
Lancaster University

Doctoral Thesis

Scalable and Responsive SDN

Monitoring and Remediation for

the Cloud-to-Fog Continuum

Lyndon John Fawcett

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

in the

School of Computing and Communications

September 26, 2019

i

Declaration of Authorship

I, Lyndon John Fawcett, declare that this thesis titled, “Scalable and Responsive

SDN Monitoring and Remediation for the Cloud-to-Fog Continuum” and the

work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research

degree at this University.

• Where any part of this thesis has previously been submitted for a degree

or any other qualification at this University or any other institution, this

has been clearly stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

• Where the thesis is based on work done by myself jointly with others, I

have made clear exactly what was done by others and what I have con-

tributed myself.

Signed:

Date:

ii

Abstract

Since the inception of the digital era the sharing of information has been rev-

olutionary to the way we live, inspiring the continuous evolution of computer

networks. Year by year, humankind becomes increasingly dependent on the

use of connected services as new technologies evolve and become more widely

accessible. As the widespread deployment of the Internet of Things, 5G, and

connected cars rapidly approaches, with tens of billions of new devices connect-

ing to the Internet, there will be a plethora of new faults and attacks that will

require the need to be tracked and managed. This enormous increase on Internet

reliance which is stretching the limits of current solutions to network monitor-

ing introduces security concerns, as well as challenges of scale in operation and

management. Todays conventional network monitoring and management lacks

the flexibility, visibility, and intelligence required to effectively operate the next

generation of the Internet. The advent of network softwarisation provides new

methods for network management and operation, opening new solutions to net-

work monitoring and remediation. In parallel, the increase in maturity of Edge

computing lends itself to new solutions for scaling network softwarisation, by

deploying services throughout the network.

In this thesis, two proof-of-concept systems are presented which together

harness the use of Software Defined Networking, Network Functions Virtuali-

sation, and Cloud-to-Fog computing to address challenges of scale and network

security: Siren is an open platform which manages the resources within the

Internet, bridging network and infrastructure management and orchestration.

iii

Tennison is a network monitoring and remediation framework which tackles

monitoring scalability through adapting to network context and providing a

suitable architecture to the network topology, including the use of centralised,

distributed, and hierarchical deployments.

iv

Acknowledgements

With these next few sentences, I want to express my gratitude to the many

people who have made my time at Lancaster University a fruitful and enjoyable

experience.

Firstly, I would like to thank my supervisor, Nick Race, for his support and

guidance in the PhD as well as the countless opportunities to develop myself

professionally.

I would also like to thank all of the industry partners that I have engaged

with during the PhD which ultimately helped in steering and validating this

thesis.

During the last few years, I have been extremely lucky to work and co-author

with so many brilliant people at Lancaster University. Therefore, I would like to

thank my peers for their encouragement and for making my experience over the

last few years both lively and productive. In no particular order, I would like to

thank: Noor Shirazi, Ben Lewis, Antonios Gouglidis, Arsham Farshad, Antony

Chung, Mu Mu, Colin McLaughlin, Steven Simpson, Nic Hart, Sarah Hill, Jamie

Jellicoe, Jamie Bird, David Hutchison, Shiyam Alalmaei, Chris Edwards, Utz

Roedig, Andreas Mauthe, Matthew Broadbent, Oliver Bates, Ric Derbyshire,

Rick Withnell, Yehia El Khatib, Karen Coupe, and Ellie Davies.

I am grateful to my PhD examiners Prof. Ning Wang (University of Surrey)

and Dr. Andrew Scott (Lancaster University) for taking the time to provide

feedback on this thesis.

v

Additionally, I would also like to acknowledge and thank my family: Bryan,

Judith, and Daniel for their love and support during these years.

Lastly, I would like to thank my amazing fianceé, Tansy Wickham-Pusey,

who kept me sane and reassured me whenever I doubted myself. She has been

a pillar of support for me and I owe a lot of my success to her.

vi

Contents

1 Introduction 1

1.1 Contemporary Network Monitoring and Remediation 2

1.2 Prospects for Next Generation Networking 3

1.3 Thesis Statement . 5

1.4 Thesis Aims and Contributions 6

1.5 Thesis Structure . 7

2 Background and Related Work 10

2.1 Programmable networks . 11

2.1.1 Software Defined Networking 13

2.1.1.1 OpenFlow . 14

2.1.1.2 P4 . 16

2.1.2 Scalable Programmable Networks 17

2.1.2.1 In Network Intelligence 17

2.1.2.2 Distributed SDN Controller Performance 18

2.1.3 Software Defined Network Monitoring and Security . . . 19

2.1.3.1 SDN Monitoring Solutions and Scalability . . . 19

2.1.3.2 SDN Security Frameworks 22

2.1.4 Network Functions Virtualisation 25

2.2 Emerging Computing Architectures 26

2.3 Management and Orchestration 29

2.3.1 Management and Orchestration Standardisation 30

Virtualised Infrastructure Manager (VIM) 32

vii

Virtual Network Function Manager (VNFM) . . . 32

Network Functions Virtualisation Orchestrator (NFVO) 33

Service Function Chaining (SFC) 33

Segment Routing (SR) 34

Next Generation Service Overlay Networks (NG-

SON) 34

Network Service Header (NSH) 34

2.3.2 NFV Management and Orchestration Implementations . 35

Cloudify [48] . 35

Open Source MANO (OSM) [72] 35

OpenBaton [35] 35

ONAP [135] . 36

ZOOM [203] . 36

SONATA [66] . 36

T-NOVA [216] . 36

OpenContrail [182, 45] 36

CloudNFV [49] 36

OpenVIM [151] 37

CORD [154] . 37

Open Platform for NFV (OPNFV) [160] 37

2.3.3 Container Management and Orchestration Implementations 37

Kubernetes [107] 38

Swarm [63] . 38

Fleet [83] . 38

MESOS [12] . 38

Rancher [162] . 39

Mirantis [127] . 39

2.4 Summary . 40

viii

3 Designing Responsive and Scalable Network Monitoring 42

3.1 Motivation . 42

3.1.1 The Cloud-to-Fog Continuum 43

3.1.1.1 Analysis of SDN/NFV Performance in Edge Net-

works . 44

3.1.1.2 Experimentation Environment 45

3.1.1.3 Analysis of Fog Placement 46

3.1.1.4 Limitations of Scalability and Distribution within

Contemporary Solutions and Technologies . . . 47

SDN Controller Scale: 47

VNF Forwarding: 47

NFV Deployment to Heterogeneous Environments: 48

3.1.2 Summary . 48

3.2 High Level Design Requirements 49

3.3 Design Considerations . 50

3.3.1 Monitoring Agility and Control 50

3.3.1.1 SDN Controllers 50

3.3.1.2 NFV Connectivity 50

Network Service Header (NSH) 51

Source Routing (SR) with IPv6 51

Vendor locked tunneling 51

VLAN based tunneling 51

Middle-boxes and encapsulation 52

3.3.2 Monitoring Methodology 52

Redirection: . 52

Mirroring: . 53

Middlebox: . 53

Full OpenFlow Packet-In: 53

ix

Header monitoring: 53

3.3.3 Deployment Flexibility 53

Centralised . 54

Distributed . 54

Tiered . 54

3.3.4 Network Service Orchestration Methodology 54

Cost-based Orchestration 55

Service Agnostic Auction-based Orchestration . . 55

Monitoring Orchestration 56

3.3.5 Virtualisation Technology 56

Virtual Machines (VMs) 56

Containers . 56

UniKernels . 57

3.3.6 Technology Agnostic Architecture 57

Southbound Protocol: 57

SDN Controller: 58

Network Hardware: 58

3.4 Design Overview . 58

3.5 Tennison: Monitoring and Remediation

Framework . 59

3.5.1 Tennison Coordinator 61

3.5.1.1 Southbound Interface (SBI) Modules 62

3.5.1.2 Data Broker . 63

3.5.1.3 Event Logger 63

3.5.1.4 Policy Engine 64

3.5.1.5 Northbound Interface 64

3.5.2 Tennison Multi-level Monitoring 66

3.5.3 SDN Controller Distribution 67

x

3.5.4 Tiered Network Monitoring 68

Subdomain Manager 69

Domain Manager 70

Inter Domain Manager 70

3.6 Siren: Infrastructure Management and Orchestration Platform 70

3.6.1 Service Discovery . 71

3.6.2 Service Provisioner . 71

3.6.3 Agents . 72

3.6.4 Life Cycle Manager (LMC) 72

3.6.5 Orchestration Methodologies 72

3.6.5.1 Auctioning . 72

3.6.5.2 Cost-based . 73

3.6.5.3 Network Awareness-based 74

3.7 Data Plane Pipeline Design . 74

3.7.1 OpenFlow . 75

3.7.2 P4 . 76

3.8 Summary . 77

4 Implementation 78

4.1 Implementing Tennison . 78

4.1.1 Tennison Security Pipeline 81

4.1.2 Network Controller . 82

4.1.2.1 Controller distribution 83

4.1.2.2 Security Intents 83

4.1.2.3 ONOS Application Pipeline 85

4.1.2.4 Implementing Multi-level Monitoring 85

4.1.3 Tennison Security Functions in Operation 87

4.1.4 Single Host Volumetric Denial of Service Attack 87

xi

4.1.5 Distributed Volumetric Denial of Service Attack 88

4.1.6 Scanning Attack . 89

4.1.7 Intrusion Attack . 90

4.1.8 Tennison Web Console 92

4.1.9 Experimentation Framework 95

4.1.10 Tiered Implementation 96

4.1.11 Summary of Tennison Functionality 100

4.2 Implementing Siren . 104

4.2.1 Test Virtual Network Functions 105

4.2.1.1 DPI . 105

4.2.1.2 DNS . 106

4.2.1.3 CDN . 106

4.2.2 Network Controller . 106

4.2.3 Dynamic Redirection and Mirroring to Distributed VNFs 106

4.2.4 Monitoring Orchestrator 108

4.2.4.1 Orchestration Policy Manifest 109

4.2.5 Siren: Web Console . 110

4.2.6 Siren in Operation . 111

4.2.7 Siren Summary . 112

5 Evaluation 114

5.1 Tennison Evaluation . 114

5.1.1 Framework Comparison 114

5.1.2 Evaluation Environment 116

5.1.3 Distributed SDN Controller Performance 116

5.1.4 Attack Detection/Protection Latency 119

5.1.4.1 DDoS . 119

5.1.4.2 Scanning . 122

xii

5.1.4.3 Intrusion . 122

5.1.4.4 High-volume DoS 123

5.1.5 System Scalability . 124

5.1.5.1 Multi-Level Monitoring 124

5.1.5.2 Distributed Control Cost 125

5.1.5.3 Monitoring Performance Analysis 126

5.1.6 Impact of Monitoring with Tennison 128

5.1.7 Tiered Tennison Evaluation 129

5.1.7.1 Tiered Tennison Summary 132

5.1.8 Comparative Design Evaluation 132

5.1.9 P4-Enabled Tennison 133

5.2 Siren Evaluation . 134

5.2.1 Network Provider Cost 134

5.2.2 Experimentation Environment and Scenarios 135

5.2.3 Analysis . 136

5.3 Summary . 138

6 Conclusion and Future Work 139

6.1 Thesis Contributions . 140

6.1.1 Thesis Impact . 141

6.2 Future Work . 142

6.2.1 Monitoring with Data Plane Programabiltiy 143

6.2.2 Advancing with the Evolution of Edge Computing 144

6.2.3 Applying Artificial Intelligence 144

6.2.4 Extending Network Monitoring Visibility 145

6.2.5 Integration with Maturing NFV Technologies 146

A Supplementary results 148

A.1 ONOS Scaling Analysis . 148

xiii

B Tennison Developer’s Guide 149

Bibliography 176

xiv

List of Figures

1.1 Next generation network monitoring architecture 5

2.1 Simplified view of an SDN architecture 11

2.2 Selected contributions to programmable networks and SDN mon-

itoring . 13

2.3 OpenFlow Pipeline . 15

2.4 OpenFlow’s Relationship with OSI model 15

2.5 P4’s Relationship with OSI model 16

2.6 ETSI’s NFV Framework Design Architecture 29

3.1 Cloud to Fog Continuum . 44

3.2 CPU resources . 45

3.3 Network resources . 45

3.4 Experimentation Topology . 46

3.5 Fog Placement Cost Reduction 46

3.6 Grand Architecture Overview 59

3.7 Tennison System architecture 60

3.8 Tennison Coordinator subsystems including southbound interface 62

3.9 Tennison Coordinator Northbound Interface 65

3.10 Tennison multi-level monitoring triangle 66

3.11 Tired architecture design . 68

3.12 Cloud-to-Fog Infrastructure Management and Orchestration Plat-

form . 71

xv

3.13 OpenFlow monitoring pipeline design 76

3.14 P4 monitoring pipeline design 76

4.1 Tennison Implementation Overview 79

4.2 Tennison Security Pipeline . 81

4.3 ONOS Tennison Application Pipeline 85

4.4 Tennison Policy Engine Illustration 86

4.5 Tennison sFlow DoS Detection/Protection 89

4.6 Tennison IPFIX DDoS Detection/Protection 90

4.7 Tennison Scanning Detection/Protection 91

4.8 Tennison Intrusion Detection/Protection 91

4.9 Tennison GUI Dashboard . 92

4.10 Tennison GUI Monitoring . 93

4.11 Tennison Policy Engine . 93

4.12 Tennison GUI Topology . 94

4.13 Tennison Experimenter Design 95

4.14 Tiered Tennison . 96

4.15 Sub Domain Manager . 97

4.16 Domain Manager . 98

4.17 Tiered Manager GUI Configuration Component 98

4.18 Tiered Domain Manager GUI 99

4.19 Siren Implementation Overview 104

4.20 Overlay Network Tunnels . 107

4.21 Monitoring Orchestrator Yaml policy file 110

4.22 Siren GUI . 110

4.23 Siren Operation . 111

5.1 ONOS Controller Performance (Responses/s) - multiple controller

instances . 117

xvi

5.2 Controller Performance (Latency) - varying controller-switch ra-

tios . 118

5.3 Attack Remediation Latency - Single Controller 120

5.4 Snort DDoS classification rule 120

5.5 Accuracy of DDoS detection and remediation 121

5.6 Snort VSFTPD backdoor classification rule 123

5.7 DDoS Attack Remediation Latency - Distributed Control Cost . 125

5.8 Policy Engine performance . 126

5.9 Monitor setup time . 127

5.10 RAM usage . 128

5.11 Tiered Tennison latency . 129

5.12 Tiered Tennison responses . 130

5.13 ONOS GUI with Tiered Operation 131

5.14 Tiered vs Distributed vs Single Tennison 132

5.15 Experimentation Environment 135

5.16 Latency Results From Mininet Experiment 136

5.17 Example Network Provider Fees Per Month 137

A.1 ONOS Pending Flows . 148

A.2 ONOS Peak Flows . 148

xvii

List of Tables

4.1 Summary of Attack Detection/Protection Mechanisms 88

5.1 Scalability comparison of SDN security systems 115

5.2 User Application LoC Comparison 115

5.3 Performance Difference Between OpenFlow and P4 133

xviii

List of Abbreviations

AI Artifical Intelligence

AN Active Networks

AT Active Technologies

BSS Business System Support

CAPEX Capital Expendature

CDN Content Distribution Network

CM Cloud manager

CORD Central Office Rearchitected as a Datacenter

EMS Element Mangement System

DPI Deep Packet Inspection

DOS Denial Of Service

DDOS Distributed Denial Of Service

ETSI European Telecommunications Standards Institute

IDS Intrusion Detection System

IPFIX IP Flow Information Export

IPS Intrusion Prevention System

LoC Lines of Code

LCM Life Cycle Manager

MANO Managment ANnd Orchestration

ML Machine Learning

NFV Network Functions Virtualisation

NFVI Network Functions Virtualisation Infrastucture

xix

NFVO Network Functions Virtualisation Orchestrator

NSH Network Service Header

NBI North Bound Interface

OSM Open Source MANO

ONOS Open Network Operating System

OPEX Oerational Expendature

ODL Open Day Light

OvS Open virtual Switch

OF Open Flow

OSS Operational System Support

ONAP Open Network Automation Platform

PaaS Platform as a Service

PNF Physical Network Function

PCA Principle Component Analysis

WAN Wide Area Network

WG Working Group

VNF Virtual Network Function

VIM Virtualised Ifrastructure Manager

VNFM Virtual Network Function Manager

VNFFG Virtual Network Function Forwarding Graph

FP False Positive

FN False Negative

REST Re Epresentational State Transfer

SDN Software Defined Networks

SFC Service Forwarding Chain

SR Source Routing

SR Segment Routing

SBI South Bound Interface

xx

List of Publications

The research presented in this thesis has appeared in various journals and

conferences as listed below:

1. Rotsos, Charalampos, Daniel King, Arsham Farshad, Jamie Bird, Lyn-

don Fawcett, Nektarios Georgalas, Matthias Gunkel et al. "Network

service orchestration standardization: A technology survey." Computer

Standards and Interfaces 54 (2017): 203-215.

2. Fawcett, Lyndon, and Nicholas Race. "Siren: a platform for deployment

of VNFs in distributed infrastructures." In Proceedings of the Symposium

on SDN Research, pp. 201-202. ACM, 2017.

3. Mu, Mu, Lyndon Fawcett, Jamie Bird, Jamie Jellicoe, Steven Simpson,

Hans Stokking, and Nicholas Race. "Closing the gap: human factors in

cross-device media synchronization." IEEE Journal of Selected Topics in

Signal Processing 11, no. 1 (2017): 180-195.

4. Rotsos, Charalampos, Arsham Farshad, Nicholas Hart, Alejandro Aguado,

Sarvesh Bidkar, Kyriakos Sideris, Daniel King, Lyndon Fawcett et al.

"Baguette: Towards end-to-end service orchestration in heterogeneous

networks." In Ubiquitous Computing and Communications and 2016 In-

ternational Symposium on Cyberspace and Security (IUCC-CSS), Inter-

national Conference on, pp. 196-203. IEEE, 2016.

xxi

5. Fawcett, Lyndon, Mu Mu, Matthew Broadbent, Nicholas Hart, and

Nicholas Race. "SDQ: Enabling rapid QoE experimentation using Soft-

ware Defined Networking." In Integrated Network and Service Manage-

ment (IM), 2017 IFIP/IEEE Symposium on, pp. 656-659. IEEE, 2017.

6. Fawcett, Lyndon, Matthew Broadbent, and Nicholas Race. "Combina-

torial Auction-Based Resource Allocation in the Fog." In Software-Defined

Networks (EWSDN), 2016 Fifth European Workshop on, pp. 62-67.

IEEE, 2016.

7. Lewis, Benjamin, Lyndon Fawcett, Matthew Broadbent, and Nicholas

Race. "Using P4 to Enable Scalable Intents in Software Defined Net-

works." In 2018 IEEE 26th International Conference on Network Protocols

(ICNP), pp. 442-443. IEEE, 2018.

8. Fawcett, Lyndon, Sandra Scott-Hayward, Matthew Broadbent, Andrew

Wright, and Nicholas Race. "TENNISON: A Distributed SDN Framework

for Scalable Network Security." IEEE Journal on Selected Areas in Com-

munications (2018).

9. Fawcett, Lyndon, Matthew Broadbent, and Nicholas Race. "Siren: A

platform for deploying virtual network services in the cloud to Fog con-

tinuum." In Wireless Communications and Networking Conference Work-

shops (WCNCW), 2018 IEEE, pp. 202-207. IEEE, 2018.

10. Fawcett, Lyndon, Mu Mu, Bruno Hareng, and Nicholas John Paul Race.

"REF: Enabling Rapid Experimentation of Contextual Network Traffic

Management using Software Defined Networking." IEEE Communications

Magazine 55, no. 7 (2017): 144-150.

1

Chapter 1

Introduction

Historically, computer networks were purpose-built services exclusive to a few

closed communities [113]. Since the commercialisation of the Internet in the 90s,

computer networks have grown to become a critical infrastructure that under-

pins many of the amenities and fundamental services that humankind globally

have grown accustomed to in modern life. Today, the Internet has a wide range

of uses including: media consumption, social interaction, information retrieval,

and communication. The Internet is a tool that since its birth has been contin-

ually pushing the limits of its design further [47, 9]. As a result of an increase

in demand [1] and reliance on computer networks and the Internet, network op-

erators are faced with increasing challenges of security, management scalability,

resource allocation, and configuration complexity [21, 103, 102]. Additionally,

due to the inflexibility of the current Internet implementation, advancements

on its design are challenging [9].

In an era where the Internet is moving beyond simple data sharing to op-

erating autonomous cars and cities, security is of uppermost importance, and

the implications of a lack of security are severe [224, 201]. Despite the relative

maturity of the Internet, the network and services on it are often still vulnerable

to attacks, with the threat of total outages as a result. Importantly, attacks

from inside the network are often more threatening than remote ones, resulting

in orders of magnitude greater cost [119]. However, the edge of the network is

Chapter 1. Introduction 2

often neglected due to the difficulty and cost of deploying to this. Nonetheless,

edge networks still need to be considered from a security point of view to effec-

tively protect businesses and homes [192]. The importance of this has further

increased with the emergence of 5G, where services are deployed throughout

the network [10].

The intersection of these challenges motivates a combined approach to net-

work security, which moves away from the current trend of protecting networks

at their gateways. This thesis suggests that networks should be secured at

multiple points, providing dynamic security that is proportionate to network

context.

1.1 Contemporary Network Monitoring and Re-

mediation

Network monitoring and remediation in today’s computer networks is typically

separated into various modular components. This includes a method of mon-

itoring, data management, and remediation. With these, network operators

face challenges when managing network anomalies and attacks, primarily due

to limited data and the inability to correlate network events together [191].

Frameworks such as S-FlowRT [138], OpenNMS [16], and Zabbix [223] are used

to assist network operators with network monitoring, consolidating monitoring

data. On their own, these tools are limited in scalability, support for adaptation,

and general flexibility [206].

In terms of network monitoring solutions, integrated offerings such as mid-

dles boxes provided in Intrusion Protection Systems add additional delay to the

network and are prone to vendor lock-in, again offering limited flexibility [186].

Due to the operational and capital cost, time, and network impact of these tools,

Chapter 1. Introduction 3

they are only placed at key locations within a network, limiting the visibility

and control of monitoring within the network.

In summary, current network monitoring and remediation solutions offer

limited visibility, flexibility, control, and extensibility all whilst requiring high

operational and capital costs. Given the ever growing use of the Internet, and

the increase in devices on the Internet, this is an aspect networking that would

greatly benefit from a new approach.

1.2 Prospects for Next Generation Networking

Telecommunications, Cloud, and edge technologies coming to the next genera-

tion of the Internet have the potential for great impact within the networking

world, incrementally assisting in breaking away from the previously frigid de-

sign.

Software Defined Networking (SDN) has emerged as a concept for the dy-

namic control of configuration of computer networks. Arguably, its primary

reason for success is the capability to implement conventional networks whilst

extending them, allowing for partial adoption of the technology. Fundamentally,

SDN separates the control and data planes within the network. This control

is then ceded to a software-based controller, that defines the behaviour and

operation of the network. The characteristics of SDN include a holistic view

and ability to dynamically program the network. In addition, the protocol for

communication for the control plane, OpenFlow [147], is then used to manipu-

late the data plane, defining counters for each flow entry/rule in the switch flow

table. The flow rule definition also supports a large number of packet header

fields, of which support the collection of network statistics which can be used

for traffic monitoring.

Chapter 1. Introduction 4

These characteristics enable a powerful feedback loop as follows: network

attacks can be detected by capturing traffic flow information and analysing

the flow statistics with respect to known signatures/patterns or through the

application of machine learning techniques. Having detected an attack by a

volume, type or pattern of traffic, an appropriate action can be performed. In

this situation, the benefit of SDN is that it can be used to program the flow rules

to block or filter traffic, or apply another remediation mechanism. However,

a performance/accuracy trade-off arises when deploying a traffic monitoring

service at scale. The volume of information to be collected can lead to overall

performance degradation, whilst introducing a longer collection interval can lead

to inaccuracy or delayed remediation. The impact of the volume of monitoring

data is particularly significant in a centralised SDN security system which carries

the potential to overwhelm the controller processing functions. It is possible for

the monitoring of a DoS attack to generate sufficient monitoring traffic towards

the controller that the controller itself becomes subject to DoS [172]. A solution

is therefore required to offer a flexible and proportionate monitoring capability

with distributed functionality to disperse the control and monitoring load for

scalability and resilience.

As the prospect of implementing 5G and Network Functions Virtualisation

(NFV) becomes closer to reality, there is a need for an architectural change

to the way that virtual network services are deployed. Emerging computing

architectures such as Edge and Fog Computing are shown as key technology

enablers for scalability and responsiveness for both NFV and 5G [117]. By tying

SDN, NFV, Fog computing, and network security together, Figure 1.1 shows

an architectural overview for a next generation network monitoring system.

When presented with new technologies, many unique and seemingly useful

systems are created, however, these are often come with caveats. In particular,

solutions in the research area of network orchestration and security either offer

Chapter 1. Introduction 5

Fog NFV
Orchestrator

Network
Controller

Software Defined Network
Infrastructure

Network Functions Virtualisation
Infrastructure

Topology data and
 NFV redirection

Network
control

Virtualisation
control

Network
Monitoring Engine

Provisioning Network telemetry

Security
alerts

Figure 1.1: Next generation network monitoring architecture

little improvement or are designed to work with a single environment, often

lacking features such as scalability and general applicability. This thesis targets

the aforementioned gap in networking research, presenting two complementary

prototype systems each with their own design, which both target scalability

through different means, one focusing on Cloud-to-Fog infrastructure orches-

tration and the other on efficient SDN monitoring and remediation. Together,

these designs create a solution to scalable and responsive SDN monitoring and

remediation for the Cloud-to-Fog continuum.

1.3 Thesis Statement

This thesis testifies that by using a multi-faceted approach to SDN monitoring, a

scalable solution to effective and detailed monitoring is possible. Such a solution

includes utilising distributed service placement, separating networks into islands

of monitoring, and an efficient design that is capable of proportionally adapting

to threat.

Chapter 1. Introduction 6

1.4 Thesis Aims and Contributions

The contributions and aims of this thesis are as follows:

1. Design for a scalable SDN monitoring framework (Tennison):

This thesis aims to design a modernised software solution to network mon-

itoring. This is achieved through analysis of existing monitoring solutions

as well as integration of a variety of emerging technologies. In particular,

this thesis makes use of Network Functions Virtualisation, Fog Comput-

ing, and Software Defined Networking to achieve scalable and responsive

monitoring.

2. Design for a Cloud-to-Fog management and orchestration NFV

platform (Siren): To achieve scalable monitoring, this thesis details

the design of a Cloud-to-Fog system capable of orchestrating and connect-

ing monitoring components enabling Network Functions Virtualisation for

Tennison. This is achieved by reviewing and adapting existing Cloud

NFV specifications and technologies to work in variety of heterogeneous

environments.

3. A realisation of the scalable SDN monitoring design through

a proof-of-concept: Based on the design of Tennison, a prototype

implementation is created to understand and iterative improve upon the

Tennison design through observation the implications of SDN monitor-

ing in reality. This proof-of-concept is the primary aspect of this thesis,

which is evaluated for verification of thesis goals, such that the design

performs as expected and that scalable and responsive SDN monitoring

is feasible.

4. A realisation of the Cloud-to-Fog management and orchestration

through proof-of-concept: Based on the design of Siren, a prototype

Chapter 1. Introduction 7

implementation for a Cloud-to-Fog based NFV management and orches-

tration platform is created to demonstrate the benefit of distributed NFV.

Critical to the primary goal of this thesis, the Siren proof-of-concept is

also used to enable Cloud-to-Fog NFV for Tennison.

5. An evaluation of both Tennison’s and Siren’s impact and perfor-

mance at scale: The evaluation of both Tennison and Siren deployed

and tested at scale shows the capabilities of the design as well as poten-

tial avenues for improvements made possible by forthcoming technologies.

Furthermore, evaluating these systems in real-world examples, including

detecting and remediating against live attacks at scale, both exercises and

satisfies this thesis’s claims as detailed in Section 1.3.

1.5 Thesis Structure

This thesis is structured into seven chapters details as follows:

• Chapter 2 (Background and Related Work) initially highlights the

need for, as well as ongoing movement towards, software-based network

solutions. Following this, it describes the history and evolution of pro-

grammable networks, going into detail on various methods of implement-

ing Software Defined Networks and Network Functions Virtualisation. It

then goes on to review the related work in SDN, monitoring, security, and

scalability. The chapter concludes by highlighting the gaps in research

that need to be filled in order to satisfy the aforementioned aims.

• Chapter 3 (Design) starts off by describing the Cloud-to-Fog contin-

uum, showing its growth over the past 20 years, concluding with its ap-

plicability as an enabler for NFV. It then goes on to demonstrate through

Chapter 1. Introduction 8

a content caching use case the benefits of deploying network services in-

telligently to the edge of networks. Finally, it explores and brings to light

the limitations of current solutions in this area, highlighting a gap for a

new NFV orchestration system. This then moves on to discus the various

design considerations for monitoring, deployment, and orchestration. Fi-

nally, the core of the chapter is revealed, detailing the design of the two

primary architectural contributions in this thesis.

• Chapter 4 (Implementation) describes in technical detail the inno-

vations that were required for the aims of this thesis. In particular, the

implementation of the Cloud-to-Fog NFV orchestration system as well

as a scalable SDN monitoring framework, which are named Siren and

Tennison respectively are highlighted. On top of this, various smaller

technical contributions are highlighted, such as NFV Overlays and an

automated experimentation framework.

• Chapter 5 (Evaluation) demonstrates the capabilities of the imple-

mented systems, showing details on scalability, responsiveness. This chap-

ter also highlights the trade-offs and performance of Tennison in three

distinct deployment approaches: single, distributed, and tiered. Looking

forward, this section also motivates a piece of future work through an anal-

ysis of operating with P4 over OpenFlow. Finally, the Chapter presents

a functional and non-function comparison to illustrate how Tennison

compares against similar systems.

• Chapter 6 (Conclusion) concludes this thesis by firstly revisiting the

thesis statement and then providing an overview of the contributions.

The core of this chapter highlights how maturity of supporting ecosystem

in NFV and SDN benefit the proof-of-concept presented in this thesis.

Finally, Chapter 6 presents various avenues of future work around network

Chapter 1. Introduction 9

monitoring and scalability in SDN using upcoming artificial intelligence

and data plane technologies.

10

Chapter 2

Background and Related Work

To date, network operators face management scalability, resource allocation,

and configuration complexity challenges [103, 102]. These are typically resolved

by over-provisioning networks, resulting in significant capital and operational

expenditure [93]. On top of this, challenges in the network are likely to worsen

in years to come as the Internet grows with the adoption of the Internet of

Things (IoT) [125], increasing traffic demands by an order of magnitude [98].

Collectively, this is placing pressure on Internet Service Providers (ISPs) to

reflect on their approach to building both network and system infrastructures

and ultimately look towards more cost-effective solutions.

New networking paradigms, such as SDN and NFV offer the potential for

reduced costs, better resiliency, and quicker time to market [118]. Historically,

implementations of these have been limited to Cloud based environments, more

recently, various efforts have looked into moving these somewhat closer to the

edge [5]. With emerging computing architectures such as those introduced by

Fog computing, these benefits can be expanded beyond the Cloud, making way

for new services that were previously not feasible.

Chapter 2. Background and Related Work 11

2.1 Programmable networks

The concept of a flexible network that can be easily configured, managed, and

adapted has been desired since the early stages of the Internet and as such

there are various works on the topics. In the mid 1990’s a significant amount of

research was conducted into active and programmable networks [23]; this was

envisaged as way for new functionality and services to be realised within network

infrastructures. In the last 20 years, this notion of network programmability

has matured, resulting in concepts such as Network Functions Virtualisation

(NFV) and Software Defined Networks (SDN). Figure 2.1 shows a high level

overview of a modern SDN architecture.

This section highlights the key works that contributed to the concept of

programmable networks.

Network Operating system (SDN Controllers)

Firewall MAC
Learning PCE Load

balancer Monitoring

Figure 2.1: Simplified view of an SDN architecture

The birth of programmable networks started with Active Networking, this

proposed two distinct approaches to providing flexibility within the network:

programmable switches and capsules. The first approach does not require edit-

ing of the packet format. It assumes that switching devices support the dynamic

loading of programs, which are used to process packets. The latter, on the other

hand, suggests that packets should be replaced by micro programs, which are

encapsulated in transmission frames and executed at each node along their path.

In [198] an Active Network is described as a network that can be programmed re-

motely and can perform computation and modify packets within the data plane.

Chapter 2. Background and Related Work 12

Active Networking is form of Active Technologies [198], a previous innovation in

the computer systems field. In particular, this extends Active Messaging [211]

in order to provide programmability to the network, with the aim of alleviating

previous challenges in conventional networks, in this case known as "passive"

networks.

It is thought that one of the first inspirations for programmable networks

was through an idea that was conceived in the late 80s [105] called NCP [46]

which relied on the separation the control plane from the data plane. Since

then, there have been various notable efforts towards Active Networks including

Lara++ [169], RCP [67], NCP [46], Tempest [164], GSMP [65], and PCE, [33],

Tempest [164], Programming In Networks [110, 109], and Smart Packets [170].

The primary piece of work that solidified this concept was Tennenhouse’s

paper [197] which was the first to detail the potential of programmable networks

and was a corner stone for Active Networking. Many of the paper’s claims are

still relevant in contemporary programmable networks. Another stepping stone

into the evolution of Active Networking was Tempest [164], which was the first

paper on the design of an Active Network, describing how one might implement

the concept. Tempest aimed at creating an attractive and pragmatic solution

for network operators that was agnostic of precise methodology and could easily

run alongside existing solutions.

The next piece of high impact work was Smart Packets. Smart Packets [170]

is an Active Networks implementation that relies on the use of serialised Java

objects sent in single packets that represent state for the forwarding device.

Smart packets and general Active Networks did not manage to achieve wide

scale adoption by industry. This was partially due to the requirement of a clean

slate approach and the use of new specialised hardware that no mainstream

vendor was producing.

Chapter 2. Background and Related Work 13

2.1.1 Software Defined Networking

Key to the advancement of programmable networks has been the concept of

Software Defined Networking which was coined in the early 2000s [78]. The

primary development over previous research in was the separation of the control

and data planes, creating a controller based architecture. In this there have been

a lot of efforts towards defining the separation of the control and data planes,

notably, 4D [87] which envisions four planes. Moving on from this is Ethane

and its predecessor SANE [36] which consists of a centralised architecture with

two planes.

Active Networks

Control-Data plane

programability

NOS and OpenFlow

NFV

SDN Monitoring &

Security
 Frameworks

20151995 2005

TENNISON
PSI

Athena
FRESCO

ODL

ONOS

OpenMano OSM
ONAP

OpenFlow
NOX

POX
Onix

RYU

Ethane
ForCES P4

Torwards
 Active Networks

TNOVA

OpenVIM

Tempest

Figure 2.2: Selected contributions to programmable networks
and SDN monitoring

ForCES [64], OpenFlow [121], and POF [187] represent the state of the

art of recent approaches for designing and deploying programmable data plane

devices. In a manner different from active networks, these new concepts are

based on modifying forwarding devices to support flow tables, which can be

dynamically configured by remote entities through simple operations such as

adding, removing or updating flow rules, i.e., entries within flow tables.

Since 2015, the development of IETF’s SDN architecture ABNO [3] which

relies standards such as PCE [73], and ALTO [174] claims to offer a pragmatic

Chapter 2. Background and Related Work 14

approach to SDN that is closer than previous efforts to being implemented by

ISPs [3].

Outside of academia, Google’s B4 [99] is one of the most well known suc-

cesses of SDN and arguably brought the rest of industry’s interest on to it.

B4 is an SD-WAN deployment which was created to meet large bandwidth

requirements, rate-limiting, and recently with Google Espresso [217], demand

monitoring with dynamic routing at the edge. Now SDN is used by a variety of

large organisations. Adoption has increased significantly with hardware vendors

such as HP [95], CISCO [44], PICA [158], and Corsa [53] providing commer-

cialised SDN solutions. On top of this, various ISPs have grown interest in SDN

for its benefits in reduced CAPEX and OPEX [59, 15, 29, 42].

2.1.1.1 OpenFlow

OpenFlow is one of the first widely accepted implementations of SDN. Arguably,

the primary reason why OpenFlow [121] gained traction in both academia and

industry was its cleaner integration into existing networks than previous pro-

grammable network efforts [105]. On top of this, vendor support with imple-

mentations meant that OpenFlow could be deployed to the network and operate

at line-rate, making it suitable for a production grade system. Figure 2.4 shows

the protocol’s control relationship with the layered Internet architecture. Open-

Flow’s first full release, OF1.0 [144] included a relatively primitive set of func-

tionality with a 12 field match actions within a single table. This was suitable

for simple routing tasks. The next popular release was OF1.3 [145]. By now the

protocol had expanded to include multiple tables, metering, and groups. These

are useful for a wider variety of applications including monitoring and quality

of service. Figure 2.3 details the OpenFlow pipeline, which includes a series of

match action tables in the data plane and an OpenFlow channel in the control

plane.

Chapter 2. Background and Related Work 15

Data Plane

Table 0 Table n Table n+1
Action

Set
Execution

OpenFlow Channel

In
Port

Out
Port

Control Plane

Pkt Header
In Port

Action Set

(1) Match

(2) Modify

(3) Action

Pkt Header
In Port

Action Set

Pkt Header
In Port

Action Set

(1) Match

(2) Modify

(3) Action

OpenFlow Switch
Meters

Counters
Groups

Figure 2.3: OpenFlow Pipeline

At the time of writing, industry and hardware vendors have settled on this

version of OpenFlow, making this and previous versions compatible with the

majority of OpenFlow hardware and software. Newer versions of OpenFlow up

to 1.5 [146] offer improvements on the atomicity of actions between the controller

and switches with the use of bundles and synchronised tables. OpenFlow’s

future is unclear; OpenFlow version 1.6 was drafted in 2016 but has since been

kept private to ONF members [148]. With the move to new protocols such as

P4, and increasing use of proprietary SDN protocols, OF1.3 could be the final

widely supported version of OpenFlow. This said, prior announcements [58]

from ONF for OpenFlow suggests that the protocol is going to evolve to offer

a programmable data plane, which would put it in direct competition with P4.

Physical

DataLink

Network

Transport

Application

OpenFlow
Control

Internet Layered Architecture

Figure 2.4: OpenFlow’s Relationship with OSI model

Chapter 2. Background and Related Work 16

2.1.1.2 P4

Similar to the prior Active Networks concept, P4 (Programming Protocol-

Independent Packet Processors) provides the ability to reprogram the packet

processing core of networking hardware dynamically, the benefits of this are

demonstrated in PISCES [177], which uses P4 for routing traffic using custom

protocols. This offers more flexibility over protocols such as OpenFlow which

are currently restricted to inflexible pipelines. As described in the first P4

publication [26], the authors hope that P4 will act as a guide for OpenFlow 2.0.

Physical

DataLink

Network

Transport

Application

P4
Control

<Example Layer X>

<Example Layer Y>

<Example Layer Z>

Internet Layered Architecture Alternative Architecture(s)

Physical

Figure 2.5: P4’s Relationship with OSI model

Due to its infancy, unlike OpenFlow, currently there are no public indus-

try deployments of P4. However, this is likely to change; as with OpenFlow,

P4 has benefited from vendor adoption with line-rate capable hardware from

BareFoot [18], and more recently Netronome [131]. Recently P4 has moved to

version 16 from 14. This new version of the language generalises the language in

order to improve portability of P4 applications between hardware. This move

will assist in future P4 deployments.

Despite OpenFlow’s success and continued progression with multiple re-

leases, SDN networks based on this protocol have various short comings such

as, restrictive programablity, controller DoS, and control plane poisoning [133].

Chapter 2. Background and Related Work 17

As shown in Figure 2.5, P4 offers capability around this, allowing the network

to be specialised for its purpose, as opposed to OpenFlow which apart from a

limited pipeline configuration follows a one size fits all policy. Note that the

layers on the right hand-side of Figure 2.5 are intentionally blank illustrating

that an alternative architecture could be created with P4.

2.1.2 Scalable Programmable Networks

Since the early days of SDN and more recently with NFV, due to their cen-

tralised approach, scalability has been a concern [32]. ESTI with OSM [72]

and their MANO specification [71] have envisaged various possibilities to tackle

scale, these include the use of tiered orchestration as well as distributed virtual-

isation infrastructures. There are a number of proposed solutions to challenges

around scalability within programmable networking. These include, pushing

logic down to the switch, or distribution of the SDN control plane and network

partitioning.

2.1.2.1 In Network Intelligence

In Network Intelligence for SDN is a method of controlling the network. Specif-

ically this pushes control logic down to networking devices in order to improve

resilience, scale, and performance [128, 56]. The topic area of In Network Intel-

ligence currently has limited research as there are challenges around realising

solutions in a pragmatic way that is usable by industry.

DIFANE [220] and DevoFlow [56] are not involved with the setup of every

new flow. Instead the logic is pushed down to the switch or controller com-

munication is used sparingly where appropriate. Whilst these solutions appear

to offer an idyllic solution to programmable networking, they are not currently

supported within production grade hardware.

Chapter 2. Background and Related Work 18

2.1.2.2 Distributed SDN Controller Performance

As highlighted in Chapter 1, the ability to scale up controller processing in

response to network traffic variations is critical to the network security system.

Both hierarchical and distributed control mechanisms have been proposed, as

surveyed in [172]. A few of these works specifically consider load-balancing.

In Kandoo [92], local decision-making is separated from network-wide decision-

making. Certain applications can be supported by event processing at local

controllers reducing the load on the root controller. ElastiCon [60] proposes an

elastic distributed controller architecture to dynamically adjust the controller

pool in response to changing traffic conditions.

Hydra [40] presents a solution to support latency-sensitive applications by

partitioning the control function based on functional slicing rather than topo-

logical slicing (as in [92, 60]). Functional slicing splits control plane functions

(and, therefore, applications) across servers. The performance results presented

in [40] show an improvement in controller throughput and response time un-

der increasing load for latency-sensitive applications. However, the dependency

of the solution on communication-awareness, and the anticipated variation in

communication between applications in a large-scale network would require the

placement algorithm to be run very frequently in larger networks.

Designed by ON.Lab, Open Network Operating System (ONOS) was launched

in 2014 as a SDN network operating system for service provider networks with a

focus on high availability, scalability and performance [22]. ONOS implements

distributed control with multiple controller instances forming a cluster. The

clustering of controllers is a process through which one or more controllers are

connected and data about the state of the network is shared between them.

The intention of clustering is twofold: 1) to ensure that in the event of one

controller failing the other remaining controllers in the cluster will ensure the

network remains functional, and 2) To provide scale-out to the system; making

Chapter 2. Background and Related Work 19

it possible to manage networks with 100s of networking devices and 1000s of

hosts. The ONOS cluster instances synchronise to provide the global network

view graph using the RAFT [94] consensus algorithm. The StorageService in-

terface ensures a consistent state between the databases across all the instances

of an ONOS cluster. Each network element is assigned a master ONOS instance

and the remaining instances will be on standby for that network element. If the

master instance fails, an election takes place between the remaining instances

to elect a new master. It is possible to balance the masters to provide an even

distribution of network elements to each member of the cluster.

2.1.3 Software Defined Network Monitoring and Secu-

rity

The first protection architecture for SDN was proposed in [37], prior to the

development of the OpenFlow protocol. Since the introduction of OpenFlow,

many researchers have focused on taking advantage of the characteristics of SDN

for intrusion detection, monitoring and remediation services. However, there

are several challenges to security in programmable network, as first highlighted

by [7]. The remainder of this section details research and cutting edge industry

solutions for SDN monitoring with scalability and SDN security frameworks

2.1.3.1 SDN Monitoring Solutions and Scalability

The combination of the global network view and the granularity of the network

statistics captured at the data plane has generated significant interest in net-

work monitoring advances with SDN. Combinations of traditional monitoring

protocols such as NetFlow/IPFIX and sFlow with the SDN protocol, OpenFlow,

have been explored [85, 222].

Chapter 2. Background and Related Work 20

Prior work has aimed to tackle the challenges of monitoring at scale. For

example, FlowSense [218] uses a push-based approach to receive flow statis-

tics from switches. Adaptive rate monitoring has also been introduced; Open-

NetMon [207] and OpenTM [204] poll selected switches at an adaptive rate

to reduce network and switch CPU overhead. PayLess [43] uses an adaptive

sampling algorithm to vary polling frequency based on measured throughput.

Similarly, FlowCover [188] reduces the monitoring communication cost by op-

timizing the polling function. OpenMeasure [115] uses online learning to adapt

flow measurement. This enables scalable measurement with monitoring of the

most informative flows and optimal placement of monitoring rules across multi-

ple switches. Proxy-based Monitoring [195] introduces a monitoring table in the

proxy to specify the measurement interval for traffic monitoring and associated

flow rules are pushed to the OpenFlow switches. Flow-stats-requests/replies

are then only exchanged for those specified monitored flows rather than all

flows. This reduces the volume of statistics communication in a similar fash-

ion to OpenTAM [150], which is an ONOS-specific adaptive monitoring tool.

However, there are several identified limitations to the work; packet capture per-

formance is limited to 60Mbps, the system is limited to 600 condition entries

(i.e. rules for capture/monitoring) and it is based on OpenFlow 1.0.

In FlowRadar [114], the authors address the challenge of monitoring in data

centers where the existing NetFlow implementation options are unsuitable either

due to the prohibitive cost of high-end routers (hardware-based) or excessive

switch CPU resource requirements (software-based). The FlowRadar solution is

to balance the workload by encoding per-flow counters with low memory require-

ment and constant insertion time at switches. The decoding and analysis of the

flow counters is then performed at the remote collector where there is available

computation resource. FlowRadar provides a scalable solution for network-wide

monitoring across the data centre independent of SDN or OpenFlow.

Chapter 2. Background and Related Work 21

In contrast, with [189, 190], the authors propose to use only OpenFlow

messages and capabilities within SDN to emulate NetFlow in traditional net-

works. This works by randomly sampling the traffic and maintaining per-flow

statistics in separated records that are then reported to the collector. Three

different flow-sampling based methods are proposed; ip-suffix based, port-based

and hash-based (5-tuple). The evaluation shows that the hash-based method

achieves the best results in terms of matching the theoretical maximum flows

sampled while reducing controller communication and controlling the number

of entries installed at the switch.

SDN Mon [157] seeks to improve on monitoring application granularity with

an SDN monitoring framework that separates the monitoring logic from the

forwarding logic. SDN-Mon achieves monitoring in a similar way to that is

proposed in this thesis, by using multiple tables to separate monitoring and

forwarding. However, these tables are not OpenFlow tables, but instead are

situated within an application that sits on a customised version of the Lagopus

software switch. As such, SDN-Mon only works with this switch. UMON

[213] also addresses the separation of forwarding and monitoring logic. This

is achieved by introducing an additional monitoring table at the end of the

forwarding pipeline. New monitoring actions are also introduced to support

statistics collection on non-routing fields such as, SYN, ACK etc. This enables,

for example, port scan detection based on fine-grained monitoring. However,

the implementation is specific to OpenvSwitch.

Most recently, Tsai et al. [205] present an overview of SDN monitoring

solutions identifying the challenges and open issues. The research developments

are classified according to the monitoring phase, i.e. collection, preprocessing,

transmission, analysis, and presentation, with the majority of research focused

in the preprocessing phase. This includes solutions such as OpenSketch [219]

and OpenTM [204] detailed above. With respect to integrating monitoring

Chapter 2. Background and Related Work 22

in hybrid environments with legacy network devices, the benefit of solutions

leveraging sFlow is highlighted. A number of items are identified as open issues.

OpenMeasure [115] is an example of an adaptive measurement approach but

without consideration of resource usage or the use of the measurement data for

security functions. Leveraging monitoring and data collection to detect security

threats is also identified as an area for further work with the importance of

multi-domain collaborative network monitoring also highlighted.

Research from Tangari et al. [193, 194], develops on the algorithm behind

adapting OpenFlow flow statistics reports in order to achieve efficient monitor-

ing under intensive network load. On top of this, they also observe the benefit

of decentralising and tiering control of SDN for improved monitoring scalability.

2.1.3.2 SDN Security Frameworks

In cutting edge large scale enterprise network deployments, typically a systems

such as [96, 31, 138] are deployed to monitor, traffic on the network and enforce

network policy. The following details academic and industrial SDN security

frameworks that fill a similar gap.

The first protection architecture for SDN was proposed in [37], prior to the

development of the OpenFlow protocol. Since the introduction of OpenFlow,

various research from both academia and industry [181, 41, 89, 90, 104] has

focused on taking advantage of the characteristics of SDN for intrusion detection

and prevention services.

FRESCO [181] is a framework that focuses on providing a platform for rapid

design and development of security specific modules as OpenFlow applications;

it claims that popular security functions can be created with 90% fewer lines

of code. At the core of its design it hosts a self-named "security kernel", which

supports multiple security modules that can run alongside each other without

conflict.

Chapter 2. Background and Related Work 23

CIPA [41] applies an artificial neural networks across OF-SDN switches for

the detection of distributed, coordinated intrusion attacks such as scanning,

worm outbreak and DDoS. The false positive/detection rate and communication

overhead are all shown as improvements over Gamer’s [84] anomaly detection

solution.

With [89] and [90], Ha et al. consider intrusion detection in SDNs. In [89], a

flow grouping scheme is proposed to determine which flows to forward to which

Intrusion Detection Systems (IDSs) to achieve the best intrusion detection per-

formance. Principal Component Analysis (PCA) [100] is used for grouping the

suspicious flows and gravity-based clustering is used to assign these groups to

IDSs. In the example results, each of the network taps feed into an aggregation

switch from which the assignment to IDSs is made.

In [90], the authors present results for optimising the sampling rate for each

switch to improve inspection performance of malicious traffic in large networks.

The sampling rate adjustment is designed to fully utilise the inspection capa-

bility of the malicious traffic while keeping the total volume of sampled traffic

below the maximum processing capacity of the IDS. However, the malicious

traffic rate must be estimated to begin with and can then converge to the ac-

tual value based on the adjusted sampling frequency. The selection of optimal

rate would strongly influence the convergence time. Simulation results showed

that the algorithm converged in about 100 s for the smaller network, which is

somewhat impractical.

SDN4S [104] is proposed as a system and solution to minimise the time be-

tween incident detection and resolution by using automated countermeasures

based on SDN. The system creates incident-specific response work-flows that

automatically implement actions and network countermeasures. The work is

motivated by the challenge of managing an increasing volume of network threats

and hence security alerts, with limited resources to analyse and respond to these

Chapter 2. Background and Related Work 24

alerts. The solution is based on the concept of playbooks, which match/tailor

the security incident response to a high level policy. SDN4S has holds simi-

larities with the work in this thesis; for example, there is a similar component

architecture, the ability to receive alerts from external security systems, and

the OpenFlow-based network protection mechanism. However, although the

motivation of SDN4S is to minimise response time, there is no evaluation of the

response time or of the effectiveness of the detection/protection mechanisms.

PSI [221] is proposed as a new enterprise network security architecture to

address the challenge of existing enterprise security approaches lacking precise

defences in isolation, context, and agility. The authors describe these as follows:

for isolation, the defence system must ensure that security policies do not in-

terfere with each other; for context, the defence system must be able to enforce

customised policies for individual network devices, and for agility, the defence

system must be able to change policy at fine-grained time-scales. PSI and this

thesis address a similar set of problems related to usable network security; that

of appropriate, efficient network security. Both systems achieve this by lever-

aging SDN and NFV. PSI emphasises the use of NFV with the tunneling of

all network traffic through a cluster of virtualised appliances within which the

relevant services are applied to the traffic. In contrast, this thesis emphasises

the use of SDN. Rather than tunneling all traffic through a cluster (albeit vir-

tual and hence flexibly deployed), this thesis leverages the SDN switch design

to effectively apply security policy in the data plane through the selection of

traffic for monitoring at different granularities. This results in flows being con-

servatively mirrored (rather than redirected), reducing overall network load and

latency for benign traffic. Additionally, unlike PSI, the use of IPFIX and sFlow

provides visibility in legacy networks.

Finally, Athena [112] is an SDN anomaly detection framework. Athena

addresses the issue of scalability across large, distributed SDN deployments.

Chapter 2. Background and Related Work 25

The framework supports the development of machine-learning based security

applications with two scenarios illustrated; DDoS detection and Link Flooding

Attack mitigation. However, Athena does not support interoperability. Further-

more, Athena does not offer adaptive measurement for resource optimisation.

Public information on industrial efforts towards creating an SDN security

framework is limited. In late 2018 Corsa released a product called Red Ar-

mor [52], this commercial solution to network security uses OpenFlow to secure

the network. Due to the product’s infancy, there are no results on showing its

capability, performance, or usefulness. This said, Corsa’s recent hardware is

unique as it offers a virtualisation resource on the switch. This means that the

switch is capable of more taxing security and monitoring use cases, including

encryption and Deep Packet Inspection.

2.1.4 Network Functions Virtualisation

NFV moves away from the traditional networking paradigm, decoupling soft-

ware from hardware, making it possible to run packet processing logic elsewhere

as a Virtual Network Function (VNF) [118]. This is made possible with the

flexibility provided by Software Defined Networking (SDN), which separates

the control and forwarding planes and enables programmability of the control

plane, allowing networking hardware to be controlled remotely. These new

concepts yield many benefits for ISPs which were originally only available to

Cloud providers; network functions can be run in a variety of locations, scaled

automatically, managed remotely, and chained together. This ’softwarisation’

of networks can benefit both customers and ISPs, with reductions in the lead-

time for new services, lower capital and operational costs and savings in power

consumption [6].

Chapter 2. Background and Related Work 26

Realising NFV is challenging and requires automation to simplify the pro-

cess. To aid this, ETSI created a specification called Management And Orches-

tration (MANO), which is a specification for an architecture that details a view

of how NFV could be realised [70]. This architecture provides control of NFV-

Infrastructures (NFVIs) to operators through multiple layers of abstraction.

More recently, Verizon (and others) have advanced the MANO architecture

with an SDN-NFV specification [210], this is significant because it connects the

interfaces between the MANO system and the network infrastructure, which in

turn creates a complete solution for deploying NFV in the Cloud. Currently

the amalgamation of designs are primarily made for Cloud architectures which

typically include homogeneous highly connected servers. Generally, these are

extensions to Cloud Management (CM) tools [122] such as OpenStack [175].

2.2 Emerging Computing Architectures

In the ever-changing landscape of the Internet, following the success of Cloud

computing the concept of Fog Computing, first coined by Flavio Bonomi at

Cisco [25, 208] has recently emerged. It describes an environment where there

is distributed compute and storage located between the cloud and the end point,

bringing the functionality of the Cloud closer to the target in a variety compute

locations known as Cloudlets [168], Micro-Clouds [68], or Nano-Datacenters

[108]. These Fog locations can include a range of devices from low-powered Cus-

tomer Premises Equipment (CPEs) at the edge of the network, servers within

telephone exchanges, through to network devices within the ISP core. Compa-

rable to the history of programmable networks, principles behind the concept of

Fog computing have existed before under different names; the Fog is similar to

the previously defined and less popular term The Mist [55] and complementary

to the recently defined Dew computing [184]. Since the concept of Fog emerged

Chapter 2. Background and Related Work 27

in 2012, two significant developments have taken place:

1) Cisco IOx is an advancement of Cisco’s work with IoT analytics [129, 57],

and is now a propriety Fog platform for interfacing with the Internet of Things

(IoT). In its current state, the platform offers a method for deploying abstract

policies to IOx compatible Cisco networking devices to create low cost alerts

for IoT devices.

2) OpenFog reference architecture created by the OpenFog Consortium is

the first reference architecture for the Fog [50]. The primary contribution being

their description of multiple pillars required to make the Fog work. OpenFog

also highlights that the Fog is multi-purpose and can be used as a service to

devices on the network such as IoT, or as a service to controlling the Network.

With the increased general compute capability at each point in the Internet,

the Fog can be used to provide a low latency highly scalable infrastructure for

NFV [208]. However, when using Network Functions Virtualisation to provide

networking services, the current solution is to deploy services on resource-rich,

homogeneous, centralised, and well maintained servers within cloud data cen-

tres [123]. This contrasts with the Fog, where compute resides within a variety

of locations with little to no maintenance and heterogeneous resources.

Various research efforts from ONLabs [155, 156] and multiple Universi-

ties [30, 167, 185] have already been conducted into NFV-MANO solutions

hosted outside of the cloud datacentre in locations such as the operator’s edge

with the purpose to virtualise the customer network functions. Collectively,

these papers motivate the need to move away from Cloud computing by high-

lighting a major challenge of NFV-MANO, which is creating an infrastructure

that can scale to run millions of VNFs [123]. However, the above solutions

solve challenges of NFV orchestration by creating a new infrastructure and not

considering what other Fog future infrastructures may contain. NFV is not

intended to require a clean slate installation, it aims to be a gradual change

Chapter 2. Background and Related Work 28

between existing infrastructures. This deployment will include installation into

many heterogeneous environments [122].

Further impacting NFV deployment to the Fog is that many current at-

tempts at making NFV systems [38, 34] run each network function in its own

virtual machine, this is done to simplify orchestration and to make sure that

each VNF is isolated. However, this is wasteful; depending on the VNF in use,

a significant amount of the compute resource is consumed by the host operating

system rather than the VNF. Recent maturity of containerisation can reduce

the performance impact and overall cost of running VNFs verses additional

VMs [11]. Multi-tenancy can be used to further conserve compute resource

by running multiple VNFs on one machine, or even in a single process. How-

ever, this complicates management and orchestration, and means that VNFs

can affect each other, potentially sharing fate if one goes down. As well as this,

Unikernels have been offering a different solution to conservative virtualisation,

creating an operating system with only the dependencies required for its func-

tion [116]. More recently, a proof of concept has been made using Unikernels

for NFV [214]. However, the performance benefits versus the complexity of

creation is still unclear [28].

With these different visions on how the future internet will look with mixed

compute capabilities at different NFVI-PoPs, there is no single place where all

the compute resource resides. It is clear that there needs to be an orchestrator

that is agnostic of what the future internet contains but also takes into consider-

ation the capabilities of each NFVI. Highlighted by the findings in this section,

there are a number of challenges that need to be addressed before the concepts

of Fog computing and NFV can be brought together, including the unsuitability

of current management platforms, the unique heterogeneity of resources and a

volatility in the availability of such.

Chapter 2. Background and Related Work 29

2.3 Management and Orchestration

One of the primary benefits of using programmable networks is the reduction of

Operational Expenditure (OPEX), this is in part achieved through automation

and orchestration [71, 93].

To realise NFV, innovative network service design and deployments are re-

quired. Progress has been made towards this goal in both academia and in-

dustry. Most efforts in this area have centred around designing a solution for

managing and orchestrating NFV in the Cloud [72, 49], arguably the most

influential work is ETSI’s NFV Management and Orchestration (MANO) spec-

ification [71]. However, various other research efforts including, [69], have high-

lighted the benefits of running NFV services closer to the target (anything

directly benefiting from the service) and from the requirements of applications

like these, the concept of Fog computing has emerged.

Operational System Support (OSS)
&

Business System Support (BSS)
Orchestrator

(NFVO)

VNF Manager
(VNFM)

Virtualised
Infrastructure
Manager (VIM)

EMS 1

Compute
Resource

Storage
Resource

Network
Resource

Compute
Hardware

Storage
Hardware

Network
Hardware

Virtualisation

VNF 1

EMS 2

VNF 2

EMS 3

VNF 3

EMS 4

VNF 4

Figure 2.6: ETSI’s NFV Framework Design Architecture

Chapter 2. Background and Related Work 30

2.3.1 Management and Orchestration Standardisation

As MANOs mature, it is imperative that standardisation is used so that frame-

work components are compatible with one another. In the area of MANO

standards, there are have been many competing standards. ETSI is the first

standards institution to explore the applicability of the NFV paradigm in op-

erator infrastructures and to develop Proof of Concept implementations. Fur-

thermore, as pictured in Figure 2.6 ETSI leads the design of the well known

NFV MANO architecture [118]. NFV standardisation is not limited to ETSI,

and other standardisation bodies, like the IETF NFVRG charter [132], the

Open Platform for NFV (OPNFV) industrial forum [160] and the TM Forum’s

ZOOM, develop MANO reference implementations and propose extensions to

the MANO architecture.

The MANO specifications abstract the control of virtualised infrastructures

and VNF instances to external entities, like the OSS/BSS and the service or-

chestrator of an operator. ETSI’s MANO is currently the most popular NFV

management framework, with numerous open-source and commercial imple-

mentations. Operators explore the adoption of MANO compatible manage-

ments systems for various compounding reasons. Firstly, NFV MANO is a flex-

ible component-based architecture which re-uses existing infrastructure man-

agement frameworks, like SDN Network Operating Systems and the OpenStack

framework. Therefore, existing components can be extended by vendors, simpli-

fying the development of NFV platforms. Secondly, the maturity and relatively

detailed specification of the MANO components enable seamless interoperabil-

ity between implementations from different vendors. Thirdly, the architecture

provides by-design multiple carrier-grade features, like scalable hierarchical con-

trol, billing, and flexible service and function lifecycle specification.

Integration between the different functional components of the ETSI archi-

tecture is achieved through reference points, a distributed information plane

Chapter 2. Background and Related Work 31

that models state updates and control operations. The root element of the

information plane is the Network Service (NS), which represents the service

chain of a service. A NS consists of one or more Virtual Network Functions

(VNF), like firewalls or load balancers, connected using Virtual Links (VL),

while a VNF Forwarding Graph (VNFFG) defines VNF ordering. Furthermore,

a NS may include Physical Network Functions (PNF), available in the under-

lying network infrastructure. Finally, the MANO information model defines

data repositories of NS templates, VNF catalogues, and NFVI resources, which

simplify the specification and deployment of a NS.

Alongside ETSI’s MANO architecture, the MEF has been steering the stan-

dardisation efforts for the MEF Lifecycle Service Orchestration (LSO) [120],

which is an architecture that focuses on improving automation in network ser-

vice management. MEF extends the MANO architecture and introduces sup-

port for end-to-end network infrastructure management, capitalising on the

flexible control of CE technologies. LSO targets challenges of delivering Net-

work as a Service (NaaS) functionalities in the operator infrastructure, such as

on-demand, agility, and heterogeneity of virtual and physical NFs. LSO refines

the service lifecycle model of the MANO standards and introduce new lifecycle

capabilities, including mechanisms to automate network service request fulfil-

ment, control of service resource and scaling, enhanced performance monitor

and guarantees and assurances for service survivability. Based on [120] LSO

aims to improve the time to establish and modify services for their future Inter-

net vision. The development of the LSO standards is still in early stages and it

currently focuses on service requirement specification in order to drive the ar-

chitecture design. The following paragraphs detail ESTI’s MANO architecture

as well as various NFV forwarding technologies.

Chapter 2. Background and Related Work 32

Virtualised Infrastructure Manager (VIM) The VIM provides direct

control and monitoring capabilities for a single NFV Infrastructure (NFVI)

domain to the upper layers of the MANO architecture. VIM responsibilities

include the management of the compute, network, and storage resources of a

datacenter and it exposes interfaces for resource control and VNF image man-

agement. Current implementations re-use existing Cloud Management Systems

(CMS), such as OpenStack, to realize the VIM layer. Nonetheless, the de-

sign goals of existing CMSs cannot accommodate some VIM requirements, like

carrier-grade support, high-performance I/O, and fine-grain and timely resource

control. Currently, OPNFV [160], in collaboration with ETSI, designs and de-

velops new open-source VIM and infrastructure virtualisation platforms, that

bridge this requirement gap.

Virtual Network Function Manager (VNFM) The VNFM sits between

the NFVO and the VIM systems and is responsible for the lifecycle manage-

ment of individual VNF instances, including VNF configuration, monitoring,

termination, and scaling. VNF management is typically realized using an El-

ement Manager (EMS), which monitors and reports the state of each VNF to

the VNFM and is capable to modify the configuration of the VNF. The de-

ployment of an NFVM is not mandatory according to the MANO specifications

and the functionality of this layer can be implemented by the NFV orchestra-

tor. Current MANO frameworks either lack an NFVM or develop a very thin

adaptation layer between the NFV orchestrator and the VIM, responsible to

propagate VNF image deployment requests. Nonetheless, a VNFM can enable

seamless interoperability between VNF implementations from different vendors

and across cloud infrastructures.

Chapter 2. Background and Related Work 33

Network Functions Virtualisation Orchestrator (NFVO) The NFVO

is responsible for the deployment and dynamic re-optimisation of network ser-

vices. Effectively, the NFVO receives NS requests from external entities, like

the OSS and the service orchestrator, and coordinates the deployment and con-

figuration of VNF instances across the NFVI domains. In parallel, the NFVO

monitor the service performance and dynamically re-optimises the deployment

of VNF instance to meet the NS requirements. When creating a new NS,

the NFVO optimises placement of VNFs whilst ensuring sufficient resources

and connectivity are available. Current NFVO implementations provide a thin

layer capable of launching and destroying VNF chains across the NFVI domains

of the operator and provide limited support for dynamic reoptimisation of the

service deployment.

On top of standards around the general architecture of NFV, there are stan-

dardisation efforts around traffic routing within an NFV architecture. As this

thesis makes use of NFV, understanding the surrounding NFV forwarding tech-

nologies and solutions is important. The following looks into three forwarding

technologies, Service Function Chaining, Segment Routing, and a Network Ser-

vice header as solutions for NFV routing and redirection.

Service Function Chaining (SFC) SFC [91] is an IETF working group as

well as an architecture which both aim to define the architectural principles

and protocols for the deployment and management of NF forwarding graphs.

An SFC deployment operates as a network overlay, logically separating the

control plane of the service from the control of the underlying network. The

overlay functionality is implemented by specialised forwarding elements, using

a new network header. At the time of writing, multiple open-source platforms

introduce SFC support. The Open vSwitch soft-switch has introduced SFC

support both in the data and the control (OpenFlow extensions) plane. The

Chapter 2. Background and Related Work 34

OpenStack cloud management platform exploits the Open vSwitch SFC support

and implements a high-level SFC control interface [176].

Segment Routing (SR) Segment Routing [80] is an architecture for the

instantiation of service graphs over a network infrastructure using source rout-

ing mechanisms, specified by the IETF Source Packet Routing in Networking

(SPRING) WG [159]. SR is a data plane technology and uses existing protocols

to store instructions (segments) for the packet path in its header. SR segments

can have local or global semantics, and the architecture defines three segments

types: a node segment forwards a packet over the shortest path towards a net-

work node, an adjacency segment forwards the packet through a specific router

port and a service segment introduces service differentiation on a service path.

Next Generation Service Overlay Networks (NGSON) NGSON [111]

is an IEEE standardisation effort [97] that allows for the establishment of dy-

namic services across different service providers. It boasts support for context-

aware services chains that enhance the network Quality of Experience.

Network Service Header (NSH) NSH [161] is an encapsulation technique

for forwarding traffic to NFV clusters and through service chains. The Network

Service Header contains information that defines the position of a packet in

the service path, using a service path and path index identifiers, and carries

metadata between service functions regarding policy and post-service delivery.

At the time of writing, NSH is not widely used due to it having no support or

implementation in networking hardware.

Chapter 2. Background and Related Work 35

2.3.2 NFV Management and Orchestration Implemen-

tations

The following section details the state of art NFV MANO implementations. As

MANO and NFV are relatively new concepts, the following implementations are

relatively immature and in most cases incomplete and not production ready.

Cloudify [48] was initially built as a generic Cloud orchestrator, but has

more recently shifted its focus towards NFV, adopting specifications and stan-

dards from the ETSI MANO, YANG and TOSCA groups. Cloudify acts as an

overlay framework over various technologies. It offers a multi-VIM hybrid ap-

proach for managing the Cloud, assuming that system operators may have more

than one type of infrastructure that they want to control. Furthermore, it sup-

ports deep integration with various existing tools, including those responsible

for automation, containerisation, and orchestration. Cloudify also has optional

agentless support, broadening support further. However, this mode somewhat

limits Cloudifys lifecycle management.

Open Source MANO (OSM) [72] works alongside the ETSI MANO spec-

ification and is based on an earlier project, OpenMANO. By default it uses

OpenVIM, but this is changeable for other VIMs, including OpenStack. OSM

orchestrates instances of OpenMANO, doing so through the RIFT.io project.

This manages distributed MANOs to provide NFV capabilities at scale.

OpenBaton [35] is a product of the OpenSDNCore project and is built up

to be an ETSI-compliant MANO. It has support for all of the components in

the ETSI specification. The software supports OpenStack as an infrastructure.

The Virtual Infrastructure Manager (VIM) within OpenBaton is separate com-

ponent to the core so that it can be swapped out for alternative VIMs. Agents

Chapter 2. Background and Related Work 36

are used within VMs as part of the service package to execute and monitor the

services.

ONAP [135] is a merge of Open-O and ECOMP [143] and is under the

Linux foundation. It is an NFV-MANO framework uses ODL and OpenStack

to offer orchestration and lifecycle monitoring. ONAP’s main benefit over other

orchestrators is collaboration with other partners and its data centric approach

to orchestration [136].

ZOOM [203] is part of the TM Forum and focuses on research and stan-

dardisation of Zero-touch orchestration and management. The project has a

particular focus around support for hybrid networks and design of future net-

work operations systems.

SONATA [66] is an NFV framework that provides a suite of tools in a SDK

to offer a DevOps-enabled service platform and orchestration system.

T-NOVA [216] is a MANO for provisioning of Network Functions as a ser-

vice (NFaaS). Its primary focus is around NFaaS where the orchestrator uses

a Network Function marketplace where network functions can be bought and

sold between vendors and operators.

OpenContrail [182, 45] is an NFV solution based on OpenStack which

focuses on achieving forwarding data plane traffic to NFV clusters using network

tunnels and BGP to route traffic.

CloudNFV [49] is an orchestration platform with SDN functionality. It’s

primary selling point is that it uses a unified management with orchestration in

a single data model. This relies on OpenStack as the VIM.

Chapter 2. Background and Related Work 37

OpenVIM [151] focuses on the VIM layer of the ESTI MANO architecture,

providing features not available in current cloud management systems that are

relevant to NFV. On top of this, it also offers a lighter weight solution to virtual

machine management than OpenStack [173].

CORD [154] is a MANO based on the use of compute resources within the

datacenter so that NFV can be placed somewhat closer to the edge of the

network. Furthermore CORD offers a full stack solution that makes use of the

SDN controller ONOS.

Open Platform for NFV (OPNFV) [160] is a project focusing on provid-

ing carrier-grade NFV, and moving standards forward. The lower infrastructure

management layers have received the most attention, as to build a strong foun-

dation. OPNFV currently has no orchestration layer and therefore cannot be

used on its own, but offers a basis to start or be used in conjunction with an-

other MANO. The current VIM supports OpenStack, but support for ARM

architectures is likely forthcoming as part of the ARM-Band project.

2.3.3 Container Management and Orchestration Imple-

mentations

Unlike systems based on ETSI’s MANO architecture, container orchestration

tools are not typically designed with NFV as the primary use case. Rather, they

are intended to help Cloud operators manage their infrastructure and to help

developers deploy and scale services more easily. Since these are also important

features required in a Fog scenario, they warrant consideration in this context

too. Furthermore, because they have existed for longer and have a broader

purpose, these projects are generally more mature offering more features and

greater stability.

Chapter 2. Background and Related Work 38

Kubernetes [107] is a container orchestration tool originally designed by

Google to automate operation, scale, and deployment of containers across a

cluster of machines. As well as deploying services, Kubernetes has a major

focus on maintaining the services that it deploys, with policies for automatic

scaling and failover. In order for a master to control the workers a client must be

installed on each worker node. These software components are compatible with

both ARM and x86 architectures. As of 2019, a sub-project under Kubernetes

named KubeEdge has been announced [106] that specifically aims to address

the challenges of applying Kubernetes to edge networks.

Swarm [63] is a native clustering tool for Docker which now comes packaged

with the Docker engine. It uses the Docker remote API to manage and run

containers on multiple hosts. It also uses an agent on each host which is man-

aged by a single Swarm manager. Swarms orchestration consists of clustering;

it makes a group of Docker hosts appear as a single machine. Services are run

from the manager machine and are served to the Swarm workers.

Fleet [83] is a cluster management tool from CoreOS that acts as a founda-

tion layer for other higher layer container orchestration solutions. Fleet is built

upon the Linux init system, specifically systemd, which is responsible for ini-

tialising and managing services. Fleet extends this functionality across a cluster

of machines. In order to use Fleet, agents (the CoreOS operating system) must

be installed on all hosts.

MESOS [12] is a cluster management tool that provides a distributed sys-

tems kernel abstraction: it clusters a group of servers and makes them appear

as one. MESOS is designed to work at large scale with examples including thou-

sands of hosts. Similar to Fleet, MESOS offers management of the lower layers,

but also supports the higher layer orchestration through Platform-as-a-Service

Chapter 2. Background and Related Work 39

(PaaS) solutions such as Mesosphere Marathon. To use MESOS there must be

a master node, and agents must be installed on the workers.

Rancher [162] is a container management platform from Rancher Labs that

offers orchestration through a framework called Cattle. It is a fork from Swarm

and thus offers similar orchestration capabilities. As well as this, Rancher sup-

ports MESOS, Swarm, and Kubernetes.

Mirantis [127] Recently Mirantis have created MCP Edge [126] which specif-

ically aims at deploying from the core to the edge of the network. This aims

to offer production grade cloud control over the edge of the network, providing

the usual benefits such as system monitoring and support for CI/CD.

Some of these tools offer more complete solutions to NFV and orchestration

than others. When considering which is appropriate, it is important to note

that when using a complete solution, extending or adapting the design can be

challenge. On the other hand, when using general or half-stack solutions, there

is greater flexibility for the design of a new system and architecture. As the

relative youth of NFV, most of these solutions are missing features required

for deployment. One of theses being VNF forwarding graphs. Some have this

in concept but production ready standardised implementations do not exist.

The OpenStack consortium has a work in progress solution of this [149] so they

may be waiting for that to be finished. On top of this, these orchestrators are

typically designed with the notion that the resource is going to be physically

homogeneous and networked similarly and thus are not well suited for Fog based

environments.

Chapter 2. Background and Related Work 40

2.4 Summary

This chapter has detailed background and related work around scalable network

monitoring, NFV, and computing towards the edge. Several pieces of work

have been identified on their relevance towards to the aim of this thesis. With

the objective to design and verify a scalable and responsive monitoring system

in mind, the current technologies of SDN NFV and Orchestration currently

lack the features to fully achieve this. As a result further research in edge

orchestration, scalablity, and monitoring is required before this thesis can be

realised. This said, best practices and failures of past research can help in

directing this work.

The technologies and research gaps have been highlighted that are required

to realise scalable and monitoring responsive monitoring for the Cloud-to-Fog

continuum. It is clear that work is required on advancing NFV service over-

lays, edge VNF orchestration, SDN monitoring methodology, and connections

between these technologies. Specifically, background and related work have

detailed:

• The potential benefits of SDN, NFV, and Fog Computing for network

monitoring and remediation

• The lack of SDN monitoring frameworks that focus on scalability and

adaptability whilst still retaining monitoring capability

• The lack of standardised and usable solutions for traffic routing between

virtualisation and network infrastructures

• The limited research on the potential for scalablity and function of a

framework that considers monitoring across the network

Finally, the findings from this chapter including existing tools, standards,

and observed successful practicalities from related research are considered in

Chapter 2. Background and Related Work 41

the design and implementation of both the Siren and Tennison frameworks

described in this thesis.

42

Chapter 3

Designing Responsive and

Scalable Network Monitoring

This chapter describes a design for a responsive and scalable network moni-

toring systems. Initially, Section 3.1 goes into detail on why a new design is

required, highlighting gaps in current systems, as well as advantages of emerg-

ing technologies. Based on the motivations discussed, Sections 3.2 and 3.3 go

into detail on the design requirements as well as design considerations, covering

topics of SDN scalability, monitoring, and orchestration methodology.

In summary, this chapter details the motivations, requirements, design con-

siderations, and architecture for components of a novel SDN network monitoring

system: Tennison, as well as a Cloud-to-Fog orchestration system: Siren.

3.1 Motivation

There is a growing trend towards highly configurable networks and services.

Achieved through the movement of packet processing functionality into soft-

ware [118], this progress enables network providers to dynamically adapt their

provision in response to varying demand. Thus far, focus has been primarily on

data centre and cloud environments. More recently, interest has shifted towards

access and last-mile networks, encapsulating telephone exchanges, homes and

Chapter 3. Designing Responsive and Scalable Network Monitoring 43

business environments in the process [154, 217, 25]. This complete spectrum

of networks and devices is called the Fog [25]. When combined with Network

Functions Virtualisation (NFV), the Fog presents a number of interesting op-

portunities for network operators: services can now be pushed even closer to

the edge of networks, and in some cases, only a single hop away from the target

devices. In conjunction with existing capabilities, this new enhancement allows

for greater performance and efficiency, regardless of the type of service to be

deployed. The potential benefits are best described through use of an example.

Content Delivery Networks (CDNs) store and host replica copies of content,

primarily multimedia. These are then used to serve consumer requests, rather

than retrieving the content from the origin server. In current networks, these

content replicas are located in centralised strategic locations, such as Internet

Exchange Points (IXPs). Yet there are still a number of network hops to reach

the final destination, which may ultimately be located in the users home or

place of work. CDNs exist primarily to improve the experience given to the

user. Despite current deployment strategies, these final hops can nonetheless

have an impact on the service delivered. In a Fog scenario, it would be possible

to locate and serve content within the last-mile network, or even within the

users local network. This reduces the chance of network impairment impacting

user experience.

3.1.1 The Cloud-to-Fog Continuum

The Cloud-to-Fog continuum as shown in Figure 3.1 describes an Internet com-

pute architecture where compute resource for NFV is available all the way from

the datacenter to the residence and enterprise locations. Current NFV sys-

tems [72, 135, 48] as well as the ETSI NFV specification [70] rely on the use of

Cloud for the infrastructure. Whilst there are advantages to running NFV in

the Cloud such as scale and ease of management, the network edge also provides

Chapter 3. Designing Responsive and Scalable Network Monitoring 44

Servers BGR IXP

Line
cards

IoT

Servers
Servers

BGR

Access
Switch

BRAS

CPEs

BGR

Multi-Service Edge

Enterprise

Residential

Telephone Exchange

Edge
Switch

Internet Exchange

Cloud Datacentres ISP Datacentres

Figure 3.1: Cloud to Fog Continuum

advantages due to proximity as detailed in Section 2.2. As highlighted by the

Fog specification [50] from the Open Fog Consortium [88] the Fog is a fertile

ground for NFV deployment.

This thesis claims that by considering the spectrum of environments capable

of hosting compute resources, benefits can be reaped from each such that deploy-

ment and placement of virtualised network services can be done efficiently [75,

74].

3.1.1.1 Analysis of SDN/NFV Performance in Edge Networks

Key to enabling deployment across the Cloud-to-Fog continuum is low power,

cheap, small form factor, and reliable resources that can be distributed across

the network. The following section analyses how such devices have improved

over the last 25 years.

Along with the increased interest in deploying to the edge, is the increase in

resources at reduced cost. Figures 3.2 and 3.3 show an analysis of 3,870 CPEs

sold between 1998–2019 demonstrates the upward trend in device capabilities,

such that they can now reasonably be considered as compute hosts as a Fog-

NFVI, the devices clearly differ vastly in their capabilities relative to those

Chapter 3. Designing Responsive and Scalable Network Monitoring 45

found in Cloud datacenters. Data on the above is available on GitHub1.

Figure 3.2:
CPU

resources

Figure 3.3:
Network
resources

Alongside the growing compute capability, ARM have been actively tar-

geting NFV and SDN with their low power processor architecture [13]. They

are approaching NFV with a micro-service based architecture, knowing that

network services are split up into multiple separate components, they are pro-

ducing high processor count chipsets, which can cleanly delegate resources to

each service component [13].

3.1.1.2 Experimentation Environment

Demonstrating the use of considering the context in the Fog, Figure 3.4 shows

the simple experiment topology that is representing two home networks that

share an aggregate switch to the Internet. This case study compares the cost to

the network in three scenarios: 1) a vCache VNF being deployed using a first fit

clustering policy 2) a vCache VNF being deployed using an context-optimised

policy and 3) using no CDN and requesting video directly from content provider

source. The vCache is deployed to the NFVI (Raspberry Pi) as a Docker con-

tainer. The video in use for the case study is a 1080p version of the Big Buck

Bunny standard testing video and is 276.1MB in size. During each experiment

iteration, three clients are watching the video and traffic is being monitored and

recorded on the aggregate switch to evaluate the difference between deployment
1https://github.com/lyndon160/cpe-scraper

Chapter 3. Designing Responsive and Scalable Network Monitoring 46

techniques. In the in second test, where optimised placement is used, the con-

tent provider requests information about latency between the service customers

and the available NFVIs to determine the closest one to deploy to.

Content
provider

Content
consumers

NFVI BNFVI A

VNFVNF

Aggregate
switch

Figure 3.4: Experimentation Topology

3.1.1.3 Analysis of Fog Placement

Figure 3.5 shows the results of three VNF placement techniques. The stacked

bar chart shows live data, which is data that was pulled over the aggregate

switch whilst clients were watching the video, and pre-pushed data, which is

the cost of pushing the vCache VNF.

No caching Context aware optimised fit First fit
Deployment strategies

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
et

w
or

k
co

st
 (m

eg
ab

yt
es

)

Live pulled data
Pre-pushed data

Figure 3.5: Fog Placement Cost Reduction

Chapter 3. Designing Responsive and Scalable Network Monitoring 47

In this instance, the contextual information has made it so that the VNF

can be placed much closer to the client on NFVI B, thus reducing observed

traffic on the aggregate switch by two thirds when compared to no caching.

More importantly, a suboptimal placement policy such as first fit which in

this instance places the VNF on NFVI A can cost more to the network when

compared with no caching, this is due to the VNF being pushed whilst the

content being requested over the aggregate switch.

This concurs with similar work in the area of edge optimisation; In a mobile

messaging use case, it has been shown that pushing services to the edge can

reduce traffic up to 50% [69].

3.1.1.4 Limitations of Scalability and Distribution within Contem-

porary Solutions and Technologies

In order to realise an SDN monitoring framework that can be deployed from

the Cloud-to-Fog, aspects of scalablity and distribution need to be addressed

within SDN and NFV. The following reviews different aspects required for such

a framework and their components that do not match up to the requirements.

SDN Controller Scale: ONOS has limitations around scale [76, 137]. As

shown in ONOS’s own performance tests [137], over version releases, the con-

troller is improving but it’s clear that its scalability is still limited. To add to

this, SDN monitoring requires additional switch to controller messaging, which

further impacts scalablity.

VNF Forwarding: In order to redirect traffic from the network to and NFV

infrastructure a forwarding methodology outside of standard routing is required.

In current cloud based NFV solution this is solved with a network choke-point

that redirects traffic in and out of the NFV cluster. The complexity of this

increases when deploying across to distributed NFVIs where there is no single

Chapter 3. Designing Responsive and Scalable Network Monitoring 48

point in the network where all traffic traverses. At the time of writing, there is

no widely integrated VNF forwarding graph technology. The closest to this is

the Network Service Header (NSH), which serves this purpose but is currently

does not have a production grade implementation.

NFV Deployment to Heterogeneous Environments: NFV deployments

thus far are not concerned with specific deployment details. In order to de-

ploy from the Cloud-to-Fog continuum an orchestrator needs to be aware of the

network topology and the infrastructure topology. Cloud management plat-

forms are also not concerned with specific placement of VMs/Containers. The

closest is Kubernetes which allows each machine to have a label which can be

used to determine its location. Solutions like this go against the ethos of this

tool, where resources are homogeneous and containers can be dropped on any

machine regardless of its context.

3.1.2 Summary

This section has motivated the need to use edge computing to increase the

scale of NFV deployments, specifically when considering network monitoring.

Furthermore, this section has highlighted multiple research challenges that need

to be addressed before a scalable monitoring system operating across the Cloud-

to-Fog continuum can be realised.

The following summarises the challenges that need to be addressed in order

to fulfil the goals of this thesis as detailed in Section 1.4. Improving scale of SDN

controllers with controller distribution and tiering. Designing and prototyping

a forwarding technology capable of dynamically routing traffic to distributed

NFVIs. Finally, this section has motivated the need to extend the Cloud to the

network edge, thus considering heterogeneous environments in NFV orchestra-

tion is required.

Chapter 3. Designing Responsive and Scalable Network Monitoring 49

In summary, there needs to be an architecture that includes SDN and NFV

that is capable of integrating network monitoring across the network rather

than a single point in the Cloud.

3.2 High Level Design Requirements

Elicited from background research and current research challenges in network

monitoring as highlighted in Chapters 1 and 2, the following details the high

level design requirements for a responsive and scalable network monitoring sys-

tem.

• A wide a range of inputs should be supported such that the system can

best understand the state of the network.

• Place monitoring based network functions towards the edge of the network

to optimise use of the network.

• Monitoring that is conscious of network capacity and is capable of pro-

portionally adapting to the context.

• Extenisbility so that additions such as an operator interface and new

detection algorithms can be integrated with ease.

• Monitoring should be able to adapt to network capacity such that the

network controller, data plane, and monitoring system are not overloaded.

The design requirements above provide an overview of the directions of re-

search required to successfully design and implement a scalable network moni-

toring system.

Chapter 3. Designing Responsive and Scalable Network Monitoring 50

3.3 Design Considerations

This section details various design considerations for monitoring and orches-

tration in the Cloud-to-Fog continuum. Specifically, this section compares the

available technologies and solutions to monitoring agility and control, moni-

toring, deployment flexibility, network service orchestration, virtualisation, and

technology agnostic architecture. These considerations are based on best prac-

tices in modern software design as well as empirical evidence from an edge

compute analysis in Section 3.1.

3.3.1 Monitoring Agility and Control

As motivated in Section 3.1, an SDN controller is required for both monitoring

and forwarding traffic to distributed NFV Infrastructures. The following high-

lights the options for SDN controllers as well as methods for NFV connectivity.

3.3.1.1 SDN Controllers

In terms of SDN controllers, there are a variety of options, each with vary-

ing support for industry grade requirements. As for scalablility and resiliency,

ONOS, the industry grade controller offers controller distribution. At the time

of design and implementation, ONOS was the only industry grade SDN con-

troller that supported distribution. Since then there is similar capability from

ODL [134]. Alternatively there is Ryu, which does not offer distribution or

failover but instead has simple design that it enables it to focus on stability and

supporting the latest versions of the OpenFlow protocol [166].

3.3.1.2 NFV Connectivity

As discussed in Chapter 2, NFV can have various benefits to monitoring, espe-

cially towards the edge of the network. When applying NFV towards the edge

Chapter 3. Designing Responsive and Scalable Network Monitoring 51

of the network, additional considerations need to be made as to where and how

traffic is redirected. Various other SDN monitoring frameworks [186, 180, 221]

achieve NFV by the use of middle-boxes or simple port mirroring. Neither of

these solutions are agile and require operator intervention to install and adapt.

Network Service Header (NSH) The Network Service Header [161] con-

tains information which defines the position of a packet in the service path,

using a service path and path index identifiers, and carry metadata between

service functions regarding policy and post-service delivery. The NSH Request

For Comments (RFC) is specifically made to solve the challenge of NFV con-

nectivity, however, as of 2019, NSH is only supported in software by a modified

version of OvS.

Source Routing (SR) with IPv6 The use SR for providing NFV connectiv-

ity is arguably the most elegant solution currently available, however it requires

IPv6; many of the SDN controllers, OpenFlow and P4 implementations have

varying levels of IPv6 support [140, 39].

Vendor locked tunneling This is achieved by using SNMP, REST, or pro-

priety interfaces to create GRE tunnels. This solution quickly and easily recti-

fies the issue but is not future proof and also locks the framework into a single

vendor.

VLAN based tunneling VLANs with SDN can be used to create multiple

overlay networks dynamically. However, this solution is imperfect as it requires

the use of double tagged VLANs if VLANs are already which are not supported

by a the majority of enterprise or customer networks. On top of this, if the

traffic has to traverse a non-SDN network, the traffic will not be routed correctly,

Chapter 3. Designing Responsive and Scalable Network Monitoring 52

whereas with SR or encapsulation, traffic will be routed correctly over non-SDN

networks.

Middle-boxes and encapsulation Middle-boxes are placed between net-

working devices to provide additional functionality within the network. For the

use of NFV connectivity, middle-boxes can be used to create tunnels from the

network to an NFV Infrastructure. The added advantage of tunneling traffic is

that the data-plane traffic is encapsulated, keeping all of its original headers,

and encrypting traffic if required.

3.3.2 Monitoring Methodology

Conventional network monitoring uses a variety of methods to monitor traffic.

This includes sampled header monitoring, middleboxes, and mirroring. With a

deployed SDN network, monitoring is similar to conventional methods but can

be done dynamically and without additional hardware.

The requirement for monitoring granularity depends on the resources avail-

able and the types of attack that need to be remediated. Some attacks require

deep packet inspection whereas others can be detected via flow header moni-

toring, or even aggregated summaries of traffic flows.

The following lists the different methods of monitoring, specifically detailing

their trade-offs.

Redirection: This change moves the packet to another destination, which

adds network latency and packet processing latency. This is useful when analysis

is required to be done remotely and that monitoring needs to be done in real

time. A solution like this would only be applied to a small subset of the network

traffic.

Chapter 3. Designing Responsive and Scalable Network Monitoring 53

Mirroring: The duplication of traffic, forwarding the packet normally and

then cloning the packet off to another location on the network. This style of

monitoring analyses traffic after an event has occurred, and thus impacts the

latency of attack detection. If duplicated traffic is managed correctly, there is

no latency or bandwidth impact to the source traffic.

Middlebox: Offers immensely detailed monitoring by performing full packet

inspection, typically to all network traffic that traverses the box. The pri-

mary downside to the solution is the impact of additional latency to all traffic,

difficulty of processing large volumes of traffic, limited network visibility, and

expense to deploy and manage.

Full OpenFlow Packet-In: This solution offers the most detailed monitor-

ing conveniently in one location across the entire SDN network but also offers

the worst performance and is not scalable to network size or traffic load [101].

This method also delays the packet significantly, increasing the packet’s latency

by over 20ms and much more when under load [139].

Header monitoring: A lighter weight monitoring solution, that when man-

aged correctly adds little impact to the network, but offers limited monitoring

detail. At the cost of monitoring granularity, sampling of header monitoring

can be utilised for an even lighter weight solution.

3.3.3 Deployment Flexibility

Deployment flexibility is important ensuring that the system can be used in

multiple environments under varied conditions. Architecturally, there are mul-

tiple options to deploying a monitoring system, including: tiered, distributed,

and centralised deployment. In this case, a completely decentralised solution,

such as peer to peer or super peer are not used because of concerns around

Chapter 3. Designing Responsive and Scalable Network Monitoring 54

performance, network visibility, incompatibility with existing SDN controller

architectures, and security.

Centralised Deploying with a centralised architecture offers simplicity, re-

duced costs, and with a master slave configuration, resiliency. However, with

there being only one instance in operation at anyone time, both scalability and

availability are compromised. When compared to other SDN network mon-

itoring solutions such as [221, 112, 181, 213, 114], they favour a centralised

approach, in some this is due to a lack of mature distributed controllers avail-

able during their development phase, and in others because of the simplicity

offered by a centralised approach making prototyping much easier than alter-

native methods

Distributed deployments offer increased resiliency, availability, and depend-

ing on the level of shared state, they can also improve the system’s scalability.

Whilst distribution increases system complexity, if the distributed substrate is

abstracted and robust automation is used with deployment, complexity can be

reduced for developers working on top of the system.

Tiered deployments offer a range of benefits at the cost of deployment, sys-

tem, and management complexity. Where scalability, resiliency, and a separa-

tion of concerns is a primary requirement, a tiered approach is best suited. In

the interest of future compatibility, tiered architectures are considered under

NFV standardisation, with ETSI’s NFV architecture [72].

3.3.4 Network Service Orchestration Methodology

At the time of writing, the open source implementations of MANOs, as high-

lighted in section 2.3.2 have limited support for orchestration, and typically rely

on a variant of a first fit policy. The reason behind the use of this single policy

Chapter 3. Designing Responsive and Scalable Network Monitoring 55

is around what the Virtualisation Infrastructure Manager (VIM) defaults to,

for example, in typical Cloud OpenStack deployments, first fit deployment is

well suited. On top of this, as explained in Chapter 2, they only support Cloud

based infrastructures where placement resources are relatively simple and well

understood challenges when compared to the Fog. With Network Functions Vir-

tualisation and Fog computing, network service orchestration is more complex

than conventional NFV, which deploys to the Cloud. The number of locations

in the Cloud-to-Fog give room for further optimisation in orchestration. Or-

chestration is required to place network services in the best location within the

network depending on an optimisation factor.

For this thesis, three orchestration methods are considered for different con-

texts. The primary orchestration for network monitoring is a distance and con-

text aware based orchestration. In scenarios where the network is shared and a

range of network services need to be considered, an auction based orchestrator

can be used.

Cost-based Orchestration Important to motivating the use of edge net-

works, this method of orchestration considers the economic cost of deploying

network services at different locations depending on the cost of network trans-

fer. This motivates the decision to place services that require high data rates

to be placed closer to the network target or client where the service is served.

Service Agnostic Auction-based Orchestration This method of orches-

tration provides a platform for multiple customers to rent out infrastructure for

period of time, thus naturally supporting multi-tenancy. This has the benefit

of offloading the orchestration logic to one or more third parties.

Chapter 3. Designing Responsive and Scalable Network Monitoring 56

Monitoring Orchestration Facilitating network monitoring, this method of

orchestration is a distance and context aware technique that considers the dis-

tance between the network target and the service and also considers the available

capacity on each link to place a network service. This method of orchestration

also has the ability to automatically scale services and move services depending

on demand.

3.3.5 Virtualisation Technology

Virtualisation is used to execute multiple services on a singe machine, typi-

cally offering a form of resource management and isolation to the service. The

deployment of network services to the Cloud-to-Fog continuum raises many

challenges, including the use of an appropriate virtualisation technology. As

stated in Chapter 2, the Cloud-to-Fog is a highly heterogeneous environment,

including multiple computing architectures as well as varied amounts of com-

pute, memory, and disk.

Virtual Machines (VMs) Offer full operating systems were code does not

require to be recompiled. From an ease of use point of view, these are VMs

simple to adopt and have been used for over a decade. Previously VMs were

the primary choice for any virtualised software.

Containers are analogous with processes with increased isolation. They share

the host’s kernel but have their own libraries and network interfaces. The pri-

mary benefits of containers include: same compilation process, significantly

reduced size and memory usage, short initialisation (<1s) [79], and isolation.

On the other hand, containers provide a weaker level of isolation than other so-

lutions, and due to the additional network interfaces, can have reduced network

performance. Since the wide adoption of containers, they are a popular choice

Chapter 3. Designing Responsive and Scalable Network Monitoring 57

for micro-service architectures and are now supported by a variety of tools for

service orchestration [107, 162, 12, 8, 86].

UniKernels These are small kernels that are compiled in to single purpose

applications. Only the libraries required for the application are on the UniKer-

nel, making the resulting OS compact and efficient. At the time of writing, this

technology is relatively immature and producing efficient VNFs or applications

is poses significant challenges [209], especially when deploying to non-x86 ar-

chitectures, such as ARM due to the lack of support at this time. In summary,

the pros of UniKernels is that they offer strong isolation, reduced overheads,

and small base image size.

3.3.6 Technology Agnostic Architecture

To improve the system’s robustness and longevity, the fundamental design of the

system should be able to resist obsolescence as well take on new best practices.

Robustness and longevity can be ensured by using a componentised and loosely-

coupled design where parts of the system can be easily segmented and replaced

if needed. The trade off here is potentially a performance hit and also increased

time to develop. However, as this space is moving quickly, future proofing and

being technology agnostic is important to the longevity of the design. The

following details the various areas that are prone to change in the near future.

Southbound Protocol: The southbound protocol in an SDN refers to the

protocol between the SDN controller and SDN compatible switch [121]. Open-

Flow is the current forerunner of the southbound protocol and data plane imple-

mentation for SDN technology. This said, P4, the data plane implementation

has recently gained traction offering various benefits over OpenFlow. The data

Chapter 3. Designing Responsive and Scalable Network Monitoring 58

plane design should be designed to be technology agnostic such that it can reap

the benefits of new protocols.

SDN Controller: Over the years there have been many SDN controllers,

each with their own unique aspects. The most stable and mature controllers

at the moment are: ONOS, ODL, and RYU. Whilst there is uncertainty about

which controller will continue to have support, the design of the system should

be agnostic of the controller, such that it can be changed with ease in the future.

Network Hardware: With the emergence in P4, new hardware might be

implemented with new benefits. This is also true for OpenFlow, for example,

in 2018 Corsa released an OpenFlow switch which was combined with large

internal compute resource and additions to the protocol

The system should be broken up into subsystems and sub-subsystems so that

components like message queues, interfaces, and databases can be replaced if

needed.

3.4 Design Overview

With the design considerations noted previously, Figure 3.6 shows a high level

overview of the different components of the system. At the overview level of

the design, the system is split up into five isolated pieces: the monitoring and

security framework, the network controller, the orchestrator, the NFVIs, and the

forwarding devices. This general design follows a loosely coupled architecture

so that each component can be updated individually and can be used on their

own. Other implementations of similar systems such as [181, 112, 221] have

merged these components together into one monolithic block.

Chapter 3. Designing Responsive and Scalable Network Monitoring 59

SIREN
NFV Cloud-to-Fog

Orchestrator

TENNISON
Network Monitoring &

 Remediation Framework

Network
Controller

Software Defined Network
Infrastructure

Network Functions Virtualisation
Infrastructure

Topology data and NFV redirection

Network
control

Monitoring
and control

LCM and
scaling of VNFs

DPI
 alerts

Figure 3.6: Grand Architecture Overview

The overall design as illustrated in Figure 3.6 shows Siren influencing the

network controller and managing the Network Functions Virtualisation Infras-

tructure. Moreover, the network infrastructure is managed by the network

controller, which reports monitoring information and exposes control to Ten-

nison. Tennison also receives monitoring alerts from deployed network func-

tions from the NFV Infrastructure. In summary, the interaction between these

three loosely coupled components and two infrastructures provide a scalable

and responsive network monitoring system.

3.5 Tennison: Monitoring and Remediation

Framework

Tennison is a framework that focuses on providing scalable monitoring and

remediation. This section describes the Tennison system architecture high-

lighting the individual components and features of the design.

The overall system architecture for Tennison, in Figure 3.7, is formed of

three distinct architectural layers. The lower layers (Bro and Snort DPIs, ONOS

Controllers, and sFlowRT) are the appliances and instances deployed within the

network, cumulatively referred to as the Collection layer. These instances are

Chapter 3. Designing Responsive and Scalable Network Monitoring 60

fundamental to the operation of Tennison, in that they provide both control

and monitoring functionality to the higher layers.

Bro DPI

Alert
Generator

sFlowRT

IPFIX
Collector

Alert
Listener

sFlow
Collector

Snort DPI

Alert
Generator

… ONOS Controller

IPFIX
Exporter

Flow
API

ONOS Controller

IPFIX
Exporter

Flow
API

…

Flow
Control

Resource
Monitor

Northbound Interface

Security
App

Security
App

Security
App

Security
App

Application Layer

Collection Layer

Coordination Layer
TENNISON
Coordinator

Input

Output

Figure 3.7: Tennison System architecture

In some cases, minor extensions have been made to the Collection interfaces

to enable them to report and communicate with the Tennison Coordinator,

which forms the Coordination layer of the architecture, and is responsible for

storing and aggregating all of the information generated by these interfaces.

The interfaces between these interfaces and the Coordinator represent a flow of

information, with the interfaces providing input or output (see legend in Fig-

ure 3.7). From this illustration, it is evident that both the packet inspection

tools and the flow monitoring applications produce input while the ONOS con-

troller alone offers an output. It is this output that enables the coordinator to

modify the forwarding plane of the network, via the ONOS controller, and pro-

vide the functionality and programmability required for Tennison to operate

effectively.

The Coordinator is responsible for coordinating the overall operation of the

architecture, and acts as an intermediary between the upper and lower layers;

Application and Collection layers, respectively. The Coordinator is intention-

ally built independent of any other component, and is completely technology

Chapter 3. Designing Responsive and Scalable Network Monitoring 61

agnostic. This allows interoperability with alternative technologies and flexibil-

ity in terms of design and placement in the network. Furthermore, every aspect

is componentised and networked and only holds state if required. As a result,

the system is easily distributable (i.e. multiple Tennison instances) as only

the database is the primary aspect which holds state, and as such, Tennison

is able to scale to the size of network.

The central role of the coordinator grants an authoritative view of the net-

work topology and its current state with the ability to simultaneously modify

both the network and the monitoring services running within it.

The final, and uppermost layer, is the Application layer, which hosts the

security applications. These applications interact with the coordinator leverag-

ing its functionality to realise custom and dynamic security behaviours. This

enables the creation of applications tailored to specific threats, or integration

with existing tools already deployed in a network.

The remainder of this section contains a detailed breakdown of each of the

components, including contextualising them in the overall system architecture.

3.5.1 Tennison Coordinator

The Tennison Coordinator is central to the Tennison architecture, and is

responsible for the overall operation of the system. In this section, the sub-

systems within the Coordinator that together provide the rich functionality to

security applications in the Application layer (see Figure 3.8) are detailed.

We start by describing a series of Southbound Interface (SBI) modules that

communicate with appliances within the collection layer. These modules pro-

vide a rich set of information to the coordinator, allowing it to make a wide

range of powerful, yet informed, decisions with respect to network monitoring

and attack remediation.

Chapter 3. Designing Responsive and Scalable Network Monitoring 62

IPFIX
Collector

Alert
Listener

sFlow
Collector

Flow
Control

Resource
Monitor

Northbound Interface

Data Broker Event
Logs

Policy
Engine

TENNISON
Coordinator

Intents
Alert REST IPFIX sFlowRT Syslog/SNMP

Figure 3.8: Tennison Coordinator subsystems including
southbound interface

3.5.1.1 Southbound Interface (SBI) Modules

The first is the Flow Control interface, which is an output from the Coordinator.

The Coordinator uses this to control the flow of traffic through a network,

directing and shaping this towards the various appliances under its control.

Importantly, the Coordinator does this in an intent driven way; it describes the

changes at a high level without specifying precisely how this should be achieved.

For instance, the Coordinator does not define the exact switch on which a flow

should be modified. It is the responsibility of the network controller to decide

the optimal placement of this given its awareness of the topology. More details

of the interaction with the network controller are provided in Section 4.1.2.

The remaining four SBI modules all provide inputs to the Coordinator. The

Alert Listener is a REST interface used to collect messages generated from the

various packet inspection appliances located in the network. An alert message

is generated by a DPI tool when a suspicious flow or packet flows through the

appliance. This alert is then passed from the appliance to the coordinator via

this interface module. A similar process is followed for the IPFIX Collector,

sFlow Collector and Resource Monitor interfaces. The difference between them

Chapter 3. Designing Responsive and Scalable Network Monitoring 63

being the type and content of the message received on each interface. In the

case of the IPFIX Collector, aggregate flow records are received from the net-

work controller. Similarly, the sFlow Collector provides sampled flow record

statistics when high volume monitoring is used in the network. Finally, the

Resource Monitor collects resource usage information (e.g. cpu/memory/flow

table occupancy) from the switches and controllers in the network.

This resource information is used for dynamic decision-making in the Ten-

nison monitoring and security system. For example, placement of the monitor-

ing to avoid potential switch flow table overflow and avoid controller processing

overload. Together, these four interfaces provide a holistic view of the entire

network, including traffic levels, threat analysis and resource utilisation.

3.5.1.2 Data Broker

Regardless of the message type, once a message is received at the Coordina-

tor, its content is passed to the Data Broker. This acts as an intermediary to

determine the destination of the message within the system. There are two pos-

sible destinations; the Policy Engine and/or the Event Logger. Importantly, the

Data Broker enables extensibility of the southbound interface. It does this by

providing a generic interface to which new collectors can connect. Furthermore,

the Data Broker queues messages, acting as a virtual buffer between incoming

messages and the policy engine.

3.5.1.3 Event Logger

The Event Logger is a long-term storage medium, realised with a key-value store,

that keeps each message in its entirety. This database can then be searched by

other components to retrieve historical information (through the Northbound

API or Policy Engine, as illustrated in Figure 3.8). It provides persistent storage

for the coordinator, enabling rapid recovery in cases of failure or migration.

Chapter 3. Designing Responsive and Scalable Network Monitoring 64

The event logger can also be configured in such a way that stored messages are

automatically expunged after a fixed period. This allows the storage footprint

to remain consistent without the need for explicit maintenance.

3.5.1.4 Policy Engine

The Policy Engine is an integral part of the coordinator and contains the logic

through which new messages are processed (originating from one of the input

interfaces), historical trends are analysed (through the Event Logger) and re-

sulting actions are taken (through the Flow Control). The policy engine has

a permanent storage state to record security policies and monitoring decisions.

It is also fully configurable by security applications, to add, remove or modify

logic, as required. Examples of the behaviour of this policy engine under various

attack scenarios, are described in Section 4.1.3.

3.5.1.5 Northbound Interface

The Northbound Interface is key to enabling the programmability and extensibil-

ity inherent in Tennison. For clarity, the upper components of the coordinator

are illustrated separately in Figure 3.9. The northbound interfaces enable the

security applications to both read the current network state and to modify it

according to custom internal logic. These interfaces are clearly defined such

that applications from different sources (and with different objectives) can be

used in parallel.

The security applications connecting to the northbound interface first reg-

ister with the controller by providing a unique ID and a set of credentials.

This enables the coordinator to identify the application, and to authorise it

with the appropriate permissions. This includes permission to read the net-

work topology, and permission to interact with neighbouring applications, as

required. Tennison hosts two application types; managed and unmanaged. A

Chapter 3. Designing Responsive and Scalable Network Monitoring 65

Southbound Interface

TENNISON
Coordinator

Start or
Stop
apps

Query
apps

Query
messages
or alerts or
thresholds

Add or
update or

modify
thresholds

Register
and

configure
app

App IDApp ID &
credientalsAll apps

state
System

state
Threshold

Figure 3.9: Tennison Coordinator Northbound Interface

managed application can be controlled by another security application, whereas

an unmanaged application cannot. This can be used to create a hierarchy of

applications, to share state and behaviour between applications, and to remove

potential conflicts in terms of network behaviour. To support managed appli-

cations, the Coordinator provides the necessary northbound API calls to query

existing applications, including their availability, uptime and current state. Us-

ing this information, a neighbour application (if authorised to do so) can also

start, stop or configure other managed applications. Any application, regard-

less of its management status, can query the coordinator to search for messages

(e.g. IPFIX, sFlow, DPI alert, etc.) received by the Coordinator (including

current and historical information). Similarly, using this same interface, the

application can query the current logic of the Policy Engine. This enables the

requesting application to understand the current behaviour of the architecture,

aiding in avoiding potential conflicts. Finally, the northbound interface enables

the security applications (regardless of their management status) to add, remove

and/or modify the rules within the Policy Engine. From a system security per-

spective, this capability is closely controlled by the application authorisation,

with relatively fine-grained permission supported in Tennison.

Chapter 3. Designing Responsive and Scalable Network Monitoring 66

3.5.2 Tennison Multi-level Monitoring

Tennison operates a tiered system of monitoring to provide scalable network

security. The multiple levels of monitoring are illustrated in Figure 3.10, with

light-weight monitoring for a high volume of flows at Level 1 (L1) and Level 2

(L2) leading to detailed monitoring for a reduced flow count at Level (L3).

Payload
inspection

Continuous header
data and fine-grained

 sampled payload

Header data and coarse-grained sampled payload
+

Legacy network support

M
onitoring detail

M
on

ito
rin

g
ca

pa
cit

y DPI

PreFIX & sFlow

IPFIX & sFlow

L1

L2

L3

Figure 3.10: Tennison multi-level monitoring triangle

“PreFIX” identified in Figure 3.10 is part of the first level of monitoring

(L1) and, by default, provides network layer four header information for the

first packet in the flow for every flow. At both L1 and L2, sFlow provides

latent, always-on sampled monitoring. Furthermore, as sFlow can be configured

on non-SDN switches, it provides Tennison with visibility of legacy networks.

sFlow captures flow information based on sampling. The sFlow agent in the

network element is configured to export sFlow records to sFlow-RT, which then

reports alerts to the Tennison Coordinator for remediation and to support

multi-stage attack detection. The sampling rate, polling rate, and packet header

length are configurable and can be dynamically updated based on the network

state and immediate monitoring requirements.

In addition, at L2, IPFIX data input to Tennison based on defined Open-

Flow monitoring intents provides a more fine-grained and continuous monitor-

ing capability suitable for detection of attacks that can evade a sampling-based

Chapter 3. Designing Responsive and Scalable Network Monitoring 67

monitoring approach.

Finally, L3 represents Tennison’s capability to forward suspicious traffic

towards DPIs for classification. This leverages Tennison tunneling, which

provides the means to forward and mirror specific traffic from any host on the

network to any destination without modifying the packet. This is a further

example of the scalability of the system. As the network increases in size and

DPI processing throughput reduces, additional DPI instances and tunnels can

be instantiated on-the-fly ensuring optimal network protection provision. As

identified in Section 3.3.2, there are various monitoring methodologies available

for use, each with their own trade-offs. These methods include: Redirection,

mirroring, middleboxes, OpenFlow Packet-Ins, and header monitoring.

Adaptive behaviour allows for various methods of monitoring to be applied

depending on traffic classification and network context. Traffic classification

can be used identify the severity and profile of the attack and adapt network

monitoring behaviour accordingly. Network context can benefit adaptation in

understanding the amount of available resources.

3.5.3 SDN Controller Distribution

Controller distribution adds availability to the network whilst improving re-

siliency by taking away the single point of failure. However, with this there is

additional complexity and difficulty of adapting the controller to new paradigms.

On top of this, in cases where state is continuously shared by data rich controller

applications, performance can become degraded due to the increased overhead

from state sharing. For the goal of scalability as a part of this thesis, the im-

plementation of controller distribution and correct configuration and usage is

paramount to reaping its benefits effectively.

In terms of controllers, the Tennison and Siren designs are agnostic of

Chapter 3. Designing Responsive and Scalable Network Monitoring 68

the network controller. In the case of SDN controller distribution with Ten-

nison, in the design, all unnecessary SDN applications are stripped from the

chosen SDN controller. On top of this, the SDN controller Tennison appli-

cations themselves require no state transfer, instead relying on the controller’s

distributed function for operations that operate over multiple controller do-

mains.

3.5.4 Tiered Network Monitoring

As a part of Tennison’s flexible deployment options, this section details an

alternative architecture that focuses on providing greater scale and a separation

of concerns.

Sub-domain
Manager

Domain
Manager

Inter-domain
Manager

++

+ +

G
reater m

onitoring detailG
re

at
er

 n
et

w
or

k
vi

si
bi

lit
y

Software Defined Network(s)
Net #1 Net #2 Net #3 Net #4

Figure 3.11: Tired architecture design

As described in Section 3.3 and motivated in Chapter 3.1, multiple ap-

proaches to scalability should be included within the design.

Background research detailed in Chapter 2 found that other SDN monitoring

frameworks including [14, 112, 221, 181] do not address scalability and instead

focus on other challenges within SDN monitoring. Based on performance from

published by ONOS [137], a full state sharing distributed architecture has its

limitations for scalability. To incorporate increased scale as well as a separation

Chapter 3. Designing Responsive and Scalable Network Monitoring 69

of concerns, this section describes a tiered approach. As shown in Figure 3.11,

each tier in this architecture has a wider reach but has less information about

the network.

The primary reasons for this architecture over others are:

• The tiered architecture provides a centralised control and a wider view of

the network than other architectures.

• Results on scaling SDN [137], as well as various academic publications [184,

220, 101, 72, 193] and ETSI’s specifications [72], suggest that both a tiered

or east-west architecture is a direction that will be supported by SDN and

NFV frameworks as the technologies mature.

• Distributed ONOS can still be used with a tiered system, providing re-

silience and increased scale at multiple levels.

In this architecture, it is envisaged that the network is split up into multiple

subdomains, each of which is controlled by an ONOS cluster, and in turn a

monitoring framework.

Subdomain Manager The Subdomain Manager is largely the same to the

standard implementation of the monitoring framework, but with another inter-

face which is connected to the domain manager, sharing detailed information

on alerts and events. The bottom level of the monitoring framework in Fig-

ure 3.11 also has a fail over node in the design for redundancy and will also

be able to operate autonomously if required, such that if the link between the

subdomain and the domain manager was to fail, security and monitoring would

continue. This will simply work by fully replicating the underlying database

that holds both the events and the policy engine. The addition, to the subdo-

main controller includes a new northbound application, the Tier Manager. This

Chapter 3. Designing Responsive and Scalable Network Monitoring 70

application shares data with the meta monitoring framework, in this case that

is the Intra-domain coordinator.

Domain Manager The Domain Manger is responsible managing fine-grained

alerts and events between the framework’s interfaces. It is also the component

that configures Subdomain Managers, pushing down local domain polices. In

an enterprise scenario, the domain manager would be under the control of the

organisation that was using it, allowing them to disseminate their own network

monitoring policy across multiple subdomains.

Inter Domain Manager The Inter-Domain Manager is responsible for man-

aging coarse-grain information between domains. The Inter Domain Manager

will also be the insertion point for updates on new security vulnerabilities and

detection methods, such that new identified attacks could be mitigated. Where

Tennison is provided as a service, the inter-domain manager would be main-

tained and operated by the providers of the service, allowing for remote security

network patches and visibility of multiple networks at once.

3.6 Siren: Infrastructure Management and Or-

chestration Platform

In this section, the design for Siren, the Infrastructure Management and Or-

chestration Platform is detailed. Siren is an infrastructure provisioning, man-

agement, and orchestration framework. Siren addresses a gap in current

MANOs where heterogeneous environments are not considered.

The remainder of this section goes into detail on the components and or-

chestration methods within the Siren architecture, illustrated in Figure 3.12.

Chapter 3. Designing Responsive and Scalable Network Monitoring 71

DPI
Provider

CDN
Provider

DNS
Provider

Auctioning
Orchestration

Provisioner
Si

re
n

Switch #1

Administrative domain

Bandwidth

House #1

Server #2

Storage

Memory

Processor

Administrative domain

Bandwidth

Neutral (Central Office)

Server #1

Storage

Memory

Processor

Administrative domain

Bandwidth

Factory #1

Switch #2

Administrative domain

Bandwidth

Neutral (Central Office)

Controller

Life Cycle
Manager

Monitoring
Orchestration

Service
Discovery

Operator
InterfaceAp

ps

Figure 3.12: Cloud-to-Fog Infrastructure Management and
Orchestration Platform

3.6.1 Service Discovery

The Service Discovery module is a centralised location where data about Siren

compatible NFVIs are stored. Each NFVI is reported by their respective Agent

on boot of the infrastructure. The agent passes information about the available

resources, IP address, firewall policy, and global connectivity status via an an-

chor. This data is then correlated with topology information from the network

controller to automatically ascertain the NFVI’s network location.

3.6.2 Service Provisioner

The Service Provisioner is aware of the available network resources. Its key

function is to operate within the heterogeneous Fog environment, translating

requests from the orchestrator to deployed VNFs on the NFVIs. Siren supports

deployment to both ARM and x86 architectures in Docker format.

Chapter 3. Designing Responsive and Scalable Network Monitoring 72

3.6.3 Agents

Agents are small programs that are run on each node within the NFV Infras-

tructures. In the ESTI MANO architecture, an agent can be part of many

elements, including the element manager and the virtualisation infrastructure

manager. Agents are useful for reporting the status of their host, passing data

about available resources and the state of running services. In Siren’s design,

the agent is responsible for launching services, and reporting status information

to both the life cycle manager and service discovery modules.

3.6.4 Life Cycle Manager (LMC)

The Life Cycle Manager keeps track of all of the running network services and

checks and reports errors as well as terminating a service when its time has

expired. The LMC is critical component in the design of Siren, ensuring that

the infrastructure is reset after a service has expired.

3.6.5 Orchestration Methodologies

Orchestration is used to decide which network services are placed where. Siren

supports multiple methods of orchestration. Depending on the context, a dif-

ferent orchestration method is used. In the context of experiments with Ten-

nison, a simple cost-based metric is used for placement of network services.

Additionally, Siren supports multi-tenancy through an auctioning system for

choosing placement of network services.

3.6.5.1 Auctioning

For the NFV placement problem [19], to support multi-tenancy, a novel combin-

itoral auctioning [54] approach is considered when deploying to heterogeneous

environments such as the Fog. This allows bidders to define bids containing

Chapter 3. Designing Responsive and Scalable Network Monitoring 73

combinations of discrete sets of resources. In our example scenario, each of the

providers is able to bid on exactly what they require for their service. Fur-

thermore, as resources in the Fog could be located in different administrative

domains, depending on the sensitivity of the service, the auction may be fil-

tered by a resources administrative domain. For example, a bid could contain a

package consisting of 128MB of RAM, 2 CPUs and 10GB of storage across 400

devices located specifically in local home networks. Importantly, the purpose of

these bids is to reserve and allocate those resources for a fixed period of time;

resources are auctioned again for other adjacent time slots. This system enables

multiple providers to use the same set of resources at different times during the

same day. The bidding operates in multiple phases, each bidder creates their

packages in each phase. If two bidder’s packages overlap, one bidder has to buy

out the overlapping package. Once bidding is over, the Auctioneer will alert

each Service Provider as to which of these reservations has been successful.

The Service Providers will then supply details of the service they wish to run

on their reserved infrastructure, using a supported templating language (such

as Docker’s Dockerfiles).

The next step begins the realisation of the aforementioned reservation. The

Auctioneer informs the Provisioner of each successful reservation, which is then

actioned on the constituent devices. This includes creating the relevant con-

tainers and services, and ensuring that they are kept within their particular

resource constraints. The service is now deployed, and will remain until the

reservation window expires. When this occurs, the Provisioner will clear the

existing reservations, and make way for new services to be deployed.

3.6.5.2 Cost-based

As suggested by [27], the cost of placement of a network function is orthogonal

to the cost that creates on the network. Therefore, network provider cost must

Chapter 3. Designing Responsive and Scalable Network Monitoring 74

be taken into account.

Equation 5.2 in Chapter 5 shows an example of a path cost calculation for

lease of a resource for a single hour. C represents the cost set by the provider

for an amount of network transfer m. A network provider may also wish to cost

their network on a per hop basis, where some hops might be more expensive

than others. Thus the equation supports a standard fee plus a fee for the path

that the service will traverse. These values are entirely configurable within the

system. For the purposes of illustration, a cost has been added to the reservation

of bandwidth, however, these are not necessarily representative of a true cost,

as this would likely be different from one network provider to another. Cp and

Cn represents the value in cents per mbps. The equation for the cost-based

placement algorithm is detailed in Section 5.2.

3.6.5.3 Network Awareness-based

With a network controller as an abstraction to the network, contextual network

information is readily available. Information about network traffic, deployed

network services, and the topological distance between the two, optimisation

can be applied to best deploy services to the network such that they reduce the

number of hops on average per flow. This deployment can then be updated pe-

riodically to address the change in network traffic profiles. The implementation

of this is detailed in Section 4.2.4.

3.7 Data Plane Pipeline Design

The data plane design is important for ensuring efficient and correct processing

of packets. For monitoring, the data plane needs to collect network statistics

and report them back to a central data point. On top of this, a form of mirroring

and network overlay is required for sending traffic to NFVIs.

Chapter 3. Designing Responsive and Scalable Network Monitoring 75

In this space, there are two main technologies, OpenFlow, which has existed

since 2008, and P4 which was initially conceived in 2014.

3.7.1 OpenFlow

Network monitoring was not initially a primary objective of OpenFlow. How-

ever, since OpenFlow 1.3, various features have been added that can aid network

monitoring and remediation. These include: table statistics, multiple tables,

VLAN modification, and metering.

The design details for an OpenFlow monitoring and Cloud-to-Fog supported

NFV data plane are illustrated in Figure 3.13. The OpenFlow monitoring

pipeline separates monitoring, NFV, and forwarding functions out into four

OpenFlow tables. Initially, packets enter the pipeline where their headers are

monitored, packets from new flows are sent to the controller for initialisation.

Whilst this has an obvious performance impact, several measures are taken to

mitigate this. Firstly, known flows can be proactively initialised for header mon-

itoring on initialisation of the controller, secondly, Packet-Ins from the pipeline

will only occur once in a pipeline, meaning that forwarding applications that

require reactive behaviour can share the same packet-in. Next, the packet tra-

verses to the Dynamic ACL table, this is where packets are dropped, metered

or forwarded. Subsequently, the packet enters the NFV overlay table, at this

point, a new header is appended to the packet for routing on an overlay net-

work, at the same time this packet is mirrored and finally forwarded to the

forwarding table where routing takes place. In addition, asynchronously, the

switch is periodically reporting information about header statistics.

Chapter 3. Designing Responsive and Scalable Network Monitoring 76

Dynamic ACL

Monitoring and
Control

NFV Overlay Forward

NFVI

Header Monitoring

Unique flows

Update flow tables for:
monitoring, overlay, ACL Receive monitoring data

OpenFlow Switch Pipeline

Figure 3.13: OpenFlow monitoring pipeline design

3.7.2 P4

P4 (Programming Protocol-Independent Packet Processors) is a data plane pro-

tocol that allows one to configure how packets are processed on a packet for-

warding device. Since 2014, P4 has matured, and is approaching a point where

network monitoring is feasible. This section describes what a P4 pipeline for

monitoring will look like. Later on are some results on the calculated perfor-

mance improvements over an OpenFlow implementation for monitoring. As

Tennison uses ONOS, and ONOS is aiming to generically implement P4 [141],

when integrated, the Tennison application will be able to seamlessly benefit

from P4.

Dynamic ACL

Monitoring and
Control

NFV Overlay Forward

NFVI

Aggregate
flow digests

Update flow tables for:
monitoring, overlay, ACL

Receive monitoring
data and alerts based on interval

P4 Switch Pipeline

Header Monitoring &
 DoS Protection

Internal NFVI

Figure 3.14: P4 monitoring pipeline design

Chapter 3. Designing Responsive and Scalable Network Monitoring 77

The design for a P4 monitoring pipeline is illustrated in Figure 3.14. There

are three key differences to note between the presented design for the P4 and

OpenFlow pipelines. These differences consist of: message digests, DoS preven-

tion, and internal NFVI redirection.

3.8 Summary

This Chapter has detailed an architecture to achieve the aforementioned aims

of this thesis, and to address the challenges highlighted in Section 3.1. The

decisions made here are based on the state of the art technologies as well as

fundamental concepts in distributed systems, Software Defined Networks, and

Network Functions virtualisation.

Fundamentally, the design decisions in this chapter have all been focused

on achieving, scalability, responsiveness, extensibility, and efficiency, all whilst

providing a pragmatic solution to implementation and deployment. Key to scal-

ability, the recursive design of Tennison allows for tiering to be done without

significant additional implementation.

The design of Siren and Tennison are intentionally agnostic of the south-

bound and northbound technologies to improve the longevity and validity of

the designs. This is particularly prudent with upcoming data plane technologies

such as P4, which show promise for greatly improving upon current southbound

solutions.

This leads us onto the next Chapter where the designs of both Siren and

Tennison are realised, detailing their implementations.

78

Chapter 4

Implementation

In the previous chapter, the design of two systems was described which would

enable deployment a scalable monitoring service to the Cloud-to-Fog Contin-

uum. This chapter describes the implementation of both the orchestration

system: Siren, and the SDN monitoring system: Tennison, as well as their

relationship.

4.1 Implementing Tennison

This section details the implementation of Tennison based on the design shown

in Section 3.5.4. In addition to the core features of the system, supporting

programs including the GUI and experimentation frameworks are detailed in

Sections 4.1.3 and 4.1.9. On top of this, the operation of Tennison’s example

northbound applications are detailed to show the event flow of the system.

Previously, in section 3.5, the design of Tennison was detailed, Figure 4.1

shows the prototype implementation of this design, consisting of 4 layers.

The bottom most layer in the implementation shows the physical infras-

tructure. This consists of the physical network, the network controller, ONOS

Core, and the deployed virtualised network services, which are delivered by

Siren. The ONOS core connects directly with the next layer, passing control

Chapter 4. Implementation 79

rpc.py
Provides methods for

sending to ONOS apps
or Snortcollector.py (threaded)

Collect & format messages & send to
zmqSnort sFlowRT IPFIX

interfixpoll.py (threaded)
Asynchronous requests

for interfix messages

Publish message

MongoDB

gui.py (process)
HTTPD web server that
provides operator with a

visualisation and
modification of system

portscan.py (process)
Monitors number of ports
used per flow and adds

block threshold if
exceeds app threshold

ddos.py (process)
Monitors number of flows

to single destination, if
exceeds app threshold

then adds a mirror
theshold

threshold.py (process)
Monitors flows and
modifies thresholds
based on estimated

forecast of traffic pattern

 messagehandler.py (threaded)
(policy engine)

Forward message to appropriate inner class

Snort

Checks
thresholds for

incoming Snort
alrerts

sFlowRT

Checks
thresholds for

incoming
sFlowRT alerts

IPFIX

Checks
thresholds for
incoming ipfix

Thresholds

forward messages
to policy engine

Log
 messages

treatment.py
Used to apply an action

on a packet match Call ONOS to
monitor or block flow

Modify

Request messages

get ipfix
thresholds

get
ipfix

add block
threshold

get
ipfix

add block
threshold

get
all Add any

Main class: tennison.py

 Launch and handle various other
components

zmq
(message

queue)

App
manager

watson.py (threaded)
(Northbound API)

query_ipfix/
snort/sflow/

threshold

add/update/
modify_

threshold

Normalise
thresholds

start/stop_appquery_app/app
log/app_config

IpfixManager application

IpfixSender.java
Sends IPFIX messages

to coordinator

IpfixEvent.java
Formats packets into

infix messages
IpfixManager.java
(IpfixService.java)

Implements its own
intents for Ipfix

Monitoring

FlowRuleEventLisenter.java
(FlowRuleListener)

FlowMonitor application

FlowMonitorManager.java
Collects packet in

messages from ONOS and
forwards them to Ipfix event

SnortManager application

SnortManager.java
(SnortService.java)

Implements its own intents
for blocking and mirroring

SnortRedirection.java
Monitors bandwidth to

assist intent based decision
making and tunneling

ONOS Core

Network

Packet In

Create event

Forward
 IPFIX message

Send IPFIX record to coordinator

Add Ipfix for flow X

Add rule for
Ipfix in switch XFlow modified

or Flow stats

Create event

TennisonAPI application

TennisonAPI.java
Northbound interface to interact with ONOS and the network

snort_clear/
addIP/deleteIP/

query/
ipfix_add/query mirror_add/

delete
block/

redirect_add/
delete

Start/Stop app

App query

Add rule for mirror or
block in switch X

sFlowRTSnort

sFlowRT
Alert

Snort
Alert

Query Ipfix
(returns messages indirectly)

On match pass to apply treatment

Figure 4.1: Tennison Implementation Overview

Chapter 4. Implementation 80

and information about the network to the Tennison and Siren ONOS ap-

plications. This layer offers an abstraction to the core Tennison application,

providing light weight monitoring data to Tennison, and making complex net-

work changes as intents. On top of this, alerts from Snort and sFlowRT are

passed up to the 3rd layer which informs Tennison about network anomalies

through deep packet inspection and provide light weight monitoring for legacy

components of hybrid networks.

The third layer shows the core of the Tennison implementation. The sys-

tem is centered around a message queue that collects information from the

network and is then accessed by the policy engine. These messages are then

processed by the policy engine which as shown in Section 5.1.5.3, can process

hundreds of thousands of network events per second before queuing events.

Finally, the uppermost layer shows Tennison’s northbound applications

which interface to the third layer over a REST API. Applications attached to

Tennison have the ability to view all network events, manipulate the policy

engine table, and directly interface with the Tennison ONOS apps. On top

of this, each application that registers with Tennison is given a clone of the

message queue, this ensure that it does not affect the operation of other Tenni-

son applications operation. The application that exercises most of Tennison

North Bound Interface is the GUI, which visualises Tennison’s policy engine,

the network topology, connected DPIs, and network statistics about hosts on

the network. The other applications shown in Figure 4.1 offer attack detection

for DDOS, DOS, and port scans. Each one of these detection applications are

under 200 Lines of Code and are available for review on Tennison’s GitHub

page [199].

The remainder of this section goes into detail on the implementation of

unique aspects of Tennison not implemented in similar systems.

Chapter 4. Implementation 81

4.1.1 Tennison Security Pipeline

A key benefit of Tennison is the ability to provide network monitoring and

remediation without interfering with forwarding functionality and additional

services. This transparency is achieved with the Tennison security pipeline,

as shown in Figure 4.2. The pipeline manifests itself as an ONOS driver, which

positions Tennison’s security tables in front of other network application ta-

bles.

A number of designs were considered for the security pipeline during the

development of Tennison, alongside an analysis of the level of conformance

of current market SDN switching equipment with OpenFlow 1.3 functionality

(such as, multi-table support offering the flexibility of match-action entries per

table, and group chaining functionality). In order to provide a practical solution

capable of deployment with available SDN devices, and because of limitations

identified with current SDN hardware switches relating to the number of tables

available, the match fields per table, and the actions available per table, the

Tennison security pipeline assumes only the base non-extended OpenFlow 1.3

requirements.

TENNISON Switch Security Pipeline

Tunnel
Table

Table n

Default
IPFIX
Table

Table n+3

Default Forwarding
Application

Table n+m

Forwarding
Application

Table n+4
…

ForwardingDrop

OpenFlow
flow stats

TENNISON
pipeline

Forwarding
pipeline

Tunneled traffic
to DPI node

sFlow

Stripping
Table

Table n+!

Default
Remediation

Table

Table n+2

Default

Figure 4.2: Tennison Security Pipeline

As shown in Figure 4.2, tables controlled by Tennison precede the regular

forwarding functionality. This enables transparent monitoring and actions to be

implemented without the requirement to modify the forwarding functionality.

Chapter 4. Implementation 82

This is important to generalise the process of monitoring networks; it is no

longer tightly coupled to forwarding.

Tennison employs a security pipeline with a total of four flow tables:

• The Tunnel table is the first table in the overall pipeline and acts as

an overlay forwarding application that uses VLANs to separate tunneled

traffic. The primary purpose of the table is to forward traffic to the nearest

DPI service on the network.

• The Stripping table is used to strip tunneling forwarding logic (pop

VLAN headers) from mirrored flows. Although not strictly required, this

table is maintained to support compatibility across all OpenFlow 1.3 com-

pliant hardware and software switches.

• The Remediation table contains the remediation intents. Following the

required tunneling management, this table appears next in the pipeline

in order to optimise network performance by blocking/dropping traffic

identified as malicious before it absorbs further processing resources.

• The IPFIX table contains the monitoring intents. This table is last in

the security pipeline and may pass monitored traffic either to the DPI

table for further analysis or directly on to the forwarding pipeline.

4.1.2 Network Controller

Tennison relies upon the presence of a network controller to operate effec-

tively. Using SDN technology, this controller should be capable of viewing and

modifying the underlying physical or virtual network paths, and support traffic

steering or manipulation. As long as this functionality is present, Tennison

does not require a specific SDN technology. For the purpose of this work, ONOS

is used as the Network Controller [22].

Chapter 4. Implementation 83

4.1.2.1 Controller distribution

Designed by ON.Lab, Open Network Operating System (ONOS) was launched

in 2014 as a SDN network operating system for service provider networks with

a focus on high availability, scalability and performance. ONOS implements

distributed control with multiple controller instances forming a cluster. The

clustering of controllers is a process through which one or more controllers are

connected and data about the state of the network is shared between them.

The intention of clustering is twofold: 1) to ensure that in the event of one

controller failing the other remaining controllers in the cluster will ensure the

network remains functional, and 2) to provide scale-out of the system; making it

possible to manage networks with hundreds of networking devices and thousands

of hosts.

The ONOS cluster instances synchronise to provide a global network view

graph using the RAFT consensus algorithm. The StorageService interface en-

sures a consistent state of the databases across all the instances of an ONOS

cluster. Each network element is assigned a master ONOS instance and the

remaining instances will be secondaries for that network element. If the master

instance fails, an election takes place between the remaining instances to elect

a new master. It is possible to balance between the masters to provide an even

distribution of network elements to each member of the cluster.

For Tennison, distributed ONOS provides a scalable and fault-tolerant

substrate. Tennison also leverages the ONOS default distributed forwarding

and routing applications.

4.1.2.2 Security Intents

As previously described, the Coordinator can change the behaviour of the net-

work by interacting with the network controller. To do this, the coordinator

pushes intents down to the controller, which then actions these to effect changes

Chapter 4. Implementation 84

in the network. These intents are topology-agnostic, with the controller han-

dling their optimal placement. Several modifications have been made to ONOS

to support integration with Tennison, creating a more generic intent API.

These modifications are present as an ONOS application and are represented

as the Flow API in Figure 3.7. The ONOS application is registered with the

highest priority in the ONOS event processing pipeline to support the flow

illustrated in Figure 4.2. The provided intents are as follows:

Monitoring intent A monitoring intent instructs the controller to insert a

monitoring rule in the network for a specific flow. Based on this rule, the ONOS

controller will insert flows into switches that the flow traverses. It will then use

this flow to receive detailed OpenFlow statistics about the flow. These statistics

are then aggregated and converted into IPFIX data which is then passed to the

Tennison Coordinator via the IPFIX Collector.

Redirection intent A redirection intent instructs the controller to insert a

rule in the network to redirect a specific flow (defined by a tuple) towards

a specific type of appliance. For example, it may instruct the controller to

redirect all TCP traffic destined for port 80 towards the nearest Snort DPI

instance. This redirect modifies the complete flow, and stops any packets of the

flow from traversing the normal forwarding path within the network. Based on

the security pipeline logic, the redirection intent is written to the first table of

the Tennison pipeline. The redirect prevents the flow from continuing along

the forwarding pipeline, and the traffic is tunneled to a new destination (e.g.

DPI appliance).

Mirror intent The mirror intent has similar functionality to that of redirec-

tion. However, there is a significant difference in that the original flow remains

in the network. As such, the traffic is forked, with the duplicate flow tunneled

Chapter 4. Implementation 85

towards a new destination (e.g. DPI appliance), whilst the original packets are

forwarded as normal.

Remediation intent A remediation intent is the final step of a security ap-

plication used by Tennison, and enables the coordinator to make a definitive

action with regard to an identified and detected threat. This includes com-

pletely blocking a flow in the network, or rate limiting a flow to control its

behaviour. As previously noted, this intent is written to the third table in the

Tennison pipeline.

4.1.2.3 ONOS Application Pipeline

The ONOS application pipeline dictates the order in which applications receive

events from the network. Figure 4.3 shows the Tennison’s implementation of

the ONOS application pipeline, where its applications are prepended. This is

of particular importance to Tennison’s functionality, enabling it to get events

before any other applications, ensuring that it is receiving all available data

and that it can drop monitoring events as to not unnecessarily overload the

application ahead in the pipeline.

TENNISON
 APPS Forwarding

LLDP, Hosts,
ICMP, additional

 services

If from IFPIX
table then

drop

If not IPFIX
table then
forward

OpenFlow
Packet-In

Figure 4.3: ONOS Tennison Application Pipeline

4.1.2.4 Implementing Multi-level Monitoring

There are two key factors in the implementation of multi-level monitoring in

Tennison. The first is the Tennison policy engine, which enables the network

Chapter 4. Implementation 86

operator to define and specify monitoring and security detection and protection

mechanisms in accordance with the network deployment environment. Figure

4.4 provides a visualisation of the policy engine in the form of a match action

table. This table is hit when a new event enters the coordinator; an event

could be generated from a variety of sources including DPI, sFlow-RT, IPFIX,

PreFIX, or a custom event from a northbound application. The three columns

in Figure 4.4 represent the following: Matches, which consist of packet headers

or alert types; Conditions, which verify if an event violates a threshold; and

Treatments, which manipulate or upgrade the level of monitoring for specified

traffic. For example, policy #2 can be read as follows: given a DPI alert on a

specified MAC src address, that flow will be blocked. Similarly, for policy #4,

given an sFlow_RT alert for an identified IP src address, and with the threshold

specified by policy #1 exceeded, that flow will be rate limited.

IP SRC > BandwidthPort Redirect#1

#2

#3

#4

#5

DPI Alert MAC SRC Block

&& Policy #1sFlow-RT Alert IP SRC Rate Limit

+

+

+

MAC SRC Tier 2 monitoring

Tier 3 monitoringIP SRC

Proactive Reactive Treatment Condition Match

Match Condition(s) Treatment(s)

Figure 4.4: Tennison Policy Engine Illustration

The second key element in Tennison multi-level monitoring is the resource

monitor, which provides three specific functions based on analysis of the re-

source usage information; (1) The optimal placement of the monitoring rule

(i.e. on which switch(es) along the traffic path to place the rule) is determined

with the objective of maximising network protection while maintaining network

performance (i.e. avoiding potential switch flow table overflow and controller

Chapter 4. Implementation 87

processing overload). (2) In the case that a switch/controller pair is approaching

a resource limit, the management of the switch will be transferred to another

controller. This enables more efficient network operation and accelerates detec-

tion/protection times in the case of attacks due to reduced latency on the data-

control communication path. (3) In a high-traffic volume scenario, the resource

usage information is used to dynamically adjust the monitoring level (simulta-

neously reducing the IPFIX monitoring and increasing the sFlow sample-based

monitoring to actively manage the network resources). While introducing a

marginal increase in attack detection time, this multi-level monitoring design

enables continued network operation under high load.

4.1.3 Tennison Security Functions in Operation

Tennison is designed to support the detection and remediation of a variety

of attack types. In order to demonstrate Tennison’s multi-level monitoring

capability, this section describes four attack scenarios (summarised in Table

4.1) that are used to exercise different components of the system. Tennison’s

detection capability goes beyond these four attack scenarios, but they serve to

illustrate the operation of Tennison in the context of a series of specific attacks.

Some steps have been simplified for ease of understanding. The accuracy and

timeliness of Tennison in detecting and remediating these attacks is detailed

in Section 5.

4.1.4 Single Host Volumetric Denial of Service Attack

Attack: A single host is flooded with a high volume of traffic. The attacking

traffic may appear to originate from anywhere on the network.

The system components required in the DoS Detection/Protection method

are illustrated in Figure 4.5. (1) The operator defines the response to sFlow

event alerts. In this example, the source is blocked. (2) The defined policy is

Chapter 4. Implementation 88

Table 4.1: Summary of Attack Detection/Protection Mecha-
nisms

Attack
Type

Attack Identification Fields of
Interest

Detection
Method

Protection
Method

DoS
Volume of traffic flows
targeting a single host

exceeds a defined
threshold

IP Source and
Destination Level 1 (sFlow) Block/Drop

DDoS

A volume of traffic flows
from multiple source IPs
targeting a single host

exceeds a defined
threshold

IP Source and
Destination

Level 2 (IPFIX)
& Level 3 (DPI) Block/Drop

Scanning
Increase in Attacker,
Host A, ratio to target

addresses

IP Source and
Destination &

Port
Level 2 (IPFIX) Block/Drop

Intrusion

Attacker tries to log in
to an FTP server with a
username containing the

predefined control
sequence

Port &
Username Field Level 3 (DPI) Block attacker

and FTP Server

installed in the policy engine. (3) sFlow datagrams received by sFlow probes

are sent to sFlowRT. (4) A DoS event is detected based on the pre-configured

sFlow application and the alert triggered in Tennison. (5) The security policy

is generated (i.e. block rule) by Tennison and the event is logged. (6) the

security policy is received by the ONOS flow rule subsystem (Flow API), and

(7) OpenFlow flow rules are sent by ONOS to the network elements (not shown

in Figure 4.5). (8) Finally, an alert is posted to the GUI to inform the operator

that a DoS has been detected and blocked.

4.1.5 Distributed Volumetric Denial of Service Attack

Attack: A single host is targeted by a volume of traffic originating from a sig-

nificant number of sources. The attacking traffic may appear to originate from

anywhere on the network.

The system components required in the DDoS detection/protection method

Chapter 4. Implementation 89

ONOS Controller

TENNISON
Coordinator

sFlowRT

sFlow
Collector

Flow
API

Flow
Control

3

46
5

7

Northbound Interface

GUI App
8

2

1

Figure 4.5: Tennison sFlow DoS Detection/Protection

are illustrated in Figure 4.6. (1) ONOS exports IPFIX messages to Tennison.

(2) The DDoS security application identifies suspicious traffic and marks it for

further monitoring. (3) A threshold is installed in the policy engine to use

lightweight monitoring for any subsequent traffic matching that flow. (4) The

coordinator instructs ONOS to install rules to use lightweight traffic monitoring

(using Tennison’s ONOS intents). (5, 6) IPFIX monitoring on the ongoing

traffic triggers the suspected DDoS threshold. (7) The threshold action is mod-

ified to redirect the suspicious flows to Snort. (8) The coordinator instructs

ONOS to install rules to redirect traffic. (9) Snort identifies a DDoS attack and

sends an alert to the coordinator. (10) The alert matches the alert threshold

in Tennison policy engine and triggers the block flow action. (11) The coor-

dinator uses the ONOS Tennison intents to block the attacking flow(s). (12)

An alert via the GUI informs the operator of the attack remediation. (13) This

process is repeated until all of the flows taking part in the DDoS are blocked.

4.1.6 Scanning Attack

Attack Definition: A single host (Attacker, Host A) scans another host on the

network. The Attacker scans the top one hundred TCP ports as defined in the

Chapter 4. Implementation 90

ONOS Controller

GUI App

TENNISON
Coordinator

IPFIX
Collector

Alert
Listener

Snort DPI

Alert
Generator

IPFIX
Exporter

Flow
API

Flow
Control

Northbound Interface

DDoS
App

1

2

3
4

5

6

7
8

9

10
11

12

Figure 4.6: Tennison IPFIX DDoS Detection/Protection

nmap-services file. The ports are scanned in random order. The attack may

occur over an extended period of time (minutes to hours).

The system components required in the Scanning detection/protection method

are illustrated in Figure 4.7.

(1) ONOS exports IPFIX messages to Tennison detailing ongoing traffic.

This data is read by the port scan security function. (2, 3) The security function

identifies a port scan and posts an alert to the policy engine to block any

subsequent traffic matching the malicious flow. (4, 5) The incoming message

to the coordinator triggers the threshold in the Tennison policy engine then

applies the block flow action. (6, 7) The coordinator uses the ONOS Tennison

intents to block the attacking flows. (8) An alert is posted to the GUI informing

the operator of the port scan detection performed to remediate against the

malicious flow.

4.1.7 Intrusion Attack

Attack Definition: Detection of a scan for a vulnerable version of VSFTPD

(Very Secure FTP daemon). VSFTPD version 2.3.4 was compromised with a

backdoor in June 2011 [212]. In Table 4.1, the detection method is identified

Chapter 4. Implementation 91

ONOS Controller

TENNISON
Coordinator

IPFIX
Collector

IPFIX
Exporter

Flow
API

Flow
Control

Northbound Interface

Port scan
App

2

1

6
3

4

5

7

GUI App
8

Figure 4.7: Tennison Scanning Detection/Protection

as DPI. This can be further detailed as the detection of Ascii characters 58 41

10 (a smiley face) in the ftp username field with implicit recognition of the ftp

control port, 21.

Snort DPI ONOS Controller

TENNISON
Coordinator

IPFIX
Collector

Alert
Listener

Alert
Generator

IPFIX
Exporter

Flow
API

Flow
Control

Northbound Interface

GUI App

2

1

3

45

67

89

10

11

Figure 4.8: Tennison Intrusion Detection/Protection

The system components required in the Intrusion detection/protection method

are illustrated in Figure 4.8. (1-2) A new security policy is added to the Tenni-

son policy engine such that a flow rule is generated and pushed to the network

elements to detect ftp traffic, (3-5) ftp traffic is then redirected to the DPI for

inspection. (7) In the example provided, if the username contains a smiley face,

Chapter 4. Implementation 92

an alert is generated by the DPI and an event raised at the Tennison coordi-

nator. (8-10) A block rule is then created and pushed to the relevant network

elements to isolate the malicious host. (11) The operator is alerted via the GUI

that an attack has been blocked.

4.1.8 Tennison Web Console

The web console provides the operator with network management and debug-

ging information and also provides control of network monitoring for manual

operation. The GUI is connected to Tennison’s northbound API, as described

in Section 3.5.1.5. The GUI is served by a dockerised NGINX instance which is

proxied to a python flask server, making use of a web backend with web sock-

ets, accounting and shared state. Ultimately, the GUI can handle reporting live

information to multiple users at once, with a minimal overhead per active user.

Figure 4.9: Tennison GUI Dashboard

Figure 4.9, is a screen shot of the GUI dashboard. Information presented on

the dashboard is a summary of what is already present on the other web-tabs.

The dashboard shows information about the systems status and configuration,

detailing the number of ONOS, Tennison, and Snort instances connected, as

well as load information about the load of the policy engine, number of alerts,

and overall number of flows observed. The dashboard is particularly useful for

observing and validating the system’s behaviour.

Chapter 4. Implementation 93

Figure 4.10: Tennison GUI Monitoring

Figure 4.10 shows an extract of the Tennison’s monitoring page. Provid-

ing an overview of traffic on the network, the monitoring page shows header

information of the monitored flows in the network.

The flow data shown on the page is live and is made using WebSockets [215].

WebSockets are used between a client side JavaScript application and a server

side python process with the flask library [82], resulting in live data sent between

the coordinator to the GUI. The benefit of this is that the GUI provides a

more tactile feel with the data, assisting with debugging and demonstrating the

system’s capability.

Figure 4.11: Tennison Policy Engine

Chapter 4. Implementation 94

Figure 4.11 shows the state of the policy engine within the Tennison co-

ordinator. For manual operation, policy entries can be modified, deleted or

created here; this is especially useful for testing or for temporarily patching

security holes on the network until the underlying cause is remedied.

Figure 4.12: Tennison GUI Topology

Figure 4.12 shows the network topology, including Tennison nodes. The

example shows Tennison running in tiered mode with two sub domain man-

agers and two instances of ONOS. When interacting with the topology shown in

Section 4.2.5, similar to the Siren topology, a web modal pops up with device

information detailing the resources available and connection information.

As well as the pages above, the GUI has various other pages which for

brevity are not illustrated here. These include a log-in page, tiered GUI page,

tiered topology page, and an application page. The applications page allows

for Tennison northbound applications to inject their own management page

which is automatically generated from their configuration file. An example of

an application management page is available in Section 4.17.

Chapter 4. Implementation 95

4.1.9 Experimentation Framework

In order to conduct rigourous and repeatable experiments with tiered Tenni-

son, distributed ONOS, and Siren, a considerable amount of automation was

required as manual initialisation was not feasible, taking several hours for an ex-

periment run. When testing at the largest scale as shown in Section 5.1.7, the

environment required six instances of Tennison, twelve instances of ONOS,

twenty-four instances of Snort, one-thousand instances of OpenvSwitch, and

one-thousand emulated hosts. Whilst Mininet is designed to spawn the switches

and hosts at this scale, significant work was done in automatically spawning and

connecting ONOS, Tennison, and Snort to the network.

Manifest.json

tennison_domains: 1-X, <sw1, sw2, sw3…>

scaling_method: <Single, >

nfvi_nodes: alpha, <sw1, sw2, sw3…>
dataplane_network_topology: {}

tennison_experimenter.py

Logs

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time (seconds)

0

1

2

3

4

5

6

7

Po
lic

y
en

tri
es

105

Distributed Single Tiered
Scaling method

0

1000

2000

3000

4000

5000

6000

U
ni

qu
e

Fl
ow

s
Pe

r S
ec

on
d

(U
FP

S)

Automatically Generated Figures

Control domain #1 Control domain #2 Control domain #3

Inter domain
manager

auto_traffic_profile: {DDoS, Intrusion, DoS, Benign}

NFVI

NFVI

NFVI

Figure 4.13: Tennison Experimenter Design

Figure 4.13 shows a representation of the experimentation framework, show-

ing a manifest file that describes the experiment parameters which is then fed

into the experimenter application. The experimenter then launches all the com-

ponents along with a profile that specified timings of replayed network events,

Chapter 4. Implementation 96

this is ran for a predetermined time (default 10 minutes) the results are gathered

and then the experiment is terminated or rebuilt for another iteration.

4.1.10 Tiered Implementation

As detailed in Section 3.5.4, tiered Tennison is required to maximise the scala-

bility of SDN network monitoring and remediation. Tiered Tennison is based

on a recursive design, reusing most of the core system at each tier of opera-

tion. Tennison’s recursive implementation means that a single code base can

be used and maintained for different systems, instead of having three separate

code bases for each tier. The following section details the specific additions to

the core of Tennison required to support tiering. These include additional

north and south bound interfaces to Tennison’s coordinator.

Distributed
ONOS

TENNISON
Administrative

domain manager

Administrative domain #1

Subdomain
#2

TENNISON

Distributed
ONOS

Subdomain
#1

TENNISON

Distributed
ONOS

Subdomain
#3

TENNISON

Figure 4.14: Tiered Tennison

Figure 4.14 shows an overview of Tennison’s tiered implementation, show-

ing a domain manager that has control over multiple subdomains, which in turn

connects to distributed ONOS clusters. In order to experiment with a prototype

of tiered Tennison, only the subdomain and domain tiers from Section 3.5.4

has been implemented. In the tiered Tennison prototype implementation, each

Chapter 4. Implementation 97

subdomain operates independently with full control over the network it is man-

aging. Changes sent down from the domain manager are subject to acceptance

via the configuration in the tiered manager at each subdomain.

The remainder of this section describes the required additions to Tennison,

including collectors, GUI, and methodology.

IPFIX
Collector

Alert
Listener

sFlow
Collector

Flow
Control

Resource
Monitor

Northbound Interface

Data Broker Event
Logs

Policy
Engine

Intents
Alert REST IPFIX sFlowRT Syslog/SNMP

Tier
Manager

TENNISON
Subdomain Coordinator

Figure 4.15: Sub Domain Manager

The element in Figure 4.15 highlighted in green shows the additions for the

sub domain managers. The Tier Manager Application sits above Tennison’s

northbound API and relays the state of the policy engine and the event logs to

Tennison’s domain manager. As shown in 4.17, the Tier Manager comes with

a web interface application page providing functionality to configure the type

and detail of data passed up to the domain manager.

The Domain Manager is at the highest level of control in Tennison’s tiered

architecture, having the widest visibility of network monitoring. Figure 4.16

shows the additions for the domain manager, including a generic southbound in-

put and a tiered GUI application. The four center southbound interfaces on the

Domain Manager are not used as messages from the Sub Domain Managers are

already processed and serialised, instead all messages are sent through a generic

input southbound interface. The Flow Control interface operates similarly to

Chapter 4. Implementation 98

IPFIX
Collector

Alert
Listener

sFlow
Collector

Flow
Control

Resource
Monitor

Northbound Interface

Data Broker Event
Logs

Policy
Engine

TENNISON
Inter-domain Coordinator

Intents

Tiered
GUI

Generic
Input

All messages

Figure 4.16: Domain Manager

the Sub Domain Manager but instead of pointing to the network controller the

intent is passed down to the sub domain manager which then forwards it on to

its own network controller.

Figure 4.17: Tiered Manager GUI
Configuration Component

Figure 4.17 shows the tiered manager application GUI for Tennison’s sub

domain. The Tennison GUI has been updated to allow the modification of

northbound applications at runtime. For the tiered manager, this allows the

user to dynamically set the level of data that is sent from one tier to another.

Chapter 4. Implementation 99

This includes the polling rate, and a series of checkboxes to select the security

primitives to be shared, such as packet headers and snort alerts.

Figure 4.18: Tiered Domain Manager GUI

Managing multiple instances of Tennison requires a central access point.

Figure 4.18 shows the tiered GUI manager for the tiered Tennison domain

manager. On the GUI, each site is shown along with a summary of the site’s

status, on top of this is an access URL that redirects the operator to that sub

domain’s instance of Tennison. The left side of the figure shows the geograph-

ical network topology, detailing the location, size, and number of uncleared

alerts at each site through a traffic light system. The Topology diagram was

created in JavaScript with D31 and automatically updates in size and colour

from web-sockets that are periodically sent data from the Tennison’s Tiered

Domain Manager.

This section has detailed the prototype implementation of tiered Tennison,

showing the additions to the standard architecture and graphical interface. Re-

sults on the impact of this design are available in Section 5.1.7.
1https://www.d3.org

Chapter 4. Implementation 100

4.1.11 Summary of Tennison Functionality

To conclude this section, the attributes in Section 3.1 are revisited, detailing

each challenge is overcome from a functional standpoint.

Chapter 2 highlighted security frameworks and applications that build on

the SDN characteristics of programmability and logically centralised control. A

number of these works identify the deficiencies of relying on centralised control

when deploying network security solutions. Specifically, this relates to the per-

formance limitation introduced by the control communication channel. The re-

sponse to a network attack should be as efficient as possible, and not constrained

by communication channel resource, or indeed, controller processing capacity.

A further limitation of recently proposed security frameworks/applications is

the reliance on modifications to OpenFlow, SDN devices, or interference with

fundamental network forwarding behaviours. These modifications often restrict

the proposed solutions to deployment in a specific network type, with specific

network equipment, and for a single or limited set of security functions.

The Tennison framework is motivated by the desire to present an adaptive

and extensible security platform that is technology-independent and capable

of supporting a wide range of security functions. Tennison does not remove

the requirement for controller interaction, as demonstrated in Avant-Guard and

OFX [180, 186]. However, the level of controller interaction is rendered flexible

and proportionate to the threat detection requirements. This is further helped

by the use of other monitoring and inspection tools that are deployed to the

network, relieving pressure from the SDN control channel. For example, with

one level of monitoring, sFlow provides a separate monitoring path is used

while maintaining the programmability of remediation mechanisms via the SDN

controller. This level of defence can be configured by the network operator or

automatically adjusted in response to resource monitoring in order to optimise

network protection. Through efficient monitoring, tiering, and distribution,

Chapter 4. Implementation 101

Tennison has multiple solutions for scaling network monitoring.

• Efficiency and Proportionality: Tennison provides an efficient mon-

itoring and remediation framework where resource consumption is com-

mensurate to current threat levels. This includes tailoring the type and

scale of monitoring according to the anticipated attack types within a net-

work along with actual resource usage such that the monitoring and se-

curity functions are appropriately distributed. Tennison supports stan-

dard network monitoring protocols such as sFlow and IPFIX, incorporat-

ing them in a multi-level monitoring function. This means that separate

monitoring paths are available and the optimal monitoring method can

be selected per security function. The remediation mechanisms are sim-

ilarly efficient; enabling an operator to prevent, scale or limit an attack,

depending on certainty or severity.

As demonstrated, a volumetric attack can be efficiently detected using

Tennison Level 1 monitoring with sFlow while more fine-grained attacks

engage Level 2 IPFIX monitoring and/or Level 3 DPI capabilities.

• Scalability and Visibility: The network view provided by the dis-

tributed ONOS control function and leveraged by the Tennison coor-

dinator enables placement of the monitoring and remediation rules on the

appropriate network devices for optimal security protection.

Tennison has an overview of the entire network with scalability enabled

by the lightweight and latent monitoring solution. Visibility across the

network includes legacy equipment, through compatibility with ubiqui-

tous protocols such as sFlow. Furthermore, Tennison is designed with

a coordinator separate to the distributed SDN controller such that con-

trol and management can be separated, as required, supporting parallel

processing across multiple devices. This both helps with scaling out the

Chapter 4. Implementation 102

system, and maintaining openness in the selection of Tennison’s con-

troller. On top of this, Tennison’s support for a tiered architecture

maximises both scalabiltiy and network visibility, providing monitoring

and control over networks with thousands of devices.

• Programmability and Extensibility: The pre-defined security func-

tions described in this section are activated or deactivated via the GUI. To

modify a threshold in an existing function, for example, DDoS attack trig-

ger threshold, the new threshold value is simply added via the GUI. This

will automatically be mapped to the relevant Tennison components. To

introduce a new security function, the template sFlow/IPFIX/DPI appli-

cation can be modified and activated via the GUI.

The Tennison framework provides a rich API that allows operators to

define the behaviour of the network and its resources in response to new

and existing threats. This includes offering multiple monitoring and re-

mediation mechanisms, and a GUI, each of which can be flexibly used by

the operator. Rather than simply providing a finite set of security func-

tions, it is possible to build new security functions within the Tennison

framework.

• Transparency: As per the Tennison security pipeline, benign traffic

is processed through the network as normal while suspicious traffic is

monitored and dropped or forwarded, as determined by the activated

security functions. On top of this, the ONOS pipeline was modified to

ensure that Tennison’s apps processed packets first.

• Availability and Resiliency: Due to the distributed control platform,

the monitoring and security capabilities of Tennison are maintained even

in the case of a failure of a controller instance.

Chapter 4. Implementation 103

One of the key requirements of a SDN security platform is the resilience

of the control plane to support high availability and provide redundancy

in the case of controller failure [171]. For this reason, Tennison has

been designed to integrate with a production-grade distributed controller,

ONOS [22], which supports high availability and fault tolerance.

Tennison is transparent to other network functions within the network.

This is realised using a custom security pipeline, which means that it

can run seamlessly alongside other network functions without modifica-

tions. This is built using the OpenFlow multi-table feature to provide the

network monitoring and remediation without interfering with the basic

forwarding functionality and additional services of the network.

• Interoperability: The integration of Snort DPI with Tennison is demon-

strated with the intrusion attack example. Available DPI instances are

automatically detected by Tennison. The operator can configure an

alert to be displayed on the Tennison GUI to highlight a particular

attack detection.

• Accessibility: Tennison security policies can be added or modified both

via an API and through a purpose-built graphical user interface (GUI).

The GUI presents the extensive functionality of the API in a user-friendly

and accessible style. Consequently, it is easy for researchers and operators

alike to extend the Tennison system for further research or to adapt to

a new scenario.

Finally, Tennison works in conjunction with de-facto industry-standard

security tools. The DPI connectivity has been tested and operated with Snort,

however, the implementation is agnostic in that it supports a range of other

DPIs including Zeek [202] and Peafowl [153].

Chapter 4. Implementation 104

4.2 Implementing Siren

This section details the implementation of the Infrastructure Management Frame-

work, Siren based on the design shown in Section 3.6. Initially, this section

illustrates Siren’s implementation through a class diagram, which shows all

primary components and how they are connected.

NFV Services ONOS application

Docker EnginesDocker EnginesDocker Engines
SDN Controller

Cluster
(ONOS Core)

provisioner.py
Deploy services

Auctioneer.go
Orchestrates based

on bidder logic

monitoring_orchestrator.py
Orchestrates DPIs according
to network and infrastructure

docker_mgmt.py
(VIM Connector)

MongoDB

Get
Network
Topology

Establish
 NFV

connections

NFVConnect.java
nfv_addIP/
deleteIP/

query

Onboard/remove
service

service_lmc.py
Maintain connection with infrastructure

and monitor services
stop_ser

vice
monitor_
services

schedule
_serivce

siren_nbi.py
(REST Northbound API)

get_resources stop_serivce schedule_serivce get_service_uris

siren_gui.py
Visualises

infrastructure

infrastructure_discovery.py
 (separate service)

init_agent

Report
IP, open ports,

 hardware

log_deviceadd_device remote_docker_api

Log service
get status

connector.py
Provides connection to

network controller

get_topo nfv_connect

Figure 4.19: Siren Implementation Overview

Figure 4.19 shows the relationship and code layout of the Siren prototype

implementation. Within the diagram, Siren is constructed of four layers, fol-

lowing the design shown in Section 3.6. The bottom most layer shows the

network and virtualisation infrastructures, one abstracted by ONOS, and the

other by docker. These components are then connected to the core of Siren, to

get container state, launch new containers, and retrieve the network topology.

Chapter 4. Implementation 105

In Siren the Docker Engine is used as an agent for each NFVI. The remote

Docker API [62] is used to poll information about the host including the run-

ning services, health of each service, and amount of resources remaining. To

retrieve information about the network, ONOS’s northbound REST API [142]

is used, in effect, making Siren a northbound application to ONOS.

The upper most layer shows the northbound applications, including the

GUI and orchestration additions. These application interface with Siren’s

REST NBI [183] to indirectly monitor and manipulate the network and vir-

tualisation infrastructures. The monitoring orchestrator application takes the

network topology, virtualisation topology, and deploys monitoring services to

the network. The Auctioning application [4] advertises virtualisation resources

to third parties, and then proceeds to auction them off. Siren’s life cycle

manager automatically removes services after the lease period has expired.

4.2.1 Test Virtual Network Functions

A set of example, over-the-top or application layer network functions were cre-

ated for demonstration purposes. These represent the functions that each ser-

vice provider wants to deploy. In reality, one service provider may offer a

multitude of different services.

4.2.1.1 DPI

Snort [163] is used to perform DPI on packets so that they can then be forwarded

to a central control which then informs the network operator. Alternatively

this alerting process could be automated, effectively making an IPS. These two

alternatives have a trade-off between network overhead and remediation time.

For the purposes of the results below, the DPI was in a store, check, and forward

mode. Siren also supports using this in a mirroring configuration, whereby the

user does not see any increased latency.

Chapter 4. Implementation 106

4.2.1.2 DNS

PiHole [61] is a popular locally executable DNS service that black-holes un-

wanted DNS requests. This offers the ability to block certain domain names

whilst providing lower latency than public DNS servers. This would be a service

that could be used by either business or home users. In this example, clients

are configured to use PiHole for all of their DNS requests.

4.2.1.3 CDN

A CDN based service is generally useful to home and business customers. For

the CDN, a NGINX server hosts a ’big bunny’ video file. Through the operator

interface detailed below, the service IP address is presented which can be used

for a new clients to connect to it. This is configured through the client’s video

player, usually via a manifest file.

4.2.2 Network Controller

Originally built with Ryu, Siren moved to using ONOS for compatibility with

Tennison. For NFV orchestration, the network controller provides NFV con-

nectivity and updates on the network topology.

Siren’s network controller connectivity is essential for effective orchestra-

tion of network services. In particular for vDPIs, the controller passes informa-

tion about network traffic and topology so that Siren can be deployed to areas

that require increased levels of monitoring.

4.2.3 Dynamic Redirection and Mirroring to Distributed

VNFs

The dynamic redirection and mirroring network function takes in the network

topology and Siren’s infrastructure state to map locations on the network to

Chapter 4. Implementation 107

create an overlay network for traffic that needs to be redirected to a VNF. In

the network monitoring use case, the NFV overlay is used for mirroring traffic

to a DPI. In the content caching use case, this entails redirecting traffic to the

nearest cache.

Currently, open source industry-grade SDN controllers do not have a generic,

vendor agnostic tunneling solution. Where tunneling is required in an SDN

environment, it is typically manually configured on the SDN switch using an

existing tunneling protocol, such as Generic Routing Encapsulation (GRE).

This approach is unsuitable for scenarios where there is a need for the dynamic

scaling up/down of functionality, for example, allowing network functions to be

added or removed within the network automatically. For this reason, Tennison

introduces a new OpenFlow-based tunneling solution.

NFV tunnel Client session

Client

Server Physical Network

Server

Client
NFVI
#1

NFVI
#2

NFV Overlay Network

Figure 4.20: Overlay Network Tunnels

This solution is offered as an ONOS application that can be called by other

applications to create point-to-point tunnels; importantly using only OpenFlow

to achieve this. In the case of Tennison, tunnels are created between the

switches and DPI nodes on the network. Suspicious traffic is then tagged with

a VLAN ID for mirroring and forwarded via the tunnels to the nearest DPI on

the network. When new DPIs are added to the network, tunnel paths are au-

tomatically recomputed, ensuring that flow tagged by the system as suspicious

are routed to the nearest DPI.

Chapter 4. Implementation 108

The integration of tunneling in the Tennison security pipeline is illustrated

in Figure 4.2 and described in Section 4.1.1.

4.2.4 Monitoring Orchestrator

The monitoring orchestrator is a northbound application to Siren, and is the

key component in use for Tennison. This is important as it automatically

and intelligently places DPI services into the network and connects them to the

network using ONOS.

Algorithm 1 shows how the core operation of the monitoring orchestrator

works. Firstly, resources from both ONOS and Siren are queried, returning

information on the underlying infrastructure and network. The algorithm runs

at controller startup and then via events which show that the policy is not

satisfied. This information is then used to satisfy the policy as detailed in

Section 4.2.4.1.

The policySatisfied method takes in the operator written network policy.

This method checks to see if the policy is satisfied, getting resources deployed to

the infrastructure, and confirming that they are in accordance with the network

policy. One example of this is to see if one of the resources has reached its policy

limit, in which case the policy is not satisfied and the loop continues.

The core element of the algorithm is the findOptimumResource method that

takes in virtualisation and network resources as well as a map links them to-

gether. With this information the method initially returns the policy’s mini-

mum amount of vDPI as randomised locations over the network such that there

is mixed distribution of them. After the initial deployment, this method will

get available resources when services become exceeded. Policy permitting, the

method will then proceed to return optimum locations based on one closest to

the overloaded service. After this cycle has executed, vDPIs that are not used

Chapter 4. Implementation 109

(assuming at least a minimum deployment) will be freed so that resources are

available for overloaded locations.

Algorithm 1: Monitoring Orchestration Algorithm
Result: DPIs automatically deployed and scaled within the network
policy = getPolicy();
netRes = getNetworkResources();
virtRes = getVirtualisationResources();
replicas = 0;
map = getVirtToNetMap();
while !policy.satisfied() do

resource = findOptimumResource(netRes, virtRes, map, policy);
Provisioner.deploy(resource, images.dpi);
replicas ++;
ONOS.addNFVI(resource.address);

end
Function findOptimumResource(netRes, virtRes, map, policy):

if replicas < policy.min_replicas() then
return randomResource();

end
r = getExaustedResource(policy.req_per_second)
if r! == null then

return closestResource(r, netRes, virtRes, map);
end
return;

4.2.4.1 Orchestration Policy Manifest

Figure 4.21 details the manifest file for Siren’s monitoring orchestrator. This

is used to configure the orchestration policy, allowing the operator define pa-

rameters that influence how vDPI services are deployed to the network. These

parameters include the minimum resources (CPU, Memory, Disk, Network) re-

quired to deploy a service; this helps the orchestrator find appropriate NFVIs.

On top of this, a number of requests per second is defined which is how the

orchestrator identifies whether a vDPI VNF is overloaded. Finally the scaling

policy is defined, which sets the minimum and maximum number of replicas

that the orchestrator is permitted to deploy.

Chapter 4. Implementation 110

Figure 4.21: Monitoring Orchestrator Yaml policy file

The policy shown in Figure 4.21 is similar to policies used within Cloud

based orchestration solutions. For future work, this policy could be extended

to include cool down periods for scaling, adaptive thresholds, and configurable

polling times.

4.2.5 Siren: Web Console

This section details the web console which assists the operator in managing

Siren and its infrastructure. The web console is illustrated in Figure 4.22.

Figure 4.22: Siren GUI

Chapter 4. Implementation 111

The web console shows the operator available resources in the NFV Infras-

tructure and what services are currently running. The primary purpose of this

is to demonstrate as well as verify Siren’s operation. From left to right, the

GUI shows pools of resources within the Cloud-to-Fog continuum. At the bot-

tom of the web page, information about live auctions is also presented, so one

can see which providers are competing for each resource. When an NFVI is

clicked on the interface, a list of URIs is provided which the operator can use

to verify the services that is running on each device.

4.2.6 Siren in Operation

This section describes a high level step walk through of the operation of Siren

via the use of an example of one of its orchestration methods.

The following time series goes through the steps illustrated on Figure 4.23,

showing Siren in operation using its monitoring orchestration application:

DPI
Provider

CDN
Provider

DNS
Provider

Auctioning
Orchestration

Provisioner

Si
re

n

Switch #1

Administrative domain

Bandwidth

House #1

Server #2

Storage

Memory

Processor

Administrative domain

Bandwidth

Neutral (Central Office)

Server #1

Storage

Memory

Processor

Administrative domain

Bandwidth

Factory #1

Switch #2

Administrative domain

Bandwidth

Neutral (Central Office)

Controller

Life Cycle
Manager

Monitoring
Orchestration

Service
Discovery

Operator
InterfaceAp

ps

1

2

3

4

5

6

7

8

1

Figure 4.23: Siren Operation

Chapter 4. Implementation 112

1) Firstly the server boots and registers itself with the discovery service,

reporting IP address, firewall, CPU, Memory, Storage, and Network interfaces.

2) This information is then crossed with topology data to tag the server with

a location. On top of this, the provisioner is notified of a new resource. 3)

The monitoring orchestrator request for an initial deployment, spreading DPI

services across the network according to the orchestration policy. 4) The pro-

visioner interfaces with the infrastructure over remote docker API to start the

new service. On top of this, the new service is added to the LMC. Additionally,

the controller is contacted to create a new network overlay. 5) The docker en-

gine pulls in and executes the new network service. 6) The network controller

creates a new network overlay in preparation for the new network service. 7)

After a policy predefined time, the orchestrator evaluates the network traffic

and current deployment and then continues to deploy more services in optimal

locations, repeating steps 4-7. 8) After the policy defined lifetime, the Life

Cycle Manager removes the service from the NFVIs.

4.2.7 Siren Summary

This section has presented a prototype implementation named Siren and its

operational behaviour for managing and orchestrating network services in a

Fog environment. Key to this thesis, Siren enables Tennison to be effectively

deployed over heterogeneous environments.

The Siren prototype implementation has focused on the support required to

operate Tennison effectively in the Cloud-to-Fog continuum. This has included

supporting heterogeneous environments, scaling out virtual network functions

to network traffic and context, and creating solutions to unsolved challenges in

NFV, including VNF placement and NFV service chain forwarding.

Chapter 4. Implementation 113

This Chapter has presented two proof-of-concept implementations that to-

gether are capable of scalable network monitoring and remediation in the Cloud-

to-Fog continuum. In the next Chapter, these systems are evaluated, validating

their ability to monitor networks at scale in a responsive manor.

114

Chapter 5

Evaluation

In this chapter, the designs for the Siren and Tennison prototypes imple-

mentations are evaluated. Firstly, in Section 5.1, a comprehensive evaluation

of Tennison is shown, evaluating its scalability, responsiveness, performance

increase over upcoming technologies, and finally a direct comparison versus sim-

ilar frameworks. Next, in Section 5.2, an evaluation of Siren is detailed via an

economically motivated example, demonstrating the benefit of operating across

the Cloud-to-Fog continuum.

5.1 Tennison Evaluation

In this Section, a comparison of Tennison against similar frameworks is pro-

vided. This is followed by an analysis of Tennison’s application performance

evaluated in the context of the attack types described in Section 4.1.3.

5.1.1 Framework Comparison

A further comparison of Tennison against similar work is available from [hohlfeldguest].

In Table 5.1, the features of prior scalable, distributed monitoring and se-

curity systems are detailed and compared the Tennison framework.

Chapter 5. Evaluation 115

Table 5.1: Scalability comparison of SDN security systems

System Name Controller Multi-level
monitoring

OF response
methodology

Attack
detection

(Extensibil-
ity)

Distribution SIEM-Like
Web Interface

Tennison [199,
76]

ONOS Yes Hybrid 4+ (Yes) Yes (Control
& System) Yes

FRESCO [181] NOX No Reactive 3+ (Yes) No No
CIPA [41] POX No Reactive 3+ (Yes) No No
SDN4S [104] HPE VAN No Reactive 1+ (Yes) No Yes
PSI [221] ODL No Proactive 1+ (via NFV) Yes (System) No

Athena [112] ONOS No Reactive 2+ (Yes) Yes (Control
& System) No

CHAOS [179] Floodlight Yes Reactive 1 No No
OFX [186] Ryu No Hybrid 2+ (Yes) Yes (Switch) No
Kandoo [92] Kandoo No Hybrid No (No) Yes No
ElastiCon [60] Floodlight No Reactive No (No) Yes No
Hydra [40] Floodlight No Reactive 1 Yes No

In summary, the key differences between Tennison and the other simi-

lar frameworks listed in Table 5.1 are the dependence on the the OpenFlow

Packet-In response technique, extensibility, and scaling methods. As detailed

in the design consideration’s for this thesis in Section 3.3, the methods used in

Tennison are to optimise scalability, responsiveness, and extensibility.

Tennison has various aspects that show its ease of use. Table 5.2 shows

the comparison of lines of code (LoC) for each attack detection application

between Tennison and Athena [112]. As shown in Appendix A.1 Tennison

has a published API, an element not found in the other listed frameworks. It is

not possible to provide the comparison with other similar security frameworks

[221, 181, 40, 41] as either their source code is not openly available or they do

not support user applications.

Table 5.2: User Application LoC Comparison

System DDoS DoS Intrusion Scan
Tennison 107 304 0 135
Athena 1946 [14] - - -

As shown in similar work [77, 181, 112], LoC can be loosely attributed

to the development learning curve of a system. The comparison in Table 5.2

Chapter 5. Evaluation 116

shows that application creation and integration with Tennison is relatively

easy. This is due to Tennison’s rich RESTful northbound API, which enables

users to easily and succinctly create applications without directly adding to the

complexity of the larger system.

5.1.2 Evaluation Environment

To evaluate Tennison, a topology incorporating 350 nodes connected to 19

partially connected switches, representative of a large sized business network

[2] with access, distribution and core networking layers. This topology was re-

alised using the network namespace deployment tool: Mininet [124]. Mininet is

an emulation tool that enables evaluation, validation and measurement of SDN

applications. In order to create the network topology, Mininet instantiates

Linux Namespaces [130] to act as hosts and software switches, (such as Open

vSwitch (OvS). One of the significant benefits of Mininet, beyond using a simu-

lator to create such a topology, is that each of these namepsaces have their own

virtual network interfaces with a fully fledged and isolated networking stack.

This allows testing of systems at significant scale whilst consuming minimal re-

sources. The testbed runs on a general-purpose server with 256GB RAM, and

two Intel Xeon E5-2697v4s totalling 32 cores. The server runs Ubuntu 16.04.3

and resources were shared between Mininet (Hosts, OvS), the SDN Controllers

(ONOS v.1.11) and Tennison. In order to test performance at scale, the con-

troller benchmarking tool cbench [178] is used, which is capable of emulating

the control plane of thousands of SDN switches at once.

5.1.3 Distributed SDN Controller Performance

Prior to testing the performance of Tennison, an evaluation of ONOS was

carried out using cbench to understand the scalability properties and potential

Chapter 5. Evaluation 117

overheads associated with running a distributed SDN controller. Two specific

experiments were conducted.

Firstly, the maximum throughput of the controller with respect to packet-

in processing was measured. This was achieved by sending packet-ins origi-

nating from 16 emulated switches, and then counting the number of response

packet-outs from the controller. Following ONOS’s testing practice [137], this

experiment was repeated one hundred times to ensure the average results was

valid. The results in Figure 5.1 show the number of responses per second for an

increasing number of controller instances. From this, it can be determined that

the performance of ONOS increases negatively in a logarithmic way according to

the cluster size. Furthering this, cluster sizes larger than 5 are unstable, failing

to distributed messages in a timely manner ultimately causing syncronisation

issues between nodes.

1 2 3 4 5
Controller cluster size

0

2

4

6

8

10

12

14

16

18

R
es

po
ns

es
 p

er
 s

ec
on

d

105

Figure 5.1: ONOS Controller Performance (Responses/s) -
multiple controller instances

Secondly, the impact that an increasing number of switches has on a variety

of ONOS cluster sizes was measured. For this one thousand packet-ins per

second are generated per switch, and the delay in responses is measured and

averaged.

Chapter 5. Evaluation 118

The results in Figure 5.2 illustrate the latency with both an increasing num-

ber of switches and an increasing number of controller instances. These results

highlight the trade-off between cluster size and the number of switches con-

trolled by the cluster. For a network of up to 32 switches, a single controller

instance provides the optimal response time. The reduction in latency is only

achieved with additional controller instances for larger network sizes. Another

factor that affects the optimum cluster size is the level of fault tolerance de-

sired. Notice that 64 switches on a 5 node cluster has a greater latency than on

a 4 nodes cluster, this is due to the addition communication overhead between

nodes. ONOS’s unique design includes multiple instances of RAFT within a

single controller instance, this means that, by default, partition tolerance is

available from clusters that include more than one controller instance.

0

20

40

60

80

100

120

140

160

1 2 3 4 5

La
te

nc
y (

m
s)

16 32 64 128Switches:

Controller cluster size

Figure 5.2: Controller Performance (Latency) - varying
controller-switch ratios

The results presented in Figures 5.1 and 5.2 provide a benchmark for the

performance of the distributed controller and the relationship between network

size and distributed control. Adding to this, in Section 5.1.5 the impact of

multiple controller instances on detection and remediation time in an enterprise

environment is explored.

Chapter 5. Evaluation 119

5.1.4 Attack Detection/Protection Latency

The performance of Tennison against the aforementioned attack scenarios is

measured by the length of time it takes to detect and subsequently protect

against each attack. The measurement is subdivided to capture the time re-

quired for each step in the detection and protection process. This is repeated

ten times and averaged for a final result. By accurately timing each stage,

it is possible to analyse each stage of the detection/protection process and to

identify any potential bottlenecks in the system. The attacks (DoS, DDoS,

scanning and intrusion) stress different parts of the system. The start point for

each measurement was taken from the beginning of the attack.

Figure 5.3 shows the breakdown of the attack remediation. The following

sections describe the evaluation of each attack scenario and discuss the break-

down of attack detection/protection time. In the Figures, ‘Monitor rule’ refers

to the time to install the appropriate monitoring, ‘App detection’ refers to the

Tennison northbound application attack detection time, ‘Mirror rule’ refers

to the time to install the mirroring rule, ‘Alert’ refers to the time for Snort/s-

FlowRT to detect the attack and generate an alert, and ‘Block rule’ refers to

the time to install the block rule in the relevant network elements. Note that

the time to detect an attack can include the attack execution time for example

x packets within y seconds includes ≤ y in the measurement. This means that

time for an attack to execute is included in the final measurement, this will be

discussed per scenario, as appropriate.

5.1.4.1 DDoS

For this attack, a single host is flooded with TCP SYN requests from multiple

source IP addresses. The attack is executed using Hping3 with the following

configuration: small packet size, SYN flag, random source, and fast sending rate.

Chapter 5. Evaluation 120

0 2 4 6 8 10 12 14
Time (seconds)

DDoS

DoS

Scan

Intrusion

Se
cu

rit
y

fu
nc

tio
ns

Monitor rule
App detection
Mirror rule
Alert
Block rule

Figure 5.3: Attack Remediation Latency - Single Controller

The method of detection for a DDoS attack is reactive as the number of host

connections has to be tracked and the traffic then has to be forwarded to a DPI

for confirmation. The attack is first detected when the number of unique flows

targeting a single host exceeds a configurable threshold within Tennison’s

IPFIX DDoS application. For this experiment, the threshold was set to 70

connections from multiple sources to a single destination within 10 seconds. It

is important to note that using the environment describe in section 5.1.2, it takes

the attacker at least 2.5 s to send sufficient packets to exceed the set threshold

defined in both Snort and Tennison. The traffic is mirrored to Snort where

the attack is confirmed via the Snort rule (see Figure 5.4). Once an alert is sent

to the coordinator, ONOS is instructed to block traffic for that destination in

the network.

a l e r t tcp any any −> any 80
(f l a g s : S ; msg : "TCP␣DDoS" ;
f low : s t a t e l e s s ; th r e sho ld : type both ,
t rack by_dst , count 70 , seconds 10 ;
s i d : 1 0001 ; rev : 1 ;)

Figure 5.4: Snort DDoS classification rule

Chapter 5. Evaluation 121

0 5 10 15
Time given to detect attack (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Accuracy over detection time

Figure 5.5: Accuracy of DDoS detection and remediation

As shown in Figure 5.3, the DDoS attack detection time is the longest of

all those measured. This is a consequence of the application logic and the time

to complete the attack. However, this combined detection approach ensures a

high detection accuracy (low false positive rate), as illustrated in Figure 5.5.

The accuracy of the IPFIX DDoS application was measured with respect

to the configured Snort detection threshold. The threshold configured within

Snort is designed to detect DDoS SYN Flood attacks. It takes a number of

parameters including packet count, which affect the time to detect an attack

and the False Positive Rate (FPR). The accuracy measurement is based on

Equation 5.1 which describes the relationship between True Positives (TP),

False Positives (FP), True Negatives (NP), and False Negatives (FN).

Accuracy =
TP + FP

TP + FP + TN + FN
(5.1)

The results in Figure 5.5 show that for a detection time between 0 and 1.7 s,

the accuracy is low due to a high False Positive Rate (FPR). However, increas-

ing the Snort detection time, increases accuracy. Of course, this also increases

Chapter 5. Evaluation 122

the overall attack remediation time. Once the detection time is increased be-

yond 10 s, the accuracy drops sharply. This is due to a high True Negative Rate

(TNR), which occurs because the threshold is now too high to detect the DDoS

SYN Flood attack. Due to this trade-off, we conclude that a Snort threshold

detection time of 2 s will provide an optimum remediation time and high accu-

racy. Analysis of the error bars in Figure 5.3 highlights a significant variance in

latency for the DDoS attack when compared to the other attacks. This fluctua-

tion in results between experiment iterations is due to the host-intensive nature

of the attack, which causes the attacker to fluctuate the number of packets per

second being sent, thus changing the time until thresholds are met within the

system.

5.1.4.2 Scanning

For this attack, a single host scans 200 ports on another host on the network.

Nmap is used to perform this network scan. The method of detection for a

port scan is reactive as the number of ports has to be tracked. The Tennison

northbound port scan application tracks the number of ports accessed across

all hosts on the network. Once the number of ports between two hosts exceeds

the configured threshold within the defined period, the source of the attack

is blocked. Similar to the Tennison IPFIX DDoS application, the majority

of detection time is attributed to the gradually increasing threshold within the

application logic to determine whether or not the traffic is malicious. The results

for the port scan are also in Figure 5.3.

5.1.4.3 Intrusion

For this exploit, a backdoor version (June 2011, 2.3.4) of VSFTPD was used.

The detection method for this exploit is proactive as the required thresholds

Chapter 5. Evaluation 123

a l e r t tcp any any −> any 21
(msg : "VSFTPD␣Backdoor " ; f low : e s t ab l i s h ed ,
to_server ; content : "USER␣ " ; depth : 5 ;
content : " | 3 a␣ 29 | " ; s i d : 2013188 ; rev : 1 ;)

Figure 5.6: Snort VSFTPD backdoor classification rule

to detect the attack are pre-installed within Tennison; a threshold to mirror

FTP traffic and a threshold to define the response to the Snort alert. The FTP

server is exploited by connecting over a network and using ‘:)’ as the username

upon login. This opens a network interface on port 6500 that provides direct

shell access to the server’s host. For detection of the exploit, a threshold must

be inserted within Tennison, notifying it that there is an exploitable server on

the network. Then as the attacker logs in, traffic is redirected to Snort which

reads the payload, scanning for ‘:)’ as the username. If detected, an alert is

sent to Tennison, which in turn blocks the attacker.

Figure 5.3 shows that this attack is the quickest to detect. This fast detection

time is due to the proactive nature of the detection method with pre-installed

thresholds. Furthermore, only one packet is required to detect this attack,

the login packet, whereas the other attacks are detected over time following

observation of multiple packets. The results from this attack are indicative of

the general performance of the Tennison framework as the attack exercises

the complete security pipeline (i.e. monitoring, redirecting, and blocking) but

without the variance included by the DDoS/Port Scan applications, which are

dependent on the specific threshold configuration.

5.1.4.4 High-volume DoS

For this attack, a single host is flooded with TCP-SYN requests. The attack

is executed using Hping3. An sFlowRT DoS application is configured with

Chapter 5. Evaluation 124

sFlowRT’s default threshold to detect network traffic towards any host exceed-

ing 20,000 packets/s. The sFlow sample rate is set to 1:500. Once the threshold

is exceeded, an alert is sent to the coordinator. The coordinator then sends a

block intent to ONOS for the flow that exceeded the threshold.

In this case, detection time is primarily dependent on the sFlow sampling

rate configured in the network elements and the processing speed of sFlowRT.

5.1.5 System Scalability

This section describes the efforts Tennison makes towards ensuring scalability

of monitoring. In order to show that Tennison will operate in a variety of

network sizes and topologies, this section also analyses multiple components of

the system and compares the results with statistics from real network traces.

5.1.5.1 Multi-Level Monitoring

The limitations of reactive based SDN applications under extreme traffic vol-

umes, i.e. heavy communication and processing workload on the controller,

are highlighted in [24, 56]. To combat this, Tennison implements multi-level

monitoring.

A specific optimisation is also applied to protect the network controller

against the effects of traffic flooding scenarios, such as those caused by DDoS

attacks. The solution makes use of the Tennison resource monitor and intro-

duces a thresholding mechanism to scale back the volume of monitoring traffic,

when appropriate, to prevent the controller and control plane from becoming

overwhelmed by traffic.

Chapter 5. Evaluation 125

5.1.5.2 Distributed Control Cost

As previously highlighted, in order to scale to larger networks, an increased

number of SDN controllers will be necessary to manage the additional network-

ing devices and requests from the network. As network state information is

shared between all of the ONOS controller instances, this may ultimately lead

to an increase in the Tennison detection and remediation times. To determine

the potential impact of multiple controller instances, additional experiments

were carried out to measure the time to remediate a DDoS attack (as per the

test set-up described in Section 5.1.4.1) in distributed cluster configurations of

varying sizes.

2 3 4 5
Controller instances

0

0.5

1

1.5

2

2.5

3

3.5

Ti
m

e
(s

ec
on

ds
)

Figure 5.7: DDoS Attack Remediation Latency - Distributed
Control Cost

Figure 5.7 shows the impact (additional delay) of adding ONOS controller

instances to the cluster. The results show that after the second instance is

added, the time to detect and remediate gradually increases with each new in-

stance. Note that this increase in the remediation time is not attributed to

the design of Tennison but is a result of the distributed ONOS implementa-

tion, which requires state transfer on network events. Research in this area is

currently exploring the optimum design for distributed controllers [152].

Chapter 5. Evaluation 126

5.1.5.3 Monitoring Performance Analysis

In this section, the scalability of Tennison is analysed from the perspective

of the cost of per flow monitoring. Policy engine performance, flow monitoring

setup time, and RAM usage per monitored flow are explored.

As described in Section 3.5.2, the policy engine in Tennison stores the

thresholds against which the security applications detect an event/attack. The

size of this threshold table and the matching algorithm for event detection is

a potential source of delay in the system. The policy engine matching delay is

therefore analysed. Figure 5.8 shows the time that it takes to process an incom-

ing flow against the threshold table within the policy engine for an increasing

volume of policies (thresholds). The results indicate that the incurred delay is

minor e.g. 500ms to test a threshold when the policy engine contains 100K

thresholds, with the delay increasing approximately linearly.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Time (seconds)

0

1

2

3

4

5

6

7

Po
lic

y
en

tri
es

105

Figure 5.8: Policy Engine performance

Figure 5.9 identifies the time it takes to install a set of monitoring rules.

This measurement indirectly shows the maximum capacity of newly emerged

flows that can be monitored per second. Importantly, this does not describe

the ability of the system to manage throughput, but merely shows that this is

Chapter 5. Evaluation 127

0 0.5 1 1.5

2000

4000

6000

8000

10000

Monitor setup time (seconds)

Fl
ow

s

Figure 5.9: Monitor setup time

the maximum number of new flows that could be monitored per second. The

results show that Tennison can handle up to 10000 newly introduced flows

in bursts and 8000 continuously. For flows that have already been observed

and monitoring has already been setup, Tennison will process packets at line

rate as per the capabilities of the networking hardware on which Tennison is

deployed.

Figure 5.10 shows the RAM usage per flow based on actual system readings

during the DDoS attack. The memory usage per flow was calculated from the

overall system’s baseline memory usage and the memory usage measured under

different traffic loads. The results show that, on average, each flow monitored

consumes around 64KB of RAM. This means that with 6GB of RAM, the

system can keep track of 100,000 flows.

Based on the results in Figures 5.8, 5.9, and 5.10, Tennison can scale to

a range of network environments. For example, one of Facebook’s datacenters

manages 500 unique flows per second [165], and in [20], the authors discuss

10 different datacenters that individually support anywhere between 20 to 5000

active flows. In these examples, even in the worst case of all active flows starting

Chapter 5. Evaluation 128

0

100

200

300

400

500

600

2000 4000 6000 8000 10000

RA
M

 (
M

B)

No. of monitored flows

Figure 5.10: RAM usage

at the same time, Tennison would easily monitor each flow, using less then

300MB of RAM to do so.

The results presented in this section highlight Tennison’s ability to pro-

vide timely detection and remediation against four different attack scenarios.

In addition, an assessment of realistic security system performance within a dis-

tributed SDN cluster has been presented. The use of a distributed SDN cluster

is critical to achieve scalability. However, as highlighted in our evaluation, the

benefit of increased controller processing speed must be balanced with the speed

of attack detection and protection. To the best of our knowledge, this work rep-

resents the first analysis of an SDN-based security framework within such an

environment.

5.1.6 Impact of Monitoring with Tennison

The impact of Tennison on the network depends on a variety of conditions.

When traffic is redirected to the NFV overlay, bandwidth on that path is con-

sumed. The latency of traffic on the network is not impacted due to the adoption

of mirroring and header monitoring over other methods. However, if the unique

Chapter 5. Evaluation 129

flow count is high enough, it can start to overload the SDN controller, as previ-

ously discussed in Section 3.7, this can be resolved with the upcoming P4 data

plane technology.

5.1.7 Tiered Tennison Evaluation

This section evaluates Tennison operating in tiered mode. It covers three

aspects of scale with the system, analysing the improved raw responses per

second, the response latency over a number of switches and finally the additional

delay added to remediating across domains. The results in this section were

conducted on an 18 core server (32 virtual cores) and 200GB of RAM using the

Tennison experimenter environment to automate the process. This proved

useful in running multiple instances of ONOS on the same machine as multiple

cores could be dedicated to each node.

0

100

200

300

400

500

600

700

1 2 3 4 5

La
te

nc
y (
m
s)

Count of TENNISON subdomains

16 32 64 128 256 512 1024Switches:

Figure 5.11: Tiered Tennison latency

This provides a baseline for the performance of ONOS operating in a tiered

fashion. Similar to the results shown in Figure 5.2, Figure 5.11 shows the

round-trip latency between each switch and the controller. These results are

Chapter 5. Evaluation 130

significantly better than with distributed ONOS. However, notice that the fore-

cast (with r2 value of 95) tapers of after 6 million flows, this can be attributed

to the limitations of scale running on a single server. The first set of results

under 1 and 2 subdomains do not support the larger network sizes. For future

work and to further this scale, the same test could be deployed over multiple

linked servers at once.

R² = 0.9952

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14

Re
sp

on
se

s
pe

r s
ec

on
d

M
ill

io
ns

Count of TENNISON subdomains

Figure 5.12: Tiered Tennison responses

Figure 5.12 shows further improvement on the previous results shown in

Figure 5.2. It is now clear that with Tennison’s method of monitoring, it is

possible to scale up to 1000s of networking devices, which was an initial objective

of scalability for Tennison and the thesis goals as detailed in Section 1.4.

As with the other results in scalability, Figure 5.11 shows that there are

diminishing returns for scalability when increasing the number of subdomains.

This is clear in the difference subdomain count between 4 and 5 where latency is

only slightly improved upon. This can be attibuted to the limits of the available

hardware on and not a limitation of the scalability of the architecture.

Chapter 5. Evaluation 131

To test the ultimate purpose of tiered Tennison (sharing of network mon-

itoring information across domains), one of the attack scenarios was conducted

across two domains. This included one domain which did not have the port scan

application enabled, and another that did. A port scan was performed across

the two domains, a trigger was caused on the domain operating the port scan

detection application that sent an alert across to the inter-domain manager.

Compared to the results of testing the port scan in a single domain, there was

an additional 1.2 second delay. However, this is attributed to the additional

holding delay, which is configured in the tiered manager GUI. Furthermore,

these results are consistent with the matching delay within the policy engine,

adding these together plus network delay brings us to a similar result. This can

therefore confirm that at the prototypes current state, this is the delay that can

be expected for cross domain remediation.

Figure 5.13: ONOS GUI with Tiered Operation

Figure 5.13 shows the ONOS GUI in operation with Tiered Tennison,

two instances of ONOS each controling 16 switches of a simple 32 switch flat

network. As the network state is not shared at the controller level, the other

Chapter 5. Evaluation 132

side of the network appears as a single switch and 16 hosts connected to the

rest of the network.

5.1.7.1 Tiered Tennison Summary

Driven by the previous results on distributed and centralised Tennison deploy-

ments, the design was adapted to support a tiered architecture. The results

in this document describe a clear benefit in separating network management

out into multiple SDN islands, showing that SDN and network monitoring can

scale-out to thousands of networking devices.

5.1.8 Comparative Design Evaluation

This section compares the difference between Single, Distributed and Tiered

operation with Tennison shows the difference in number of servers verses per-

formance. These results are generated using the same technique that ONOS

use to benchmark their controller [139], using cbench [178] to exercise each

controller node.

Distributed Single Tiered
Scaling method

0

1000

2000

3000

4000

5000

6000

U
ni

qu
e

Fl
ow

s
Pe

r S
ec

on
d

(U
FP

S)

Figure 5.14: Tiered vs Distributed vs Single Tennison

Chapter 5. Evaluation 133

Technology UFPS Setup overhead Setup latency
P4 Line-rate [51] Digest size <1ms [51]
OpenFlow 8000 [Appendix A] Packet size >10ms [139]

Table 5.3: Performance Difference Between OpenFlow and P4

Figure 5.14 shows the difference in scalability between single, distributed,

and tiered deployments. From this, it can be seen that from left to right, each

method has greater scalability, however, it is important to note that this comes

at a cost of increased deployment and management complexity. In a smaller

environment it may still make sense to either a single or distributed deployment

depending on the needs to the operator.

5.1.9 P4-Enabled Tennison

This section details the performance benefits of a P4 design within Tennison.

As mentioned in Section 3.7 on P4 design with Tennison, P4 offers the poten-

tial for significant improvements in performance. Based on P4 and specifically

Barefoot’s Tofino switch, Tennison’s data plane would have significant perfor-

mance gains from a P4 versus its current OpenFlow pipeline. Adding to this, at

the time of writing, the P4-Enabled Barefoot Tofino switch is one of the world’s

fastest packet switching hardware, giving a single device the capability to push

packets at 6.5tbps all through a P4 pipeline [51].

Summarising the difference in performance between P4 and OpenFlow for

Tennison’s security pipeline, the values shown in Table 5.3 show significant

improvements in unique flows handled per second, traffic overhead, and flow

initialisation latency. This is primarily due to P4 being able to create digests

of observed flows and send them to the controller at a periodic interval, instead

of sending a message for each unrecognised flow.

Chapter 5. Evaluation 134

5.2 Siren Evaluation

In this section, the Siren prototype implementation, and in turn its design is

evaluated. Firstly, this section goes through an example of Siren operating

on network provider cost, considering where services should be placed based

on economic cost of data transfer. It then analyses how network placement

affects the latency various types of virtualised network services, highlighting

the importance of placement consideration.

5.2.1 Network Provider Cost

As suggested by [27], the cost of placement of a network function is orthogonal

to the cost that creates on the network. Therefore, network provider cost must

be taken into account.

Equation 5.2 shows an example of a path cost calculation for rent for a

single hour. C represents the cost set by the provider for an amount of network

transfer m. A network provider may also wish to cost their network on a per

hop basis, where some hops might be more expensive than others. Thus the

equation supports a standard fee plus a fee for the path that the service will

traverse. These values are entirely configurable within the system. For the

purposes of illustration, a cost has been added to the reservation of bandwidth,

however these are not necessarily representative of a true cost, as this would

likely be different from one network provider to another. Cp and Cn represents

cost per mbps. For the purposes of illustration for Figure 5.17, the Cp and Cn

have been assigned a value of 10 cents per mbps.

Cl = m ∗ Cp +m ∗
path∑
n=1

Cn (5.2)

Chapter 5. Evaluation 135

Server
 under attack

Web
server

Attacker

Web
client

Snort

Web
client

Figure 5.15: Experimentation Environment

5.2.2 Experimentation Environment and Scenarios

To demonstrate the purpose of selective placement and to show Siren in op-

eration, a simplified topology which is representative of a typical ISP topology

with access, distribution and core networking layers is used. The network topol-

ogy, shown in Figure 5.15 consists of 7 switches in the distribution and access

layer and another 4 (not shown) in the core which are connected in a straight

line, this is were the core NFVIs are located. Each link in this topology is

given a 5ms delay to simulate an increased latency the further away on the

network the end point is. This topology was realised using the virtual container

orchestrator Mininet [196]. Mininet is an emulation tool that enables evalua-

tion, validation and measurement of SDN applications. In order to create the

network topology, Mininet instantiates LXCs (Linux containers) to act as hosts

and software switches (such as Open vSwitch (OvS)). One of the significant

benefits of Mininet (beyond using a simulator to create such a topology) is that

each of these containers has a fully fledged and isolated networking stack. This

is particularly useful when simulating separate Fog devices where it is desirable

to run various network functions, which themselves are real applications.

The testbed runs on a general-purpose server with 256GB RAM, and two

Intel Xeon E5-2697v4s totalling 32 cores. The server runs Ubuntu 16.04.3 and

Chapter 5. Evaluation 136

0

5

10

15

20

25

30

35

40

Access Distribtion Core
La
te
nc
y	(
m
s)

CDN DNS DPI

Figure 5.16: Latency Results From Mininet Experiment

resources were shared between Mininet (Hosts, OvS) DPI nodes, the SDN Con-

troller (ONOS v.1.10) and Siren.

In order to emulate traffic on the network, similar to that seen in an ISP

network, a simple web poller was used from 24 hosts. These hosts (connected to

the access layer) were continuously pulling a 243MB "big bunny" video file from

the core network at rates between 10-50mbps. In stressing the network, queues

can be seen in action, which can affect the latency of a connection, especially

when large amounts of data are being transferred as part of that connection.

The impact of this increases as traffic reaches the core were traffic is aggregated.

5.2.3 Analysis

For the following results two aspects were taken into consideration: Latency,

which is used to determine the benefit a service will provide at each loca-

tion; Cost to the network, which is used to determine if, at least from network

provider fees, a service is economically viable to run at a certain location. The

results on latency were executed 10 times each and then averaged.

Demonstrating the differences in requirements between services, the results

in Figure 5.16 show the latency of each service at increasing distances from the

client endpoint. This shows that the most bandwidth intensive service, the DPI,

increased the latency greater than less demanding services. In terms of service

Chapter 5. Evaluation 137

0

5

10

15

20

25

Access Distribtion Core
Co
st
	(E

ur
os
)

CDN DNS DPI

Figure 5.17: Example Network Provider Fees Per Month

placement, the results from Figure 5.16 are a motivating factor that the DPI

service provider would use to ensure that their service was deployed as close to

the customer as possible, in order to reduce costs.

The results in Figure 5.17 shows an example calculated cost of running each

network service at different locations within the network. This demonstrates

that services that are demanding in terms of bandwidth, are clearly more ex-

pensive to deploy network function further away from the customer. Whereas

with a service such as DNS, where bandwidth requirements are small, assuming

the latency was at an acceptable rate, depending on the wider network policy,

it may be economical for a DNS provider to deploy to the distribution or core

layers. The primary takeaway of these results from Figures 5.17 and 5.16 is

that there are different classes of network services which impact providers and

clients differently depending on their location within the Internet.

In summary of the Siren evaluation, and based on the results in section 3.1,

Siren can orchestrate VNFs across distributed resources, and link them to the

data plane, all whilst achieving an improved efficiency both from an economic

and quality of service aspects. These elements are key to enabling Tennison

in orchestrating network monitoring across the Cloud-to-Fog Continuum.

Chapter 5. Evaluation 138

5.3 Summary

In this chapter, various aspects of Siren and Tennison were evaluated. Each

one of these evaluations was designed to demonstrate the overall systems scala-

bility, responsiveness, and effectiveness at network monitoring and remediation.

Section 5.1.1 has highlighted the differences between Tennison and sim-

ilar frameworks. The importance of a well designed northbound interface is

evaluated here, showing that Tennison requires significantly less LoC for user

applications. On top of this, a functional comparison is made between Ten-

nison’s capabilities, showing that is has a comparable feature set to similar

frameworks.

Furthermore, Section 5.1.7 has shown how different architectures can be

used to increase system scalability, demonstrating a significant increase in scale

when running Tennison in a tiered architecture. In terms of the future of SDN

technology in the monitoring space, this chapter has evaluated potential per-

formance increases with the upcoming P4 data plane technology, again showing

that Tennison’s scalability and responsiveness can be increased further.

In summary, these evaluations demonstrate the feasibility of effectively mon-

itoring networks using software defined networking at varying levels of scale,

satisfying this aims of this thesis. The evaluation here is important for un-

derstanding the future of network automation, monitoring, security, and NFV

deployments.

139

Chapter 6

Conclusion and Future Work

Today’s network infrastructure is impacted by insufficient monitoring capability,

as well as limited ability to react against attacks. Adding to this is the lack of

data visibility across the network and continuity in data between monitoring

systems. With the integration of 5G, smart cities, connected cars, and IoT, the

increase in attack surface and nodes on the network requires a new approach to

network monitoring

This thesis has tackled these challenges and has presented a solution which

consists of a multi-level distributed monitoring and remediation framework for

Software Defined Networks, which is enabled by the Cloud-to-Fog continuum.

Together, the two systems in this thesis gather data from multiple sources to

build a holistic view of the network, providing dynamic network monitoring

and remediation at multiple points within the network. With a unique security

pipeline, Tennison offers lightweight visibility across a large number of flows.

Supported by Siren, monitoring is automatically distributed throughout the

network, utilising a bespoke tunneling solution to efficiently mirror suspicious

traffic. The evaluation of Tennison validates its detection capability and il-

lustrates its performance for low latency protection, as well as scaling to large

networks.

Chapter 6. Conclusion and Future Work 140

In summary, Tennison with Siren advances the state-of-the art in SDN-

based network monitoring, attack detection and protection. Tennison has

been shown to perform effectively against a range of network attacks and pro-

vides a flexible framework that can be built upon to develop novel attack de-

tection mechanisms in response to new threats. As technologies mature, future

work will focus on further advancing Tennison’s scalability, as well as ability

to detect attacks with the use of AI.

6.1 Thesis Contributions

This thesis targets a specific set of challenges within the network monitoring

space, motivating technologies and emerging architectures as a solution to a

next-generation monitoring framework. The these objectives are highlighted

by challenges in current networks, as well as potential benefits of upcoming

technologies.

The result of this has been a design and implementation for both an orches-

tration platform as well as a monitoring framework. Together, these create a

solution for scalable and responsive network monitoring in the Cloud-to-Fog.

The following lists the primary contributions present in this thesis:

• Documented experiences and evaluations for different architectural ap-

proaches for SDN Monitoring.

• Addressing NFV provisioning, management, and orchestration in the Fog-

to-Cloud continuum.

• Though a novel approach, detailing how SDN can be capable of perform-

ing network monitoring at scale.

Chapter 6. Conclusion and Future Work 141

• Using existing specifications such as OpenFlow in a new to create a

pipeline that is capable of scalable network monitoring on off the shelf

hardware.

• Design for a P4 security pipeline, which provides a new field of work in

SDN network monitoring.

• An open proof-of-concept for Cloud-to-Fog NFV management and orches-

tration with multiple orchestration options.

• An open and feature rich scalable SDN network monitoring and remedi-

ation proof-of-concept.

The contributions listed above are a vital step towards managing, moni-

toring, and securing the next generation of the Internet. The research in this

thesis has provided a solution to challenges around monitoring in future net-

works, where scaling especially towards the edge of the network is of paramount

importance.

6.1.1 Thesis Impact

This thesis has presented two proof-of-concept systems that together create

a scalable and responsive network monitoring solution, that can be deployed

over the Cloud-to-Fog continuum. Both of these frameworks are open source

and are available on GitHub [199, 200] and at the time of writing have received

considerable traction with over a thousand unique downloads. Within these two

frameworks there are various smaller innovations such as the OpenFlow and P4

pipelines, benefiting industry and research in network monitoring. On top of

this, this thesis has highlighted the gaps and NFV forwarding technologies. The

contributions from this thesis could be used by a wide range of beneficiaries,

including ISPs, enterprise organisations, and content providers.

Chapter 6. Conclusion and Future Work 142

The Siren proof-of-concept has demonstrated the ability to orchestrate

VNFs across the Cloud-to-Fog continuum. Lessons from Siren contribute to

current MANO solutions to realise NFV deployment outside of the Cloud. On

top of this, Siren offers a new business model in leasing resources similar to cur-

rent Cloud providers, but instead outside of the cloud. As demonstrated in [74],

resources can be auctioned off to the highest bidder, overcoming the challenge of

deciding the best location to place network services, whilst generating revenue

for infrastructure providers.

The Tennison framework would also be compatible with a new form of

business model, and could be deployed as a package by an ISP to various clients.

The information from tiered Tennison could then come back to a SoC where

the network can be analysed and managed centrally. This could also be used to

monitor the ISP’s own network. Alternatively, a company may decide to deploy

their own private Tennison configuration bespoke to their setup.

The thesis also contributes a testing platform, which can be used by re-

searchers to automate the testing of network monitoring and Cloud-to-Fog or-

chestration systems. Rather than having to develop and build the underlying

policy or provisioning engine, this work provides a common solution in which

a researcher can build and modify the behaviour of the network monitoring

system through the NBI without the burden of extensive development. This

significantly reduces the barrier to entry for research and development in net-

work security and Cloud-to-Fog orchestration.

6.2 Future Work

Recently, there has been clear interest from industry in an SDN monitoring

solution that can be deployed throughout the network; since the start of Ten-

nison and Siren multiple commercial monitoring systems with a focus on edge

Chapter 6. Conclusion and Future Work 143

deployment have emerged [52, 17, 31, 106]. As these tools mature, a software

defined network monitoring solution will become easier to deploy and use in

everyday networks.

The following highlights the primary avenues of research for future work

that are related to the main design and development contributions in this thesis:

Tennison and Siren.

6.2.1 Monitoring with Data Plane Programabiltiy

Programmable data planes are reaching an increased level of maturity, with a

number of hardware-based solutions emerging on the market. Driven by the

move to programmable hardware, these enable developers to make decisions on

how to handle packets in a very flexible and powerful manner on the switch

itself. Complementing the programmable control plane offered by technologies

such as OpenFlow, it is envisaged that these advances will help to address some

of the inevitable performance and latency drawbacks of locating a software-

based control plane somewhere other than the switch itself. Fundamentally,

investigating whether, by pushing some of this logic into the data plane, it is

possible to make decisions on how and where to forward packets at very high

data rates. This would be without the need to involve a global controller.

This may mitigate some of the outstanding scale and performance concerns of

existing SDN technologies by reducing the amount of controller-bound traffic.

Programming the behaviour of a data plane does carry implicit drawbacks in

that decisions are made with far less visibility of the overall network state and

conditions.

As shown in Sections 3.7, and 5.1.8, P4 is an ideal candidate to operate as a

replacement for OpenFlow, offering lower overheads and greater capability. As

Chapter 6. Conclusion and Future Work 144

well as this, P4 hardware implementations are showing support for x86 com-

pute in the packet processing pipeline, opening up the possibility of performing

sampled deep packet inspection as well as encryption on the switch within the

data plane.

6.2.2 Advancing with the Evolution of Edge Computing

As the vision for edge computing evolves and 5G is deployed, similar to CORSA

and Barefoot, more network vendors may consider collocating x86 compute

resource in network switches. This will further motivate deploying network

functions throughout the network.

This thesis has described multiple approaches to VNF placement. New

switches coming to market such as [52, 17] have general compute on the same

device with a loop-back channel that links them to the data plane. This tech-

nology would allow for greater scale, reduced network monitoring traffic, mon-

itoring encryption, and lower latency.

Since the initial design of Siren, various edge computing solutions have

emerged [106, 52]. These are tools that in the future will undoubtedly assist

in deploying network services and network monitoring solutions throughout the

network.

6.2.3 Applying Artificial Intelligence

Since the initial design of Tennison, the world of micro-services and software

development has started to move towards a more data centric model. Since

the launch of Tennison new technologies have matured to assist with data

enrichment, visualisation, and data analysis. With this, core components of

Tennison could be replaced by industrial grade tools such as Prometheus for

collection, Kafka for the data bus, and TensorFlow for AI.

Chapter 6. Conclusion and Future Work 145

The Tennison coordinator already has a rich API, which allows statistics

and state to be ascertained by other sources. Furthermore, the behaviour and

logic in Tennison can be defined through this interface in real-time. In cou-

pling this together, there is the opportunity for implementing new and novel

functionality to further enhance the effectiveness of Tennison in operation.

One method of achieving this would be the application of machine learning

techniques. This includes the analysis of traffic within the network to identify

malicious behaviour, the identification of new features and emerging attack pat-

terns, and the prediction of threats that impact the longevity of the network.

Given the aforementioned API, it would be possible to integrate this function-

ality without the need to directly modify the internals of Tennison; in other

words, the changes could be decoupled, enabling a logical separation of concerns.

Furthermore, due to the architectural design of Tennison, existing algorithms

and implementations of machine learning techniques can be used without the

need to fundamentally re-implement them for this specific context. This allows

for a concentration on evaluation and the opportunity to understand how and

which these approaches can be applied correctly and effectively in the context

of network monitoring and remediation.

6.2.4 Extending Network Monitoring Visibility

The integration of host-based sensing and monitoring within the Tennison

platform would greatly increase visibility of the underlying infrastructure. Par-

ticipating hosts will be able to provide system status information to Tennison,

acting as additional evidence for decisions made within the coordinator. For

example, sensing on the host can be integrated into the threshold logic that

is at the core of the coordinator behaviour, improving in-network monitoring

granularity whilst performing further actions such as heavyweight deep-packet

Chapter 6. Conclusion and Future Work 146

inspection.

Additionally, this integration provides room for new functionality, as be-

haviour and observations made on the host can then drive decisions made within

the network. This coupling provides close integration between monitoring at

different layers, each of which has their own benefits and drawbacks. By com-

bining this with the functionality already present within Tennison, visibility

can be pushed even closer into the network edge, all the way to the end-host

itself. Further synergies are anticipated when remediation is considered; where

it may not be possible to mitigate or stop an ongoing attack or malicious be-

haviour on the device itself, the network can instead provide this close to the

source. This is only possible with a wider and more converged view possible

with an extended Tennison.

6.2.5 Integration with Maturing NFV Technologies

The area of Software Defined Networking and Network Functions Virtualisation

is continually evolving, accruing numerous standards, of which few are widely

used.

The NFV forwarding technology used in this thesis made use of VLANs.

Whilst this solution meant that the system could operate on physical hardware

without changes, it is not standardised or elegant, as a result, VLANs could

not be used alongside network monitoring. As mentioned in Section 3.3, there

are various efforts towards creating a standardised solution to NFV forwarding,

including NSH [161] and SRv6 [81]. When these specifications are implemented

in hardware, the systems in this thesis can make use of them.

At the time of designing and implementing Tennison and Siren, NFV

orchestrators such as OSM or ONAP are not mature enough to implement a

full monitoring solution for the Cloud-to-Fog continuum. For example, they still

Chapter 6. Conclusion and Future Work 147

do not have a solution to VNF forwarding, or distributed and heterogeneous

NFVIs. Moving forward, as these NFV MANOs mature and support aspects

such as VNF placement, network context, and distirbuted NFVIs, then they

could be used to benefit the work in this thesis and could be merged with

Siren. This would provide Tennison with the maturity of a production grade

orchestrator, potentially offering multiple methods of orchestration that could

operate over a variety of infrastructures.

148

Appendix A

Supplementary results

A.1 ONOS Scaling Analysis

Figure A.1: ONOS Pending Flows

Figure A.2: ONOS Peak Flows

Developer’s Guide

Lyndon Fawcett
l.fawcett1@lancaster.ac.uk

or
lyndonfawcett@gmail.com

November 9, 2018

Executive Summary

This document is aimed at developers for Tennison, reducing the learning curve
of execute, testing, using, and adding to the system. Enclosed is a comprehensive
developer’s guide on how to use and build on top of the Tennison system. It firstly
explains a technical overview of the system, describing relationships between system
components and their associated code. Supporting this, snippets from the Git wiki are
included in the appendix. After this, it covers a ”getting started” guide, explaining
how to get the system up and running, including how to build the latest version of
ONOS with the Tennison applications. Finally, after understanding Tennison, the
guide shows one how to exercise the system through a series of attacks.

Please note that this document is a continuing work in progress and is not neces-
sarily up to date with the codebase.

149

Appendix B

Tennison Developer’s Guide

Contents

1 Technical system overview 3

2 Tennison usage guide 4

2.1 Getting started (The quick way) . 4

2.1.1 Tennison experimenter . 4

2.2 Getting started (From scratch) . 5

2.3 Developer guide . 5

2.3.1 Upgrading the ONOS version . 5

3 Attack demonstration guide 7

3.1 Attack Demo - Port scan . 7

3.2 Attack Demo - DDoS . 7

3.3 Attack Demo - Intrusion detection . 9

A Tennison technical overview 12

B Class diagram of coordinator 13

C Tennison flow API 14

D Tennison northbound interface 20

E Tennison collector API 24

F Truffle API 27

2

Appendix B. Tennison Developer’s Guide 150

1 Technical system overview

This section covers the technical aspects of the system, firstly describing the system as a
whole, then moving into detail on specific components and APIs.

The general relationship between the various Tennison components and their code are
explained in Appendix A. These have been split into 4 sections, from the bottom up, this
includes: the network, the network controller (ONOS), the coordinator, and northbound
applications. In the example, all northbound applications are written in python, though as
they are interfaced over rest, new applications could be written in any language1. ONOS’s
northbound applications are written in Java using the Karaf framework Maven build files
to perform linking between interfaces and primary implementations of interfaces or abstract
classes. The coordinator and the truffle code around snort (not shown on diagram) are both
written in python 3.

Appendix B shows the class diagram of the coordinator. A python application that holds a
set of thresholds that affect the southbound connection to the network via ONOS and are
modified by the northbound interface through remote applications.

Appendix C describes the specific details around the ONOS Flow API. These are otherwise
known as onos-tennison-apps in the git project. The REST API here allows one to mod-
ify the network, redirecting and blocking traffic. Later in this appendix specifics around
implementations of intents are discussed.

API calls offered by Tennison’s northbound interface (known as watson.py in code) are
detailed in Appendix D. This also instructs one on how to install an application such that
it can be started, stopped, and altered by the coordinator (and the GUI).

For modification of Tennison’s external components one should refer to the collectors.
These are shown in Appendix E and describe the communication generated from snort,
sFlowRT, and ONOS-IPFIX to the coordinator. A new one of these collectors would have
to be created to support any additional monitoring engines or DPIs.

Appendix F describes the REST calls available for modifying rules within snort. The live
manipulation of snort rules is managed in the tennison.py class (not shown in the relationship
diagram).

1Note: if an auto-ran then command would have to be modified to match language, the default is python.

3

Appendix B. Tennison Developer’s Guide 151

2 Tennison usage guide

2.1 Getting started (The quick way)

The following guide is assuming you are using vagrant box 11 with the correct vagrant file.
It is recommended that this is ran with at least 2GBs of RAM, and more if running at
scale. Currently there are various steps required to do to ensure that the system operates as
expected.

To launch ONOS locally2:

$ onos−buck run onos−local c l ean
in /home/ vagrant / onos /

Using the keyword ”clean” in the command makes sure that the the local instance of ONOS
will be refreshed. Running as a service will run an older version and will not work.

To install the ONOS apps:

$. / i n s t a l l a p p s r e m o t e
in /home/ vagrant / secapp /onos−tennison−apps

These apps must be installed each time the ONOS instance is reset.

To launch Mininet with Tennison and snort:

$ sudo . / tenn i son dev . py −m −a −p
in /home/ vagrant / secapp / topology / tenn i son dev /

To access the ONOS GUI go to:

http : / / 1 2 7 . 0 . 0 . 1 : 8 1 8 1 / onos / u i / index . html

To access the TENNISON GUI go to:

http : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 0 /

2.1.1 Tennison experimenter

This is the latest tool for running Tennison and clustered Tennison. Check this tool out
in the tools/dev/ directory.

2If ONOS is restarted then Mininet should also be restarted, otherwise ONOS may not detect the Snort
instances.

4

Appendix B. Tennison Developer’s Guide 152

2.2 Getting started (From scratch)

Before reading this section, see install tennison.sh in the coordinator git reposi-
tory

2.3 Developer guide

This is a quick guide on how to develop with ONOS inside our vagrant box. ONOS provides
various guides on how to do this, however they can be misleading as the documentation is
fragmented and based on different versions of the code. https://wiki.onosproject.org/

display/ONOS/Developer+Guide

To build ONOS (assuming version 1.10 or higher is used) do:

$ onos−buck bu i ld onos
in /home/ vagrant / onos /
This should take around 5−10 minutes to run , l e s s time i f r e b u i l d i n g .

To build the ONOS apps:

$ onos−buck−publ i sh−local

$ mcis
in /home/ vagrant / secapp /onos−tennison−apps

To install ONOS apps run (ONOS must be running):

$. / i n s t a l l a p p s r e m o t e
in /home/ vagrant / secapp /onos−tennison−apps
To make sure the apps are launched in the r i g h t order , r e s t a r t ONOS

Instructions on how to install used an IDE with ONOS can be found at: https://wiki.

onosproject.org/display/ONOS/Importing+ONOS+projects+into+IntelliJ+IDEA

2.3.1 Upgrading the ONOS version

First, copy the SecurityPipeline.java file, the onos-drivers.xml file and the local cell file from
the current ONOS installation:

5

Appendix B. Tennison Developer’s Guide 153

$ cp ˜/ onos / d r i v e r s / d e f a u l t / s r c /main/ java / org / onosp ro j e c t / d r i v e r /
p i p e l i n e / S e c u r i t y P i p e l i n e . java ˜
$ cp ˜/ onos / d r i v e r s / d e f a u l t / s r c /main/ r e s o u r c e s /onos−d r i v e r s . xml ˜
$ cp ˜/ onos / t o o l s / test / c e l l s / local ˜

onos-drivers.xml is used to link together pipelines and devices, it must be modified if testing
with something other than OvS. The local cell file tells ONOS the IP address to use when
running locally.

Next, remove the old version of ONOS and use git to clone the desired version of the repos-
itory from https://github.com/opennetworkinglab/onos :

$ sudo rm −r ˜/ onos
$ g i t c l one https : // github . com/ opennetworkinglab / onos
in /home/ vagrant /

Finally, replace the files in the new installation with the files we copied from the old instal-
lation, source the bash profile and build ONOS:

$ mv ˜/ S e c u r i t y P i p e l i n e . java ˜/ onos / d r i v e r s / d e f a u l t / s r c /main/ java / org / onosp ro j e c t / d r i v e r /
p i p e l i n e /
$ rm ˜/ onos / d r i v e r s / d e f a u l t / s r c /main/ r e s o u r c e s /onos−d r i v e r s . xml
$ mv ˜/ onos−d r i v e r s . xml ˜/ onos / d r i v e r s / d e f a u l t / s r c /main/ r e s o u r c e s /
$ rm ˜/ onos / t o o l s / test / c e l l s / local
$ mv ˜/ local ˜/ onos / t o o l s / test / c e l l s /
$ source ˜/ onos / t o o l s /dev/ b a s h p r o f i l e
$ onos−buck bu i ld onos

This may take some time to complete as ONOS we have to rebuild from scratch.

To update the ONOS apps, look in the /home/vagrant/onos/onos.defs file for ”ONOS VER-
SION”, then find and replace the version (assuming ONOS 1.10.4 was the old version) and
rebuild the apps using the commands:

$ grep −r l ’1 .10.4−SNAPSHOT’ . / | xargs sed − i
’ s /1.10.4−SNAPSHOT/{ONOS VERSION}/g ’
$ mcis
in /home/ vagrant / secapp /onos−tennison−apps/

If the ONOS version is relatively new, the maven repositories may not have been updated
yet so the additional command below must be run before building the apps:

$ onos−buck−publ i sh−local
in /home/ vagrant / onos

6

Appendix B. Tennison Developer’s Guide 154

Manually update onos-drivers.xml. Copy over the line for the security driver to
the latest onos-drivers.xml

3 Attack demonstration guide

This section includes attack instructions and explanations which were used for the WP4
demonstration.

3.1 Attack Demo - Port scan

Firstly, enable the ipfix portscan app in the TENNISON GUI.

Exploit Portscan attack on single host (h12)

mininet> h8 nmap −n −p− −sA 1 0 . 0 . 0 . 1 2

Note: -sA (SYN scan) instead of -sT (connect() scan). A connect() scan causes the source
port to also change and an actual connection is attempted, this results in a port scan being
detected in both directions and therefore both being blocked. -n to prevent nmap resolving
addresses (delay at the start)

Detection The ipfix-portscan-app monitors the variance of ports being contacted by a
single host. On the detection of an ongoing port scan from a specific source the following
ipfix threshold is installed:

” subtype ” : ” p r e f i x ” ,
” treatment ” : ” b lock ” ,
” f i e l d s ” :{ ” sourceIPv4Address ” : X.X.X.X} ,
” t r e a t m e n t f i e l d s ” :{ ” sourceIPv4Address ” : X.X.X.X} ,
” p r i o r i t y ” : 10

3.2 Attack Demo - DDoS

Firstly, enable the ipfix DDoS app in the TENNISON GUI.

7

Appendix B. Tennison Developer’s Guide 155

Figure 1: Port scan threshold details

Exploit Running SYN flood DDoS attack on a web server (h15). The distributed aspect
is simulated by spoofing random source IP addresses (–rand-source).

mininet> h10 hping3 −c 500 −d 120 −S −w 64 −p 80 −−f a s t −−rand−source h15

For sending at different rates use ’-i’ and specify the delay between packets.

Detection The distributed nature is first picked up by ipfix-ddos-app which discovers
nodes with a high variance of querying nodes. This is then considered a server undergoing
a potential DDoS attack and so all traffic querying the server is mirrored by ipfix-ddos-app
installing the following (example) threshold:

’ t r e a t m e n t f i e l d s ’ : { ’ dest inat ionIPv4Address ’ : ’< s e rve r > ’} ,
’ treatment ’ : ’ sno r t mi r ro r ’ ,
’ f i e l d s ’ : { ’ dest inat ionIPv4Address ’ : ’< s e rve r > ’} ,
’ subtype ’ : ’ p r e f i x ’ ,
’ p r i o r i t y ’ : 10

The idea what then to use snort to make the distinction between malicious traffic and
legitimate traffic, which may not be possible. The extent of snort rules for detecting SYN
flood attack only goes as far as:

8

Appendix B. Tennison Developer’s Guide 156

Figure 2: Screen capture of GUI displaying snort DDoS alert

Other Solutions

1. It may be possible to differentiate by some other payload value (insert something unique
to the attack traffic).

2. Different DDoS attacks may be possible for snort to separate attack traffic from legit-
imate triaffic .e.g jolt attack, teardrop, IGMP, dos auth - these all have corresponding
rules in dos.rules - after looking into there they all seem specific to windows NT/95
etc.

3. Remediate on the snort alert, would cause all traffic to be blocked and therefore en-
forcing the denial of service. The following snort threshold would be used to match
the snort alert and then block the destination IP address.

3.3 Attack Demo - Intrusion detection

No app is required for detection of this exploit (though one could be made to enhance
detection).

Exploit To demonstrate intrusion detection, we attempt to open the backdoor in the
exploitable vsftpd server.

Start ftp server:

9

Appendix B. Tennison Developer’s Guide 157

mininet> h5 vs f tpd &

Attempt the exploit:

mininet> h20 f tp h5
Name (1 0 . 0 . 0 . 5 : vagrant) : x :)
Password : any
$ nc 1 0 . 0 . 0 . 5 6200

Once the ftp client hangs the backdoor will be open on port 6200, access with:

Detection We assume that we know there is an FTP server on the network so we mirror
all port 21 traffic. Alternatively, to be more precise mirroring can be done on the server
itself. For information on what these look like, go to the IPFIX thresholds tab on the GUI
or look in examples/threshold.yaml.

Attempting the exploit will the trigger the following snort rule:

a l e r t tcp any any −> any 21 (msg : ”VSFTPD Backdoor” ;
f low : e s t ab l i s h e d , t o s e r v e r ; content : ”USER ” ; depth : 5 ;
content : ” |3 a 29 | ” ; d i s t anc e : 0 ; s i d : 2013188 ; rev : 1 ;)

Note: the ftp client seems to be miss-calculating the checksum on USER and PASS packets
(the packets we want to detect). By default snort does not consider packets with invalid
checksums, so the following config is needed (within rules file):

The snort alert is then matched with the following snort threshold which blocks all com-
munication from the host attempting the exploit, therefore blocking the backdoor. The $
symbol takes the sourceIPv4Address from the alert message (taken from the packet that
triggered the alert).

a le r tmsg : ’VSFTPD Backdoor ’ ,
p r i o r i t y : 10 ,
treatment : block ,
t r e a t m e n t f i e l d s : { sourceIPv4Address : $}

10

Appendix B. Tennison Developer’s Guide 158

Figure 3: Screen capture of GUI displaying snort VSFTP alert

11

Appendix B. Tennison Developer’s Guide 159

rpc.py
Provides methods for sending

to ONOS apps or Snort

Main class: mervyn.py

 Launch and handle various
other components

collector.py (threaded)
Collect & format messages & send to zmq

Snort sFlowRT IPFIX
interfixpoll.py (threaded)
Asynchronous requests

for interfix messages

zmq
(message

queue)

Publish message

MongoDB
messagehandler.py (threaded)

(policy engine)
Forward message to appropriate inner class

Snort

Checks
thresholds

for incoming
Snort alrerts

sFlowRT

Checks
thresholds

for incoming
sFlowRT

alerts

IPFIX

Checks
thresholds

for incoming
ipfix

gui.py (process)
HTTPD web server that
provides operator with a

visualisation and
modification of system

portscan.py (process)
Monitors number of ports
used per flow and adds

block threshold if
exceeds app threshold

ddos.py (process)
Monitors number of flows

to single destination, if
exceeds app threshold

then adds a mirror
theshold

threshold.py (process)
Monitors flows and
modifies thresholds
based on estimated

forecast of traffic pattern

Thresholds

forward messages to policy engine

Log
 messages

treatment.py

Used to apply an action
on a packet match

Call ONOS to
monitor or block flow

On match pass to apply treatment

Modify
Request messages

get ipfix
thresholds

get
ipfix

add block
threshold

get
ipfix

add block
thresholdget

all
Add any

App
manager

watson.py (threaded)
(Northbound API)

query_ipfix/
snort/sflow/

threshold

add/update/
modify_

threshold

Normalise
thresholds

start/stop_appquery_app/app
log/app_config

IpfixManager application

IpfixSender.java
Sends IPFIX messages to

coordinator

IpfixEvent.java
Formats packets into infix

messages
IpfixManager.java
(IpfixService.java)

Implements its own intents
for Ipfix Monitoring

FlowRuleEventLisenter.java
(FlowRuleListener)

FlowMonitor application

FlowMonitorManager.java
Collects packet in messages

from ONOS and forwards
them to Ipfix event

Legend

Class

Function or
object

Data structure

Database

Inner class

ONOS application

SnortManager application

SnortManager.java
(SnortService.java)

Implements its own intents for
blocking and mirroring

SnortRedirection.java
Monitors bandwidth to

assist intent based decision
making and tunneling

ONOS Core

Network

Packet In

Create event

Forward
 IPFIX message

Send IPFIX record to coordinator

Add Ipfix for flow X

Add rule for Ipfix in switch X

Flow modified or Flow stats

Create event

MervynAPI application

MervynAPI.java
Northbound interface to interact with ONOS and the network

snort_clear/
addIP/deleteIP/

query/
ipfix_add/query mirror_add/

delete
block/

redirect_add/
delete

Start/Stop app
Query app

Add rule for mirror or block in switch X

sFlowRTSnort

Query Ipfix
(returns messages indirectly)

sFlowRT
Alert

Snort
Alert

A Tennison technical overview

12

Appendix B. Tennison Developer’s Guide 160

B Class diagram of coordinator

13

Appendix B. Tennison Developer’s Guide 161

TENNISON	Overall	Architecture	(Modified	with	additional	DPI	input	API)

ONOS	Flow	API

The	coordinators	access	into	ONOS	for	monitoring,	remediation	and	snort	management.	Building	on	top	of	the	Mervyn	ONOS	application	(mervynapi)

Endpoint:	http://onos:8181/mervyn

Monitoring

Path Type Description Parameters

/ipfix/add/ <saddr> / <sport> / <daddr> / <dport> /
<protocol>

GET Adds	an	IPFIX	monitoring	intent

C Tennison flow API

14

Appendix B. Tennison Developer’s Guide 162

<saddr> 	-	IP	source	address.	e.g.
192.168.1.1.	
<sport> 	-	Transport	Source	Port.	e.g.
47393.
<daddr> 	-	IP	destination	address.	e.g.
192.168.1.2.
<dport> 	-	Transport	Source	Port.	e.g.
80.
<protocol> 	-	Transport	Protocol.	e.g.
{TCP,	UDP,	ICMP,	ICMP6}
Wildcards	not	permitted

/ipfix/query GET Triggers	interfix	messaes	to	be	sent	that
match	the	specified	flow.

None

/ipfix/query/flow/{saddr}/{sport}/{daddr}/{dport}/{protocol} GET Query	a	specific	flow	and	send	the	necessary
interfix	message.

<saddr> 	-	IP	source	address.	e.g.
192.168.1.1.	
<sport> 	-	Transport	Source	Port.	e.g.
47393.
<daddr> 	-	IP	destination	address.	e.g.
192.168.1.2.
<dport> 	-	Transport	Source	Port.	e.g.
80.
<protocol> 	-	Transport	Protocol.	e.g.
{TCP,	UDP,	ICMP,	ICMP6}
Wildcards	permitted

/redirect/add/{saddr}/{sport}/{daddr}/{dport}/{protocol} GET Adds	redirection	monitoring	intent 5-tuple	flow

/redirect/delete/{saddr}/{sport}/{daddr}/{dport}/{protocol} GET

15

Appendix B. Tennison Developer’s Guide 163

Removes	all	redirection	rules	that	match	the
given	flow	from	every	switch.

<saddr> 	-	IP	source	address.	e.g.
192.168.1.1.	
<sport> 	-	Transport	Source	Port.	e.g.
47393.
<daddr> 	-	IP	destination	address.	e.g.
192.168.1.2.
<dport> 	-	Transport	Source	Port.	e.g.
80.
<protocol> 	-	Transport	Protocol.	e.g.
{TCP,	UDP,	ICMP,	ICMP6}
Wildcards	permitted

/mirror/add/{saddr}/{sport}/{daddr}/{dport}/{protocol} GET Adds	mirror	monitoring	intent <saddr> 	-	IP	source	address.	e.g.
192.168.1.1.	
<sport> 	-	Transport	Source	Port.	e.g.
47393.
<daddr> 	-	IP	destination	address.	e.g.
192.168.1.2.
<dport> 	-	Transport	Source	Port.	e.g.
80.
<protocol> 	-	Transport	Protocol.	e.g.
{TCP,	UDP,	ICMP,	ICMP6}
Wildcards	permitted

/mirror/delete/{saddr}/{sport}/{daddr}/{dport}/{protocol} GET Removes	mirror	rules	that	match	the	given
flow	from	every	switch.

<saddr> 	-	IP	source	address.	e.g.
192.168.1.1.	
<sport> 	-	Transport	Source	Port.	e.g.
47393.
<daddr> 	-	IP	destination	address.	e.g.
192.168.1.2.
<dport> 	-	Transport	Source	Port.	e.g.
80.
<protocol> 	-	Transport	Protocol.	e.g.
{TCP,	UDP,	ICMP,	ICMP6}
Wildcards	permitted

16

Appendix B. Tennison Developer’s Guide 164

Remediation

Path Type Description Parameters

/block/add/{saddr}/{sport}/{daddr}/{dport}/{protocol} GET Adds	block	remediation	intent. <saddr> 	-	IP	source	address.	e.g.
192.168.1.1.	
<sport> 	-	Transport	Source	Port.	e.g.
47393.
<daddr> 	-	IP	destination	address.	e.g.
192.168.1.2.
<dport> 	-	Transport	Source	Port.	e.g.	80.
<protocol> 	-	Transport	Protocol.	e.g.
{TCP,	UDP,	ICMP,	ICMP6}
Wildcards	permitted

/block/delete/{saddr}/{sport}/{daddr}/{dport}/{protocol} GET Removes	block	rules	that	match	the	given
flow	from	every	switch.

<saddr> 	-	IP	source	address.	e.g.
192.168.1.1.	
<sport> 	-	Transport	Source	Port.	e.g.
47393.
<daddr> 	-	IP	destination	address.	e.g.
192.168.1.2.
<dport> 	-	Transport	Source	Port.	e.g.	80.
<protocol> 	-	Transport	Protocol.	e.g.
{TCP,	UDP,	ICMP,	ICMP6}
Wildcards	permitted

Snort	Management/Discovery

17

Appendix B. Tennison Developer’s Guide 165

Path Type Description Parameters

snort/add/
<ip>

GET Adds	a	node	to	be	considered	as	a	Snort	instance.	This	node	will	then	be	forwarded	traffic	using
addMirrorRule.	Added	in	phase	2.

<ip> 	-	IP	Address	of	snort
instance

snort/query GET Returns	snort	instances	that	have	been	added	and	discovered	along	with	their	connecting	switch	and
port	number

None

snort/del/
<ip>

GET Removes	the	snort	instance	from	above.	Added	in	Phase	2. <ip> 	-	IP	Address	of	snort
instance

snort/clear GET Removes	all	snort	instances	from	above None

Examples
$curl	-u	karaf	-X	GET	--header	'Accept:	application/json'	'http://127.0.0.1:8181/mervyn/ipfix/query'

$curl	-u	karaf	-X	GET	--header	'Accept:	application/json'	'http://127.0.0.1:8181/mervyn/block/add/*/*/*/*/*'

$curl	-u	karaf	-X	GET	--header	'Accept:	application/json'	'http://127.0.0.1:8181/mervyn/block/add/8.8.8.8/*/*/*/*'

$curl	-u	karaf	-X	GET	--header	'Accept:	application/json'	'http://127.0.0.1:8181/mervyn/block/delete/8.8.8.8/*/*/*/*'

$curl	-u	karaf	-X	GET	--header	'Accept:	application/json'	'http://127.0.0.1:8181/mervyn/block/delete/*/*/*/*/*'

$curl	-u	karaf	-X	GET	--header	'Accept:	application/json'	'http://127.0.0.1:8181/mervyn/snort/add/10.0.0.1'

$curl	-u	karaf	-X	GET	--header	'Accept:	application/json'	'http://127.0.0.1:8181/mervyn/mirror/add/*/*/*/*/*'

$curl	-u	karaf	-X	GET	--header	'Accept:	application/json'	'http://127.0.0.1:8181/mervyn/mirror/remove/*/*/*/*/*'

$curl	-u	karaf	-X	GET	--header	'Accept:	application/json'	'http://127.0.0.1:8181/mervyn/mirror/delete/*/*/*/*/*'

Monitoring	and	Remediation	Intents

The	flow	API	allows	monitoring	to	be	inserted	into	the	network	in	an	intent	based	format.	That	is,	when	it	is	necessary	to	monitor	a	flow	somewhere	in	the	network	it	is
requested	that	the	flow	is	monitored	by	only	providing	the	flow	information.	The	placement	of	the	monitoring	mechanisms	within	the	network	is	then	choose	by	ONOS
[application]	though	a	series	of	data	driven	decisions.	Following	the'what	not	how	(or	where	in	our	case)'	paradigm,	used	by	the	forwarding	intent	based	forwarding	already
provided	by	ONOS.

This	approach	aims	to	choose	the	optimal	placement	for	monitoring	whilst	also	reducing	the	total	number	of	flow	rules	in	the	network	when	compared	to	the	brute-force
method	of	monitoring	everything	everywhere.

18

Appendix B. Tennison Developer’s Guide 166

The	same	approach	is	also	used	for	remediation.	A	description	of	how	the	placement	is	chosen	for	individual	intents	is	outlined	below.

IPFIX	Monitoring	intent
If	using	the	L2	reactive	forwarding	application	then	an	immediate	suitable	placement	decision	for	an	IPFIX	monitoring	rule	cannot	be	made,	due	to	the	zero	correlation
between	a	L2	forwarding	rule	(source	and	destination	MAC	address)	and	IPFIX	monitoring	rule	(source	and	destination,	IP	address	and	Transport	port).	Therefore	an
approach	is	used	that	results	in	an	eventual	single	placement.

Initially	the	monitoring	flow	rule	is	installed	on	every	device.	Redundant	rules	are	the	removed	over	time	in	a	garbage-collection-like	process,	until	the	flow	is	being	monitored
at	a	single	device.	The	decision	to	remove	rules	is	based	on	comparisons	of	their	current	activity	(number	of	bytes	and	packets	that	have	matched	a	flow);	if	a	monitoring	rule
has	less	activity	that	the	equivalent	flow	at	a	different	device,	it	is	considered	redundant	and	therefore	removed.

Redirect	&	Mirror	intent
The	number	eligible	devices	for	a	redirection	of	mirroring	rule	are	immediately	reduced	because	of	the	requirement	of	having	a	Snort	instance	directly	connected	to	the	device.
This	set	is	then	further	reduced	to	devices	that	contain	a	flow	rule	that	matches*	that	of	the	requested	flow	to	be	mirrored/redirect.

If	this	final	set	of	eligible	devices	is	not	empty	the	redirect/mirror	rule	is	install	on	a	single	device.

If	no	eligible	devices	were	found	for	redirecting/mirroring,	the	flow	is	installed	on	all	devices	that	have	a	matching*	flow,	in	the	hope	that	a	snort	instance	will	be	later
discovered	at	one	of	the	devices.

As	a	last	resort,	if	no	devices	contain	a	matching*	flow	the	flow	is	install	everywhere.	This	scenario	should	only	really	occur	as	a	result	of	an	error	or	manual	request	with	no
triggering	traffic.	With	no	matching	traffic,	the	monitoring	rules	will	eventually	idle	timeout.

Note:	There	could	be	some	work	here	that	uses	topology	and	resource	usage	information	to	produce	a	cost	value	as	an	additional	input	to	the	decision	making	process.

Remediation	intent
A	block	rule	is	installed	onto	all	devices	that	currently	contain	a	flow	that	matches*	the	requested	flow	to	be	blocked.	Using	this	more	inclusive	method	rather	than	remediating
at	a	single	device	prevents	a	flow	avoid	the	remediation	itself	by	[re]routing.

*	[Installed	OpenFlow	flow	rule	criteria	is	a	superset	of	the	requested	flow]

19

Appendix B. Tennison Developer’s Guide 167

TENNISON	Northbound	Interface
Endpoint:	http:// <tennison> :2401/

Messages	and	Alerts

Path Type Description Parameters Returns

/tennison/ipfix/query/
<app-id>

GET Retrieve	IPFIX	messages	that	have	been	received
since	the	last	query	or	registration.

<app-id> 	-	Unique
application	identifier

JSON	list	of	IPFIX	message

/tennison/snort/query/
<app-id>

GET Retrieve	Snort	messages	that	have	been	received
since	the	last	query	or	registration.

<app-id> 	-	Unique
application	identifier

JSON	list	of	snort	message
(excluding	packet	data)

Thresholds

Path Type Description Parameters Returns

/tennison/thresholds/query GET Retrieve	both	IPFIX
and	snort	thresholds

None JSON	list	of
thresholds

/tennison/thresholds/ipfix/query GET Retrieve	IPFIX
thresholds

None JSON	list	of
thresholds

/tennison/thresholds/snort/query GET Retrieve	snort
thresholds

None JSON	list	of
thresholds

/tennison/thresholds/ipfix/add/
<threshold-id>

POST Adds	an	IPFIX
threshold

<threshold-id> 	-	Unique	threshold	application
identifier.	
Threshold	-	Content-Type:	application/json.	Required
fields:	subtype,	treatment,	fields,	priority.

200	success
400	No
content/Missing
required	fields

D Tennison northbound interface

20

Appendix B. Tennison Developer’s Guide 168

/tennison/thresholds/ipfix/update/
<threshold-id>

POST Updates	fields	of	an
IPFIX	threshold

<threshold-id> 	-	Unique	threshold	identifier.
Threshold	-	Content-Type:	application/json

200	success
400	No	content
404	Threshold	not
found

/tennison/thresholds/ipfix/remove/
<threshold-id>

POST Remove	an	IPFIX
threshold

<threshold-id> 	-	Unique	threshold	identifier. 200	success
404	Threshold	not
found

/tennison/thresholds/snort/add/
<threshold-id>

POST Adds	a	snort	threshold <threshold-id> 	-	Unique	threshold	identifier.
Threshold	-	Content-Type:	application/json.	Required
fields:	rule,	treatment,	fields,	priority.

200	success
400	No
content/Missing
required	fields

/tennison/thresholds/snort/update/
<threshold-id>

POST Updates	a	snort
threshold

<threshold-id> 	-	Unique	threshold	identifier.
Threshold	-	Content-Type:	application/json

200	success
404	Threshold	not
found

/tennison/thresholds/snort/remove/
<threshold-id>

POST Removes	a	snort
threshold

<threshold-id> 	-	Unique	threshold	identifier. 200	success
404	Threshold	not
found

Application	Management

Path Type Description Parameters Returns

/tennison/app/register/
<app-id>

POST Register	application	with	tennison	to	be	eligible	for
message	from	this	point.

<app-id> 	-	Unique
application	identifier

None

/tennison/app/query GET Get	registered	applications. None JSON	list	of	application	and	the
last	query	times

GET Get	all	configurations	for	application.

21

Appendix B. Tennison Developer’s Guide 169

/tennison/app/query/
<app_id> /config

<app_id> 	-	Application
ID

JSON	list	of	application
configurations.

/tennison/app/query/
<app_id> /log

GET Get	latest	log	for	application. <app_id> 	-	Application
ID

JSON	containing	log.	e.g.
{"log":	"lorem	ipsum"}

/tennison/app/start/
<app_id>

GET Start	application. <app_id> 	-	Application
ID

200	success
400	Application	already	running
404	Application	not	installed

/tennison/app/stop/
<app_id>

GET Stop	application. <app_id> 	-	Application
ID

200	success
400	Application	already	running
404	Application	not	installed

Examples

Register	application

$	curl	-X	POST	http://127.0.0.1:2401/tennison/app/register/ipfix-anom

Get	registered	applications

$	curl	-X	GET	http://127.0.0.1:2401/tennison/app/query

Get	IPFIX	messages

$	curl	-X	GET	http://127.0.0.1:2401/tennison/ipfix/query/ipfix-anom

Get	all	thresholds

$	curl	-X	GET	http://127.0.0.1:2401/tennison/thresholds/query

Add	new	snort	threshold

$	curl	-X	POST	-H	"Content-Type:	application/json"	-d	'{"fields":{"sourceIPv4Address":	"10.0.0.200"},	"rule":"alert	tcp	any	any	->	any	any",
"priority":10,	"treatment":"block"}'	http://127.0.0.1:2401/tennison/thresholds/snort/add/new-snort-threshold

Add	new	IPFIX	threshold

22

Appendix B. Tennison Developer’s Guide 170

$	curl	-X	POST	-H	"Content-Type:	application/json"	-d	'{"subtype":	"ipfix",	"treatment":	"snort_mirror",	"fields":{"sourceIPv4Address":
"10.0.0.255"},	"priority":	10}'	http://127.0.0.1:2401/tennison/thresholds/ipfix/add/new-ipfix-threshold

Installing	Northbound	Applications
Although	any	application	can	register	itself	with	the	coordinator	due	to	the	openness	of	the	REST	interface,	for	an	application	to	be	considered	as	'installed'	and	therefore
managed	by	the	coordinator	there	are	a	few	requirements	that	need	to	be	met.

Location	-	each	application	has	its	own	directory	were	all	relevant	files	(executables,	configs	etc.)	are	located.	Application	directories	should	be	in	mervyn/apps	with	the
directory	name	being	the	name	of	the	application.	E.g.	mervyn/apps/ipfix-ddos-app/

Main	file	-	applications	are	launched	via	a	python	script	 main.py 	located	in	the	application	directory.

Registering	-	when	an	application	registers	for	monitoring	messages	(/tennison/app/register/ <app-id>)	it	should	use	the	same	ID	as	the	application	directory	name.

Config	-	application	configurations	should	be	stored	in	config.json

Log	file	-	any	textual	output	from	the	application	should	go	to	output.log

Note:	applications	will	not	be	launched	with	the	working	directory	within	the	application	directory,	so	avoid	using	relative	file	paths.	An	example	of	an	applications	directory
structure	is	shown	below.

mervyn
|				apps
|				|				ipfix-ddos-app
|				|				|				main.py
|				|				|				config.json
|				|				|				output.log
|				|				|				ipfixddos.py
|				|				another-application

23

Appendix B. Tennison Developer’s Guide 171

IPFIX	Collector

Uses	sockets	for	the	standard	IPFIX	transport	method.	UDP	port	4739

Example	pickled	IPFIX	data

{
	 	"vlanId"	:	0,
	 	"ingressInterface"	:	3,
	 	"subtype"	:	"ipfix",
	 	"flowStartMilliseconds":"2017-03-09T10:01:14.373000",
	 	"sourceTransportPort"	:	0,
	 	"time":"2017-03-09T10:01:59.376000",
	 "destinationMacAddress":"a6:49:e0:cc:4d:74",
	 	"flowEndMilliseconds":"2017-03-09T10:01:59.373000",
	 	"ipClassOfService"	:	0,
	 	"packetDeltaCount"	:	0,
	 	"egressInterface"	:	0,
	 	"protocolIdentifier"	:	1,
	 	"type"	:	"ipfix",
	 	"destinationTransportPort"	:	0,
	 	"sourceMacAddress":"4e:ff:3c:1f:7e:91",
	 	"sourceIPv4Address"	:	"10.0.0.2",
	 	"exporterIPv4Address"	:	"127.0.0.1",
	 	"octetDeltaCount"	:	0,
	 	"ethernetType"	:	2048,
	 	exporterIPv6Address":"of:00:00:00:00:00:00:00:0b",
	 	"destinationIPv4Address"	:	"10.0.0.1"
}

Snort	Alert	Collector

REST	API	Port	8081

e.g.	http://coord:8081

Path Type Description Parameters

E Tennison collector API

24

Appendix B. Tennison Developer’s Guide 172

/snort/alert POST Adds	snort	alert	onto	the	message	queue Content-Type:	application/json

Example	pickled	snort	alert

{
	 "transhdr"	:	0,
	 "alertmsg"	:	"{'fields':	{'sourceIPv4Address':	'10.0.0.3'},	'rule':	'alert	icmp	any	any	->	any	any',	'treatment':	
'snort_mirror',	'priority':	10}",
	 "val"	:	0,
	 "event"	:	{
	 	 "event_reference"	:	131072,
	 	 "ref_time"	:	{
	 	 	 "tv_sec"	:	1747356,
	 	 	 "tv_usec"	:	1477890048
	 	 },
	 	 "sig_rev"	:	65536,
	 	 "event_id"	:	131072,
	 	 "sig_generator"	:	65536,
	 	 "sig_id"	:	10651137,
	 	 "priority"	:	0,
	 	 "classification"	:	0
	 },
								"pkt"	:	{
								"sourceIPv4Address"	:	"10.0.0.2",
								"destinationIPv4Address"	:	"10.0.0.1",
								"protocolIdentifier"	:	"icmp",
								"sourceTransportPort"	:	0,
								"destinationTransportPort"	:	15
								},
	 "pkth"	:	{
	 	 "caplen"	:	382730240,
	 	 "len"	:	0,
	 	 "ts"	:	{
	 	 	 "tv_sec"	:	447323224,
	 	 	 "tv_usec"	:	0
	 	 }
	 },
	 "data"	:	973078528,
	 "nethdr"	:	0,
	 "dlthdr"	:	0,
	 "type"	:	"snort",
	 "time"	:	ISODate("2017-02-09T17:38:34.170Z")

25

Appendix B. Tennison Developer’s Guide 173

}

sFlow	Collector

REST	API	Port	8082

e.g.	http://coord:8082

Path Type Description Parameters

/sFlowRT/alert POST Adds	sFlow-RT	alert	onto	the	message	queue Content-Type:	application/json

Example	sFlow-RT	alert

{
					"agent":"10.80.80.188",
				"dataSource":"49",
				"metric":"ddos_blackhole_target",
				"threshold":20000,
				"value":20065.11977859513,
				"timestamp":1485861345308,
				"thresholdID":"ddos_blackhole_attack",
				"eventID":4,
				"flowKey":"10.80.80.51,external",
				"action":"ddos_set"
}

{
				"metric":"ddos_blackhole_target",
				"timestamp":1485863215066,
				"flowKey":"10.80.80.51,external",
				"action":"ddos_clear"
}

26

Appendix B. Tennison Developer’s Guide 174

Snort	Rule	API	(Truffle)

REST	API	Port	8082

e.g.	http://snort:8082

e.g.	http://92.168.100.2:8082

Path Type Description Parameters

/snort/rule/clear POST Clear	all	rules	from	snort None

/snort/rule/delete POST Delete	specific	rule	from	snort Content-Type:	application/json	{	"rules"	:	["rule	1",	"rule	2]	}

/snort/rule/add POST Add	rule	to	snort Content-Type:	application/json	{	"rule"	:	["rule	1",	"rule	2]	}

F Truffle API

27

Appendix B. Tennison Developer’s Guide 175

176

Bibliography

[1] Cisco Networking Academy. Connecting Networks Companion Guide.

Pearson Education, 2014.

[2] Cisco Networking Academy. “Connecting Networks Companion Guide”.

In: Pearson Education, 2014. Chap. 1.1.1 Enterprise Network Campus

Design.

[3] Alejandro Aguado et al. “ABNO: A feasible SDN approach for multiven-

dor IP and optical networks”. In: Journal of Optical Communications

and Networking 7.2 (2015), A356–A362.

[4] Airship: Auction based orchestrator for Siren. url: https://github.

com/broadbent/airship.

[5] Ali Al-Shabibi and L Peterson. “Cord: Central office re-architected as a

datacenter”. In: OpenStack Summit (2015), pp. 1–38.

[6] Alcatel-Lucent. The declining profitability trend of mobile data: what can

be done? 2016. url: http://www3.alcatel-lucent.com/belllabs/

advisoryservices / documents / Declining _ Profitability _ Trend _

of_Mobile_Data_EN_Market_Analysis.pdf.

[7] D Scott Alexander et al. “Security in active networks”. In: Secure Inter-

net Programming. Springer, 1999, pp. 433–451.

[8] Amazon Web Serices (AWS). url: https://aws.amazon.com.

https://github.com/broadbent/airship
https://github.com/broadbent/airship
http://www3.alcatel-lucent.com/belllabs/advisoryservices/documents/Declining_Profitability_Trend_of_Mobile_Data_EN_Market_Analysis.pdf
http://www3.alcatel-lucent.com/belllabs/advisoryservices/documents/Declining_Profitability_Trend_of_Mobile_Data_EN_Market_Analysis.pdf
http://www3.alcatel-lucent.com/belllabs/advisoryservices/documents/Declining_Profitability_Trend_of_Mobile_Data_EN_Market_Analysis.pdf
https://aws.amazon.com

BIBLIOGRAPHY 177

[9] Mostafa Ammar. “ex uno pluria: The Service-Infrastructure Cycle, Os-

sification, and the Fragmentation of the Internet”. In: ACM SIGCOMM

Computer Communication Review 48.1 (2018), pp. 56–63.

[10] Jeffrey G Andrews et al. “What will 5G be?” In: IEEE Journal on se-

lected areas in communications 32.6 (2014), pp. 1065–1082.

[11] Prof Ann and Mary Joy. “Performance Comparison Between Linux Con-

tainers and Virtual Machines”. In: Lxc (2015).

[12] Apache Mesos. url: http://mesos.apache.org.

[13] ARM. Future of ARM edge computing with SDN and NFV. 2018. url:

https://www.anandtech.com/show/13475/arm-announces-neoverse-

infrastructure-ip-branding-future-roadmap.

[14] Athena DDoS user application. url: https://github.com/shlee89/

athena/blob/master/athena-tester/src/main/java/athena/user/

application/Main.java.

[15] AT&T) listings on NFV and SDN. 2017. url: http://about.att.com/

innovation/sdn.

[16] Tarus Balog et al. “OpenNMS”. In: SNMP walker and network manager

(2004).

[17] Barefoot Deep Insight. url: https://www.barefootnetworks.com/

products/brief-deep-insight/.

[18] Barefoot’s Tofino Product line. 2017. url: https://www.barefootnetworks.

com/products/brief-tofino/.

[19] Arsany Basta et al. “Applying NFV and SDN to LTE mobile core gate-

ways, the functions placement problem”. In: Proceedings of the 4th work-

shop on All things cellular: operations, applications, & challenges. ACM.

2014, pp. 33–38.

http://mesos.apache.org
https://www.anandtech.com/show/13475/arm-announces-neoverse-infrastructure-ip-branding-future-roadmap
https://www.anandtech.com/show/13475/arm-announces-neoverse-infrastructure-ip-branding-future-roadmap
https://github.com/shlee89/athena/blob/master/athena-tester/src/main/java/athena/user/application/Main.java
https://github.com/shlee89/athena/blob/master/athena-tester/src/main/java/athena/user/application/Main.java
https://github.com/shlee89/athena/blob/master/athena-tester/src/main/java/athena/user/application/Main.java
http://about.att.com/innovation/sdn
http://about.att.com/innovation/sdn
https://www.barefootnetworks.com/products/brief-deep-insight/
https://www.barefootnetworks.com/products/brief-deep-insight/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/

BIBLIOGRAPHY 178

[20] Theophilus Benson, Aditya Akella, and David A Maltz. “Network traf-

fic characteristics of data centers in the wild”. In: Proceedings of the

10th ACM SIGCOMM conference on Internet measurement. ACM. 2010,

pp. 267–280.

[21] Theophilus Benson, Aditya Akella, and David A Maltz. “Unraveling the

Complexity of Network Management.” In: NSDI. 2009, pp. 335–348.

[22] Pankaj Berde et al. “ONOS: towards an open, distributed SDN OS”.

In: Proceedings of the third workshop on Hot topics in software defined

networking. ACM. 2014, pp. 1–6.

[23] Samrat Bhattacharjee, Kenneth L Calvert, and Ellen W Zegura. “An

architecture for active networking”. In: High Performance Networking

VII. Springer, 1997.

[24] Andrea Bianco et al. “Scalability of ONOS reactive forwarding appli-

cations in ISP networks”. In: Computer Communications 102 (2017),

pp. 130–138.

[25] Flavio Bonomi et al. “Fog computing and its role in the internet of

things”. In: Proceedings of the first edition of the MCC workshop on

Mobile cloud computing. ACM. 2012, pp. 13–16.

[26] Pat Bosshart et al. “P4: Programming protocol-independent packet pro-

cessors”. In: ACM SIGCOMM Computer Communication Review 44.3

(2014), pp. 87–95.

[27] Mathieu Bouet, Jeremie Leguay, and Vania Conan. “Cost-based place-

ment of virtualized deep packet inspection functions in SDN”. In: Mil-

itary Communications Conference, MILCOM 2013-2013 IEEE. IEEE.

2013, pp. 992–997.

BIBLIOGRAPHY 179

[28] Ian Briggs et al. A Performance Evaluation of Unikernels. Tech. rep.

tech. rep, 2014.

[29] British Telecom (BT) Accelorates Journey to SD-WAN. 2018. url: https:

//www.globalservices.bt.com/en/aboutus/news-press/bt-new-

automation-platform-accelerates-journey-to-sd-wan.

[30] Zvika Bronstein. “NFV Virtualisation of the Home Environment”. In:

Consumer Communications and Networking Conf. (CCNC) Ccnc (2014).

[31] BT. BT Saturn: SATURN (Self-organising Adaptive Technology under-

lying Resilient Networks). 2012. url: https://ipacso.eu/discover-

european - pacs - innovators / cyber - security - innovations - a -

selection/reference-case-2.html.

[32] Zheng Cai, Alan L Cox, and TS Ng. Maestro: A system for scalable

openflow control. Tech. rep. 2010.

[33] Kenneth L Calvert et al. “Directions in active networks”. In: IEEE Com-

munications Magazine 36.10 (1998), pp. 72–78.

[34] Rafael Cantó Palancar et al. “Virtualization of residential customer premise

equipment. Lessons learned in Brazil vCPE trial”. In: it - Information

Technology 57.5 (2015). issn: 1611-2776. url: http://www.degruyter.

com/view/j/itit.2015.57.issue-5/itit-2015-0028/itit-2015-

0028.xml.

[35] Giuseppe Antonio Carella and Thomas Magedanz. “OpenBaton: A frame-

work for virtual network function management and orchestration for

emerging software-based 5g networks”. In: Newsletter 2016 (2015), p. 190.

[36] Martin Casado et al. “Ethane: Taking control of the enterprise”. In: ACM

SIGCOMM Computer Communication Review. Vol. 37. 4. ACM. 2007,

pp. 1–12.

https://www.globalservices.bt.com/en/aboutus/news-press/bt-new-automation-platform-accelerates-journey-to-sd-wan
https://www.globalservices.bt.com/en/aboutus/news-press/bt-new-automation-platform-accelerates-journey-to-sd-wan
https://www.globalservices.bt.com/en/aboutus/news-press/bt-new-automation-platform-accelerates-journey-to-sd-wan
https://ipacso.eu/discover-european-pacs-innovators/cyber-security-innovations-a-selection/reference-case-2.html
https://ipacso.eu/discover-european-pacs-innovators/cyber-security-innovations-a-selection/reference-case-2.html
https://ipacso.eu/discover-european-pacs-innovators/cyber-security-innovations-a-selection/reference-case-2.html
http://www.degruyter.com/view/j/itit.2015.57.issue-5/itit-2015-0028/itit-2015-0028.xml
http://www.degruyter.com/view/j/itit.2015.57.issue-5/itit-2015-0028/itit-2015-0028.xml
http://www.degruyter.com/view/j/itit.2015.57.issue-5/itit-2015-0028/itit-2015-0028.xml

BIBLIOGRAPHY 180

[37] Martin Casado et al. “SANE: A Protection Architecture for Enterprise

Networks.” In: USENIX Security Symposium. Vol. 49. 2006, p. 50.

[38] Ivano Cerrato et al. “Toward dynamic virtualized network services in

telecom operator networks”. In: Computer Networks 000 (2015). issn:

13891286. url: http://linkinghub.elsevier.com/retrieve/pii/

S1389128615003485.

[39] Fabricio E Rodriguez Cesen et al. “Design, Implementation and Evalua-

tion of IPv4/IPv6 Longest Prefix Match support in P4 Dataplanes”. In:

17o Workshop em Desempenho de Sistemas Computacionais e de Comu-

nicação (WPerformance 2018). Vol. 17. 1/2018. SBC. 2018.

[40] Yiyang Chang et al. “Hydra: Leveraging Functional Slicing for Effi-

cient Distributed SDN Controllers”. In: arXiv preprint arXiv:1609.07192

(2016).

[41] Xiao-Fan Chen and Shun-Zheng Yu. “CIPA: A collaborative intrusion

prevention architecture for programmable network and SDN”. In: Com-

puters & Security 58 (2016), pp. 1–19.

[42] China Telecom (CT) trends with NFV and SDN. 2018. url: https:

//www.ctamericas.com/nfv-sdn-trends-china-need-know/.

[43] Shihabur Rahman Chowdhury et al. “Payless: A low cost network moni-

toring framework for software defined networks”. In: Network Operations

and Management Symposium (NOMS), 2014 IEEE. IEEE. 2014, pp. 1–

9.

[44] CISCO. Automate and program your network faster. 2019. url: https:

//www.cisco.com/c/en_uk/solutions/software-defined-networking/

overview.html.

http://linkinghub.elsevier.com/retrieve/pii/S1389128615003485
http://linkinghub.elsevier.com/retrieve/pii/S1389128615003485
https://www.ctamericas.com/nfv-sdn-trends-china-need-know/
https://www.ctamericas.com/nfv-sdn-trends-china-need-know/
https://www.cisco.com/c/en_uk/solutions/software-defined-networking/overview.html
https://www.cisco.com/c/en_uk/solutions/software-defined-networking/overview.html
https://www.cisco.com/c/en_uk/solutions/software-defined-networking/overview.html

BIBLIOGRAPHY 181

[45] CISCO. OpenContrail: an open-source network virtualization platform

for the cloud. 2019. url: http://www.opencontrail.org.

[46] Seyhan Civanlar and Vikram R Saksena. Internet NCP over ATM. US

Patent 5,828,844. 1998.

[47] David Clark. “The design philosophy of the DARPA Internet protocols”.

In: ACM SIGCOMM Computer Communication Review 18.4 (1988),

pp. 106–114.

[48] Cloudify. Cloudify, a Cloud and NFV Orchestrator. 2016. url: https:

//cloudify.co.

[49] CLOUDNFV. Cloud NFV White Paper. 2015. url: http://cloudnfv.

com/WhitePaper.pdf.

[50] Openfog Consortium and Architecture Working. “OpenFog Reference

Architecture for Fog Computing”. In: February (2017). url: https :

//www.openfogconsortium.com/specification1.0pdf.

[51] CORSA. Barefoot Tofino 2 performance. 2018. url: https://globenewswire.

com/news-release/2018/12/04/1661637/0/en/Barefoot-Networks-

Unveils-Tofino-2-the-Next-Generation-of-the-World-s-First-

Fully-P4-Programmable-Network-Switch-ASICs.html.

[52] CORSA. Red armor security. 2018. url: https://www.corsa.com/red-

armor-security/nse7000/.

[53] Corsa. Software-defined network security (SDNS) lets you economically

inspect 100% of your traffic without impacting network throughput per-

formance. All the time. 2019. url: https://www.corsa.com/network-

security-solutions/.

[54] Peter Cramton et al. “Combinatorial auctions”. In: (2006).

http://www.opencontrail.org
https://cloudify.co
https://cloudify.co
http://cloudnfv.com/WhitePaper.pdf
http://cloudnfv.com/WhitePaper.pdf
https://www.openfogconsortium.com/specification1.0pdf
https://www.openfogconsortium.com/specification1.0pdf
https://globenewswire.com/news-release/2018/12/04/1661637/0/en/Barefoot-Networks-Unveils-Tofino-2-the-Next-Generation-of-the-World-s-First-Fully-P4-Programmable-Network-Switch-ASICs.html
https://globenewswire.com/news-release/2018/12/04/1661637/0/en/Barefoot-Networks-Unveils-Tofino-2-the-Next-Generation-of-the-World-s-First-Fully-P4-Programmable-Network-Switch-ASICs.html
https://globenewswire.com/news-release/2018/12/04/1661637/0/en/Barefoot-Networks-Unveils-Tofino-2-the-Next-Generation-of-the-World-s-First-Fully-P4-Programmable-Network-Switch-ASICs.html
https://globenewswire.com/news-release/2018/12/04/1661637/0/en/Barefoot-Networks-Unveils-Tofino-2-the-Next-Generation-of-the-World-s-First-Fully-P4-Programmable-Network-Switch-ASICs.html
https://www.corsa.com/red-armor-security/nse7000/
https://www.corsa.com/red-armor-security/nse7000/
https://www.corsa.com/network-security-solutions/
https://www.corsa.com/network-security-solutions/

BIBLIOGRAPHY 182

[55] Jon Crowcroft et al. “Unclouded vision”. In: International Conference

on Distributed Computing and Networking. Springer. 2011.

[56] Andrew R Curtis et al. “DevoFlow: scaling flow management for high-

performance networks”. In: ACM SIGCOMM Computer Communication

Review. Vol. 41. 4. ACM. 2011, pp. 254–265.

[57] Amir Vahid Dastjerdi et al. “Fog computing: Principles, architectures,

and applications”. In: arXiv preprint arXiv:1601.02752 (2016).

[58] Data Plane Programmability the next step in SDN and OpenFlow. 2017.

url: http://sites.ieee.org/netsoft/files/2017/07/Netsoft2017_

Keynote_Bianchi.pdf.

[59] Deutsche Telekom (DT) listings on NFV and SDN. 2019. url: https:

//www.sdxcentral.com/listings/deutsche-telekom/.

[60] Advait Dixit et al. “Towards an elastic distributed SDN controller”. In:

ACM SIGCOMM Computer Communication Review. Vol. 43. 4. ACM.

2013, pp. 7–12.

[61] DNS Black hole repositories. 2017. url: https://pi-hole.net/.

[62] Docker API. url: https://docs.docker.com/engine/api/v1.24/.

[63] Docker Swarm mode overview. url: https : / / docs . docker . com /

engine/swarm/.

[64] Avri Doria et al. Forwarding and control element separation (ForCES)

protocol specification. Tech. rep. 2010.

[65] Avri Doria et al. General switch management protocol (GSMP) V3. Tech.

rep. 2002.

http://sites.ieee.org/netsoft/files/2017/07/Netsoft2017_Keynote_Bianchi.pdf
http://sites.ieee.org/netsoft/files/2017/07/Netsoft2017_Keynote_Bianchi.pdf
https://www.sdxcentral.com/listings/deutsche-telekom/
https://www.sdxcentral.com/listings/deutsche-telekom/
https://pi-hole.net/
https://docs.docker.com/engine/api/v1.24/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/

BIBLIOGRAPHY 183

[66] Sevil Dr axler et al. “SONATA: Service programming and orchestra-

tion for virtualized software networks”. In: Communications Workshops

(ICC Workshops), 2017 IEEE International Conference on. IEEE. 2017,

pp. 973–978.

[67] Nandita Dukkipati. Rate Control Protocol (RCP): Congestion control to

make flows complete quickly. Citeseer, 2008.

[68] Yehia Elkhatib, Barry Porter, and et al. “On using micro-clouds to de-

liver the fog”. In: (2016).

[69] Yehia Elkhatib et al. “On using micro-clouds to deliver the fog”. In:

IEEE Internet Computing 21.2 (2017), pp. 8–15.

[70] Etsi and Jürgen Quittek. “GS NFV-MAN 001 - V1.1.1 - Network Func-

tions Virtualisation (NFV); Management and Orchestration”. In: 1 (2014).

[71] Network Functions Virtualisation ETSI. “Introductory white paper”. In:

Technical Report, SDN and OpenFlow World Congress. 2012.

[72] OSM ETSI. Open Source MANO. 2016. url: https://osm.etsi.org.

[73] Adrian Farrel, J-P Vasseur, and Jerry Ash. A path computation element

(PCE)-based architecture. Tech. rep. 2006.

[74] Lyndon Fawcett, Matthew Harold Broadbent, and Nicholas John Paul

Race. “Combinatorial Auction-Based Resource Allocation in the Fog”.

In: (2016).

[75] Lyndon Fawcett and Nicholas Race. “Siren: a platform for deployment of

VNFs in distributed infrastructures”. In: Proceedings of the Symposium

on SDN Research. ACM. 2017, pp. 201–202.

[76] Lyndon Fawcett et al. “Tennison: a distributed SDN framework for scal-

able network security”. In: IEEE Journal on Selected Areas in Commu-

nications 36.12 (2018), pp. 2805–2818.

https://osm.etsi.org

BIBLIOGRAPHY 184

[77] Seyed Kaveh Fayazbakhsh et al. “Enforcing network-wide policies in

the presence of dynamic middlebox actions using flowtags”. In: 11th

{USENIX} Symposium on Networked Systems Design and Implemen-

tation ({NSDI} 14). 2014, pp. 543–546.

[78] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The road to SDN:

an intellectual history of programmable networks”. In: ACM SIGCOMM

Computer Communication Review 44.2 (2014).

[79] Wes Felter et al. “An updated performance comparison of virtual ma-

chines and linux containers”. In: 2015 IEEE international symposium

on performance analysis of systems and software (ISPASS). IEEE. 2015,

pp. 171–172.

[80] Clarence Filsfils et al. Segment routing architecture. Tech. rep. 2018.

[81] Clarence Filsfils et al. “SRv6 network programming”. In: Internet-Draft

(2017).

[82] Flask: Python Microframework for web services. url: http://flask.

pocoo.org/.

[83] Fleet: A low-level cluster engine that feels like a distributed init system.

url: https://coreos.com/fleet/docs/latest/.

[84] Thomas Gamer. “Collaborative anomaly-based detection of large-scale

internet attacks”. In: Computer Networks 56.1 (2012), pp. 169–185.

[85] Kostas Giotis et al. “Combining OpenFlow and sFlow for an effective

and scalable anomaly detection and mitigation mechanism on SDN en-

vironments”. In: Computer Networks 62 (2014), pp. 122–136.

[86] Google Cloud Compute (GCC). url: https://cloud.google.com/

compute.

http://flask.pocoo.org/
http://flask.pocoo.org/
https://coreos.com/fleet/docs/latest/
https://cloud.google.com/compute
https://cloud.google.com/compute

BIBLIOGRAPHY 185

[87] Albert Greenberg et al. “A clean slate 4D approach to network con-

trol and management”. In: ACM SIGCOMM Computer Communication

Review 35.5 (2005), pp. 41–54.

[88] OpenFog Consortium Architecture Working Group et al. “OpenFog Ref-

erence Architecture for Fog Computing”. In: OPFRA001 20817 (2017),

p. 162.

[89] Taejin Ha et al. “Suspicious Flow Forwarding for Multiple Intrusion De-

tection Systems on Software-Defined Networks”. In: IEEE Network 30.6

(2016), pp. 22–27.

[90] Taejin Ha et al. “Suspicious traffic sampling for intrusion detection in

software-defined networks”. In: Computer Networks 109 (2016), pp. 172–

182.

[91] Joel Halpern and Carlos Pignataro. Service function chaining (sfc) ar-

chitecture. Tech. rep. 2015.

[92] Soheil Hassas Yeganeh and Yashar Ganjali. “Kandoo: a framework for

efficient and scalable offloading of control applications”. In: Proceedings

of the first workshop on Hot topics in software defined networks. ACM.

2012, pp. 19–24.

[93] Enrique Hernandez-Valencia, Steven Izzo, and Beth Polonsky. “How will

NFV/SDN transform service provider opex?” In: IEEE Network 29.3

(2015), pp. 60–67.

[94] Heidi Howard et al. “Raft refloated: Do we have consensus?” In: (2015).

[95] HPE. Why HPE for SDN. 2019. url: https://www.hpe.com/uk/en/

what-is/sdn.html.

[96] IBM. SIEM QRadar: Detect and stop advanced persistent security threats.

url: https://www.ibm.com/uk-en/marketplace/ibm-qradar-siem.

https://www.hpe.com/uk/en/what-is/sdn.html
https://www.hpe.com/uk/en/what-is/sdn.html
https://www.ibm.com/uk-en/marketplace/ibm-qradar-siem

BIBLIOGRAPHY 186

[97] IEEE. IEEE 1903.2-2017 - IEEE Standard for Service Composition Pro-

tocols of Next Generation Service Overlay Network. 2017. url: https:

//standards.ieee.org/standard/1903_2-2017.html.

[98] Cisco Visual Networking Index. “Forecast and methodology, 2014-2019

white paper”. In: Retrieved 23rd September (2015).

[99] Sushant Jain et al. “B4: Experience with a globally-deployed software

defined WAN”. In: ACM SIGCOMM Computer Communication Review.

Vol. 43. 4. ACM. 2013, pp. 3–14.

[100] Ian Jolliffe. Principal component analysis. Springer, 2011.

[101] Murat Karakus and Arjan Durresi. “A survey: Control plane scalability

issues and approaches in software-defined networking (SDN)”. In: Com-

puter Networks 112 (2017), pp. 279–293.

[102] Hyojoon Kim and Nick Feamster. “Improving network management with

software defined networking”. In: IEEE Communications Magazine 51.2

(2013), pp. 114–119.

[103] Hyojoon Kim et al. “The evolution of network configuration: a tale of

two campuses”. In: Proceedings of the 2011 ACM SIGCOMM conference

on Internet measurement conference. ACM. 2011, pp. 499–514.

[104] Theofrastos Koulouris, Marco Casassa Mont, and Simon Arnell. SDN4S:

Software Defined Networking for Security. Hewlett Packard Labs, 2017.

[105] Diego Kreutz et al. “Software-defined networking: A comprehensive sur-

vey”. In: Proceedings of the IEEE 103.1 (2015), pp. 14–76.

[106] KubeEdge. url: https://kubeedge.io/en/.

[107] Kubernetes: Production-grade container orchestration. 2016. url: https:

//kubernetes.io.

https://standards.ieee.org/standard/1903_2-2017.html
https://standards.ieee.org/standard/1903_2-2017.html
https://kubeedge.io/en/
https://kubernetes.io
https://kubernetes.io

BIBLIOGRAPHY 187

[108] Nikolaos Laoutaris, Pablo Rodriguez, and Laurent Massoulie. “ECHOS:

edge capacity hosting overlays of nano data centers”. In: ACM SIG-

COMM Computer Communication Review 38.1 (2008).

[109] Aurel A Lazar. “Programming telecommunication networks”. In: Build-

ing QoS into Distributed Systems. Springer, 1997, pp. 3–22.

[110] Aurel A. Lazar, Koon-Seng Lim, and Franco Marconcini. “Realizing a

foundation for programmability of atm networks with the binding archi-

tecture”. In: IEEE Journal on Selected Areas in Communications 14.7

(1996), pp. 1214–1227.

[111] Seung-Ik Lee and Shin-Gak Kang. “NGSON: Features, state of the art,

and realization”. In: IEEE Communications Magazine 50.1 (2012).

[112] Seunghyeon Lee et al. “Athena: A framework for scalable anomaly de-

tection in software-defined networks”. In: 2017 47th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN).

IEEE. 2017, pp. 249–260.

[113] Barry M Leiner et al. “A brief history of the Internet”. In: ACM SIG-

COMM Computer Communication Review 39.5 (2009), pp. 22–31.

[114] Yuliang Li et al. “FlowRadar: A Better NetFlow for Data Centers”. In:

NSDI. 2016, pp. 311–324.

[115] Chang Liu, AMehdi Malboubi, and Chen-Nee Chuah. “OpenMeasure:

Adaptive flow measurement & inference with online learning in SDN”. In:

Computer Communications Workshops (INFOCOM WKSHPS), 2016

IEEE Conference on. IEEE. 2016, pp. 47–52.

[116] Anil Madhavapeddy and David J Scott. “Unikernels: the rise of the vir-

tual library operating system”. In: Communications of the ACM 57.1

(2014), pp. 61–69.

BIBLIOGRAPHY 188

[117] Redowan Mahmud, Ramamohanarao Kotagiri, and Rajkumar Buyya.

“Fog computing: A taxonomy, survey and future directions”. In: Internet

of everything. Springer, 2018, pp. 103–130.

[118] Margaret et al. “NFV Introductory White Paper”. In: Citeseer 1 (2012).

[119] Tom Markham and Charlie Payne. “Security at the network edge: A

distributed firewall architecture”. In: DARPA Information Survivabil-

ity Conference & Exposition II, 2001. DISCEX’01. Proceedings. Vol. 1.

IEEE. 2001, pp. 279–286.

[120] A Mayer and S Mansfield. “The third network: Lifecycle service orches-

tration vision”. In: Technical report, MEF (2015).

[121] Nick McKeown et al. “OpenFlow: enabling innovation in campus net-

works”. In: ACM SIGCOMM Computer Communication Review 38.2

(2008), pp. 69–74.

[122] Rashid Mijumbi et al. “Management and orchestration challenges in net-

work functions virtualization”. In: IEEE Communications Magazine 54.1

(2016), pp. 98–105.

[123] Rashid Mijumbi et al. “Network function virtualization: State-of-the-art

and research challenges”. In: IEEE Communications Surveys & Tutorials

18.1 (2015), pp. 236–262.

[124] Mininet: An Instant Virtual Network on your Laptop (or other PC). url:

http://mininet.org.

[125] Daniele Miorandi et al. “Internet of things: Vision, applications and re-

search challenges”. In: Ad Hoc Networks 10.7 (2012), pp. 1497–1516.

[126] Mirantis MCP. 2018. url: https://www.mirantis.com/software/

mcp-edge/.

[127] Mirantis: Run Docker on-premises. url: https://www.mirantis.com/.

http://mininet.org
https://www.mirantis.com/software/mcp-edge/
https://www.mirantis.com/software/mcp-edge/
https://www.mirantis.com/

BIBLIOGRAPHY 189

[128] Jeffrey C Mogul et al. “Devoflow: Cost-effective flow management for

high performance enterprise networks”. In: Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks. ACM. 2010, p. 1.

[129] Roberto Mora. Cisco iox: An application enablement framework for the

internet of things. 2016. url: http : / / www . cisco . com / c / en / us /

products/cloud-systems-management/iox/index.html.

[130] namespaces - overview of Linux namespaces. url: http://man7.org/

linux/man-pages/man7/namespaces.7.html.

[131] Netronome. P4 Programability for the Netronome Agilio SmartNic. 2018.

url: https://www.netronome.com/blog/p4-programmability-for-

the-netronome-agilio-smartnic/.

[132] NFVRG Charter. url: https://datatracker.ietf.org/rg/nfvrg/

about/.

[133] Jiseong Noh et al. “Vulnerabilities of network OS and mitigation with

state-based permission system”. In: Security and Communication Net-

works 9.13 (2016), pp. 1971–1982.

[134] ODL. OpenDayLight clustering documentation. 2018. url: https://

docs.opendaylight.org/en/stable-fluorine/getting-started-

guide/clustering.html.

[135] ONAP. Open Network Automation Platform (ONAP) Architecture. 2017.

url: https://www.onap.org/wp-content/uploads/sites/20/2018/

11/ONAP_CaseSolution_Architecture_112918FNL.pdf.

[136] ONAP Wikipedia. 2018. url: https://en.wikipedia.org/wiki/ONAP.

[137] ONOS. Performance and Scaleout of ONOS 2.0. 2019. url: https://

wiki . onosproject . org / display / ONOS / 2 . 0 - Performance + and +

Scale-out.

http://www.cisco.com/c/en/us/products/cloud-systems-management/iox/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/iox/index.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://www.netronome.com/blog/p4-programmability-for-the-netronome-agilio-smartnic/
https://www.netronome.com/blog/p4-programmability-for-the-netronome-agilio-smartnic/
https://datatracker.ietf.org/rg/nfvrg/about/
https://datatracker.ietf.org/rg/nfvrg/about/
https://docs.opendaylight.org/en/stable-fluorine/getting-started-guide/clustering.html
https://docs.opendaylight.org/en/stable-fluorine/getting-started-guide/clustering.html
https://docs.opendaylight.org/en/stable-fluorine/getting-started-guide/clustering.html
https://www.onap.org/wp-content/uploads/sites/20/2018/11/ONAP_CaseSolution_Architecture_112918FNL.pdf
https://www.onap.org/wp-content/uploads/sites/20/2018/11/ONAP_CaseSolution_Architecture_112918FNL.pdf
https://en.wikipedia.org/wiki/ONAP
https://wiki.onosproject.org/display/ONOS/2.0-Performance+and+Scale-out
https://wiki.onosproject.org/display/ONOS/2.0-Performance+and+Scale-out
https://wiki.onosproject.org/display/ONOS/2.0-Performance+and+Scale-out

BIBLIOGRAPHY 190

[138] ONOS. sflow-rt. 2019. url: https://sflow-rt.com.

[139] ONOS automated benchmarks. url: https://wiki.onosproject.org/

display/ONOS/System+Test+Plans+and+Results.

[140] ONOS IPv6 support (Experimental). 2017. url: https://wiki.onosproject.

org/display/ONOS/IPv6.

[141] ONOS P4 Brigade. url: https://wiki.onosproject.org/display/

ONOS/P4+brigade.

[142] ONOS REST API. url: https://wiki.onosproject.org/display/

ONOS/Appendix+B\%3A+REST+API.

[143] Open-O and ECOMP combine to create ONAP. 2018. url: https://

www.lightreading.com/nfv/nfv-mano/open-o-ecomp-combine-to-

create-onap/d/d-id/730522.

[144] OpenFlow 1.0 Specification. 2009. url: http://flowgrammable.org/

sdn/openflow/actions/.

[145] OpenFlow 1.3 Specification. 2011. url: http://flowgrammable.org/

sdn/openflow/actions/#tab_ofp_1_3.

[146] OpenFlow 1.5 Specification. 2016. url: https://www.opennetworking.

org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

[147] OpenFlow Switch Specification Version 1.5.1. Open Networking Foun-

dation. url: https://www.opennetworking.org/sdn- resources/

technical-library.

[148] OpenFlow Wikipedia Development. 2018. url: https://en.wikipedia.

org/wiki/OpenFlow#Development.

https://sflow-rt.com
https://wiki.onosproject.org/display/ONOS/System+Test+Plans+and+Results
https://wiki.onosproject.org/display/ONOS/System+Test+Plans+and+Results
https://wiki.onosproject.org/display/ONOS/IPv6
https://wiki.onosproject.org/display/ONOS/IPv6
https://wiki.onosproject.org/display/ONOS/P4+brigade
https://wiki.onosproject.org/display/ONOS/P4+brigade
https://wiki.onosproject.org/display/ONOS/Appendix+B\%3A+REST+API
https://wiki.onosproject.org/display/ONOS/Appendix+B\%3A+REST+API
https://www.lightreading.com/nfv/nfv-mano/open-o-ecomp-combine-to-create-onap/d/d-id/730522
https://www.lightreading.com/nfv/nfv-mano/open-o-ecomp-combine-to-create-onap/d/d-id/730522
https://www.lightreading.com/nfv/nfv-mano/open-o-ecomp-combine-to-create-onap/d/d-id/730522
http://flowgrammable.org/sdn/openflow/actions/
http://flowgrammable.org/sdn/openflow/actions/
http://flowgrammable.org/sdn/openflow/actions/#tab_ofp_1_3
http://flowgrammable.org/sdn/openflow/actions/#tab_ofp_1_3
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/sdn-resources/technical-library
https://www.opennetworking.org/sdn-resources/technical-library
https://en.wikipedia.org/wiki/OpenFlow#Development
https://en.wikipedia.org/wiki/OpenFlow#Development

BIBLIOGRAPHY 191

[149] OpenStack. OpenStack VNF Forwarding Graph. 2019. url: https://

docs.openstack.org/tacker/latest/user/vnffg_usage_guide.

html.

[150] OpenTAM Traffic Analysis and Monitoring. url: https://wiki.onosproject.

org/display/ONOS/OPEN-TAM\%3A+Traffic+Analysis+and+Monitoring.

[151] OSM. How to use OpenVIM with OSM. 2019. url: https://osm.etsi.

org/wikipub/index.php/OpenVIM_installation_(Release_TWO).

[152] Aurojit Panda et al. “SCL: Simplifying Distributed SDN Control Planes.”

In: NSDI. 2017, pp. 329–345.

[153] Peafowl: High performance Deep Packet Inspection (DPI) framework to

identify L7 protocols and extract and process data and metadata from

network traffic. url: https://github.com/DanieleDeSensi/peafowl.

[154] Larry Peterson. “Cord: Central office re-architected as a datacenter”. In:

Open Networking Lab white paper (2015).

[155] Larry Peterson et al. “Central office re-architected as a data center”. In:

IEEE Communications Magazine 54.10 (2016).

[156] Larry Peterson et al. “XOS : An Extensible Cloud Operating System”.

In: 2nd International Workshop on Software-Defined Ecosystems (2015),

pp. 23–30.

[157] Xuan Thien Phan and Kensuke Fukuda. “SDN-Mon: Fine-Grained Traf-

fic Monitoring Framework in Software-Defined Networks”. In: Journal of

Information Processing 25 (2017), pp. 182–190.

[158] PICA8. PICOSő The First Two-in-One Open Network Operating System

(NOS) Coupling Full Enterprise Support with Classic SDN. 2019. url:

https://www.pica8.com/product/#sdn-edition.

https://docs.openstack.org/tacker/latest/user/vnffg_usage_guide.html
https://docs.openstack.org/tacker/latest/user/vnffg_usage_guide.html
https://docs.openstack.org/tacker/latest/user/vnffg_usage_guide.html
https://wiki.onosproject.org/display/ONOS/OPEN-TAM\%3A+Traffic+Analysis+and+Monitoring
https://wiki.onosproject.org/display/ONOS/OPEN-TAM\%3A+Traffic+Analysis+and+Monitoring
https://osm.etsi.org/wikipub/index.php/OpenVIM_installation_(Release_TWO)
https://osm.etsi.org/wikipub/index.php/OpenVIM_installation_(Release_TWO)
https://github.com/DanieleDeSensi/peafowl
https://www.pica8.com/product/#sdn-edition

BIBLIOGRAPHY 192

[159] Stefano Previdi et al. Source Packet Routing in Networking (SPRING)

Problem Statement and Requirements. Tech. rep. 2016.

[160] Christofer Price, Sandra Rivera, et al. “Opnfv: An open platform to ac-

celerate nfv”. In: White Paper. A Linux Foundation Collaborative Project

(2012).

[161] Paul Quinn, Uri Elzur, and Carlos Pignataro. Network service header

(nsh). Tech. rep. 2018.

[162] Rancher: Container Orchestration. url: https://rancher.com.

[163] Martin Roesch et al. “Snort: Lightweight intrusion detection for net-

works.” In: Lisa. Vol. 99. 1. 1999, pp. 229–238.

[164] Sean Rooney et al. “The Tempest: a framework for safe, resource as-

sured, programmable networks”. In: IEEE Communications Magazine

36.10 (1998), pp. 42–53.

[165] Arjun Roy et al. “Inside the social network’s (datacenter) network”. In:

ACM SIGCOMM Computer Communication Review. Vol. 45. 4. ACM.

2015, pp. 123–137.

[166] RYU Docs. Supports OF versions 1.0 1.1 1.2 1.3 1.4 and 1.5. 2016. url:

https://media.readthedocs.org/pdf/ryu/latest/ryu.pdf.

[167] Fernando Sánchez and David Brazewell. “Tethered Linux CPE for IP

service delivery”. In: Proceedings of the 2015 1st IEEE Conference on

Network Softwarization (NetSoft). IEEE. 2015, pp. 1–9.

[168] Mahadev Satyanarayanan et al. “The case for vm-based cloudlets in

mobile computing”. In: IEEE pervasive Computing 8.4 (2009).

[169] Stefan Schmid. “LARA++ design specification”. In: Lancaster Univer-

sity DMRG Internal Report, MPG-00-03 (2000).

https://rancher.com
https://media.readthedocs.org/pdf/ryu/latest/ryu.pdf

BIBLIOGRAPHY 193

[170] Beverly Schwartz et al. “Smart packets for active networks”. In: Open Ar-

chitectures and Network Programming Proceedings, 1999. OPENARCH’99.

1999 IEEE Second Conference on. IEEE. 1999, pp. 90–97.

[171] Sandra Scott-Hayward. “Design and deployment of secure, robust, and

resilient SDN Controllers”. In: Network Softwarization (NetSoft), 2015

1st IEEE Conference on. IEEE. 2015, pp. 1–5.

[172] Sandra Scott-Hayward, Sriram Natarajan, and Sakir Sezer. “A survey of

security in software defined networks”. In: IEEE Communications Sur-

veys & Tutorials 18.1 (2016), pp. 623–654.

[173] Teodora Sechkova, Michele Paolino, and Daniel Raho. “Virtualized In-

frastructure Managers for Edge Computing: OpenVIM and OpenStack

Comparison”. In: 2018 IEEE International Symposium on Broadband

Multimedia Systems and Broadcasting (BMSB). IEEE. 2018, pp. 1–6.

[174] Jan Seedorf and Eric Burger. Application-layer traffic optimization (ALTO)

problem statement. Tech. rep. 2009.

[175] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. “OpenStack:

toward an open-source solution for cloud computing”. In: International

Journal of Computer Applications 55.3 (2012).

[176] SFC with NSH and OVS. url: http://www.openvswitch.org/support/

ovscon2015/16/1040-elzur.pdf.

[177] Muhammad Shahbaz et al. “Pisces: A programmable, protocol-independent

software switch”. In: Proceedings of the 2016 ACM SIGCOMM Confer-

ence. ACM. 2016, pp. 525–538.

[178] Rob Sherwood and Yap Kok-Kiong. Cbench: an OpenFlow controller

benchmark tool. 2010. url: https://github.com/mininet/oflops/

tree/master/cbench.

http://www.openvswitch.org/support/ovscon2015/16/1040-elzur.pdf
http://www.openvswitch.org/support/ovscon2015/16/1040-elzur.pdf
https://github.com/mininet/oflops/tree/master/cbench
https://github.com/mininet/oflops/tree/master/cbench

BIBLIOGRAPHY 194

[179] Yuan Shi et al. “CHAOS: An SDN-Based Moving Target Defense Sys-

tem”. In: Security and Communication Networks 2017 (2017).

[180] Seungwon Shin et al. “Avant-guard: Scalable and vigilant switch flow

management in software-defined networks”. In: Proceedings of the 2013

ACM SIGSAC conference on Computer & communications security. ACM.

2013, pp. 413–424.

[181] Seungwon Shin et al. “FRESCO: Modular Composable Security Services

for Software-Defined Networks.” In: NDSS. 2013.

[182] Ankur Singla and Bruno Rijsman. Day One: Understanding OpenCon-

trail Architecture. 2013.

[183] Siren REST API Docs. url: https://github.com/Siren-Project/

Siren-Provisioner/blob/master/README.md.

[184] Karolj Skala et al. “Scalable distributed computing hierarchy: Cloud, fog

and dew computing”. In: Open Journal of Cloud Computing (OJCC) 2.1

(2015), pp. 16–24.

[185] Joao Soares et al. “Cloud4NFV: A platform for Virtual Network Func-

tions”. In: 2014 IEEE 3rd International Conference on Cloud Network-

ing (CloudNet) (2014). url: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6969010.

[186] John Sonchack et al. “Enabling Practical Software-defined Networking

Security Applications with OFX.” In: NDSS. Vol. 16. 2016, pp. 1–15.

[187] Haoyu Song. “Protocol-oblivious forwarding: Unleash the power of SDN

through a future-proof forwarding plane”. In: Proceedings of the second

ACM SIGCOMM workshop on Hot topics in software defined networking.

ACM. 2013, pp. 127–132.

https://github.com/Siren-Project/Siren-Provisioner/blob/master/README.md
https://github.com/Siren-Project/Siren-Provisioner/blob/master/README.md
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6969010
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6969010

BIBLIOGRAPHY 195

[188] Zhiyang Su et al. “FlowCover: Low-cost flow monitoring scheme in soft-

ware defined networks”. In: Global Communications Conference (GLOBE-

COM), 2014 IEEE. IEEE. 2014, pp. 1956–1961.

[189] José Suárez-Varela and Pere Barlet-Ros. “Reinventing NetFlow for Open-

Flow Software-Defined Networks”. In: arXiv preprint arXiv:1702.06803

(2017).

[190] Jose Suarez-Varela and Pere Barlet-Ros. “Towards a NetFlow implemen-

tation for OpenFlow Software-Defined Networks”. In: Teletraffic Congress

(ITC 29), 2017 29th International. Vol. 1. IEEE. 2017, pp. 187–195.

[191] Subashini Subashini and Veeraruna Kavitha. “A survey on security issues

in service delivery models of cloud computing”. In: Journal of network

and computer applications 34.1 (2011), pp. 1–11.

[192] Norton by Symantec. Norton Cybercrime Report. 2013.

[193] Gioacchino Tangari et al. “Decentralized monitoring for large-scale software-

defined networks”. In: Integrated Network and Service Management (IM),

2017 IFIP/IEEE Symposium on. IEEE. 2017, pp. 289–297.

[194] Gioacchino Tangari et al. “Self-adaptive decentralized monitoring in software-

defined networks”. In: IEEE Transactions on Network and Service Man-

agement 15.4 (2018), pp. 1277–1291.

[195] Yoshiaki Taniguchi et al. “Design and Evaluation of a Proxy-Based Moni-

toring System for OpenFlow Networks”. In: The Scientific World Journal

2016 (2016).

[196] Mininet Team. Mininet: An instant virtual network on your laptop (or

other PC). 2012.

BIBLIOGRAPHY 196

[197] David L Tennenhouse and David J Wetherall. “Towards an active net-

work architecture”. In: ACM SIGCOMM Computer Communication Re-

view 26.2 (1996), pp. 5–17.

[198] David L Tennenhouse et al. “A survey of active network research”. In:

IEEE communications Magazine 35.1 (1997), pp. 80–86.

[199] TENNISON: SDN Monitoring and Remediation Framework. 2018. url:

https://github.com/SDN-Security/TENNISON/.

[200] Web scraped CPE motivation results and generation. 2017. url: https:

//github.com/lyndon160/CPE-Scraper.git.

[201] The importance of network monitoring in 5G. 2018. url: https : / /

blog.mobile-network-testing.com/total-cost-of-ownership/

monitoring-network-performance/.

[202] The Zeek Network Security Monitor. url: https://www.zeek.org.

[203] TM Forum. ZOOM (Zero-Touch Orchestration Operations and Man-

agement). url: https://www.tmforum.org/collaboration/zoom-

project/.

[204] Amin Tootoonchian, Monia Ghobadi, and Yashar Ganjali. “OpenTM:

traffic matrix estimator for OpenFlow networks”. In: International Con-

ference on Passive and Active Network Measurement. Springer. 2010,

pp. 201–210.

[205] Pang-Wei Tsai et al. “Network Monitoring in Software-Defined Network-

ing: A Review”. In: IEEE Systems Journal (2018).

[206] Muhammad Usman, Aris Cahyadi Risdianto, and JongWon Kim. “Re-

source monitoring and visualization for OpenFlow SDN-enabled multi-

site cloud”. In: Information Networking (ICOIN), 2016 International

Conference on. IEEE. 2016, pp. 427–429.

https://github.com/SDN-Security/TENNISON/
https://github.com/lyndon160/CPE-Scraper.git
https://github.com/lyndon160/CPE-Scraper.git
https://blog.mobile-network-testing.com/total-cost-of-ownership/monitoring-network-performance/
https://blog.mobile-network-testing.com/total-cost-of-ownership/monitoring-network-performance/
https://blog.mobile-network-testing.com/total-cost-of-ownership/monitoring-network-performance/
https://www.zeek.org
https://www.tmforum.org/collaboration/zoom-project/
https://www.tmforum.org/collaboration/zoom-project/

BIBLIOGRAPHY 197

[207] Niels LM Van Adrichem, Christian Doerr, and Fernando A Kuipers.

“Opennetmon: Network monitoring in openflow software-defined net-

works”. In: Network Operations and Management Symposium (NOMS),

2014 IEEE. IEEE. 2014, pp. 1–8.

[208] Luis M Vaquero and Luis Rodero-Merino. “Finding your way in the

fog: Towards a comprehensive definition of fog computing”. In: ACM

SIGCOMM Computer Communication Review 44.5 (2014), pp. 27–32.

[209] Pier Luigi Ventre et al. “Performance evaluation and tuning of virtual

infrastructure managers for (micro) virtual network functions”. In: 2016

IEEE Conference on Network Function Virtualization and Software De-

fined Networks (NFV-SDN). IEEE. 2016, pp. 141–147.

[210] Verizon. SDN-NFV Reference Architecture. 2016. url: http://innovation.

verizon.com/content/dam/vic/PDF/Verizon_SDN-NFV_Reference_

Architecture.pdf.

[211] Thorsten Von Eicken et al. “Active messages: a mechanism for integrated

communication and computation”. In: ACM SIGARCH Computer Ar-

chitecture News. Vol. 20. 2. ACM. 1992, pp. 256–266.

[212] VSFTPD Backdoor Command Execution (Metasploit). 2011. url: https:

//www.exploit-db.com/exploits/17491/.

[213] An Wang et al. “Umon: Flexible and fine grained traffic monitoring in

open vswitch”. In: Proceedings of the 11th ACM Conference on Emerging

Networking Experiments and Technologies. ACM. 2015, p. 15.

[214] HaddadWassim, Mahkonen Heikki, and Manghirmalani Ravi. NFV Plat-

forms with MirageOS Unikernels. Accessed: 2017-02-20. 2016.

[215] WebSockets definition. url: https://en.wikipedia.org/wiki/WebSocket.

http://innovation.verizon.com/content/dam/vic/PDF/Verizon_SDN-NFV_Reference_Architecture.pdf
http://innovation.verizon.com/content/dam/vic/PDF/Verizon_SDN-NFV_Reference_Architecture.pdf
http://innovation.verizon.com/content/dam/vic/PDF/Verizon_SDN-NFV_Reference_Architecture.pdf
https://www.exploit-db.com/exploits/17491/
https://www.exploit-db.com/exploits/17491/
https://en.wikipedia.org/wiki/WebSocket

BIBLIOGRAPHY 198

[216] Georgios Xilouris et al. “T-NOVA: A marketplace for virtualized network

functions”. In: 2014 European Conference on Networks and Communi-

cations (EuCNC). IEEE. 2014, pp. 1–5.

[217] Kok-Kiong Yap et al. “Taking the edge off with espresso: Scale, reliability

and programmability for global internet peering”. In: Proceedings of the

Conference of the ACM Special Interest Group on Data Communication.

ACM. 2017, pp. 432–445.

[218] Curtis Yu et al. “Flowsense: Monitoring network utilization with zero

measurement cost”. In: International Conference on Passive and Active

Network Measurement. Springer. 2013, pp. 31–41.

[219] Minlan Yu, Lavanya Jose, and Rui Miao. “Software Defined Traffic Mea-

surement with OpenSketch.” In: NSDI. Vol. 13. 2013, pp. 29–42.

[220] Minlan Yu et al. “Scalable flow-based networking with DIFANE”. In:

ACM SIGCOMM Computer Communication Review 41.4 (2011), pp. 351–

362.

[221] Tianlong Yu et al. “PSI: Precise Security Instrumentation for Enterprise

Networks”. In: Proc. NDSS. 2017.

[222] Adel Zaalouk et al. “Orchsec: An orchestrator-based architecture for en-

hancing network-security using network monitoring and sdn control func-

tions”. In: Network Operations and Management Symposium (NOMS),

2014 IEEE. IEEE. 2014, pp. 1–9.

[223] SIA Zabbix. Zabbix. The Enterprise-class Monitoring Solution for Ev-

eryone. 2014.

[224] Zhi-Kai Zhang et al. “IoT security: ongoing challenges and research

opportunities”. In: 2014 IEEE 7th international conference on service-

oriented computing and applications. IEEE. 2014, pp. 230–234.

	Introduction
	Contemporary Network Monitoring and Remediation
	Prospects for Next Generation Networking
	Thesis Statement
	Thesis Aims and Contributions
	Thesis Structure

	Background and Related Work
	Programmable networks
	Software Defined Networking
	OpenFlow
	P4

	Scalable Programmable Networks
	In Network Intelligence
	Distributed SDN Controller Performance

	Software Defined Network Monitoring and Security
	SDN Monitoring Solutions and Scalability
	SDN Security Frameworks

	Network Functions Virtualisation

	Emerging Computing Architectures
	Management and Orchestration
	Management and Orchestration Standardisation
	Virtualised Infrastructure Manager (VIM)
	Virtual Network Function Manager (VNFM)
	Network Functions Virtualisation Orchestrator (NFVO)
	Service Function Chaining (SFC)
	Segment Routing (SR)
	Next Generation Service Overlay Networks (NGSON)
	Network Service Header (NSH)

	NFV Management and Orchestration Implementations
	Cloudify cloudify
	Open Source MANO (OSM) etsi2016open
	OpenBaton carella2015open
	ONAP onap-arch
	ZOOM zoom
	SONATA draxler2017sonata
	T-NOVA t-nova
	OpenContrail singla2013day, opencontail
	CloudNFV cloud-nfv
	OpenVIM openvim
	CORD peterson2015cord
	Open Platform for NFV (OPNFV) price2012opnfv

	Container Management and Orchestration Implementations
	Kubernetes kube
	Swarm swarm
	Fleet fleet
	MESOS mesos
	Rancher rancher
	Mirantis mirantis

	Summary

	Designing Responsive and Scalable Network Monitoring
	Motivation
	The Cloud-to-Fog Continuum
	Analysis of SDN/NFV Performance in Edge Networks
	Experimentation Environment
	Analysis of Fog Placement
	Limitations of Scalability and Distribution within Contemporary Solutions and Technologies
	SDN Controller Scale:
	VNF Forwarding:
	NFV Deployment to Heterogeneous Environments:

	Summary

	High Level Design Requirements
	Design Considerations
	Monitoring Agility and Control
	SDN Controllers
	NFV Connectivity
	Network Service Header (NSH)
	Source Routing (SR) with IPv6
	Vendor locked tunneling
	VLAN based tunneling
	Middle-boxes and encapsulation

	Monitoring Methodology
	Redirection:
	Mirroring:
	Middlebox:
	Full OpenFlow Packet-In:
	Header monitoring:

	Deployment Flexibility
	Centralised
	Distributed
	Tiered

	Network Service Orchestration Methodology
	Cost-based Orchestration
	Service Agnostic Auction-based Orchestration
	Monitoring Orchestration

	Virtualisation Technology
	Virtual Machines (VMs)
	Containers
	UniKernels

	Technology Agnostic Architecture
	Southbound Protocol:
	SDN Controller:
	Network Hardware:

	Design Overview
	Tennison: Monitoring and Remediation Framework
	Tennison Coordinator
	Southbound Interface (SBI) Modules
	Data Broker
	Event Logger
	Policy Engine
	Northbound Interface

	Tennison Multi-level Monitoring
	SDN Controller Distribution
	Tiered Network Monitoring
	Subdomain Manager
	Domain Manager
	Inter Domain Manager

	Siren: Infrastructure Management and Orchestration Platform
	Service Discovery
	Service Provisioner
	Agents
	Life Cycle Manager (LMC)
	Orchestration Methodologies
	Auctioning
	Cost-based
	Network Awareness-based

	Data Plane Pipeline Design
	OpenFlow
	P4

	Summary

	Implementation
	Implementing Tennison
	Tennison Security Pipeline
	Network Controller
	Controller distribution
	Security Intents
	ONOS Application Pipeline
	Implementing Multi-level Monitoring

	Tennison Security Functions in Operation
	Single Host Volumetric Denial of Service Attack
	Distributed Volumetric Denial of Service Attack
	Scanning Attack
	Intrusion Attack
	Tennison Web Console
	Experimentation Framework
	Tiered Implementation
	Summary of Tennison Functionality

	Implementing Siren
	Test Virtual Network Functions
	DPI
	DNS
	CDN

	Network Controller
	Dynamic Redirection and Mirroring to Distributed VNFs
	Monitoring Orchestrator
	Orchestration Policy Manifest

	Siren: Web Console
	Siren in Operation
	Siren Summary

	Evaluation
	Tennison Evaluation
	Framework Comparison
	Evaluation Environment
	Distributed SDN Controller Performance
	Attack Detection/Protection Latency
	DDoS
	Scanning
	Intrusion
	High-volume DoS

	System Scalability
	Multi-Level Monitoring
	Distributed Control Cost
	Monitoring Performance Analysis

	Impact of Monitoring with Tennison
	Tiered Tennison Evaluation
	Tiered Tennison Summary

	Comparative Design Evaluation
	P4-Enabled Tennison

	Siren Evaluation
	Network Provider Cost
	Experimentation Environment and Scenarios
	Analysis

	Summary

	Conclusion and Future Work
	Thesis Contributions
	Thesis Impact

	Future Work
	Monitoring with Data Plane Programabiltiy
	Advancing with the Evolution of Edge Computing
	Applying Artificial Intelligence
	Extending Network Monitoring Visibility
	Integration with Maturing NFV Technologies

	Supplementary results
	ONOS Scaling Analysis

	Tennison Developer's Guide
	Bibliography

