ≈ nα(n). (3.9)

(iii): There exists a sequence n 7→ b(n) with b(n)/α(n) < (1 − δ) for some δ > 0, and such that
qj,n ≥ c > 0 for all j ≥ b(n) and some constant c > 0.

Note that condition (i) implies in particular that limn→∞ xn,q = 1.
Let Br(0) denote the circle with center 0 and radius r in the complex plane. Let δ,K,N > 0.
Given an array q, we will call a sequence of complex-valued functions fn (δ,K,N)-admissible if
the following three conditions are met:
(i): For all n, fn is holomorphic on Bxn,q+δ(0).
(ii): For all n ≥ N , we have

sup
z∈∂Bxn,q (0)

|fn (z)| ≤ nK |fn (xn,q)| . (3.10)

(iii) Let

θn := n−
5
12 (α (n))−

7
12 . (3.11)

For

|||fn|||n := θn sup
|θ|≤θn

∣∣f ′n (xn,q eiθ
)∣∣

|fn (xn,q)|
, (3.12)

we have limn→∞ |||fn|||n = 0.

We refer to (fn) as admissible if there are δ,K,N > 0 such that (fn) is (δ,K,N)-admissible. We
are now in the position to formulate our general saddle point result.

Proposition 3.2. Let q be an admissible triangular array, and (fn) an admissible sequence of
functions. Then, as n→∞,

[zn] fn(z) exp

α(n)∑
j=1

qj,n
j
zj

 = fn(xn,q)
eλ0,n

xnn,q
√

2πλ2,n

(
1 +O

(
α(n)

n

))
(1 +O (|||fn|||n)) . (3.13)

Moreover, if we fix δ,K,N > 0, then the error terms in (3.13) are uniform in all (δ,K,N)-
admissible sequences (fn).
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Proof. Let (fn) be (δ,K,N)-admissible for some δ,K,N > 0. Cauchy’s integral formula gives

Mn := [zn] fn(z) exp

α(n)∑
j=1

qj,n
j
zj

 =
1

2πi

∫
∂Br(0)

fn (z) exp

α(n)∑
j=1

qj,n
j
zj

 dz

zn+1
(3.14)

for any r such that fn is holomorphic on Br(0). Condition (i) on fn guarantees that we can take
r = xn,q . We then rewrite

Mn =
1

2πxnn,q

∫ π

−π
fn
(
xn,qeiθ

)
exp

α(n)∑
j=1

qj,n
j

(
xn,qeiθ

)j − inθ

 dθ.

For the remainder of the proof, we will write x instead of xn,q and α instead of α(n) for lighter
notation. We define

gn (θ) :=

α∑
j=1

qj,n
eijθ − 1

j
xj − inθ (3.15)

and obtain

Mn =
exp

(∑α
j=1

qj,n
j xj

)
2πxn

∫ π

−π
fn
(
xeiθ

)
exp (gn (θ)) dθ.

Note gn(0) = 0 and, by (3.6), g′n(0) = 0. Similarly,
∣∣∣g(p)
n (θ)

∣∣∣ ≤ λp,n and g
(p)
n (0) = ipλp,n for p ≥ 2.

For |θ| ≤ θn (see (3.11)), equation (3.7) implies that λp,n|θ|p ≤ (n/α)1−5p/12. Therefore a Taylor
expansion around 0 gives

gn(θ) = −λ2,n

2
θ2 − i

λ3,n

6
θ3 +O

(
λ4,nθ

4
)

and

exp(gn(θ)) = exp
(
−λ2,n

2 θ2
)(

1− i
λ3,n

6
θ3 +O

(
λ2

3,nθ
6
) )(

1 +O(λ4,nθ
4)
)
, (3.16)

where the error terms are uniform in θ ∈ [−θn, θn]. As for fn, we have

fn(x eiθ ) = fn(x) + i

∫ θ

0

f ′n(x eiϕ )x eiϕ dϕ.

Estimating the modulus of the integrand in the second term by its maximum and using assumption
(3.12), we find that, uniformly in θ ∈ [−θn, θn],

fn(x eiθ ) = fn(x) (1 +O (|||fn|||n)) .

Here, the implicit constant in O (|||fn|||n) is independent of (fn)n. Putting things together, we have∫ θn

−θn
fn
(
xeiθ

)
exp (gn (θ)) dθ =fn(x)

∫ θn

−θn
e−

λ2,nθ
2

2

(
1 +O

(
λ2

3,nθ
6 + λ4,nθ

4
))

dθ

+ fn(x)

∫ θn

−θn
e−

λ2,nθ
2

2 O (|||fn|||n) dθ.

By (3.9), λ2,nθ
2
n ≈ n1/6α−1/6, which diverges as n→∞. The standard estimate on Gaussian tails

gives that for all m ∈ N,∫ θn

−θn
e−

λ2,nθ
2

2 dθ =

∫ ∞
−∞

e−
λ2,nθ

2

2 dθ +O(λ−m2,n ) =

√
2π√
λ2,n

+O(λ−m2,n ).

A scaling argument, (3.7) and assumption (3.9) give∫ θn

−θn
e−

λ2,nθ
2

2 λ2
3,n|θ|6 dθ ≤ 15

√
2π√
λ2,n

λ2
3,n

λ3
2,n

=

√
2π√
λ2,n

O
(
α
n

)
and ∫ θn

−θn
e−

λ2,nθ
2

2 λ4,n|θ|4 dθ ≤ 3

√
2π√
λ2,n

λ4,n

λ2
2,n

=

√
2π√
λ2,n

O
(
α
n

)
.
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Altogether, we find that∫ θn

−θn
fn
(
xeiθ

)
exp (gn (θ)) dθ = fn(x)

√
2π

λ2,n

(
1 +O

(
α
n

))
(1 +O(|||fn|||n).

What remains to be shown is that∫
|θ|≥θn

fn
(
xeiθ

)
exp (gn (θ)) dθ = O

(
fn(x)

α

n
√
λ2,n

)
, (3.17)

where the implicit error term only depends on (fn)n via K,N . We have −<gn(θ) =
∑α
j=1

qj,n
j (1−

cos(jθ))xj . For θn ≤ θ < π/α, due to −∂θ<gn(θ) > 0, we have

−<gn(θ) ≥ −<gn(θn) ≈ θ2
nλ2,n ≈

(n
α

)1/6

(3.18)

by assumption (3.9). For θ > π
α , let us first assume that qj,n ≥ c > 0 for all n and j, i.e. b(n) = 1

in assumption (iii). We use that

−<gn(θ) =

α∑
j=1

qj,n
j

(1− cos(jθ))xj ≥ c

α

α∑
j=1

(1− cos(jθ))xj =: crn(θ)

and

rn(θ) =
1

α

(
x
xα − 1

x− 1
−<

(
x eiθ x

α eiθα − 1

x eiθ − 1

))
≥ 2

π2

xα+1

α (x− 1)

θ2

(x− 1)
2

+ θ2
− 2x

α (x− 1)
. (3.19)

The calculations for the final inequality can e.g. be found in [21, Lemma 12]. By (3.8), there exist
c1, c2 > 0 with c1 log n

α ≤ α log x ≤ c2 log n
α . Thus x ∼ 1, and x − 1 ∼ log x ≥ c1

α log n
α . So the

second term on the right hand side of (3.19) converges to zero. For the first term, we use that
θ2/((x− 1)2 + θ2) is monotone increasing in θ, and find an asymptotic lower bound of the form

2

π2

xα+1

c2 log n
α

π2α−2

c22α
−2
(

log n
α

)2
+ π2α−2

∼ 2

c32

xα+1(
log n

α

)3 . (3.20)

Since xα ≥
(
n
α

)c1
, and using condition (3.10), we conclude that when θ ≥ θn and n ≥ N ,

|fn(x eiθ ) egn(θ) | ≤ nK
∣∣ egn(θ)

∣∣ vanishes faster than all powers of 1/n. This shows the claim
in the case b(n) = 1. For the case of general b(n), we have

−<gn(θ) ≥ 1

α

α∑
j=1

qj,n(1− cos(θj))xj = crn(θ) +
1

α

α∑
j=1

(qj,n − c)(1− cos(θj))xj

≥ crn(θ)− 2c

α

b(n)∑
j=1

xj ≥ crn(θ)

(
1− 2b(n)

rn(θ)α
xb(n)

)
.

(3.21)

By assumption, b(n)/α ≤ 1− δ for some δ > 0, and then xb(n)−α ≤
(
n
α

)c1 b(n)−α
α ≤

(
n
α

)−c1δ
. Thus,

by applying (3.20), the bracket on the right hand side of (3.21) converges to 1 as n→∞, and the
proof is finished. �

4. Proofs of the main results

We establish most of our results by computing moment generating functions. In the cases we
consider, it is a consequence of [28] that pointwise convergence of the moment generating functions
in the sector (R+

0 )d is sufficient to establish convergence in distribution of d-dimensional random
variables. The first result shows that the triangular array q with qj,n = 1{j≤α(n)} is admissible.

Lemma 4.1. Let xn,α be defined by equation (2.1). We have, as n→∞:

α (n) log (xn,α) = log

(
n

α (n)
log

(
n

α (n)

))
+O

(
log (log (n))

log (n)

)
. (4.1)
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In particular, xn,α ≥ 1, limn→∞ xn,α = 1 and x
α(n)
n,α ∼ n

α(n) log
(

n
α(n)

)
. Furthermore,

α(n)∑
j=1

jxjn,α ∼ nα(n). (4.2)

The first part of the lemma is a reformulation of Lemma 4.11 in [6], which in turn follows [21]. In
the latter reference, the claims are actually shown for more general functions α. Equation (4.2)
has been proved in Lemma 9 in [21]. It may also be derived as a special case of Lemma 4.5.

4.1. Proof of Proposition 2.1. Equation (2.3) follows directly from Lemma 4.1. We apply
equation (3.4) with K = 1, differentiate with respect to s1, set s1 = 0 and obtain

En,α
[
Cm(n)

]
=

1

Zn,α
[zn]

zm(n)

m(n)
exp

α(n)∑
j=1

zj

j

 .

We may now apply Proposition 3.2 with fn(z) = zm(n)

m(n) and qj,n = 1{j≤α(n)}. The array q is

admissible by Lemma 4.1 and m(n) ≤ α(n) = o
(
θ−1
n

)
shows admissibility of (fn). The claim then

follows from En,α
[
Cm(n)

]
∼ fn(xn,α).

4.2. Proof of Theorem 2.2. We follow the ideas in [3], where the case of uniform permutations
is treated. Let (Zk)k be independent random variables with Zk ∼ Poi

(
1
k

)
for k ∈ N and let

Tb1b2 :=

b2∑
k=b1+1

kZk. (4.3)

Let Cb = (C1, C2, . . . , Cb) the vector of the cycle counts up to length b, Zb = (Z1, Z2, . . . , Zb), and
a = (a1, a2, . . . , ab) a vector. A corner stone for investigating the classical case of uniform random
permutations is the so-called conditioning relation [2, Equation (1.15)],

Pn [Cb = a] = P [Zb = a|T0n = n] . (4.4)

Since Pn,α = Pn
[
·|Cα(n)+1 = ... = Cn = 0

]
, an analogue of Equation (4.4) holds for b ≤ α (n):

Pn,α [Cb = a] = P
[
Zb = a|T0α(n) = n

]
. (4.5)

Let L(a) :=
∑b(n)
k=1 kak. For a ∈ Nb(n) with L(a) = r, independence of the Zk gives

P
[
Zb(n) = a

∣∣T0α(n) = n
]

=
P
[
Zb(n) = a

]
P
[
Tb(n)α(n) = n− r

]
P
[
T0α(n) = n

] .

Define Pn,b(n),α and P̃b(n) as in Theorem 2.2, and let db(n) := ‖Pn,b(n),α − P̃b(n)‖TV. By (4.4),

db(n) =

∞∑
r=0

∑
a:L(a)=r

P
[
Zb(n) = a

](
1−

P
[
Tb(n)α(n) = n− r

]
P
[
T0α(n) = n

] )
+

=

∞∑
r=0

P
[
T0b(n) = r

](
1−

P
[
Tb(n)α(n) = n− r

]
P
[
T0α(n) = n

] )
+

≤P
[
T0b(n) ≥ ρnb (n) + 1

]
+

ρnb(n)∑
r=0

P
[
T0b(n) = r

](
1−

P
[
Tb(n)α(n) = n− r

]
P
[
T0α(n) = n

] )
+

,

where ρn > 0 is arbitrary for now. In [3, Lemma 8] it is shown that

P
[
T0b(n) ≥ ρnb (n)

]
≤
(ρn

e

)−ρn
.

So P
[
T0b(n) ≥ log(n)b (n)

]
decays faster than any power of n. The proof is then concluded by

plugging ρn = log n into the estimate of the lemma below.
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Lemma 4.2. Let
(
b(n)

)
n∈N be an integer sequence with b (n) = o

(
α(n)

log(n)

)
and ρn = O (log (n)).

We then have

max
1≤r≤ρnb(n)

(
1−

P
[
Tb(n)α(n) = n− r

]
P
[
T0α(n) = n

] )
+

= O
(
α(n)

n
+
b(n)

α(n)
log(n)

)

as n→∞.

Proof. We have E[zTb1b2 ] = exp
(∑b2

j=b1+1
zj−1
j

)
. Therefore,

P[Tb(n)α(n) = n− r] = [zn−r] e
∑α(n)

j=b(n)+1
zj−1
j = e

−
∑α(n)

j=b(n)+1
1
j [zn]zr e

∑α(n)

j=b(n)+1
zj

j (4.6)

and

P[T0α(n) = n] = e
−

∑α(n)

j=b(n)+1
1
j [zn] e

∑b(n)
j=1

zj−1
j e

∑α(n)

j=b(n)+1
zj

j . (4.7)

Since the factors exp
(
−
∑α(n)
j=b(n)+1

1
j

)
will cancel in the quotient of the two terms, we see that

we are in the situation of Proposition 3.2. We have qj,n = 1{b(n)<j≤α(n)} in both (4.6) and (4.7).

Thus, the relevant saddle point xn,b,α is the unique positive solution of n =
∑α(n)
j=b(n)+1 x

j
n,b,α. With

xn,α := xn,0,α defined by (2.1), we easily see that xn,α ≤ xn,b,α ≤ xn,α2 for large n. So Lemma 4.1
shows α log xn,b,α ≈ log n

α(n) and λ2,n ≈ nα(n). Thus q is admissible.

In (4.6), we have fn(z) = f (r)(z) = zr for all n in the context of Proposition 3.2. Then, f (r)

fulfils (3.10) with N = K = 1 for all r ∈ N, and |||f (r)|||n ≤ rθn = O(θnb(n) log(n)) uniformly in
r ≤ ρnb(n). By the assumption on (b(n)), f (r) is (δ, 1, 1)-admissible for all δ > 0.

In (4.7), fn(z) = fb,n(z) = exp
(∑b(n)

j=1
zj−1
j

)
. We have |||fb,n|||n ≤ θn

∑b(n)−1
j=0 xjn,b,α ≤ θnb(n)x

b(n)
n,b,α

and

b(n) log xn,b,α ≈
b(n)

α(n)
log

(
n

α(n)

)
= o(1) (4.8)

by the assumptions on (b(n)). Thus, (fb,n)n is admissible. We conclude

P
[
Tb(n)α(n) = n− r

]
P
[
T0α(n) = n

] =
fr(xn,b,α)

fb,n(xn,b,α)

(
1 +O

(α(n)

n
+ θnb(n) log n

))
, (4.9)

uniformly in 1 ≤ r ≤ ρnb(n). Now, f (r)(xn,b,α) ≥ 1 since xn,b,α ≥ 1. On the other hand, we find

0 ≤ log(fb,n(xn,b,α)) =

b(n)∑
j=1

(xn,b,α)j − 1

j
=

∫ xn,b,α

1

b(n)−1∑
j=0

vj dv ≤ (xn,b,α − 1) b(n) (xn,b,α)b(n).

By (4.8), (xn,b,α)b(n) = O(1), and so (xn,b,α − 1)b(n)(xn,b,α)b(n) = O
(
b(n)
α(n) log n

)
. We conclude

that 1 ≤ fb,n(x) ≤ 1 +O
(
b(n)
α(n) log n

)
. Hence,

fr(x)

fb,n(x)
≥ 1 +O

(
b(n)

α(n)
log n

)
.

The claim now follows by inserting this into (4.9). �
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4.3. Proof of Theorem 2.3. Write µj := µmj and C̃mj := C
(µj)
mj . Let sj ≥ 0. We have

E

exp

 k∑
j=1

sjC̃mj

 =

∞∑
l1=0

· · ·
∞∑
lk=0

exp

 k∑
j=1

sj lj

P
[
C̃m1 = l1, . . . , C̃mk = lk

]

=
1

Z

∞∑
l1=0

· · ·
∞∑
lk=0

k∏
j=1

exp(sj lj + µj)

µ
lj
j

Pn,α [Cm1 = l1, . . . , Cmk = lk]

=
exp

(∑k
j=1 µj

)
Z

∞∑
l1=0

· · ·
∞∑
lk=0

k∏
j=1

exp[lj(sj − logµj)]Pn,α [Cm1 = l1, . . . , Cmk = lk]

=
exp

(∑k
j=1 µj

)
Z

En,α

exp

 k∑
j=1

(sj − logµj)Cmj

 .
Here, the normalization Z depends on n. By Equation (3.4), the last expectation is given by

Z−1
n,α [zn] fn(z) exp

(∑α(n)
i=1

zi

i

)
, with fn(z) := exp

(∑k
j=1

(
esj−log µj − 1

)
zmj

mj

)
. We are thus in the

framework of Proposition 3.2, with qj,n = 1{j≤α(n)}. By Lemma 4.1, it only remains to check

admissibility of (fn). For (3.10), note that |fn(z)| ≤ exp
(∑k

j=1 |esj−log(µj) − 1|x
j
n,α

j

)
and∣∣∣esj−log(µj) − 1

∣∣∣ =
(

esj−log(µj) − 1
)

+ 2
(

1− esj−log(µj)
)

+
≤
(

esj−log(µj) − 1
)

+ 2.

Since µj =
xjn,α
mj

by definition and K0 = sup{µj : n ∈ N, j ≤ k} <∞ by assumption (2.6), we get

|fn(z)| ≤ K1fn(xn,α) (4.10)

if |z| = xn,α, for all sk ≥ 0, with K1 = exp(2kK0). For computing |||fn|||n, a direct calculation
together with (4.10) gives∣∣∣∣ f ′n(z)

fn(xn,α)

∣∣∣∣ ≤ K1

k∑
j=1

∣∣∣esj−log(µj) − 1
∣∣∣xmj−1

n,α ≤ K1

k∑
j=1

(
esj

µj
+ 1

)
µjmj ≤ K1

 k∑
j=1

esj + kK0

α.

So, |||fn|||n ≤ K1

(∑k
j=1 esj + kK0

)
θnα(n) = o(1), and (fn) is admissible. By Proposition 3.2, we

obtain

E

exp

 k∑
j=1

sjC̃mj

 ∼ exp
(∑k

j=1 µj

)
Z

fn(xn,α) =

∏k
j=1 exp (esj )

Z
.

By setting sj = 0 for all j, we may deduce Z → ek as n→∞, and the claim is proved.

4.4. Proof of Theorem 2.4. We now turn to the case of diverging expectation. The following
proposition states the most general result in this regime.

Proposition 4.3. Let mj : N→ N for 1 ≤ j ≤ k such that mj (n) ≤ α (n) and mi(n) 6= mj(n) for

i 6= j. Further, let µmj(n) (n) as in (2.2). If µmj(n) (n)→∞ and θn
x
mj(n)
n,α√

µmj(n)(n)
→ 0 for all j, then

lim
n→∞

En,α

 k∏
j=1

exp

sjCmj(n) − µmj(n) (n)√
µmj(n) (n)

 = exp

 k∑
j=1

s2
j

2


for all sj ≥ 0 and with θn as in (3.11).

Note that Theorem 2.2 in [12] shows that it is sufficient to compute the Laplace transform in
Proposition 4.3 for sj ≥ 0 to prove Theorem 2.4.
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Proof. Write µj := µmj(n)(n). Applying equation (3.4) with sk replaced by sj/
√
µj , we are in the

framework of Proposition 3.2. Again qi,n := 1{i≤α(n)}, so q is admissible, and

fn (z) = exp

 k∑
j=1

(
exp

(
sj√
µj (n)

)
− 1

)
zmj(n)

mj (n)

 exp

− k∑
j=1

sj

√
µj (n)


For admissibility of (fn), we compute

sup
z∈∂Bxn,α (0)

|f ′n (z)|
|fn (|z|)|

≤
k∑
j=1

(
exp

(
sj√
µj (n)

)
− 1

)
xmj(n)−1
n,α .

By our assumption on µmj (n), (fn) is admissible and we may apply Proposition 3.2. Again the
case sj = 0 for all j deals with the normalizing constant, and so, from

fn (xn,α) = exp

 k∑
j=1

(
sj√
µj (n)

+
s2
j

2µj (n)
+O

(
s3
j

(µj (n))
3
2

))
µj (n)−

k∑
j=1

sj

√
µj (n)


= exp

 k∑
j=1

s2
j

2

1 +O

 k∑
j=1

1

(µj (n))
1
2

→ exp

 k∑
j=1

s2
j

2

 ,
we then conclude the claim. �

Proof of Theorem 2.4. We check that we can apply Proposition 4.3. We have µmj(n) (n)→∞ by
assumption. Furthermore, we get with the definition of µj in (2.2) and Lemma 4.1 that

x
mj(n)
n,α√
µj (n)

=

√
mj (n)x

mj(n)
n,α ≤

√
α (n)x

α(n)
n,α = O

(√
n log

(
n

α (n)

))
.

Using the definition of θn in (3.11), we obtain

θn
x
mj(n)
n,α√
µj (n)

= n−
5
12α (n)

− 7
12

x
mj(n)
n,α√
µj (n)

= O
(
n

1
12α (n)

− 7
12 log

(
n

α (n)

))
= o (1)

since we assume there is a δ > 0 such that 1
α(n) = O

(
n−

1
7−δ
)

. The claim is proved. �

4.5. Proofs of Theorems 2.5 and 2.6 and Equation (2.10). We begin with equation (3.5),
where we plug in si/γ(n) instead of si for a real-valued sequence (γ(n))n∈N. In the terms of Proposi-

tion 3.2, this means that fn = 1 and qj,n = e
∑m
l=i(j)

sl
γ(n) where i(j) := min {1 ≤ l ≤ m : btl(n) ≥ j}.

Intuitively, any index l with btl(n) ≥ j contributes a factor of exp (sl/γ(n)) to qj,n since the number
of cycles of length j is counted in Kbtl

(n) in this case. The saddle point of this problem is given

by the unique positive solution xn (s) := xn,α,γ,t (s) of

n =

m∑
i=0

e
∑m
l=i+1

sl
γ(n)

bti+1
(n)∑

j=bti (n)+1

(xn (s))
j
. (4.11)

Note that xn (0) = xn,α. Lemmata 4.4 and 4.5 show that q is admissible and provide detailed
information which will be useful for investigating the moment generating function more closely.

Lemma 4.4. Let γ (n) → ∞ with γ (n) ≥ log(n) and t = (ti)1≤i≤m with 0 = t0 ≤ t1 < ... < ti <
... < tm ≤ tm+1 = 1 and si ≥ 0 for all 1 ≤ i ≤ m. Then

α (n) log (xn (s)) = log

(
n

α (n)

)
+O

(
log (log (n))

log (n)

)
(4.12)

locally uniformly in s. In particular, limn→∞ xn (s) = 1 locally uniformly in s.

Proof. Let x̂n(s) be the unique positive solution of n exp
(
−
∑m
i=1

si
γ(n)

)
=
∑α(n)
j=1 (x̂n(s))j . Since

si ≥ 0 for all i, comparing equations (2.1) and (4.11) yields

x̂n(s) ≤ xn (s) ≤ xn,α(n). (4.13)
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By a slightly more general version of Lemma 4.1 (cf. [21, Lemma 9]), we also have

α(n) log (x̂n(s)) = log

n exp
(
−
∑m
i=1

si
γ(n)

)
α(n)

+O
(

log (log (n))

log (n)

)

= log

(
n

α(n)

)
+O

(
log (log (n))

log (n)

)
(4.14)

locally uniformly in s due to γ(n) → ∞. Equation (4.12) then follows from (4.13) together with
Lemma 4.1 and equation (4.14). �

Lemma 4.5. Let γ (n) → ∞ with γ (n) ≥ log(n) and t = (t1, ..., tm)
T

with 0 ≤ t1 < ... < tm ≤ 1

for m ∈ N. Then, locally uniformly in s = (s1, ..., sm)
T ∈ [0,∞)

m
,

λ2,n = nα (n) +O
(
nα (n)

log (n)

)
.

Proof. W.l.o.g., let 0 < t1 < 1 and m = 1. As the following calculations will show, larger values
of m pose no particular problem since they only produce additional terms of similar structure
and btk (n) ∼ α (n) for all k ≥ 1 in this case. Moreover, let x := xn,α,γ,t (s). Then, using that
γ (n) ≥ log(n), we obtain

λ2,n =e
s1
γ(n)

bt1 (n)∑
j=1

jxj +

α(n)∑
j=bt1 (n)+1

jxj =

α(n)∑
j=1

jxj

(1 +O
(

1

log(n)

))

=

(
α(n)

xα(n)+1

x− 1
− x(xα(n) − 1)

(x− 1)2

)(
1 +O

(
1

log(n)

))
.

Since x→ 1 as n→∞, we have x− 1 = log(x) +O((x− 1)2). Using this together with Lemma 4.4
completes the proof. �

Having proved that q is admissible, Proposition 3.2 yields, for γ (n) ≥ log(n), t = (t1, ..., tm)
T

and

fixed s = (s1, ..., sm)
T ∈ [0,∞)

m
,

Mn,γ (s) := En,α

[
exp

(
m∑
i=1

si
γ(n)

Kbti (n)

)]
=

1

Zn,α

1√
2πnα(n)

exp [hn (s)] (1 + o (1)) ,

where Zn,α is the normalizing constant in (3.3) such that Mn,γ(0) = 1 and

hn (s) := hn,α,γ,t (s) :=

m∑
i=0

e
∑m
l=i+1

sl
γ(n)

bti+1
(n)∑

j=bti (n)+1

(xn,α,γ,t (s))
j

j
− n log (xn,α,γ,t (s)) . (4.15)

The next step is to extract more information by investigating the functions hn. The proofs will rest
on a Taylor expansion of hn about 0, so we need expressions and asymptotics for the derivatives
of hn. We will prove in Section 4.6 for γ(n) ≥ log(n):

(i) s 7→ hn(s) is infinitely often differentiable,

(ii) ∂sihn(0) = 1
γ(n)

∑bti (n)

j=1

xjn,α
j = ti

n
γ(n)α(n) (1 + o(1)),

(iii) ∂si2∂si1hn(0) = ti2(1− ti1) n
(γ(n))2α(n) (1 + o(1)) for i2 ≤ i1,

(iv) ∂si2∂si1hn(s) = O
(

n
(γ(n))2α(n)

)
locally uniformly in s,

(v) ∂si3∂si2∂si1hn(s) = O
(

n
(γ(n))3α(n)

)
locally uniformly in s.

Due to Mn,γ(0) = 1, for fixed s we therefore arrive at

Mn,γ(s) = exp

(
∇hn(0) · s +O

(
n

γ2α
|s|2
))

(1 + o(1)) (4.16)

and

Mn,γ(s) = exp

(
∇hn(0) · s +

1

2
〈s, Hhn(0)s〉+O

(
n

γ3α
|s|3
))

(1 + o(1)) . (4.17)
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So, by equation (4.16),

lim
n→∞

En,α

[
exp

(
m∑
i=1

si
n/α(n)

Kbti (n)

)]
= lim
n→∞

Mn, n
α(n)

(s) = exp

(
m∑
i=1

siti

)
, (4.18)

and, by equation (4.17),

lim
n→∞

En,α

exp

 m∑
i=1

si√
n/α(n)

Kbti (n) −
bti (n)∑
j=1

xjn,α
j

 (4.19)

= lim
n→∞

M
n,
√
n/α(n)

(s) exp (−∇hn(0) · s) = exp

(
1

2
〈s, A (t) s〉

)
,

where A (t) = (Ai1,i2) is symmetric with Ai1,i2 = ti2 (1− ti1) for i2 ≤ i1. Note that A(t) is the
covariance matrix of the Brownian bridge. We can now give the

Proof of Theorem 2.5. We apply arguments of the proof of Corollary 3.4 in [13]. Let ε > 0 and

choose 0 = t0 < t1 < ... < tl = 1 such that tj+1−tj < ε
2 . Then, due to monotonicity,

∣∣∣ Kbt(n)

n/α(n) − t
∣∣∣ >

ε for some t ∈ [0, 1] implies the existence of an index j such that

∣∣∣∣Kbtj (n)

n/α(n) − tj
∣∣∣∣ > ε

2 . Then,

Pn,α

[
sup
t∈[0,1]

∣∣∣∣ Kbt(n)

n/α(n)
− t
∣∣∣∣ > ε

]
≤

l∑
j=1

Pn,α

[∣∣∣∣∣Kbtj (n)

n/α(n)
− tj

∣∣∣∣∣ > ε

2

]
n→∞−−−−→ 0 (4.20)

by equations (4.18) and (4.19). �

Equation (4.19) establishes the convergence of the finite-dimensional distributions of the fluc-
tuations to those of the Brownian bridge. In order to show that, under Pn,α, the fluctuations
(Lt (n))t∈[0,1] defined in (2.11) converge as a process to the Brownian bridge, we also have to prove

tightness. We will apply the criterion that there are N ∈ N, c > 0, and a nondecreasing continuous
function H on [0, 1] such that

En,α
[
|Lt (n)− Lt1 (n)|2 |Lt2 (n)− Lt (n)|2

]
≤ c |H(t2)−H(t1)|2 (4.21)

for all 0 ≤ t1 ≤ t ≤ t2 ≤ 1 and all n ≥ N , which is an instance of [10, Equation (13.14)].

Proposition 4.6. The sequence of processes (Lt (n))t∈[0,1] under Pn,α is tight in D [0, 1].

In this paper we only prove tightness of (Lt (n))t∈[δ,1] for 0 < δ < 1 since the proof of the general

case (in particular suitably generalizing Lemma 4.7 below) is very technical. The main reason for
this is that one has to deal with the divergence of (log(t))′ = 1

t as t→ 0 in the definition of bt(n).
The proof of the general statement can be found in [23, Theorem 2.7.5]. We are going to need

Lemma 4.7. Let 0 < δ < 1. Then there are N ∈ N and c > 0 such that

bt2 (n)∑
j=bt1 (n)+1

xjn,α
j
≤ c n

α(n)
(t2 − t1)

for all n ≥ N and δ ≤ t1 < t2 ≤ 1 satisfying bt2(n)− bt1(n) ≥ 2.

Proof. The definition of bt(n) in (2.7) implies that there exists N1 such that bδ(n) ≥ α(n)/2 for
all n ≥ N1. Similarly δ ≤ t1 < t2 implies bδ(n) ≤ bt1(n) < bt2(n). Thus we get

bt2 (n)∑
j=bt1 (n)+1

xjn,α
j
≤ 1

bt1(n)
x
bt1 (n)+1
n,α

bt2 (n)−bt1 (n)−1∑
j=0

xjn,α ≤
2

α(n)
xα(n)+1
n,α

x
bt2 (n)−bt1 (n)
n,α − 1

xn,α − 1
.

Inserting the definition of bt1(n) and bt2(n) then gives

bt2 (n)∑
j=bt1 (n)+1

xjn,α
j
≤ 2

α(n)
xα(n)+1
n,α

exp
(

log(xn,α)
[
α(n)(log(t2)−log(t1))

log(n/α(n)) + 1
])
− 1

xn,α − 1
.
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By Lemma 4.1, log(xn,α) α(n)
log(n/α(n)) → 1 as n→∞. Moreover, log(t2)−log(t1) ≤ δ−1(t2−t1) ≤ δ−1

and α(n)(log(n/α(n)))−1(log(t2) − log(t1)) ≥ 1 by assumption. Hence, there are N ≥ N1, c1 > 0
such that

exp

(
log(xn,α)

[
α(n)(log(t2)− log(t1))

log(n/α(n))
+ 1

])
≤ 1 + c1(log(t2)− log(t1)) ≤ 1 +

c1
δ

(t2 − t1).

Thus, by Lemma 4.1,

bt2 (n)∑
j=bt1 (n)+1

xjn,α
j
≤ 2c1

δ

1

α(n)

x
α(n)+1
n,α

xn,α − 1
(t2 − t1) ≤ c n

α(n)
(t2 − t1)

for some c > 0. �

Proof of Proposition 4.6. We prove equation (4.21) with H = id for δ ≤ t1 ≤ t ≤ t2. By definition,

In = En,α
[
|Lt (n)− Lt1 (n)|2 |Lt2 (n)− Lt (n)|2

]
= En,α


Kbt(n) −Kbt1 (n) −

∑bt(n)
j=bt1 (n)+1

xjn,α
j√

n/α (n)

2Kbt2 (n) −Kbt(n) −
∑bt2 (n)

j=bt(n)+1

xjn,α
j√

n/α (n)

2
 .

(4.22)

We only have to deal with t1, t2 such that bt2 (n)− bt1 (n) ≥ 2 because In = 0 otherwise. Consider
the moment generating function

Fn (s1, s2) :=En,α

[
exp

(
s1

Kbt(n) −Kbt1 (n)√
n/α (n)

+ s2

Kbt2 (n) −Kbt(n)√
n/α(n)

)]

=
1

Zn,α
[zn] exp

bt1 (n)∑
j=1

zj

j
+ e

√
α(n)
n s1

bt(n)∑
j=bt1 (n)+1

zj

j
+ e

√
α(n)
n s2

bt2 (n)∑
j=bt(n)+1

zj

j
+

α(n)∑
j=bt2 (n)+1

zj

j

 .

Then Fn is differentiable and

En,α

[(
Kbt(n) −Kbt1 (n)√

n/α (n)

)m1
(
Kbt2 (n) −Kbt(n)√

n/α (n)

)m2
]

= ∂m1
s1 ∂

m2
s2 Fn (s1, s2)

∣∣
(s1,s2)=0

(4.23)

holds. By linearity of the expectation, we can expand the product in equation (4.22) and then
apply Equation (4.23) to each summand. A calculation then yields

In =
α (n)

2

Zn,αn2
[zn]

Gn,t1,t (z)Gn,t,t2 (z) exp

α(n)∑
j=1

zj

j

 ,
where

Gn,t1,t (z) :=

 bt(n)∑
j=bt1 (n)+1

zj − xjn,α
j

2

+

bt(n)∑
j=bt1 (n)+1

zj

j
.

The additional terms of the form
∑bt(n)
j=bt1 (n)+1

zj

j result from the product rule when calculating

the second derivative with respect to the same variable s1. We now proceed as in the proof of
Proposition 3.2 with qj,n = 1{j≤α(n)}, which is admissible. The functions Gn,t1,t (z)Gn,t,t2 (z)
would play the role of fn, but they only satisfy (i) and (ii) (by Lemma 4.8). Since (iii) does in
general not hold, we will have to make some adaptations. As in the proof of Proposition 3.2, by
Cauchy’s integral formula, we write In as a contour integral along ∂Bxn,α (0) and introduce the

function gn(θ) =
∑α(n)
j=1 x

j
n,α

eijθ−1
j . We then arrive at the expression

In =
α (n)

2

Zn,αn2

exp
(∑α(n)

j=1

xjn,α
j

)
2πxnn,α

∫ π

−π
Gn,t1,t

(
xn,αeiθ

)
Gn,t,t2

(
xn,αeiθ

)
exp (gn (θ)) dθ.
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We also split the integral into two parts. The main contribution is again due to the interval
[−θn, θn] . By Lemma 4.8, literally retracing the steps in the proof of Proposition 3.2 shows that

α (n)
2

Zn,αn2

exp
(∑α(n)

j=1

xjn,α
j

)
2πxnn,α

∫
π≥|θ|>θn

Gn,t1,t
(
xn,αeiθ

)
Gn,t,t2

(
xn,αeiθ

)
exp (gn (θ)) dθ

vanishes faster than any power of 1/n. It poses no problem due to t2 − t1 ≥ log(n/α(n))/α(n).
For |θ| ≤ θn, apply |eijθ − 1| ≤ c1jθ for some c1 > 0 for all j and |eijθ| = 1. Then there is c2 > 0
such that∣∣Gn,t1,t (xn,αeiθ

)
Gn,t,t2 (xn,α)

∣∣
≤c2


θ bt(n)∑

j=bt1 (n)+1

xjn,α

2

+

bt(n)∑
j=bt1 (n)+1

xjn,α
j



θ bt2 (n)∑

j=bt(n)+1

xjn,α

2

+

bt2 (n)∑
j=bt(n)+1

xjn,α
j


for all n. Due to equation (3.16), we have | exp (gn(θ)) | ≤ c3 exp

(
−λ2,n

2 θ2
)

for some c3 > 0 and

all |θ| ≤ θn if n is large enough. By substituting v =
√
λ2,nθ, we therefore obtain∣∣∣∣∣

∫ θn

−θn
θk exp (gn (θ)) dθ

∣∣∣∣∣ ≤ c4λ− k+1
2

2,n

for some c4 > 0 and 0 ≤ k ≤ 4 because of the moments of the normal distribution. By linearity of
the integral as well as the definition of Zn,α and Lemmata 4.5 and 4.7, we conclude

In ≤ c′
[
(t− t1)

2
+ t− t1

] [
(t2 − t)2

+ (t2 − t)
]
≤ c (t2 − t1)

2

for some c′, c > 0 and n large enough. The last step holds due to δ ≤ t1 ≤ t ≤ t2 ≤ 1. �

4.6. Properties of hn. This section provides the proofs for five properties of hn and its derivatives
stated in Section 4.5. We are going to need the asymptotics presented in

Lemma 4.8. Let 0 < t ≤ 1. Then,

bt(n)∑
j=1

xjn,α ∼ tn and

bt(n)∑
j=1

xjn,α
j
∼ t n

α (n)
(4.24)

hold.

Proof. Since xn,α > 1, we have∫ bt(n)

0

xvn,αdv ≤
bt(n)∑
j=1

xjn,α ≤
∫ bt(n)+1

1

xvn,αdv ∼
∫ bt(n)

0

xvn,αdv (4.25)

by Lemma 4.1. It therefore remains to be shown that
∫ bt(n)

0
xvn,αdv =

(xn,α)bt(n)−1
log(xn,α) ∼ tn. Since

0 < bt(n)
α(n) ≤ 1 for n large enough, the first claim follows from equation (4.25) and

(xn,α)
bt(n)

=
[
(xn,α)

α(n)
] bt(n)
α(n) ∼ exp

[
bt (n)

α (n)
log

(
n

α (n)
log

(
n

α (n)

))]
∼ t n

α (n)
log

(
n

α (n)

)
,

which holds due to Lemma 4.1. It was proved in Proposition 4.8 in [6] that
∑α(n)
j=1

xjn,α
j ∼ n

α(n) .

Consider
∑bt(n)
j=1

xjn,α
j =

∑α(n)
j=1

xjn,α
j −

∑α(n)
j=bt(n)+1

xjn,α
j . Due to bt(n) ∼ α(n) and the first claim,

1

α(n)

α(n)∑
j=bt(n)+1

xjn,α ≤
α(n)∑

j=bt(n)+1

xjn,α
j
≤ 1

bt(n) + 1

α(n)∑
j=bt(n)+1

xjn,α

yields the second claim. �
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Let γ (n) ≥ log(n), t = (t1, ..., tm)
T

for m ∈ N and hn(s) as in (4.15) throughout this section. Set
further t0 = 0 and tm+1 = 1. Property (i), which states that hn is infinitely often differentiable in
s, follows from the differentiability of the saddle point xn,α,γ,t which can be shown by applying the

implicit function theorem to the function F (s, x) =
∑m
i=0

∑bti+1
(n)

j=bti (n)+1

[
exp

(∑m
l=i+1

sl
γ(n)

)
x
]j
−n,

see (4.11). So we can compute the derivatives of hn.
Fix i3 ≤ i2 ≤ i1 and let xn (s) := xn,α,γ,t (s). For the sake of brevity, we introduce the notations

λ(i1)
p,n :=

i1−1∑
i=0

e
∑m
l=i+1

sl
γ(n)

bti+1
(n)∑

j=bti (n)+1

jp−1 (xn (s))
j

so that λp,n = λ
(m+1)
p,n . We obtain

∂si1hn (s) =
1

γ(n)
λ

(i1)
0,n , (4.26)

∂si2∂si1hn (s) =
1

γ(n)

∂si2xn (s)

xn (s)
λ

(i1)
1,n +

1

(γ(n))2
λ

(i2)
0,n (4.27)

and

∂si3∂si2∂si1hn (s) =
1

(γ(n))2

∂si2xn (s)

xn (s)
λ

(i3)
1,n (4.28)

+
1

γ(n)

(
∂si3∂si2xn (s)

xn (s)
−
∂si2xn (s)

xn (s)

∂si3xn (s)

xn (s)

)
λ

(i1)
1,n

+
1

γ(n)

∂si2xn (s)

xn (s)

∂si3xn (s)

xn (s)
λ

(i1)
2,n +

1

(γ(n))2

∂si3xn (s)

xn (s)
λ

(i2)
1,n +

1

(γ(n))3
λ

(i3)
0,n .

In order to prove properties (ii) to (v), we need to understand the derivatives of the saddle point.

Lemma 4.9. Fix i2 ≤ i1. Then,

∂si1xn (s)

xn (s)
= − 1

γ(n)

λ
(i1)
1,n

λ2,n
.

Moreover,

∂si1xn (s)

xn (s)
= O

(
1

γ(n)α(n)

)
and

∂si2∂si1xn (s)

xn (s)
−
∂si2xn (s)

xn (s)

∂si1xn (s)

xn (s)
= O

(
1

(γ(n))2α (n)

)
hold locally uniformly in s.

Proof. Differentiating equation (4.11) with respect to si1 yields 0 = 1
γ(n)λ

(i1)
1,n +

∂si1
xn(s)

xn(s) λ2,n, so

∂si1xn (s)

xn (s)
= − 1

γ(n)

λ
(i1)
1,n

λ2,n
= O

(
1

γ(n)α(n)

)
by equation (4.11) and Lemma 4.5. W.l.o.g., let i2 ≤ i1. Differentiating once more, now with
respect to si2 , we obtain

∂si2∂si1xn (s)

xn (s)
−
∂si2xn (s)

xn (s)

∂si1xn (s)

xn (s)
=− 1

(γ(n))2

λ
(i2)
1,n

λ2,n
− 1

γ(n)

∂si2xn (s)

xn (s)

λ
(i1)
2,n

λ2,n

+
1

(γ(n))2

λ
(i1)
1,n

(λ2,n)
2λ

(i2)
2,n +

1

γ(n)

∂si2xn (s)

xn (s)

λ
(i1)
1,n

(λ2,n)
2λ3,n.

Applying Lemma 4.5, equation (3.7), and the first result to each term, we conclude the last
claim. �

Property (ii) is now a direct consequence of equation (4.26) and Lemma 4.8, (iii) and (iv) follow
from equation (4.27) and Lemmata 4.9 and 4.8. Property (v) can easily be deduced from equation
(4.28) and Lemmata 4.9 and 4.8.
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