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Abstract

Software Defined Networks (SDNs) represent a new model for building networks,

in which the control plane is separated from the forwarding plane, allowing for cen-

tralised, fine grained control of traffic in the network. The benefits of SDN range

widely from reducing operational costs of networks to providing better Quality of

Service guarantees to its users. Its application has been shown to increase the effi-

ciency of large networks such as data centers and improve security through Denial

of Service mitigation systems and other traffic monitoring efforts.

While SDN has been shown to be highly beneficial, some of its core features (e.g

separation of control and data planes and limited memory) allow malicious users to

carry out Denial of Service (DoS) attacks against the network, reducing its avail-

ability and performance. Denial of Service attacks are explicit attempts to prevent

legitimate users from accessing a service or resource. Such attacks can take many

forms but are almost always costly to its victims, both financially and reputation-

ally. SDN applications have been developed to mitigate some forms of DoS attacks

aimed at traditional networks however, its intrinsic properties facilitate new attacks.

We investigate in this thesis, the opportunity for such Denial of Service attacks

in more recent versions of SDN and extensively evaluate its effect on a legitimate

user’s throughput. In light of the potential for such DoS attacks which specifically

target the SDN infrastructure (controller, switch flow table etc), we propose that

increasing the intelligence of SDN switches can increase the resilience of the SDN

network by preventing attack traffic from entering the network at its source. To

demonstrate this, we put forward in this thesis, designs for an intelligent SDN Switch

and implement two additional functionalities towards realising this design into a

software version of the SDN switch. These modules allow the switch to efficiently

handle high control plane loads, both malicious and legitimate, to ensure the network

continues to provide good service even under such circumstances. Evaluation of

these modules indicate they effectively preserve the performance of the network

under under high control plane loads far better than unmodified switches, with no

notable drawbacks.
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Chapter 1

Introduction

Computer networks fundamentally enable the transfer of information. They have

become integral in both business and leisure in our modern society. From small

home or office networks to the Internet, they allow us to access information and

entertainment and allow us to communicate from any location.

From a business standpoint, computer networks (in particular the Internet) have

become essential to remaining competitive in any industry. Employees everywhere

require the ability to instantly contact suppliers and customers. Management re-

quires the latest information on market status and company performance at their

fingertips to make informed decisions. Businesses are also able to reduce costs and

expand their reach by replacing face to face meetings with communication over the

internet for both purchases and sales.

A myriad of industries are built on computer networks. The rise of E-commerce,

an industry estimated to be worth around 500bn pounds per year from 2011 to

present day [1], is built entirely on the concept of allowing remote access to desired

items or services through the Internet. Connectivity has become intrinsic to the

healthcare industry which must ensure patient records are transferred between sites

in a timely manner and much of academia’s research and collaboration would be

significantly more difficult without the Internet, just to mention a few. Computer

networks enable people to work and play with an unparalleled amount of conve-

nience and efficiency.

The quality of service provided by a network is a large factor considered in im-

24



25

plementing a network. The network must increase convenience or provide some

business edge to its users. The users therefore specify their network requirements

with the expectation that it will provide them with a reasonable level of service

enabling them to carry out their tasks. [2] discusses the necessity of concise and

accurate specification of requirements and outlines metrics for reasonable Quality of

Service (QoS) in some popular network applications.

Network performance can be measured in a number of different ways. One of

the primary measurements used is the throughput/bandwidth [3]. This provides

an idea of the amount of data per second that can be sent across the network

or a network connection (e.g 10MB/s or 1GB/s). It is the most understandable

measurement to general consumers and can provide a good idea of the service that

can be expected (other measurements such as Jitter or Error Rate [2] are also used

among the more technically minded however, for the purposes of this thesis, we

focus on the throughput measurement). As networks evolve, the same metrics of

performance and convenience continue to be used and these “evolved” forms of

networks still have a fundamental requirement to provide good service.

1.1 Denial of Service

Information Systems security is built around the core principles of Confidential-

ity (only authourized users have access to the Information System), Integrity (the

information in the system is accurate and can only be changed by authourized in-

dividuals) and Availability (the system remains available for use to authourized

users) [4]. Denial of Service (DoS) attacks seek to violate the Availability principle

of security by preventing legitimate users from accessing to the system. DoS attacks

are a major hindrance to network performance and involve an attacker performing

some action with the express purpose of reducing the quality of service received by

other users of the network. Motivations for this may range from a desire to earn

respect to financial gain or political reasons [5]. In each case, the aim is to inflict

damage on the victim and the ability to refuse access to an opponent’s resource at

a critical time can be a powerful tool. Attacks can be performed through a range

of methods from simply bombarding a host or link with packets in an attempt to

use up as much of the resource as possible or more sophisticated attacks involving

holding onto a resource (e.g a TCP connection) to ensure other network users are
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unable to connect to it.

DoS attacks have been prevalent in networks since the late 1990s and continue

to bring severe consequences for their victims today. As time progresses, the at-

tacks have grown in number and sophistication. Attackers now often use a number

of hosts under their control to perform the attack in what is called a Distributed

DoS (DDoS) attack and over a six month period starting at the end of 2017 until

early 2018, there were 7,822 DDoS attacks recorded by Akamai, a security company

monitoring the internet [6]. These attacks in particular have been facilitated by the

rise of insecure smart devices connected to the internet. Attackers take over such

devices and use them to generate traffic in their attacks.

In whatever form it takes, an effective DoS attack can prove costly to its victims

as whichever service they relied on within their network is temporarily unavailable.

This inevitably costs business large amounts of money as one of their core functional-

ities has failed. In other institutions this can cost critical time or even lives. In 2014,

the average cost to a business of a DDoS attack was found to be $40000 per hour and

49% of the attacks reported there lasted between 6 and 24 hours [7]. Such attacks

also cause significant reputational damage to a business as the slow service caused by

DDoS attacks makes their website (and by extension their brand) appear unreliable.

1.2 Software Defined Networks

Software Defined Networks (SDNs) are a relatively new paradigm within the field

of Computer Networking in which the forwarding plane and control plane are sepa-

rate. Traditional computer networks have both planes tightly coupled in the network

switches. The switches forward the packets to their appropriate destinations using

various protocols within the switches to determine where the packets should be for-

warded. By contrast, SDNs allow switches to retain their forwarding capabilities but

place the decision-making functionalities of the network (which decide how packets

get from their source to destination) into a separate entity called the Controller.

Since its conception, SDNs, along with its defacto protocol OpenFlow (OF), have

been shown to provide many benefits through their ease of use, fine grained ability
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to control and monitor flows and the ability to automate control through the use of

a diverse range of controller applications. This has given rise to many security and

performance enhancing applications which allowed for a more dynamic and versa-

tile network than traditional deployments. However, due to the lack of autonomy

(defined here as the ability to make decisions independent of other entities) of the

switches, any packet for which the switch does not have a matching flow rule must

be forwarded to the controller for instruction (a flow request).

1.3 DoS Attacks in SDN

Despite these benefits, this new network paradigm presents its own challenges which

threaten to compromise the network security. We define security as the ability to

preserve the Confidentiality, Integrity and Availability security principles within the

network. Denial of Service attacks challenge the Availability principle in particu-

lar, making the network unavailable or available at a severely reduced Quality of

Service to its users. SDNs intrinsically bring about new and unique vectors of attack.

The centralised controller has been identified as a central point of failure which

could cripple the network. This central controller can be subjected to a range of

attacks, particularly DoS. A high number of flow requests can quickly overload the

controller (Controller Saturation) and failure of the controller means no further

traffic can be routed with the network brought to a standstill until the controller is

brought back online or the attack ceases. Additionally, switches have limited mem-

ory for its flow tables, which store information (flow rules) about where to forward

packets. These tables can therefore easily be filled (Table Overflow). If no new

rules can be added to the switch flow table, no new traffic can be routed through

the network. Research has highlighted how a malicious user can attack both these

components to degrade service in the network.

Within the SDN research community several solutions have been put forth to

mitigate Controller Saturation and Switch Flow Table Overflow including controller

distribution, queuing and rate limitations. We explore these solutions later in Sec-

tions 2.8-2.10 and look more critically at some of their shortcomings in Chapter

4.
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1.4 Switch Based Flow Rule Eviction

To help mitigate the Table Overflow issue, SDN developers have implemented a

configuration which allows the switch to evict a flow rule to allow a new one to

be inserted if the flow table is full. Previously, the switch would respond to the

controller with a “Table Full” error message if the controller attempted to insert a

new flow rule into a full table and the switch would drop the flow. The controller

could then remove a rule from the switch and then install the new flow rule, however

this put additional strain on the controller requiring it to perform a number of other

actions. Allowing the switch to automatically evict flow rules marks a change in

the SDN paradigm. By increasing the intelligence of the switch, it is no longer a

“dumb forwarding device” but is able to make decisions itself and contribute to the

performance of the network.

1.5 Thesis Aims and Contributions

This thesis proposes that increasing the intelligence of the SDN switch can improve

the resilience of the network. We define “switch intelligence” as the ability of the

switch to perform tasks autonomously without dependence on the controller. “Re-

siliency” is defined in this thesis as the ability of the network to provide and maintain

an acceptable level of service in the face of various faults and challenges to normal

operation [8]. To demonstrate this, this thesis first analyses initial steps towards

increasing the switch intelligence and then proposes further augmentation to the

switch’s intelligence geared towards achieving the goal of a resilient SDN network.

To give evidence for the merit of this proposal, extensive evaluations are performed

on both the initial analysis and further augmentations. The thesis contributions are

summarised as follows:

1.5.1 Analysis of initial steps toward increasing switch in-

telligence

1.5.1.1 Analysis of flow rule eviction vulnerabilities

Newer SDN implementations reduce the switch’s dependency on the control plane

by allowing it to autonomously select a flow rule in its flow table for eviction in favor
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of a new flow rule. In this thesis, we propose that while enabling the switch to evict

a rule can be beneficial, its current implementation actually opens a new vector for

attacking the network. This thesis provides an analysis of this vector and the effects

of potential DoS attacks aimed at the SDN switch through this vulnerability.

1.5.1.2 Evaluation of alternative flow rule eviction implementations

Having demonstrated the potential threats in the current implementations of switch

based flow rule eviction, this thesis aims to examine the resiliency of alternative

flow rule eviction policies which could potentially be implemented in place of the

current implementation. Taking cues from the cache-replacement problem of CPUs

(Central Processing Unit), the thesis will provide an evaluation of several other

potential flow eviction policies to determine which, if any, are more resistant to

the attacks presented, enabling the switch to retain its newly introduced autonomy

while closing the vector for attack.

1.5.2 Further Switch Intelligence Augmentation

Switch based flow rule eviction represents an increase of the switch intelligence,

defining intelligence as the ability to autonomously perform tasks. By allowing it to

make decisions and perform actions based on these decisions, it is no longer a “dumb

forwarding device”. This thesis aims to build on this concept of switch intelligence.

We propose that instead of making the network intelligence mutually exclusive,

concentrating it in the control plane, increasing the intelligence of the switch can

improve the resilience of the network, helping to protect the network core from

attacks. In keeping with this, we propose high-level designs for an Intelligent SDN

switch. In support of this design, we implement the following features which aim to

address the problem of high control plane loads in SDN networks.

1.5.2.1 Controller Load Distribution

The thesis proposes to enable the switch to distribute its control plane load among

multiple controllers in the control plane, ensuring that no single controller is over-

whelmed with requests from the switch while others are underutilised. This thesis

will describe, implement and evaluate the effects of two load balancer designs built

directly into the switch that will allow the switch to select which controller it sends

requests to in order to optimise the service received.
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1.5.2.2 Filtration of DoS attack packets

Instead of blindly forwarding every request to the controller, this thesis proposes

that the switch should differentiate and drop malicious requests aiming to overload

the controller. This thesis will describe, implement and evaluate the effects of a

filter in the switch which enables it to protect the control plane from such malicious

requests.

1.6 Thesis Structure

This thesis is structured into six individual chapters. Following this introduction

(Chapter 1), we describe in Chapter 2 the rise of SDN from the first discussions on

a separated forwarding and control planes to its modern implementation today. We

discuss the concept and history of Denial of Service attacks on computer networks

and how they have been adapted to cause damage to the various components of

SDN networks as well as some solutions which have been proposed to mitigate these

attacks.

The following chapter, Chapter 3, describes an in depth analysis performed on

initial attempts to restore some autonomy to the switch by way of switch flow rule

eviction. We also evaluate alternative implementations for switch flow rule eviction

to determine which provides most resiliency for the SDN network.

In Chapter 4, we continue to explore the potential benefits of increased intelli-

gence in the switch, proposing further tasks it can perform autonomously. We out-

line a design for an intelligent switch which offers the network increased resilience

against DoS. We also implement modules in the switch aimed at realising some

of these high level designs- providing better performance and security in the SDN

network. These modules are implemented directly into the SDN switch allowing it

to autonomously distribute legitimate flow requests among the available controllers

and filter malicious flow requests to protect the control plane.

In Chapter 5, we present a detailed evaluation of the implemented modules. We

evaluate both the load distribution and the flow request filtering, with respect to the

increase in network performance and security they provide, comparing their outputs
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to an unmodified version of the SDN switch. We use this evaluation to provide

concrete evidence of the benefits of increasing the switch intelligence to aid in the

protection and performance of the network.

Finally, we outline future work which could be done in the area of switch intelli-

gence and present the main contributions and impacts of our work in this thesis in

Chapter 6.



Chapter 2

Thesis Background

2.1 Introduction

Computer Networking is a vast and complex topic with many challenges which have

been visited and revisited over several decades. In this chapter we provide a brief

history of computer networking and how it has led to the current paradigm. We

also look at previous work surrounding the networking challenges we focus on in this

thesis.

In section 2.2 we look briefly at the rise of networking and early routing proto-

cols. As we focus on the aspect of packet routing in the network, we transition from

traditional networks to what has been hailed as the future of computer networking

in Programmable Networks in section 2.3. We look at its progression from early

stages up to the current SDN architecture. In section 2.4 we explore in detail the

SDN Architecture and OpenFlow.

Since the birth of networks, one of the most prevalent attacks has been Denial

of Service in which an attacker attempts to deny legitimate users access to some

service (e.g access to a webserver). We briefly explore in Section 2.5 the Denial of

Service concept and look at various forms it can take as well as some of the miti-

gations which have been proposed for it. This is by no means a holistic coverage

of Denial of Service, but helps add context to the challenges we work on in this thesis.

Finally, in section 2.6 to 2.8 we relate the problem of Denial of Service to Software

32
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Defined Networking. We first look at general vulnerabilities in SDNs in section 2.6

and in 2.7 we look specifically at how Denial of Service attacks can be carried out

against this type of network and their potential effects. In section 2.8 we explore

some solutions put forth for this problem. We review work done in this space which

has shown that this is a significant challenge to the SDN paradigm which must

be resolved before it can be considered complete and production ready to industry

standards.

2.2 The Rise of Networking and Packet Routing

In 1969, DARPA (Defense Advanced Research Projects Agency) created the first

packet switching computer [9]. The first message was sent on October 29th of the

same year from a computer in UCLA (University of California, Los Angeles) to

another in the Stanford Research institute. The programmers there proved it was

possible for two computers to communicate over a large distance and it was the

birth of the information sharing age. By 1976 the network had grown to more than

60 computers [10] and as networks grew, it became necessary to determine where

messages should be sent in order to arrive at their destination. This introduced the

need for routing protocols.

In 1982, the Routing Information Protocol (RIP) was introduced. This quickly

became the industry standard [11]. It was designed for use within small to medium

IP based, internal networks. It used distance-vector algorithms to calculate the best

path through a network for traffic between hosts, focusing on the number of hops

between the source and destination. However, the RIP protocol had several limita-

tions in that it was restricted to a maximum of 15 hops and so its scalability was

low and convergence time, slow. Several newer versions were implemented over the

years introducing features such as capability for subnet routing in 1996 and IPv6

capability in the final version in 1997.

In 1986, CISCO introduced a proprietary routing algorithm for its routers called

the Interior Gateway Routing Protocol (IGRP) [12]. This protocol also used dis-

tance vector algorithms to calculate routes through the network, however a major

limitation was its lack of subnet support (as with early RIP versions). It was suc-

ceeded in 1993 by the Enhanced IGRP protocol (EIGRP) [13] which was able to
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handle classless IP addresses, providing these subnetting capabilities. In EIGRP, a

router sent incremental updates to the other routers in the network about its connec-

tivity, with each router using a Routing Table, Neighbour Table and Topology Table

to store the information it received. Both the IGRP and EIGRP were much better

suited for larger networks than RIP, however CISCO maintained tight control over it.

Open Shortest Path First (OSPF) [14] was originally proposed in 1989 as a re-

placement for RIP. Unlike IGRP, this was not a proprietary protocol confined to use

only in certain devices. Also, instead of using common Distance Vector algorithms,

it made use of Dijkstra’s Shortest Path First algorithm. It not only considered the

number of hops, but the path calculation for packets between a particular source and

destination took into consideration the bandwidth and current load on a link with

administrators allowed to specify the weight of a link. It was also significantly bet-

ter for larger more complex networks than RIP. While this improved on several RIP

issues, it came at the cost of simplicity. RIP was noted for its ease of deployment,

while OSPF required of its administrators some more technical understanding. The

latest version of OSPF was unveiled in 2008 and included support for IPv6.

Finally, in 1990, Intermediate System to Intermediate System (IS-IS) protocol

was released [15]. This protocol was similar to OSPF in that it used Dijkstra’s Al-

gorithm instead of Distance Vector. They were developed by different organisations

and IS-IS was originally designed to perform service on OSI’s Layer 2. Due to the

widespread adoption of the IP protocol, later versions of IS-IS provided support for

the IP protocol like OSPF. IS-IS is widely used by ISPs (Internet Service Providers)

with heavy backbones. Routing information is spread around the network by way

of flooding and each router keeps a database of the network topology.

All of these protocols were known as Interior Gateway protocols and they per-

formed routing within a closed network. Routing between Autonomous Systems

(AS) was- and still is- performed by Exterior Gateway protocols such as EGP (Ex-

terior Gateway Protocol) [16] and the more modern and widely accepted BGP (Bor-

der Gateway Protocol) [17]. These protocols connected the smaller networks that

the other protocols govern, and are widely used on the Internet to exchange infor-

mation among ASes and ISPs today. In all of these protocols (both Exterior and

Interior Gateway protocols), a key characteristic was that routers made their own
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decisions about where to send traffic. That is to say, the control plane that made

decisions about how and where packets were forwarded, and the data plane that

performed the actual forwarding were both intrinsically woven together within the

same device; each individual device had its own control and data plane functions.

The protocols were implemented to enable the routers to exchange information to

ensure that each held an accurate view of the network and could use this information

to conclude individually where packets it received should be sent.

2.3 Programmable Networks

Among the first to propose the idea of a separated control and data plane was

the Open Signalling Group in 1995 [18] in the hopes of making a network “as pro-

grammable as the PC” which would allow new network services to be easily deployed.

They held a series of workshops over several years providing a forum for those in-

terested in this new paradigm to collaborate and discuss ideas for implementation.

They noted at the time that such a concept would be difficult to implement given

that those who provide the networking service cannot easily reprogram the routers

or switches. Nevertheless, they set out to realize the idea of easy network pro-

grammability.

Out of these workshops came one of the earliest forefathers of today’s SDN im-

plementations: the General Switch Management Protocol (GSMP). Among other

things, the protocol allowed network managers to query a switch for port, connec-

tion or QoS (Quality of Service) statistics, delete connections on specific ports and

send configuration messages to learn the capabilities of the switch. Like todays SDN

architecture, it used one or more controllers (external to the switch) to establish and

maintain the state of a switch under its control. Starting in 1998, the final version

of the protocol was completed in 2002 [19].

Also in the late 1990s, the concept of Active Networking was introduced. Active

Networking, as put forth by Tennenhouse and Wetherall [20] proposed the idea of

switches with out-of-band management channels through which a network admin

could program the network. In this concept, “capsules” which were network packets

containing code, could be interpreted and executed by routers/switches. However,

concerns around the practicality, security, safety and performance of this concept
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were raised and Active Networks never gained the traction in industry it hoped

for [21].

Transitioning into the early 2000s, the 4D Project put forth a number of concepts

within the separated architecture. As part of the project, they introduced several

new and key principles in networking which adhered to the new architecture and

boosted the control planes capabilities. The principles gave the control plane a global

view of the network and full control in decision making for packet forwarding [22].

Additionally, the concept of a router whose only control plane functions consist of

information dissemination and executing instructions for packet forwarding config-

urations was put forth [23]. This is very similar to the OpenFlow Agent found on

most OpenFlow capable SDN switches today. Members of the team also advocated

a logically centralized control plane for switches within an internal network which

performed the route selection function for packets within the network [24].

In the late 2000s, the NETCONF (Network Configuration) [25] protocol was

introduced by the IETF which allowed for easier configuration modification within

network devices through an API. The SNMP (Simple Network Management Pro-

tocol) [26] protocol proposed in the late 80s was also used in conjunction with the

NETCONF protocol for configuration. However, these protocols by design lacked

the separation of data and control plane, as with the previous works mentioned.

This combination is worth mentioning however, as they continued to push for easier

configuration of network devices which was a key point of programmable networks.

The final step before the full fledged implementation of what we now know as

Software Defined Networking came in the form of Ethane [27]. The epitome of pro-

grammable networking capability at its time, it gave network managers fine grained

control of the flows on a network switch by use of a centralized controller, com-

pletely detached from the switches. The separated control plane and fine-grained

policy management meant that managers were now able to easily decide the path

a flow should take between two hosts on a network yet efficiently manage several

hundred flows at the same time. Its implementation made use of a centralized con-

troller, an ETHANE switch and a secure channel between switch and controller,

much like what we see in SDN today. While the controller offered limited function-

ality compared to current offerings, it was the birth of the modern control plane.
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Through this brief history, we see that what we know as SDN today is by no

means a new paradigm. While the OpenFlow protocol which has become the defacto

SDN protocol is fairly recent (as we discuss in the next section), the separation of

network control from the forwarding devices is something that has been in develop-

ment for several decades.

2.4 Software Defined Networking and OpenFlow

While the ideas surrounding programmable networks were novel and exciting, show-

ing many benefits and huge promise to revolutionize the networking field, for the

most part they remained consigned to the research sphere. Most commercial net-

works continued to employ traditional switches whose control and forwarding ele-

ments were tightly coupled together. This was partly due to the lack of widespread

protocols which facilitated the programmable networks. Additionally, vendors who

had spent years perfecting their individual switches’ proprietary internal circuits

and algorithms were uncomfortable opening up the interfaces to the experimenta-

tion and external tampering necessary to bring about programmability.

In 2008, McKeown et al put forth the OpenFlow proposal [28] to allow easy

and efficient separation of experimental and production traffic in the same network

which enabled researchers to conduct experiments on realistic networks. This proto-

col was proposed and implemented to provide a standard for communication between

switches and controllers and over the past decade has become the de-facto protocol

of SDN [29]. The OpenFlow creators noted that a key part of programmability is

the ability to control and direct flows. They also noted that most ethernet switches

contain a flow-table which stores these flows. Combining these two principles, they

created the OpenFlow protocol to allow an external entity (controller) to directly

manipulate and configure the flow table within Ethernet switches. They specified

the external representation of flows with a set of associated attributes for each and

the commands used to query and configure the flow table. With the protocol in

place, vendors were now free to keep the inner workings of their products hidden

while offering a well known external interface for configuration.

Previously in 2003 the IETF proposed and implemented the ForCES (Forward-
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ing and Control Element Separation) protocol for programmable networks [30]. One

of the key differences between the ForCES and OpenFlow architectures is that while

there exist two logically separate entities in the forwarding and control elements, the

ForCES architecture keeps both entities very close together (on the same device or

in the same room) while the OpenFlow architecture allows for any amount of dis-

tance between the two. The ForCES protocol uses Logical Function Blocks which

takes the place of OpenFlow Flow Tables and is programmed by a control element

to instruct the forwarding element on how to process packets.

The Open Network Foundation defines SDN as a network architecture in which,

“...the control and data planes are decoupled, network intelligence and state are

logically centralized, and the underlying network infrastructure is abstracted from

the applications.” [31]. While ForCES was proposed first and continues to be an

active protocol for SDN, OpenFlow has become the most widely adopted imple-

mentation in the SDN networks we see today. Implementation of the OpenFlow

protocol opened up the field for testing of new protocols and services on the net-

work. Network administrators could easily partition experimental and production

traffic ensuring that one does not affect the other [32]. This allowed researchers to

begin experimenting with new ideas on production networks, attaining credible re-

sults. OpenFlow has also seen industrial deployment in Microsoft’s public cloud [33]

and Google’s backbone network connecting its datacenters around the world [34]

among others. In light of that, we focus our efforts primarily on OpenFlow in this

thesis and refer to the Openflow version when the term “SDN” is used.

2.4.1 The OpenFlow SDN Architecture

The OpenFlow protocol provided a specification for communication between an SDN

switch and Controller. Due to its proximity specifications (or lack thereof) between

the forwarding device (switch) and the control element (controller), the OpenFlow

architecture additionally specifies a secure channel between the controller and the

switch. Thus, the OpenFlow SDN architecture actually has three key elements, as

illustrated in Figure 2.1:

• Controller

• Controller- Switch communication channel
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• Switch

Figure 2.1: SDN Architecture

We provide a general discussion of each of these here and explore security issues

with each later on in this chapter.

2.4.1.1 Controller

One of the key characteristics of SDN is the logically centralized controller. The

modern controller not only provides a central control point for the flows in the net-

work but also provides a platform for launching other network services. Essentially

the controller functions as a network operating system [35] upon which various appli-

cations can be run which provide the network services. Some of the more currently

widely used controllers include RYU [36], OpenDaylight [37] and Floodlight [38].

The applications typically interact with the controller via a Northbound, REST

API (Representational State Transfer Application Program Interface). The con-

troller provides hooks which allow applications to perform queries and issue com-

mands to the switch. These applications provide services such as traffic routing (e.g

a mac learning switch application) and QoS guarantees. Many provide security ser-

vices such as DDoS or scanning detection and protection by monitoring and filtering
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the traffic coming into and moving around the network. We explore several such

applications later in this chapter.

The controller interacts with the switch via the southbound interface [39]. In

OpenFlow networks, it interacts with the OpenFlow Agent residing on the switch.

As mentioned before in the discussion on programmable networks, the switch itself

contains a very limited control plane which exists for the purpose of interacting

with the controller. This is the OpenFlow Agent. Over time, the evolution of the

OpenFlow protocol has created more functionality between the controller and the

switch, however the basic interactions have remained the same. The controller can

issue commands to install flows, remove flows and query the status of the flow table

which gives it the flows existing in the switch along with various statistics associ-

ated with them (such as the number of packets that have passed through them).

Using these commands, the controller exercises complete control over the network

and through it, the applications perform their functions.

2.4.1.2 Controller-Switch Communication Channel

The communication channel is described as a secure channel which connects the

OpenFlow switch to the controller [40]. It provides a medium over which the con-

troller configures the switch and the switch provides information to the controller.

The protocol leaves the implementation to the discretion of the network administra-

tors. Conventionally, wired Ethernet is used, however wireless [41] and even cellular

links [42] have been proposed.

2.4.1.3 Switch

The Switch is responsible for forwarding packets around the network. In a pure

SDN architecture, the switch does not make its own decisions about how to route

packets but receives such decisions from the controller. In this regard, the switch

has often been referred to as a “dumb” device. The SDN switch has several funda-

mental attributes:

OpenFlow Agent:

The OpenFlow Agent (OFA) is a piece of software on the switch that interacts with
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the controller using the OpenFlow protocol [43]. The OFA provides the interface

between the switch and the control plane. It is responsible for crafting packet-in

messages to request flow rules from the controller and inserting the flow rule issued

by the controller into the flow table. On a more general note, it is responsible for

responding to controller instructions on the switch. It provides the minimal control

plane functions on the switch as specified above.

Flow Table:

The switch Flow Table stores rules providing information on how to route packets

which arrive at the switch [40]. Since the switch in itself makes no decisions, the

controller is responsible for populating the switch Flow Table by installing or re-

moving rules from it. Each rule contained in the switch flow table consists of several

attributes (Figure 2.2 shows a sample). These include the packet header field values

with which the rule is concerned, the number of packets and bytes which have used

the rule, the length of time it has been in the switch and the actions the switch must

take for any packet that matches said rule.

Figure 2.2: SDN Flow Table Example
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TCAM (Ternary Content Addressable Memory):

TCAM is used to support the flow tables in the switch for fast lookup of flow rules

when forwarding packets [44]. TCAM is unfortunately very expensive and this limits

the amount of memory the switches hold. TCAM flow tables are often restricted to

holding a few thousand flows which is less than ideal in large networks. We explore

further why this is a problem later in this chapter.

Data Plane:

The Data Plane is located within the switch and handles the forwarding of packets

to the next hop in their path. When a packet arrives at a switch, the switch’s data

plane consults the flow table for instructions on how to handle the packet. If the

packet’s header fields match a flow rule in the flow table, the switch performs the

action associated with that flow (e.g flood, drop or forward out of a specific port).

In the event that the packet’s header field values do not match any flow rules in

the Flow Table, the packet is passed to the OpenFlow Agent in the switch which

prepares a query for the controller on how to handle this packet. Application-

Specific Integrated Circuits (ASICs) within the switch provide high performance

packet switching within SDN switches. Some well known ASIC providers include

Cisco, Huawei, Juniper [39].

2.4.2 OpenFlow- A Protocol for Programmable Networks

The OpenFlow protocol provides a description of the requirements of an SDN Switch

and specifications for communication between SDN switches and controllers. Since

its conception, OpenFlow has had several versions, each upgrading its functionality

and improving on previous versions. OpenFlow 1.0 was the first official version

implemented in switches however, several previous (unused) drafts of the protocol

were proposed.

2.4.2.1 OpenFlow 1.0

OpenFlow compatible switches were required to have at least two elements: A Flow

Table and a secure channel to the controller. The first version of OpenFlow [40]

defines a single flow table within the switch which held instructions for all the flows

passing through the switch. Any packet arriving at the switch has their header fields

compared with the flow rules in this flow table. If the packet matches a rule, the
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instructions associated with the rule are applied to it. Any packet not matching a

rule in the switch is either dropped or forwarded to the controller for instructions.

As mentioned in Section 2.4.1.3, OpenFlow 1.0 introduced Flow rules or Flow

Entries in the switch Flow Table which consist of three elements: Header Fields,

Counters, and Actions. The Header Fields are used to match incoming packets to a

rule. They include attributes such as Source and Destination IP addresses, Incoming

port and Protocol Type. Counters keep track of various flow statistics such as the

number of packets and bytes that have used that entry. Actions provide instructions

to the switch on how to handle packets matching a given flow. Actions include For-

ward, Drop, and Modify-Field which allows the switch to modify the header fields

of packets. OpenFlow 1.0 lists a set of actions, a subset of which are “Required”

which a switch must include to be considered “OpenFlow Compatible”.

The protocol additionally enables a set of well defined messages between the

switch and the controller. These messages firstly enable the switch to connect to

the controller and register itself to the network. The protocol also includes messages

to allow the controller to add, modify and remove flows from the flow table, request

switch features or the status of the flow table from the switch, and for the switch

to notify the controller of an unmatched packet, a flow that has been removed or a

port state change. Messages can be Symmetric or Asynchronous.

2.4.2.2 OpenFlow 1.3

Because OpenFlow was hardwired into switches hardware, updating the protocol

between versions was not as easy as updating software on a computer. Vendors

therefore complained that versions were being released faster than was practical to

deploy and for the most part, did not widely implement versions between 1.0 and

1.3. Nevertheless, the subsequent versions continued to build on each other, each

adding functionality not previously seen. For brief examples, Group Tables and

Group processing were added in OpenFlow 1.1 [45] which allowed for multiple ac-

tions to be performed on packets. Openflow 1.2 [46] further built on this by adding

IPv6 support and support for extensible matches.

OpenFlow 1.3 [47] was the second version of OpenFlow to be widely adopted

by vendors. Unless otherwise specified, this is the version of OpenFlow to which



44

we refer in this chapter. By OpenFlow 1.3 several significant improvements had

been made to OpenFlow 1.0. One major addition was the support for multiple flow

tables (while 1.0 had only one) [48]. Multiple flow table brought several benefits

to the network. For one, network admins were able to perform packet matching

using different header field sets. Additionally, OpenFlow 1.3 made MAC Address

Learning and Reverse Path Forwarding Checks significantly easier. These carried

many implications for security solutions arising from SDN. It carried support for

IPv6, tunneling and gave more fine grained statistics for the flows in the switch.

An upgrade in the protocol also meant the controllers which interacted with the

new switches needed to be updated as well. Many developers used this opportu-

nity to create entirely new controllers such as RYU [36]- a single threaded python

controller realeased in 2012, and the OpenDaylight project [37] which released its

first version in 2013. Despite their late release (with respect to the existence of

OpenFlow), these controllers included backward compatibility for previous Open-

Flow versions. Others such as Beacon [49] upgraded their functionality to support

the new protocols. One of the original controllers that was present at the advent of

SDN, NOX [35] recently received a complete revamp.

2.4.2.3 OpenFlow 1.4

One of the most notable additions to the OpenFlow protocol at version 1.4 is the

slight increase in switch intelligence [50]. OpenFlow 1.0 touted the switch as a dumb

forwarding device, whereas OpenFlow 1.4 imbued it with the ability to decide to

actively evict flows without the direct intervention of the controller.

The issue of Flow Table Overloading has been highlighted as an attack on the

network in several works and indeed can become an issue even during benign cir-

cumstances [51]. In previous versions of OpenFlow, when the table becomes full

and the controller attempts to add another flow, the switch would respond with a

Table Full error message. The controller would have to directly issue a flow removal

command (which may also involve a Flow Table query to determine what flows

are in the switch and which to remove) before attempting to insert the flow again.

Alternatively, the controller would have to wait until a flow expired before it can

add another flow. Both of these options incur significant delays and dropped packets.
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OpenFlow 1.4 attempts to mitigate this issue by giving the switch the ability to

remove the oldest flow in its flow table before adding the new flow. This reduces the

number of messages that need to be sent between the controller and the switch and

the minimises computational resources on the controller in the exchange. We focus

on this particular aspect of the OpenFlow protocol in this thesis as we highlight the

effects of DoS attacks and propose potential solutions.

We note that Pica8 [52], a prominent SDN switch vendor has already imple-

mented support for OpenFlow 1.4 in its switches but it is yet to receive widespread

adoption. However, we can assume that future versions of the protocol will include

the eviction aspect for the foreseeable future and as vendors implement upgraded

versions, their switches will also have this capability 1.

2.4.3 Beyond Openflow: Stateful SDN Data Planes

One of the intrinsic characteristics of OpenFlow SDN is that the switch is fully re-

liant and dependent on the controller. While this is in many ways useful, it has in

itself several setbacks that we identify later including high communications between

the switch and the controller (as the switch must go to the controller each time it

needs instruction).

In the interest of reducing such communication overhead between the switch

and controller, the idea of Stateful SDN switches was introduced. Such switches

store more information than basic SDN switches and can independently reconfigure

forwarding rules based on the state of the traffic. The switches often store various

historical information (state) on a flow based on the packets and make forwarding

decisions for the flow based on its current state. These stateful switches still retain

dependency on the controller by allowing the controller to define the forwarding

decision options which the switches choose from when determining the change in

forwarding action based on the state.

While we focus on Openflow SDN in this thesis, we briefly describe some of the

work done in Stateful SDN switches here for completion, since our ideas of an in-

1OpenFlow 1.5 [53] is the latest publicly available version at the time of writing and also includes
the flow eviction capabilities.
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telligent Openflow SDN switch share similar attributes with Stateful SDN switches.

However, while Stateful switches divert from the Openflow protocol, this thesis

implements additional functionality in conjunction with the protocol, creating an

avenue for easier adoption as Openflow continues to be the most widely used and

de facto protocol for SDN.

Several works have been proposed in this area, some of which we briefly describe

here. Openstate [54], SDPA [55] and Fast [56] are platforms which utilize tables in

the switches to store various state and transitional information for the flows. The

tables store information providing instructions on criteria for transitioning between

one state and another, each flow’s current state and the actions associated with each

state. Packets arriving at the switches have their headers cross-referenced with the

information in these tables to determine if a state change is required for the flow and

the switches determine which forwarding actions are appropriate for each flow based

on the state each packet brings it to- all without needing to consult the controller.

Several switch programming languages have also been proposed, two of which

we discuss here. P4 [57], a language for switch configuration, allows for stateful

packet processing by switches regardless of the physical attributes of the forwarding

device it is deployed on (target-independent) and enables the switch to parse new

header fields. P4 allows programmers to configure the fields parsed by the switch, the

actions taken by the switch, and how the switch should process the packets. By con-

trast, the Domino programming language [58] provides a programmable instruction-

set specifically to accompany the Banzai hardware switch, a line-rate programmable

switch put forth by the same researchers. Banzai uses “atoms, a vector of processing

units, which stores state variables for each packet and enables stateful processing of

packets each clock-cycle. The programmers therefore only need concern themselves

about operations on a single packet and need not worry about state access conflicts

since the operations are atomic. While P4 is compatible with multiple hardware

switches, Domino is built to accompany the Banzai switch which supports a limited

number of packet headers and operations. Nevertheless, both of these indicate the

promise of stateful programming for SDN switches. In a more general sense, the

field of Stateful SDN dataplanes shows that the research community recognizes the

need to explore additional functionality for the SDN switches, moving away from

the “dumb forwarding device” paradigm.
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2.5 Denial of Service Attacks and Network Secu-

rity

With the rise of computer networks, the prevalence of malicious behaviour within

networks has also grown. Such malicious behaviour can now come in several forms

including Worms, web based attacks and Man In the Middle attacks. One of the

most popular types of malicious behaviour today is Denial of Service attacks. De-

nial of Service (DoS) attacks are explicit attempts to prevent legitimate users from

accessing a system or service by reducing availability [59]. Given the importance of

computer networks as highlighted in Chapter 1, DoS attacks can present a serious

threat to the various organisations that rely on computer networks.

One of the earliest examples of DoS attacks was recorded in February 2000 when

several high profile web-sites including Yahoo and Amazon were shut down by a

series of Distributed DoS attacks. This helped bring the problem of DoS to the

forefront of cyber-security discussions [60]. DoS attacks began to receive a signifi-

cant amount of attention from the security community, and in 2001 a study into the

prevalence of DoS attacks was conducted [61]. Using a backscatter analysis tech-

nique that looks at victim responses to attack packets, the researchers were able to

roughly determine when an attack was in progress. Within the three-week dura-

tion of the study, they observed almost 13000 attacks with more than 5000 distinct

targets in over 2000 organizations. This study began to shine some light on how

widespread the problem was and how badly it warranted attention and solutions.

The traditional DoS attack is often thought of as a high volume stream of traffic

being sent toward a server [60] though in reality it can take many different forms,

each devastating in their own right [5]. A Denial of Service attack can be as simple

as disconnecting the power source of an important host on the network to more com-

plex attacks such as the infamous SYN attack which consumes the number of open

TCP connections a server can maintain, stopping legitimate users from establishing

a connection [62]. The attack victims may be a network host, a specific application,

or the network itself. In this thesis we explore the network infrastructure-targeted

attack. Within the traditional DoS space, similar examples to the ones we explore

in this thesis include the Coremelt [63] and Crossfire [64] attacks in that they target
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specific links or switches to deny connectivity to a particular service on the other

side.

Attackers who mount DoS attacks against a particular host, network or service

may do so for a variety of reasons. They may be motivated by revenge, personal

economic gain, ideological beliefs or may simply desire an intellectual challenge [65].

They often take several steps to conceal their attacks, yet amplify them so that

they are as effective as possible. Attackers may use multiple hosts (Distributed DoS

Attack) or even intermediate networks [66] to amplify the effects of their attack. To

hide their identity and potentially avoid repercussions, attackers often spoof their

source addresses to ensure the real source of the attack is not revealed. In a further

effort to avoid detection, attackers may vary the rates of attack over time to attempt

to subvert some detection mechanisms.

Despite the prevalence and attention of DoS attacks, the most common theme

among them is that they are difficult to solve. This is in part due to the range

of variation the attack can take but more so, it has proven incredibly difficult to

distinguish and filter DoS traffic without affecting the traffic of legitimate users. Us-

ing various stealth methods, DoS attackers often find innovative ways to hide their

traffic so that it closely resembles legitimate users’ traffic [67]. Attacks continue to

increase in frequency, impact and sophistication while effective defenses lag sadly

behind.

Over the past two decades, a myriad of solutions have been proposed for DoS

attacks with varying degrees of success, however none have been established as com-

plete solutions which remove the issue entirely. Some defenses proposed attempt to

guarantee fair resource distribution among well-behaved users, so that no one ma-

licious user is able to prevent legitimate users from getting service [68][69]. Others

focus on identifying the attack as early as possible using anomaly detection systems

on the packet and flow statistics, for example [70][71][72]. Others still either scale

up the resources or reconfigure the network in an attempt to handle the DoS attack

(not prevent or filter it) and still provide service to legitimate users [73][74] as op-

posed to those who attempt to filter the attack traffic [75].

Many solutions deploy their DoS prevention systems at the host at which they
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expect the attack [76], while others augment the abilities of the router to recognize

and mitigate the attack [77][70]. Others still attempt to mitigate the attack as close

to the sources as possible [78][79], but this is far more difficult as it requires co-

operation from entities with little concern for the victim’s well-being.

With its centralized control (as described in Section 2.4.1), SDN brings new op-

portunities for DoS defense. Several works make use of SDNs ability to monitor

and finely control the networks flows to detect, filter and/or redirect attack flows.

For example, some SDN solutions monitor the traffic flows [80][81] and flag any that

look suspicious [82][83]. Others can go a step further and utiilise SDN to reroute

flows to mitigate the attacks [84][85].

While in many ways, SDN is ideally suited for detection and mitigation of DoS

attacks seen in traditional networks, the new paradigm brings in itself new vul-

nerabilities for DoS attacks [86]. Most of the solutions proposed for DoS attacks

in traditional networks are not applicable to SDN focused DoS attacks which may

make a point of targeting the controller, the controller switch channel (neither of

which existed in traditional networks) or the switch flow table which is necessarily

limited in SDN. In many cases, these SDN focused DoS attacks lack the charac-

teristics which traditional DoS attacks monitor for (e.g unusually high numbers of

packets to a specific server). Due to this, traditional DoS solutions may miss SDN

focused DoS attacks in progress and provide a false sense of security to network

users and administrators.

Because of this we are forced to explore new solutions to tackle the problems

SDNs are faced with in order to bring the SDN paradigm to completion. In the

following section we discuss some of the vulnerabilities that have been highlighted

in SDN, giving a brief general overview of the issues and focus specifically on the DoS

vulnerability and some of the solutions put forth to mitigate this in the subsequent

sections.

2.6 Software Defined Networking Vulnerabilities

With the introduction of OpenFlow, SDN overcame a great hurdle to break into the

industrial field. The vendor acceptance of the protocol and its ease of use meant
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that it could make a reasonable argument for industrial deployment. Add to that

the extensive benefits the new paradigm had shown and it seemed almost a foregone

conclusion that this new type of network was on the brink of usurping its prede-

cessor. However, as researchers began to look more closely at the SDN it became

evident that this new design created in itself a host of new vulnerabilities.

The network infrastructure, due to the separation, if not properly secured opens

itself to a range of attacks from eavesdropping to DoS attacks. The lack of manda-

tory authentication between the switch and controller provides the potential for

Man in the Middle and eavesdropping attacks [87]. Lack of separation of privileges

and authorization of controller applications can give rise to major issues [39]. Such

vulnerabilities would allow attackers to insert fraudulent switches or controllers into

the network and order to monitor or control traffic at their will.

Malicious entities can cause wormholes and blackholes in the network by at-

tacking the switch, potentially compromise the administrator station housing the

controller [88] or use various side channel attacks to learn the network state [89].

Attackers can also use fake traffic flows to DoS the control plane [88] or fill the switch

with arbitrary flow rules such that new, legitimate flows cannot be installed [89].

Such attacks, as discussed later, have the ability to significantly degrade the service

provided by the network. We focus our efforts in this thesis specifically upon these

last issues but it is helpful, for context to briefly discuss the overall failings of the

SDN paradigm to show it is not yet in a position to replace traditional networks.

2.7 Denial of Service Attacks in Software Defined

Networks

As previously highlighted, DoS attacks have long been a major vulnerability of com-

puter networking. They are high impact attacks which require little knowledge and

expertise to carry out but effectively manage to disrupt service to legitimate users.

With the transition to a new paradigm, SDN networks carried over this issue and

opened up in themselves new opportunities for attackers to restrict legitimate users’

use of the network.
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Several early works within the SDN and Network Security community high-

lighted the possibility of DoS attacks in SDN and explored it from various angles.

Kloti et al [89] were among the first to bring this issue to the forefront. They anal-

ysed the OpenFlow protocol using the STRIDE (Spoofing, Tampering, Repudiation,

Information disclosure, Denial of service, Elevation of privilege) methodology and

concluded that an attacker could launch a Denial of Service attack that would over-

load both the flow tables and the controller. In a reactive SDN network, by creating

a large number of packets with slightly different header fields, the attacker would

cause the switch to forward a high number of packet to the controller. This could

potentially overload the controller and fill the flow table with rules which prevent

legitimate users’ rules from being installed. Similarly, [88],[87] and [39] identified

the threat of malicious flows which could be used to exhaust controller and switch

resources. These identified vulnerabilities which, if exploited, would bring a halt

to the operation of the network due to the controller being too busy to create new

rules and the switch being unable to install new rules meaning no new traffic could

be routed through the network.

2.7.1 SDN DoS Attack Definition:

For the purposes of this thesis, we define the SDN DoS attack as an attacker sending

a large number of unique packets to the switch, triggering flow requests to the

controller.

The are four major elements of the OpenFlow SDN architecture which can be

targeted for a DoS attack [43]

1. Controller

2. Controller-Switch Communication Channel

3. Switch OpenFlow Agent (in charge of issuing flow requests and installing flow

rules)

4. Switch Flow table

The target element of the architecture may determine how the attacker performs

the attack. An attacker whose target is the flow table, aims to fill the flow table

to ensure that no new flows can be added to the switch allowing new traffic to be
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routed. By contrast, an attacker whose target is the controller aims to overload the

controller resources so that it cannot add legitimate flows to the switch. While the

concept of the attack remains within the definition specified above, for each target

an attacker may carry it out in a different way.

2.7.2 Reconnaissance

To facilitate their DoS attack, an attacker may perform reconnaissance before the ac-

tual attack to glean information about the network configuration in order to make

their attack as effective as possible. SDNs protocol of sending the header of the

first packet (to the entire packet if the switch buffers are full [90]) of a flow to the

controller exposes a vulnerability for side channel attacks. The diversion to the

controller causes a delay in the first packet and attackers monitoring for this delay

can infer several factors about the network.

In its simplest form, the initial delay can help an attacker determine whether

the network they are about to attack is in fact an SDN network [91]. Further

investigation using active probing can give attackers an idea of the timeout (time

until the flow rule expires and is no longer in the switch) attributes and flow rule

fields of the rules in the network [92] and in some cases which rules are and are

not in the switch [93]. Once they have determined this, they are able to infer how

their packets must be crafted to generate flow requests to the controller and new

rules put into the switch. Attackers can also determine the size of the flow table

(which is a key factor in attacks that seek to overflow the TCAM), whether or

not the controller is actively removing flows in the event of a filled table and if

so, the algorithm being used to select a flow for removal (e.g First In First Out,

Least Recently Used) [94]. However, it should be noted that the accuracy of these

side channel attacks is heavily dependent on the background traffic surrounding the

probes at the time of the attack.

2.7.3 Controller

Often called Controller Saturation or Control Plane Saturation, this attack occurs

when an attacker repeatedly sends packets to the switch which generate flow requests

to the controller. The high rate of the flow requests to the controller exhausts the

controller’s CPU and memory resources [95]. This makes the controller unable to
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service flow requests for legitimate traffic [43] causing the switch to drop packets.

The network user’s ability to influence the work a controller does makes the most

essential part of the network an open vector for attack by design. Attacks on the

controller can render the network inoperable and the effects of this attack can be

exacerbated in large networks with lengthy flow paths. Paths which must encounter

multiple switches can generate flow requests at each hop so that the attack’s effect

is multiplied [96]. While all controllers have an upper limit of requests they can

handle before being overloaded, different controllers give varying performances under

attack. For example, when compared against each other, under attack ONOS was

found to give the worst performance with RYU performing better than ONOS while

Floodlight recorded the best performance [97].

2.7.4 Controller Switch Communication Channel

One of the effects of the DoS attack on SDN networks is congestion of the controller-

switch communication channel. When a switch receives a large number of packets

for which it has no flow rules in a short time, its buffer gets filled. When this

occurs, the switch forwards whole packets to the controller instead of just the packet

headers [43]. This leads to congestion in the switch controller channel and can

increase the delays in installing new flow rules. As the delays to install legitimate flow

rules increase, packet loss in their traffic also begins to increase significantly [98]. An

attacker can trigger this congestion effect by sending packets triggering flow requests

at a high enough rate to overflow the buffers and consume the bandwidth [99].

2.7.5 Switch OpenFlow Agent

The OpenFlow Agent (OFA) is the component of the switch in charge of interacting

with the controller. On hardware switches however, they often run on relatively

low-end CPUs (compared to modern server CPUs on which their virtual counter-

parts are often run), limiting the number of flow requests they can generate and

flow installations they can perform per second [43]. Some hardware switches have

been shown to have limits of less than 1000 requests per second [100]. This therefore

makes the OFA a bottleneck in the architecture and an attacker who overloads this

can cause the switch to drop packets for flows it is unable to generate requests for,

thus affecting the legitimate traffic.
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Furthermore, in switches where a central CPU does the work of both the OFA

and the routing of the packets (e.g software switches), the overloading of the OFA

may affect the routing as the switch CPU exhausts its resources on control plane

activity [97]. Under attack, the CPU can spend its resources installing and removing

rules and sending flow requests such that its packet routing is no longer done at

optimum rates and packets of legitimate flows are dropped. Again, it has been

found that the controller in question for the network plays a major role in the

effects of the attack as communication with some controllers demand more CPU

resources than others (e.g ONOS was found to incur less CPU load on the switch

than Floodlight under high packet in rates [97]).

2.7.6 Switch Flow table

The aim of attacking the switch flow table is often to restrict new flows from being

added to the network. Switches’ limited amount of TCAM memory often means

that the flow tables are restricted to a few thousand rules per switch [101]. In

the current widely adopted version of OpenFlow (v1.3), flow rules inserted into the

switch are only removed if they expire, or if the controller explicitly removes them.

Thus, barring the latter, an attacker can fill the switch with rules to ensure that no

new rules can be placed in the switch to allow new traffic to be routed [43].

Any new commands for flow rule insertion from the controller will be met with

“TABLE FULL” errors and the command rejected. Additionally, filled flow tables

can result in reductions to the bandwidth and a significant amount of dropped pack-

ets [102] if flows are instead routed through the controller. The attack can come

from both a malicious host creating a large number of flows to overload the switch

or a malicious application sitting on the controller creating arbitrary rules in the

switch [103].

As previously discussed, an attacker can perform reconnaissance attacks in prepa-

ration which give information about the network configurations. If they are able to

determine the configuration for rule expiry, they are able to determine the bare

minimum rate they need to send packets in order to keep their rules in the flow

table [92]. This makes the attack stealthy and unnoticeable enough to fly under

most anomaly detection systems for SDN, which rely on detecting abnormal rates
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of flow requests. Use of a botnet further disguises the attack by distributing the

source addresses so that it appears to be regular low frequency traffic [90].

Since aside from direct controller intervention, expiration is the only mechanism

of removing a rule from the switch (OF1.3), the expiration configuration can play

a large role in the effect of the attack. The time a rule is allowed to remain before

expiration is called its timeout value. Long timeout values prevent new rules from

being installed at the expense of stale flows- this works in the attackers favour as

they are able to hold their positions in the flow table for longer with minimum

interaction. Short timeout values however forces the switch to repeatedly make

flow rule requests for previously known flows- this works against the controller as it

increases the number of flow requests the controller receives [98].

2.8 Denial of Service Controller Based Solutions

Many solutions turn to the controller for help in the event of a DoS attack. At first

glance this appears to be intuitively the best point of defence since the controller

makes decisions for the network, has a global view, and seems to be in the best

position to mitigate the attack. Thus, several solutions to protecting the network

against DoS from the controller vantage point have been proposed.

We also include some solutions to generic (non-SDN focused)DoS attacks that make

use of the SDN paradigm here because even though they are not intended to pro-

tect against SDN specific DoS in one of the four identified target areas above, their

methods of protection also inherently offer protection for those target areas.

2.8.1 Monitoring

Several solutions propose entropy based detection of DoS attacks. In these, the

controller looks for either a sudden rise or fall in the entropy of one of the packet

header attributes being sent to it as flow requests. Mousavi and St-Hilaire [104]

propose using the controller to monitor the incoming packets and the entropy of the

destination addresses within a given window of requests. If the entropy drops below

a given threshold, the controller concludes that an attack is in progress. This system

assumes that the attack is targeting a host such as a web server within the network
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and not one of the aforementioned targets. Despite this, a side effect of the attack

they focus on is that the controller receives a large number of flow requests and

the flow table is filled, due to many sources (bots) sending flows into the network.

Thus they are also attempting to mitigate SDN focused DoS. They achieve a very

high detection rate (between 96%-100% in their experiments) which lends signifi-

cant credit to their solution. Similarly, [105] has a middle box which caches packets

and sends packet headers to the controller in the event of a suspected attack. The

controller performs entropy based analysis on the packet headers and places rules

into the switches to mitigate the attack. While the researchers in this work do not

provide extensive results, their singular result indicates promise in that it was able

to reduce the processing time of the table-miss packets under attack. Both solutions

that look at entropy of packet headers may be limited to an attacker external to

the network however (a factor that we address in the following chapters), and may

find difficulty in detecting an attacker within the network who can alter their packet

headers without affecting the entropy of the overall traffic in the network.

2.8.2 Machine Learning

Several solutions at the controller use Machine Learning algorithms to detect DoS

attacks. As part of their system, FloodDefender [99] uses an SVM (Support Vector

Machine) classifier to identify malicious flows in the switch. It uses the presence

(or lack thereof) of a reverse flow (including the packet and byte counts for both

the flow and its corresponding reverse flow) to classify it as malicious or benign. In

evaluation, FloodDefender showed improvements in network bandwidth through its

detection and mitigation mechanisms which are further discussed in Section 2.8.3.

[106] also proposes the use of SVM classifiers for controllers to identify DDoS at-

tacks in the network. It uses Source IP, Destination IP, protocols, and Source and

Destination Port as attributes for classification. It proposes its system as a solu-

tion to the problem of controller and table saturation but does not test the system

with attack traffic that contains this specific attack. Additionally, some of these

attributes can be spoofed by an intelligent adversary to subvert the defense system.

While the researchers presented limited results, they were able to show that their

SVM system produced a high detection rate when compared to other algorithms.

[107] goes a step further using SVM classification but adding to it Self Organising
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Maps to classify those flows for which the SVM classification produces vague or

ambiguous results. The system regularly polls the switch for the flows in the flow

table and extracts from them features over which it performs a quick SVM classifi-

cation. Any flows whose classification result is ”vague” is subjected to further SOM

(Self-Organizing Map) classification which is slower but more accurate. However,

polling the switch may not be the most effective method of gathering statistics under

attack as the controller-switch communication channel can be congested, hindering

controller-switch communication. The researchers show that their methodology of

combining SVM and SOM produces a higher detection rate than either of those

methods on their own- SVM and SOM produce a 92.33% and 93.49% detection

rates respectively, while the combination of both produces 96.03% detection. The

combination also results in less work being done by the CPU than the individual

methods by as much as 15%-20%. [108] uses neural networks as its classifier, ex-

tracting features such as packet count, byte count, packet rate, byte rate and the

survival time of the flow. While this system is one of those originally meant to

mitigate generic DDoS attacks, it may also be applicable for SDN specific attacks.

Using its “packet in trigger”, its experimental results show the ability to quickly

detect high volumes of packet in messages which is useful for SDN focused attacks.

2.8.3 Thresholds

Systems may also use thresholding to detect and prevent an attack. The initial

detection stage of FloodDefender [99] involves a filtering module which uses thresh-

olds on packet-in frequency to detect and filter out attack traffic. Flow requests

that repeatedly appear above a user defined frequency are defined as malicious and

dropped before the second stage of SVM classification mentioned above. Flood-

Defender shows significant success in its software environment where it is able to

restrain the effects of the attack to a 35% drop in bandwidth while the native SDN

environment’s bandwidth drops to 0% under attack. It is also able to protect the

SDN switch flow table better than other solutions by minimizing the attacks’ effect

on the available flow table space. Flowkeeper [109] similarly has a middlebox to

which unmatched packets are diverted which attempts to filter out malicious pack-

ets by monitoring the frequency of the flow use before sending the request to the

controller. It sets thresholds for low and high frequencies. Low frequency flows are
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filtered out at the middlebox as malicious, high frequency rules are allowed to stay

in the network as legitimate rules. Those that fall in the middle are sent to an

app on the controller for further analysis. Under attack, Flowkeeper was able to

preserve approximately 80% bandwidth, however the attributes it assesses to deter-

mine the legitimacy of a flow are easily spoofable by attackers attempting to subvert

their solution. [110] indicate that their analysis of DoS attack data show that IP

addresses associated with DDoS attacks make fewer connections than the average

user and transmit fewer packets than the average user. With this in mind, they set

a threshold- k for the number of connections a user must make and a threshold- n

for the number of packets a user must transmit in its connections to be considered

benign. Any IP addresses noted to be falling below these thresholds within a given

time window is considered malicious and blocked.While the authors present limited

experimental results which appear to show improvements in the bandwidth and flow

table utilization under attack, this methodology hinges on the accuracy of the source

IP addresses on the packets, which are again spoofable by an intelligent adversary.

2.8.4 Queues

Zhang et al [43], Wang et al [111] and Wei and Fung [112] use queuing systems

to avoid monopolization of the controller by attackers and to defend against con-

troller saturation attacks. In [43], all incoming flow requests are placed into a queue

based on the switch or port that they arrive on and the queues are serviced using

a weighted round robin algorithm. The queues can be dynamically resized and are

split and combined at various sizes. This solution works well for the attack they

aim to mitigate, with their experiments showing that even under attack, the Round

Trip Time of their packets was not affected when the queue system was implemented

while the standard controller provided no service to the packets after 1000 requests

per second. However, [112] takes a more sophisticated approach by assigning trust

values to each IP address and under attack times, it gives higher priority to senders

with higher trust values. Experimentation showed that this solution, FlowRanger,

was able to significantly improve the ratio of attack requests serviced vs legitimate

requests services when under attacks, servicing far fewer attack requests than the

standard First Come First Serve methodology (in one case as much as 85% fewer).

The authors use IP addresses to identify users however, an attribute easily spoofed
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by attackers to make their malicious packets appear trustworthy. Both methods are

intended to stop an attacker from preventing the controller from servicing legiti-

mate requests. Finally, [111] also uses weighted round robin algorithms to service

packet-ins in queues in their Floodguard system, however it separates its queues by

protocol as opposed to trust values or incoming port or switch. It uses a middle

box to cache and separate packet-ins and rate-limit the flow requests to the con-

trollers to try to ensure that legitimate requests are still serviced. In its evaluation,

Floodguard showed the ability to preserve approximately 80% of the bandwidth in

the hardware environment and more than 95% in the software environment. The

authors do not provide the specifics of the attack and legitimate traffic used in the

evaluation, however since the solution divides traffic by protocol, its performance if

the attacker utilizes the same protocol as the legitimate traffic remains to be seen.

2.8.5 Other Mechanisms

Wolf and Jingrui [113] propose a Proof Of Work (POW) form of protection against

DoS attacks on the controller. It highlights the fact that the balance of work is

weighted in favour of the attacker in a reactive SDN network. The attacker forces

the controller to receive and process the packet-in, map a route and install the nec-

essary flow rules all for the price of a single packet. To counter this, the researchers

propose that anyone connecting to the network be forced to include a proof of work

in the first packet of their flow, thus shifting the balance of work back in favour

of the controller. In evaluation, the authors demonstrate that the time necessary

for the proof of work is not prohibitively expensive for the SDN interactions. They

show their solution takes no more than 60 microseconds additional time for a valid

POW and reduces the time taken for processing in the event of no or invalid POWs

by dropping the packets. While novel, this solution may face major difficulties in

implementation as it requires major updates to network connection protocols for

end users which may not be easily or willingly adopted.

Yuan et al [114] present a unique solution to TCAM overflow attacks by scaling

up the target being attacked. As a switch flow table is nearing capacity, the con-

troller makes use of neighbouring switches which have free flow space and installs the

rules that would have been installed on the victim switch on its neighbours instead.
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Thus, it makes the attack much harder to succeed and it mitigates side channel

attacks which may try to tell the attacker the size of the flow table they hope to

attack. They effectively show that the greater the number of switches in the SDN

network, the longer the network is able to defend against attacks while the standard

SDN implementation is unable to defend itself regardless of the number of switches

used. Their results indicate that at 2000 flow requests per second, their network of

100 switches is able to defend itself for more than 5 minutes, however the trends of

their results show that with enough switches, the network can overcome the Table

Overflow attack.

Bahaa-Eldin et al [115] use a second controller and switch as a ”sandbox” net-

work in which it monitors new flows to ensure their validity. Any new flow is placed

in the secondary ”sandbox” switch for a given amount of time to ensure more traffic

is routed through it before placing it into the main switch. If it does not have any

further packets, it is deleted. No substantial results are provided by the authors and

this method requires more evaluation before it is considered a valid solution par-

ticularly to ensure that the sandbox network does not become overloaded in large

networks, reverting the network back to its original, unprotected state.

Xu et al [116] identify high value and high risk switches within the network and

aim to protect them from co-ordinated attacks. They look for several features in the

traffic such as sudden flow rule increase at the target switch and common rules in

switches in the network. Having detected the attack, they mitigate it using a token

based system in which a user has a limited number of requests they can make for

a potential target switch within a given time bucket.Their results show that they

limit the flow table consumption under attack to as little as 25% and caused 60%

fewer attack packets to be transmitted than the SDN network without their solution

indicating this is a potential protection mechanism for SDN switches as the scale of

their deployment grows on the Internet.

2.9 Denial of Service Switch Based Solutions

The programmable network paradigm specifies that the switch should be a dumb

forwarding device while all the intelligence of the network is moved to the con-

troller. However, placement of intelligence does not need to be mutually exclusive.
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Increasing the intelligence of the switch to participate in the defense of the network

presents itself as a worthwhile avenue for exploration because while they do not have

the global view and control of the Controller, they are the first point of contact for

an attack and so are in an excellent position to put a stop to the attack before it

affects other elements of the network. Here we look at several attempts to augment

the switch’s intelligence to aid in the protection of the controller and the network.

2.9.1 TCP Proxies

One of the earliest attempts at improving the switch’s capabilities, AVANT-GUARD

sought to mitigate control plane saturation attacks and control channel saturation

attacks by extending the switch to act as a proxy for attackers attempting to set

up TCP connections with victims within the network [117]. The idea was to defend

against controller saturation and TCAM overflow attacks by forcing the attacker to

prove they are genuinely attempting to establish a connection rather than trying to

set up fake flows. Any TCP SYN packet arriving at an AVANT-GUARD switch

is made to complete the full TCP handshake before a flow requests is sent to the

controller. AVANT-GUARD evaluation showed the ability to deliver 100% of be-

nign packets while under TCP SYN flood attacks consisting of up to 800 Packets

per second while the standard SDN network delivered none over 50 packets per sec-

ond attack rate. LineSwitch [118] further improved on the AVANT-GUARD system

which was shown to run the risk of an attacker exhausting the proxies resources.

LineSwitch instead only proxies one connection for any source, allowing any other

connection attempts to go through unhindered but monitoring the frequency of

SYN packets being sent from that source. For those sources attempting additional

connections, LineSwitch proxies every 1/x subsequent attempts.In its preliminary

evaluation, LineSwitch increased the time for a switch buffer to be saturated by an

order of magnitude when compared to AVANT-GUARD, providing protection for

significantly longer. Both solutions only address TCP connections however, which

allows flooding attacks using UDP packets to subvert them.
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2.9.2 Duplicate Flow Requests

One issue in the SDN paradigm is that the protocol which dictates “any packet

for which a switch has no flow rule must be sent to the controller” fails to account

for packets of flows for whom a request has already been sent. Thus, if packets of

a flow arrive at the switch after it has sent the first packet to the controller but

before it receives a reply, these packets are also unnecessarily sent to the controller,

resulting in the controller receiving duplicate packets, multiplying the work it has

to do and easily giving way to controller saturation. [119] and [120] both attempt to

resolve this issue by increasing the switch’s intelligence. The switch in [119] keeps

track of which flows are new and which are simply waiting for a controller response

and only sends the first packet of the flow, buffering the rest until the controller

responds. The authors do not present results to evidence the improvement to the

network, however the concept addresses a known redundancy that can affect the

controller performance. Switches in [120] similarly check for packets already sent

to the controller but goes a step further by allowing the network admin to specify

what should happen to the duplicate packet-ins (e.g rate limit or discard). It ad-

ditionally asks the controller at network boot time, what packet header fields it is

interested in and only forwards flow requests for packets that contain those fields.

In their evaluation, their mechanism was able to lower significantly the CPU usage

when implemented and configured properly compared to when not, in some cases

more than 90% reduction. While they did not present Controller CPU utilization

results, the significant improvements to the switch CPU utilization give great merit

and warrant further investigation into how this solution improves the SDN network.

2.9.3 Entropy Based Detection

Several other pieces of work extend the switch intelligence to monitor for DoS attacks

and co-ordinate with the controller for mitigation. The switch in [121] monitors the

flow request rates of the network and if it exceeds a threshold (based on the histor-

ical average within a given window), sends all table misses (unmatched packets) to

a middlebox for an entropy based analysis to determine if an attack is in progress.

In their evaluation, the solution is able to quickly (within 1 second) detect large

entropy changes in the Source Address, Destination Address and Protocols of the

unmatched packets headers coming into the switch. Having done this, their results
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also demonstrate that they are able to put a stop to the DDoS attack within a few

seconds by creating rules in the switch which address the packets causing the sharp

changes in entropy. In evaluation, the onset of the attack is sudden which produces

reasonably good results. However, due to the history-based nature of the solution an

attacker that gradually increases the intensity of the attack may manage to subvert

the system, causing it to think that the “higher than normal” entropy is in fact

normal. In this case, the mitigation mechanism may not be activated, causing the

solution to fail and the network to remain under attack.

Similarly in [122] the switch monitors the features of incoming traffic and uses an

entropy based analysis to determine if an attack is in progress. In this instance the

analysis occurs within the switch itself rather than the middlebox. Its evaluation

showed that it was able to quickly detect DoS attacks in the network from the switch

better than some commonly known sampling tools however it may not be appropri-

ate for protecting the SDN network against DoS attacks specifically targeted at the

network. While [121] is aimed at protecting the controller from SDN focused DoS

attacks, [122] focuses on protecting end hosts in SDN networks from traditional

DoS attacks. In both cases ([121] & [122]), the switches detect the attacks (show-

ing the merit of switch based intelligence) and notify the controller which places

rules to mitigate that attack. [123] focuses on protecting the network from external

attackers by placing an entropy based DoS detection system directly in the ingress

switch of an SDN network. Implemented in Open vSwitch (OVS), the system ex-

tends OVS to look at statistics within the OpenFlow switch and determine when an

attack is in progress by looking for change of entropy in attributes such as IP address

and number of packets. In evaluation, the researchers show the distinct changes in

entropy recorded when an attack was in progress to demonstrate the effectiveness

of their monitoring system. The researchers recorded entropy value differentials of

up to 20% under attack allowing them to detect the attack and potentially alert a

mitigation system. This again attempts to protect against host-targeting DoS at-

tacks and may not be suitable in its raw form for attacks on the network elements.

Nevertheless it shows the merit in increasing intelligence in the data plane.

Instead of using thresholding and entropy, [124] maintains profiles for the traf-

fic on the switch and the controller. The switch then monitors the bandwidth for

surges and determines which pair of attributes are deviating most from their pre-
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surge profiles (Suspicious Pair). Any incoming packets whose Suspicious Pair scores

exceed a certain threshold are dropped. Experimental results indicate high accu-

racy in attack detection (>80%) however, a major limitation which is discussed in

the evaluation is that if an attacker’s packets closely mimic legitimate traffic, the

solution begins to label and discard legitimate packets as attack packets. This may

prove an easy avenue of subversion for an intelligent adversary if this solution is

deployed in production networks, causing the legitimate user’s network experience

to be adversely affected.

SDN Switches in [125] contain security extensions to the standard OpenFlow

action set (DROP, FLOOD, OUTPUT etc). These extensions come in the form

of additional security focused actions which allow the switch to detect a DoS at-

tack, Scan attack or intrusion into the network. Proof of concept examples show

actions implemented which allow for detection of DoS attacks by monitoring byte

rates and scan detection which monitors TCP/UDP connections. In evaluation,

the researchers show that their solution does not significantly affect the through-

put of the network or the latency of the packets while monitoring for DoS attacks.

They show that both the latency and throughput are comparable to the network

without UNISAFE actions implemented, indicating that this is a viable solution to

DoS detection. The concept could be further extended to allow for protection of

the network infrastructure. The Unisafe extension provides a framework allowing

security to be integrated directly into the network devices and protocol rather than

a feature proposed for the network as an afterthought. The concept of extending

the OpenFlow protocol action set to include security focused actions is a strategy

that merits further work.

Solutions such as these show a trend in research of looking past the controller

as the primary point of defence within the SDN paradigm and the emerging works

make a strong argument for the case for switch intelligence.
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2.10 Distributed Control Plane and Load Balanc-

ing

The nave SDN concept proposed a single, centralized controller controlling a num-

ber of switches. A single controller controlling the network, while novel, was highly

impractical due to efficiency, network scalability and availability issues [126]. This

singular controller represented a single point of failure for the network since all

forwarding decisions depended in the controller [127]. With this in mind, several

proposals were put forth which maintained the logically centralized nature of the con-

troller, but distributed the control plane for better resilience. While this approach

increased the number of controllers, making it harder to exhaust the available re-

sources, it also brought new challenges as controllers would need coordinate actions

to avoid issuing conflicting commands to switches, out of sync network views and

race conditions within the network.

To avoid the scenario in which the single controller becomes overloaded or fails,

crippling the network, Fonseca et al [128] add a second controller which takes con-

trol of the network in the event of primary controller failure. The system replicates

updates to the primary controller to the secondary ensuring they both maintain the

same view of the state of the network and policies to provide smooth transition in

the event of primary controller failure. The Kandoo system [129] adds several more

controllers but looks at increasing scalability without handling routing. Kandoo em-

ploys a root controller which continues to maintain the global view of the network

and deploys a set of local controllers near the switches that handle network events

close to the switches to take some of the load off the root controller. The local con-

trollers do not have a global view of the network and as such cannot handle routing.

They receive all the network updates sent by switches and pass on any relevant ones

to the root controller. Instead of a master-slave architecture, Tootoonchian and

Ganjali [130] move to a more resilient peer to peer architecture with HyperFlow.

The HyperFlow system describes a control plane which has several controllers dis-

tributed around the network. Each switch is connected to the controller nearest to

it and the network can hold as many controllers as necessary. Each controller can

read and write to all switches (including ones they are not directly connected to) by

sending messages to the other controllers.
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In addition to these solutions, several open sourced controllers sought to address

this problem, providing inbuilt mechanisms for distribution and load balancing.

OpenDaylight [37], ONOS [131] and ONIX [132] all offer intrinsically distributed

control planes. ONIX provides a distributed view of the network to each controller

instance by partitioning the Network Information Base (NIB) and assigning respon-

sibility for a portion of the NIB to each controller instance. ONOS and OpenDaylight

similarly provide a distributed (but logically centralized) global network view to all

its applications and controller instances which is regularly updated by the instances

in the cluster. ONOS also provides load balancing mechanisms that ensure the

switches are fairly managed among the controllers in the cluster.

While these works focus on distribution of the control plane, none of them ex-

plicitly consider security. Some researchers have since taken the distribution a step

further by taking into account the actions of a malicious adversary specifically aim-

ing to overload the controller to cripple the network. [133] proposes a system for

mitigating controller overload by attackers by employing a pool of controllers and

switching to idle ones when one becomes overloaded. In the event of a controller

receiving flow requests at a rate which exceeds a certain threshold, the defence sys-

tem instructs the switch to select a new controller from the pool while attempting to

filter out the attack packets. Similarly, [134] proposes a method for distributing con-

troller load by allowing dynamic mapping between switches and controllers. Each

switch has several controllers connected to it in a Master-Slave configuration. In the

event of the Master controller being overloaded, it tells another controller to take

over as the Master controller. Instead of a middlebox defense system as, [135] uses

a master controller which is selected from among all present controllers. The role

of the master controller is to monitor the network load on each other controller and

switch. If a failure or traffic change is detected, the master controller re-organises

the switch-controller mappings to better balance the load.

The systems carry out their load balancing very differently, however. In [134], the

controller under attack must tell another controller to take over. This takes system

takes 6 round trip messages to complete the handover which may be impractical

under an attack which causes congestion in the controller-switch communication

channel. Additionally, unless CPU resource is reserved for the defences system
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in the controller, the attack may set upon the controller with such ferocity that

it is unable to notify another controller about the problem before it goes down.

By contrast, [133] has a dedicated monitor for the controller resources and sends

only 2 messages in the event of an attack (one to start filtering and one to switch

controllers) and so the mitigation method is more likely to work here. Though less

so, it is still vulnerable to undelivered messages due to congestion in the channel.

Instead of involving the switch in the reassignments, remapping in [135] takes place

entirely within the control plane by the master controller and by that virtue, may

be the best of the methods put forth here.

2.11 Summary

This chapter aims to present as a backdrop, past and current related work on the

state of the research field with regards to Software Defined Networks and Denial of

Service attacks within them.

We began by looking at early networks and the need for routing protocols as

the networks grew. The evolution of routing protocols which arose as a means to

ensure packets and traffic arrived at their intended destination sets the stage for

programmable networks and SDN. As the routing protocols evolved, researchers

began to toy with the idea of removing the routing system from the forwarding de-

vice and creating a centralized intelligent device which made decisions on the paths

packets travelled. This began to give rise to the concept of Programmable Networks.

We also noted the progression from Programmable Networks to the modern SDN

concept with the OpenFlow Protocol. This protocol helped specify the interface be-

tween the now separated control and data planes in the network and brought in

vendor support as it allowed them to maintain their proprietary internal switch cir-

cuits while exposing a well defined interface. Within the OpenFlow Protocol we

noted its progression as newer versions added more functionality. Particularly we

aim to focus on functionality added in version 1.4 and later which allows the switch

to actively evict flow rules from its table to make room for newer ones.

We explore briefly the concept of DoS attacks on networks and why it has be-

come a notable concern for all networks. We see many solutions put forward for
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these attacks but note that no solution has been hailed as a complete solution which

eradicates the problem, therefore the research field is still open. We look at DoS

vulnerabilities which have arisen within the SDN paradigm and note that despite its

many benefits, SDN exposes new DoS vulnerabilities intrinsic to this specific type

of network. Several pieces of work have been put forth in an attempt to mitigate

this issue, however once again, none have been regarded as a complete solution. We

take particular note here of solutions which aim to augment the switch’s intelligence

to aid in defence and in this thesis, focus our efforts on that space.

To conclude, we note two main points:

• DoS attacks continue to be a prevalent issue in all types of networks

• SDN networks expose new vulnerabilities for DoS attacks which cannot be

mitigated in the same way attacks on traditional networks are

2.11.1 Moving Forward

The notion of moving away from the “dumb forwarding device” SDN switch concept

and towards one in which the switch is a smarter and more active participant in the

network defense has been fielded by several works as seen in Section2.9. While not

widely implemented, these works undeniably indicate that switch based intelligence

merits further study and may provide more effective solutions to SDN vulnerabilities

(such as DoS) than the current “mutually exclusive intelligence” paradigm.

With this in mind, we propose that intelligent SDN switches can work alongside

the controller to increase the network resilience. We begin by analysing the most

widely implemented mechanism which increases switch intelligence: Switch Based

Flow Rule Eviction. Section 2.7.6 discusses the issue of the limited SDN switch

Flow Table and how this can be exploited by attackers to deny service to legitimate

traffic attempting to traverse the network. As we discuss in the following chapter,

Switch Based Flow Rule Eviction alleviates some of the risk of this threat by allow-

ing the switch to automatically remove flow rules from its table when it becomes

full. We perform in depth analysis of this OpenFlow modification, analysing both

the concept and implementation from a malicious user’s perspective.
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To further explore the proposal that smarter SDN switches can be beneficial to

the network, we propose designs for an intelligent switch which adds resilience to

DoS and implement two modules which demonstrate the effectiveness of such mod-

ifications to the switch. Through extensive evaluations, we determine whether the

proposal of increased resilience through intelligence in the forwarding plane holds

its weight and is a viable route to explore for widespread implementation.

In the subsequent chapters, we ask the following questions:

• What are the benefits gained from Switch Based Flow Rule Eviction?

• Does the current implementation allow the network to better defend itself

against Table Overflow DoS issues?

• Are there alternative implementations which may better defend the network?

• What further modifications to the switch can increase resiliency?

• What are the notable effects of some of these potential further augmentations?



Chapter 3

An Analysis of Flow Eviction

Strategies

3.1 Introduction

The traditional SDN implementation which separates the control and data planes

concentrates the intelligence of the network into the control plane and reduces the

switches to dumb forwarding devices [95][136]. While this paradigm has been shown

to provide many benefits which traditional networks do not, it has also been shown

to carry many of its own shortcomings. The previous chapter discussed some of these

shortcomings, particularly various new methods of Denial of Service attacks which

this network model facilitates. Due to this, new defenses are required to protect the

network from malicious use.

As we also discussed in the Chapter 2, recent versions of SDN’s defacto protocol

OpenFlow have deviated slightly from the traditional SDN paradigm, increasing

the switch’s intelligence to perform autonomous removal of flow rules. We present

in this chapter, an in-depth analysis of the initial steps toward more intelligent

SDN switches, defining “switch intelligence” as the switch’s ability to autonomously

perform tasks without depending on the controller. Later in this section, we revisit

the Table Overflow issue in SDN switches and discuss the benefits presented by

switch based flow rule eviction. We also discuss the concept of “First Packet Delays”

which causes additional latency on the first packet of the flow in SDN networks. In

Section 3.2, we examine the potential for new DoS attacks which exploit the first

packet delay coupled with the user’s ability to force rules out of the flow table.

70
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We discuss the opportunity for alternative flow rule eviction policies and potential

further attacks on these alternative policies in Sections 3.3 and 3.4 and analyse the

resiliency of the alternative policies for flow rule eviction in Section 3.5 to determine

which provides the best protection for the SDN network. Finally, we discuss the

implications of attacks such as these occurring in the real world in Section 3.6.

3.1.1 Table Overflow

The opportunity for Table Overflow attacks has been explored as one of the major

shortcomings of SDN in the previous chapter. Each flow of traffic in an SDN network

requires a matching rule in the switches it encounters in order to traverse the net-

work. TCAM memory, which SDN switch Flow Tables are built on, is typically very

expensive, leading manufacturers to restrict the typical Flow Table size to several

thousand rules. This makes the Flow Table a limited resource and these relatively

small Flow Tables can easily become filled to capacity with flow rules. Once this

occurs, no new flow rules can be added to the switch which restricts any new traffic

from being routed through the switch until the flows expire or are explicitly removed

by the controller.

As of OpenFlow 1.3, the latest widely deployed version of the OpenFlow protocol,

the only way to immediately rectify a Table Overflow is to have the controller actively

remove flow rules from the Flow Table before inserting new rules into the table. In

such a situation, the following procedure may take place:

• The controller issues a Flow Mod command to add a new flow rule

• The switch informs the controller the table is at capacity with a “Table Full”

error

• The controller requests a list of flow rules currently occupying the Flow Tables

• The switch responds with a list of the flow rules currently occupying the Flow

Table

• The controller selects one to remove and issues the flow removal command

• Finally, the controller re-issues the flow to be added.
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In this worst case scenario, the process adds an extra 5 steps to add the flow rule

placing additional stress on the controller, which is already a potential bottleneck

in the SDN architecture. Such a method is wholly inefficient as it increases the

work the controller must do as well as the number of messages which must be sent

between the controller and the switch.

3.1.2 Switch Based Flow Rule Eviction

Openflow 1.4 introduced Switch Based Flow Rule Eviction. This configuration en-

ables the switch itself to remove a flow rule in the event of an incoming Flow Add

command from the controller in the presence a full Flow Table. In doing so, while

the switch Flow Table is still a limited resource, the network is better able to ap-

portion this resources to cater for demand and provide better service.

Autonomous flow rule eviction in the switch increases switch intelligence and in

doing so presents several benefits to the SDN network.

1. By enabling the switch to make a decision and perform an action, it reduces

its dependency on the controller for operation.

2. There is also less delay between the moment the action is needed and the

moment it is performed. By allowing the switch to perform the 5 extra steps

itself, the deletion of a flow rule for space and insertion of the incoming flow

rule occur almost immediately. This reduces the number of packets dropped

in the interim.

3. Along the same lines, it reduces the number of messages between the switch

and the controller. In a system in which the bandwidth between the controller

and the switch can be a precious resource, a 6x increase in the number of

messages between the switch and the controller is a wholly inefficient situation.

By enabling the switch to perform its own evictions, there is no need to send

these messages, freeing the switch-controller communication channel to handle

more critical messages.

4. Finally, it also reduces controller load. The controller no longer needs to

process the responses sent by the switch, determine which flow rule would

be best to remove and issue additional commands. It instead can focus on
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more controller specific tasks such as determining routes for flows through the

network and maintaining flow policies.

In some respects, Switch Based Flow Rule Eviction can be presented as a solution

to Table Overflow DoS attacks. Flow rules can now be forcibly removed without

excessive overhead and therefore attackers can no longer hold the Flow Table hostage

preventing traffic from being routed. In this way, Switch Based Flow Rule Eviction

represents a change in direction of the SDN paradigm by increasing intelligence of

the traditionally “dumb forwarding device”. Given the range of benefits achieved by

moving this one action out of the controller and into the switch, it strengthens the

argument that smarter switches can provide untold benefits for the SDN network.

3.1.3 “First Packet” Delays

Forwarding in SDN can be realised in two forms, known as Proactive and Reactive.

In Proactive SDN flow rules are installed in the switch in anticipation of the traffic

which will arrive at the switch. This method reduces the load on the controller

and ensures that traffic proceeds through the network unhindered by the controller

interaction intrinsic to Reactive SDN. However, Proactive SDN can be restrictive

in that any traffic without a pre-installed rule is unable to traverse the network. In

Reactive SDN, flow rules are installed in response to the traffic demands. It is this

form of the paradigm on which we focus in this thesis.

In Reactive SDN, a switch Flow Table does not contain rules for flows before the

flow arrives at the switch. Thus, the first packet of a flow arriving at a switch has

no matching flow rule to instruct the switch on how to forward it, and so triggers a

“Table-Miss”. As a result of this table-miss, the switch forwards the packet to the

controller for instructions on how to route similar packets. The controller determines

the best route for the packet and others of the same flow through the switch and

inserts a flow rule into the switch to handle further packets of the same flow. In

being diverted to the controller for instruction instead of passing directly through

the switch, the packet causing the table-miss registers a significant delay in arriving

to its target. Depending on the controller, the CPU power and the distance between

the switch and the controller, this “first packet delay” can cause the packet’s latency

to grow significantly. Under normal circumstances, it is only the first packet of the

flow that registers this delay (of the order of ms) [137] with the remaining packets
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of the same flow being processed at line rate.

3.2 Analysis of the Switch Flow Rule Eviction At-

tack Vector

As discussed previously, switch flow rule eviction represents a step towards increasing

the switch intelligence and presents several benefits. Its implementation in Open-

Flow switches enables the switch to remove the oldest flow in favour of the incoming

flow rule- a First In First Out (FIFO) policy. While eviction is an excellent strategy

in the right direction, FIFO is a poor choice of policy both from a security and

network performance perspective. In mitigating one issue, it presents a new vector

for attack which can have similarly devastating consequences.

By requesting flow rules to be placed into the Flow Table to facilitate his/her

traffic, any network user has the power to influence the state of the switch Flow

Table at any time. It is this ability of the user to influence the state of the Flow

Table coupled with the first packet delay concept which provides a new vector for

attack within the SDN/Openflow network. Leveraging the newly introduced flow

rule eviction mechanism, a malicious user can forcibly remove legitimate flow rules

from the switch. Under the FIFO policy, the oldest rule in the switch is removed to

make room for new flow rules to be inserted. A malicious user who requests enough

flow rules to fill the Flow Table after a legitimate flow rule has been inserted causes

the legitimate rule to become the oldest flow rule and thus causes it to be removed

from the switch. This causes the next packet of the legitimate rule that arrives

at the switch to experience another “first packet delay” since there is no longer a

matching rule for it. The more evictions of the legitimate flow rule(s) the malicious

user can cause, the more packets of the legitimate flows register first packet delays

giving the aggregate flow a higher latency and reducing the overall throughput of

the flow (Note, we use the terms “throughput” and “bandwidth” interchangeably

throughout this chapter).
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3.2.1 Analysis Of The Effects Of Delayed Packets

To illustrate the effects of first packet delays being spread over a large portion of

the packets in the flow, we compare the throughput achieved when, as in normal

operation, only the first packet1 is sent to the controller and all other packets for-

warded at line rate through the switch vs the throughput when all packets are sent

to the controller.

Figure 3.1: Network Setup

We perform these experiments using the setup displayed in Fig 3.1. For the

switch, we use both a Pica8 3297 switch and an Open vSwitch instance running on

a desktop machine with quad-core i5-3570 processors and 32 GB of RAM running

64 bit Centos 7 Linux Operating System. For the controller, we use a Floodlight

controller running on a desktop similar to that of the OVS machine. Connected

to the switch are 3 hosts- 2 benign (Client and Server) and one malicious. We ex-

clude the malicious host from this experiment as it does nothing here, however this

setup will be consistent throughout our remaining experiments, so it is included here.

Using the Pica8 Switch, we first configure the Floodlight controller as normal,

installing a flow rule to the switch upon request. This means that only the first

1While the SDN paradigm indicates that, in the case of Reactive Forwarding, it is only the first
packet of the flow which is sent to the controller, depending on the packet arrival rate, it may
actually be the first several packets which are sent to the controller. After the first packet is sent,
several other packets may arrive at the switch while the switch awaits the rule insertion triggered
by the first packet’s table-miss. Since these subsequent packets also arrive to no rule, they are also
sent to the controller until the rule is inserted.
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packet registers the delay and the rest are forwarded using the flow rule at line rate

(normal network behaviour). We use the iperf [138] tool to measure the through-

put between the client and server under these conditions. We then configure the

Floodlight controller to forward all packets to their destinations without installing

corresponding rules in the switch. Since there is never a matching rule installed

in the switch, all packets of a flow will be forwarded to the controller registering

a delay. This is the opposite of normal network behaviour and illustrates how an

attacker can influence the network to reduce the Quality of Service. We then use

the iperf tool again to measure the throughput between the client and server. Fi-

nally, we substitute the Pica8 switch for the OVS instance and perform the same

experiment. The results are displayed in Fig 3.2. From the graph, we see that the

difference between sending all packets but the first through the switch (a flow rule

is in the switch) vs sending all packets to the controller (no flow rules in the switch)

achieves a throughput reduction of almost 99% with the Pica8 Switch and 91% with

the OVS instance (reduced QoS). Wang et al [100] note the deficiencies of hardware

SDN switches generating flow requests which is the likely cause for the differences

in the OVS and Pica8 results. Given the extreme results of both, however, the aim

of the attacker is to cause as many packets as possible to be sent to the controller.

Figure 3.2: Bandwidth With and Without Matching Flow Rules
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3.2.1.1 Frequency of Rule Removal and the Controller Effect

We perform further analysis on the effects of packet delays on the throughput ex-

perienced by the flow by examining two factors here: The controller in use and the

frequency at which table-misses occur.

The previous section demonstrated that if all the packets are forced to go to the

controller, the throughput is drastically lower in comparison to all the packets going

through the switch without diversion. To examine the effects of the regular absence

of a rule more closely, we extend the Open VSwitch instance to regularly remove

the rules for our experimental flow at a prescribed frequency. Varying frequencies

alter the subset of packets diverted to the controller due to absence of a rule. The

more often a rule is missing, the more packets are sent to the controller.

Additionally, we investigate the effect of the controller responding to the di-

verted packets. The speed at which the controller can receive and process a request,

and install the corresponding flow affects the amount of time the diversion to the

controller adds to the latency of the packet. This factor is influenced by variables

such as the distance between the controller and the switch, the programming of the

controller (e.g single threaded vs multi threaded) and the underlying hardware the

controller process uses. Controllers which are able to quickly process and forward

packet ins record minimal delays in packet diversions to the control plane while con-

trollers which take longer can increase the effect of the attack. We therefore compare

the effects of different controllers on the throughput experienced by a flow receiving

frequent evictions.

Using the network setup in Figure 3.1, we again use the iperf tool to measure the

throughput between the client and server, with the Open VSwitch instance regularly

removing the corresponding flow rule (causing a subset of the packets to be diverted

to the controller). In each instance, we also measure the number of packets diverted

to the controller. To compare the controller effects, we first measure the throughput

and table-misses of each frequency of rule removal with the switch connected to a

Ryu controller and then the Floodlight controller used for the previous experiments.

Both controllers use the same controller station, keeping the underlying hardware

consistent between them. The results are displayed in Figures 3.3a-3.3d.
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(a) Throughput using Ryu controller (b) Throughput using Floodlight controller

(c) Table-misses with Ryu controller (d) Table-misses with Floodlight controller

Figure 3.3: Frequent Evictions with varying controllers

In both experiments, the steady increase of evictions produces an increase in ta-

ble misses and a steady decrease in the registered throughputs. The results illustrate

a notable relationship between evictions, tablemisses and throughputs but indicate a

significant difference between the two controllers. The Floodlight controller provides

far better service than Ryu (consistent with other studies such as [139][140]) which

results in the same rate of evictions having less of an effect in the network using the

Floodlight controller than the one using Ryu. The slower Ryu controller not only
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causes an increase in the diversion time, but also likely causes more dropped and out

of order packets which need to be resent, which causes TCP bandwidth throttling,

all of which contribute to a reduced throughput. The number of Table misses using

the Ryu controller is notably less than the Floodlight controller and fewer Table

misses appear to produce a higher effect on the throughput. This is likely due to

the TCP bandwidth throttling effect in that as the throughput drops so steeply, the

source begins sending fewer packets to adjust.

In summary, we analyse here the effects on network throughput of packets be-

ing diverted to the controller to show that if an attacker can divert a significant

amount of packets of a flow to the controller, he can affect the throughput the user

experiences. We show that the numbers of packets being diverted to the controller

is inversely related to throughput of the flow. Additionally, the capacity and per-

formance of the controller connected to the switch plays a large role in the effects

of the packet diversions. Better performing controllers reduce the negative effects,

providing better throughput by minimising the latency caused by the diversion to

the controller. Lesser performing controllers increase the diversion’s effect by not

only increasing the latency of table misses but causing a ripple effect of increased

packet dropping and resending, all of which drives down the bandwidth.

3.2.2 Attacker Model

Before looking at the potential attacks, we discuss the attacker model and describe

what the attacker is and is not capable of. We make the following assumptions

about the attacker.

• We assume the attacker(s) is a regular user of the network who does not have

admin access to the network equipment or any hosts on the network except

the ones they have compromised.

• The attacker may have compromised or otherwise has root access to a small

subset of the hosts in the SDN network excluding the hosts whose throughput

they are attempting to control.

• The attacker is not able to directly access or control the physical switches or

controllers but is able to influence the state of the switch Flow Table using

traffic from the hosts they control.
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These assumptions show that our attacker is a relatively standard user of the network

with no special abilities and a secure SDN network should have the robustness and

intelligence to handle a user (or small subset) who suddenly turn malicious.

3.2.3 Attacking the FIFO Policy: The Spray Attack

We therefore propose an attack on the FIFO flow eviction policy. Assuming a Flow

Table which holds N rules, the Spray Attack, as we call it from here on, involves

sending a single packet to N or more destinations. This causes the Flow Table to be

filled with the attacker’s rules, removing any rule in place prior to the attacker send-

ing his/her packets. We call this “flushing” the Flow Table. We assume here that

the attacker is able to accurately determine the size of the Flow Table in order to

effectively flush it. Several works including [94] and [92] discuss how the attacker can

determine the Flow Table size using side channel attacks based on packet response

times. In addition to this, the attacker must be aware of what header fields need to

be varied in order to trigger a table-miss and a new rule installation. Techniques to

learn such are discussed in [93] and [92].

Having seen the effect of all packets being sent to the controller, the attacker

aims to cause a subset of the legitimate flow’s packets to be sent to the controller

by frequently filling the Flow Table with malicious rules and causing all legitimate

flows to be evicted (flushing). Each time the attacker flushes the Flow Table, the

legitimate rules need to be requested again by the next packet of their flow, inducing

a delay for that packet. The more frequently the attacker flushes the Flow Table,

the higher number of table-misses and lower the overall throughput of the flow. We

note that this attack is specifically targeted at long lived flows which carry a high

number of packets (elephant flows) and often contribute to a large portion of net-

work traffic [141]. It is less likely to affect short lived flows which have far fewer

packets and run for shorter times (mice flows).

Attack Implementation: The Floodlight controller used in our experimental

network is configured to insert flow rules with an in port, source IP Address and

Destination IP address tuple. We therefore create a python script using the scapy li-

braries [142] which creates and sends packets with varying destination IP addresses.

The script takes as parameters two values: the number of different IP address des-
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tinations for which packets should be generated and a “sleep” value which allows us

to control the frequency at which the Flow Table is flushed. The script generates

the packets according to the specified number of destinations, sends the packets to

the switch and then goes to sleep, waking several milliseconds later to send the list

of packets again.

3.2.4 Spray Attack Proof of Concept

As an initial proof of concept (we perform more in depth evaluation later in this

chapter), we perform the attack on the network setup in Fig 3.1. We introduce into

this experiment the attacker, which was not used in the previous experiment. In

this, and all further experiments, the Floodlight controller is configured as normal

to install flow rules into the Flow Table in response to flow requests. We again use

the iperf tool to measure the throughput between the client and the server, rep-

resentative of any two hosts on the network. We measure the throughput between

them without the attack and then with the attack at various flushing frequencies

Figure 3.4 displays the findings.

We see that at varying rates, the attacker is able to steadily reduce the through-

put experienced between the two hosts. By increasing the number of times the table

is flushed, the attacker increases the number of table-misses. We note the correlation

between the number of table-misses and the throughput, that as the former rises,

the latter decreases. As the attack intensifies, the attacker is able to reduce the

throughput nearly 90%. More importantly, using the attack, the attacker is able to

finely tune the throughput experienced between the client and server as they desire

by adjusting the rate of their attack. However we also note that as the number

of flushes increase, the precision to which the client throughput is tuned decreases.

This is shown in the range of bandwidths experienced at 100 Flushes Per Second

(FPS) vs that of 10 Flushes Per Second (FPS). As the frequency of flushing in-

creases, so too does the chance of an entire flush occurring between two consecutive

packets of a user’s flow which would have no effect on the flow.
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(a) Legitimate user’s Bandwidth
during Spray Attack

(b) Number of Table Misses
during Spray Attack

Figure 3.4: Spray attack effects

3.2.5 Limitations

The success of the attack is dependent on 2 factors outside of the attacker’s control:

The Control Plane capacity and the Switch OFA capacity.

Control Plane Capacity: The ability to install flows quickly is essential to

the attack, therefore the control plane must be able to keep up with the rate of flow

requests coming from the attacker. Several works have discussed the issue of control

plane bottle necking and the constraints it places on the network (e.g [143][144]).

Several works have also proposed various multi controller architectures to alleviate

the bottleneck issue (e.g [100]) by distributing the work of the control plane. This

attack assumes that the control plane, whether by load distribution or sheer CPU

power, is able to handle the flow requests it receives and perform flow rule instal-

lations at the same rate it receives them. If this is not the case, the attack is then

restricted to whatever rate the control plane manages to output rather than the in-

tended rate of the attacker. This dependency also affects the benign user, however,

since their flow re-installation request must now go to a back-logged control plane.

This will increase the time it takes to have the benign flow re-installed, increasing

the number of packets which are forwarded to the controller as a result of a missing
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flow rule. We use a single floodlight controller for this experiment which performs

flow installations at a rate of roughly 4K flows per second. As such, we restrict the

table size to 10 flows to ensure the controller is able to match the flow request easily.

We examine the effects of larger table sizes later and assume that the control plane

implemented in more realistically sized networks are capable of handling their flow

installation rates for the attacker.

Switch OFA capacity: Similarly, the ability of the switch OFA to install flows

as fast as the controller issues them is a key part of the attack. Once again, if

the attacker’s flows are not being installed at the intended rate, the benign flow’s

throughput may not be reduced as much as intended. While Open vSwitch has been

shown to install rules at rates in the order of milliseconds, several physical switches

have been shown to be limited to a few hundred rules per second [100]. This also

works against the benign users as the OFA is not only responsible for installing

the attack flows, but for re-installing the benign flow rules as well. As the OFA’s

buffer becomes filled to capacity with flow rule installation instructions, it begins

to drop the commands, causing lost packets which the benign hosts will need to

resend, further reducing the quality of service experienced by the benign users in

the network.

3.3 Alternative Policies for Eviction

Given these potential ramifications of implementing a FIFO eviction policy, we ask

what alternative options for rule evictions can SDN switch designers turn to to pro-

vide better performance and attack-resilience? Referencing the work done in the

field of CPU cache-design (e.g [145][146][147]), we consider several other policies for

evicting rules held in the switch Flow Table and evaluate our previously discussed

Spray attack on each as well as a second attack, the Clog Attack.

3.3.1 Least Recently Used

Rather than removing rules according to the time they were inserted, the LRU

(Least Recently Used) policy aims to retain heavy-hitting rules in the Flow Table

by removing from the table the flow rule with the longest time since its last hit. In
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doing so, it attempts to predict which rules will be the most useful to the network

and remove the ones which are least useful.

3.3.2 Least Frequently Used

Similar to LRU, LFU (Least Frequently Used) is aimed at keeping the most valu-

able rules in the switch Flow Table. This policy rates ”usefulness” by how often

the rule has matched in its time in the table rather than how recently it has been

matched. Since regular network traffic follows a Zipf distribution [148], the LFU or

LRU policies may be better suited to a switch attempting to retain its most used

rules.

3.3.3 Random

Alternatively, a non-deterministic rule eviction policy such as Random rule evic-

tion may be the key to attack resilience as it minimizes the attackers control of

which rule is evicted. Adhering to this policy means the switch selects, at random,

a rule to be removed from the Flow Table in the event of a full table, regardless

of the time the rule was placed in the switch or the number of packets it has matched.

At the core of the Spray attack principle is the ability of a user to use malicious

rules/rule requests to influence the switch to remove legitimate rules from its Flow

Table. Since policies such as LFU and LRU are designed counter-intuitively to FIFO

in that they retain flow rules which have the greatest value irrespective of “time of

insertion”, the Spray attack is unlikely to have the same effect on them. Instead, we

propose a second, more effective “Clog Attack” for volume-based eviction policies,

in which a malicious user aims to make his/her rules appear to be the most valuable

rules in the network, causing legitimate rules to be evicted instead.
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3.4 Attacking Volume Based Eviction Policies: The

Clog Attack

Least Frequently Used and Least Recently Used both look at the packets hitting

a flow rule. The Clog attack specifically targets these two by sending a constant

stream of packets across several flows in order to “clog” the Flow Table. With this

stream of packets, in LFU, the aim is to ensure his rules have the highest packet

counts for their time within the table, i.e his rules are the most frequently used; in

LRU the aim is to ensure that all his rules have a smaller delay between hits than the

legitimate traffic, ensuring his rules are always the most recently used. By ensuring

that his rules are the most frequently used or most recently used rules, the attack

hopes to cause legitimate rules to be evicted when a new rule is inserted. If done

correctly, the attacker is able to successfully reduce the amount of Flow Table space

the legitimate traffic has available to it (hence the name “Clog”) and so any new

legitimate rule which needs to be inserted into the Flow Table will cause another

legitimate rule to be removed. By constantly streaming traffic through a subset

of the rule space, the attacker creates an illusion for the switch that his rules are

most valuable and should not be removed. In this way, any other traffic attempting

to traverse the network is forced to make use of whatever rule space is left (the

unclogged subset of the Flow Table) causing high rates of removal and churn as the

switch evicts and re-installs rules.

Clog attack implementation We implement the clog attack using the traf-

gen tool -a network tool (part of the netsniff-ng toolkit) useful for generating large

quantities of packets [149]. We configure the trafgen tool to generate streams of

packets with each stream having a unique destination address in order to trigger a

new rule. We build a script around the trafgen tool which takes as a parameter the

number of streams (rules) we would like to generate. It then accordingly creates

packets for each stream and sends these packets to the switch as fast as the CPU

and bandwidth allow. With the attacking host on a machine similar to that of the

Open VSwitch, a single attacker is able to generate between 530000 and 540000

packets per second.

We additionally create a variable stream of packets with a unique destination

IP address using python and scapy libraries. This allows us to control the number
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of packets sent per second through this flow rule. In doing so, we hold a portion

of the Flow Table using our malicious streams and using our variable rule, increase

the “competition” for the remaining “unclogged” portion of the rule table. The

variable rule ensures that flow requests are made which cause the legitimate rules

to be evicted from their spaces.

3.5 Resilience Analysis of various eviction policies

Previous discussions highlighted the benefits of switch based flow rule eviction but

demonstrated that the chosen policy (FIFO) presented a new vector for DoS at-

tacks. Through extensive analysis, we aim to determine here which eviction policies

provide better resiliency in the face of attacks and may prove a better choice than

FIFO for the implementation of switch based flow rule eviction.

Neither Open vSwitch nor Physical switches are optimized for these alternative

flow rule eviction policies therefore we perform an in-depth evaluation by way of

simulation of the effects of the attack on each rule eviction strategy. While we use

a table size of 10 spaces previously, many would argue that this is an unrealistic

size as most SDN network tables are significantly larger. However, an attacker per-

forming these attacks on a larger Flow Table must send significantly more traffic

to the controller. That is to say, while 10 flow requests may successfully flush or

clog the Flow Table here, at a Flow Table size of 500 spaces, 500 flow requests are

required to flush the table. By increasing the number of packet-ins in this way, our

experiments begin to stray into the “Control Plane Saturation” attack which has

already been discussed at length (e.g [39][96][97]).

Because we aim to look specifically at the effects of eviction, we perform a sim-

ulation of the attack rather than a live performance of it. This allows us to increase

the table size while still focusing on the eviction problem. With our simulation,

as described here, we remove the strain of servicing the attack flows from the con-

troller. We acknowledge in Section 3.2.5 that the ability of the controller to install

the attack flows at the rate the attacker requires is essential to the success of the

attack and we make the assumption that an attacker attacking a larger network has

such a control plane at his disposal.
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The attack simulation process is carried out in three (3) parts (illustrated in

Figure 3.5a- Figure 3.5c).

1. Traffic Capture: We begin by combining attack traffic, an iperf flow and

some background traffic into a single pcap trace file. We capture the attack

traffic by having the attacker perform the required attack for 60 seconds and

capturing the traffic sent (by the attacker) using tcpdump at the switch. We

also capture the iperf flow in a similar fashion by using tcpdump at the switch

while the client and server perform a 60 second iperf flow. Finally, we also

take a subset of a caida dataset [150] of varying sizes (emulating networks of

various sizes) to add surrounding background traffic. We combine all three

traffic traces into a single trace file, aligning their start times appropriately

to produce one 60 second traffic trace which represents all the traffic at the

switch while an attack is in progress.

2. Flow Table State Simulation: Using a simple Java script, we read in each

packet of the network trace and simulate the state of the Flow Table (repre-

sented by a HashTable structure) after each packet. As each packet is read in,

the script checks the Flow Table for a matching flow rule as the switch would

do. If the rule exists, it updates the rule’s statistics accordingly (e.g number of

packets rule has seen). If no matching flow rule exists, the script selects a rule

for eviction from the Flow Table according to the current eviction policy and

removes the rule, adding a new rule to the Flow Table to match the current

packet as the controller would do. The output of this simulation gives the

number of times, E, the experimental iperf flow (representative of any benign

elephant flow) was removed from the Flow Table during the attack.

3. Eviction: Having determined the number of times the iperf flow rule would

be removed under attack, we record the effect of these removals on the flow

throughput. We modify Open vSwitch by adding an extra thread which evicts

the rules from the Flow Table at a given frequency. For each evaluation here,

we set the frequency using the output, E, of its related file. That is to say,

we perform the simulation and set the eviction frequency of the Open vSwitch

thread to evict the rules E times. We then re-run the 60 second iperf flow

10 times between the two benign hosts (client and server) with the modified

Open vSwitch evicting its rule at the specified frequency and record the effect

on throughput/bandwidth and table-misses.
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(a) Traffic Capture

(b) Flow Table State Simulation

(c) Eviction

Figure 3.5: Simulation of the Effects of Frequent Flow Rule Evictions

In this way, we are able to isolate the eviction attack from the “Control Plane

Saturation” attack as much as possible by having the control plane only service the

benign flow. We are able to study the effects of frequent eviction of a flow by an

attacker without actually having to service the attack flows.

Using the simulation procedure we manipulate several variables of the network to

evaluate the attack’s effect. We manipulate a single variable in each turn, giving it

a range of values and hold the others constant for that turn. The constant variables

(unless manipulation is indicated) are as follows:

• Attack Power: We hold the Spray attack constant at 300 Flushes per second

and the Clog attack at N-1 rules (where N is the size of the Flow Table).

• Number of attackers: For the Spray attack we use 1 attacker and the Clog

attack, 7 attackers unless otherwise indicated. We discuss the need for 7

attackers in the Clog attack later.
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• Flow Table size: We hold the size of the Flow Table at 500 flow spaces. Our

background traffic emulates a network of size 50 hosts which generate 743

flows within a 60 second window. In their study of SDN network perfor-

mances, Curtis et al [151] recommend 10 flow table spaces per connected host

on a switch. This table size is therefore large enough to accommodate such a

network without an attack.

• Background Traffic: As indicated previously, we reduce a Caida 2016 traffic

trace to a trace containing 50 unique hosts which creates 743 flows without

eviction. The caida dataset is a capture from an internet backbone router

which holds roughly 700000 flows in the 60 second window. This is far too

many flows for an SDN switch TCAM, which typically hold a few tens of

thousand flow rules at most, to accommodate [152][151]. Therefore we reduce

the dataset to a more manageable size for our experiments.

3.5.1 Attack Power

We begin by measuring the effect of varying the attack power. The aim of the attacks

is to frequently remove the victim’s rule from the Flow Table causing the switch to

request instructions from the controller adding latency to the victim’s packets. The

more powerful the attack, the more frequently the victim’s rule is evicted and the

lower their achieved throughput. As previously shown, the Spray attack and the

Clog attack accomplish this goal in different ways.

3.5.1.1 Spray attack

The strength of the spray attack lies in how often it flushes the Flow Table, removing

the victim’s rule. The more frequently the Flow Table is flushed during the victim’s

flow, the more table-misses the victim registers, the more packets register an above

normal latency and the lower the total throughput of the flow. We measure here

the effects of varying the frequency at which the attacker attempts to flush the Flow

Table. We capture attack traffic from the attacker performing the spray attack at

varying rates and combine each instance with the background traffic and iperf flow

as described previously. We then perform the simulation for each eviction policy

and the eviction process. We record the results in Tables 1a-1d in the Appendix

and display the bandwidth changes in Figure 3.6.
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Figure 3.6: Bandwidth Changes under Increasing Spray Attack Power

The results in Table 1a and Figure 3.6 show that, as expected, the Spray at-

tack is particularly effective against the FIFO eviction policy. Under this policy,

the throughput is steadily decreased as the rate of flushing increases, reduced by

approximately 38% at 1000FPS. However, we see that as the attacker approaches

his computational limits at 500 FPS, he is unable to realise his desired output in

terms of flushes per second. At this point, the throughput is reduced by 35% and

between 500FPS and 1000FPS a throughput decrease of only 3% is recorded. This

is due to bandwidth and CPU restrictions on the attacker node so that while the

attacker aims for a particular flushing rate, the machine is unable to output the

necessary number of packets at the rate he would like.

The experiments also show that on tables of this size, the Spray Attack has little

to no effect on the volume based rule eviction policies. At the peak attack rate,

1000FPS, the attack registers no throughput reduction under the LFU and LRU

policy. It is almost impossible for a single attacker to make all his rules appear more

valuable in the switch flow table using the Spray method. Finally, the use of the

non-deterministic Random eviction also sees a very low impact, though not as low

as LFU and LRU. The Random Replacement policy registers a mere 2.5% reduction

in the legitimate flow’s throughput at the highest attack rate. This is likely because
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the higher the number of malicious rules in the switch, the higher the chance of a

malicious rule being removed rather than the targeted legitimate flow rules. While

the attack does not register anywhere near the number of rule removals intended by

the rate of flushing, it does see increase in removals as the rate of flushing increases.

Despite its randomness, the increase in flow removals gives greater chance that the

experimental flow will be the one removed.

3.5.1.2 Clog attack

The Clog attack attempts to cause removal of the victim’s rule by holding on to

as many flow spaces as it can. This causes the victim’s rule to be evicted often to

make space for incoming flows which need rules. We measure the effects of varying

the number of rules the attacker attempts to hold. In doing so, the attacker’s aim

is to force the benign traffic to share a limited rule space, inadequate for the traffic.

In this experiment, the benign traffic creates 743 flows within its 60 seconds run.

The aim of the attacker is for these flows, plus the experimental flow to share the

unclogged rule space among them causing frequent evictions.

The iperf flow generates packets at a rate of roughly 7050 packets per second.

With this in mind, we set a target for the attacker to generate packets for each of his

rules at a rate of >7050 packets per second. Using the trafgen tool, a single attacker

is able to generate between 530000 and 540000 packets per second. To generate

more traffic per rule than our benign victim, we limit our attacker to 75 rules which

gives approximately 7060 packets per rule per second. For a Flow Table space of 500

flow rules, we therefore use traffic from 7 attackers to clog the table. This fits within

our threat model since the background traffic we use comprises approximately 50

hosts, therefore 7 attackers constitutes a “small subset” of the hosts on the network.

We show later that fewer than 7 hosts are unable to generate enough traffic across

each flow to effectively hold the flow spaces they intend to clog and cause eviction

frequently enough to significantly affect throughput.

Traffic is captured from these 7 attackers working in unison to stream through

the given number of rules and the attack traffic is merged with the iperf flow and

background traffic. We then perform the simulation for each eviction policy and

the eviction process and record the results in Tables 2a-2d in the Appendix and the
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throughput changes in Figure 3.7.

Figure 3.7: Bandwidth Changes under Increasing Clog Attack Power

The experiments show that while the Spray attack has little effect on volume

based policies, the Clog Attack sees at least some effect on all policies. In particular,

with the LFU policy, the throughput is gradually lowered as the attacker increases

the number of rules clogged. As predicted, this forces the experimental flow to fight

for rule space with the rest of the traffic at the switch. As the available rule space

shrinks, the intensity of the competition for that limited resource grows, increasing

the number of evictions. At the height of the attack, the attackers attempt to fill

the entire flow table, at which point the LFU policy registers a 40% reduction in the

legitimate flow’s throughput. However, the same attack sees very little effect on the

LRU even at it’s maximum, causing a 1.5% throughput reduction when the attackers

attempt to fill the entire flow table. To cause the experimental rule to be removed

under LRU policy, each attacker would need to have a packet hit each of their 75

rules before the next packet of the experimental rule arrives at the switch. That

is to say, between any two packets of the experimental flow arriving at the switch,

all 495-500 of the attackers’ rules must receive a hit to evict the experimental rule.

Due to the packet sending rate of the attacker, this is nigh impossible here and thus,

the attack produces little effect. The FIFO and the Random eviction policies both
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register small reductions in their throughput under peak attacks, registering 17%

and 15.5% reductions respectively.

An attacker can more finely tune the throughput a benign host experiences with

the clog attack by clogging a portion of the flow table and varying the number of

packets per second sent through the rules in the rest of the table. We demonstrate

this using the LFU flow eviction policy, the volume based policy (at which clog

attacks are targeted) upon which the clog attack has had the greatest effect. We

hold the clog attack at 499 rules and vary the number of packets per second sent

through the 500th rule. Using this method we show that we are able to vary the

number of evictions caused and achieve throughputs between the 499 and 500 rule

clog experiments shown previously. The results, shown in Table 2e in the Appendix,

indicate that the number of evictions when the variable rule is added range between

the 16412 and 27930 evictions caused by 499 and 500 rules clogged, respectively,

in the previous LFU experiments. By doing so, we are able to vary the percentage

throughput reduction between 22% and 40% with 1000PPS (Packet ins Per Second)

in the 500th rule giving a 26% reduction in the throughput and 5000PPS giving

35% reduction as shown in Table 3.1.

Packets/Sec Throughput Mb/s

1000pps 694

2000pps 675

3000pps 654

4000pps 621

5000pps 606

Table 3.1: Bandwidth changes with variable rule

3.5.2 Number of Attackers

We measure the effects the number of attackers have on the power of the attack. For

each attack, we vary the number of attackers generating attack flows in the network

while holding their attack power constant. In each case, increasing the number of

attackers increases the potency of the attack. This begins to look at the possibility

of a distributed attack source (e.g botnets) in these attacks which would overcome

bandwidth or CPU restrictions of using a single attacker. We capture each attacker’s
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traffic in turn and combine them as previously discussed with the background traffic

and the experimental iperf flow.

3.5.2.1 Spray Attack

Multiple attackers performing the spray attack requires minimal co-operation, aside

from agreeing on the initiation time of the attack. As the number of malicious users

increases, each generates and sends packets at a predetermined rate causing the

combined rate of malicious flow rule generation to increase as well as the frequency

of legitimate rule evictions. This ultimately causes lower throughputs as the number

of malicious users rise.

To demonstrate this, we capture attack traffic from a number of attackers each

attempting to flush the 500 space Flow Table 300 times per second. We combine

the attack traffic with the iperf flow and background traffic and perform the ex-

periments as described previously in this section. The results are displayed Tables

3a-3d in the Appendix and the throughput changes are shown in Figure 3.8. The

experiments show that under both FIFO and Random flow eviction policies, as

the number of attackers increases, the frequency of the experimental flow’s evic-

tion increases almost proportionately, decreasing the throughput. Under the FIFO

eviction policy, while a single attacker flushing the flow table at a rate of 300FPS

achieved a 23% reduction in throughput, at the same rate 5 attackers, were able

to reduce the throughput by 77%. Similarly, under the Random eviction policy, 5

attackers reduced the throughput by 76%. Attackers working in unison therefore

are able to reduce the throughput experienced more efficiently than a single attacker

and overcome the bandwidth restrictions a single attacker may have (which we saw

previously over 500 flushes per second). We note also that despite the increase in

attack force, the Spray attack is still unable to affect the volume based flow eviction

policies. Neither eviction policy registered any reduction in its throughput.
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Figure 3.8: Bandwidth Changes with increasing number of Spray Attackers

3.5.2.2 Clog Attack

We capture attack traffic from several sets of attackers performing the clog attack.

In each case, the attackers co-ordinate to attempt to clog N-1 rules in the Flow

Table (where N is the number of rules the Flow Table can hold). Multiple attack-

ers performing the clog attack requires more co-ordination than the Spray attack.

On its own, a single attacker, due to bandwidth and CPU restrictions, is unable

to generate enough packets per second through 500 rules to make their rules more

valuable than the legitimate rule. Instead, the attackers co-ordinate so that each

attacker individually generates traffic to attempt to hold a subset of the rules of the

overall attack. This reduces the number of rules a single attacker must attempt to

hold and increases the frequency of the packet hits the rules receive. For example,

with 5 attackers attempting to clog 499 rules, 4 of the attackers generate flows for

100 flow rules each and one attacker for 99 flow rules.
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Figure 3.9: Bandwidth Changes with increasing number of Clog Attackers

The results of the experiments are shown in Table 4a-4d in the Appendix and in

Figure 3.9. The addition of attackers appears to produce only marginal effects on

the FIFO eviction policy. We see a steady decrease in throughput as the number of

attackers rise, however the difference between 5 and 9 attackers is only 45Mb/s a

5% difference. Similarly, with the Random eviction policy, we see a steady decrease

again however it is a relatively small decrease of 57Mb/s between 5 and 9 attackers-

6%. We see greater variations in the LFU eviction policy. The experiments show

that with fewer 7 attackers there is very little effect on the victim throughput as

the attackers are unable to generate packets fast enough to hold the Flow Table

over so many rules. However, at 7 attackers there is a 22% decrease which increases

to an 84% decrease in throughput at 9 attackers. We see a steady increase in the

number of evictions of the experimental flow under the LRU eviction policy as the

attacker rules receive more hits in a shorter space of time, however 9 attackers is

still not enough to cause the number of evictions required significantly reduce the

throughput under the LRU policy (reductions of approximately 1%).

3.5.3 Flow Table Size

We measure the effects of the attack on various Flow Table sizes. The size of the Flow

Table is an important parameter of the attack. The attacker must have sufficient
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computational and bandwidth resources to influence the state of the Flow Table

enough to cause frequent evictions of other flows. The attacker must understand

the limitations of a single host and determine whether more machines need to be

compromised to aid in the attack. We have previously determined that for a table

size of 500, at least 7 attackers are needed to make a significant impact on the LFU

policy using the Clog attack. Similarly, an attacker needs to scale up or down his

attack resources to match the size of the Flow Table. We now show here that it is

possible to attack both larger and smaller Flow Table sizes by scaling up or down

the resources as necessary to get similar outputs as the values we have previously

shown.

3.5.3.1 Spray Attack

The experiments in the Attack Power section showed that for a flow table of 500 flow

spaces, a single attacker’s potency is limited past 300FPS. At this rate, we therefore

recommend one attacker per 500 flow rule spaces. For these experiments,we use one

attacker for Flow Tables of size 100, 250 and 500 spaces and we add another attacker

for the Flow Tables of size 750 and 1000. The bandwidth changes are documented

in Figure 3.10 and the full results in Tables 5a-5d in the Appendix. In each case we

hold the attack rate constant at 300FPS for each attacker.
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Figure 3.10: Bandwidth Changes with varying Flow Table size: Spray Attack

The results of the experiments show that under both the FIFO and Random

eviction policies, the attack is able to reduce the throughput of the experimental

flow having adjusted the attack force. For a single attacker flushing at 300FPS, the

throughput is reduced by approximately 24% under FIFO in table sizes up to 500

flow spaces. The addition of a second attacker increases the throughput reduction

to 49% with the 750 flow space table, however the effect of the attack is reduced as

the size of the table grows. The same two attackers reduce the throughput by 39%

with the 1000 flow space table. Still a significant reduction, however each attacker

is now attempting to generate 1000 packets, 300 times per second rather than 750

packets. Thus the effect is reduced as the attackers struggle to maintain this output.

Using the Random flow eviction, a single attacker has a very small and diminishing

effect on the throughput as the pool of rules which can randomly be selected for

eviction increases, decreasing the chances of the experimental rule’s eviction. At

100 flow spaces, there is a 5% reduction. At 500 flow spaces, this decreases to a

1.5% reduction in the throughput. Increasing the number of attackers as we move

to larger flow table sizes again sees an increased effect on the number of evictions

and throughput, however similar to the FIFO, the effect of increasing the number

of attackers begins to decline as the flow table size increases. We continue to see,

however that the Spray attack has no effect on the volume based flow eviction poli-
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cies (LRU and LFU) regardless of the table sizes used in the experiments.

3.5.3.2 Clog Attack

For the clog attack, at each flow table size, we aim to send streams of traffic through

N-1 flow spaces where N is the size of the Flow Table. For each table we attack,

we keep the attacker-table size ratio constant: 1 attacker per 75 flow spaces. Thus,

for the Flow Table of size 100 spaces, we use 2 attacking machines, for 250 spaces,

we use 4 attackers, etc. In this way, we scale up the attack resources to match the

Flow Table size, ensuring that regardless of the size of the table, the experimental

flow and other traffic are still competing for the same limited resource.

Figure 3.11: Bandwidth Changes with varying Flow Table size: Clog Attack

In spite of this, we see that when the ratio of attackers to size is held fixed,

the effects of the attack decline across all the policies as the size of the flow ta-

ble increases. The bandwidth changes are displayed in Figure 3.11 and the full

results of these experiments are documented in 6a-6d in the Appendix. Under the

LFU policy, the smallest table (100 flow spaces) achieves the lowest throughput at

572 Mb/s- a 39% throughput reduction. As the table size grows, the reduction in
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throughput becomes smaller until the largest flow table (1000 spaces), at which the

attack causes just a 2% reduction. More rules increase the likelihood of having mali-

cious rules whose frequency slip below the threshold of the experimental flow packet

rate causing those to get evicted rather than the experimental flow rule. For LRU,

the likelihood of the attacker hitting all malicious rules between experimental flow

packets decreases as the number of rules increases. The experiments show that the

number of evictions decrease as the table size increases, however the number of evic-

tions are still too small to cause notable decreases in the throughput (between 1%

and 1.6% reduction across all table sizes) which continues the trend of LRU being

the most resilient to both attacks. Using the Random eviction, the increase in rule

space decreases the probability that the experimental rule will be the one removed,

as evidenced by the results which show that the number of evictions decrease rela-

tive to the flow table size. Consequently, the reduction in throughput caused by the

attacker becomes smaller, moving from 37% reduction at 100 flow spaces to just 8%

at 1000 flow spaces. Under the FIFO policy, the time taken for the experimental

rule to become the oldest rule increases, similarly reducing the number times it is

evicted and reducing the effects of the attack (51% reduction at 100 flow spaces to

down to 7% reduction at 1000 flow spaces).

In seeing the trend of reduced effects of the attack as the flow table size increases,

the attacker may then decide to increase the attacker-table size ratio. This would

reduce the likelihood of falling below the experimental flow’s frequency (LFU), in-

crease the likelihood of hitting all the attack flows between experimental flow packets

(LRU) and increase the rate of evictions making the legitimate rule the oldest faster

(FIFO)and increasing its chance of removal (Random).

3.5.4 Background Traffic

Finally, we evaluate the influence of the surrounding traffic on the effectiveness of

the attack. The traffic of a network is one of its most variable attributes and can

differ greatly between different periods of a day, week or month depending on the

services provided by the network. We look at the effects of the potential variation in

traffic (particularly the number of flows being created) in the network on the attack

to determine how it affects the number of evictions flows experience.



101

As explained before, the Flow Table is a limited resource and even without the

presence of a malicious user performing the attack, the benign users compete for

the resource. It stands to reason therefore that the more benign users competing for

this resource (i.e the more benign users attempting to get flow rules into the Flow

Table to move traffic through the network), the more evictions will occur. While

a resource at a fixed size may be equipped to provide good service to a certain

number of users, service may degrade as the number of users increases. Thus, the

background traffic during the attack can actually increase the effectiveness of the

attack as more users cause more traffic and more evictions. We show this here by

varying the background traffic seen during the attack, holding the table size fixed

and increasing the number of users/IP addresses in the traffic trace.

Our constant background traffic through the previous experiments has been a

subset of a Caida dataset which includes 50 unique source-destination pairings which

generate 743 flows with 199997 individual packets within a 60 second period. We

vary this fixed dataset, substituting it for several other subsets of the Caida dataset

which vary the number of unique source-destination pairings and so vary the number

of flows in them. In this way, we are able to model a network of varying sizes, from

a small network of 40 hosts to a larger network of 750 hosts. Table 3.2 lists the

relevant properties of each dataset.

Name Number of Unique IP addrs Flows Packets

Caida 40 40 331 154690

Caida 50 50 743 199997

Caida 100 100 1730 493050

Caida 200 200 3948 1234544

Caida 500 500 12472 2597887

Caida 750 750 17061 3272669

Table 3.2: Background Traffic Datasets

3.5.4.1 Spray attack

We keep the spray attack at our constant rate of 300FPS and use a fixed Flow

Table size of 500 spaces while varying the background traffic in the datasets. We

document the results of these experiments in Tables 7a-7d in the Appendix and the
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throughput changes in Figure 3.12

Figure 3.12: Bandwidth Changes under varying Background Traffic: Spray Attack

The experiments show that as the amount of traffic and flows in the network

increases, the number of of evictions of the experimental flow increase for both the

FIFO and Random eviction policies. Increase in the number of flows in the network

intensifies the competition for the flow table resource, aiding the attack in causing

a higher number of rule evictions. While the base dataset (50 hosts) caused 17670

flow removals, the largest network (750 hosts) increased the number of flow removals

by 2630 reducing the throughput by a further 3% in the FIFO eviction policy. The

Random flow eviction policy records a difference of 8384 flow evictions between the

smallest and largest network, with the largest network registering a 14% throughput

reduction from the smallest. We also note that it continues to have no effect on the

volume based policies. This is likely because most of the flows in the trace are short

lived and do not carry large amounts of traffic which create enough competition to

remove the experimental flow under these policies.
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3.5.4.2 Clog Attack

We perform the clog attack with 7 attackers sending traffic through 499 rules of

a table of size of 500. With the clog attack, additional traffic in the network can

drastically increase the competition for flow rule space within the switch. It signif-

icantly increases the rate at which new rules are added to the Flow Table and in

doing so, increases the rate at which they are evicted. The more flow rule evictions

that need to occur while the attack is attempting to hold the majority of the flow

spaces, the more likely the experimental flow is to be selected as the flow for eviction

and removed.

Figure 3.13: Bandwidth Changes under varying Background Traffic: Clog Attack

The results of the experiments (Tables 8a-8d in the Appendix and Figure 3.13)

show that the number of evictions of the experimental flow increases as the amount

of traffic in the network increases. Under the FIFO policy, the number of evictions

ranges from 7931 evictions in the smallest network to 41755 in the largest for the

duration of the 60 second flow. Consequently, the throughput reductions increase

with the evictions from an 11% reduction to a 59% reduction in the largest network.

Similarly with the Random eviction policy- as the number of evictions increase due

to the competition for rule space, the throughput reductions increase from 9% to a

54% reduction . The LFU policy, at which the attack is aimed, registers the largest
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throughput reduction (73%) in its largest network. This is consistent with the trend

that the clog attack is most effective against the LFU policy and is made even more

effective by the increase in traffic. LRU policy registers marginal increases in its

number of evictions from 190 evictions in the smallest network to 325 evictions in

the largest. It produces marginally different throughputs among the varying network

sizes which is also consistent with this policy being the most resilient against attacks

on long lasting flows.

3.6 Implications

The implications of such an attack are wide reaching. An attacker with the ability

to induce arbitrary delays into another user’s flows can pose a very powerful threat.

Here, we look at a number of scenarios in which an attacker may be motivated to

attempt to reduce the bandwidth of another user and its potential consequences.

3.6.1 QoS of Streaming Applications

In 2009, Dell began a focus on flexibility in their workplace which promoted telecom-

muting instead of on-site attendance. This movement, heavily reliant on the ben-

efits of VoIP (Voice over Internet Protocol) technology, paid exceptional dividends

both financially and in employee satisfaction and productivity, saving an estimated

$39.5M through telecommuting [153]. In 2012, the corporate consumer market for

VoIP was valued at roughly US$43 Billion and forecasted to continue growing [154].

Such technology is enabled and supported by its underlying network infrastructure

and is only as good as the service provided to it by the network. VoIP technology

requires end to end delays to be capped in the region of 100 milliseconds [2] and

provide <1% packet loss rates to retain reasonable quality of service.

Similarly, Video Streaming carries its own requirements. End to end delays

should not exceed 250ms and the packet loss should be <0.5% [2][155]. Beyond

these, the quality of service quickly degrade to becoming unusable. According to

Cisco, 73 percent of internet traffic in 2016 was comprised of video streaming [156]

and a recent Deloitte survey [157] indicated that US households collectively spend

on average 2.1 billion per month on video streaming services. As one of the largest
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video streaming companies, Netflix’s revenue in 2017 exceeded US$11 Billion [158].

These statistics show that video streaming is a huge industry and to maintain its

profitability and competitiveness, the companies must provide good service to its

customers.

Attacks demonstrated in this chapter present a real and credible threat to both

types of streaming activities. As the academic community continues to promote

SDN as the future of networks due to its ease of control, issues like this promise to

have devastating effects if not properly thought through before deployment. In both

of the examples described in this section, the profits derived were supported heavily

by the quality of service provided to the services in use by their underlying net-

work infrastructure (servers, switches and other network devices). Compromise of

such network infrastructure via the network hosts is a well studied topic within the

field of Computer Science. Viruses and Trojans, weak passwords and un-updated

Operating Systems and applications all present avenues for a malicious entity to

infiltrate the network. Once the attacker has taken control of one or more hosts on

the network, various side channel attacks such as those mentioned in Section 2.7.2

give the attacker the required information to carry out these attacks.

An attacker who can therefore carry out such attacks an SDN network hosting

Netflix’s video content can influence the latency and ordering of the packets within

the stream’s flow and degrade the user experience or render the service unusable for

any local users connecting to that server. This can result in out of order packets

being dropped which translates to frozen pictures and out of sync audio for the user.

Similarly, Dell’s reliance on VoIP technology can be undermined if an infected host

begins to launch these attacks on the underlying infrastructure, disrupting important

business interactions. All of this culminates in massive financial and reputational

damages as we see entire industries building their businesses on the foundation of

faultily implemented network protocols.

3.6.2 Critical Infrastructure

Cyber Physical Systems (CPS) have demonstrated an incredible ability to bring

savings in manpower and energy which translate to financial savings by outfitting
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systems with automated electronic sensors which monitor and react to situations

without the need for human intervention. CPS have been shown to help save energy

in Data Centers by monitoring temperature and adjusting the supplied energy ac-

cordingly [159].Similarly, in heating systems, monitoring weather conditions brought

an 85% energy savings equivalent to 197 tonnes of Carbon emissions in a 2015 ex-

periment into CPS deployed in a football stadium [160]. In more critical systems,

CPS have been integrated into healthcare along with cloud computing to automate

a wide range of processes. Monitoring and alerts for changes in patient’s vital signs,

analysis of symptoms, predictive diagnostics, sharing patient information between

hospitals and assistance for remote surgical procedures are all procedures into which

CPS have become heavily involved in the healthcare industry [161]. Such systems

can reduce hospital expenses and relax the necessity for routine checking of patients

by the hospital staff [162] which may already be stretched thin. All of these con-

tribute to a more efficient healthcare establishment and translate into lives saved

and quality of care increased.

Cyber Physical systems implemented in smart cities also carry critical conse-

quences if mismanaged. As the concept of smart cities in which automated systems

are extensively implemented to convenience and efficiency, CPS can play an essen-

tial part in the day to day functionality of the city. [163] particularly focuses on

CPS implemented in sewage systems to control the issue of flooding, pointing to

climate change and urbanisation as factors causing flooding increase. It proposes

the use of interconnected devices to control and regulate sewage levels in real time.

Such systems become part of the critical infrastructure of the city upon which the

population depends to maintain their livelihood.

Wireless Sensor/Actuator Networks (WSANs), of which many CPS systems such

as the ones that would be employed in smart cities require routing protocols more

advanced than current widely deployed MAC and transport protocols. Self manage-

ment technologies which can control the service level given to each type of traffic

is required for such systems [164]. The centralised and fine-grained management of

SDN makes it an excellent candidate for the underlying network infrastructure of

Cyber Physical Systems. The ability to control the flow of information across a wide

geographical area from a single location promises exactly the type of convenience

prescribed for WSANs [165].
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CPS systems built on SDN networks due to its perceived management benefits

inherit a huge liability if the vulnerabilities discussed here remain exposed. Com-

mands and actions in many of these systems are extremely time sensitive and in the

most critical cases, reduced service and packet loss may have a devastating effect

on the institutions relying on them [164]. An attacker with the ability to arbitrarily

delay commands, updates and responses by way of the attacks demonstrated in this

chapter can cause great amounts of destruction. The computerised sewage system

monitoring levels of flooding which suddenly has its throughput throttled can cause

a city to flood when its reports and commands are not handled in a timely manner.

In another case, alerts at a hospital to notify staff about critical changes in their

patient’s conditions are suddenly delayed drastically may become the cause of many

casualties. It is vastly important that in addressing one issue within the SDN archi-

tecture, we carefully evaluate the implemented solution to ensure it does not bring

comparable harm in another way.

3.7 Summary

Switch Based Flow Rule Eviction, introduced in newer versions of the OpenFlow

protocol, empowers the switch to remove flows without the intervention of the con-

troller. In doing so, the developers aim to improve network performance and increase

the security of the network, particularly against issues such as the Table Overflow

Attack. This represents an increase in the switch intelligence in the SDN paradigm

as it enables the switch to autonomously perform tasks without dependence on the

controller. While this concept presents a range of benefits (Section 3.1.2), our closer

analysis in Section 3.2 indicated that its First In First Out implementation cre-

ated a new vector of attack on the SDN network which allowed a malicious host in

the network to control the bandwidth their neighbours experienced on the network.

We demonstrated the potential for such attacks on the eviction mechanism in this

chapter and proposed alternative eviction policies which may be better suited to a

network. Through simulation of attacks on the various flow rule eviction policies,

we determined that evicting the Least Recently Used flow rule is the most attack

resilient of the evaluated policies, best protecting benign elephant flows in the net-

work. We conclude in this chapter that in increasing the switch intelligence, an LRU

policy for switch based flow rule eviction should be implemented rather than the
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current FIFO. The LRU policy both prevented Table Overflow issues and closed the

attack vector on switch based flow rule eviction opened by FIFO.

Having noted the benefits to the network performance of these initial steps to-

wards smarter switches, we extend this further to the concept of an intelligent SDN

switch. We propose a design for such a switch in the next chapter which includes

the Switch Based Flow Rule Eviction concept as well as several other functionali-

ties which allow the switch to aid the performance and protection of the network

autonomously. We aim to demonstrate, through implementation and rigourous eval-

uation of some of these concepts, the merit of switch intelligence in the SDN network.



Chapter 4

Increasing SDN Switch

Intelligence

4.1 Introduction

The typical SDN paradigm concentrates the intelligence of the network at the cen-

tralized controller and designates the switch as a dumb forwarding device. Switch

based flow rule eviction marks a step in the opposite direction by restoring some

modicum of intelligence to the SDN switch (we define “switch intelligence” as the

ability of the switch to perform tasks autonomously without dependence on the

controller). We saw in the previous chapter that this intelligence can present many

benefits, one of which is an effective defense against Table Overflow attacks (pro-

vided the right eviction policy is used). Having seen the resilience intelligence in the

form of switch-based flow rule eviction can add to the SDN networks, we propose

that a more intelligent switch can work in conjunction with the control

plane to aid the security and performance of the network. We present in

this chapter high level designs detailing the functionalities of an intelligent switch as

well as the implementations of one of these functionalities. In Section 4.2, we out-

line the functionalities of a DoS-resilient intelligent SDN switch. We expand on one

of these functionalities (Intelligent Flow Request Handling) in Section 4.3 and 4.4,

providing implementation specifics for modules which realise this design attribute.

109
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4.1.1 Benefits of Switch Intelligence

Increasing the intelligence of the SDN Switch can be a strategically beneficial move

for the Security and Networking community for several reasons:

• The Switch is the first point of contact with the network for a flow. Therefore,

in attempting to secure the network against many attacks, it makes sense to

attempt to stop the attacks in their tracks at the point of entry.

• Positioning defenses at the switch can help reduce the load on the controller.

The centralized controller is already seen as a potential bottleneck in the net-

work. Configuring the switch as a first line of defense can ease the security

responsibility of the controller, taking some of the load off the control plane.

• As the “brain” of the network, the controller is the most sensitive component

of the network. Control plane failure can cripple the network. Therefore, the

first line of defense should come well before the controller. If the first and only

line of defense is the controller itself, then the network is far less secure than

it should be.

We have previously also seen evidence for the merit of switch intelligence in

systems such as AVANT-GUARD [166] and LineSwitch [118]. By proxying TCP

connections at the switch, they were able to filter out malicious TCP connections

without the need for controller intervention, thereby reducing the load on the con-

troller. While innovative, an expressed goal of AVANT-GUARD was to “add limited

intelligence” to the switch. We propose to lift these limitations. Our goal is to aug-

ment the intelligence of the switch such that while the Control plane is still the

central intelligence of the network, the switch is able to add resilience to the net-

work by autonomously handling some tasks.

4.2 Intelligent Switch Design

The primary goal of increasing switch intelligence is to enable it to autonomously

contribute to the performance and security of the network. Augmentations proposed

should therefore comprise of functions which enable and maintain such a focus with-

out compromising the main function of the switch: forwarding data plane packets.
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With that in mind, we outline a high level design for switch intelligence.

While there are a myriad of network issues an intelligent switch could potentially

address, we restrict our focus to the issue of DoS (both incidental and intentional)

affecting the SDN network infrastructure. DoS is one of the most prevalent issues af-

fecting networks and SDN networks, as outlined in Chapter 2, require new innovative

solutions to mitigate the attacks they face. As we show in Chapter 5, implemen-

tation of these designs in the switch can help alleviate the threat of DoS in SDN

networks and improve the performance of the network under DoS conditions. The

concept diagram in Fig 4.1 outlines the intelligence amplifications proposed for the

SDN switch. The functions are further expanded upon in the following subsections.
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(a) Functions of a Typical SDN Switch

(b) Functions of an Intelligent SDN Switch

Figure 4.1: Intelligent SDN Switch Design
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4.2.1 Switch Flow Rule Eviction

We begin by including the capabilities discussed in the previous chapter. SDN flow

table restrictions is a well noted issue of SDN which presents the opportunity for

Denial of Service. A malicious user may explicitly attempt to fill the flow table or

it may be the result of a misconfiguration which forces a large amount of traffic

through a single switch creating more rules than the switch can manage. In both

cases, the result is that new traffic is unable to traverse the network and finds itself

denied the expected service of the network.

An intelligent switch should therefore have the ability to remove flow rules with-

out needing control plane intervention. Section 3.1.2 discusses the benefits of such

capabilities in relieving the controller of some of its load and reducing the delay

between the command and the action, reducing the number of packets which may

be dropped. While Least Recently Used is the best of the 4 algorithms evaluated

in Chapter 3, there may be alternative algorithms better suited to the network.

Research done in the field of CPU cache-replacement has produced a wide range of

algorithms to replace CPU cache content similar to replacing flow table rules. Thus,

the implementation specifics of this feature requires further research to determine

which algorithm is best suited however, its merits are clear.

4.2.2 Intelligent Flow Request Forwarding

Flow requests are one of the main differentiating factors between SDN and tradi-

tional networks. Due to its separated control planes, a switch that receives a packet

for which it has no instruction (flow rule) forwards this packet to the controller in

the form of a ”packet in” or flow request. While this mechanism enables great flexi-

bility in the SDN network, it can also create issues. Large volumes of packet ins can

be generated under both benign/legitimate circumstances (e.g Flash Floods) and by

malicious activities (e.g attackers performing Control Plane saturation attacks). In

both cases, a flood of packet ins can exhaust both the controller resources and the

bandwidth between the switch and controller. This has been shown to negatively

affect the performance of the network, providing reduced bandwidth and higher

packet loss rates [99][89], both of which reduce the quality of service provided by

the network.
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SDN switches in their native form, blindly send all flow requests to the controller.

An intelligent SDN switch should perform more intelligent flow request handling.

Instead of simply forwarding all requests to the controller, it should be more aware of

how its large volumes affect such a critical point of the network (the controller) and

act accordingly. In explicit attempts to attack the control plane by flooding it with

requests, the switch should differentiate between legitimate and malicious requests.

In non-malicious circumstances, in which the high rate of requests is caused by

legitimate requests (possibly through a misconfiguration or flash flood), the switch

should be conscious of its effect on the control plane and take steps to relieve the

burden. One form of this ”awareness” which has been widely implemented is rate-

limiting which allows switches to drop requests if the controller is unable to handle

the volume however, this in itself still causes service to be denied to some portion

of the traffic.

4.2.3 Controller Malfunction Detection

The controller is the most critical piece of the SDN infrastructure. A malfunction

on the part of the controller can cause a black hole in the network, denying service

on a greater level than an attack or misconfiguration on a single switch (because the

controller oversees multiple switches). Kreutz et al [88] also discusses the issue of

compromised controller stations and the magnitude of the threat it presents to the

entire network. A rogue controller can reprogram several switches at once to the

detriment of the network.

Just as controllers monitor the switches connected to them, switches should per-

form more active monitoring of the controllers connected to it. Switches should

have the capacity to detect a malfunctioning or rogue controller which is issuing

no or incorrect routes. A controller that does not respond to flow requests may

be easily detected in a multi-controller architecture in which controllers propagate

reports of their activity among the controller pool. Nevertheless, depending on the

frequency of report propagation among the controllers, switches within the offending

controller’s domain may be better suited to detect non-responsiveness on the part

of the controller than other controllers.

Compromised or deliberately malicious controllers present a more challenging
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threat. In a multi-controller system, the rogue controller may be able to operate

undetected by propagating false reports to appear benign to the other controllers

while placing incorrect flow rules into the switch. Implementing controller monitor-

ing capabilities in the switch has the ability to prevent the effects of a compromised

controller which intentionally aims to damage the network in this way and acts as

another layer of “checks and balances” within the SDN network.

4.2.4 Implementation

We aim to illustrate the effectiveness of a smarter switch in this thesis by focusing

on the intelligent flow request mechanisms proposed for the SDN switch described

above. We aim to resolve the issues of high control plane load enabling the network

to provide good service to legitimate traffic even under such circumstances (high

control plane load) by implementing remediation techniques in the switch itself.

Rather than blindly forwarding all flow requests into the control plane, we enable

the switch to intelligently handle the requests it receives before sending them on.

Under attack, we reduce the amount of attack traffic that arrives at the control

plane by enabling the switch to identify and filter (drop) flow requests deemed as

malicious. In the event of legitimate high control plane load, we enable the switch

to perform fine-grained distribution of the flow requests among the controllers avail-

able to it. Both these techniques reduce the response time for flow requests from

the control plane for legitimate traffic resulting in better service from the network.

We design and implement in this chapter two mechanisms to achieve these goals.

Our designs here do not represent a complete solution for an intelligent switch but

aim to demonstrate the value of an increase in switch intelligence by focusing on the

flow request mechanisms of a DoS resilient intelligent switch.

4.3 Load Distribution

It has been widely acknowledged that a single controller SDN architecture imposes

scalability and reliability issues on the network [126][127]. Given that it can only

support a limited number of flow setups, a single controller providing instructions to

many switches can quickly cause the controller to be overwhelmed by the amount of

work required of it. Once a controller becomes overloaded in this way, it is no longer
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able to process all the messages coming from the switch and for those it is able to

process, the response time increases drastically. This results in large amounts of

packets being dropped at the switch as the buffers overflow and degrades the net-

work performance.

As such, many works have looked at distributing the control plane [132][130][167].

Once the control plane has been distributed however, the question is raised of how

to make the best use of the additional processing power available to the network.

If a multi-controller architecture is implemented yet a minority of controllers are

overloaded while the rest are idle the problem has not been solved. Thus, load

distribution within a distributed control plane is a necessity and has the potential

to increase the network performance and relieve the pressures of irregular traffic

distribution.

4.3.1 Taxonomy

Previous work in the area of controller load distribution are all implemented within

the control plane and can be divided into two sections: centralized and distributed

decision making.

Centralized Decision Making: Centralized controller load balancing systems

use a hierarchical approach which involves a decision-making controller selected out

of the pool of controllers. In each case, this lead controller is tasked with balancing

the flow request load among the other controllers as best as possible to ensure the

imbalances are kept as small as possible. Each switch in [168] is connected to one

controller. The head controller here, monitors each controller’s load and the traffic

in the network. It then dynamically maps and remaps as necessary the switch-

controller pairings to ensure one controller is not receiving an unreasonably high

number of flow requests while another is idle. Rather than remapping switches and

controllers, Balanceflow [169] handles its load balancing at the flow level providing

a far more fine-grained approach. Its head controller here monitors the number of

flow requests received by each controller and rectifies imbalances by placing rules in

each switch with instructions for distributing its flow requests to various controllers.

The flow requests here are differentiated by IP address with the rules indicating to

which controller flow requests involving a certain IP address should be sent. By load
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balancing via distribution of flow requests rather than distribution of switches, the

methodology here allows for more precise load balancing.

While a centralized intelligence within a distributed control plane allows for ef-

ficient co-ordination among the controllers, it may be less practical in the face of

a sudden onset high volume attack. An inherent problem is that such systems are

only as good as the head controller’s ability to react. If the head controller polls

the other controllers repeatedly, there is a tradeoff between reaction time and the

number of messages in the system. If it polls often, it may be able to react quickly

but the number of messages between the controllers increases drastically as the rate

of polling increases. If the polling is infrequent, the head controller may not react

quickly enough and network performance is reduced.

Distributed Decision Making: Several other systems perform load balanc-

ing without the use of a centralized authority [170][171][172][134]. The preferred

method of load balancing in each is to dynamically find the best controller switch

pairing in the network to ensure all the controllers manage similar loads. [172] uses

a one-to-many matching game to calculate optimal pairings, considering a mini-

mum utilization of processing capacity that each controller must achieve and the

maximum possible processing capacity of each controller as factors in the game.

Switches can dynamically vary the controller they attempt to connect to but con-

trollers have the final say on whether they will allow a switch to connect based on

the switch’s load and their current capacity. This system does not include inter-

controller communication as each controller operates independently of the others.

This raises questions about the controllers each keeping a consistent view of the

network which the others solve by including a communication system. Both [170]

and [171] use JGroups to send messages between controllers. [170] collects load infor-

mation about other controllers in the network when under high loads and hands off

switches to under-loaded controllers to relieve itself and rebalance the network load.

By contrast, the controllers in [171] proactively and periodically inform each other

about their loads to allow for a faster handover when overloaded rather than polling

when they exceed a given threshold. Instead of a one-to-many mapping, [134] uses

a many-to-many mapping in which each switch has several controllers connected to

it in a MASTER-SLAVE configuration. In the event of a switch’s master controller

becoming overloaded, the MASTER controller initiates a process to swap with one
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of its SLAVE controllers.

With the exception of BalanceFlow, the solutions aim to balance the load on the

controller by remapping the switches and controllers. While this may work under

benign traffic surges, the problem with this under an intentional high-volume attack

aimed at overloading the controller is that it may simply transfer the attack from

one controller to another without actually relieving the problem. This methodology

either causes the new controller in charge of the switch in question to be overloaded

or in a worse scenario, causes a high amount of churn in the network as the switch

under attack is passed from controller to controller, causing each new controller to

be attacked in turn. Another problem with controller based solutions is that high

volume attacks cause congestion in the controller-switch channel making passing

instructions to switches very difficult. For example, [134] takes 12 messages to com-

plete its controller exchange. None of these are sure to be delivered if the attack is

clogging the channel. Depending on the controller to issue instructions to the switch

while under attack itself may as well prove to be problematic. In either case, the

problem with the solution is that it may never arrive where it is needed.

With these issues in mind, we propose to place the load balancing solution in

the switch. Deploying defenses at the switch level provides an opportunity to tackle

saturation attacks earlier and provide better defense. Our load balancer is inserted

directly into the switch and distributes the flow requests among the available con-

trollers. Similar to BalanceFlow, our load balancing is performed at the level of the

flow request, rather than at the switch level. It does not add further control messages

to the network to poll the statuses of controllers, nor does it require a centralized

decision maker as each switch is capable of distributing its loads independently.

4.3.2 OpenFlow Support

Native OpenFlow (v1.2 onward [46]) provides support for multiple controllers. Sev-

eral controllers can be connected to the switch in one of three configurations.

1. MASTER- This often works in conjunction with the SLAVE configuration. A

controller configured to be the MASTER controller of a switch has both read

and write access to the switch and is responsible for inserting flow rules and
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other commands. The switch allows at most, one MASTER controller at a

time.

2. SLAVE- This works in conjunction with the MASTER configuration. This

controller configuration only has read access to the switch, cannot issue com-

mands and does not receive most switch notifications.A SLAVE controller can

request a role change to MASTER, at which time in which case the previous

MASTER controller reverts to a SLAVE role and can no longer issue com-

mands.

3. EQUAL- Controllers configured to EQUAL roles can all write to the switch

(issuing commands) and all receive notifications from the switch (such as flow

requests or port updates). If not carefully managed, this controller configu-

ration can lead to massive amounts of redundancy and inefficiencies as each

connected controller attempts to perform the same jobs (e.g responding to flow

requests) on the switch.

Our Load balancer design takes multiple controllers connected to the switch in

EQUAL roles, enabling them all to read and write to the switch. Our system deals

solely with the distribution of flow requests and leaves the inter-controller commu-

nication up to the controller implementation. We assume that all the controllers

have a consistent view of the network, in particular the states of the flow tables and

relevant network policies which must be enforced. Each controller can read from the

switch, and so can request updates at any time. We trust the controllers to make

each other aware of the updates they make to the switch via whatever implemented

communication system they have.

Under normal circumstances, with the native OpenFlow implementation, the

switch, when connected to multiple EQUAL controllers sends all flow requests to

all controllers. Without an efficient inter-controller communication system (i.e the

controllers operate independently and unaware of each other), each controller re-

sponds with a flow rule addition command for the request it was sent. This results

in multiple instances of the same flow rule being added for a single flow request.

Our Load balancer systems instead allow the switch to select which controller it will

send a flow request to out of the pool of controllers it is connected to.
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4.3.3 Switch Based Load Distribution Design

We propose two designs for the load distribution in our switch: Round Robin and

Load Aware Load Balancing. Both designs enable the switch to determine which

controller each packet in is sent to in a distributed control plane. Figure 4.2 illus-

trates the concept. As traffic flows through the network, the flow requests generated

are distributed to specific controllers determined by the switch rather than forward-

ing all flow requests to all controllers as the native OpenFlow mandates (replicating

each flow request across all connected controllers).
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(a) Native OpenFlow Flow Request Replication

(b) Flow Request Distribution

Figure 4.2: Switch Based Flow Request Distribution
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Round Robin: In this system, each switch connects to multiple controllers in

EQUAL mode and each controller is assigned a unique ID. When the first packet of a

new flow arrives at the switch, instead of sending the flow requests to all controllers,

the switch selects one controller to send the request to. Each of the connected con-

trollers is selected in turn in a round robin fashion, ensuring that each controller

receives 1/n flow requests, where n is the number of controllers the switch is con-

nected to. Each controller in this system maintains its own view of the network and

as stated before, we rely on the controller communication system implemented in

the distributed control plane to ensure they have a consistent view of the network

and relevant policies via updates.

We implement the algorithm outlined in Algorithm 1 in Open vSwitch. It assigns

each new flow request to a different controller, incrementing the controller ID (to

select a new controller at the next request) after each flow request.

Algorithm 1: Round Robin Load Balancer Algorithm for Packet in Dis-

tribution

currentControllerID = 1;

foreach flowrequest (f) do

foreach Controller (c) do

if c.ID == currentControllerID then

c.send(f);

else

continue;

currentControllerID++;

if currentControllerID >TotalControllers then

currentControllerID = 1;

else

continue;

A Round Robin algorithm system is ideal for ensuring the load on the controllers

are perfectly balanced since it ensures that no controller has more than one addi-

tional flow request to deal with than any other controller in the pool at any point

in time. A drawback of this approach is that it is simplistic and assumes a perfect

network. The network design here assumes homogeneity among the controller pool.
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The assumption is that all the controllers are the same, their underlying hardware

have the same CPU and memory resources and they are all equidistant from the

switch in question. Therefore, each controller takes exactly x time to respond to

any flow request. These assumptions would mean that the controllers are truly

equal and rotating the flow requests in a round robin manner keeps them all in sync

with each other with regards to their load. In reality, if any of those factors are

different, it influences the rate at which the controller responds to flow requests. If

the controller responses fall out of sync with each other, eventually some controllers

become overloaded while others remain well within their capacity. Thus, this system

of blindly rotating the controllers the requests are sent to may not work as well as

intended in for all architectures. Nevertheless, as we show later, in multicontroller

systems which have equal resources, this solution works well to ensure controllers

are not overwhelmed.

Load Aware Load Balancer: We therefore propose a second design that may

be better suited to the practical drawbacks of an imperfect network. Assuming the

controller, the underlying CPU resources and the latency may not all be perfectly

homogeneous, we propose a Load Balancer which selects a controller based on its

perceived current load.

In similar fashion to the Round Robin system, each switch is connected to mul-

tiple controllers in EQUAL mode. In this design, the Load Balancer module of the

switch keeps track of both the number of unanswered flow requests for each con-

troller and the length of the queue of requests to be sent to the controller.

When the first packet of a flow arrives at the switch, the Load Balancing module

reviews the number of outstanding flow requests each controller has and selects the

one with the least number of unanswered requests. It then checks the status of that

controller’s queue. If a particular controller’s queue is full, the switch drops the

next request to the controller. Therefore, if the selected controller’s queue is full,

the module selects the next lightest controller (controller with fewest outstanding

requests) which has space in its queue. To reduce the likelihood of over-dependence

on a single controller, if several controllers have the same (least) number of out-

standing requests, it selects randomly one of the controllers from this set. This aims

to avoid a single controller being selected more often simply because it is first in
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the queue. The module then updates the number of outstanding requests associated

with that controller, adding one to the value. When the switch receives a FLOW

ADD command from a controller (which adds a flow rule to the switch table in

response to a flow request), it decrements the number of outstanding flow requests

associated with the controller before installing the rule. In this way, the switch

attempts to infer and monitor the load of the controller without adding extra com-

munication with the controller. If the controller has a high number of unanswered

requests, the switch assumes that its load is higher than one with few unanswered

requests. This may be for any number of reasons including higher latency or slower

processing capacity. By considering the queue status as well, the algorithm gives the

flow request the best chance of being delivered and responded to in a timely manner.

Algorithm 2 outlines the Load Aware load distribution process. Part (a) selects

the controller based on the least number of outstanding requests and the queue

size and increments the number of outstanding requests. Part (b) decrements the

number of outstanding requests upon receiving a FLOW ADD command from a

controller.
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Algorithm 2: Load Aware Load Balancer Algorithm for Packet in Distri-

bution

(a)

foreach FlowRequest(f) do

least requests = Integer.MAX;

Primary controller choice set = null;

Secondary controller choice set = null;

foreach Controller (c) do

if (c.out reqs <least requests) && (c.queue != full) then

Primary controller choice set.clear();

least requests = c.out reqs;

Primary controller choice set.add(c);

else if (c.out reqs == least requests) && (c.queue != full) then

Primary controller choice set.add(c);

else if (c.out reqs <least requests) then

Secondary controller choice set.clear();

Secondary controller choice set.add(c);

else if (c.out reqs == least requests) then

Secondary controller choice set.add(c);

if (Primary controller choice set != null) then

controller = Primary controller choice set.random();

controller.send(f);

if (f.sent == true) then
controller.out reqs++;

else

continue;

else

controller = Secondary controller choice set.random();

controller.send(f);

if f.sent == true then
controller.out reqs++;

else

continue;
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(b)

if c.receive(flow mod) then
c.out reqs–;

else
continue;

4.3.4 Summary

We propose here two designs for load distribution by the SDN switch which en-

ables the switch to partition the control plane load it generates among the available

controllers. By introducing distribution mechanisms in the switch, we increase its

intelligence with the aim of avoiding the issues identified in previous control plane

load balancing systems while making the best use of the control plane resources

available. The evaluation of these modules in the next chapter aims to show that

enabling the switch to autonomously distribute its load among multiple controllers

allows for better performance in the network.

4.4 Malicious Packet in Classification and Filter-

ing

The Load Balancer module focuses solely on distribution of traffic. It does not

aim to stop attacks on the network controller but rather treats all flow requests

as equal and forwards each flow request received to the controller indiscriminately,

assuming it to be a part of legitimate traffic in the network. We address here the

issue of intentional controller saturation by considering the presence of a malware

infected/malicious user attempting to attack the network. To reduce the potency

of control plane saturation attacks and the switch based flow rule eviction attacks

discussed previously, the network should be able to distinguish between legitimate

and malicious flow requests- classing malicious flow requests as ones which are sim-

ply issued for the purpose of disrupting regular use of the network. Ideally it should

be able to distinguish between malicious and legitimate requests from a single host

such that in the event of the host becoming infected with malware, the network

is still able to provide appropriate service to the other users of the network while
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defending itself against the effects of the malware.

In its current state, the very nature of SDN enables these DoS attacks on the

network. The passive capabilities of SDN switches inherently create the opportu-

nity for these attacks as they are mandated to forward unmatched packets to the

controller. To reduce the vector for attack, we propose to amplify the switch’s in-

telligence such that it no longer passively forwards every unmatched packet to the

controller, but rather only legitimate requests. We propose a policy that mandates

that the switch should automatically detect and discard packets that generate ma-

licious flow requests. Many solutions are implemented at the controller level, with

the SDN paradigm having moved much of the intelligence away from the switch.

We propose placing this solution at the switch level, thus moving some of the intel-

ligence back to that layer. We argue that this stops attacks at the source (before

it can enter the network) and reduces the load on the controller, thereby protect-

ing the switch, the control channel and the controller from this attack. Figure 4.3

illustrates this concept. The packet ins generated by the malicious network packets

specifically crafted to DoS the control plane are dropped before they can be sent to

the controller while legitimate packet ins are forwarded as normal to the controller.
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Figure 4.3: Malicious Packet in Filter

4.4.1 Adversarial Model

We propose a similar attacker model as in the attacks in Chapter 3. We assume the

attacking host is a regular user of the network which does not possess any special

administrative privileges in the network. The attacker may have compromised a

small minority of the hosts on the network (for example via malware infection) and

will use these to perform attacks on the network. The attacker does not have direct

access to the switches or controller(s) he/she is attempting to attack nor do they

have root access to any other hosts apart from the minority under their control. The
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attacker’s aim is to reduce the quality of service experienced by the other network

users by DoS-ing the control plane, clogging the switch-controller communication

channel and attempting to fill the switch Flow Table by creating as many flow re-

quests/flow rules as possible.

Unlike other works, we assume the attacker has infiltrated the network and is

now internal to the network. This is a slightly more complex attacker model to

defend against. Other works which sought to defend against attackers external to

the network have noted that an external attacker attempting to attack a network

is restricted in the destination IP addresses he can use in order to ensure his traffic

enters the targeted network. By this restriction, researchers are able monitor for

and identify attacks based on the IP addresses being used (e.g [104]). An internal

attacker attempting to DoS the controller or switch is not subject to this restriction

since his traffic is already, by nature, part of the network. With full control over his

own packet creation process, the attacker can spoof and randomize the IP addresses

(and any other packet header fields) as necessary to subvert detection mechanisms.

4.4.2 Taxonomy

4.4.2.1 Machine Learning in SDN Security

Machine Learning has been implemented in various forms across a number of solu-

tions proposed to mitigate network attacks on SDN networks. We briefly discuss

some of these solutions to demonstrate the value of machine learning to SDN in

preventing network compromise.

Support Vector Machine (SVM) algorithms have been implemented in several

solutions to protect SDN networks. [106] proposes use of the SVM machine learning

algorithm to detect various forms of malicious behavior including DDoS within an

SDN network. The system here uses traffic attributes such as Source and Destination

IP address, Source and Destination Port and Protocol, fed into the SVM classifier

to detect the attacks. Limited evaluation is performed on this solution making it

difficult to assess whether it is viable as part of a real time DoS prevention sys-

tem, however, as discussed in the following section, their use of easily spoofable

attributes for detection may prove a significant shortcoming in deployment. [173]
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also uses SVM classification to categorize network threats in an Intrusion Detection

System for SDN. The solution uses the ID3 decision tree theory to select the best

attributes for the SVM classification which iterates over the dataset, selecting which

attribute gives the greatest information gain at each iteration. The solution also

uses the sFlow sampling tool set to sample data from suspicious connections and

the sampled data is fed into the classifier to detect anomalous traffic flows. Among

the attacks the classifier is used to detect is Host-based DDoS attacks. While this

aims to detect a host targeted and not the infrastructure targeting attacks of this

thesis, it continues to evidence the usefulness of Machine Learning for security in

SDN environments. Upon receiving packet ins, FloodDefender [99] uses SVM ma-

chine learning to classify a flow as benign or malicious. It considers attributes such

as packet count, byte count and reverse flow statistics to determine whether a flow

is benign or not. Their proposed solution comes in the form of a low level controller

app that sits between the controller and all other apps on the controller and monitors

both the packet ins to the controller and the rules in the flow table to reduce mem-

ory consumption in the Switch Flow Table. [107] uses both SVM and SOM (Self

Organising Maps) classification to determine malicious flows within the network,

performing a quick SVM classification on the flows and a further SOM classification

on those flows which SVM produces no clear result. In doing so, it aims to prevent

against DDoS attacks and to reduce the workload of SDN controllers. We critique

both [99] and [107] in the following section and focus on their merits in merging

Machine Learning into SDN here.

Moving past SVM classification, [174] implements 4 different Machine Learn-

ing algorithms and analyses their ability to detect DDoS attacks in SDN networks.

The algorithms examined are Naive Bayes, K-Nearest neighbour, K-means and K-

medoids. The data fed into these algorithms consists of the time at which the

connection is requested, the source and destination hosts and the packet flag bit.

These data values are used to train the algorithms and the algorithms are imple-

mented in RYU. The evaluations are performed in mininet and indicate that while

the Naive Bayes algorithm significantly outperformed the others in Detection Rate,

it also required the greatest amount of processing time to achieve its results. K-

means had the smallest processing time but also performed the worst in detecting

the attack. [175] focuses on the feature selection portion of the ML defences by

analyzing the traffic collected in the NSL dataset which contains traces of several
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network attacks and allowing WEKA, an open source machine learning software, to

select the key features from the traffic dataset. It then inputs these selected features

into the Sequential Minimal Optimization (SMO) algorithm for training and stores

these attack patterns in a local database to be used to detect the DDoS attacks. The

researchers then tested the system using the SMO, J48 and Naive Bayes machine

learning classification algorithms to determine which feature sets and algorithms

provide the best detection accuracy, finding that the SMO and J48 gave the highest

detection with the featureset selected by WEKA in comparison with any other tested

subset of features. [108] proposes a solution for DDoS attacks using SDN which in-

cludes a neural network that classifies each flow as benign or malicious based on the

flow stats such as packet and byte rate. Once the neural network detects the DDoS

attack, the system takes steps to trace the attack to its source and then mitigate

by blocking the source and clearing the flow table of the detected attack traffic. In

evaluation, the solution showed the ability to accurately detect the attack and free

the flow table space occupied by the attack traffic, allowing legitimate traffic to use

the resources.

4.4.2.2 DoS Prevention in SDN

In Chapter II (Background), we looked at several DoS prevention systems proposed

for SDN. We revisit some of them here with a more critical perspective. In par-

ticular, we look at the systems that explicitly attempt to prevent control plane

saturation attacks and the ways in which our system may be able to improve results

specifically against the attacker model described above. We highlight several issues

with current proposals for mitigation of DoS in SDN networks, citing examples as

we discuss them.

Evaluations using SDN Specific Attacks: One criticism that some SDN

DoS mitigation systems face arises from the lack of SDN specific DoS attacks in

evaluation. They specify the aim of mitigating controller saturation attacks but use

datasets containing traditional DoS attacks. These traditional DoS attacks target

a specific host, server or link in the network. By comparison, SDN specific attacks

are geared towards the network infrastructure, saturating the control plane or filling

the switch flow table using a specially constructed stream of packets with diverse

headers. A traditional DoS attack may or may not include such packets as they are

not intrinsically characteristic of traditional DoS attacks and evaluating SDN DoS
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defenses using traditional DoS attack data may produce misleading results. How-

ever, there are few publicly available SDN attack datasets upon which work may be

evaluated. As such, if researchers use instead traditional DoS attack datasets, their

solutions may evaluate reasonably well on the traditional DoS attack however, it

may only protect against SDN specific DoS attacks which also look like traditional

DoS attacks.

[106] uses a DARPA intrusion detection dataset in its DoS Classification pro-

posal. It uses features such as IP addresses, protocols and TCP/UDP ports to

detect the attack, training and testing on the Darpa dataset. The attacks in this

dataset are not targeted to SDN networks and so may not accurately represent the

key characteristics of a DoS attack on the core of an SDN network. This means

their solution may not perform as well as hoped in deployment. They also do not

evaluate their solution’s performance on a live attack to ensure it can actually detect

the attack in the field.

The system proposed in [119] purports to consider the issue of DoS attacks

against the controller, however their system is unlikely to work under SDN specific

DoS attacks whose aim is to overload the controller since attack flows characteris-

tically do not have further requests coming after them to be buffered. They do not

evaluate their system in the paper, however conceptually, the premise their system

is based on (that buffering subsequent table misses of the same flow will protect

the controller) may only work in the event of benign traffic flows or traditional DoS

attacks whose flows carry large amounts of packets.

SDN-Score’s system [124] monitors the packets in the network and is only trig-

gered if the bandwidth usage of a host exceeds a particular threshold. This is a

fundamental component of a traditional DoS attack which consumes bandwidth re-

sources, but may not hold true for an SDN focused controller saturation attack.

Even a high volume control plane attack involving a large number of controller-

triggering packets may not necessarily mean a high bandwidth. Empty packets

(since the unique packet headers are the main ingredient of a controller saturation

attack) can be created as small as 60 Bytes. Assuming an attack rate of 5000 flow

requests per second, the bandwidth consumed by the attacker registers a paltry 300

KB/s. Since the average web page size is around 2MB [176], this bandwidth usage is



133

equivalent to 1 web page request every 4 seconds and therefore is unlikely to trigger

their system.

Spoofable Features: Another problem across a number of solutions is the use

of spoofable features for detection and filtering. The attacker in our threat model

has full control over the packet creation process in the attack, therefore the solutions

presented to mitigate the attacks must carefully choose the features they look for to

ensure the system is not easily subverted.

Within the packet protocol space, AVANT-GUARD [166] and LineSwitch [118]

explicitly offer protection solely against TCP flows. Both acknowledge the obvious

shortcoming that if an attacker can create UDP flows, he/she will subvert the filter-

ing system and indeed our own attacks demonstrated in Chapter 2 make use of the

UDP protocol. Similarly, Floodguard [111] partitions requests into queues based on

four protocols when under attack (TCP, UDP, ICMP and Default). The assumption

here is that the attacker will only use one protocol in his attack and so flow requests

of other protocols will retain reasonable service from the controller. An intelligent

adversary, aware of the implemented security measure, can assign any protocol to

the attack packets created and so fill all queues, causing legitimate requests to be

dropped or receive slow service. While this does not overload the controller, it ac-

complishes the same result of severely reduced Quality of Service in the network

because the attacker has full control of the packet-creation process.

The FlowRanger system [112] uses IP addresses to identify users and assigns each

user a trust rating. Since the IP addresses which only appear during attack times

gain a low trust rating, the attacker can spoof the IP addresses on his packets, using

other uninfected hosts’ IP addresses to subvert the attack detection. Also within

the IP address space, two entropy-based systems provide solutions based on threat-

models which assume external attackers (such as those using botnets) attempting to

DoS the controller of a particular SDN network. [121] looks for packets which cause

dramatic reductions in the entropy of the requests’ Source IP address, Destination

IP address and Protocol. It finds the minimum set of packets causing the reduced

entropy and filters those requests out as malicious. Similarly, but more specifically,

[104] monitors the entropy of the incoming flow requests’ Destination IP addresses,

rationalizing that an external attacker is limited in the range of destination IP ad-
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dresses they can use to target a specific network. Use of a few destination addresses

for a large number of flow requests causes the entropy of destination IP addresses

to decrease, allowing the attack to be detected. While these systems may work well

to detect external attackers, it cannot be applied to internal hosts whose machines

have become infected and attempt to launch an attack. The internal hosts, being

already in the network, are not bound by the restrictions of IP addresses or proto-

cols to ensure their traffic enters the network. Their packet headers can therefore

be randomized, confusing the detection system into allowing attack traffic to get

through to the controller. However, these systems can be deployed in conjunction

with our own as our work specifically target internal attackers and will not function

as well if set to monitor ingress ports which by nature receive a large amount of

diverse packet headers.

Controller based solutions to protect the controller: Finally, placing solu-

tions which aim to protect the controller in the controller is inherently problematic.

Simply having to process a high number of OpenFlow packets (without additional

route mapping functions) can prove too much for the controller host and even low-

level controller apps that attempt to filter malicious packet ins run the risk of being

overwhelmed by the number of packet ins they receive under attack. Another effect

of the controller saturation attack is the congestion of the bandwidth between the

controller and the switch. Controller solutions in which the controller attempts to

issue commands through a congested channel may not be as successful in a high-

volume attack.

FloodDefender [99] is a low-level app placed in the controller which filters mali-

cious flow requests using a threshold-based frequency filter as well as SVM classifi-

cation on the rules in the switch flow table. The system is tested on packet rates of

up to 500 packet ins per second (PPS). This performs reasonably well in their evalu-

ation, however their results indicate that the performance of their solution degrades

as the intensity of attack increases. The maximum attack rate used for evaluation

of the system is 500 flow requests per second, however an attacker is capable of cre-

ating attacks significantly more intense than this. In our experiments we generate

attack rates of up to 10000pps (from a single host) in the face of which it is unclear

how well performs.



135

Both FlowRanger [112] and the proposal in [43] employ a system in which re-

quests are divided into queues in the controller. The queues are then serviced in a

round robin fashion, ensuring that an attack coming from a particular host does not

impede the others from receiving service. Unfortunately, the switch, ignorant of the

queues in the controller, may register the backlog in the number of requests sent to

the controller and begin to drop flow requests (both malicious and legitimate) in its

controller queue. Additionally, by virtue of being in the controller, these solutions

still absorb precious computational resources of the controller and offer no protec-

tion for the controller-switch channel bandwidth which in many cases is a precious

resource.

While controller-based solutions provide some benefit, the security of SDN net-

works can be improved by implementing solutions which stop malicious flow requests

before they reach this critical element of the network. We show in our work that

by increasing the intelligence of the switch, our switch-based system significantly

enhances the performance of the network under attack when compared with other

solutions.

In an attempt to improve the DoS resilience of the SDN network around these is-

sues, we extract from SDN focused DoS attacks what we believe are intrinsic features

of the attack and use a classifier in the switch to filter out packets aimed at controller

saturation before they arrive at the controller. We create a malicious packet in filter

using Random Forest Classification [177], a high accuracy, widely used classification

method (e.g [178][179][180]) to distinguish legitimate from malicious flow requests

before forwarding them to the controller.

4.4.3 Random Forest Classification

Decision trees: Random Forests make use of Decision trees for their Classification

Process. Decision Trees are structures often used in Machine Learning to represent

decisions based on conditions. Each internal node of a tree holds a condition against

which the tree evaluates the features of a dataset. The leaf nodes of the tree rep-

resent the conclusions the tree can arrive at based on the decisions made by the

internal nodes. Thus, decision trees are used to classify the points of a dataset by

evaluating the features of each point against the conditions in the tree.
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Random Forests: Random Forests is a simple, fast and flexible supervised

machine learning algorithm which uses a collection of decision trees to classify data.

The classification process takes place in two stages: the Learning stage and the

Classification stage.

Learning stage: The Random Forest first trains through “bagging”. With

Bagging, the system takes random samples from the dataset to train on. Ideally

around 66% of the total dataset is sampled for training. The system then chooses a

different subset of features from the dataset for each sample to create the conditions

for the internal nodes of each tree. Out of its feature set, the feature which provides

the “purest” division of the data (purest meaning the least mixing of data on each

side of the split) is selected at each internal node of the tree. The final output of

the learning stage should be a diverse set of decision trees which use varying feature

sets to determine the classification of data.

Classification Stage: Having amassed a “forest” of trees, the Random Forest

classifier is then able to determine a classification for each datapoint of a dataset

by allowing each decision tree in the forest to classify the datapoint according to its

training and output a decision. The forest then selects the most popular classifica-

tion over all the trees to give a final prediction about the datapoint.

4.4.4 Attribute Gathering

A key factor in any Machine Learning application is the features or attributes used

to classify data. As highlighted previously in the Taxonomy section, it is important

to use features intrinsic to the attack which cannot be altered by the attacker but

are not present in benign traffic. We begin therefore by analyzing the behavior of

legitimate traffic using 5 publicly available traffic traces. These traces (shown in

Table 4.1) represent networks of varying sizes, include a data center [181], an enter-

prise network [182], an ICS (Internet Connection Sharing) lab network [183], a Caida

trace [150] captured from an ISP backbone router and a small experimental network

of bots which randomly surfed websites and read emails and files [184]. Analysis of

the flows existing in each trace indicate that in any one dataset, 98.8% of IP ad-

dresses initiate fewer than 25 flows per minute. We illustrate this in figures 4.4a-4.4e.
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Dataset Time

Frame

(seconds)

No. of

Flows

No. of

Packets

ICS Lab Network [183] 907 301 2253164

Bot Network [184] 1400 879 4813568

Enterprise Network [182] 600 1144 5697364

Data Center [181] 475 15495 4613099

ISP backbone [150] 50 643057 20089824

Table 4.1: Dataset Attributes

Through analysis of these traces, we show in Figure 4.4a that of the 65 unique

IP addresses 58 IPs create fewer than 10 flows. Similarly, Figure 4.4b indicates just

2 of the 211 Source IP addresses in the trace create more than 20 flows. This trend

continues among all the datasets analysed, where in each case a very small number

of IP addresses are found to create many connections. By contrast, in order to

overwhelm the controller and deteriorate the quality of service received by users of

the network, attackers must generate a large number of flows using diverse packet

headers in a short space of time [43][97][95]- the exact opposite of legitimate user

behavior.
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(a) Flow Distribution of the
ICS lab Dataset [183]

(b) Flow Distribution of the
bot network Dataset [184]

(c) Flow Distribution of the Enterprise net-
work Dataset [182]

(d) Flow Distribution of the
datacenter Dataset [181]

(e) Flow Distribution of the ISP
backbone Caida Dataset [150]

Figure 4.4: Flow Distribution of various datasets
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We therefore extract from the attack attributes differentiating malicious and

benign behavior using three key points identified from the traffic.

1. Large Number of Requests: The controller can easily handle a small num-

ber of requests therefore the attacker must send enough requests to overwhelm

the controller

2. Entropy of flow request packet headers: To maximise the number of

attack packets which go to the controller, the attacker randomizes the packet

headers to ensure that they do not match the rules in the flow table. The

diverse set of packet headers results in high entropy. Since we investigate

every flow request, this also helps give benign weighting to packets from the

same flow which trigger further flow requests while awaiting the response from

the first packet.

3. Time Period of 25 requests: The behavior of the traffic analysed shows

that >98% of traffic generates more than 25 flows in 60 seconds. Since an

attacker is likely to send hundreds of packets per second to the controller,

this value for the attacker is likely to be very small (milliseconds), while for a

benign user, it is much larger (seconds).

Finally, we consider the ingress switch port of a flow request to be a spoof resis-

tant attribute and use this as the main identifier to group flow requests. Attackers

can spoof many attributes of a packet in their attack (e.g IP addresses). However,

one attribute the attacker is unable to control is the physical switch port upon which

the attack packets arrive. Our legitimate traffic traces do not record the incoming

port of the flows therefore, we assume that each unique source IP address originated

from a unique host/port (since a legitimate host would have no reason to spoof its

source IP addresses) and so we use the source IP addresses to group the flows by

port.

4.4.5 Switch Module Design

Having identified the intrinsic characteristics of an attack, we build a “profile” for

each port on the switch which monitors and records the behavior of the port using

the three (3) attributes described above. For each potential flow request, we extract

the necessary attributes as described below.
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Number of flow requests: From the analysis of both malicious and legitimate

traffic, we found that legitimate sources generate a few tens of flows while malicious

sources, in order to overwhelm the controller or Flow Table, must generate a large

number of flows (at least several hundred flows in most cases). Having analysed

the legitimate traffic on a 60 second scale, we keep track of the number of flows

generated by a source per 60 seconds. We classify a “source” as a host connected

to a switch port.

Flow Request Window: The best option for tracking the number of flow requests

occurring from a given port is using a sliding window. This is challenging for active

classification being performed on live traffic in the network as it would involve stor-

ing each flow request from each port with a timestamp to track the number of flow

requests which occurred 60 seconds or less prior to the current request. In the event

of an attack in which thousands of flow requests are generated, this can quickly

exhaust both memory and processing capacity. By contrast, using a static window

reduces the amount of information that needs to be stored but also reduces accu-

racy of the recorded number of requests for each port. In a static window collection

method, the number of requests seems small at the start of each window, as if they

were legitimate.

We instead attempt to merge the static and sliding windows into a hybrid. We

use a static window of 60 seconds for the number of flow requests. To avoid the case

where the first requests in a window are taken as values independent of the previous

requests, we consider the number of requests in the latter half of the previous window

for the first half of the current window. With this idea, we only need to record the

number of flow requests in the latter half of a window instead of each flow request

and its associated port and timestamp. We then add this value to the number of

flow requests in the first half of the next window when calculating the number.
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Algorithm 3 explains the procedure:

Algorithm 3: Calculation of the Number of Requests in 60 seconds

Time window start = 0 Time window end = 60 Time window half =

(((time window end time window start)/2) + time window start)

Prev half window val = 0 Current window value = 0

foreach FlowRequest(f) do

if (f.time >time window start && f.time <time window end) then

if ( f.time <time window half) then
Num of requests = (Current window value++) +

Prev half window val

else
Num of requests = Current window value++

Prev half window val ++

else

while (windowEnd ≤ time) do
time window end = time window start time window start =

time window start +60 Current window value =

Prev half window val Prev half window val =0
Num of requests = Current window value++

Entropy of Flow Requests: The rules placed by our controller match the

attributes source and destination IP address therefore we consider these particular

attributes of the packet headers. Therefore, the attacker must alter the source and

destination IP addresses in his packets to create new flow requests. Both the train-

ing and classification data can be configured to consider the entropy of others such

as protocol type and MAC address, however.

To monitor the entropy of all the flow requests within a given window (which

we choose to be 1 second in our implementation), we would be forced to record all

the requests within the window and calculate the entropy. Given the processing

time constraints and storage resources constraints within the switch, storing several

thousand requests for a port (as is received under attack) is impractical. We there-

fore draw on the behavioral characteristics of the legitimate traffic. We noted that

>98% of legitimate traffic generated fewer than 25 flows per minute. With this in

mind, we record the last 25 flow requests of each port, storing only the time it was

generated and integer representations of the source and destination IP Addresses.
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These values are stored in a linked list with each node representing a single flow

request and each switch port being monitored is given its own linked list. For le-

gitimate traffic, we can easily calculate the entropy for the last second using these

25 flow requests (since only one or two of them would fall within that window). If

the host in question creates more than 25 flow requests within the time window (as

malicious traffic does), we only consider the entropy of these last 25 flow requests

(which will show itself to have a noticeably different entropy).

Time taken to generate Flow Requests: As our final attribute, we consider

the time taken to generate 25 flow requests. We use the same 25 flow requests stored

in the previous attribute and simply calculate the time between the first and last

flow request in the 25. From this, malicious flow requests will have a very small-time

gap between their first and last requests, whereas legitimate flow requests should

show larger gaps. Sources which have not generated 25 flow requests have this value

extrapolated based on the number of requests they have generated, and the time

taken for these requests.

All of the above attributes are calculated in the switch for each incoming flow

request. We shy away from using other factors such as distribution of IP addresses

(which is a common attribute selected for classification techniques) since many other

potential attributes are easily spoofed by the attacker and can be used to subvert the

classification process as previously discussed. We also keep the list of attributes small

in an attempt to minimize the number of trees needed. By minimizing the number

of trees used to classify a flow request, we reduce the processing time necessary for

classification which is essential in the system.

4.4.6 Switch Implementation

Training Data: We generate attack data for training using a single host sending

packets with randomized destination headers at a rate of 2000 packets per second.

We capture the attack packets at the switch and use this as the malicious dataset for

training. For legitimate datasets, we take 3 of the 5 datasets analysed as “legitimate

traffic”, excluding the two larger datasets [181][150] (as these are too large for the

network). The dataset from [182] is used for training and classification testing for

accuracy is carried out on [183][184] as explained in the subsequent chapter. These
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legitimate datasets contain between 300 and 1200 flows. To extract the packets

which cause flow requests in our datasets, we simulate a flow table of 500 spaces

in Java. Using a hashtable data structure to represent the flow table, the state of

the flow table is checked at each packet for a matching rule (matching by source

and destination IP addresses) in a similar manner to an SDN switch. If a rule is

not found, this packet is recorded as a flow request and a rule is inserted into the

hashtable. Having collected the flow requests of the datasets, we extract the at-

tributes discussed above from our malicious and legitimate datasets. This data can

then be fed into a Random Forest implementation for training.

For the Random Forest implementation, in the training phase, we use ranger [185],

an open source C++ implementation. We feed the training dataset to the ranger

Random Forest program which outputs a “tree” file which can be used to classify

similar data. We extract from ranger its code for classifying datapoints and imple-

ment the algorithm as a function within Open vSwitch. We create a decision tree

structure in Open vSwitch and populate (at network boot time) our Random For-

est within the switch using as tree values, the decision trees generated by ranger’s

training phase, extracted from the output file. Thus, using our in-switch Random

Forest and Classification function we classify each incoming flow request generating

packet by placing a function call in the “execute controller action” function (which

prepares a flow request to be sent to the controller). This function call extracts the

necessary attributes from the packet in and executes the classification code to de-

termine whether this packet in is malicious or benign. If the packet in is malicious,

it is dropped without further processing. If the packet in is classified as benign, the

flow request is created and forwarded to the Load Balancing module for controller

selection and sending.

4.4.7 Summary

We present here a flow request filtration system which uses Random Forest classi-

fication to distinguish between legitimate and malicious flow requests on a switch

port. By placing this solution in the switch, we create a smarter switch and de-

ploy defences for the control plane before the packets can arrive at the controllers.

We place emphasis on the feature set used to identify malicious flow requests on a

switch port to ensure the attacker is unable to subvert the attack detection mecha-
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nism. We implement the filtration system in the switch, enabling it to identify and

drop malicious flow requests intended to overwhelm the control plane.

4.5 Conclusion

We describe in this chapter the concept of an intelligent SDN switch and its mer-

its in boosting the performance and security of the network. We present several

high-level concepts discussing various mechanisms that should be included in the

design of such a switch and how they may improve the network functioning. We

subsequently outline the implementation of two modules which demonstrate one of

the concepts: intelligent flow request forwarding.

We present both these modules (packet filtration and load distribution) as switch

based solutions to the controller overloading problem, both by surges of benign traffic

and attack. By implementing intelligence in the switch (enabling it to autonomously

perform various tasks), we can stop attacks entering the network core without ad-

ditionally stressing the controller. This also frees the controller to perform other

critical tasks such as route planning instead of focusing on defending the network.

In the following chapter, we evaluate both modules and demonstrate that they

solve the issues of controller saturation while avoiding the problems highlighted in

the related work. We put both modules through rigorous testing to identify its

effects on network characteristics such as switch and controller CPU usage, Latency

and Bandwitdth. The strength of our evaluation lends credit to the opposition of

mutually exclusive intelligence in the network.



Chapter 5

Evaluation of Additional Switch

Intelligence

5.1 Introduction

Building on the premise of increased switch intelligence analysed in Chapter 3, we

outlined in Chapter 4 designs for an intelligent SDN switch which contributes to

the performance and security of the network in addition to its packet forwarding.

Several augmentations to the SDN switch capabilities were proposed and specific

designs which realised the implementation of the Intelligent Flow Request Forward-

ing module were detailed and implemented into Open vSwitch.

In this chapter we aim to evaluate the effects of the increased intelligence in

the switch outlined in the previous chapter. We examine the tangible benefits of

smarter switches that autonomously perform tasks which help alleviate the problem

of control plane overload. With each module implemented, we perform a range of

tests on the switch, comparing the results to both the generic, unmodified version

of Open vSwitch (which we refer to as the “Stock OvS”) switch and other works

aiming to perform similar functions where applicable. We use Open vSwitch version

2.7.0 for all modifications and experiments.

In section 5.2 we evaluate the Load Distribution aspect of the Intelligent Flow

Request Forwarding, determining each algorithm’s effect on the number of flow

requests serviced by the control plane (Section 5.2.1), effect on the CPU loads of each

145
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controller (Section 5.2.2) and effect on the latency of packets sent to the controller.

In section 5.3, we examine the effect of the malicious packet in filter on the network.

We examine first the detection rates of the Random Forest algorithm (Section 5.3.1)

and later evaluate the effects of the filter within the switch on factors such as network

connectivity, Bandwidth and resource consumption within the switch and controller

(Section 5.3.2).

5.2 Load Distribution

We evaluate here both implementations of the Load Balancer. We aim to investi-

gate the benefits of enabling the switch to distribute its load among the controllers

connected to it for better service. We also aim to determine which of the designs

proposed extracts the best service from the network.

Using the network setup in Figure 5.1, we vary the number of controllers con-

nected to the switch in each experiment to determine how the size of the controller

pool affects the experimental results. Additionally, to illustrate the merit of the

Load Aware Load Balancer, we evaluate each algorithm using Homogeneous and

Non-Homogeneous controller pools. We use the host labeled “Load Generator” as

a traffic generator which allows us to vary the load on the controllers in each round

of experiments. In the multi controller architecture depicted, each controller is con-

nected to the switch in “Equal” status.
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Figure 5.1: Network Setup

The Homogenous Controller pool maintains similarity between controllers. We

use 5 Ryu controllers each hosted on a virtual machine having 1 CPU core and 1GB

RAM. Each controller is located on a host machine 1 hop from the switch ensuring

they are equidistant from the switch and equally provisioned.

The Non-Homogenous Controller pool varies the controllers both in type and

resources. Three of the controllers (Controllers 1,3, & 5) are Ryu controllers hosted

on a virtual machine having 1 CPU core and 1GB RAM. Controller 2 is a Floodlight

controller also hosted on a virtual machine with 1 CPU core and 1 GB RAM.

Controller 4 is a Floodlight controller hosted on a server with 4 CPU cores and 32GB

RAM. While they are all equidistant from the switch, there is notable disparity in

the pool.

5.2.1 Controller Performance

We examine the first the distribution of flow requests within the controller pool

using both algorithms. We specifically look at the individual controller’s ability to

respond to the flow requests assigned to it with and without load balancers’ request

distribution. Using the load generator, we generate approximately 250000 packet ins
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at a rate of 5000 packet ins per second (pps) sending packets with randomised header

fields to the switch. We first use the Stock OvS switch and then switches with both

load balancer algorithms implemented. We vary the number of controllers in the

controller pool for both the Homogeneous and Non-Homogeneous pool recording the

number of requests assigned to each controller by the switch, and the percentage of

which the controller is able to process. Ten rounds of this experiment are performed

for each variation of the controller pool and switch and the average percentage of

both processed and dropped requests across these ten rounds is recorded. The results

are displayed in Figure 5.2 and Figure5.3.
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(a) Stock OvS (b) Round Robin Load Balancer

(c) Load Aware Load Balancer

Figure 5.2: Percentage of Packet ins processed per controller (Homogeneous Con-
troller Pool)
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(a) Stock OvS (b) Round Robin Load Balancer

(c) Load Aware Load Balancer

Figure 5.3: Percentage of Packet ins processed per controller (Non Homogeneous
Controller Pool)

In each case, the figures show that the singular controller dropped around 67%

of the flow requests assigned to it, showing immediately the drawbacks of the single

controller architecture. Figure 5.2a shows that the Stock OvS forwards all requests
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to all controllers. This poor usage of the controller pool results in between 60%

and 75% of requests being dropped regardless of the number of controllers in use.

Figure 5.2b shows that using the Round Robin approach with 2 controllers begins to

improve the network performance significantly, dropping around 35% of the flows.

Further increasing the number of controllers allows the network to handle more than

95% of the flows at 3 controllers and 100% with 4 and 5 controllers. The value of

Load Aware algorithm is shown in Figure 5.2b where it is able to limit the amount

of requests dropped with 2 controllers to 20%. Both controllers still process equal

amounts of flow requests (since they have equal capabilities), however the algorithm

extracts a better performance between the two by monitoring the load on each at

any given time. Controller 2 records slightly more dropped flow requests simply

because more requests were randomly assigned to that controller when both queues

are full. We note that past 3 controllers, there is no additional benefit seen in the

Load Aware Load Balancer as 4 controllers provide enough resources for the Round

Robin algorithm to handle all flow requests when distributing them equally.

Several studies point to the Floodlight controller providing better flow rule in-

stallation throughput than Ryu [139][140]. Thus, in Figures 5.3a,5.3b and 5.3c, we

see that controller 2 of the Non-Homogeneous pool (a Floodlight controller), due to

its superior performance, processed 100% of the flow requests assigned to it in the 2

controller experiment. The Stock OvS achieved 100% packet in response because at

least one of the controllers was able to respond to all requests but this is again a poor

use of resources. Both Controller 1 and Controller 2 were equally assigned 50% of

the flow requests by the Round Robin algorithm, however Controller 2 significantly

outperforms its counterpart. The Load Aware Load Balancer exploits this perfor-

mance disparity as shown in Figure 5.3c. With just 2 controllers it is able to give a

100% response to flow requests by providing more flow requests to the better per-

forming controller. As a rule with the Load Aware Load Balancer, controllers that

respond faster are apportioned more requests according to their rate of response.

This explains as well why in the 4 and 5 controller experiment in Figure 5.3c, we

see the 2 Floodlight Controllers handling the bulk of the requests. Controller 4 in

particular is apportioned the highest amount as it is a better performing controller

with superior hardware resources.
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5.2.2 CPU Load Tests

We examine here the effect of the switch’s load distribution on the CPU usage of

the controller processes under high load. Using the load generator, we send packets

at a rate of 2000 packets per second to the controllers for 30 seconds and record

the average CPU usage of the controller process on each controller during the 30

seconds. This is done 5 times for each controller pool and switch combination and

the average CPU use over 5 rounds is recorded. We use first the Stock OvS and

then both algorithms implemented in the switch. We vary the number of controllers

in the controller pool for both the Homogeneous and Non-Homogeneous pool and

display the results in Figure 5.4 and Figure 5.5.
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(a) Stock OvS (b) Round Robin Load Balancer

(c) Load Aware Load Balancer

Figure 5.4: CPU Load per controller (Homogeneous Controller Pool)
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(a) Stock OvS (b) Round Robin Load Balancer

(c) Load Aware Load Balancer

Figure 5.5: CPU Load per controller (Non Homogeneous Controller Pool)

The results of the experiments show that the CPU usage of the Homogeneous

controllers under the Stock OvS is high, regardless of the number of controllers

connected (Figure 5.4a). This is consistent with the results of the packet in count
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experiment in the previous section which indicated that the Stock OvS sends all

packet ins to all controllers. We see here as well that from three controllers upward,

the CPU usage of the controllers begins to fall as the switch distributes the flow re-

quests, ensuring that no single controller is overloaded. Figures 5.4b and 5.4c show

that both the Round Robin and the Load Aware load distribution in the switch

produce similar results here due to the controllers being the same (though controller

5 appears to require slightly less CPU power than the others for the same number

of packets in the Round Robin).

With the Non Homogeneous controller pools, the controller CPU usage shows

vast disparities. The Floodlight controllers, which we have seen to provide better

service, record the lowest CPU usage in all cases while Ryu controllers are high.

While the Stock OvS switch keeps the Ryu controllers at maximum CPU usage,

both the Round Robin and Load Aware distribution in the switch show the CPU

usage of its Ryu controllers consistently fall as more controllers are added. The

Load Aware load balancer again performs better than the Round Robin as in each

round, the CPU usage levels of its Ryu controllers are less than the Round Robin

counterparts.

5.2.3 Latency Tests

We test the responsiveness of the controller pool under varying loads by measuring

the Round Trip Times of pings sent between the client and server. The flow rules

in the switch have a hard-timeout of 1 second and the pings are spaced 2 seconds

apart, ensuring that each new ping packet goes to the controller. Thus, the path

of the Ping and response is client → switch → controller → switch → server →
switch → controller → switch → client. This allows us to measure the additional

latency the ping experiences due to controllers under heavy loads. We send 20 pings

and find the average of the pings’ RTT (Round Trip Time). According to a recent

study [186], the maximum tolerable latency for an interactive user based service

such as voice communication is 150 milliseconds. We therefore set a maximum wait

time of 150 milliseconds on the pings and all unresponsive pings are recorded as

150ms, indicating they have surpassed the maximum value. We perform these ex-

periments using the Stock OvS and switches with both load distribution algorithms

implemented. For each switch, we perform the ping test under controller loads of
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between 500 and 5000 packets per second. We vary as well the size of the controller

pool in each experiment and display the results in Figures 5.6 and Figure 5.7.

(a) Stock OvS (b) Round Robin Load Balancer

(c) Load Aware Load Balancer

Figure 5.6: Latency of Pings with multiple controllers (Homogeneous Controller
Pool)
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(a) Stock OvS (b) Round Robin Load Balancer

(c) Load Aware Load Balancer

Figure 5.7: Latency of Pings with multiple controllers (Non Homogeneous Controller
Pool)

We first note that with the switch using either load distribution algorithm, in-

creasing the controller pool size results in better response times from the pings,

however regardless of the Homogeneous controller pool size, the Stock OvS registers
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ping RTTs 5ms-16ms up to 1000pps but registers poor connectivity over 1000pps

(Figure 5.6a). With one controller, a load of 1500pps or more quickly overwhelms the

controller. Since the Stock OvS sends all requests to all controllers, this means that

the responsiveness of the controller pool is only as good as its best controller which is

capped at 1500pps here. Using the Homogeneous controller pool, the Round Robin

approach which evenly distributes the requests among all the controllers shows a

gradual increase in performance as the controller pool grows (Figure 5.6b). For 1

controller, it maintains RTT at approximately 4ms up to 1000pps with 2 controllers

RTT of less than 4ms up to 1500pps. At 5 controllers, it maintains an RTT of

4ms up to 4500pps. The Load Aware distribution algorithm shows similar results

with the same controller pool (Figure 5.6c) but performs slightly better at 5000pps.

With 5 controllers, the Round Robin registers an average RTT of 93 ms while the

the Load Aware Load Balancer maintained an RTT of approximately 11 ms.

With the Non-Homogeneous controller pool, the Stock OvS’s policy of sending

all requests to all controllers works out well in this case as it is able to find at least

one controller (the Floodlight controllers) which provides good service. Thus, it is

able to with 2 or more controllers, it is able to maintain an average RTT of 1-2 ms.

In a different network, with less well provisioned controllers, this may not be the

case (as we saw with the Homogeneous pool). As stated before, the controller pool is

as good as its best controller under the Stock OvS but it does not make the best use

of resources. The Round Robin distribution Algorithm in Figure 5.7b shows a no-

table increase in performance when used with the Non-Homogeneous controller pool,

providing better RTTs than the Homogeneous controller pool (for example with 2

controllers is approximately 112ms between 2500pps and 4000pps while there was

no connectivity over 2000pps for the Homogeneous pool). With the introduction

of the Floodlight controllers to the Round Robin distribution by the switch, the

service of the pings becomes a game of chance- whether the pings will be sent to a

Floodlight controller and receive good service, or be sent to a Ryu controller and

receive delayed service. With 2 Ryu controllers (Figure 5.6b), the Round Robin

load distribution stopped receiving service after 2000pps, however with 1 Ryu and 1

Floodlight controller, some were sent to the Floodlight controller which reduced the

overall average RTT of the 20 pings. The pings actually have a better chance of re-

ceiving service with 2 controllers than with 3 as there is a 50% chance of being sent to

the Floodlight controller vs a 33% chance with 3 controllers. This may explain why
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between 3000 and 4500pps, 2 controllers provide better service (112ms-120ms) than

3 (approximately 135ms)-more pings went to the Floodlight controller. As shown

in the Controller Performance tests (Section 5.2.1), the Load Aware distribution

algorithm in the switch is able to exploit the disparity in performance by weighting

the better performing controllers with more flow requests. The result of this here is

that it provides the best response times and latencies for multiple controllers giving

the minimum latency in the RTTs in each case- 2ms-6ms (Figure 5.7c). It produces

optimal network performance due to its ability to intuitively detect which controller

is best suited for the incoming flow request ensuring the fastest responses and fewest

dropped requests.

5.2.4 Processing Time

Finally, we measure the additional processing time the algorithms inflict upon the

flow requests. While we have evidenced the performance increases that these algo-

rithms produce in the control plane, the solutions here should not negatively impact

the switch’s efficiency in forwarding the flow requests to the controller. Thus, in

measuring the additional time taken to run the implemented algorithms, we aim to

assess the practicality of this solution in deployment. We record the time taken by

each algorithm to select the appropriate controller for each packet in and calculate

the average time taken for this process over 10000 packet ins. This is done for each

controller pool size and the average times for each are recorded in Table 5.3.

Round Robin Load Balancer

Number of Con-

trollers

Average

Time

1 2925µs

2 2986µs

3 2614µs

4 2398µs

5 2460µs

Load Aware Load Balancer

Number of Con-

trollers

Average

Time

1 4014µs

2 4067µs

3 4687µs

4 4741µs

5 4921µs

Table 5.3: Load Balancer Processing Times

The results of the experiment indicate that the additional processing time added

by the algorithms in selecting an appropriate controller is minimal- <5µs on all
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counts for both the Load Aware and Round Robin Load Balancers. We note that

the Round Robin algorithm, due to its lack of complexity, takes less time than the

Load Aware Load Balancer algorithm in each instance. We also note that while

the Load Aware Load Balancer registers a trend of marginal time increases as the

number of controllers increase, no such discernable trend is seen with the Round

Robin Load Balancer as its measurements appear to fluctuate between 2.3µs and

2.9µs. However, in both cases, the algorithms do not prohibitively increase the

amount of time taken to process and forward the packet ins.

5.2.5 Summary

We investigate here the benefits of enabling the SDN switch to perform flow re-

quest distribution to balance the load among the available controllers in its control

plane. We demonstrate that this affords significant improvements to the network

performance under high loads. The unmodified SDN switch forwards all of its flow

requests to all of the controllers connected to it, causing redundancy in the tasks

and making inefficient use of resources in the network. By increasing the intelligence

of the switch, we are able to extract better performance from the network and make

efficient use of the available resources, ensuring no one controller is overloaded while

others are under-utilized. The Load Aware distribution algorithm implemented in

the switch in particular enabled the switch to infer the loads on each controller

connected to it at any given time and apportion the flow requests to the one with

the lightest load. This brought out the best performance among the switches evalu-

ated and clearly demonstrated how intelligence in the switch can bring about better

performance.

5.3 Malicious Packet in Filter

We examine here the benefits of enabling the switch to distinguish between mali-

cious and legitimate flow requests from a port. We aim to show here that network

performance is significantly improved and the control plane offered an additional

layer of protection by increasing the switch intelligence such that it automatically

drops flow requests deemed to be intentionally harmful to the network. We first

evaluate Random Forest Classification conceptually, looking at its ability to classify

datasets based on the attributes extracted from the traffic. We then integrate the
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Random Forest classification and filtering module into Open vSwitch and examine

its ability to block attacks from entering the core and prevent the controller from

becoming overwhelmed by an attacker.

5.3.1 Passive Evaluation

5.3.1.1 Training Phase:

We first conduct an evaluation of our Machine Learning attributes on attack and

benign traffic datasets. We train the ranger classifier using the Enterprise network

dataset [182], along with a generated attack dataset that produces approximately

2000 flow requests per second. Using the java script described in the previous

chapter, we simulate a Flow Table of 500 spaces and extract from both datasets

the flow requests that would be generated by the recorded traffic. For each flow

request, we extract each of the features described in the previous chapter, treating

each unique source IP address in the benign dataset as coming from a unique port

and all of the attack traffic as having come from a single port. The output is a file

that contains the following information for each source:

• TimePeriod is the time taken for 25 requests

• Entropy is the entropy of the packet headers over the last 25 requests

• NumberOfRequests is the number of requests made by the port in the last 60

seconds

Imbalancing and Overfitting We feed the csv file, which consists of approxi-

mately 122000 data points, into the ranger Machine Learning classifier, configured

to use 100 Decision Trees, and save the tree output to a file which will be passed

into the classification phase. The dataset consists of 2000 benign packet ins and

120000 malicious flow requests. The disparity in volumes occurs because the attack,

by nature, generates exponentially more packet ins within the same timeframe as

the benign traffic trace. This creates an imbalanced dataset, a problem in Machine

Learning data sampling in which one class within the sample dataset is rare in com-

parison to the others. This can lead to poor training if the decision trees only sample

from the malicious class in the dataset or do not sample enough of the benign class

to accurately distinguish between the two classes. However, in this dataset, the sam-

ple size for each tree is also large enough (66%- approximately 88000 datapoints)
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to render “no benign samples selected” a highly unlikely circumstance. Also, the

difference between the malicious and benign attributes are so distinct that even a

few datapoints of the benign class are enough to allow the trees to accurately train

and classify. This is evidenced in the evaluation in Table 5.5 which shows that even

with a few trees, the algorithm accurately classifies the dataset.

Another concern for data with such distribution is Overfitting. Overfitting oc-

curs when the Machine Learning algorithm learns the noise in the data and assumes

it is normal which causes misclassifications. The algorithm learns the noisy data and

may erroneously classify some of the new data in accordance with the anomalies or

outliers it has learnt. These anomalies or outliers often do not apply to the new

data and negatively impacts the results giving a greater level of inaccuracy. Within

the training dataset used here, there is a high distinction between the malicious

and benign datasets such that the data contains very little noise. Only, the initial

packets of the attack create a small amount of noise as they appear to the algorithm

to be benign since the “Entropy” and “Number of Request” attributes in particular

remain below malicious thresholds for the first few packets of the attack. Random

Forest also decreases the chance of overfitting by increasing the number of trees

and its random feature selection for the trees. The experiments illustrated in Table

5.5 show that even with a few trees, indicating that overfitting is also not a problem.

5.3.1.2 Classification Phase

We evaluate the accuracy of the classification on 3 points

• True Positive: the number of malicious flow requests accurately classified as

malicious

• False Positive: the number of benign flow requests mis-classified as malicious

• False Negative: the number of malicious flow requests misclassified as benign

Using the output tree file of the Training phase, we run the ranger classifier

first on the same file it was trained on (which held both the malicious data and the

legitimate data from [182]), then on two other legitimate datasets [184][183] com-

bined with the malicious dataset. We give the aforementioned values in percentages

in Table 5.4. The results demonstrate that despite varying legitimate data, we are
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able to determine with high accuracy, which flow requests are legitimate and which

are malicious. The number of false negatives remains constant across all datasets.

These are the initial packets at the beginning of the attack which appear to be

legitimate because the attack is just beginning.

Dataset True

Positives

False

Positives

False

Negatives

Enterprise Network Dataset [182] 99.998% 0% 0.002%

Bot Network Dataset [184] 99.880% 0.118% 0.002%

ICS Lab Network Dataset [183] 99.969% 0.029% 0.002%

Table 5.4: Random Forest Accuracy Evaluation

Number of Decision Trees: We also look at the effect of the number of

trees used in learning on the classification. This is a key factor for implementation

into the switch. The more trees that are used during classification, the longer the

classification process in the switch takes. Since processing time within a network is a

premium resource (we do not want to add large delays to the packets), any additional

delays added by the classification process should be minimal. We aim to learn here

if there is a tradeoff between time and accuracy which must be considered and what

the optimum number of trees is which will allow us a fast and accurate classification.

We use the same dataset for learning as before (Enterprise network dataset [182] for

benign traffic & generated malicious dataset). We take the dataset which performed

the worst in the initial tests (Bot Network Dataset [184] & generated malicious

dataset) for classification testing and adjust the number of trees used in each round.

The results are displayed in Table 5.5. The results demonstrate that while 100 trees

give the highest accuracy, even with as few as 10 trees, we are able to distinguish

with extremely high accuracy malicious from legitimate flow requests.

Number of trees True Positives False Positives False Negatives

1000 99.856% 0.142% 0.002%

500 99.855% 0.143% 0.002%

100 99.879% 0.119% 0.002%

50 99.855% 0.144% 0.001%

10 99.810% 0.188% 0.002%

Table 5.5: Effect of the Number of Decision Trees on Random Forest Accuracy
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Attribute Weighting

To better understand the weight of the attributes selected for training, we measure

the variable importance of these attributes. The variable importance is a significant

factor within Machine Learning as it indicates which variables have the most predic-

tive power. Variables with low importance have little effect on the outcome of the

classification while the values of variables with high importance have a significant

impact on the classification made. We measure the variable importance using the

Mean Decrease in Accuracy (MDA) measurement, in which a variable is selected and

its values are randomly permutated. The MDA is a measurement of the decrease

in accuracy of the classification as a result of these permutations. Variables which

register a high MDA carry more weighting in the classification than those which

score low MDAs.

The ranger library in R (built on the C++ code used in our implementation)

provides an “importance” function which calculates the importance value of the

attributes using the MDA measurement in the dataset. We train the data 10 times

and record the results of the importance function each time. The results, given

in Table 5.6 indicate that the Time Period attribute is of greatest importance,

followed by the Entropy attribute which is almost equal in weighting. The Number of

Requests attribute is significantly less important in the classification process. Each

number in the “Measured Weighting” column shows the reduction in the Random

Forest’s performance (MDA) when the variables were changed, thus the greater the

performance change, the more important that feature is.

Attribute Measured Weighting

TimePeriod 0.01626592965

Entropy 0.0154981306

NumberOfRequests 0.00067799137

Table 5.6: Weighting of Attributes in Classification

5.3.2 Active/Live evaluation

Having determined that we can classify with high accuracy, malicious and legitimate

flow requests, we implement in the switch the functions to extract the necessary

attributes in Open vSwitch as described in the previous chapter. We implement
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the module using 11 trees for classification having seen that as few as 10 trees can

provide accurate classifications. We use an odd number of trees to avoid a tie in

the binary (“malicious” or “benign”) voting among trees. We examine here the

switch’s ability to identify and drop malicious flow requests before they are sent to

the controller and the overall effect this has on the network performance. For our

experiments, we use the network setup shown in Figure 5.8, using the “attacker”

to generate malicious flow requests and the Client and Server to test the network

performance for legitimate traffic where necessary. We use a single controller for

these experiments which is a Ryu instance hosted on a quad-core desktop machine

with 32GB of RAM. On a similarly provisioned dedicated host (32GB RAM, 4-core

CPU), we run an Open vSwitch instance, using both the Stock Open vSwitch and

the Random Forest Enabled Open vSwitch instances and comparing their outputs

across a number experiments. The attacks performed here involve sending packets

with randomized Destination IP Addresses to the switch at varying rates.

Figure 5.8: Network Setup
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5.3.2.1 Network Connectivity

We compare the difference in network connectivity when under high loads using the

Random Forest Enabled (RFE) switch and the Stock OvS switch. We use similar

Ping experiments as used to evaluate the Load Balancer. We perform 20 Pings

while varying the frequency of attack packets which generate flow requests from the

attacker to determine the response times with and without the classifier. In each

round of experimentation, the client attempts to send 20 pings to the server and

we record the response times of each. Flow rules in the switch flow table are set

to have a hard timeout of 1 second and the pings are spaced 2 seconds apart to

ensure subsequent pings must return to the controller. We set again a timeout of

150 milliseconds and any pings that receive no response or take longer than this are

recorded as 150 milliseconds. We then find the average of the times recorded for the

20 pings under each attack frequency both with and without the Random Forest

Filter enabled and display the results in Figure 5.9.

Figure 5.9: Network Connectivity under attack

With the Stock OvS switch, the pings receive no response after 2000pps. The

RFE switch correctly classifies and filters out the attack packets freeing the con-

troller to provide the best service to the legitimate ping packets. The legitimate

pings under RFE remain at the minimal RTT value of around 7 milliseconds re-
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gardless of the attack rate on the network.

5.3.2.2 Bandwidth

We examine here the effects of the attack on the bandwidth experienced between

the client and the server both with and without the Random Forest Filter enabled.

We enable the FIFO eviction feature on the Switch to mimic the attack proposed

previously. This causes both a controller saturation and regular eviction of the legit-

imate flow rule due to malicious rules being inserted into the switch, both of which

contribute to a lower bandwidth experienced by the legitimate flow rule. We again

perform the experiments under a range of attack frequencies. For each malicious

flow request frequency generated by the attacker, we measure the bandwidth using

iperf [138] over a 60 second flow. We repeat each iperf flow 5 times, gaining 5 results

for the bandwidth under each attack rate and find the average. This is performed

both using the Stock OVS switch and the RFE switch and the results are displayed

in Figure 5.10.

Figure 5.10: Network Bandwidth under attack

We compare our results here to those achieved by the FloodDefender system [99].

FloodDefender applies a “rough” threshold based filter to remove a portion of the
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attack requests by using a low level controller application which examines the fre-

quency of incoming flow requests. The threshold, based on the frequency of requests

from a source must be set to a value that does not sacrifice legitimate requests at-

tempting to reach the controller. This inevitably allows some attack traffic through

to the controller as well. In their experiments, their hardware environment produces

a bandwidth reduction of 75% under peak attack rates (before their system is imple-

mented). We scale our attack rates to produce a graph comparable to theirs in our

own network setup, registering a gradual bandwidth reduction from 100% to 30%

as the attack rate increases. Under attack, their system reduces the rate at which

the attack reduces the bandwidth experienced in the network. Despite this, under

peak attack rates, the bandwidth is reduced to 40% of its original value with the

FloodDefender system enabled (hardware environment). We demonstrate here that

our RFE switch, having filtered out the attack packets, enables the client and server

to maintain 100% bandwidth regardless of the attack rates. The threshold chosen

FloodDefender does not protect the controller as fully as the RFE switch solution

which removes almost all attack traffic before it gets to the controller resulting in

the significant performance improvements.

5.3.2.3 False Negative Count

Just as we evaluate the False Negatives in the Random Forest classification on the

datasets, we evaluate here the number of malicious flow requests which bypass the

filter and arrive at the controller. We perform the attack at varying frequencies,

and monitor at the controller, the number of malicious flow requests it receives with

both the RFE and Stock Open vSwitch.

We compare our results here with the FlowRanger [112] system which uses queues

in an attempt to prevent malicious flow requests from monopolizing the controller.

We mimic their simulated experiments in our own network setup. While they stip-

ulate that their network controller is able handle 100 requests per time slot, we

adjust for our own network (using 1 second as 1 time slot), which the Ping exper-

iment showed stops receiving service at 2000 requests per second. Their simulated

experiments made use of 3 different attacks patterns which varied the attack rate

between 50 and 150 packets per time slot over 50 time slots. We perform similar

experiments, using a range instead of 1000 to 2000 packets per second. We perform
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the three different attacks, Growing, Wave and Pulse, with varying rates of attack

requests per second and display attack rates over the 50 second attack in Figures

5.11a-5.11c. For each attack, we record at the controller the number of attack re-

quests it receives using both the Stock OvS switch and the RFE switch and display

the results in Figure 5.12.

(a) Growing Attack (b) Pulse Attack (c) Wave Attack

Figure 5.11: Attack Patterns

Figure 5.12: Attack Flow Requests Serviced by the controller

The controller receives a high number of attack requests from the Stock OvS
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switch as this switch forwards packets to the controller indiscriminately, only drop-

ping a few requests when the controller queue is filled to capacity. The RFE switch

by contrast blocks nearly 100% of the attack requests going to the controller. The

controller registers no more than 9 received attack requests regardless of attack rate

or pattern. This performance significantly improves upon the FlowRanger system

which services 1000 malicious requests out of 5000 in the Growing attack, approxi-

mately 400 out of 4500 in the Pulse attack and 500 malicious requests out of 4400

in the Wave attack at far lower attack rates.

5.3.2.4 Connectivity Restoration

Our attacker model assumes the infection of a legitimate host with malware which

causes it to behave maliciously in the network. Since the host itself is not inherently

malicious, we aim to provide regular service to the host when it behaves legitimately

while restricting its connectivity when it behaves maliciously. Our experiments here

focus on this aspect, examining how quickly a maliciously behaving host is allowed

to reestablish connectivity within the network after it stops behaving maliciously.

We use pings from the attacking host to the server to represent legitimate behav-

ior of the infected host. In this experiment, the infected host behaves normally at

first, sending pings to the server once per second. At time T20, the malware begins

its attack which lasts for 10 seconds, after which it goes to sleep and reawakens to

perform another 10 second attack at T40. Throughout this time, the attacker is

continuously sending pings- from T0 to T60. We record the connectivity the attack-

ing host receives during this time by monitoring the responsiveness of the pings to

the server and display the results in Figure 5.13. The controller sets a hard timeout

of 1 second on each rule, requiring every other ping to go to the controller (though

the pings are 1 second apart, the 2nd ping manages to catch the rule in the switch

just before it expires).



171

Figure 5.13: Connectivity of the Attacking Host around attacks

We see that as soon as the attack begins, the attacker’s requests are filtered out,

including the flow requests caused by the legitimate pings (evidenced by the lack

of response). The attack is stopped at T30 and one second later, the pings receive

controller service again and connectivity is restored to the infected host. The same

result is seen when the attack is restarted at T40 and stopped at T50. At T51,

the infected host is once again able to connect to the server. It takes no more than

a second for connectivity to be restored to the offending host, but its requests are

immediately filtered again when the attack restarts.

In extracting attributes for packet in classification, the entropy of the requests

arriving from a port is monitored in 1 second windows. A flow request which arrives

<1second after the attack will have a low entropy as it will exist in its own entropic

window. Additionally, since the attack sends several hundred packets per second,

the Time Period for 25 requests during the attack is very small (approximately 12ms

for a 2000pps attack). A legitimate flow request which arrives one second after the

last attack packet will register a Time Period attribute of 1 second + the time taken

for the last 24 packets of the attack- which makes the Time Period attribute much

larger than 12ms seen for malicious flow requests. Wile the final attribute (Number

of requests in 60 seconds) at this point is still “maliciously” high, connectivity being

restored 1 second after the attack stops indicates that these values place 2 of the 3

attributes far enough outside the “malicious” range of values to swing the tree votes
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towards “benign” 1 second after the attack.

5.3.2.5 Processing and Storage Overhead

We examine here the computational resources used during attack on both the con-

troller and the switch. We perform the attack for 30 seconds in each round using

the Stock OvS Switch and the RFE Switch and vary the rate of flow requests sent

in the attack in each round. We record the average CPU usage of both the Open

vSwitch process and the Ryu controller process during the 30 seconds of attack.

At each flow request rate, the experiment is performed 5 times and the results are

displayed in Figure 5.14.

(a) Controller CPU Usage with Stock OvS (b) Controller CPU Usage with RFE OvS

(c) Switch CPU Usage with Stock OvS (d) Switch CPU Usage with RFE OvS

Figure 5.14: Switch and Controller CPU Usage
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The results of the experiments with the Stock OvS switch indicate that for all

but the lowest attack rate, the controller utilizes 100% of the CPU power available

to it as the switch forwards all attack requests to it (Figure 5.14a). We also see

the CPU usage of the switch rising as it processes higher numbers of flow requests,

peaking at approximately 80% CPU usage under 10000 flow requests per second

(Figure 5.14c). By contrast, the controller CPU usage with the RFE switch remains

at 0% with the exception of a few spikes (Figure 5.14b), which is likely caused by

false positive, misclassified packets. The RFE switch even improves the switch CPU

Usage as the average CPU usage ranges between 10% and 40% (Figure 5.14d). This

is likely because the malicious packets are dropped before the flow requests are cre-

ated and so the switch is able to save processing power by not going through the

flow request creation and sending for the malicious packets.

We also evaluate the additional time required for the classification process. We

record the time each packet takes to be classified for 2000 malicious packets and 2000

legitimate packets. We use using Pings spaced 2 seconds apart for the legitimate

traffic and generate the attack traffic from the attacking host at a rate of 2000 packets

per second. From the recorded times, we determine the maximum, minimum and

average times taken to classify the packet ins as malicious or benign. As shown

in the results displayed in Table 5.7, we find that the classification process adds

minimal delay to the packet ins, considering RTTs for pings visiting the controller

register around 7 milliseconds. At its peak in the RFE switch took approximately

20 microseconds to classify a malicious packet and approximately 40 microseconds

to classify a benign one. This disparity can be explained by the classification trees.

The trees require fewer node visits to classify packets as malicious than to classify

as benign. The averages and minimums, however fall within a few microseconds of

each other.

Malicious Packet in Legitimate Packet in

Maximum Time 19.539µs 38.372µs

Minimum Time 7.082µs 7.959µs

Average Time 8.554µs 11.824µs

Table 5.7: Times taken for packet in classification
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5.3.3 Summary

We examined here the benefits of an increase in switch intelligence which enabled it

to filter malicious packet ins, protecting the controller from intentional overloading.

Our evaluation leads us to the conclusion that the addition of a packet classifier

to increase the intelligence of the switch presents no obvious drawbacks, including

the processing required. It demonstrates the ability to increase the performance of

the network at least 75% in bandwidth and connectivity experiments and effectively

protects the controller from malicious packet ins which seek to overwhelm it without

negatively affecting the legitimate activity of the network. The increase in switch

intelligence also demonstrably reduced the CPU usage of the switch itself under high

loads by dropping the flow requests before they formed into packet ins and sent to

the controller, a benefit controller based solutions would be unable to achieve.

5.4 Conclusion

In the previous chapter, we propose several additional functionalities for the SDN

switch which increase its intelligence. We detail the implementations for two mod-

ules in support of the Intelligent Flow Request Handling functionality and examine

the effects on the network of these modules in this chapter.

The evaluations in this chapter demonstrated that both the Load Distribution

and Malicious Packet in Filtration modules placed in the switch significantly im-

prove the network performance, optimising use of and protecting the control plane

resources. By implementing these modules into the switch, the switch no longer

blindly forwards all flow requests to the controller but intelligently manages its flow

requests to prevent control plane overloading.

In section 5.2 we evaluate the Load Distribution modules of the Intelligent Flow

Request Forwarding. We found that both the Round Robin and the Load Aware

Load Balancers increase the control plane efficiency, allowing the controllers to ser-

vice more flow requests and reduce the CPU load of each controller and the latency

sent by packets to the controller. Additionally, when compared with each other,

the Load Aware Load Balancer outperformed the Round Robin Load Balancer in

most scenarios, but particularly when the controllers in the control plane were not

uniform. In Section 5.3, we evaluated the Random Forest Packet in filter and de-
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termined that it was approximately 99% accurate at distinguishing malicious and

benign flow requests and significantly improved the network bandwidth, flow re-

quest latency, and the load registered on both the CPU and Switch, among other

improvements.

This, along with the Switch Based Flow Rule Eviction functionality discussed

in Chapter 3 empirically show the merits of increasing switch intelligence to enable

it to perform tasks without controller intervention. The functionality outlined and

evaluated here clearly shows that smarter SDN switches is an area which merits

serious investigation. As we conclude in the following chapter, we summarize out

findings and further discuss additional work in the area of switch intelligence to

improve the network.



Chapter 6

Conclusion

In this thesis, we propose that the distribution of intelligence in SDN networks

should not be mutually exclusive. In separating the network planes, the traditional

SDN paradigm concentrates the intelligence in the control plane and regards the

network switches as “dumb forwarding devices”. We propose in this thesis that

increasing the intelligence of the network switches by enabling them to perform

tasks autonomously can improve the network performance and security. While the

controller remains the “brains” of the network, the switch can perform some tasks

which can take some of the load off the controller, enabling it to focus on more

critical tasks such as making routing decisions.

6.1 Thesis Contributions

6.1.1 Analysis of initial steps toward increasing switch in-

telligence

6.1.1.1 Analysis of flow rule eviction vulnerabilities

To reduce the impact of Table Overflow issues in SDN, OpenFlow developers in-

cluded a configuration which allows switches to evict rules in their flow table in

favour of new rules. If the controller attempts to insert a flow rule into a full flow

table, the switch can automatically remove the oldest rule in its table to make space

for the new one instead of replying to the controller with an error message (Switch

Based Flow Rule Eviction). This augmentation of switch functionality represents an

increase in switch intelligence by enabling it to perform a task (flow rule eviction)

176
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without needing controller intervention. This thesis outlines the benefits of this and

takes a closer look at the implementation of this functionality. Analysis of this im-

plementation indicated that while beneficial to the network, it opens a new vector

for DoS attacks on the users of the SDN network. We described and demonstrated a

potential attack on this implementation of switch flow rule eviction. We highlighted

the issue that a malicious user in the network can repeatedly force legitimate rules

to be removed from the switch flow table by creating new rules of their own af-

ter the legitimate rules have been inserted, forcing the older legitimate rules to be

removed to make space for their rules. We demonstrated that using this method,

an attacker can effectively control the bandwidth of legitimate users in the network

since packets which must be diverted to the controller for instruction due to lack

of matching rules in the switch flow table accrue additional latency. By controlling

the frequency at which they push the legitimate rules out of the flow table, the at-

tacker is able to control the number of legitimate user packets which must go to the

controller which is directly related to the throughput the legitimate users experience.

6.1.1.2 Evaluation of alternative flow rule eviction implementations

While the FIFO flow rule eviction policy has some demonstrable shortcomings, the

idea of increasing the switch intelligence through the ability to perform evictions

is worth pursuing as it takes some load off the controller. We therefore examined

several alternative flow rule eviction policies which could be implemented in place

of FIFO. We derived 3 other potential policies from studies done on CPU cache-

replacement: Least Frequently Used, Least Recently Used and Random Removals.

Through simulation of the flow table activity under attack across a number of sce-

narios, we were able to perform an in-depth analysis of the effects of factors such

as the intensity of the attacks, the size of the flow table and the background traffic

on an attacker’s ability to remove the legitimate flow rules from the switch across

each of the eviction policies. Through the evaluation we came to the conclusion that

among the policies evaluated, the Least Recently Used flow eviction policy performs

best against attacks attempting to remove long lasting, heavy hitter flow rules from

the flow table. Implementation of this algorithm into the switch achieves the in-

tended goal of autonomous flow rule eviction without opening a vector for attack as

the FIFO implementation does.
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6.1.2 Further Switch Intelligence Augmentation

In seeing the merits of switch intelligence in taking load off the controller and con-

tributing to better network performance through switch based flow rule eviction,

we propose that switch intelligence be increased to enable SDN switches to perform

tasks autonomously. In doing so, some of the burden is taken off the controller,

allowing it to focus on other critical tasks and the performance and security of the

network can be improved. To illustrate the merits of this, we design an intelligent

SDN switch, focusing on the problem of Denial of Service within the network and

outlining high level designs which increase the switch intelligence, allowing it to de-

fend against DoS. We demonstrate the tangible benefits of such smarter switches by

implementing modules which realise some of the high level design goals. We focus

on addressing the problem of high control plane loads in SDN networks, caused by

the “dumb” switch’s policy of blindly forwarding all flow requests to the control

plane.

Due to SDN switches’ blind forwarding of flow requests, it has previously been

shown that an attacker can generate flow requests to the controller at a high rate

by sending large amounts of packets with randomized packet headers to the switch.

Additionally, a high control plane load may be generated under benign circum-

stances such as a flash flood of traffic causing a large number of new flows in the

network. Both of these force the controller to map a high number of flow routes and

install the associated rules, overloading the controller and preventing some legiti-

mate flows from being serviced. We therefore proposed to increase the intelligence

of the switch to include intelligent forwarding of flow requests to reduce the problem

of high control plane loads and show how smartter switches can aid the resiliency

of the network. We realise this concept of intelligent flow request forwarding by

designing, implementing and evaluating modules enabling the switch to effectively

relieve the network of control plane overloading as much as possible. These mod-

ules, implemented in Open vSwitch (a popular SDN software switch), increased the

switch intelligence by enabling the switch to accurately filter out malicious flow re-

quests aiming to DoS the controller or switch flow table and efficiently distribute the

legitimate flow requests among the available controllers to achieve the best service.
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6.1.2.1 Controller Load Distribution

To implement flow request distribution, we proposed two designs of a Load Balanc-

ing module which allows a switch operating in a multi-controller architecture SDN

network to efficiently partition its flow requests among the available controllers.

The first design, a Round Robin selection system, enabled the switch to send a flow

request to each of its connected controllers in turn, ensuring that each controller

received an equal number of flow requests. This was particularly aimed at con-

trollers which are equally provisioned in terms of CPU and memory resources and

distance from the switch. In deployment this is rarely the scenario and the second

design assumes that, not being perfectly equal, some controllers can better handle

flow requests than others at any given time. The second design, a Load Aware load

distribution system, allowed the switch to infer the load on each of the controllers

connected to the switch at any given time by recording the number of outstanding

or unanswered flow requests of each controller. For each flow request, the switch

selected the controller with the least outstanding flow requests, inferring it to be the

controller with the lightest load.

Our evaluations of both designs showed that both systems can effectively enable

the switch to distribute its control plane load among multiple controllers achieving

better service than the native Open vSwitch connected to multiple controllers. The

Load Aware load distribution system in the switch was shown to work best however,

as its ability to infer the ability of a controller to handle more flow requests caused

it to outperform the Round Robin even under ideal circumstances for the Round

Robin.

6.1.2.2 Filtration of DoS attack packets

To filter malicious flow requests maliciously intended to saturate the controller or

frequently remove flow rules from the flow table, we implemented a Random Forest

classifier into the switch to enable the switch to distinguish between malicious and

legitimate flow requests. We first analysed the flow creation properties of legitimate

traffic using several publicly available datasets. From this analysis, we extracted

three core attributes of the attack which were used to classify malicious and le-

gitimate flow requests. The ranger Random Forest implementation was used for
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training and the trees generated by the program were extracted and fed into Open

vSwitch at boot time. The algorithm for classification was also implemented into

Open vSwitch which used the trees to classify a packet in as malicious or legitimate.

Using this module, the switch allowed legitimate flow requests through to the con-

trol plane while malicious flow requests were dropped.

Evaluation of this module showed significant improvements to the network per-

formance while under attack when compared with the native Open vSwitch program.

The intelligent switch was able to accurately recognize malicious flow requests and

drop them, protecting the controller and enabling it to provide good service to

the legitimate flow requests. The switch filter performed better than several other

works proposed to defend against controller saturation attacks when the results

were compared, and it was shown to reduce the CPU load on both the switch and

the controller while under attack, incurring minimal latency on the flow requests

due to the classification processing. All of these improvements make a strong case

for increasing the switch intelligence, enabling it to perform tasks autonomously to

protect the controller and improve network performance.

6.1.3 Research Impacts

The research in this thesis firstly demonstrates the need for security evaluation of

protocols before deployment. While the Switch Based Flow Rule Eviction at first

glance seems to be an excellent step forward in reducing the effects of the limited

TCAM in SDN, a closer look showed that while it closed one vector for attack, it

opened another. This portion of the thesis lends its support to the Security research

community calling for a serious examination of the vulnerability impacts of both

protocol and software before deployment rather than considering the security as an

afterthought.

Secondly, this thesis pushes for the inclusion of intelligence in the SDN switch

which would allow it to work in conjunction with the controller for the benefit of

the network. The switch prototypes proposed and evaluated here effectively blocked

DoS attacks aimed at the switch and controller and helped distribute legitimate

traffic for better service at little to no cost. SDN’s vulnerabilities has been one of

the major hindrances to its widespread deployment. While this type of network has
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demonstrated many benefits, its underlying infrastructure is open to many attacks

such as the DoS attacks discussed in this thesis. With the proven benefits of smarter

SDN switches, we push SDN closer to safe industrial deployment.

6.1.4 Summary

In summary, the thesis makes the following contributions

• Analysed initial attempts to increase SDN switch intelligence through switch

based flow rule eviction and demonstrated a potential attack on the current

implementation of the flow rule eviction policy which allows an attacker to

control the throughput of legitimate users with which he shares the network

• Evaluated alternative eviction policies for their attack resilience concluding

that removing the Least Recently Used rule provides the most resilience against

attacks attempting to forcibly remove long lasting flows

• Proposed to further increase switch intelligence to increase network resilience

by allowing the switch to perform tasks without the need for controller inter-

vention and offered a design of such a switch resilient to DoS attacks on the

network infrastructure

• Designed, implemented and evaluated modules enabling the switch to dis-

tribute flow requests among several controllers with the aim of providing better

service to SDN networks under high controller loads through smarter switches.

• Designed, implemented and evaluated a packet in filter module enabling the

switch to autonomously distinguish malicious from legitimate flow requests

and protect the controller from controller saturation DoS attacks

6.2 Future Work

In this thesis, we evaluate the resiliency of various switch flow rule eviction policies.

We demonstrate the attack vector exposed by the First in First Out (FIFO) eviction

policy and examine for attack resiliency, three other policies that could be imple-

mented in place of FIFO. Extending the concept of switch intelligence, demonstrate

that increasing the intelligence of the SDN switch can improves the resiliency of the
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network against both malicious and legitimate controller saturation.

While we present a prototype here, we do not propose that the switch augmenta-

tions presented here represent a complete solution for an intelligent switch. In this

section we acknowledge the space for further improvements, suggesting further work

that could be done in line with what is presented within this thesis and outside of

that scope as well.

6.2.1 Switch Flow Rule Eviction

We expand the concept of Switch Based flow rule eviction to look at other poli-

cies that could be implemented in place of the FIFO policy of OpenFlow 1.4. We

evaluate the Least Recently Used, Least Frequently Used and Random Replacement

policies, concluding that the Least Recently Used policy presents the most resilience

to an attacker aiming to remove legitimate flow rules from the switch.

We draw inspiration for the flow rule eviction policies from the CPU cache re-

placement problem. The policies evaluated here are by no means the totality of

the proposals for cache replacement. Several other policies have been implemented

and evaluated within the CPU cache sphere which could be ported to the switch

flow rule replacement problem [147][187][188]. One such example is the Time Aware

Least Recently Used [189], a variation of LRU which considers the life span of cache

content in deciding eviction. Since in most cases in SDN, rules either have an idle or

hard timeout in the switch, this may prove to be a viable and well suited alternative

policy. Alternatively, hybrid flow rule eviction policies which combine attributes

from one or more eviction policies could also be implemented. This concept would

seek to combine the best attributes of multiple policies. One example of such is a

Least Frequently Recently Used policy, which could combine the best of both worlds

in the Least Frequently Used and Least Recently Used policies by considering the

popularity of a flow rule but balancing it with the recency of its use so that “dead”

flows which were once heavy hitters do not remain in the switch longer than they

should.
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6.2.2 Load Distribution

To demonstrate the viability and benefits of smarter SDN switches, we implement

and evaluate two designs for control plane load distribution performed by the switch.

In both designs, the switch selects a single controller out of the pool of connected

controllers for its next flow request. This reduces the redundancy in the system (the

switch is no longer forwarding all requests to all controllers) and enables the switch

to get better service out of the controllers with which it is connected.

The proposals in this thesis focus solely on the aspect of flow requests being sent

into the control plane. With this focus, the switch ignores the issue of propagation

of network updates between the controllers. All controllers should be able to main-

tain an accurate view of the flow table states of each switch under its control at

all times. Our system does not currently consider this factor as it is outside of the

scope of this project. While we specify that there should exist an inter controller

communication system within the control plane to handle this, additional work on

this module could look at its own communication protocol with the controllers to

inform the others when one installs a flow into the switch table. Such a commu-

nication system is also useful for integration of the switch load distribution system

with other controller-based defenses. Defense systems for the SDN network which

assume all flow requests pass through it (e.g [99] and [106])could be subverted by

a switch based load distribution system which actively chooses where to send flow

requests. It may cause them to miss out on key statistics when monitoring. This

could be handled within the control plane defense system by having the controllers

propagate information among each other to ensure the decisions are made using ac-

curate information. Careful consideration must be given to the risk of removing the

benefits of the load balancing by bombarding the controllers with updates within

such an implementation, however.

6.2.3 Malicious Packet in Filter

The Random Forest Packet in Classifier and Filter presents the largest opportunity

for expansion of the work done in this thesis. As part of our switch intelligence aug-

mentation proposal, we implemented and evaluated a packet in filter in the switch

which enables it to distinguish malicious from legitimate flow requests using Ran-
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dom Forest classification and drops the malicious flow requests.

We highlighted the necessity of extracting from the attack immutable charac-

teristics which an internal attacker cannot easily subvert without compromising the

effectiveness of his attack. Training data for legitimate requests was gathered using

several publicly available network traces and training was performed offline. This

was done in absence of network generated training data specific to the network the

filter would be employed on. The “training” portion of this filter concept is yet to

be fully explored. The opportunity remains for implementation of a module which

records the network behaviour under normal circumstances, allowing it to quickly

detect when the behaviour of its own network has changed. Such a module could

periodically record the behaviour of the ports it is connected to as “legitimate ac-

tivity” and use this as its training data (online training). In this way, the switch is

not reliant on another network’s “good behaviour” to determine good behaviour in

its own environment.

Additionally, since the switch performs its filtering and protection of the network

in relative isolation (without interacting with the controller), further work in this

area should include updates to the controller regarding switch activity. This may

take the form of periodic messages to the controller informing it of the number of

attack packets blocked, or may involve sending a sample of the attack packets to

the controller for verification of accurate filtering. This is to ensure the controller

has an accurate view of the traffic in the network and can take its own actions in

keeping with network policies to address the attack if necessary.

6.2.3.1 Limitations

The attacker model our Packet in Filter aims to protect against is an internal host

which has been compromised or infected by malware. Detecting traditional DoS

attacks or external attackers attempting to perform SDN focused attacks are both

outside the scope of this thesis. There are several other systems which focus on both

of these attacks within the SDN sphere and we propose that the filter in this system

be made to work in conjunction with these other systems. We exclude ingress ports

and ports connected to servers (e.g web server) from classification as they, by nature,

generate a large number of flow requests within an abnormally short space of time
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when compared with a host connected port. Systems such as [104] which monitor

for external attackers by examining the entropy of destination addresses would be

useful to implement alongside.

6.2.4 Further Switch Intelligence

We present in this thesis several augmentations for an SDN switch, increasing its in-

telligence to increase the resilience of the network. We by no means claim to present

a complete solution here however, and the opportunity exists for further increases in

functionality of the switch. With a focus on relieving the burden on the controller,

many new ideas can be implemented into the switch. Previous examples include

AVANT-GUARD’s TCP attack filter [117] and Statesec [122] which detects DDoS

attacks on hosts in the network. Further augmentation could allow the switch to

monitor for Man In The Middle attacks or for packet signatures of malware. The

switch could be envisioned not only as a forwarding device, but as a gatekeeper for

the SDN network, blocking malicious activity of all sorts before it has chance to

enter the network.

Controller Malfunction Detection, one attribute of an intelligent switch not im-

plemented in this thesis, could be carried out by an extension of the Load Aware

load distributor, which infers the load on a controller. It can also be expanded upon

to make further inferences about a controller. A controller repeatedly assessed by

several switches to be under high loads could be indicative of an attack in progress

that the controller is unable to take action against or a Byzantine failure of some

sort within the controller which is causing it to respond slowly. The switches could

then inform the other controllers that feedback from this controller has been low

and should be checked. Low response rates could also imply a controller behaving

maliciously. Such a controller may appear to have a high number of unanswered

requests to the switches, which could then alert other controllers to potential mali-

cious behaviour from that controller.

Despite the potential benefits presented by augmenting the switch’s intelligence,

the greatest care must be taken to preserve the switch’s core functionality: packet

forwarding. Whatever additional functioning the switch is enabled to do should not
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compromise its ability to quickly forward packets to their destinations.

Finally, we acknowledge the difficulty of hardware deployment for these and any

other ideas which augment the switch. Within the SDN paradigm, the controller

is meant to be easily configurable, with switches acting almost like an embedded

system with limited functionality. The idea of intelligent switches flies in the face

of this concept as it calls for switches that can be easily modified to increase their

abilities. This is easily done in software switches such as Open vSwitch. It is

significantly more difficult to convince vendors to include custom functionalities

in hardware switches. Similar adoption difficulties were also acknowledged when

the ideas of separated control and forwarding planes in hardware switches were

first conceived [18]. Nevertheless, just as the OpenFlow protocol created a pseudo-

standard which vendors could implement and allow for switch interaction with a

centralised control plane, this presents an opportunity for a standard framework

to be implemented in switches which enables modification of the functionality post

deployment. Such a framework would allow network admins and programmers to

easily alter what a switch does upon receiving a packet.

6.3 Concluding Remarks

In this thesis, we analyse initial steps to increase the intelligence of the SDN switch

and propose further increases to switch intelligence which can help defend the net-

work. Through an extensive evaluation, we prove the merit of the augmentations,

showing the clear advantages to the implementation of intelligence in the switch.

While barriers to introduction exist in implementing such technology into hard-

ware switches, the versatility of software switches allows us to try different ap-

proaches and prototypes to determine what works and what doesn’t to increase

the performance and resilience of the network before moving these frameworks into

hardware.
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Appendix

A Results of varying the attack parameters

A.1 Results of Varying the number of flushes in the Spray

Attack

Flushes/sec Total No of Removals Removals/sec Throughput Mb/s TableMisses

100 5944 99 888 30067

200 11825 197 751 75127

300 17670 294 722 93646

400 23391 389 653 117763

500 27278 454 603 139044

750 28070 467 587 143867

1000 28781 479 583 145917

Table 1a: Spray Attack Power under FIFO eviction

Flushes/sec Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

100 1177 19 929 20551

200 1733 28 928 12300

300 2144 35 925 16066

400 2578 42 921 16846

500 2856 47 925 14254

750 3053 50 922 15306

1000 2975 49 922 18624

Table 1b: Spray Attack Power under Random eviction
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Flushes/sec Total No of Removals Removals/sec Throughput Mb/s TableMisses

100 2 0 940 408

200 2 0 940 408

300 2 0 940 408

400 2 0 940 408

500 2 0 940 408

750 2 0 940 408

1000 2 0 940 408

Table 1c: Spray Attack Power under LFU eviction

Flushes/sec Total No of Removals Removals/sec Throughput Mb/s TableMisses

100 7 0 940 618

200 7 0 940 618

300 7 0 940 618

400 7 0 940 618

500 7 0 940 618

750 7 0 940 618

1000 7 0 940 618

Table 1d: Spray Attack Power under LRU eviction

A.2 Results of Varying the number of malicious flow rules

in the Clog Attack

No of Rules clogged Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

495 7820 130 844 47445

496 8242 137 839 49660

497 8757 145 814 60087

498 9264 154 806 62047

499 10218 170 787 68501

500 11003 183 777 73674

Table 2a: Clog Attack Power under FIFO eviction



207

No of Rules clogged Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

495 7563 126 853 44608

496 8039 133 832 51236

497 8502 141 834 52972

498 8889 148 816 58220

499 9768 162 804 63163

500 10347 172 795 66445

Table 2b: Clog Attack Power under Random eviction

No of Rules clogged Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

495 236 3 931 9786

496 505 8 928 13888

497 1680 28 925 15475

498 5299 88 898 26873

499 16412 273 735 89582

500 27930 465 568 151499

Table 2c: Clog Attack Power under LFU eviction

No of Rules clogged Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

495 33 0 939 3397

496 68 1 934 7095

497 112 1 932 8792

498 153 2 929 13455

499 194 3 930 10431

500 207 3 927 13646

Table 2d: Clog Attack Power under LRU eviction
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Packets/Sec Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

1000pps 17960 299 694 93541

2000pps 19832 330 675 99677

3000pps 21738 362 654 107730

4000pps 23585 393 621 106344

5000pps 25415 423 606 116050

Table 2e: Clog Attack Power under LFU eviction with last rule packet rates varied

B Results of varying the number of attackers

B.1 Results of Varying the number of Attackers in the Spray

Attack

No. of Attackers Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

1 17673 294 722 93646

2 34004 566 472 177770

3 49159 819 300 244551

4 63905 1065 241 271587

5 78385 1306 214 285416

Table 3a: Increasing Spray Attackers under FIFO eviction

No. of Attackers Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

1 2135 35 927 12711

2 27239 453 616 134947

3 46453 774 324 238781

4 62661 1044 240 272124

5 77712 1295 224 280969

Table 3b: Increasing Spray Attackers under Random eviction
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No. of Attackers Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

1 2 0 940 408

2 2 0 940 408

3 2 0 940 408

4 2 0 940 408

5 2 0 940 408

Table 3c: Increasing Spray Attackers under LFU eviction

No. of Attackers Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

1 7 0 940 618

2 7 0 940 618

3 9 0 940 864

4 14 0 940 2376

5 36 0 939 2866

Table 3d: Increasing Spray Attackers under LRU eviction

B.2 Results of Varying the number of attackers in the Clog

Attack

No. of Attackers Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

5 8860 147 817 58079

6 9575 159 798 65301

7 10218 170 787 68501

8 10851 180 791 69545

9 11337 188 772 75507

Table 4a: Increasing Clog Attackers under FIFO eviction
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No of Attackers Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

5 8143 135 830 52516

6 9037 150 818 58422

7 9768 162 804 63163

8 10449 174 787 69281

9 11044 184 773 75637

Table 4b: Increasing Clog Attackers under Random eviction

No. of Attackers Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

5 274 4 930 10026

6 934 15 927 14423

7 16412 273 735 89582

8 136866 2281 177 305796

9 191133 3185 150 315822

Table 4c: Increasing Clog Attackers under LFU eviction

No. of Attackers Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

5 56 0 935 6619

6 119 1 931 9117

7 194 3 930 10431

8 287 4 930 9860

9 360 6 929 13220

Table 4d: Increasing Clog Attackers under LRU eviction
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C Results of varying the flow table size

C.1 Results of Varying the size of the flow table in the Spray

Attack

Flow Table Size Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

100 17559 292 713 98181

250 17603 293 721 94426

500 17670 294 722 93646

750 34117 568 475 180614

1000 30362 506 574 147025

Table 5a: Spray Attack on Varying Flow Table Sizes: FIFO eviction

Flow Table Size Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

100 5574 92 894 29619

250 3380 56 916 21228

500 2144 35 925 16066

750 27561 459 587 146533

1000 23840 397 641 124087

Table 5b: Spray Attack on Varying Flow Table Sizes: Random eviction

Flow Table Size Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

100 3 0 940 408

250 2 0 940 408

500 2 0 940 408

750 2 0 940 408

1000 2 0 940 408

Table 5c: Spray Attack on Varying Flow Table Sizes: LFU eviction
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Flow Table Size Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

100 9 0 940 864

250 7 0 940 618

500 7 0 940 618

750 7 0 940 618

1000 7 0 940 618

Table 5d: Spray Attack on Varying Flow Table Sizes: LRU eviction

C.2 Results of Varying the size of the flow table in the Clog

Attack

Flow Table Size Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

100 40294 671 457 186304

250 16132 268 690 94298

500 10218 170 787 68501

750 7757 129 848 45757

1000 6594 109 871 37248

Table 6a: Clog Attack on Varying Flow Table Sizes: FIFO eviction

Flow Table Size Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

100 28313 471 588 142536

250 14032 233 738 89010

500 9768 162 804 63163

750 8222 137 830 52081

1000 6788 113 865 39046

Table 6b: Clog Attack on Varying Flow Table Sizes: Random eviction
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Flow Table Size Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

100 28469 474 572 148538

250 26438 440 743 87839

500 16412 273 735 89582

750 5016 83 902 26391

1000 3237 53 919 19879

Table 6c: Clog Attack on Varying Flow Table Sizes: LFU eviction

Flow Table Size Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

100 2280 38 927 12363

250 264 4 925 13179

500 194 3 930 10431

750 150 2 928 12931

1000 138 2 928 13197

Table 6d: Clog Attack on Varying Flow Table Sizes: LRU eviction

D Results of varying the surrounding network traf-

fic during the attack

D.1 Results of Varying the surrounding network traffic in

the Spray Attack

Traffic Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

Caida 40 17667 294 716 95975

Caida 50 17670 294 722 93646

Caida 100 17670 294 722 93646

Caida 200 18171 302 719 94931

Caida 500 19601 326 699 102853

Caida 750 20300 338 691 104907

Table 7a: Spray Attack with varying BG traffic: FIFO eviction
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Traffic Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

Caida 40 1527 25 926 15053

Caida 50 2144 35 925 16066

Caida 100 3095 51 919 18796

Caida 200 5102 85 901 25883

Caida 500 8366 139 828 52922

Caida 750 9911 165 795 66852

Table 7b: Spray Attack with varying BG traffic: Random eviction

Traffic Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

Caida 40 2 0 940 408

Caida 50 2 0 940 408

Caida 100 2 0 940 408

Caida 200 2 0 940 408

Caida 500 2 0 940 408

Caida 750 2 0 940 408

Table 7c: Spray Attack with varying BG traffic: LFU eviction

Traffic Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

Caida 40 7 0 940 618

Caida 50 7 0 940 618

Caida 100 7 0 940 618

Caida 200 7 0 940 618

Caida 500 7 0 940 618

Caida 750 7 0 940 618

Table 7d: Spray Attack with varying BG traffic: LRU eviction
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D.2 Results of Varying the surrounding network traffic in

the Clog Attack

Traffic Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

Caida 40 7931 132 833 50902

Caida 50 10218 170 787 68501

Caida 100 15020 250 739 88769

Caida 200 23591 393 656 118106

Caida 500 36405 606 470 186568

Caida 750 41755 695 387 211983

Table 8a: Clog Attack with varying BG traffic: FIFO eviction

Traffic Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

Caida 40 7499 124 853 44436

Caida 50 9768 162 804 63163

Caida 100 14228 237 742 88470

Caida 200 22540 375 659 116062

Caida 500 35089 584 499 176730

Caida 750 40527 675 428 199172

Table 8b: Clog Attack with varying BG traffic: Random eviction

Traffic Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

Caida 40 15171 252 741 88736

Caida 50 16412 273 735 89582

Caida 100 23475 391 651 120538

Caida 200 237216 620 431 198373

Caida 500 56179 936 257 262102

Caida 750 63804 1063 248 266678

Table 8c: Clog Attack with varying BG traffic: LFU eviction
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Traffic Total No of Evictions Evictions/sec Throughput Mb/s TableMisses

Caida 40 190 3 925 13190

Caida 50 194 3 930 10431

Caida 100 219 3 930 10044

Caida 200 254 4 927 13489

Caida 500 300 5 928 13229

Caida 750 325 5 926 14370

Table 8d: Clog Attack with varying BG traffic: LRU eviction
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