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Abstract

The aim of this thesis is to present novel contributions in multivariate extreme value

analysis, with focus on extremal dependence properties. A set of random variables is

often categorized as being asymptotically dependent or asymptotically independent,

based on whether the largest values occur concurrently or separately across all mem-

bers of the set. However, there may be a more complicated structure to the extremal

dependence that is not fully described by this classification, with different subsets of

the variables potentially taking their largest values simultaneously while the others

are of smaller order. Knowledge of this detailed structure is essential, and aids effi-

cient statistical inference for rare event modelling.

We propose a new set of indices, based on a regular variation assumption, that

describe the extremal dependence structure, and present and compare a variety of in-

ferential approaches that can be used to determine the structure in practice. The first

approach involves truncation of the variables, while in the second we study the joint

tail behaviour when subsets of variables decay at different rates. We also consider

variables in terms of their radial-angular components, presenting one method based

on a partition of the angular simplex, alongside two soft-thresholding approaches

that incorporate the use of weights. The resulting estimated extremal dependence

structures can be used for dimension reduction, and aid the choice or construction of

appropriate extreme value models.

I



II

We also present an extensive analysis of the multivariate extremal dependence

properties of vine copulas. These models are constructed from a series of bivariate

copulas according to an underlying graphical structure, making them highly flexible

and useful in moderate or even high dimensions. We focus our study on the coefficient

of tail dependence, which we calculate for a variety of vine copula classes by applying

and extending an existing geometric approach involving gauge functions. We offer

new insights by presenting results for trivariate vine copulas constructed from bivari-

ate extreme value and inverted extreme value copulas. We also present new theory

for a class of higher dimensional vine copulas.

An approach for predicting precipitation extremes is presented, resulting from

participation in a challenge at the 2017 EVA conference. We propose using a Bayesian

hierarchical model with inference via Markov chain Monte Carlo methods and spatial

interpolation.
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Chapter 1

Introduction

1.1 Motivation

There are many situations where it may be necessary to understand and model ex-

treme values. Areas of interest range from environmental applications, such as high

river flows or extreme weather events, to financial ones, like stock market movements.

The occurrence of extreme events can have a huge impact, and a better understanding

of the types of extremes we may expect can help us to mitigate their effect.

One of the main issues faced in modelling extreme values is the often limited data

available; the events of interest may have never been observed, so standard statistical

modelling techniques may not apply. We therefore require a range of asymptotically-

motivated tools, which come from extreme value theory. A wide range of results are

available for modelling extremes, including classical approaches for univariate and

multivariate cases, as well as a variety of more recent advancements. There is increas-

ing interest in more complicated situations involving multivariate extremes, and there

is still work to be done to develop the theory and methodology necessary for these

circumstances; we focus on two such cases in this thesis.

1
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Many existing methods for modelling multivariate extremes are only applicable

either if all of the variables take their largest values simultaneously, or if they occur

separately in each one. However, in some scenarios it is possible for certain subsets

of the variables to take their largest values simultaneously while the others are small,

and models for the extreme values should reflect this. We aim to develop methods to

determine these possibly complex extremal dependence structures, with the ultimate

aim being to aid model selection.

We also consider the case where there is a specific underlying dependence structure

among the variables. The example we focus on is vine copulas (Joe, 1996; Bedford and

Cooke, 2001, 2002), which are a class of multivariate model constructed from a series

of bivariate copulas, and whose dependence structure can be represented graphically.

Owing to their flexibility, vine copulas have grown in popularity in recent years, and

have the potential to be used for modelling multivariate extremes. We investigate

how imposing the graphical dependence structure of vine copulas influences the tail

dependence properties that can be captured by such models.

1.2 Outline of thesis

The overall aim of this thesis is to develop methods for assessing and modelling de-

pendence in multivariate extremes. There already exists a rich literature in this area;

we aim to build on this work with some novel approaches, which are outlined in this

section.

Chapter 2 gives an overview of some of the techniques that can be used in extreme

value modelling. We begin with a brief introduction to some of the standard methods

for modelling univariate extremes, before reviewing existing methods for multivariate

extreme value analysis, and finally introducing the concept of vine copulas.
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In Chapter 3, we introduce methodology for determining the dependence structure

of multivariate extremes; that is, the subsets of variables that can take their largest

values simultaneously, while the others are of smaller order. Under a regular varia-

tion assumption, we present a new set of indices that reveal aspects of the extremal

dependence structure not available through any existing measures of dependence. We

derive theoretical properties of these indices, demonstrate their value through a se-

ries of examples, and develop inferential methods that also allow us to estimate the

proportion of extremal mass associated with each subset of variables. We apply the

methods to UK river flows, estimating the probabilities of different subsets of sites

being large simultaneously.

In Chapter 4, we present alternative methods for determining extremal depen-

dence structures; this time in a radial-angular setting. The first of these is a simplex-

partitioning approach based on a regular variation assumption. This setting also

enables us to introduce a soft-thresholding approach that allows the information from

each observation to be shared across multiple faces. This is achieved by assigning

weights to points in the angular simplex based on their proximity to the various faces.

We also implement this soft-thresholding technique to extend the approach of Goix

et al. (2016). We compare the simplex-partitioning method and both these weighted

approaches to the methods in Chapter 3 via a simulation study, using receiver op-

erating characteristic curves to test their performance as classifiers, and comparing

Hellinger distances to assess the estimation of the proportion of extremal mass as-

signed to each face of the angular simplex. In several cases in this simulation study,

these radial-angular methods show improvement over those in Chapter 3.

In Chapter 5, we investigate some of the tail dependence properties of vine cop-

ulas by calculating the coefficient of tail dependence η (Ledford and Tawn, 1996) for
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certain sub-classes of this model. We focus on the trivariate case, and vine copulas

constructed from extreme value and inverted extreme value pair copulas. We follow

the approach of Nolde (2014), who investigates the limiting shape of suitably-scaled

sample clouds to give a geometric interpretation of η, which allows for calculation

of this coefficient from a joint density. By extending this theory, we propose a way

to calculate η for multivariate margins when the joint density can only be expressed

analytically for a higher order multivariate distribution. We also consider using nu-

merical approximation for cases where η cannot be found analytically.

Chapter 6 was written following entry of a STOR-i team to the EVA2017 chal-

lenge. The aim of the challenge was to predict extreme precipitation quantiles across

several sites in the Netherlands. Our proposed method uses a Bayesian hierarchical

structure, and a combination of Gamma and generalized Pareto distributions. We

impose a spatio-temporal structure in the model parameters via an autoregressive

prior, and propose estimating model parameters using Markov chain Monte Carlo

techniques and spatial interpolation. Our approach was successful in the context

of the challenge, providing reasonable improvements over the benchmark method in

terms of the quantile loss function of Koenker (2005).

In Chapter 7, we summarize the contributions of this thesis, and discuss some

possible avenues for future work. The latter includes an alternative parameter esti-

mation method for the approaches of Chapter 3, and a way to deal with negligible

mass assigned to faces of the angular simplex in the methods of Chapters 3 and 4.

We also propose a mixture model based on the conditional extreme value modelling

approach of Heffernan and Tawn (2004) that has the potential to capture different

combinations of tail dependence features; we suggest using Hamiltonian Monte Carlo

techniques for inference, and demonstrate the use of this model in the bivariate case.



Chapter 2

Literature Review

2.1 Introduction

When studying extreme events, we are concerned with the tails of a distribution, where

the intrinsically small number of observations make statistical modelling a challenge.

We may also be interested modelling events that have not been observed in the data,

meaning that extrapolation is a key concern. Due to the usually limited amount of

data, empirical methods and other standard statistical techniques may not be appli-

cable; we instead require results from extreme value theory.

In this chapter, we introduce some of the methods currently available to model

extreme events. We begin with an overview of classical results for modelling univari-

ate extremes in Section 2.2, before discussing multivariate techniques in Section 2.3.

In Section 2.4, we discuss existing ideas for modelling multivariate extremes where

there is some underlying structure controlling the dependence between the variables.

Finally, we introduce a class of multivariate models known as vine copulas in Sec-

tion 2.5; these models also have a specific dependence structure which can be repre-

sented graphically, and could be exploited in multivariate extreme value modelling.

5
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2.2 Univariate extreme value theory

2.2.1 Overview

A thorough review of standard methods for modelling univariate extremes can be

found in Coles (2001). Here, we discuss some of the main results, including two

common approaches for modelling univariate extremes, based on the generalized

extreme value (GEV) and generalized Pareto (GP) distributions, discussed in Sec-

tions 2.2.2 and 2.2.3, respectively.

2.2.2 Generalized extreme value distribution

Let X1, . . . , Xn be independent random variables with common distribution function

F . The upper tail of distribution F can be modelled by considering

Mn = max(X1, . . . , Xn).

By the extremal types theorem of Leadbetter et al. (1983), if there exist series an > 0

and bn such that

Pr

(
Mn − bn
an

≤ x

)
→ G(x),

as n → ∞, with G non-degenerate, then G belongs to the family of extreme value

distributions, and the distribution function F of each of the Xi variables is said to lie

in the domain of attraction of G.

The distribution function G corresponds to either a negative Weibull, Fréchet or

Gumbel distribution, and these three cases can be combined into a single family of

the form

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
+

}
, (2.2.1)

with location parameter µ ∈ (−∞,∞), scale parameter σ ∈ (0,∞) and shape pa-

rameter ξ ∈ (−∞,∞), and where x+ := max(x, 0). This model is known as the



CHAPTER 2. LITERATURE REVIEW 7

generalized extreme value (GEV) distribution. For ξ < 0, this corresponds to the

negative Weibull distribution; for ξ > 0, the distribution is Fréchet; and the GEV

distribution with ξ = 0 (interpreted as ξ → 0) corresponds to a Gumbel distribution.

Assuming that equation (2.2.1) holds exactly for large n, we have

Pr(Mn ≤ x) = G

(
x− bn
an

)
= G̃(x),

where G̃ represents a GEV distribution with different location and scale parameters

to G. This result allows us to use the GEV distribution to model maxima in practice.

A common method in modelling univariate extremes is to use the block maxima

approach, where data are separated into sections of equal length, and the maximum

value observed in each block is considered to be a realization of a GEV random

variable; this is demonstrated in the left panel of Figure 2.2.1. The maximum observed

values from the different blocks are used for inference of the GEV parameters.

0 100 200 300 400 500 600 700

0
2

4
6

Block maxima approach

Time
0 100 200 300 400 500 600 700

0
2

4
6

Threshold exceedance approach

Time

Figure 2.2.1: A demonstration of the data considered extreme in the block maxima

and threshold exceedance methods.

Theory for modelling the lower tail of a distribution can be derived from the theory

for the upper tail by exploiting the relation

min(X1, . . . , Xn) = −max(−X1, · · · −Xn).

It is therefore sufficient for us to consider only the latter case here.
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2.2.3 Generalized Pareto distribution

A common criticism of the block maxima approach is that taking only one value per

block may lead to some information about extreme events being disregarded. A typi-

cal alternative is to consider values above a high threshold, u, as being extreme, and

to fit a model to the exceedances above that threshold. This method generally uti-

lizes more of the extreme observations than the block maxima approach; an example

is shown in the right panel of Figure 2.2.1.

A model for threshold exceedances can be motivated via the point process represen-

tation of Pickands (1971). Suppose we have independent and identically distributed

random variables X1, . . . , Xn, whose common distribution function F has upper end-

point xF , and that there exist an > 0 and bn such that Pr {(Mn − bn)/an ≤ x} →

G(x), where G follows a GEV distribution. As n → ∞, it can be shown that the

point process

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
: i = 1, . . . , n

}
converges to a non-homogeneous Poisson process, P , with integrated intensity

Λ
(
[c1, c2]× [x,∞)

)
= (c2 − c1)

[
1 + ξ

(
x− µ
σ

)]−1/ξ
+

, (2.2.2)

on [0, 1] × [xG,∞), for xG = inf{x : G(x) > 0} and 0 < c1 < c2 < 1. Coles (2001),

for example, demonstrates that a model for threshold exceedances may be obtained

from this limiting Poisson process result. First note that the integrated intensity in

(2.2.2) may be written as

Λ
(
[c1, c2]× (x,∞)

)
= Λ1

(
[c1, c2]

)
× Λ2

(
[x,∞)

)
,

with

Λ1

(
[c1, c2]

)
= c2 − c1 and Λ2

(
[x,∞)

)
=

[
1 + ξ

(
x− µ
σ

)]−1/ξ
+

.

Then, for u > xG, we have

Pr

(
Xi − bn
an

≤ x+ u

∣∣∣∣Xi − bn
an

> u

)
= 1− Pr

(
Xi − bn
an

> x+ u

∣∣∣∣Xi − bn
an

> u

)
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→ 1−
Λ2

(
[x+ u,∞)

)
Λ2

(
[u,∞)

) , as n→∞

= 1−
[
1 + ξ

(
x+u−µ

σ

)]−1/ξ
+[

1 + ξ
(
u−µ
σ

)]−1/ξ
+

= 1−
[
1 +

ξx

σu

]−1/ξ
+

=: H(x), (2.2.3)

where σu = σ + ξ(u − µ). Distributions of the form H(x) are termed generalized

Pareto (GP) distributions.

By a similar argument as for the GEV distribution, treating (2.2.3) as an equality

for large n, we may disregard the constants an and bn for modelling purposes. To see

this, first note that by (2.2.3), for large u, we have

Pr (Xi > anx+ anu+ bn | Xi > anu+ bn) =

[
1 +

ξx

σu

]−1/ξ
+

.

Now, setting un = anu+ bn, and y = anx,

Pr (Xi > y + un | Xi > un) =

[
1 +

ξx

σu,n

]−1/ξ
+

,

which corresponds to a generalized Pareto distribution with scale parameter σu,n =

anσu. As the threshold un tends towards xF , exceedances above un may therefore be

modelled using the GP distribution.

We can fit both GEV and GP distributions numerically using standard maximum

likelihood techniques. One of the main issues that arises when carrying out inference

for the GP distribution is choosing a suitable value for the threshold. This must be

small enough that we have sufficient data to fit the model, but large enough that the

results provide a valid asymptotic approximation. One simple approach is to consider

parameter stability plots, as outlined by Coles (2001), in which parameter estimates

are observed over a range of threshold choices. An issue here is that stability plots

corresponding to different parameters do not always lead to the same conclusions,
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meaning they are often difficult to interpret. To overcome this, Wadsworth (2016)

proposes an alternative threshold selection method based on the joint distribution

of the estimated model parameters, and discusses a way to automate this method,

avoiding the need to interpret plots by eye. There is a large amount of further research

on the topic of threshold selection; a review of many of these techniques is given by

Scarrott and MacDonald (2012), while more recent approaches include a Bayesian

cross-validation technique proposed by Northrop et al. (2017).

2.3 Multivariate extreme value theory

2.3.1 Defining extreme events

Unlike in the univariate case where we consider maxima and minima, there is no

clear, single way to define an extreme event for multiple variables. The most suitable

definition of an extreme event will usually depend on context; Barnett (1976) suggests

several possibilities. One of the most common ways of defining a multivariate extreme

event is to consider componentwise maxima, i.e., the maximum of each variable, which

may not correspond to an actual observation. Alternatives include defining a convex

hull around the data, with points lying on or beyond this region deemed extreme;

considering observations which contain the maximum of at least one variable; and

defining some function of the data, which may allow transformation of the problem

to the univariate setting, as considered by Coles and Tawn (1994).

2.3.2 Copula theory

In multivariate modelling, it is important to consider the dependence properties of

the variables. Copulas provide a way to separate marginal modelling from depen-

dence modelling, which is often useful in practice. Joe (1997) and Nelsen (2006) give

textbook treatments of copula modelling, while Joe (2014) provides a review of more
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recent developments in the area.

By Sklar’s theorem (Sklar, 1959), if X = (X1, . . . , Xd) has joint distribution func-

tion F , and Xi ∼ Fi, for i = 1, . . . , d and each Fi continuous, then there exists a

unique copula C such that

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}.

The copula C is essentially a distribution function with Uniform(0, 1) marginal dis-

tributions, and determines the dependence structure of the variables. This result,

alongside the probability integral transform, allows for transformation between differ-

ent marginal distributions while preserving the dependence properties of the variables.

If Xi is a continuous random variable with distribution function Fi and inverse

distribution function F−1i , then by the probability integral transform, U = Fi(X) ∼

Uniform(0, 1), and F−1i (U) ∼ Fi. So for instance, we may obtain a copula CF with

standard Fréchet margins via

F (x1, . . . , xd) = CF

{
− 1

logF1(x1)
, . . . ,− 1

logFd(xd)

}
,

a copula CE with standard exponential margins is defined by

F (x1, . . . , xd) = CE [− log{1− F1(x1)}, . . . ,− log{1− Fd(xd)}] ,

and for standard Gumbel margins, the copula CG satisfies

F (x1, . . . , xd) = CG [− log{− logF1(x1)}, . . . ,− log{− logFd(xd)}] .

Analogous results can be used for transformation to other marginal distributions.

These results are often used in multivariate extreme value theory, where transform-

ing margins can highlight particular features of the extreme values. In the Fréchet

case, the very largest values are accentuated, whilst exponential or Gumbel margins
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Figure 2.3.1: Example of data transformed to different marginal distributions.

are used in the conditional approach of Heffernan and Tawn (2004), discussed in Sec-

tion 2.3.11, to focus on the behaviour of variables given that one of the variables is

extreme. A demonstration of data transformed to different marginal distributions is

given in Figure 2.3.1, for data simulated from a bivariate extreme value logistic dis-

tribution with dependence parameter α = 0.75. This model will be discussed further

in Section 2.3.3.

2.3.3 Componentwise maxima

Consider n independent d-dimensional random vectors X1, . . . , Xn with common

distribution function F . We denote the vector of componentwise maxima by Mn =

(Mn,1, . . . ,Mn,d), where Mn,i = maxj∈{1,...,n}Xj,i, for i = 1, . . . , d, and Xj,i denotes

element i of the vector Xj. In a similar way to the univariate case, suppose there

exist constants an,i > 0 and bn,i, for i = 1, . . . , d, such that

Pr

(
Mn,1 − bn,1

an,1
≤ x1, . . . ,

Mn,d − bn,d
an,d

≤ xd

)
→ G(x1, . . . , xd),

as n → ∞, for some limiting distribution function G that is non-degenerate in each

margin. Unlike in the univariate case, the distribution G does not have a single para-

metric form, although each of the marginal distributions of G is a GEV distribution.

Setting identical margins is often the easiest way in practice to study the properties of

G, since this allows for focus on the dependence between the variables, as motivated
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by the copula theory in Section 2.3.2. Choosing standard Fréchet marginal distribu-

tions emphasizes the largest values, as demonstrated in Figure 2.3.1; this is therefore

the usual choice for modelling componentwise maxima. In particular, if Xi has a unit

Fréchet distribution for each i = 1, . . . , d, so that Pr(Xi < x) = exp(−1/x) for x > 0,

G may be written as

G(x) = exp{−V (x)}, (2.3.1)

where x = (x1, . . . , xd) and xi > 0 for i = 1, . . . , d. The function V is known as the

exponent measure, and, for Sd−1 =
{
w ∈ [0, 1]d :

∑d
i=1wi = 1

}
, takes the form

V (x) = d

∫
Sd−1

max
i=1,...,d

(
wi
xi

)
dH(w), (2.3.2)

where H is termed the spectral measure and, for i = 1, . . . , d, satisfies∫
Sd−1

widH(w) =
1

d
. (2.3.3)

Special cases include independence between X1 and X2, where V (x1, x2) = x−11 +

x−12 and H({0}) = H({1}) = 1/2; and perfect dependence, which corresponds to

V (x1, x2) = max
(
x−11 , x−12

)
and H ({1/2}) = 1.

Functions G(x) satisfying (2.3.1) are termed multivariate extreme value distribu-

tions. Several parametric models of this form have been proposed in the literature,

including the logistic distribution of Gumbel (1960), for which the exponent measure

is

V (x) =

(
d∑
i=1

x
−1/α
i

)α

, (2.3.4)

for α ∈ (0, 1]. For this model, taking α = 1 leads to independence between the

variables, while as α → 0 we approach the case of complete dependence; in general,

smaller values of α correspond to stronger dependence between the variables. Another

parametric model is the asymmetric logistic distribution, proposed in the bivariate
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case by Tawn (1988), and extended to the multivariate setting by Tawn (1990). The

exponent measure for the asymmetric logistic distribution has the form

V (x) =
∑

C∈2D\∅

{∑
i∈C

(
θi,C
xi

)1/αC
}αC

, (2.3.5)

with αC ∈ (0, 1], θi,C ∈ [0, 1], θi,C = 0 if i /∈ C, and
∑

C∈2D\∅
θi,C = 1 for all i = 1, . . . , d,

and C ∈ 2D\∅, where 2D denotes the power set of D = {1, . . . , d}. The parameters αC

control dependence in a similar way to α in the logistic model, although this time just

for the corresponding subsets of the variables. Other parametric models belonging

to the class of multivariate extreme value distributions include the negative logistic

model of Galambos (1975); the negative asymmetric logistic model of Joe (1990); and

the Hüsler-Reiss distributions (Hüsler and Reiss, 1989).

Ledford and Tawn (1997) propose inverting models of the form (2.3.1) for the

case where d = 2, so that the joint lower tail becomes the joint upper tail, and vice

versa. The resulting class of models are known as inverted bivariate extreme values

distributions, with copula of the form

C(u, v) = u+ v − 1 + exp

[
−V

{
−1

log(1− u)
,

−1

log(1− v)

}]
. (2.3.6)

These models exhibit different tail dependence properties to the corresponding ex-

treme value distributions, and will be discussed further in Sections 2.3.7 and 2.3.10.

2.3.4 The linking between V and H

The exponent measure V and spectral measure H are related, due to the definition

of V in (2.3.2), and Coles and Tawn (1991) show that these measures are linked via

further relations. Specifically, in the bivariate case, they show that

h(w) = −(x1 + x2)
3

2

∂2

∂x1∂x2
V (x1, x2), for w ∈ (0, 1),

H({0}) = −x
2
2

2

∂

∂x2
V (x1, x2)

∣∣∣
x1=0

,
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and H({1}) = −x
2
1

2

∂

∂x1
V (x1, x2)

∣∣∣
x2=0

.

A similar result for the d-dimensional case links the exponent measure V and spectral

density h via

h

(
x∑d
i=1 xi

)
= −

(∑d
i=1 xi

)d+1

d

∂d

∂x1, . . . , ∂xd
V (x).

Moreover, for any subset of variables XC = {Xi : i ∈ C} for C ∈ 2D \ ∅ and

D = {1, . . . , d}, Coles and Tawn (1991) show that the spectral density hC for events

that are extreme only in XC is given by

hC

 xC∑
i∈C

xi

 = −

(∑
i∈C

xi

)|C|+1

|C|

(∏
i∈C

∂

∂xi

)
V (x). (2.3.7)

For instance, consider the asymmetric logistic model with exponent measure (2.3.5).

In this case, applying (2.3.7), we find that the spectral density corresponding to the

set C is given by

hC(wC) = −

(∑
i∈C

xi

)|C|+1

|C|


|C|−1∏
i=0

(
i− αC
αC

)
(∏
i∈C

θ
1/αC
i,C

x
1+1/αC
i

){∑
i∈C

(
θi,C
xi

)1/αC
}αC−|C|

,

for wC = xC/
∑
i∈C

xi.

2.3.5 Pickands’ dependence function

In the bivariate case, again with standard Fréchet margins, the exponent measure

V (x1, x2) links to Pickands’ dependence function A(w) (Pickands, 1981) via the equa-

tion

V (x1, x2) =

(
1

x1
+

1

x2

)
A(w),

for w = x1/(x1 + x2), i.e., 0 ≤ w ≤ 1. Pickands’ dependence function is convex, and

has the conditions that A(0) = A(1) = 1, and max(w, 1 − w) ≤ A(w) ≤ 1. The

case of independence between X1 and X2 corresponds to A(w) = 1, while for perfect
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dependence, A(w) = max(w, 1−w). These cases highlight a drawback of the compo-

nentwise maxima approach for modelling the joint upper tail of (X1, X2); since A(w)

is a convex function, with independence and perfect dependence as boundary cases,

it is not possible to model negative dependence using these componentwise maxima

results.

Pickands’ dependence function also links to the spectral measureH by the relations

dA

dw
= 2H(w)− 1 and

d2A

dw2
= 2

dH

dw
= 2h(w),

where h(w) is the density corresponding to the spectral measure H.

2.3.6 Regular variation

An alternative tail characterization of X is in terms of its pseudo-polar coordinates

(R,W ). Consider the random vector X = (X1, . . . , Xd), with common marginal

distributions satisfying Pr(Xi > x) ∼ cx−1 for i = 1, . . . , d and some c > 0. For

arbitrary norms, ‖ · ‖1 and ‖ · ‖2, the coordinates (R,W ) are defined as

R = ‖X‖1 and W = X/‖X‖2,

with R > 0 and W ∈ Sd−1 =
{

(w1, . . . , wd) ∈ [0, 1]d :
∑d

i=1wi = 1
}

, the (d − 1)-

dimensional unit simplex.

Taking both norms to be the L1 norm, i.e., ‖x‖1 = ‖x‖2 =
∑d

i=1 xi, the assump-

tion of multivariate regular variation states that

lim
t→∞

Pr(R > tr,W ∈ B | R > t) = H(B)r−1, (2.3.8)

for r ≥ 1, spectral measure H satisfying (2.3.3) and B some measurable subset of Sd−1.

The right-hand side of (2.3.8) shows that under the regular variation assumption, we

have limiting independence of the angular and radial components. For large radial



CHAPTER 2. LITERATURE REVIEW 17

values, the position of angular mass on Sd−1 links to the extremal dependence structure

of X, i.e., the subsets of X that can take their largest values simultaneously, which

will be discussed further in Section 2.3.8.

2.3.7 Modelling asymptotic dependence

Many methods for modelling multivariate extremes are only applicable for variables

with certain tail dependence properties, and an important consideration is whether

or not the variables can take their largest values simultaneously. It is useful for model

selection to have measures that allow us to categorize data as belonging to different

tail dependence classes. Several such methods are discussed by Coles et al. (1999);

we focus on one such measure here, denoted by χ.

In the bivariate case, consider variables X1 and X2 with respective distribution

functions F1 and F2. The measure χ, taking values in [0, 1], is defined via the limiting

conditional survivor function

χ = lim
u→1

Pr {F2(X2) > u | F1(X1) > u} = lim
u→1

Pr {F1(X1) > u, F2(X2) > u}
1− u

,

where the limit is assumed to exist. In this case, if χ = 0, the variables are said

to be asymptotically independent, i.e., X1 and X2 cannot take their largest values

simultaneously, while if χ ∈ (0, 1], the variables may be simultaneously extreme and

are said to exhibit asymptotic dependence.

For a bivariate extreme value distribution with exponent measure V (x1, x2) and

distribution function of the form (2.3.1), we have

χ = lim
u→1

Pr {F2(X2) > u | F1(X1) > u}

= lim
u→1

1− 2u+ exp{−V (−1/ log u,−1/ log u)}
1− u

= lim
u→1

1− 2u+ uV (1,1)

1− u

= lim
u→1

1− 2u+ 1 + V (1, 1)(u− 1) +O{(u− 1)2}
1− u

= 2− V (1, 1).
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This implies that the bivariate logistic model with exponent measure (2.3.4) has χ =

2 − 2α. That is, it exhibits asymptotic dependence for α ∈ (0, 1), and asymptotic

independence for α = 1, which corresponds to the independence case. The asymmetric

logistic model with exponent measure (2.3.5) has

χ = θ1,{1,2} + θ2,{1,2} −
(
θ
1/α{1,2}
1,{1,2} + θ

1/α{1,2}
2,{1,2}

)α{1,2}
.

For this model, if α{1,2} = 1, or if θ1,{1,2} = θ2,{1,2} = 0, we are in the independence

setting with χ = 0. Otherwise, the model exhibits asymptotic dependence. Examples

of models with χ = 0, corresponding to asymptotic independence, include the bivari-

ate Gaussian and inverted bivariate extreme value distributions in (2.3.6).

The idea of using a limiting conditional probability to assess tail dependence ex-

tends naturally to a multivariate setting. Suppose we are interested in the random

vector X = (X1, . . . , Xd) with Xi ∼ Fi for each i ∈ D = {1, . . . , d}. To investigate

the tail dependence properties of a subset of variables XC = {Xi : i ∈ C} for some

C ∈ 2D with |C| ≥ 2, a suitable measure of tail dependence is

χC = lim
u→1

Pr{Fi(Xi) > u : i ∈ C}
1− u

, (2.3.9)

see for example Hua and Joe (2011) or Wadsworth and Tawn (2013). In this case, if

χC ∈ (0, 1], the variables XC are asymptotically dependent, i.e., all components can

be large simultaneously. On the other hand, if χC = 0, the variables in XC cannot

all take their largest values together, although any subset C ⊂ C with |C| ≥ 2 could

have χC > 0, that is, XC could still exhibit asymptotic dependence.

As an example, consider the asymmetric logistic model with only pairwise depen-

dence, i.e., with exponent measure

V (x1, x2, x3) =

{(
θ1
x1

)1/α1

+

(
θ2
x2

)1/α1
}α1

+

{(
1− θ1
x1

)1/α2

+

(
θ3
x3

)1/α2
}α2

+

{(
1− θ2
x2

)1/α3

+

(
1− θ3
x3

)1/α3
}α3

,
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with α1, α2, α3 ∈ (0, 1] and θ1, θ2, θ3 ∈ [0, 1], where the parameter subscripts have

been simplified from (2.3.5) to improve readability. In this case, it can be shown that

χ{1,2,3} = 0, while the bivariate measures of dependence are

χ{1,2} = θ1 + θ2 −
(
θ
1/α1

1 + θ
1/α1

2

)α1

, χ{1,3} = 1− θ1 + θ3 −
{

(1− θ1)1/α2 + θ
1/α2

3

}α2

,

and χ{2,3} = 1− θ2 + 1− θ3 −
{

(1− θ2)1/α3 + (1− θ3)1/α3
}α3

.

That is, this particular model does not exhibit overall asymptotic dependence, but

can still have asymptotic dependence in all pairs of variables if α1, α2, α3 6= 1 and

θ1, θ2, θ3 ∈ (0, 1).

2.3.8 Extremal dependence structures

The definition of χC in the previous section demonstrates that extremal dependence

in multivariate extremes can have a complicated structure, with only certain subsets

of the variables being simultaneously large while other variables are of smaller order.

In the radial-angular representation of Section 2.3.6, this corresponds to the spectral

measure H placing extremal mass on various faces of the angular simplex Sd−1. The

extremal dependence properties exhibited by a particular set of data should be con-

sidered when selecting a model for its extreme values; we should aim to match the

extremal dependence structure of the data to the structures that proposed models

can capture. Many parametric models for multivariate extremes are only suitable

for the asymptotic dependence or asymptotic independence cases, such as the logistic

model with α ∈ (0, 1) and the multivariate Gaussian, respectively. However, some

models, such as the asymmetric logistic model with exponent measure (2.3.5) allow

for more complicated extremal dependence structures. In particular, if
∑

i∈C θi,C > 0

for C ∈ 2D \ ∅, the asymmetric logistic distribution places extremal mass on the face

of Sd−1 corresponding to the variables {Xi : i ∈ C} being simultaneously large while

{Xi : i /∈ C} are of smaller order.
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Figure 2.3.2: Example of a trivariate distribution with mass on five faces of the angular

simplex. The data are generated using a multivariate extreme value distribution with

an asymmetric logistic model.

Figure 2.3.2 shows an example of data simulated from the asymmetric logistic

distribution with the dependence parameters αC = 0.6 for all C ∈ 2D \ ∅, controlling

how close to the centre of the faces with mass the extremal points lie. The depen-

dence structure has been chosen to correspond to limiting mass on two of the vertices,

two of the edges and the centre of the unit simplex. In particular, X1 and X3 can

both take their largest values independently of the other variables, and the subsets

{X1, X2}, {X2, X3} and {X1, X2, X3} may be simultaneously large. Here, we have

taken a sample of size n = 10, 000, and the three plots show (W1,W2) | R > r, with

r taken to be the observed 0.9, 0.95 and 0.99 radial quantiles, respectively. The data

in Figure 2.3.2 are presented on the equilateral simplex for visual purposes.

As we increase the radial threshold, we observe that, although there are points

close to the boundaries of the unit simplex, none of these points lie exactly on the

boundary, so simply considering the proportion of points on each face above a high

threshold does not reveal the extremal dependence structure. Moreover, there ap-

pears to be mass close to all three corners of the unit simplex, when in fact only two

of the vertices have positive mass in the limit. To assess the underlying extremal de-
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pendence structure of the variables using such data, conditioning on R being above a

finite threshold, we need to determine which faces truly represent this limiting depen-

dence structure, and which faces appearing to have mass do so as an artefact of lack

of convergence at finite levels. We propose methods for determining this structure

in Chapters 3 and 4, and introduce some existing methods in the remainder of this

section.

Goix et al. (2016) propose a non-parametric simplex-partitioning method for es-

timating extremal dependence structures. In this approach, the different regions of

the partition are chosen to estimate the various faces of the angular simplex Sd−1,

with extremal mass on each of these faces corresponding to a different subset of the

variables being simultaneously extreme while the others are of smaller order. Condi-

tioning on the radial component being above some high threshold, empirical estimates

are obtained for the amount of extremal mass associated with each face, and a sparse

representation of the extremal dependence structure is obtained by considering faces

where this empirical estimate is sufficiently large. This method is shown to work well

in practice, particularly when the asymptotic dependence between variables in the

same subsets is strong.

In the method proposed by Goix et al. (2016), the aim is to obtain a representa-

tion of the extremal dependence structure that is sparse, i.e., the number of subsets

of variables being simultaneously large should be small compared to the dimension of

the problem. Chiapino and Sabourin (2017) point out that sparsity may not always

be achieved by this method, as too many faces that are similar in some way could be

detected. They therefore propose an algorithm that aims to group together nearby

faces with extremal mass into feature clusters. This method exploits the graphical

structure of clusters, and uses a measure of extremal dependence related to χ to group

variables that are likely to take their largest values simultaneously. Chiapino et al.
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(2019) extend this approach by using the coefficient of tail dependence of Ledford and

Tawn (1996), discussed in Section 2.3.9, to assess the extremal dependence of groups

of variables. Our approaches in Chapters 3 and 4 exploit a new set of parameters,

related to this coefficient of tail dependence, that reveal additional information about

the extremal dependence structure.

Extremal dependence structures have also been studied elsewhere in the literature.

This includes the factor analysis approach of Klüppelberg et al. (2015) for elliptical

copulas; the method of Chautru (2015) which incorporates principal component anal-

ysis and clustering techniques; and the Bayesian clustering approach of Vettori et al.

(2018).

2.3.9 Modelling asymptotic independence

Our focus so far has mainly been on modelling asymptotic dependence between vari-

ables; we now consider asymptotic independence in more detail. The approach of

Ledford and Tawn (1996) allows for the modelling of both asymptotic independence

and asymptotic dependence, with the latter a boundary case. For random variables

X1 and X2 with common marginal distribution F with an infinite upper endpoint,

they propose a model for the limiting behaviour of the joint survivor function. This

is given by

Pr(X1 > x,X2 > x) ∼ L
[
{1− F (x)}−1

]
{1− F (x)}1/η, (2.3.10)

as x → ∞, for η ∈ (0, 1] and some function L that is slowly varying at infinity, that

is L(tx)/L(t)→ 1 as t→∞ for all x > 0. This is often presented for (X1, X2) having

standard Fréchet margins, so that as x→∞,

Pr(X1 > x,X2 > x) ∼ L(x)x−1/η.

If η = 1 and L(x) 6→ 0 as x → ∞, there is asymptotic dependence between the

variables, and asymptotic independence otherwise. As such, the parameter η is often
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used to determine the tail dependence properties of a given pair of variables. If we

have η < 1, the particular value of η and the function L are indicative of the strength

of asymptotic independence between the variables, with η = 1/2 corresponding to

exact independence if L(x) = 1 or near independence for L(x) 6= 1, and the variables

having some positive association for η ∈ (1/2, 1).

A similar approach can be adopted in the multivariate case, as considered, for

instance, by de Haan and Zhou (2011) and Eastoe and Tawn (2012). For the random

vector X = (X1, . . . , Xd) with standard Fréchet margins, and any set C ∈ 2D \∅ with

D = {1, . . . , d}, we can study

Pr(Xi > x : i ∈ C) ∼ LC(x)x−1/ηC ,

as x → ∞, for some slowly varying function LC , ηC ∈ (0, 1]. In this case, if ηC = 1,

there is asymptotic dependence between the variables XC = {Xi : i ∈ C}. For

ηC < 1, XC exhibits asymptotic independence, although it could still be the case that

certain subsets of the variables can be large together, relating to the more complicated

extremal dependence structures discussed in Section 2.3.8.

Inference for the parameter ηC is not straightforward since estimation of the pa-

rameter is difficult, and the value corresponding to asymptotic dependence is a bound-

ary case. One standard approach is to use the Hill estimator (Hill, 1975). Consider

ordered realizations t(1) > t(2) > · · · > t(n) of the variable T = min(Xi : i ∈ C).

Assuming model (2.3.10) holds exactly for x above some high threshold u, the Hill

estimate can be derived using maximum likelihood techniques as

η̂C =
1

nu

nu∑
i=1

log

(
t(i)
u

)
, (2.3.11)

where nu denotes the number of realizations above the threshold u. In practice, this

can take values greater than 1, so we often take η̂C to be the minimum of 1 and

the value in (2.3.11). Beirlant et al. (2004) discuss some issues with estimating η
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via the Hill estimate. In particular, they comment that uncertainty in the parame-

ter estimation is often underestimated in practice, which could, for instance, lead to

likelihood ratio tests incorrectly rejecting asymptotic dependence. In our studies, we

found that the Hill estimate is often lower than the true value of ηC , particularly if

this true value is 1 or close to 1, also leading to difficulty in distinguishing between

asymptotic dependence and asymptotic independence. This is an issue we investigate

further in Section 7.2.2 in the context of the methods we propose in Chapters 3 and 4.

A review of other techniques for estimating ηC can be found in Section 9.5.2

of Beirlant et al. (2004). These include procedures developed by Peng (1999) and

Draisma et al. (2004), who suggest non-parametric estimates of ηC that do not depend

on the marginal distributions of the variables, and Beirlant and Vandewalle (2002)

whose approach is based on scaled log-ratios.

2.3.10 Calculating the coefficient of tail dependence from a

density

The coefficient of tail dependence ηC is defined in terms of the survivor function of

the variables XC . However, for certain distributions, it may not be possible to obtain

this function analytically, and it may only be the joint density that is available. Nolde

(2014) presents a strategy for determining ηC in this setting using a geometric ap-

proach, by considering the shape of scaled random samples from the joint distribution

of XC .

Assuming standard exponential margins, and that the variables XC have joint

density f(x), Nolde proposes studying the gauge function g(x), which is homogeneous

of order 1, such that

− log f(tx) ∼ tg(x),
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as t → ∞. Interest then lies with the set G = {x ∈ R|C| : g(x) = 1}, which

forms the boundary of the scaled random sample (XC,1/ log n, . . . ,XC,n/ log n) for

large n, where the scaling function log n is chosen due to the exponential margins. In

particular, note that for each variable Xi, i ∈ C, with Mi,n = max(Xi,1, . . . , Xi,n),

Pr

{
Mi,n

log n
< x

}
=
(
1− e−x logn

)n
=

(
1− 1

nx

)n
→


0, x < 1,

e−1, x = 1,

1, x > 1,

as n → ∞, so that, asymptotically, Mi,n/ log n = 1. As such, the set G lies within

the region [0, 1]|C|. The coefficient ηC corresponds to the smallest value of r such

that G ∩ [r,∞)|C| = ∅ (or the largest value of r such that G ∩ [r,∞)|C| 6= ∅). We

demonstrate this approach using a series of bivariate examples.

Let us first consider an inverted bivariate extreme value distribution. In exponen-

tial margins, this model has distribution function

F (x, y) = 1− e−x − e−y + exp
{
−V

(
x−1, y−1

)}
,

for x, y > 0. By first differentiating with respect to both components to obtain the

density f(x, y), with V1, V2 and V12 denoting the derivatives of the exponent measure

with respect to the first, second and both components, respectively, we have

− log f(tx, ty) =2 log(tx) + 2 log(ty) + V
{

(tx)−1, (ty)−1
}

− log
[
V1
{

(tx)−1, (ty)−1
}
V2
{

(tx)−1, (ty)−1
}
− V12

{
(tx)−1, (ty)−1

}]
= 2 log(tx) + 2 log(ty) + tV

(
x−1, y−1

)
− log

{
t4V1

(
x−1, y−1

)
V2
(
x−1, y−1

)
− t3V12

(
x−1, y−1

)}
= tV

(
x−1, y−1

)
+O(log t),

as t→∞, by exploiting the homogeneity of the exponent measure. That is, the gauge

function is given by g(x, y) = V (x−1, y−1).
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For the bivariate inverted logistic example, this corresponds to the gauge function

being g(x, y) = (x1/α + y1/α)α. For the case where α = 0.5, the grey points in the

left panel of Figure 2.3.3 show a suitably-normalized sample from this distribution,

while the set G where g(x, y) = 1 is shown by the red line. The blue region shows the

set [r,∞)2, with the smallest value of r such that the two sets do not intersect being

2−0.5 = 1/2α, occurring when x = y. This corresponds to the known value of η{1,2}

for this copula.
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Figure 2.3.3: Scaled samples (grey) from an inverted logistic copula (left), a logistic

copula (centre) and an asymmetric logistic copula (right) with α = 0.5 and θ1,{1} =

θ2,{2} = θ1,{1,2} = θ2,{1,2} = 0.5; the corresponding sets G = {(x, y) ∈ R2 : g(x, y) = 1}

(red); and the sets [η{1,2},∞)2 (blue).

To obtain similar results for the bivariate extreme value copula, we assume that the

corresponding spectral density h(w) places no mass on {0} or {1} and has regularly

varying tails. Specifically, h(w) ∼ c1(1−w)s1 as w → 1, and h(w) ∼ c2w
s2 as w → 0,

for c1, c2 ∈ R and s1, s2 > −1. In this case, the gauge function is

g(x, y) =
(
2 + s11{x≥y} + s21{x<y}

)
max(x, y)−

(
1 + s11{x≥y} + s21{x<y}

)
min(x, y).

For the logistic model with dependence parameter α ∈ (0, 1), we have s1 = s2 =
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1/α− 2. Hence the gauge function is

g(x, y) =
1

α
max(x, y) +

(
1− 1

α

)
min(x, y).

In this case, the point (x, y) = (1, 1) satisfies g(x, y) = 1, and since both variables are

at most 1 in the set G, we must have η{1,2} = 1. This is demonstrated in the centre

panel of Figure 2.3.3 for α = 0.5.

We now consider the asymmetric logistic model with exponent measure (2.3.5).

This model does not satisfy the condition used when calculating the gauge function

for bivariate extreme value copulas, that the spectral density places no mass on {0}

or {1}. However, calculating the gauge function for this model directly, we obtain

g(x, y) = min

{
(x+ y);

1

α
max(x, y) +

(
1− 1

α

)
min(x, y)

}
,

for all parameters taking values in (0, 1). This is demonstrated the right panel of

Figure 2.3.3 for α = 0.5, and we again note that since g(1, 1) = 1, the coefficient

of tail dependence has value η{1,2} = 1. The bivariate asymmetric logistic copula

is essentially a mixture of independence and logistic models; this is reflected in the

gauge function, which is the minimum of the gauge functions corresponding to the

two mixture components.

Finally, we consider a bivariate Gaussian copula having covariance matrix Σ with

Σ1,1 = Σ2,2 = 1 and Σ1,2 = Σ2,1 = ρ ∈ [0, 1). Nolde (2014) shows that for exponential

margins, this model has gauge function

g(x, y) = (1− ρ2)−1{x+ y − 2ρ(xy)1/2}.

We demonstrate this in Figure 2.3.4 for ρ = 0.5. In this case, the smallest value

of r such that the sets G and [r,∞)2 intersect is shown to be 0.75 = (1 + ρ)/2,

corresponding to the known value of η{1,2} in this case.
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Figure 2.3.4: Scaled samples (grey) from a Gaussian copula with ρ = 0.5; the corre-

sponding set G = {(x, y) ∈ R2 : g(x, y) = 1} (red); and the set [η{1,2},∞)2 (blue).

In the bivariate examples we have studied here, the intersection of interest between

the sets [r,∞)2 and G occurred when x and y were equal, but we note that this is

not the case in general. We will adopt and extend this geometric approach of Nolde

(2014) to study another class of models in Chapter 5.

2.3.11 Conditional extreme value modelling

An alternative approach to modelling multivariate extremes is to condition on one of

the variables being extreme, and study the behaviour of the remaining variables. This

is considered, for instance, by Heffernan and Resnick (2007); we focus on the statis-

tical perspective of Heffernan and Tawn (2004). This approach can be used whether

there is asymptotic dependence or asymptotic independence between the variables:

an advantage over many other models for multivariate extremes.

In the bivariate case, consider variables X1 and X2 with standard Gumbel marginal

distributions, although the results hold whenever the variables have a common, con-
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tinuous marginal distribution with an exponential upper tail. Taking the conditioning

variable to be X1, Heffernan and Tawn consider the standardized residual

Z =
X2 − a(X1)

b(X1)
,

when X1 is very large, for regularly varying functions a and b satisfying certain con-

ditions, with b(x) > 0 for all x ∈ R. Heffernan and Resnick (2007) consider the

constraints on a and b, showing that their indices of regular variation should be 1 and

less than 1, respectively. Under the assumption that

Pr(Z ≤ z | X1 = x)→ G|1(z),

as x→∞, for some non-degenerate limit distribution G|1, Heffernan and Tawn show

that for fixed z and x > 0,

Pr (Z ≤ z,X1 − u > x | X1 > u)→ G|1(z)e−x, (2.3.12)

as u → ∞. That is, for X1 > u and u → ∞, the variables Z and X1 − u are

asymptotically independent, with the latter following an exponential distribution.

Common choices of the standardizing functions in this bivariate case are a(x) = αx

and b(x) = xβ, for α ∈ (0, 1] and β < 1. There is asymptotic dependence between X1

and X2 if α = 1 and β = 0, corresponding to a(x) = x and b(x) = 1, and asymptotic

independence otherwise. In the latter case, it is possible to have either independence

or positive dependence between the variables in the current setting. Keef et al. (2013a)

propose an extension which applies if there is negative dependence between the vari-

ables, with asymptotic independence in the tails.

For modelling purposes, we assume that limit (2.3.12) holds exactly for some large

threshold u. Then, using the working assumption that Z ∼ N(µ, σ2), for µ ∈ R and

σ > 0, and writing

X2 = αX1 +Xβ
1Z,
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for X1 > u and where Z is independent of X1, one can use maximum likelihood

techniques to estimate the parameters (α, β). Once these estimates, denoted by (α̂, β̂),

have been obtained, it is possible use simulation to extrapolate beyond the observed

values. Suppose we have n observations, denoted (x1,1, x2,1), . . . , (x1,n, x2,n). Now let

i1, . . . , inu be the indices i in the set {1, . . . , n} corresponding to x1,i > u. The residual

associated with the ilth observation is defined as

zl =
x2,il − α̂x1,il

xβ̂1,il

for l = 1, . . . , nu. We now drop the assumption that Z ∼ N(µ, σ2), and instead take

Z to have an empirical distribution based on the observed residuals {z1, . . . , znu}. A

set of simulated values (x∗1,1, x
∗
2,1), . . . , (x∗1,m, x

∗
2,m) can be obtained by the algorithm

1. set x∗1,j = u+ ej, where ej ∼ Exp(1),

2. sample z∗j with replacement from the set of observed residuals {z1, . . . , znu},

independently of x∗1,j,

3. set x∗2,j = α̂x∗1,j + z∗j (x
∗
1,j)

β̂,

for j = 1, . . . ,m. Empirical probabilities can be obtained from these simulated values

that, for large enough m, provide reliable estimates of the probabilities of extreme

events. Suppose we want to estimate Pr{(X1, X2) ∈ A}, where the set A ∈ R2 has

values X1 > v for some v > u. Then, noting that Pr{(X1, X2) ∈ A} = Pr{(X1, X2) ∈

A | X1 > v}Pr(X1 > v), an estimate of this probability is given by

P̂r{(X1, X2) ∈ A} =

{
1

m

m∑
i=1

1{(x∗1,i,x∗2,i)∈A}

}
· e−v.

Similar results hold in the multivariate case. Suppose we have variables X =

(X1, . . . , Xd) with standard Gumbel marginal distributions, and we take the condi-

tioning variable to be Xi for some i ∈ {1, . . . , d}. The standardized residuals are

defined by Heffernan and Tawn in this case as

Z|i =
X−i − a|i(Xi)

b|i(Xi)
,
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for normalizing functions a|i, b|i: R→ R(d−1), and X−i = {Xk : k ∈ {1, . . . , d}, k 6= i},

and they assume that

Pr(Z|i ≤ z|i|Xi = x)→ G|i(z|i),

as x→∞, where the marginal distributions of G|i(z|i) are non-degenerate. From this

assumption, for fixed z|i and x > 0, they obtain the result

Pr
(
Z|i ≤ z|i, Xi − u > x | Xi > u

)
→ G|i(z|i)e

−x,

as u → ∞. As in the bivariate case, this suggests that the vector of standardized

variables Z|i is asymptotically independent of Xi−u, for Xi > u as u→∞. The nor-

malizing functions are commonly set to be a|i(x) = {αk|ix : k ∈ {1, . . . , d}, k 6= i} and

b|i(x) = {xβk|i : k ∈ {1, . . . , d}, k 6= i} with each αk|i ∈ (0, 1] and each βk|i < 1, analo-

gously to the bivariate case. It is most straightforward to consider the tail dependence

of each variable pairwise with the conditioning variable. In particular, if αk|i = 1 and

βk|i = 0, variables Xi and Xk are asymptotically dependent; if αk|i ∈ (0, 1), Xi and

Xk are asymptotically independent.

Heffernan and Tawn again propose a sampling procedure to obtain estimates of

probabilities of extreme events using the above result. The algorithm is similar to

the one in the bivariate case, although it should be noted that in step 2 the residuals

must be sampled as full vectors of length d − 1 from the set of observed residuals

{z|i,1, . . . ,z|i,nu} that occur with observations of xi > u, although the simulated value

in step 3 can be calculated separately for each variable.

2.4 Modelling extremes with underlying dependence

structures

We have already discussed that variables can exhibit complex tail dependence prop-

erties, and that this is an important consideration when modelling multivariate ex-
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tremes. Exploiting some underlying structure controlling the dependence of the vari-

ables can be useful in such cases. One example of this is in Markov models, which

have been proposed to capture dependence structures when modelling time series ex-

tremes. This idea is studied from a probabilistic viewpoint by Rootzén (1988), Smith

(1992) and Perfekt (1994), for example, while Smith et al. (1997) focus on the topic

from a statistical perspective. In each of these instances, the focus is on asymptotic

dependence between the variables; the case of asymptotic independence in Markov

models is studied by Papastathopoulos et al. (2017).

Elsewhere in the literature, it has been proposed to exploit the structure of graph-

ical models for extreme value modelling. Hitz and Evans (2016) consider graphical

modelling of multivariate extremes by exploiting the assumption of regular variation,

while Gissibl and Klüppelberg (2018) use a combination of directed acyclic graphs

and max-linear models to impose structure on the extremal dependence properties of

variables. Engelke and Hitz (2018) define conditional independence for multivariate

extremes, allowing for the study of sparsity and graphical models in this setting. In

each of these cases, the focus is on the asymptotic dependence setting, with this prop-

erty being imposed on each link in the respective graphs.

In Chapter 5, we will study some of the tail properties of vine copulas, another

class of models where the underlying dependence structure of the variables can be

represented graphically. We introduce this class of models in Section 2.5.

2.5 Vine copulas

2.5.1 Introduction

In Section 2.3.2, we discussed copulas and their use in multivariate modelling. We

now turn our attention to a particular class of these models, known as pair copula
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constructions (PCCs). The idea behind these models is to exploit the wide range

of bivariate copulas that are already known, to create models for higher dimensions,

where there are fewer options available. This allows for the construction of flexible

models with the possibility of capturing a wide range of dependence features. The

idea was first proposed by Joe (1996); later developed by Bedford and Cooke (2001,

2002), who introduced the use of a type of graphical model called vines to aid the

modelling procedure; hence the term ‘vine copula’; and further studied by Aas et al.

(2009). A thorough overview of these models is given in Kurowicka and Joe (2010).

We focus on models for continuous variables here, although PCCs are also available

for modelling discrete random variables.

2.5.2 Pair copula constructions

Recall the definition of a copula from Section 2.3.2. That is, the joint distribution

function F of variables X = (X1, . . . , Xd) with Xi ∼ Fi, for i = 1, . . . , d, can be

written in terms of a unique copula function C as

F (x1, . . . , xd) = C {F1(x1), . . . , Fd(xd)} .

Differentiating this with respect to each variable gives the joint density function as

f(x1, . . . , xd) = c {F1(x1), . . . , Fd(xd)}
d∏
i=1

fi(xi), (2.5.1)

for fi(xi), i = 1, . . . , d, representing the marginal densities, and copula density

c(u1, . . . , ud) = ∂dC(u1, . . . , ud)/
d∏
i=1

∂ui.

As outlined by Aas et al. (2009), the joint density can be decomposed as

f(x1, . . . , xd) = fd(xd) · fd−1|d(xd−1 | xd)

· fd−2|d−1,d(xd−2 | xd−1, xd) . . . f1|2,...,d(x1 | x2, . . . , xd), (2.5.2)

and by repeatedly applying decomposition (2.5.1) to each term in the right-hand side

of (2.5.2), it is possible to write the joint density of the variables X = (X1, . . . , Xd)
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in terms of only marginal and bivariate copula densities.

For instance, in the bivariate case, f(x1, x2) = f2(x2) · f1|2(x1 | x2) from (2.5.2)

and f(x1, x2) = f1(x1) · f2(x2) · c12 {F1(x1), F2(x2)} from (2.5.1), so that

f1|2(x1 | x2) = f1(x1) · c12 {F1(x1), F2(x2)} .

Similarly, in the trivariate case,

f(x1, x2, x3) = f3(x3) · f2|3(x2 | x3) · f1|23(x1 | x2, x3)

= f3(x3) · f2(x2) · c23 {F2(x2), F3(x3)} · f1|23(x1 | x2, x3).

Again following Aas et al.,

f1|23(x1 | x2, x3) = c13|2
{
F1|2(x1 | x2), F3|2(x3 | x2)

}
· f1|2(x1 | x2)

= c13|2
{
F1|2(x1 | x2), F3|2(x3 | x2)

}
· c12 {F1(x1), F2(x2)} · f1(x1),

so that a full decomposition of f(x1, x2, x3) is given by

f(x1, x2, x3) =f1(x1) · f2(x2) · f3(x3)

· c12 {F1(x1), F2(x2)} · c23 {F2(x2), F3(x3)}

· c13|2
{
F1|2(x1 | x2), F3|2(x3 | x2)

}
.

For modelling purposes, different bivariate copula densities can be chosen for each of

c12, c23 and c13|2, and different marginal distributions can be selected for each variable,

i.e., F1, F2, and F3, showing the flexibility in this class of model. A similar process

can be applied to obtain models in higher than three dimensions in terms of bivariate

copulas.

The decomposition of density f is not unique, as we have a choice about the

conditioning variable used in each step of the decomposition. Bedford and Cooke

(2001, 2002) proposed the use of regular vines, a class of graphical model, to represent

the underlying structure of certain pair copula constructions and help to systematize

the different possibilities.
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2.5.3 Vine representations

An introduction to the vine representation of pair copula constructions is given in

Chapter 3 of Kurowicka and Joe (2010), with formal definitions provided in Kurow-

icka and Cooke (2006); we give an overview here.

Suppose we are interested in modelling variables X = (X1, . . . , Xd). A regular

vine corresponding to these d variables consists of d − 1 connected trees labelled

T1, . . . , Td−1, with tree Ti having d+ 1− i nodes and d− i edges. The nodes in tree T1

each have a different label in the set {1, . . . , d}, and the edges are labelled according

to the pair of nodes they connect. The labels of the nodes in tree Ti+1 correspond

to the labels of the edges in tree Ti, for i = 1, . . . , d − 2, creating a nested structure

among the set of all trees. In tree Ti, i ≥ 2, the pair of nodes connected by each edge

will have i− 1 variable labels in common; these become the conditioning variables in

the corresponding edge label of Ti. Figure 2.5.1 gives an example of a regular vine for

d = 5.

Figure 2.5.1: An example of a regular vine in five dimensions.
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Each edge in a regular vine can be used represent one of the copula densities used

in the pair copula construction. Not all PCCs can be represented in this way, but a

large number can; these vine copulas are therefore a large subclass of PCCs. There

are also certain subclasses of vine copula that are often of interest. These include

D-vines, where each tree is a path, and C-vines, where each tree has exactly one node

that is connected to all other nodes, with the latter class often being simpler to use in

terms of inference. Figure 2.5.2 gives an example of these vine structures for d = 4.

For the C-vine example, the corresponding decomposition of the density is

f(x1, x2, x3, x4) =f1(x1) · f2(x2) · f3(x3) · f4(x4)

· c12 {F1(x1), F2(x2)} · c13 {F1(x1), F3(x3)} · c14 {F1(x1), F4(x4)}

· c23|1
{
F2|1(x2 | x1), F3|1(x3 | x1)

}
· c24|1

{
F2|1(x2 | x1), F4|1(x4 | x1)

}
· c34|12

{
F3|12(x3 | x1, x2), F4|12(x4 | x1, x2)

}
,

with the result for the D-vine found in a similar way.

Figure 2.5.2: Four dimensional vine copula models; D-vine (left) and C-vine (right).

For modelling d variables, there are d!/2 possible D-vines, and the same number

of possible C-vines (Aas et al., 2009). For d = 3, all vine structures are equivalent,

with different decompositions only occurring with different labelling of the nodes. For

d = 4, all possible structures fall into either the D-vine or C-vine category. For d ≥ 5,
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the more general regular vines provide a greater range of possible structures.

2.5.4 Tail behaviour of vine copulas

Joe et al. (2010) study some of the tail dependence properties of vine copulas by

considering a range of multivariate and conditional tail dependence functions. They

are particularly interested in the property of asymmetric dependence in the upper and

lower tail, which can be captured by certain vine copulas if suitable linking copulas are

chosen. Consider the vector of random variables X = (X1, . . . , Xd), with Xi ∼ Fi for

each i ∈ D = {1, . . . , d}. In equation (2.3.9), we gave the definition of the measure χC ,

which can be used to assess the upper tail dependence of variables XC = {Xi : i ∈ C}

with C ∈ 2D and |C| ≥ 2. For the remainder of this section, we will denote this by

χU,C in order to distinguish between upper and lower tail dependence measures. An

equivalent measure to χU,C for the lower tail is χL,C ∈ [0, 1] defined by

χL,C = lim
u→0

Pr {Fi(Xi) < u : i ∈ C}
u

.

In this case, if χL,C = 0, the variables in XC cannot all take their smallest values

simultaneously and exhibit lower tail independence, while for χL,C ∈ (0, 1], the vari-

ables are lower tail dependent.

Joe et al. (2010) compare vine copulas to other standard multivariate models,

including multivariate Gaussian and multivariate t copulas. The former exhibits no

tail dependence, with χU,C = χL,C = 0 for all C ∈ 2D with |C| ≥ 2; the latter has

symmetry in the dependence of its upper and lower tail, χU,C = χL,C for all C. These

properties may not always be desirable in modelling multivariate extremes, as also

discussed in Chapter 8 of Kurowicka and Joe (2010), where it is suggested that the

flexibility of vine copulas means they can be used as approximations to a wide range

of other copulas with varying tail dependence properties, i.e., vine copulas do not

necessarily have χU,C = χL,C .
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Joe et al. (2010) discuss the particular importance of the pair copulas in tree T1.

For a copula to have upper and lower tail dependence in each bivariate margin, each

of the copulas in T1 should have this property, with all other pair copulas having

support on (0, 1)2. Moreover, if any pair copula in tree T1 exhibits asymptotic inde-

pendence in the upper or lower tail, then the overall vine copula will have asymptotic

independence in that tail. For example, if we impose in T1 that variables X1 and X2

are upper tail independent, with χU,{1,2} = 0, then any subset of variables including

both X1 and X2 cannot have all variables large at the same time, i.e., χU,C = 0 for

any set C ⊇ {1, 2}. However, other subsets of variables could still exhibit upper tail

dependence in this case, i.e., it is possible that χU,C′ > 0 for any C ′ 6⊇ {1, 2}.

In Chapter 5, we study the tail properties of vine copulas from a different per-

spective, by calculating the coefficient of tail dependence ηC of Ledford and Tawn

(1996) for a variety of examples. As well as classifying the tail dependence of subsets

of variables as being either asymptotically dependent or asymptotically independent,

this allows us to also study any residual dependence that may be present in the latter

case.



Chapter 3

Determining the Dependence

Structure of Multivariate Extremes

3.1 Introduction

When constructing models in multivariate extreme value analysis, we often need to

exploit extremal dependence features. Consider the random vector X = (X1, . . . , Xd),

with Xi ∼ Fi, as well as a subset of these variables XC = {Xi : i ∈ C}, for some

C ∈ 2D \ ∅, i.e., C lies in the power set of D = {1, . . . , d} without the empty set. For

any C with |C| ≥ 2, extremal dependence within XC can be summarized by

χC = lim
u→1

Pr {Fi(Xi) > u : i ∈ C} /(1− u) (3.1.1)

if the limit exists. In particular, if χC > 0, the variables in XC are asymptotically

dependent, i.e., can take their largest values simultaneously. If χC = 0, the variables

in XC cannot all take their largest values together, although it is possible that for

some C ⊂ C, χC > 0, see for example Hua and Joe (2011) or Wadsworth and Tawn

(2013).

Many models for multivariate extremes are only applicable when data exhibit ei-

ther full asymptotic dependence, entailing χC > 0 for all C ∈ 2D \ ∅ with |C| ≥ 2, or

39
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full asymptotic independence, i.e., χi,j = 0 for all i < j (Heffernan and Tawn, 2004).

However, often some χC are positive whilst others are zero, i.e., only certain subsets

of the variables take their largest values simultaneously, while the other variables are

of smaller order. The extremal dependence between variables can thus have a com-

plicated structure, which should be exploited when modelling. In this chapter, we

present two methods for determining this structure.

The full extremal dependence structure is not completely captured by the 2d−d−1

coefficients {χC : C ∈ 2D \ ∅, |C| ≥ 2} since we do not learn fully whether small

values of some variables occur with large values of others, or whether individual

variables can be extreme in isolation. This is revealed more clearly by decomposing the

vector into radial and angular components, (R,W ), and examining their asymptotic

structure. If the Xi follow a common heavy-tailed marginal distribution, usually

achieved via a transformation, these pseudo-polar coordinates are defined as R =

‖X‖1 and W = X
/
‖X‖2, for arbitrary norms ‖ · ‖1 and ‖ · ‖2. We take both to be

the L1 norm, and assume that X has standard Fréchet margins, so that Pr(Xi < x) =

exp (−1/x) for x > 0 and i = 1, . . . , d. As such, the radial and angular components

are R =
∑d

i=1Xi and W = X/R, respectively, with R > 0 and W ∈ Sd−1 ={
(w1, . . . , wd) ∈ [0, 1]d :

∑d
i=1wi = 1

}
, the (d − 1)-dimensional unit simplex. It

follows that Pr(R > r) ∼ ar−1 as r → ∞, for a ≥ 1, so all the information about

extreme events is contained in W , and in particular the distribution of W conditioned

on R > r as r →∞. Under the assumption of multivariate regular variation (Resnick,

2007, Chapter 6),

lim
t→∞

Pr(R > tr,W ∈ B | R > t) = H(B)r−1, r ≥ 1, (3.1.2)

for B a measurable subset of Sd−1, where the limiting spectral measure H satisfies∫
Sd−1

widH(w) = 1/d, i = 1, . . . , d. (3.1.3)

As the radial component becomes large, the position of mass on Sd−1 reveals the
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extremal dependence structure of X. We note the link between the dependence

measure χC in (3.1.1), and the spectral measure H: if χC > 0, then H places mass on

at least one region SCd−1 =
{

(w1, . . . , wd) ∈ [0, 1]d :
∑

i∈C wi = 1
}

, with C ⊆ C ⊆ D.

This underlines that the term asymptotic dependence is not so useful here, since it

offers only partial insight into the structure. In what follows, we thus avoid this term

where possible, talking instead about faces of the simplex on which H places mass.

Figure 3.1.1: The simplex S2. Coordinates are transformed to the equilateral simplex.

In the d-dimensional case, Sd−1 can be partitioned into 2d− 1 faces, each of which

could contain mass. Mass on each of these faces corresponds to a different subset

of the variables (X1, . . . , Xd) being the only ones taking their largest values concur-

rently. This is demonstrated in Figure 3.1.1 for d = 3. For high, or even moderate,

dimensions, there are many faces to consider, and the task of determining which faces

truly contain mass, and therefore the extremal dependence structure of the variables,

is not straightforward, because for a finite sample with continuous margins, we will

never observe points lying exactly on the boundary of the simplex: no Wi equal zero

when R <∞.

The multivariate regular variation assumption (3.1.2) can also be phrased in terms

of measures on the cone E = [0,∞]d \ {0}, see Section 3.2.1. Each face of Sd−1 can
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be identified with a sub-cone of E for which one or more components are identically

zero. Intuition and visualization are often simpler with H, but in the sequel we work

with E and the sub-cones corresponding to faces of Sd−1. Variants of our methods

that directly use the radial-angular framework are presented in Chapter 4.

The problem of determining the extremal dependence structure of variables has

been recently studied elsewhere in the literature. Under the assumption that the data

are from an elliptical copula, Klüppelberg et al. (2015) use factor analysis on ex-

treme correlations linked to the tail dependence function. Chautru (2015) introduces

a non-parametric approach based on statistical learning, combining a principal com-

ponent analysis algorithm with clustering techniques. A Bayesian clustering method

is proposed by Vettori et al. (2018), based on the hierarchical dependence structure

of the nested logistic distribution of Tawn (1990). Goix et al. (2016, 2017) propose

a non-parametric simplex partitioning approach in which they condition on the ra-

dial variable being above some high threshold. They assume that there is mass on

a particular face if the number of points in the corresponding region of the simplex

is sufficiently large, leading to a sparse representation of the dependence structure.

Chiapino and Sabourin (2017) propose an algorithm to group together nearby faces

with extremal mass into feature clusters, by exploiting their graphical structure and

a measure of extremal dependence. Finally, Chiapino et al. (2019) extend this ap-

proach by instead using the coefficient of tail dependence of Ledford and Tawn (1996).

In this chapter we exploit additional, but commonly satisfied, hidden regular

variation assumptions on non-standard sub-cones of E, by introducing a new set of

parameters that describes the dominant extremal dependence structure. We study

properties of these parameters, their link to existing coefficients, and explore their

values for a range of examples. Estimation of the parameters provides us with an

asymptotically-motivated framework for determining the extremal dependence struc-
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ture, as well as allowing us to estimate the proportion of mass associated with each

set of variables. We propose two such inferential methods, both with computational

complexity O(dn log n) if d < n, for d representing the number of variables and n

the number of data points. This is the same complexity as the method of Goix et al.

(2017).

3.2 Theoretical motivation

3.2.1 Multivariate regular variation

A function λ : (0,∞] → (0,∞] is said to be regularly varying at infinity, with index

α ∈ R, if λ(tx)/λ(t) → xα, as t → ∞, for all x > 0. For such functions, we write

λ ∈ RVα. We can always express λ(x) = L(x)xα, with L ∈ RV0 termed a slowly

varying function. A cone G ⊂ Rd is a set such that for any x ∈ G, tx ∈ G for all

t > 0. The assumption of multivariate regular variation on the cone G means that

there exists a scaling function a(t)→∞, and a positive measure µ, such that

t Pr (X/a(t) ∈ ·)→ µ(·), t→∞, (3.2.1)

with vague convergence in the space of non-negative Radon measures on G (Resnick

2007, Chapter 3). If we assume that the margins of X are standard Fréchet or

Pareto, we may take a(t) = t, and the limit measure µ is homogeneous of order −1.

For the remainder of this section, we assume that X has standard Fréchet marginal

distributions.

3.2.2 Hidden regular variation

The concept of hidden regular variation was introduced by Resnick (2002), who for-

malized and extended the ideas of Ledford and Tawn (1996, 1997). Further work has

been done by Maulik and Resnick (2004) and Mitra and Resnick (2011), for exam-

ple, whilst Resnick (2007) provides a textbook treatment. Here, multivariate regular
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variation is assumed on some cone in Rd. If there is also regular variation, but with a

scaling function of smaller order, on some sub-cone, we have hidden regular variation

on that sub-cone.

To our knowledge, the marginal case of this hidden regular variation framework

is the only one previously exploited from a statistical perspective; from a theoretical

viewpoint, Das et al. (2013) consider hidden regular variation on a series of non-

standard cones, although these are mostly different from the ones we will consider.

For XC = {Xi : i ∈ C}, xC = {xi : i ∈ C}, with C ⊆ D, Ledford and Tawn (1997)

considered multivariate regular variation on the cone E = [0,∞]d \ {0} and hidden

regular variation on

E∗C =
{
x ∈ E : xC ∈ (0,∞]|C|, xD\C ∈ [0,∞]|D\C|

}
, (3.2.2)

with limit measures on E∗C homogeneous of order −1/ηC , and the so-called coefficient

of tail dependence ηC taking values in (0, 1]. If µ(E∗C) > 0, variables XC can take

their largest values simultaneously. If we instead consider sub-cones of E of the form

EC =
{
x ∈ E : xC ∈ (0,∞]|C|, xD\C ∈ {0}|D\C|

}
, (3.2.3)

where {0}m denotes an m-vector of zeros, then having µ(EC) > 0 indicates that vari-

ables in XC can take their largest values simultaneously while variables in XD\C are

of smaller order. Our task is to determine the sub-cones EC on which µ places mass,

equivalent to the problem of detecting where H places mass on Sd−1, thus revealing

the extremal dependence structure of X. For simplicity, we assume that if µ places

mass on EC , then for any measurable BC ⊂ EC , µ(BC) > 0. More generally, it is only

necessary that there exists BC ⊂ EC such that µ(BC) > 0, however if the mass lies

only in very restricted parts of EC , then the task of detecting which sub-cones contain

mass is naturally more difficult.
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For a finite sample, mass will not occur on sub-cones EC with |C| < d; this is

equivalent to all mass for W being placed in the interior of the simplex in Figure 3.1.1.

One option is to truncate the variables to zero below some marginal threshold, to

ensure mass on at least some of these sub-cones at a finite level. Let us define

X∗ =


0, X ≤ −1/ log p,

X, X > −1/ log p,

(3.2.4)

such that p is the quantile at which we truncate. The variable X∗ has the same

tail behaviour as X, but in general Pr(X∗/t ∈ BC) > 0 for BC ⊂ EC , and in

this way we could define a hidden regular variation assumption on EC . Writing

BC = {x ∈ E : xC ∈ B,xD\C ∈ {0}|D\C|}, for some B ⊂ (0,∞]|C|, then Pr(X∗/t ∈

BC) = Pr(XC/t ∈ B,XD\C ∈ [0,−1/ log p]|D\C|), such that we consider the behaviour

when the variables XC are growing at a common rate, but variables XD\C have a fixed

upper bound. However, the latter condition does not capture all possible behaviour

that leads to variables XD\C being of smaller order than XC , and in general a more

elaborate assumption is needed. We consider how we can allow XD\C to be upper

bounded by a function that is growing, but at a potentially slower rate than t.

Define the set (y,∞]C × [0, z]D\C = {x ∈ E : xi > y, i ∈ C;xj ≤ z, j ∈ D \ C}.

Then under the regular variation assumption (3.2.1),

tPr
{
X/t ∈ (y,∞]C × [0, z]D\C

}
→ µ

(
(y,∞]C × [0, z]D\C

)
≥ µ

(
(y,∞]C × {0}D\C

)
.

(3.2.5)

Therefore, if µ
(
(y,∞]C × {0}D\C

)
> 0, and hence µ (EC) > 0, this indicates that

in (3.2.5) we may be able to consider z = zt → 0 at a suitable rate in t and still

observe

lim
t→∞

tPr
{
X/t ∈ (y,∞]C × [0, zt]

D\C} > 0. (3.2.6)

A consequence of a positive limit in (3.2.6) is that Pr{X/t ∈ (y,∞]C × [0, zt]
D\C} ∈

RV−1. When the limit in (3.2.6) is zero, then either zt → 0 too quickly — consider for
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example the case zt ≡ 0 — or µ places no mass on EC . In these cases we focus on the

rate of convergence to zero in (3.2.6). Taking zt = ztδ−1 for δ ∈ [0, 1], and rephrasing

in terms of min and max projections, our main assumption is as follows.

Assumption 1. Suppose we have regular variation on the cone E = [0,∞]d \ {0},

so that equation (3.2.1) is satisfied with µ homogeneous of order −1. For C ⊆ D, let

XC
∧ = mini∈C Xi and X

D\C
∨ = maxi∈D\C Xi. We assume that

Pr
{(
XC
∧ /t,X

D\C
∨ /tδ

)
∈ (y,∞]× [0, z]

}
∈ RV−1/τC(δ), t→∞, 0 < y, z <∞,

(3.2.7)

for δ ∈ [0, 1], and that there exists δ∗ < 1 such that τC(δ∗) = 1 for all C such that

µ(EC) > 0, and τC(δ∗) < 1 for all C such that µ(EC) = 0.

We note that the probability in (3.2.7), and hence τC(δ), is non-decreasing in δ. The

case δ = 0 and z = −1/ log p is identical to a regular variation assumption on the

truncated variables X∗; allowing δ > 0 produces a more diverse range of possibilities.

Through the final line of Assumption 1, the indices τC(δ) contain information on

the limiting extremal dependence structure; the challenge is to find a suitable δ∗, not-

ing that if δ is too small we could have τC(δ) < 1 even when µ(EC) > 0, but if δ is too

large, some τC(δ) could be close to one even when µ(EC) = 0, making the detection

problem difficult in light of statistical uncertainty. These issues are discussed further

below and in Section 3.3.

Overall, examining the regular variation properties in Assumption 1 leads to under-

standing of the sub-asymptotic behaviour of µ in relation to which of the sub-cones EC

are charged with mass. This is analogous to determining the support of H in (3.1.2).

In the remainder of this section, we illustrate the utility and validity of our hidden

regular variation assumption via examples, and discuss properties of the indices τC(δ).

Theorems 1 and 2 clarify some links between τC(δ) and ηC .
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Theorem 1. Assume (hidden) regular variation on E∗C defined in (3.2.2), such that

Pr
(
XC
∧ > t

)
∈ RV−1/ηC. Suppose further that for all C ⊆ D such that C ⊇ C,

Assumption 1 is satisfied for δ = 1, and Pr
(
XC
∧ > t,X

D\C
∨ ≤ t

)
∈ RV−1/τC(1). Then

ηC = maxC:C⊆C τC(1).

Proof. We have

Pr
(
XC
∧ > t

)
= Pr

(
X/t ∈ (1,∞]C × [0,∞]D\C

)
,

Pr
(
XC
∧ > t,X

D\C
∨ ≤ t

)
= Pr

(
X/t ∈ (1,∞]C × [0, 1]D\C

)
.

By the partition

(1,∞]C × [0,∞]D\C =
⋃

C:C⊆C

(1,∞]C × [0, 1]D\C ,

Pr
(
X/t ∈ (1,∞]C × [0,∞]D\C

)
=
∑

C:C⊆C

Pr
(
X/t ∈ (1,∞]C × [0, 1]D\C

)
,

from which the result follows.

We note τD(δ) does not depend on δ; we therefore denote it by τD.

Theorem 2. For all C ∈ 2D \ ∅ with |C| ≥ 2, assume (hidden) regular variation

on E∗C with coefficient of tail dependence ηC, and suppose Assumption 1 holds for all

δ ∈ [0, 1]. For any set C with |C| ≥ 2, if ηC < ηC for all C ⊃ C, then τC(1) = ηC,

and τC(δ) ≤ ηC for all δ ∈ [0, 1].

Proof. Since ED = E∗D, we have ηD = τD, and by Theorem 1, for any set Cd−1 ⊂ D

with |Cd−1| = d− 1,

ηCd−1
= max

{
τCd−1

(1), τD
}

= max
{
τCd−1

(1), ηD
}
.

Since, by assumption, ηCd−1
> ηD, we have ηCd−1

= τCd−1
(1). Similarly, for any set

Cd−2 ⊂ Cd−1 with |Cd−2| = d− 2,

ηCd−2
= max

{
τCd−2

(1), τCd−1
(1), τD

}
= max

{
τCd−2

(1), ηCd−1
, ηD
}
.
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Again, since ηCd−2
> ηCd−1

> ηD for all Cd−2 ⊂ Cd−1, then ηCd−2
= τCd−2

(1). The

result τC(1) = ηC follows by iteration for any set C with |C| ≥ 2. Since τC(δ) is

non-decreasing in δ, τC(1) = maxδ∈[0,1] τC(δ), so τC(δ) ≤ ηC for all δ ∈ [0, 1].

In Appendix A.1 and Appendix A.2, respectively, we calculate the value of τC(δ),

with C ∈ 2D \ ∅, for a range of bivariate and multivariate copulas. For the bivariate

case, we restrict our investigation to a subclass of bivariate extreme value distribu-

tions (Tawn, 1988) that covers all possible structures for sub-cones charged with mass,

focusing on the case where the spectral density is regularly varying at 0 and 1. For

multivariate cases there are many more possibilities, so we study certain trivariate

extreme value distributions (Tawn, 1990), which have χC > 0 for at least one set

|C| ≥ 2, and two classes of copula having χC = 0 for all |C| ≥ 2. The results are

summarized here.

The bivariate extreme value distribution in standard Fréchet margins has distri-

bution function of the form F (x, y) = exp {−V (x, y)} for some exponent measure

V (x, y) = 2

∫ 1

0

max {w/x, (1− w)/y} dH(w), x, y > 0, (3.2.8)

where H denotes the spectral measure defined in equation (3.1.2) on the unit sim-

plex [0, 1]. In the bivariate case, there are three sub-cones: E1, E2 and E1,2. If

H({0}) = θ2 ∈ [0, 1/2] and H({1}) = θ1 ∈ [0, 1/2], the distribution places mass θ2,

θ1, θ1,2 = 1− (θ1 + θ2) in the sub-cones. If θ1 + θ2 = 1, the variables are independent,

and µ(E1,2) = 0. In this case, all the limiting mass is placed on E1 and E2. Here, As-

sumption 1 holds for C = {1}, {2} and {1, 2} with τ1(δ) = τ2(δ) = 1 for all δ ∈ [0, 1],

and τ1,2 = η1,2 = 1/2.

When θ1 + θ2 < 1, µ(E1,2) > 0 and τ1,2 = η1,2 = 1, i.e., both variables can be

simultaneously large. If θi > 0, it follows that τi(δ) = 1 for δ ∈ [0, 1] and i = 1, 2, and

there is mass on the corresponding sub-cone Ei. However, when θ1 = θ2 = 0, there is
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no mass on either of these sub-cones, and additional conditions are required for (3.2.7)

to hold. We suppose that H is absolutely continuous on (0, 1) with Lebesgue density

h(w) = dH(w)/dw satisfying h(w) ∼ c1(1 − w)s1 as w → 1, and h(w) ∼ c2w
s2 as

w → 0, for s1, s2 > −1 and c1, c2 > 0. In Appendix A.1, we show that for i = 1, 2,

τi(δ) = {(si + 2)− δ(si + 1)}−1. To illustrate this final case, consider the bivariate

extreme value distribution with the logistic dependence structure (Tawn, 1988), with

V (x, y) =
(
x−1/α + y−1/α

)α
and

h(w) =
1

2

(
α−1 − 1

) {
w−1/α + (1− w)−1/α

}α−2 {w(1− w)}−1−1/α , (3.2.9)

for 0 < w < 1 and α ∈ (0, 1). For this model s1 = s2 = −2 + 1/α, and so

τ1(δ) = τ2(δ) = α/(1 + αδ − δ) which increases from τi(δ) = α < 1 at δ = 0 to

τi(δ) = 1 at δ = 1.

Copula |C| = 1 |C| = 2 |C| = 3

(i) Independence τ1(δ) = τ2(δ) = τ3(δ) = 1 τ1,2(δ) = τ1,3(δ) = τ2,3(δ) = 1/2 τ1,2,3 = 1/3

(ii) Independence and bivariate logistic τ1(δ) = τ2(δ) = α
1+αδ−δ , τ3(δ) = 1 τ1,2(δ) = 1, τ1,3(δ) = τ2,3(δ) = α

αδ+1+α−δ τ1,2,3 = 1/2

(iii) Trivariate logistic τ1(δ) = τ2(δ) = τ3(δ) = α
1+αδ−δ τ1,2(δ) = τ1,3(δ) = τ2,3(δ) = α

2+αδ−2δ τ1,2,3 = 1

(iv) Trivariate inverted logistic τ1(δ) = τ2(δ) = τ3(δ) = 1 τ1,2(δ) = τ1,3(δ) = τ2,3(δ) = 2−α τ1,2,3 = 3−α

Table 3.2.1: Values of τC(δ) for some trivariate copula examples. For all logistic mod-

els the dependence parameter α satisfies 0 < α < 1, with larger α values corresponding

to weaker dependence.

When d = 3, there are many more possibilities for combinations of sub-cones with

mass. Table 3.2.1 gives τC(δ) for four examples, in each case identifying τC(δ) on

sub-cones of dimension one, two and three. Cases (i)-(iii) in Table 3.2.1 are all special

cases of the trivariate extreme value copula. Case (i) is the independence copula,

which has limit mass on E1, E2 and E3. For the d-dimensional independence copula,

τC(δ) = m−1 for a sub-cone of dimension m ≤ d, and does not depend on the value

of δ. Case (ii) is the copula corresponding to variables (X1, X2) following a bivariate

extreme value logistic distribution (3.2.9), independent of X3. Here all the limit mass
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is placed on E1,2 and E3. Again, τC(δ) differs between sub-cones with C of different

dimension. The trivariate extreme value logistic model, case (iii), places all extremal

mass on E1,2,3, so that τ1,2,3 = 1, and τC(δ) < 1 when δ < 1, for all C with |C| < 3.

Since this is a symmetric model, τC(δ) is the same on all three sub-cones with |C| = 1,

and is also equal for each sub-cone with |C| = 2.

Copula (iv) is the inverted extreme value copula (Ledford and Tawn, 1997), with

a symmetric logistic dependence model. It places all limiting mass on sub-cones with

|C| = 1, but unlike the independence copula, has sub-asymptotic dependence, re-

flected by the values of τC(δ) for sub-cones with |C| = 2, 3, which are closer to one

than in the independence case. The values of τC(δ) do not depend on δ for this case.

The Gaussian copula with covariance matrix Σ also exhibits asymptotic indepen-

dence, with all limit mass on EC with |C| = 1. We study the values of τC(δ) for the

trivariate case in the Appendix A.2.6. For sets C = {i}, i = 1, 2, 3, τC(δ) = 1 only if

δ ≥ max
(
ρ2ij, ρ

2
ik

)
, where ρij > 0 is the Gaussian correlation parameter for variables

i and j; otherwise, τC(δ) < 1. We also know that τ1,2,3 = η1,2,3 =
(
1T3 Σ−113

)−1
,

with 1d ∈ Rd denoting a vector of 1s. For C = {i, j}, i < j, under Assumption

1, Theorem 2 leads to τC(1) = ηC =
(
1T2 Σ−1i,j 12

)−1
, with Σi,j denoting the sub-

matrix of Σ corresponding to variables i and j, provided the correlations satisfy

1 + ρC 6=
∑

C′:|C′|=2,C′ 6=C
ρC′ ; for δ < 1, τC(δ) ≤ ηC .

3.3 Methodology

3.3.1 Introduction to methodology

The coefficient τC(δ) defined in Assumption 1 reveals whether the measure µ places

mass on the sub-cone EC . For µ(EC) > 0, we assume there exists δ∗ < 1 such that

τC(δ∗) = 1, but we could still have τC(δ) < 1 for values of δ < δ∗. For sub-cones
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with µ(EC) = 0, the detection problem becomes easier the further τC(δ) is from 1,

and since τC(δ) is non-decreasing in δ it is ideal to take δ as small as possible. We

therefore have a trade-off between choosing δ large enough that τC(δ) = 1 on sub-

cones with extremal mass, but small enough that τC(δ) is not close to 1 on sub-cones

without extremal mass. For the examples in Table 3.2.1, we could take δ = 0, since

the sub-cones with µ(EC) > 0 have τC(δ) = 1 for all δ ∈ [0, 1]. However, the Gaus-

sian case reveals that although µ(Ei) > 0, for i = 1, . . . , d, we can have τi(0) < 1, so

it is necessary to take δ > 0 for correct identification of sub-cones with extremal mass.

We therefore introduce two approaches for determining the extremal dependence

structure of a set of variables. In the first method we set δ = 0, and apply a truncation

to the variables X by setting any values below some marginal threshold equal to zero.

This transformation is analogous to the approach of Goix et al. (2017), who partition

the non-negative orthant in a similar way, but we additionally exploit Assumption 1.

In our second method, we consider δ > 0 when exploiting the regular variation as-

sumption. As well as aiming to determine the extremal dependence structure, both

methods estimate the proportion of extremal mass associated with each sub-cone EC .

3.3.2 Method 1: δ = 0

We apply Assumption 1 with δ equal to zero by applying truncation (3.2.4) to vari-

ables X for some choice of p. Recall that the cone E equals
⋃
C∈2D\∅ EC , with the

components of the union disjoint and defined as in (3.2.3). We wish to partition E

with approximations to EC , by creating regions where components indexed by C are

large and those not in C are small. This is achieved via regions of the form

EC =
{
x∗ ∈ E : x∗C ∈ (−1/ log p,∞]|C|, x∗D\C ∈ {0}|D\C|

}
. (3.3.1)
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Define the variable Q = min (X∗i : X∗i > 0, i = 1, . . . , d), and recall that we denote

XC
∧ = mini∈C Xi and X

D\C
∨ = maxi∈D\C Xi. Under Assumption 1, as q →∞,

Pr (Q > q |X∗ ∈ EC) ∝ Pr
(
XC
∧ > q,X

D\C
∨ < −1/ log p

)
∈ RV−1/τC(0),

so that Pr (Q > q |X∗ ∈ EC) = LC(q)q−1/τC(0) for some slowly varying function LC .

We now let τC = τC(0), and assume that the model

Pr (Q > q |X∗ ∈ EC) = KCq
−1/τC , q > uC , (3.3.2)

holds for a high threshold uC , with τC ∈ (0, 1] and KC > 0 for all C ∈ 2D\∅. Here, the

slowly varying function LC is replaced by the constant KC as a modelling assumption,

removing the possibility of having LC(q)→ 0 as q →∞.

Model (3.3.2) may be fitted using a censored likelihood approach. Suppose that

we observe nC values q1, . . . qnC of Q in EC . The censored likelihood associated with

EC is

LC(KC , τC) =

nC∏
j=1

(
1−KCu

−1/τC
C

)
1{qj≤uC}

(
KC

τC
q
−1−1/τC
j

)
1{qj>uC}

, (3.3.3)

with uC a high threshold. Analytical maximization of (3.3.3) leads to closed-form

estimates of (KC , τC), with the latter corresponding to the Hill estimate (Hill, 1975).

In particular,

τ̂C =

(
nC∑
j=1

1{qj>uC}

)−1 nC∑
j=1

1{qj>uC} log

(
qj
uC

)
, K̂C =

(∑nC
j=1 1{qj>uC}

nC

)
u
1/τ̂C
C .

This estimate of τC can exceed 1, so we prefer to use min(τ̂C , 1), with an appropriate

change to K̂C . The Hill estimator for τC is consistent if uC →∞,
∑

j 1{qj>uC} →∞

and
∑

j 1{qj>uC}/nC → 0; the assumption of LC(q) ∼ KC > 0 is not required for this.

The second condition ensures that the number of points in EC with Q > uC goes to

infinity, and since the expected number nCPr(Q > uC | X∗ ∈ EC) ∼ nCKCu
−1/τC
C ,

this entails uC = o(nτCC ).
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The method of Goix et al. (2017) produces empirical estimates of Pr(X ∈ EC |

R > r0), for R = ‖X‖∞, and some value of r0 within the range of observed values.

These estimates are then assumed to hold for all R > r0 and are used to approximate

the limit. If the conditional probability Pr(X ∈ EC | R > r) changes with r > r0,

Goix et al. estimate this as a positive constant or as zero. In contrast, our semipara-

metric method allows us to estimate Pr(X∗ ∈ EC | Q > q), for all q above a high

threshold, via

Pr(X∗ ∈ EC | Q > q) =
Pr(Q > q |X∗ ∈ EC)Pr(X∗ ∈ EC)∑

C′∈2D\∅
Pr(Q > q |X∗ ∈ EC′)Pr(X∗ ∈ EC′)

, C ∈ 2D \ ∅,

(3.3.4)

with EC as in (3.3.1). Our estimate of probability (3.3.4) varies continuously with q,

with this variation being determined by the estimated values τ̂C , for C ∈ 2D \ ∅. In

situations where sub-asymptotic dependence leads to many points in a region EC , but

µ(EC) = 0 and τ̂C < 1, this extrapolation can be helpful in obtaining a better approx-

imation to the limit. The relative merits of these differences to the approach of Goix

et al., which are common to Methods 1 and 2, are illustrated in Sections 3.4 and 3.5.

The right-hand side of equation (3.3.4) consists of two types of component. We

estimate terms of the form Pr(X∗ ∈ EC) empirically, and we estimate those of the

form Pr(Q > q | X∗ ∈ EC) as in (3.3.2) by replacing KC and τC by their estimates,

and evaluating for some large choice of q, discussed in Section 3.5. This approach

yields an estimate for the proportion of mass in each region. We denote the estimated

vector of these proportions by p̂ = (p̂C : C ∈ 2D \ ∅). In order to obtain a sparse

representation of the mass on the simplex, we follow Goix et al. (2016, 2017) and

ignore any mass that has been detected which is considered to be negligible; see

item 4 below. Our method can be summarized as follows.

1. Transform the data to standard Fréchet margins, and for a choice of the tuning

parameter p, apply transformation (3.2.4).
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2. Assign each transformed observation to a region EC as in (3.3.1), removing any

all-zero points.

3. For each region EC containing more than m points, fit model (3.3.2) for a choice

of threshold uC , and estimate Pr(X∗ ∈ EC | Q > q) for a large value of q by

equation (3.3.4). Set Pr(X∗ ∈ EC | Q > q) = 0 in the remaining regions.

Denote the resulting estimate by p̂C .

4. If p̂C < π, for a choice of the tuning parameter π, set p̂C to zero, renormalizing

the resulting vector.

The parameter m in step 3 ensures there are enough points to estimate the parameters

on each sub-cone. In simulations, where our aim was to estimate the proportion of

mass associated with each sub-cone, it was found not to have a significant effect on

results; we therefore take m = 1. If the parameters τC are directly of interest, a higher

value of m would be necessary for reliable estimation.

3.3.3 Method 2: δ > 0

An alternative to setting δ = 0 and partitioning the positive orthant using re-

gions EC , is to consider δ > 0 in the application of Assumption 1, specifically

Pr
(
XC
∧ > t,X

D\C
∨ ≤ tδ

)
∈ RV−1/τC(δ). However, unlike with δ = 0, this does not

lead directly to a univariate structure variable with tail index 1/τC(δ). We instead

consider Pr
{
XC
∧ > t,X

D\C
∨ ≤

(
XC
∧
)δ}

= Pr
(
XC
∧ > t,X ∈ ẼC

)
, with ẼC defined as

ẼC =
{
x ∈ E : x

D\C
∨ ≤

(
xC∧
)δ}

, |C| < d; ẼD = E \
⋃

C∈2D\∅:|C|<d

ẼC ,

for each C ∈ 2D \ ∅. We denote the corresponding tail index as 1/τ̃C(δ), and assume

Pr
(
XC
∧ > q,X ∈ ẼC

)
∈ RV−1/τ̃C(δ), q →∞.

Analogously to equation (3.3.2) of Method 1, for each region ẼC , we assume the model

Pr(XC
∧ > q |X ∈ ẼC) = KCq

−1/τ̃C(δ), q > uC , (3.3.5)
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for some large threshold uC , where estimates of KC and τ̃C(δ) are again obtained by

maximizing a censored likelihood. In Appendix A.3.1, we examine estimates of τ̃C(δ),

which we find to reasonably approximate the true values of τC(δ). This indicates that

the indices τ̃C(δ) provide useful information about τC(δ). We note that the regions ẼC

are not disjoint. Supposing we have observations x1, . . . ,xn, we obtain an empirical

estimate of Pr(X ∈ ẼC) using

1

n

n∑
j=1

1{xj∈ẼC}∑
C∈2D\∅ 1{xj∈ẼC}

, (3.3.6)

so that the contribution of each observation sums to one. Combining equations (3.3.5)

and (3.3.6), we estimate

Pr
(
XC
∧ > q,X ∈ ẼC

)
= Pr(XC

∧ > q |X ∈ ẼC)Pr(X ∈ ẼC), C ∈ 2D \ ∅,

(3.3.7)

for some large q. To estimate the proportion of extremal mass associated with each

sub-cone, we consider probability (3.3.7) for a given ẼC divided by the sum over all

such probabilities, corresponding to ẼC′ , C
′ ∈ 2D \ ∅. The result is evaluated at a

high threshold q, similarly to step 3 of Method 1, and negligible mass is removed as

in step 4 of Method 1.

3.4 Simulation study

3.4.1 Overview and metrics

We present simulations to demonstrate Methods 1 and 2, and compare them with the

approach of Goix et al. (2017). Here, we consider a max-mixture distribution involv-

ing Gaussian and extreme value logistic distributions, described in equation (3.4.2).

In Appendix A.3.3, we present results for a special case of this, the asymmetric lo-

gistic distribution (Tawn, 1990), that is used by Goix et al. (2017) to assess the

performance of their methods. The key difference between these two distributions
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is that the Gaussian components in the max-mixture model lead to sub-asymptotic

dependence, in contrast to independence, on certain sub-cones. Hence, distinguishing

between sub-cones with and without limiting mass is a more difficult task for our

max-mixture distribution. We test the efficacy of the methods as classifiers using

receiver operating characteristic curves. For the classes of model we consider, it is

possible to calculate the proportion of extremal mass on the various sub-cones ana-

lytically, allowing us to compare our estimates to the true distribution of mass using

the Hellinger distance.

When incorporating a cut-off for sparse representation of the measure µ, as men-

tioned in Section 3.3.2, the methods can be viewed as classification techniques. Plot-

ting receiver operating characteristic curves is a common method for testing the effi-

cacy of classifiers (Hastie et al., 2009). To obtain such curves, the false positive rate of

a method is plotted against the true positive rate, as some parameter of the method

varies. In our case, the false positive rate is the proportion of sub-cones incorrectly

detected as having mass, while the true positive rate is the proportion of correctly

detected sub-cones. To obtain our curves, we vary the threshold, π, above which esti-

mated mass is considered non-negligible. For π = 0, all sub-cones will be included in

the estimated dependence structure, leading to the true and false positive rates both

being 1, while π = 1 includes none of the sub-cones, so both equal 0. A perfect result

for a given data set and method would be a false positive rate of 0 and true positive

rate of 1: the closer the curve is to the point (0, 1), the better the method. This is

often quantified using the area under the curve, with values closer to 1 corresponding

to better methods.

Such curves only assess whether the sub-cones determined as having mass are cor-

rect. We may also wish to take into account sub-cones detected as having mass that

are close to the truth. We therefore propose an extension of the receiver operating
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characteristic curve, which we term the neighboured receiver operating characteristic

curve, that takes into account mass on adjacent sub-cones. For the sub-cone corre-

sponding to the set C, we define adjacent sub-cones as those corresponding to any

sets C and C with C ⊂ C ⊂ C such that |C| = |C| − 1 and |C| = |C| + 1. When

constructing neighboured receiver operating characteristic curves, in place of the true

positive rate, we consider the proportion of sub-cones that should be detected which

are either detected or have an adjacent sub-cone that is detected. The false positive

rate is replaced by the proportion of sub-cones that do not truly have mass and are

not adjacent to any of the true sub-cones with mass, that are detected as having

mass. Interpretation of these curves is analogous to that of standard receiver oper-

ating characteristic curves, and one may also consider the area under the curve as a

measure for the success of the classifier.

Let p =
(
pC ;C ∈ 2D \ ∅

)
denote the true proportion of mass on each sub-cone,

and denote its estimate by p̂. The Hellinger distance between p and p̂,

HD(p, p̂) =
1√
2

 ∑
C∈2D\∅

(
p
1/2
C − p̂

1/2
C

)2
1/2

, (3.4.1)

is used to determine the precision of the estimated proportions. In particular, HD(p, p̂) ∈

[0, 1], and equals 0 if and only if p = p̂. The closer HD(p, p̂) is to 0, the better p is

estimated by p̂. Errors on small proportions are penalized more heavily than errors

on large proportions. A small positive mass on a region, estimated as zero, will incur

a relatively heavy penalty.

3.4.2 Max-mixture distribution

Segers (2012) shows how to construct distributions that place extremal mass on dif-

ferent combinations of sub-cones. Here, we take a different approach by considering

max-mixture models with asymptotic and sub-asymptotic dependence in different

sub-cones. This can be achieved by using a mixture of extreme value logistic and
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multivariate Gaussian copulas, a particular example of which we consider here.

Let ZC =
(
Zi,C : i ∈ C

)
be a |C|-dimensional random vector with standard Fréchet

marginal distributions, and {ZC : C ∈ 2D \∅} be independent random vectors. Define

the vector X = (X1, . . . , Xd) with components

Xi = max
C∈2D\∅:i∈C

(θi,CZi,C) , θi,C ∈ [0, 1],
∑

C∈2D\∅:i∈C

θi,C = 1, (3.4.2)

for i = 1, . . . , d. The constraints on θi,C ensure that X also has standard Fréchet

margins. The random vector ZC may exhibit asymptotic dependence, in which case

mass will be placed on the sub-cone EC , or it may exhibit asymptotic independence,

in which case mass will be placed on the sub-cones Ei, i ∈ C.

Here, we consider one particular five-dimensional example. We define Z1,2 and

Z4,5 to have bivariate Gaussian copulas with correlation parameter ρ, and Z1,2,3,

Z3,4,5 and Z1,2,3,4,5 to have three-dimensional and five-dimensional extreme value lo-

gistic copulas with dependence parameter α. The bivariate Gaussian distribution is

asymptotically independent with sub-asymptotic dependence, while the logistic dis-

tribution is asymptotically dependent for α ∈ (0, 1). As such, the sub-cones with

mass resulting from this construction are E1,E2,E4,E5,E1,2,3,E3,4,5 and E1,2,3,4,5. The

Gaussian components mean that sub-cones E1,2 and E4,5 have no mass asymptotically,

but the parameter ρ controls the decay rate of the mass. We assign equal mass to

each of the seven charged sub-cones by setting

θ1,2 = (5, 5) /7, θ4,5 = (5, 5) /7,

θ1,2,3 = (1, 1, 3) /7, θ3,4,5 = (3, 1, 1) /7, θ1,2,3,4,5 = (1, 1, 1, 1, 1) /7.

In this model, the sub-cones with mass are fixed, in contrast to the asymmetric logistic

examples in Appendix A.3.3, where following Goix et al. (2017), they are chosen at

random over different simulation runs. Setting ρ = 0 in this max-mixture distribution
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gives an asymmetric logistic model.

Each setting in the simulation study is repeated 100 times, taking samples of size

10,000. In Method 1, we set p = 0.5, uC to be the 0.75 quantile of observed Q

values in region EC for each C ∈ 2D \ ∅, and the value of q for which we estimate

Pr(X∗ ∈ EC | Q > q) to be the 0.9999 quantile of all observed Q values. In Method 2,

we set δ = 0.5, each threshold uC to be the 0.85 quantile of observed XC
∧ values in

region ẼC , and the extrapolation level q to be the 0.9999 quantile of observed val-

ues of X. The parameters in the method of Goix et al. (2017) are chosen to be

(ε, k) = (0.1, n1/2), using notation from that paper. When calculating the Hellinger

distances, we used π = 0.001 as the value above which estimated mass is considered

significant in all three methods. The tuning parameters are not optimized for indi-

vidual data sets, but fixed at values that we have found to work well across a range of

settings. In Section 3.4.3, we discuss stability plots, which could be used as guide as to

which tuning parameter values may be sensible for a given set of data. In Section 3.5,

we present tables showing how the estimated extremal dependence structure changes

as the tuning parameters vary for a particular data set, allowing us to further exam-

ine this mass stability and choose a reasonable value of p in Method 1 or δ in Method 2.

In Figure 3.4.1, we show the mean Hellinger distance achieved by each method for

ρ ∈ {0, 0.25, 0.5, 0.75} and α ∈ [0.1, 0.9]. Results for the area under the receiver oper-

ating characteristic curves are provided in Table 3.4.1. The performance of all three

methods deteriorates as the value of the correlation parameter ρ, or the dependence

parameter α, increases. In the former case this is due to the stronger sub-asymptotic

dependence on sub-cones without extremal mass; in the latter case, larger values of

α in logistic component ZC lead to larger values of τC(δ) for C ⊂ C, so it is harder

to determine which sub-cones truly contain extremal mass. In terms of the Hellinger

distance, Method 1 is the most successful for ρ = 0, 0.25, although its performance
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deteriorates when there is stronger correlation in the Gaussian components. Method 2

yields the best results for ρ = 0.5, 0.75. In terms of estimating the proportion of ex-

tremal mass associated with each sub-cone, at least one of our proposed methods is

always more successful than Goix et al. for this max-mixture model. The results in

Table 3.4.1 reveal that all three methods are successful classifiers for low values of

ρ and α. For α = 0.75 and ρ = 0, 0.25, Method 1 and the approach of Goix et al.

demonstrate similarly strong performance, while for ρ = 0.5, 0.75, Method 2 again

provides the best results.
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Figure 3.4.1: Mean Hellinger distance, 0.05 and 0.95 quantiles over 100 simulations.

Method 1: purple; Method 2: green; Goix et al.: grey.

ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75

α 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Goix et al. 100 (0.0) 100 (0.0) 98.0 (1.1) 99.7 (0.4) 99.8 (0.4) 96.3 (1.4) 92.3 (0.6) 91.9 (0.5) 90.1 (1.2) 91.0 (1.0) 90.1 (1.7) 87.6 (1.2)

Method 1 100 (0.0) 100 (0.1) 97.7 (1.4) 100 (0.1) 99.9 (0.3) 96.7 (1.2) 97.3 (1.6) 96.3 (1.9) 91.5 (1.9) 92.9 (1.0) 90.0 (0.9) 87.5 (0.2)

Method 2 100 (0.0) 99.2 (0.7) 96.0 (1.6) 100 (0.1) 98.9 (0.8) 94.6 (1.8) 99.5 (0.6) 97.5 (1.1) 92.7 (1.7) 94.4 (1.9) 92.9 (1.9) 89.1 (2.0)

Table 3.4.1: Average area under the receiver operating characteristic curves, given as

percentages, for 100 samples from a five-dimensional mixture of bivariate Gaussian

and extreme value logistic distributions; the standard deviation of each result is given

in brackets.

Table 3.4.2 provides results for the average area under the neighboured receiver

operating characteristic curves obtained in our simulations. In terms of this criterion,
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ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75

α 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Goix et al. 100 (0.0) 100 (0.0) 96.0 (1.1) 100 (0.0) 100 (0.0) 96.8 (1.5) 100 (0.0) 100 (0.0) 98.5 (0.9) 100 (0.0) 100 (0.0) 98.6 (0.5)

Method 1 100 (0.0) 100 (0.0) 95.9 (1.2) 100 (0.0) 100 (0.0) 94.8 (1.5) 100 (0.0) 100 (0.0) 92.0 (3.1) 100 (0.0) 100 (0.0) 96.2 (3.4)

Method 2 100 (0.0) 98.0 (1.7) 95.2 (0.2) 100 (0.0) 97.7 (1.7) 95.2 (0.2) 100 (0.0) 97.5 (1.3) 94.4 (1.4) 100 (0.0) 98.3 (0.7) 89.2 (2.5)

Table 3.4.2: Average area under the neighboured receiver operating characteristic

curves, given as percentages, for 100 samples from a five-dimensional mixture of bi-

variate Gaussian and extreme value logistic distributions; the standard deviation of

each result is given in brackets.
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Figure 3.4.2: Plots to show the number of times each sub-cone is assigned mass greater

than π = 0.01 (top) and π = 0.001 (bottom), for (α, ρ) = (0.75, 0.5). Darker lines

correspond to higher detection rates over 100 simulations. True sub-cones with mass:

solid lines; sub-cones without mass; dashed lines.

the method of Goix et al. (2017) is generally the most successful, with Method 2

generating the worst results. We investigate why this might be the case in Figure 3.4.2,

where we demonstrate how often each sub-cone is detected as having mass above π =

0.01, 0.001 for the (α, ρ) = (0.75, 0.5) case. For π = 0.001, the approach of Goix et al.

places mass on around three times as many sub-cones as Methods 1 and 2, and over

twice as many for the π = 0.01 case, so our methods provide sparser representations
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of the extremal mass that are both much closer to the truth. The reason for this

difference is explained by the method of Goix et al. assuming there is extremal mass

on a sub-cone EC if Pr(X ∈ EC | R > r0) > π, whereas we recognize that when

τ̂C < 1 or τ̂C(δ) < 1, non-limit mass can be on a sub-cone at a finite threshold, but

may progressively decrease to zero as the level of extremity of the vector variable is

increased to infinity. When τ̂C = 1 or τ̂C(δ) = 1, we estimate mass on sub-cone EC

similarly to Goix et al. As a consequence, our approach integrates information over

the entire tail to estimate which sub-cones have limit mass, as opposed to Goix et al.,

who use information only at a single quantile. We also observe from Figure 3.4.2

that Method 2 often fails to detect the sub-cone corresponding to all five variables

being large simultaneously, and places more mass on lower-dimensional sub-cones,

arising from the estimated values of τC(δ). Method 1 also places mass on these lower-

dimensional sub-cones, but more often detects the true higher-dimensional sub-cones

with mass.

3.4.3 Stability plots

One way to decide on reasonable tuning parameter values for a given set of data is

via a parameter stability plot. Here, we outline how to construct such a plot for an

example using the max-mixture distribution of Section 3.4.2 with Method 2, where

our aim is to obtain a sensible range of values for the tuning parameter δ, by consider-

ing the region of δ where the number of sub-cones determined as having mass is stable.

For δ ∈ {0.05, 0.075, . . . , 0.95}, we use Method 2 to estimate the proportion of

extremal mass on each sub-cone, and find the number of sub-cones whose estimated

mass is greater than π = 0.001 in each case. The remaining parameters are fixed as

in Section 3.4.2. Figure 3.4.3 shows the estimates of the number of sub-cones, with a

95% confidence interval constructed from 250 bootstrapped samples: these constitute

our stability plot. Analogous plots can be created to choose p in Method 1, or in
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Figure 3.4.3: Stability plot (left) for Method 2, with dashed lines showing a 95%

bootstrapped confidence interval for the number of sub-cones with mass, and a plot

of the Hellinger distance (right) for each value of δ. The shaded regions correspond

to the stable range of tuning parameter values. Data were simulated from the max-

mixture distribution of Section 3.4.2 with n = 10, 000, α = 0.25 and ρ = 0.25.

each case to choose π. In practice, the choice of threshold π should depend on the

dimension of the data; this is not explored here.

The number of sub-cones detected as having mass is most stable for values of

δ between 0.3 and 0.6, indicated by the shaded regions in Figure 3.4.3, suggesting

values of δ in this range may be appropriate for this sample. The right-hand panel

of Figure 3.4.3 shows the Hellinger distance corresponding to the set of estimated

proportions obtained for each value of δ. For this particular sample, although values

of δ within the stable range slightly overestimate the number of sub-cones with mass,

the smallest Hellinger distance occurs for a value of δ within the stable range, and

the Hellinger distance is reasonably consistent across these tuning parameter values.

In practice, the true proportions on each sub-cone are unknown, so Hellinger plots

cannot be constructed; the plot here supports the idea of using stability plots in

choosing suitable tuning parameter values. There is no guarantee that stability plots

will find the optimal tuning parameter values, but they do offer some insight into
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tuning parameter optimization. Consideration of the context of the problem may

be useful in determining whether it is reasonable for extremal mass to be placed on

particular combinations of sub-cones, and such insight could facilitate the choice of

different p or δ values for different sub-cones.

3.5 River flow data

We apply Methods 1 and 2 to daily mean river flow readings from 1980 to 2013,

measured in cubic metres per second, at five gauging stations in the North West of

England. These data are available from the Centre for Ecology and Hydrology at

nrfa.ceh.ac.uk (Morris and Flavin, 1990, 1994). Estimates of the extremal depen-

dence structure of the flows could be used to aid model selection, or one could carry

out density estimation on each sub-cone to give an overall model.

A

B

C

DE

A

B

C

DE

Figure 3.5.1: Locations of the river flow gauges (labelled A to E) and corresponding

catchment boundaries.

The locations of the five gauges are shown in Figure 3.5.1; the labels assigned to

each location will be used to describe the dependence structures estimated in this

section. Figure 3.5.1 also illustrates the boundaries of the catchments associated with
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each gauge. These catchments demonstrate the areas from which surface water, usu-

ally as a result of precipitation, will drain to each gauge. The spatial dependence of

river flow is studied by Keef et al. (2013b) and Asadi et al. (2015). As high river flow

is mainly caused by heavy rainfall, we may observe extreme river flow readings at sev-

eral locations simultaneously if they are affected by the same extreme weather event.

Gauges with adjacent or overlapping catchments are expected to take their largest val-

ues simultaneously, with stronger dependence between gauges that are closer together.

Table 3.5.1 shows the percentage of the extremal mass assigned to each sub-cone

for tuning parameter values p ∈ {0.7, 0.725, . . . , 0.975} and δ ∈ {0.2, 0.25, . . . , 0.75}.

We set π = 0.01 to be the threshold below which the proportion of mass is deemed

negligible, and the extrapolation levels q to be the 0.999 quantile of the observed Q

and X values in Methods 1 and 2, respectively. Remaining parameters are fixed as

in Section 3.4.2. By observing how the estimated dependence structure changes over

a range of tuning parameter values, we aim to find a ‘stable region’ in which the

results are most reliable. A further consideration is whether the tuning parameters

give a feasible estimate of the extremal dependence structure. In particular, each vari-

able should be represented on at least one sub-cone, and moment constraint (3.1.3)

should be taken into account. For Method 2, Table 3.5.1 indicates that for δ ≥ 0.45,

the sub-cone corresponding to location E is assigned more than 20% of the extremal

mass, which is not possible due to the moment constraint. Feasible stable regions are

demonstrated by the shaded regions in Table 3.5.1. For Method 2, one could also

look for a value of δ that give estimates of τC(δ) satisfying max
C:C⊇i

τ̂C(δ) = 1, subject to

estimation uncertainty, for every i = 1, . . . , d.

Focusing on tuning parameter values within each of the stable regions in Ta-

ble 3.5.1, Method 1 suggests the dependence structure to be {B, E, ABCD, ABCDE},

while Method 2 suggests {B, E, ABC, ABCD, ABCDE}. All the sub-cones detected
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p B C D E AC AD BC ABC ACD ADE ABCD ACDE ABCDE

0.700 2 3 95

0.725 2 4 93

0.750 1 4 95

0.775 1 11 88

0.800 7 11 82

0.825 10 3 16 71

0.850 13 7 17 63

0.875 12 12 19 1 55

0.900 8 31 15 46

0.925 6 57 2 2 15 19

0.950 5 52 4 2 16 21

0.975 14 1 73 2 1 2 6

δ B C D E AC AD BC ABC ACD ADE ABCD ACDE ABCDE

0.20 1 99

0.25 4 15 81

0.30 3 1 7 24 65

0.35 8 1 9 33 49

0.40 14 3 2 49 30

0.45 27 1 26 1 4 29 12

0.50 22 1 49 1 2 15 2 7

0.55 16 52 1 1 3 18 4 6

0.60 13 55 2 2 19 5 4

0.65 16 3 48 2 2 3 17 6 3

0.70 16 2 4 45 2 3 3 4 13 6 3

0.75 19 3 4 40 1 2 3 5 4 1 11 4 2

Table 3.5.1: The percentage of mass assigned to each sub-cone for varying values of

the tuning parameters in Method 1 (left) and Method 2 (right). The grey regions

demonstrate the feasible stable ranges.

by Method 2 are either also detected by Method 1, or are neighbours of sub-cones

detected by Method 1, showing there is some agreement between the methods. If we

had used a higher threshold for the negligible mass, say π = 0.1, for tuning parameter

values in the stable region, both methods would have detected mass on sub-cones {B,

ABCD, ABCDE}. We also investigated the behaviour of the methods using the 0.99

and 0.9999 quantiles for extrapolation level q. For both methods, the set of sub-cones

estimated as having mass was stable, but for the lower quantile Method 2 placed less

mass on ABCDE, and there was more mass assigned to this sub-cone at the higher

quantile.

The subsets of locations detected as having simultaneously high river flows seem

feasible when considering the geographic positions of the gauging stations. For in-

stance, both methods suggest mass on ABCD; as station E lies towards the edge of the

region under consideration, it is possible for weather events to affect only the other

four locations. Both methods also suggest that locations B and E can experience high

river flows individually; this seems reasonable as they lie at the edge of region we

consider. The catchment of gauge C lies entirely within the catchment of gauge A.

We observe that location C occurs with location A in the subsets of sites determined
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to take their largest values simultaneously, which may be a consequence of this nested

structure.

p A B C D AC AD BC ABC ACD ABCD

0.700 100

0.725 100

0.750 100

0.775 100

0.800 100

0.825 3 97

0.850 3 97

0.875 4 96

0.900 2 98

0.925 5 1 94

0.950 7 2 5 2 84

0.975 35 3 1 2 7 52

δ A B C D AC AD BC ABC ACD ABCD

0.20 100

0.25 100

0.30 2 98

0.35 4 96

0.40 9 91

0.45 23 1 2 1 72

0.50 28 2 1 1 1 6 60

0.55 19 1 4 2 2 3 14 55

0.60 22 1 4 5 2 4 17 45

0.65 26 2 5 6 3 5 18 36

0.70 26 3 6 5 4 6 20 30

0.75 1 28 4 7 1 6 6 9 17 20

Table 3.5.2: Estimated percentage of extremal mass on to each sub-cone when con-

sidering locations A-D, for varying values of the tuning parameters in Method 1 (left)

and Method 2 (right).

To assess whether our methods are self-consistent across different dimensions, Ta-

ble 3.5.2 shows similar results for locations A, B, C and D. We would expect the

subsets of locations deemed to be simultaneously large to be the same as in Ta-

ble 3.5.1 if we ignore location E. Considering the same tuning parameter values as

for Table 3.5.1, we see that the extremal dependence structures are estimated to be

{B, ABCD} for both methods. For Method 1, this is the set of sub-cones we would

expect based on the five-dimensional results. For Method 2, we would also expect to

detect the sub-cone labelled ABC, although this was only assigned a relatively small

proportion of the mass in the five-dimensional case.

Tables 3.5.1 and 3.5.2 demonstrate the importance of tuning parameter selection

in Methods 1 and 2. As p or δ increase, we are more likely to detect mass on the one-

dimensional sub-cones, or sub-cones corresponding to subsets of the variables with

low cardinality. Likewise, for low values of p or δ, we assign more extremal mass to
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the sub-cone representing all variables being simultaneously extreme. In practice, we

should consider the feasibility of the detected dependence structures, as well as the

stability of the regions determined to have extremal mass as p or δ vary. Our methods

could be used to impose structure in more complete models for multivariate extremes.

Even if a handful of different options look plausible with some variation in p or δ, this

is still a huge reduction over the full set of possibilities.



Chapter 4

Radial-Angular Approaches to

Determining Extremal Dependence

Structures

4.1 Introduction

In Chapter 3, we discussed methods for determining the dependence structure of

multivariate extremes motivated by regular variation assumptions, and presented two

inferential approaches based on sub-cones of E = [0,∞]d \ {0}. As mentioned in Sec-

tion 3.1, an alternative viewpoint is to consider variables in terms of their radial and

angular components, (R,W ), as in the approach of Goix et al. (2016); we consider

three inferential methods for this setting in this chapter.

As in Chapter 3, we consider the random vector X = (X1, . . . , Xd), with all

variables following a common heavy-tailed distribution. The radial and angular com-

ponents of X are defined as R = ‖X‖ and W = X/‖X‖. We take the norms to

be L1 and the common marginal distributions to be standard Fréchet. These pseudo-

polar coordinates have R > 0 and W ∈ Sd−1 = {(w1, . . . , wd) ∈ [0, 1]d :
∑d

i=1wi = 1},

69
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with the unit simplex Sd−1 being the disjoint union of 2d − 1 regions of the form

BC =
{
w ∈ Sd−1 : wC ∈ (0, 1]|C|, wD\C ∈ {0}|D\C|

}
, (4.1.1)

for C ∈ 2D \ ∅ and wC = {wi : i ∈ C}. We recall the assumption of multivariate

regular variation (Resnick, 2007), which states that

lim
t→∞

Pr(R > tr,W ∈ B | R > t) = H(B)r−1, r ≥ 1,

for B a measurable subset of Sd−1. The measure H placing mass on the region

BC is equivalent to the measure µ placing mass on EC in Section 3.2.2, and having

H(BC) > 0 means that variables in the set {Xi : i ∈ C} can be simultaneously large

while the remaining variables in X are of smaller order. Hence, analogously to Chap-

ter 3, our aim is to estimate Pr(W ∈ BC | R > r) as r →∞, for each face BC .

When considering the sub-cones EC in Chapter 3, we noted that at finite levels,

mass can only occur on ED. We encounter a similar issue in the radial-angular setting,

in that no component Wi is exactly zero when R < ∞, and all mass occurs in BD.

One option here is to consider X∗ constructed via truncation (3.2.4), and define

R∗ = ‖X∗‖ and W ∗ = {X∗/R∗ : R∗ > 0}. We then let

B∗C =
{
w∗ ∈ Sd−1 : w∗C ∈ (0, 1]|C|, w∗D\C ∈ {0}|D\C|

}
. (4.1.2)

Considering the angular component W ∗, mass will now occur on at least some regions

B∗C with |C| < d. In this setting, for C = {i}, we have

Pr (R∗ > r,W ∗ ∈ B∗i ) = Pr (R∗ > r,W ∗
i = 1) = Pr (Xi > r;Xj < −1/ log p, j 6= i) ,

so that in region B∗i , the coefficient of regular variation is τi(0), defined as in Assump-

tion 1 of Chapter 3. This suggests that an analogous regular variation assumption

may be useful in this radial-angular setting.
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For each C ∈ 2D \ ∅, we look at approximations BC to BC , for which we assume

the model

Pr(R > r |W ∈ BC) = LC(r)r−1/κC , (4.1.3)

as r → ∞, where LC is a slowly varying function and κC ∈ (0, 1]. We assume that

regions with κC = 1 and LC(r) 6→ 0, as r →∞, are those containing extremal mass,

and correspond to subsets of variables that take their largest values simultaneously

while the remaining variables are of smaller order.

In this chapter, we present three new approaches for estimating extremal de-

pendence structures in the radial-angular setting. We introduce Method 3 in Sec-

tion 4.2.1, where we use a partitioning approach to approximate the faces BC . In

Methods 4 and 5, introduced in Sections 4.2.3 and 4.2.4, respectively, we instead pro-

pose the assignment of weights to points in the simplex based on their proximity to

the various faces. This effectively yields a soft-thresholding between the simplex re-

gions, in contrast to the hard-thresholding in the previously discussed methods, and

allows each point to provide information to more than one face. In Method 4, we

apply this idea to extend the approach of Goix et al. (2016), where the proportion of

extremal mass associated with each face is estimated empirically above a high thresh-

old, while Method 5 is a weighted version of our regular variation approach, based

on equation (4.1.3). We present simulation results in Section 4.3, and a discussion

comparing all our proposed methods is provided in Section 4.4.
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4.2 Methodology

4.2.1 Method 3: simplex partitioning

As an alternative to the truncation used to construct regions B∗C in (4.1.2), we propose

approximating each face BC using a region of the form

BC =
{
w ∈ Sd−1 : wC ∈ [ε, 1]|C|, wD\C ∈ [0, ε)|D\C|

}
, (4.2.1)

for some small ε ∈ (0, 1/d]. Figure 4.2.1 gives an example of this partition in the

trivariate case with ε = 0.1. Each region BC is an ε-thickened version of BC . Fig-

ure 4.2.2 provides a comparison of the regions B∗C , formed via a truncation of the

variables X, and BC for the bivariate case. While these two partitions are not iden-

tical, they should both provide reasonable approximations of the faces BC .

Figure 4.2.1: A partition of S2, with ε = 0.1; the coordinates are transformed to the

equilateral simplex for visual purposes.

We now consider probabilities of the form

Pr(W ∈ BC | R > r) =
Pr(R > r |W ∈ BC)Pr(W ∈ BC)∑

C′∈2D\∅
Pr(R > r |W ∈ BC′)Pr(W ∈ BC′)

, (4.2.2)

for C ∈ 2D \ ∅ and BC as in (4.2.1). Analogously to Methods 1 and 2 in Chapter 3,

we estimate terms of the form Pr(W ∈ BC) empirically, and for the remaining terms
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B1
*

B2
*

B12
*

B1

B2

B12

Figure 4.2.2: Comparison of regions B∗C (left) and BC (right) in Cartesian coordinates;

the paler blue regions are truncated to the axes.

use regular variation assumption (4.1.3), replacing the slowly varying function with a

constant JC . That is, we suppose

Pr(R > r |W ∈ BC) = JCr
−1/κC , for r > uC , (4.2.3)

and some high threshold uC . Estimates of (JC , κC) can again be obtained via a

censored likelihood approach. In particular, suppose we have nC radial observations

r1, . . . , rnC in region BC . Then we obtain the censored likelihood

nC∏
j=1

(
1− JCu−1/κCC

)
1{rj≤uC}

(
JC
κC
r
−1−1/κC
j

)
1{rj>uC}

, (4.2.4)

which is maximized by the estimators

κ̂C =

(
nC∑
j=1

1{rj>uC}

)−1 nC∑
j=1

1{rj>uC} log

(
rj
uC

)
and ĴC =

(∑nC
j=1 1{rj>uC}

nC

)
u
1/κ̂C
C ,

analogously to the models in Chapter 3. In practice, we use the estimator κ̃C =

min(κ̂C , 1) with an appropriate change to the estimate of JC . Method 3 is summarized

as follows.

1. Transform data to standard Fréchet margins, and calculate the radial-angular

components (R,W ).
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2. Assign each transformed observation to a region BC as in (4.2.1).

3. For each region BC containing more than m points, fit model (4.2.3) using

censored likelihood (4.2.4) for a choice of threshold uC , and estimate Pr(W ∈

BC | R > r) for a large value of r by equation (4.2.2). Set Pr(W ∈ BC | R >

r) = 0 in the remaining regions. Denote the resulting estimate by p̂C .

4. If p̂C < π, for a choice of the tuning parameter π, set p̂C to zero, renormalizing

the resulting vector.

As in Chapter 3, the choice of parameter m was found not have a significant effect on

results, and we take the default choice m = 1.

From Section 4.1, we know that the coefficient of regular variation is τ1(0) in B∗1 . In

Figure 4.2.2, we see that for large radial values, region B1 contains parts of B∗12, as well

as B∗1 , so that κ1 ≥ τ1(0) in general. Similar issues arise when using the ε-thickening

approach in higher than two dimensions. Although the set of values {κC ; C ∈ 2D \∅}

may not be fully informative about the extremal dependence structure, estimates of

it should provide additional information over the empirical approach of Goix et al.

(2016). We investigate the relative performance of Method 3 in Section 4.3.

4.2.2 Incorporating weights

As discussed in Section 4.1, an alternative to the partitioning approach of Method 3

or Goix et al. (2016), is to assign weights to observations so they can provide infor-

mation to more than one face. Suppose we have n observations of the radial-angular

components, denoted (r1,w1), . . . , (rn,wn). Let δC,j be the weight contributed to

the face BC by angular observation wj, for C ∈ 2D \ ∅ and j = 1, . . . , n. Natural

conditions on these weights are

1. δC,j ∈ [0, 1], for each C ∈ 2D \ ∅ and j = 1, . . . , n;
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2.
∑

C∈2D\∅
δC,j = 1, for each j = 1, . . . , n;

ensuring that they are non-negative and the overall contribution of each data point

is unchanged. We explain how to incorporate these weights into the approach of

Goix et al. (2016) and our Method 3 in Sections 4.2.3 and 4.2.4, respectively. There

are infinitely many ways to define the δC,j values; we propose one such possibility in

Section 4.2.5.

4.2.3 Method 4: weighted extension of the approach of Goix

et al. (2016)

In the method of Goix et al. (2016), the faces of the angular simplex are approximated

via a partition of Sd−1 similar to (4.2.1), where we denote by BC the region of the

partition that approximates BC . In the approach of Goix et al., empirical estimation

of Pr(W ∈ BC | R > r0), for some high radial threshold r0, is used to approximate

the proportion of extremal mass on each face.

By instead allowing each point to contribute mass to different faces via the weights

δC,j, this method can be adapted so that the proportion of extremal mass on face BC

is estimated by

Pr(W ∈ BC | R > r0) =

n∑
j=1

δC,j1{rj>r0}

n∑
j=1

1{rj>r0}

, (4.2.5)

with r0 again denoting a high radial threshold. The overall method is summarized in

the following steps.

1. Transform data to standard Fréchet margins, and calculate the radial-angular

components (R,W ).

2. Calculate δC,j for each j = 1, . . . , n and C ∈ 2D \ ∅, for some definition of the

weights δC,j.
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3. Evaluate (4.2.5) for each face, for some choice of threshold r0.

As in Methods 1, 2 and 3, negligible mass can be removed by setting to zero any

estimates below some value π, and renormalizing the resulting vector of proportions.

4.2.4 Method 5: weighted extension of the regular variation

approach

We adapt Method 3 to include the weights δC,j by changing the estimation of the

components in the right hand side of equation (4.2.2), for each C ∈ 2D \ ∅. Firstly,

the probability Pr(W ∈ BC) is estimated by 1
n

∑n
j=1 δC,j, i.e., the average weight

associated with face BC . Recall that under assumption (4.2.3), replacing the slowly

varying function by a constant, for each face we have a model of the form

Pr(R > r |W ∈ BC) = JCr
−1/κC ,

for r greater than some high threshold uC , κC ∈ (0, 1] and JC > 0. Instead of using

the partitioning approach of Method 3, this model can be fitted by adapting the

censored likelihood approach. In particular, for each C ∈ 2D \ ∅, we replace 1{rj>uC}

by δC,j1{rj>uC}, and 1{rj≤uC} by δC,j1{rj≤uC}, to yield the function

n∏
j=1

(
1− JCu−1/κCC

)δC,j1{rj≤uC}(JC
κC
r
−1−1/κC
j

)δC,j1{rj>uC}
,

which should be maximized. This is no longer a true likelihood in the sense of corre-

sponding to an underlying statistical model, yet the weights have clear roles in mod-

ifying the estimators. The estimators that maximize this modified objective function

are

κ̂C =

(
n∑
j=1

δC,j1{rj>uC}

)−1 n∑
j=1

δC,j1{rj>uC} log

(
rj
uC

)
and

ĴC =

(∑n
j=1 δC,j1{rj>uC}∑n

j=1 δC,j

)
u
1/κ̂C
C .
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In practice, we take the estimate of κC to be min(κ̂C , 1), with a suitable update

to ĴC , as previously. Having determined which weights to use, and computed κ̂C and

ĴC , the remainder of the approach is analogous to Method 3. Moreover, Method 3

is a special case of the weighted approach, with δC,j = 1 if wj ∈ BC , the region of

the partition that approximates BC , and δC,j = 0 otherwise, just as the approach of

Goix et al. (2016) is a special case of Method 4. In Method 3, we only carry out

the estimation procedure on a face if there are at least m angular observations in

the corresponding region of the partitioned simplex. The natural extension of this

condition to the weighted approach is to have
∑n

j=1 δC,j being at least m; we again

take the default choice m = 1.

4.2.5 A proposed weighting

We propose a weighting which takes into account the proximity of a point w =

(w1, . . . , wd) to various faces of the unit simplex. We begin by considering the vertex

to which the point w is closest. This can be determined by finding S(1) = {i : wi =

max(w1, . . . , wd)}. Then, for some k > 0, the weight assigned to the region BS(1) ,

corresponding to the face where only variable {Xi : i ∈ S(1)} is large, is

δS(1) =

( ∑
i∈S(1)

wi

)k
= wkS(1) .

For s = 2, . . . , d, we then find the set S(s) with |S(s)| = s such that w lies closer to

the region BS(s) than any other set BS(s)′ with |S(s)′ | = s. For this set, the associated

weight is defined as

δS(s) =

( ∑
i∈S(s)

wi

)k
−
( ∑
i∈S(s−1)

wi

)k
.

For all remaining sets of size s, the weight is set to zero. Note that for s = d the

only choice is S(d) = D = {1, . . . , d}. In Appendix B.1, we verify that this choice of

weights satisfies properties 1 and 2 from Section 4.2.2.
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In practice, the data are transformed to Fréchet margins using the rank transform;

this can lead to components of w being equal. We break such ties randomly, so that

each point assigns non-zero weight to exactly d faces, one of each dimension. An al-

ternative would be to divide the weight across faces of the same dimension which are

equidistant from the point w. The latter approach is more computationally complex,

and is unlikely to significantly improve results.

Figure 4.2.3: An example of our proposed weighting in the trivariate case, with k = 10.

The grey regions in the first two plots show where the weights are exactly 0.

Figure 4.2.3 shows an example of this weighting in the trivariate case. The first

diagram illustrates the weight contributed by each point to the face where only vari-

able X3 is large, based on its position in the simplex. The central diagram shows

the weight assigned to the face with variables (X2, X3) being large simultaneously. In

both these cases, illustrations of the weights assigned to the other faces of the same

dimension are obtained by rotation. The final diagram shows the weights associated

with the centre of the simplex, where all three variables are simultaneously large.

Increasing the value of k assigns more weight to the interior of the simplex, while

smaller values of k assign greater weight to the vertices.
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4.3 Simulation study

4.3.1 Max-mixture distribution

In this section, we assess the efficacy of Methods 3, 4 and 5 by considering the results

of simulations based on the five-dimensional max-mixture distribution introduced in

Section 3.4.2 of Chapter 3. We consider the asymmetric logistic model in Section 4.3.2.

Once again, our metrics are the Hellinger distance; the area under the receiver oper-

ating characteristic curve (now denoted AUC); and the area under the neighboured

receiver operating characteristic curve (now denoted AUC*). This final metric was

introduced in Chapter 3, and allows us to assess whether an estimated extremal de-

pendence structure is close to the truth by taking into account whether or not faces

adjacent to those truly having mass are detected.

The max-mixture model consists of two bivariate Gaussian copulas with correla-

tion parameter ρ, as well as two trivariate and one five-dimensional logistic copula

with dependence parameter α. In Method 3, we set ε = 0.05, each threshold uC

to be the 0.975 quantile of observed radial values over all sets C ∈ 2D \ ∅ and r in

Pr(W ∈ BC | R > r) to be the largest observed radial value for that particular

sample. In Methods 4 and 5, we take the parameter controlling the weighting to be

k = 25. For Method 4, the radial threshold r0 is set to the 0.995 quantile of the

observed radial values. For Method 5, the threshold uC in each region is taken to be

the 0.975 quantile over all the observed radial values, and the value of r for which

(4.2.2) is evaluated is taken to be the maximum of the observed radial values. For all

three methods, to obtain the Hellinger distances, we take the threshold π below which

mass on each face is deemed negligible to be 0.001, as in the simulations of Chapter 3;

this parameter is varied to obtain the AUC and AUC* values. Again, these tuning

parameter values are not optimized for individual experiments, but parameter stabil-

ity plots as introduced in Section 3.4.3 could be used to choose the tuning parameter,



CHAPTER 4. RADIAL-ANGULAR APPROACHES 80

and one should ensure that a feasible combination of faces has been determined as

having mass. We take samples of size n = 10, 000 in each simulation, and repeat each

setting 100 times.
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Figure 4.3.1: Mean Hellinger distance over 100 simulations for the max-mixture dis-

tribution. Method 1: purple; Method 2: green; Method 3: blue; Method 4: pink;

Method 5: orange; Goix et al.: grey.

In Figure 4.3.1, we present results on the average Hellinger distance achieved by

Methods 3, 4 and 5, comparing them to the previous results obtained for the approach

of Goix et al. and Methods 1 and 2 in Section 3.4.2; the 0.05 and 0.95 quantiles are

now omitted to improve readability. These results cover a range of model parameters;

ρ ∈ {0, 0.25, 0.5, 0.75} and α ∈ {0.1, 0.2, . . . , 0.9}. Method 3, based on the regular

variation assumption and a partition of the angular simplex, is generally the most

successful for ρ ∈ {0, 0.25, 0.5}, but is outperformed by Method 2 for ρ = 0.75 and

α ≤ 0.6. The weighted approach used in Methods 4 and 5 is consistently more suc-

cessful than the approach of Goix et al., and these methods also provide competitive

results compared to Method 1, particularly in the case where ρ = 0.75, corresponding

to stronger dependence in the asymptotically independent Gaussian components, or

higher values of α, which lead to weaker asymptotic dependence in the logistic parts

of the model.
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ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75

α 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Method 3 100 (0.2) 99.7 (0.9) 96.3 (2.8) 99.9 (0.3) 99.6 (0.9) 96.0 (3.0) 99.3 (1.1) 98.7 (1.6) 94.4 (3.4) 93.9 (1.7) 92.5 (2.2) 87.0 (3.6)

Method 4 100 (0.0) 100 (0.1) 99.1 (1.4) 99.9 (0.2) 99.9 (0.4) 98.7 (1.6) 97.3 (1.8) 96.8 (1.9) 94.6 (2.7) 92.1 (1.4) 91.0 (2.0) 88.6 (2.6)

Method 5 100 (0.2) 99.8 (0.7) 97.9 (2.3) 99.8 (0.4) 99.7 (0.8) 97.6 (2.5) 96.0 (2.0) 95.6 (2.1) 93.1 (3.2) 92.0 (1.0) 91.4 (1.4) 87.7 (2.4)

ρ = 0 ρ = 0.25 ρ = 0.5 ρ = 0.75

α 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Method 3 100 (0.0) 99.8 (0.7) 96.5 (2.1) 100 (0.2) 99.8 (0.7) 96.3 (2.1) 100 (0.0) 99.7 (0.8) 96.3 (2.4) 100 (0.2) 99.7 (0.8) 97.6 (2.2)

Method 4 100 (0.0) 100 (0.2) 98.6 (1.6) 100 (0.0) 100 (0.2) 98.6 (1.9) 100 (0.0) 100 (0.2) 99.1 (1.9) 100 (0.0) 100 (0.0) 99.7 (0.7)

Method 5 100 (0.0) 100 (0.2) 98.5 (1.4) 100 (0.0) 100 (0.2) 98.4 (1.4) 100 (0.2) 100 (0.3) 98.9 (1.1) 100 (0.3) 99.9 (0.3) 98.7 (1.3)

Table 4.3.1: Average AUC (top) and AUC* (bottom) values, given as percentages,

for 100 samples from a five-dimensional max-mixture model. Results in bold show

where the methods are at least as successful as any of those studied in Chapter 3.

In Table 4.3.1, we present the mean AUC and AUC* values achieved by Meth-

ods 3, 4 and 5 for this max-mixture distribution, with ρ ∈ {0, 0.25, 0.5, 0.75} and

α ∈ {0.25, 0.5, 0.75}; boxplots of these results are provided in Appendix B.2. As was

the case when comparing Hellinger distances, the results are reasonably similar for

Methods 4 and 5, although the former is often a slightly more successful classifier,

and is at least as successful in terms of the average AUC as all methods we consider

in six out of the twelve cases. Notably, for many cases where α = 0.75, with weaker

asymptotic dependence in the logistic components, the weighted approaches provide

the greatest improvement over the hard-thresholding methods, although Method 2

remains the most successful classifier for ρ = 0.75.

Method 4, the weighted version of Goix et al. (2016) performs at least as well as

all other methods in terms of the average AUC* values, with Method 5, our other

weighted approach, giving only slightly worse results. This suggests that using weights

to allow observations to provide information to more than one face is a successful

strategy, allowing us to estimate extremal dependence structures that are close to

the truth. For this max-mixture distribution, we note that a large proportion of the

faces truly have extremal mass or have a neighbouring face that does, and the AUC*

metric is perhaps more informative for the asymmetric logistic distribution studied in
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Section 4.3.2.

4.3.2 Asymmetric logistic distribution

We now test Methods 3, 4 and 5 on data simulated from asymmetric logistic dis-

tributions (Tawn, 1990), as in Appendix A.3.3 for the methods of Chapter 3. We

consider data from models of two different dimensions. For dimension d = 5, we

sample n = 10, 000 points and consider f = 5, 10 or 15 faces with extremal mass.

For d = 10, we have n = 100, 000 and f ∈ {10, 50, 100}. Each simulation is repeated

100 times, and we compare methods using Hellinger distances, AUC and AUC*. To

obtain the results for Methods 3, 4 and 5, the tuning parameters used are the same

as for the max-mixture examples in Section 4.3.1.

We present results on the average Hellinger distance in Figure 4.3.2, for values

of the dependence parameter α ∈ {0.1, 0.2, . . . , 0.9}. Results are shown for Meth-

ods 3, 4 and 5, alongside results for methods from Chapter 3. Comparing the weighted

approaches, Figure 4.3.2 shows that Method 5 performs better than Method 4 in the

majority of cases, and both these methods show improvement over those studied in

Chapter 3 for larger values of α, corresponding to weaker asymptotic dependence. For

low-to-moderate values of α, Method 1 is still generally the most successful in terms

of the Hellinger distance, particularly in the two most sparse cases, (d, f) = (5, 5) and

(10, 10). While Method 3, based on the partition of the angular simplex, is rarely the

most successful in terms of the Hellinger distance, it does provide reasonably compet-

itive results in the five-dimension case.

Table 4.3.2 provides results on the average AUC values obtained for a subset of

the cases considered in Figure 4.3.2. In particular, we consider α ∈ {0.25, 0.5, 0.75}

to cover a range of strengths of extremal dependence. Boxplots of these results are

provided in Appendix B.3. The results for dimension d = 5 show that the inclusion of
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Figure 4.3.2: Mean Hellinger distance over 100 simulations from asymmetric logistic

distributions with d = 5 (top row) and d = 10 (bottom row). Method 1: purple;

Method 2: green; Method 3: blue; Method 4: pink; Method 5: orange; Goix et al.

grey.
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Figure 4.3.3: Boxplots of AUC* values for Methods 3, 4 and 5 with d = 5; f = 5, 10, 15;

n = 10, 000 and α = 0.75. Mean AUC* values are shown by the circles in each plot.
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(α, f) (0.25, 5) (0.25, 10) (0.25, 15) (0.5, 5) (0.5, 10) (0.5, 15) (0.75, 5) (0.75, 10) (0.75, 15)

Method 3 99.9 (0.3) 99.7 (0.7) 99.5 (1.0) 99.5 (1.3) 98.3 (2.0) 97.0 (2.2) 94.3 (5.0) 86.2 (6.5) 81.2 (7.9)

Method 4 99.4 (2.4) 97.4 (4.0) 93.4 (5.0) 99.4 (1.9) 97.2 (3.4) 94.0 (5.0) 98.5 (2.2) 93.3 (4.7) 87.6 (6.5)

Method 5 99.8 (1.1) 99.2 (1.6) 98.2 (2.0) 99.7 (1.3) 98.3 (2.3) 96.8 (2.7) 98.8 (2.1) 93.5 (4.6) 87.7 (6.3)

(α, f) (0.25, 10) (0.25, 50) (0.25, 100) (0.5, 10) (0.5, 50) (0.5, 100) (0.75, 10) (0.75, 50) (0.75, 100)

Method 3 100 (0.0) 100 (0.0) 99.9 (0.2) 100 (0.1) 99.5 (0.3) 98.1 (0.4) 98.5 (1.4) 93.1 (1.4) 87.8 (1.9)

Method 4 100 (0.0) 99.8 (0.4) 98.4 (1.0) 100 (0.0) 99.9 (0.3) 98.5 (0.8) 100 (0.0) 98.8 (0.4) 95.9 (1.1)

Method 5 100 (0.0) 100 (0.1) 99.6 (0.2) 100 (0.0) 99.9 (0.2) 99.0 (0.4) 100 (0.0) 98.5 (0.5) 95.3 (1.0)

Table 4.3.2: Average AUC values, given as percentages, for Methods 3 and 4 over

100 samples from five-dimensional (top) and ten-dimensional (bottom) asymmetric

logistic distributions, with dependence parameter α. Results in bold show where the

methods are at least as successful as any of those studied in Chapter 3.

weights gives most improvement when the strength of dependence in the asymmetric

logistic model is weaker, with generally better results for α = 0.75 for Methods 4 and 5

than all three methods discussed in Chapter 3. However, Method 1 remains the most

successful classifier for α = 0.25 and α = 0.5 for d = 5 across all three values of f

we consider. For the d = 10 cases, all six approaches perform well for α = 0.25 and

α = 0.5. When α = 0.75, Methods 4 and 5 perform well in the sparse case of f = 10;

otherwise, Method 2 from Chapter 3 is the most successful.

Finally, in Figure 4.3.3, we present boxplots of AUC* values for d = 5, α = 0.75

and f ∈ {5, 10, 15}. Methods 4 and 5 are much more successful than all the previous

approaches in terms of this criterion. As in the max-mixture case, this suggests

that when these weighted methods are incorrect in their assessment of the extremal

dependence structure, they are generally closer to the truth than the non-weighted

approaches, and may therefore provide more reasonable approximations. Method 5

is slightly more successful than Method 4 according to Figure 4.3.3, although the

difference does not appear significant.
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4.4 Discussion

Each of the methods we have discussed have been shown to work best in different

settings. In general, it appears that the weighted approaches in Methods 4 and 5 are

most successful for weak asymptotic dependence on faces with mass, with particularly

strong results in terms of the AUC and AUC* values. Methods 1 and 3 often per-

formed better for the max-mixture distribution than the other approaches in terms

of the Hellinger distance, particularly for low values of the correlation ρ; for stronger

correlation in this model, Method 2 generally remains the most successful. In terms of

the asymmetric logistic model, Method 1 generally performs best when the extremal

mass is sparse, i.e., the mass is concentrated on a small number of faces, while the

approach of Goix et al. and our weighted methods are better in less sparse cases.

In practice, one could apply several methods for determining extremal dependence

structures, and compare the results; it may be that the outputs of some methods are

more sensible than others in the context of the problem. Alternatively, if the aim

is to choose or construct models exhibiting a given extremal dependence structure,

one could fit several of these models based on the different methods for assessing the

dependence structure of the data, and use model selection criteria to choose the most

appropriate.



Chapter 5

An Investigation into the Tail

Properties of Vine Copulas

5.1 Introduction

Vine copulas have recently been growing in popularity as a tool for multivariate de-

pendence modelling, due to their flexibility and relatively straightforward extension to

moderate or high dimensions. They have the potential to be used in extremal depen-

dence modelling, but questions remain about how well they can capture dependence

and independence in multivariate extremes. In this chapter, we aim to investigate

some of the tail properties of vine copulas by calculating the tail dependence coeffi-

cient of Ledford and Tawn (1996) for various models belonging to this class.

Suppose we are interested in modelling the variables X = {X1, . . . , Xd}, which in

this chapter we assume have standard exponential margins, i.e., Pr(Xi < x) = 1−e−x,

x > 0, for i = 1, . . . , d. For any subset of these variables, XC = {Xi : i ∈ C}, with

C ⊆ D = {1, . . . , d} and |C| ≥ 2, the coefficient of tail dependence ηC (Ledford and

Tawn, 1996) is defined via the relation

Pr (Xi > x : i ∈ C) ∼ LC(ex)e−x/ηC , (5.1.1)

86
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as x → ∞, for some slowly varying function LC and ηC ∈ (0, 1]. If ηC = 1 and

LC(x) 6→ 0, as x → ∞, the variables in XC are asymptotically dependent, i.e., take

their largest values simultaneously. For ηC < 1, these variables are asymptotically

independent, and the value of the coefficient itself provides a measure of the residual

dependence between the variables, that is, the rate at which they tend towards inde-

pendence, asymptotically.

In this chapter, we focus on models for continuous variables, although vine copulas

can also be used in the discrete case. Our main focus is on the three dimensional case,

but the techniques we use to calculate ηC are also applicable in higher dimensions. A

trivariate vine copula is defined in terms of the joint density

f(x1, x2, x3) =f1(x1) · f2(x2) · f3(x3)

· c12 {F1(x1), F2(x2)} · c23 {F2(x2), F3(x3)}

· c13|2
{
F1|2(x1|x2), F3|2(x3|x2)

}
, (5.1.2)

for marginal densities fi, i = 1, 2, 3; marginal distribution functions Fi, i = 1, 2, 3;

copula densities c12, c23 and c13|2; and conditional distribution functions F1|2 and F3|2.

Such a copula can be represented graphically, as in Figure 5.1.1. Each of the edges

in the graph corresponds to one of the bivariate copulas that contributes to den-

sity (5.1.2). If each of c12, c23, c13|2 is a Gaussian copula density, the overall trivariate

joint distribution is also Gaussian (Joe, 1996 ; Joe et al., 2010). Since the tail depen-

dence properties of the Gaussian model are well-studied in the literature, we focus on

cases where the pair copulas are from inverted extreme value or extreme value classes

of distributions.

We aim to investigate the values of the coefficients ηC for C ∈ 2D, the power set

of D = {1, . . . , d}, with |C| ≥ 2, in order to provide a summary of the tail depen-

dence properties of vine copulas. However, the coefficient ηC in (5.1.1) is defined in
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Figure 5.1.1: Graphical representation of a trivariate vine copula, with tree labels T1,

T2 as introduced in Section 2.5.3.

terms of a survivor function, which can often not be obtained analytically for vine

copulas. We therefore turn to the approach of Nolde (2014), who gives a geometric

interpretation of the coefficient of tail dependence that enables its calculation from a

density; we discuss this approach in Section 5.2.1. One drawback of this method is

that it is only applicable when the joint density of XC can be obtained analytically.

In our vine copula examples, we have the form of the overall joint density of X, but

not necessarily for XC with C ⊂ D = {1, . . . , d}. In particular, for the trivariate case

represented by Figure 5.1.1, for pairs directly linked in the upper tree, i.e., C = {1, 2}

and C = {2, 3}, the density can be obtained from the corresponding pair copula, i.e.,

c12 and c23, but for C = {1, 3}, this is not the case. In Section 5.2.3, we extend the

technique of Nolde (2014) using ideas related to the Laplace approximation, in order

to find ηC when the density can be obtained for X but not XC .

In Section 5.3, our focus is on situations where inverted extreme value copulas are

used to construct the vine. We first apply the techniques of Section 5.2 to calculate ηC

for trivariate vine copulas, focussing on the non-trivial cases of η{1,2,3} and η{1,3}, before

demonstrating the approach for higher dimensional examples, where the underlying

graphical structure of the vine copula is a further consideration. In all of these cases,

there is overall asymptotic independence between the variables, i.e., no combination

of variables can take their largest values simultaneously. In Section 5.4, we turn



CHAPTER 5. TAIL PROPERTIES OF VINE COPULAS 89

our attention back to the trivariate case, but consider vine copulas constructed from

extreme value and inverted extreme value pair copulas, where different subsets of the

variables can exhibit asymptotic independence or asymptotic dependence. A summary

of our findings, and possible avenues for future work, is provided in Section 5.5.

5.2 Density-based calculation of ηC

5.2.1 Geometric interpretation of ηC (Nolde, 2014)

Nolde (2014) presents a strategy for determining the coefficient of tail dependence,

ηC , for variables XC = {Xi : i ∈ C}, based on the geometry of scaled random samples

from the joint distribution of XC . Assuming standard exponential margins, and joint

density fC(xC), the idea is to study the gauge function gC(xC) such that

− log fC(txC) ∼ tgC(xC), (5.2.1)

as t → ∞, with gC(xC) being homogeneous of order 1. The boundary of the

scaled random sample (X1/ log n, . . . ,Xn/ log n), for large n, is described by the set

GC = {xC ∈ R|C| : gC(xC) = 1}, with the scaling function log n chosen due to the

exponential margins. The coefficient of tail dependence ηC then corresponds to the

smallest value of r such that GC ∩ [r,∞)|C| = ∅. In the remainder of this chapter,

we drop the subscript C from the set GC , density fC and gauge function gC when

discussing the overall vector of variables X, i.e., when C = D.

As an example, consider a bivariate inverted extreme value copula with exponent

measure V , defined in equation (2.3.2) of Chapter 2, and variables (X, Y ) having

standard exponential margins. This model has distribution function

F (x, y) = 1− e−x − e−y + exp
{
−V

(
x−1, y−1

)}
,

for x, y > 0, so that by first differentiating F (x, y) with respect to both components to

obtain the density f(x, y), with V1, V2 and V12 denoting the derivatives of the exponent
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measure with respect to the first, second and both components, respectively, we have

− log f(tx, ty) =2 log(tx) + 2 log(ty) + V
{

(tx)−1, (ty)−1
}

− log
[
V1
{

(tx)−1, (ty)−1
}
V2
{

(tx)−1, (ty)−1
}
− V12

{
(tx)−1, (ty)−1

}]
= 2 log(tx) + 2 log(ty) + tV

(
x−1, y−1

)
− log

{
t4V1

(
x−1, y−1

)
V2
(
x−1, y−1

)
− t3V12

(
x−1, y−1

)}
= tV

(
x−1, y−1

)
+O(log t), (5.2.2)

as t→∞, by exploiting the homogeneity of the exponent measure. That is, the gauge

function is given by g(x, y) = V (x−1, y−1). As an example of this class of models, con-

sider the inverted logistic copula with exponent measure V (x, y) =
(
x−1/α + y−1/α

)α
,

and therefore gauge function g(x, y) =
(
x1/α + y1/α

)α
. The set G corresponding to

this gauge function is shown by the red line in the left panel of Figure 5.2.1 for the case

where α = 0.5, and the grey points show a suitably-normalized sample from the joint

distribution. The blue line shows the boundary of the set [r,∞)2, with the smallest

value of r such that the two sets do not intersect being 1/
√

2 = 2−α, occurring when

x = y. This corresponds to the known value of η{1,2} for this copula.

A similar approach shows that the bivariate extreme value logistic copula with

dependence parameter α ∈ (0, 1) has gauge function

g(x, y) =
1

α
max{x, y}+

(
1− 1

α

)
min{x, y}.

In this case, the point (x, y) = (1, 1) satisfies g(x, y) = 1, and since both variables are

at most 1 in the set G, we must have η{1,2} = 1. This is demonstrated in the right

panel of Figure 5.2.1 for α = 0.5.

5.2.2 Numerical approximation of ηC

Analytically calculating the largest value of r such that GC and [r,∞)|C| intersect

may not be possible for certain gauge functions. We therefore propose a strategy to



CHAPTER 5. TAIL PROPERTIES OF VINE COPULAS 91

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Inverted logistic model

X

Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic model

X

Y

Figure 5.2.1: A scaled sample from a bivariate inverted logistic copula (left) and

bivariate logistic copula (right) with α = 0.5 (grey); the sets G = {(x, y) ∈ R2 :

g(x, y) = 1} (red); and the sets [η{1,2},∞)2 (blue).

calculate this value numerically, using the following steps:

1. Simulate n points, xC,j, j = 1, . . . , n, in the set GC by:

(a) simulating n points, w1, . . . ,wn, from a |C|-dimensional Dirichlet distri-

bution with all concentration parameters set to 0.5;

(b) setting xC,j = {xC,j,i : i ∈ C} = wj/gC(wj), for j = 1, . . . , n (note that

gC(xC,j) = 1 by homogeneity of the gauge function).

2. Find ri = max{xC,j,i : j ∈ {1, . . . , n}, xC,j,k ≥ xC,j,i ∀k 6= i}, for each i ∈ C.

3. An approximation of ηC is given by max
i∈C

ri.

5.2.3 Extension of Nolde (2014) when joint density not avail-

able

Applying the definition of the gauge function in (5.2.1) relies on us having the density

fC(xC) analytically, which may not always be possible. For instance, for vine copula
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models, we can construct the density f(x) of X = {X1, . . . , Xd}, but obtaining the

density for subsets of these variables involves integration that may not result in a

closed form expression, particularly if the variables are not directly linked in the base

tree of the corresponding graphical model. We therefore propose an extension of the

method of Nolde (2014) to deal with such cases.

In the original approach of Nolde, we have − log f(tx) ∼ tg(x), as t → ∞. This

implies that for large t, f(tx) ≈ exp{−tg(x)}. By ideas related to the Laplace

approximation (de Bruijn, 1958), we have

fC(txC) =

∫
[0,∞)d−|C|

f(tx)
∏
i/∈C

dtxi

≈
∫

[0,∞)d−|C|

exp{−tg(x)}
∏
i/∈C

dtxi ∝∼ exp

{
−t min

xi:i/∈C
g(x)

}
,

as t→∞. As such, we assume that

− log fC (txC) ∼ t min
xi:i/∈C

g(x),

as t → ∞, so that an approximation of the gauge function gC(xC) for the vector

XC can be obtained from the gauge function g(x) for the vector X, for any set

C ∈ {1, . . . , d} with |C| ∈ [2, d− 1].

If analytical calculation of the gauge function gC(xC) is not possible, one could use

a numerical minimization technique to find points xC,j with gC(xC,j) ∈ [1−ε, 1+ε], for

some small ε > 0, in order to approximate the limit set GC = {xC ∈ R|C| : gC(xC) =

1}. Then steps 2 and 3 from the numerical method proposed in Section 5.2.2 could

be used to approximate ηC .
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5.3 Vine copulas with inverted extreme value pair

copula components

5.3.1 Overview

In this section, we apply the techniques from Section 5.2 to calculate ηC for vine cop-

ulas constructed from inverted extreme value pair copulas. In Section 5.3.2, we focus

on the trivariate case, obtaining the corresponding gauge function, and subsequently

calculating ηC for C = {1, 3} and C = {1, 2, 3}. We demonstrate the results by fo-

cussing on inverted logistic examples. In Section 5.3.3, we obtain results for higher

dimensional vine copulas with inverted extreme value components. In this latter case,

the underlying graphical structure of the vine copula can take different forms: we fo-

cus on D-vines and C-vines here, the concept of which will also be introduced in

Section 5.3.3.

5.3.2 Trivariate case

A bivariate inverted extreme value copula with exponent measure V has the form

C(u, v) = u+ v − 1 + exp

[
−V

{
−1

log(1− u)
,

−1

log(1− v)

}]
.

Let V1, V2 and V12 denote the derivative of the exponent measure with respect to the

first, second, and both components, respectively. Differentiating C(u, v) with respect

to the second component gives the conditional distribution function

F (u | v) = 1+

(
1

1− v

)
{− log(1− v)}−2 V2

{
−1

log(1− u)
,

−1

log(1− v)

}
· exp

[
−V

{
−1

log(1− u)
,

−1

log(1− v)

}]
, (5.3.1)

and subsequently differentiating with respect to the first component gives the copula

density

c(u, v) =

(
1

1− u

)(
1

1− v

)
{− log(1− u)}−2 {− log(1− v)}−2
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· exp

[
−V

{
−1

log(1− u)
,

−1

log(1− v)

}]
·
[
V1

{
−1

log(1− u)
,

−1

log(1− v)

}
V2

{
−1

log(1− u)
,

−1

log(1− v)

}
− V12

{
−1

log(1− u)
,

−1

log(1− v)

}]
. (5.3.2)

In calculating values of η for a trivariate vine, we are interested in the behaviour, as

t→∞, of

− log f(tx) =− log f1(tx1)− log f2(tx2)− log f3(tx3)

− log c12 {F1(tx1), F2(tx2)} − log c23 {F2(tx2), F3(tx3)}

− log c13|2
{
F1|2(tx1|tx2), F3|2(tx3|tx2)

}
. (5.3.3)

Consider a trivariate vine copula with three inverted extreme value components whose

exponent measures are denoted V {12}, V {23} and V {13|2}, corresponding to the links

in the vine. Working in standard exponential margins, we have − log fi(txi) =

− log (e−txi) = txi, for i = 1, 2, 3. We also have marginal distribution functions

Fi(txi) = 1− e−txi , for i = 1, 2, 3. Noting that − log {1− Fi(txi)} = txi; the exponent

measure V {12} is homogeneous of order −1; V
{12}
1 and V

{12}
2 are homogeneous of order

−2; and V
{12}
12 is homogeneous of order −3, we have

− log c12 {F1(tx1), F2(tx2)} =

− tx1 − tx2 + 2 log(tx1) + 2 log(tx2) + V {12}
{

(tx1)
−1, (tx2)

−1}
− log

[
V
{12}
1

{
(tx1)

−1, (tx2)
−1}V {12}2

{
(tx1)

−1, (tx2)
−1}− V {12}12

{
(tx1)

−1, (tx2)
−1}]

= t
{
V {12}

(
x−11 , x−12

)
− x1 − x2

}
+ 2 {log(tx1) + log(tx2)}

− log
{
t4V

{12}
1

(
x−11 , x−12

)
V
{12}
2

(
x−11 , x−12

)
− t3V {12}12

(
x−11 , x−12

)}
= t
{
V {12}

(
x−11 , x−12

)
− x1 − x2

}
+O(log t), (5.3.4)

and by similar calculations,

− log c23 {F2(tx2), F3(tx3)} = t
{
V {23}

(
x−12 , x−13

)
− x2 − x3

}
+O(log t). (5.3.5)
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Substituting the marginal distribution functions Fi(txi), i = 1, 2, into the corre-

sponding conditional copulas, we have

F1|2(tx1 | tx2) = 1 + etx2(tx2)
−2V

{12}
2

{
(tx1)

−1, (tx2)
−1} exp

[
−V {12}

{
(tx1)

−1, (tx2)
−1}]

= 1 + x−22 V
{12}
2

(
x−11 , x−12

)
exp

[
t
{
x2 − V {12}

(
x−11 , x−12

)}]
,

and similarly,

F3|2(tx3 | tx2) = 1 + x−22 V
{23}
1

(
x−12 , x−13

)
exp

[
t
{
x2 − V {23}

(
x−12 , x−13

)}]
.

Setting h1|2 = log
{
−x−22 V

{12}
2

(
x−11 , x−12

)}
and defining h3|2 analogously,

log
{

1− F1|2(tx1 | tx2)
}

= h1|2 + t
{
x2 − V {12}

(
x−11 , x−12

)}
;

log
{

1− F3|2(tx3 | tx2)
}

= h3|2 + t
{
x2 − V {23}

(
x−12 , x−13

)}
,

with h1|2 and h3|2 not depending on t. This implies that

− log c13|2
{
F1|2(tx1 | tx2), F3|2(tx3 | tx2)

}
= log

{
1− F1|2(tx1 | tx2)

}
+ log

{
1− F3|2(tx3 | tx2)

}
+ 2 log

[
− log

{
1− F1|2(tx1 | tx2)

}]
+ 2 log

[
− log

{
1− F3|2(tx3 | tx2)

}]
+ V {13|2}

[
−1

log
{

1− F1|2(tx1 | tx2)
} , −1

log
{

1− F3|2(tx3 | tx2)
}]

− log

(
V
{13|2}
1

[
−1

log
{

1− F1|2(tx1 | tx2)
} , −1

log
{

1− F3|2(tx3 | tx2)
}]

· V {13|2}2

[
−1

log
{

1− F1|2(tx1 | tx2)
} , −1

log
{

1− F3|2(tx3 | tx2)
}]

− V {13|2}12

[
−1

log
{

1− F1|2(tx1 | tx2)
} , −1

log
{

1− F3|2(tx3 | tx2)
}])

= h1|2 + h3|2

+ t
{

2x2 − V {12}(x−11 , x−12 )− V {23}(x−12 , x−13 )
}

+ 2 log
[
t
{
V {12}

(
x−11 , x−12

)
− x2

}
− h1|2

]
+ 2 log

[
t
{
V {23}

(
x−12 , x−13

)
− x2

}
− h3|2

]
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+ tV {13|2}
{

1

V {12}(x−11 , x−12 )− x2 − 1
t
h1|2

,
1

V {23}(x−12 , x−13 )− x2 − 1
t
h3|2

}
− log

[
t4V

{13|2}
1

{
1

V {12}(x−11 , x−12 )− x2 − 1
t
h1|2

,
1

V {23}(x−12 , x−13 )− x2 − 1
t
h3|2

}
· V {13|2}2

{
1

V {12}(x−11 , x−12 )− x2 − 1
t
h1|2

,
1

V {23}(x−12 , x−13 )− x2 − 1
t
h3|2

}
− t3V {13|2}12

{
1

V {12}(x−11 , x−12 )− x2 − 1
t
h1|2

,
1

V {23}(x−12 , x−13 )− x2 − 1
t
h3|2

}]
= t
{

2x2 − V {12}
(
x−11 , x−12

)
− V {23}

(
x−12 , x−13

)}
+ tV {13|2}

[{
V {12}

(
x−11 , x−12

)
− x2

}−1
,
{
V {23}

(
x−12 , x−13

)
− x2

}−1]
+O(log t). (5.3.6)

Substituting results (5.3.4), (5.3.5) and (5.3.6) into (5.3.3) yields

− log f(tx) = t(x1 + x2 + x3)

+ t
{
V {12}

(
x−11 , x−12

)
− x1 − x2

}
+ t
{
V {23}

(
x−12 , x−13

)
− x2 − x3

}
+ t
{

2x2 − V {12}
(
x−11 , x−12

)
− V {23}

(
x−12 , x−13

)}
+ tV {13|2}

[{
V {12}

(
x−11 , x−12

)
− x2

}−1
,
{
V {23}

(
x−12 , x−13

)
− x2

}−1]
+O(log t)

= t
(
x2 + V {13|2}

[{
V {12}

(
x−11 , x−12

)
− x2

}−1
,
{
V {23}

(
x−12 , x−13

)
− x2

}−1])
+O(log t), (5.3.7)

so that the gauge function of a trivariate vine copula with inverted extreme value

components is

g(x) = x2 + V {13|2}
[{
V {12}

(
x−11 , x−12

)
− x2

}−1
,
{
V {23}

(
x−12 , x−13

)
− x2

}−1]
.

Inverted logistic example

An example of an inverted extreme value copula is the inverted logistic copula, where

the exponent measure is of the form V (x, y) =
(
x−1/α + y−1/α

)α
. Suppose all three
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pair copulas that make up the trivariate vine have this form, with V {12}, V {23} and

V {13|2} having dependence parameters α, β and γ, respectively. Then the correspond-

ing gauge function is

g(x) = x2 +

[{(
x
1/α
1 + x

1/α
2

)α
− x2

}1/γ

+

{(
x
1/β
2 + x

1/β
3

)β
− x2

}1/γ
]γ
. (5.3.8)

Figure 5.3.1 demonstrates the sets G = {x ∈ R3 : g(x) = 1} and [η{1,2,3},∞)3 for this

gauge function, with α ∈ {0.25, 0.5, 0.75}, β = 0.25 and γ = 0.5.

Figure 5.3.1: Points in the set G = {x ∈ R3 : g(x) = 1} for a trivariate vine with

three inverted logistic pair copula components (grey) and the set [η{1,2,3},∞)3 (blue):

α = 0.25 (left), α = 0.5 (centre), α = 0.75 (right); β = 0.25 and γ = 0.5.

For gauge functions of the form (5.3.8), numerical investigations suggest that the

intersection of G and [η{1,2,3},∞)3 occurs on the diagonal, i.e., when x1 = x2 = x3,

and this is supported by the plots in Figure 5.3.1. By homogeneity of the gauge

function, and since η{1,2,3} solves the equation g
(
η{1,2,3}, η{1,2,3}, η{1,2,3}

)
= 1, we have

η{1,2,3} =
1

g(1, 1, 1)
=

1

1 +
{

(2α − 1)1/γ + (2β − 1)1/γ
}γ . (5.3.9)

For α = β = γ = 1, the model has η{1,2,3} = 1/3, corresponding to complete inde-

pendence, and as α, β, γ → 0, η{1,2,3} → 1, corresponding to asymptotic dependence

between all three variables. It will not always be the case that the intersection of G
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Figure 5.3.2: Values of η{1,3} (dashed) and η{1,2,3} (solid) for a trivariate vine copula

with inverted logistic components, with α = 0.25 (left), α = 0.5 (centre), α = 0.75

(right); β = 0.25 (red), β = 0.5 (purple) and β = 0.75 (orange); and γ ∈ (0.1, 0.9).

Average Hill estimates of η{1,3} (circles) and η{1,2,3} (triangles) are provided in each

case.

and [η{1,2,3},∞)3 occurs on the diagonal, but we note that the value of 1/g(1, 1, 1) will

at least provide a lower bound for the value of η{1,2,3} in general.

In Figure 5.3.2, we demonstrate the behaviour of η{1,2,3} in (5.3.9) across a range

of parameter values. We also present estimated values of η{1,2,3} obtained by apply-

ing the Hill estimate (Hill, 1975) to samples of size 100,000 from the corresponding

vine copula, and taking the average over 100 replications. The threshold in the Hill

estimation is taken to be the 0.99 quantile of observed minima in each case, and we

present results for α, β ∈ {0.25, 0.5, 0.75} and γ ∈ {0.1, 0.2, . . . , 0.9}. The average

Hill estimates lie close to the values obtained using equation (5.3.9), and therefore

support our theoretical results.
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Figure 5.3.3: Left: g{1,3}(x1, x3) for (α, β, γ) = (0.5, 0.25, 0.5). Right: an approxima-

tion of the corresponding sets G{1,3} (grey) and [η{1,3},∞)2 (blue).

η{1,3} for the inverted logistic example

The joint density of (X1, X3) cannot be found analytically for a trivariate vine with

inverted logistic pair copula components; we therefore use the method proposed in

Section 5.2.3, with the gauge function for this pair of variables being g{1,3}(x1, x3) =

minx2 g(x), for g(x) in (5.3.8). We investigate the behaviour of this function by

carrying out the required minimization numerically. The left panel of Figure 5.3.3

shows the value of g{1,3}(x1, x3) in the region [0, 1]2, for (α, β, γ) = (0.5, 0.25, 0.5),

chosen to match the parameter values for the central panel of Figure 5.3.1. In the

right panel of Figure 5.3.3, we approximate the set G{1,3} by considering values of

g{1,3}(x1, x3) ∈ (0.99, 1.01). As for the η{1,2,3} case, we see that the intersection of

G{1,3} and [η{1,3},∞)2 occurs on the diagonal, i.e., when x1 = x3. Further investi-

gations suggest this is generally the case for vine copulas constructed from inverted

logistic pair copulas.

By focussing on the case where x1 = x3, to calculate η{1,3}, we need to first

minimize g(x1, y, x1) with respect to y to obtain the gauge function for (X1, X3). Since

all gauge functions are homogeneous of order 1, we set y = vx1, so that g{1,3}(x1, x1) =
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minv g(x1, vx1, x1). Differentiating g(x1, vx1, x1) with respect to v, we have

dg(x1, vx1, x1)

dv
= x1

{
1+
[{

(1 + v1/α)α − v
}1/γ

+
{

(1 + v1/β)β − v
}1/γ]γ−1

·
[{

v−1+1/α(1 + v1/α)α−1 − 1
}{

(1 + v1/α)α − v
}−1+1/γ

+
{
v−1+1/β(1 + v1/β)β−1 − 1

}{
(1 + v1/β)β − v

}−1+1/γ
]}

.

From Figure 5.3.3, we deduce that there is only one value of x1 satisfying g{1,3}(x1, x1) =

1. This corresponds to the value of η{1,3}, so that η{1,3} = 1/g{1,3}(1, 1) = 1/minv g(1, v, 1),

by homogeneity of the gauge functions. Combining this information, we have

η{1,3} =

(
v +

[{(
1 + v1/α

)α − v}1/γ

+
{(

1 + v1/β
)β − v}1/γ

]γ)−1
,

with v satisfying dg(1, v, 1)/dv = 0, i.e.,

1 +

[{(
1 + v1/α

)α − v}1/γ

+
{(

1 + v1/β
)β − v}1/γ

]γ−1
·
[{

(1 + v−1/α)α−1 − 1
}{

(1 + v1/α)α − v
}−1+1/γ

+
{

(1 + v−1/β)β−1 − 1
}{

(1 + v1/β)β − v
}−1+1/γ

]
= 0. (5.3.10)

In Figure 5.3.2, we calculate η{1,3} for a range of parameter values by solving

equation (5.3.10) numerically, and compare to the value of η{1,2,3} in each case. We

also present average Hill estimates of η{1,3} obtained using a similar approach as for

the estimates of η{1,2,3}, which again appear to support our theoretical results. From

Figure 5.3.2, we see that a range of tail independence properties can be achieved

for the pair (X1, X3) using this model, from complete independence (η{1,3} = 1/2)

to asymptotic independence with strong residual dependence (η{1,3} → 1), which is

analogous to our observations for η{1,2,3} for this model.

5.3.3 Higher dimensions and different vine structures

We now extend the results of Section 5.3.2 by considering vine copulas with dimension

d > 3 constructed from inverted extreme value pair copulas, with the aim being to find
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the gauge function and value of ηD in each case. When working with higher than three

dimensions, the graphical structure of the vine becomes an important consideration.

In particular, the trees used in the graphical representations can take different forms.

We focus on two such cases: gauge functions for the class of vine copulas known as

D-vines, where all trees in the vine are paths; and gauge functions for C-vines, which

have exactly one node that is connected to all other nodes in each tree. These two

classes are demonstrated in Figure 5.3.4 for the case d = 4. In the final part of this

section, we demonstrate the values of ηD calculated using these gauge functions for

both classes of model.

Figure 5.3.4: Graphical representations of four dimensional vine copula models; D-

vine (left) and C-vine (right).

Gauge functions for D-vines

A d-dimensional D-vine is made up of (d − 1) trees, labelled T1, . . . , Td−1, and a

total of (d− 1)d/2 edges. We suppose that the pair copula represented by each edge

is an inverted extreme value copula, with the superscript on the exponent measure

corresponding to the edge-label, as in the trivariate case. For the four-dimensional

example in Figure 5.3.4, we have

− log f(tx) = − log f1(tx1)− log f2(tx2)− log f3(tx3)− log f4(tx4)
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− log c12 {F1(tx1), F2(tx2)} − log c23 {F2(tx2), F3(tx3)} − log c34 {F3(tx3), F4(tx4)}

− log c13|2
{
F1|2(tx1|tx2), F3|2(tx3|tx2)

}
− log c24|3

{
F2|3(tx2|tx3), F4|3(tx4|tx3)

}
− log c14|23

{
F1|23(tx1|tx2, tx3), F4|23(tx4|tx2, tx3)

}
. (5.3.11)

We note that several of these terms can be thought of in terms of lower-dimensional

vine copulas that are subsets of the four-dimensional vine. In particular, all terms in

the trivariate formula (5.3.3) for the set of variables (X1, X2, X3) appear in (5.3.11).

Let f123 denote the joint density corresponding to this trivariate case. The density f234

corresponding to variables (X2, X3, X4) also comes from a trivariate vine copula equiv-

alent to f123 up to a labelling of the variables. The sections of the four-dimensional

vine corresponding to these two trivariate subsets are highlighted in Figure 5.3.5, and

can be thought of as sub-vines of the overall vine copula. We note that these two sub-

vines overlap in the centre, as they share the variables (X2, X3). This suggests that if

we try to represent − log f for the overall model in terms of − log f123 and − log f234,

we will count the section corresponding to − log f23 twice, with f23 denoting the joint

density of (X2, X3). Taking this inclusion-exclusion into account, equation (5.3.11)

can be simplified to

− log f(tx) =− log f123(tx1, tx2, tx3)− log f234(tx2, tx3, tx4) + log f23(tx2, tx3)

− log c14|23
{
F1|23(tx1|tx2, tx3), F4|23(tx4|tx2, tx3)

}
. (5.3.12)

In Section 5.3.2, we studied gauge functions of trivariate vine copulas with inverted

extreme value components. From equation (5.3.7), we have

− log f123(tx1, tx2, tx3)

= t
(
x2 + V {13|2}

[{
V {12}

(
x−11 , x−12

)
− x2

}−1
,
{
V {23}

(
x−12 , x−13

)
− x2

}−1])
+O(log t), (5.3.13)

and considering f234 as equivalent to f123 up to labelling of the variables, we have

− log f234(tx2, tx3, tx4)
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Figure 5.3.5: Trivariate subsets of the four-dimensional D-vine.

=t
(
x3 + V {24|3}

[{
V {23}

(
x−12 , x−13

)
− x3

}−1
,
{
V {34}

(
x−13 , x−14

)
− x3

}−1])
+O(log t). (5.3.14)

Moreover, from the four-dimensional vine, the pair (X2, X3) is modelled by an inverted

extreme value copula with exponent measure V {23}, so by equation (5.2.2) we have

log f23(tx2, tx3) = −tV {23}
(
x−12 , x−13

)
+O(log t). (5.3.15)

As such, − log c14|23
{
F1|23(tx1|tx2, tx3), F4|23(tx4|tx2, tx3)

}
is the only term of (5.3.11)

left for us to study. Joe (1996) shows that

F1|23(x1|x2, x3) =
∂C13|2

{
F1|2(x1|x2), F3|2(x3|x2)

}
∂F3|2(x3|x2)

,

and

F4|23(x4|x2, x3) =
∂C24|3

{
F2|3(x2|x3), F4|3(x4|x3)

}
∂F2|3(x2|x3)

.

Since we focus on inverted extreme value copulas, the derivatives have the form (5.3.1),

where the arguments u and v are replaced by the appropriate bivariate conditional

distributions. We find that for some functions h1|23, h4|23 not depending on t,

1− F1|23(tx1 | tx2, tx3) ∼

exp(h1|23) · exp

{
− t
(
x2 − V {23}

(
x−12 , x−13

)
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+ V {13|2}
[{
V {12}

(
x−11 , x−12

)
− x2

}−1
,
{
V {23}

(
x−12 , x−13

)
− x2

}−1])}
(5.3.16)

and

1− F4|23(tx4 | tx2, tx3) ∼

exp(h4|23) · exp

{
− t
(
x3 − V {23}

(
x−12 , x−13

)
+ V {24|3}

[{
V {23}

(
x−12 , x−13

)
− x3

}−1
,
{
V {34}

(
x−13 , x−14

)
− x3

}−1])}
.

(5.3.17)

This is similar to the results for the trivariate vine, and applying an argument analo-

gous to (5.3.6), we see that

− log c14|23
{
F1|23(tx1|tx2, tx3), F4|23(tx4|tx2, tx3)

}
∼

− x2 + V {23}
(
x−12 , x−13

)
− V {13|2}

[{
V {12}

(
x−11 , x−12

)
− x2

}−1
,
{
V {23}

(
x−12 , x−13

)
− x2

}−1]
− x3 + V {23}

(
x−12 , x−13

)
− V {24|3}

[{
V {23}

(
x−12 , x−13

)
− x3

}−1
,
{
V {34}

(
x−13 , x−14

)
− x3

}−1]
+ V {14|23}

{(
x2 − V {23}

(
x−12 , x−13

)
+ V {13|2}

[{
V {12}

(
x−11 , x−12

)
− x2

}−1
,
{
V {23}

(
x−12 , x−13

)
− x2

}−1])−1
,(

x3 − V {23}
(
x−12 , x−13

)
+ V {24|3}

[{
V {23}

(
x−12 , x−13

)
− x3

}−1
,
{
V {34}

(
x−13 , x−14

)
− x3

}−1])−1}
.

(5.3.18)

We can now substitute the results (5.3.13), (5.3.14), (5.3.15) and (5.3.18) into

equation (5.3.12) to obtain the gauge function for this four-dimensional vine copula

as

g(x) =V {23}
(
x−12 , x−13

)
+ V {14|23}

{(
x2 − V {23}

(
x−12 , x−13

)
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+ V {13|2}
[{
V {12}

(
x−11 , x−12

)
− x2

}−1
,
{
V {23}

(
x−12 , x−13

)
− x2

}−1])−1
,(

x3 − V {23}
(
x−12 , x−13

)
+ V {24|3}

[{
V {23}

(
x−12 , x−13

)
− x3

}−1
,
{
V {34}

(
x−13 , x−14

)
− x3

}−1])−1}
.

This gauge function can be written more simply in terms of the gauge functions of the

three sub-vines highlighted in Figure 5.3.5 and the exponent measure corresponding

to the pair copula in tree T3. That is,

g(x) = g{2,3}(x2, x3)

+ V {14|23}
{

1

g{1,2,3}(x1, x2, x3)− g{2,3}(x2, x3)
,

1

g{2,3,4}(x2, x3, x4)− g{2,3}(x2, x3)

}
.

(5.3.19)

For D-vine copulas, this same structure can be extended to higher dimensions, creat-

ing an iterative formula for calculating the gauge function; this is stated in Theorem 3.

Theorem 3. The gauge function for a d-dimensional D-vine with inverted extreme

value pair copula components is given by

g(x) = gD\{1,d}(x−{1,d})

+ V {1,d|D\{1,d}}
{

1

gD\{d}(x−{d})− gD\{1,d}(x−{1,d})
,

1

gD\{1}(x−{1})− gD\{1,d}(x−{1,d})

}
.

Theorem 3 is proved in Appendix C.1. We discuss how to obtain ηD from this gauge

function at the end of this section.

Gauge functions for C-vines

Using similar arguments as for the D-vines in the previous section, we can construct

an iterative formula for the gauge functions of d-dimensional C-vines. We now con-

sider the sub-vines as corresponding to the sets of variables X−d and X−(d−1), which

overlap at X−{(d−1),d}. This is demonstrated in Figure 5.3.6 for the four-dimensional
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Figure 5.3.6: Trivariate subsets of the four-dimensional C-vine.

case.

Following the same steps as in the previous section, we obtain the gauge function

g(x) = gD\{(d−1,d}(x−{d−1,d})

+ V {d−1,d|D\{d−1,d}}
{

1

gD\{d}(x−{d})− gD\{d−1,d}(x−{d−1,d})
,

1

gD\{d−1}(x−{d−1})− gD\{d−1,d}(x−{d−1,d})

}
,

and discuss using this to calculate ηD in the remainder of this section.

Calculating ηD for d-dimensional D-vines and C-vines with inverted logistic

components

As for the trivariate vine copula examples with inverted logistic pair copula com-

ponents, numerical results suggest that the intersection of the set G = {x ∈ Rd :

g(x) = 1} and [ηD,∞)d for these D-vines and C-vines occurs when x1 = x2 · · · = xd.

As before, we can exploit the homogeneity of the gauge function, and conclude that

ηD = g(1, . . . , 1)−1 in this case.

Due to the nested structure of the gauge functions, the value of ηD can be written
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in terms of the values of ηC for various sub-vines of the copula, and the exponent

measure corresponding to tree Td−1 of the vine. In particular, for D-vines, we have

ηD =

{
η−1D\{1,d} + V {1,d|D\{1,d}}

(
1

η−1D\{d} − η
−1
D\{1,d}

,
1

η−1D\{1} − η
−1
D\{1,d}

)}−1
(5.3.20)

and for C-vines,

ηD =

{
η−1D\{d−1,d} + V {d−1,d|D\{d−1,d}}

(
1

η−1D\{d} − η
−1
D\{d−1,d}

,
1

η−1D\{(d−1)} − η
−1
D\{d−1,d}

)}−1
.

Setting ηC = 1 for |C| = 1, we now have an iterative method for calculating the values

of ηD for these classes of model for d ≥ 3 dimensions.

As an example, we consider the case where all the pair copulas of the vine are

inverted logistic with the same dependence parameter α ∈ (0, 1). In this case, the

known value of ηD for the bivariate copula is 2−α. We can therefore use our iterative

formulas to calculate ηD for higher dimensional vine copulas. Since the exponent is

homogeneous of order −1, the expression for ηD in (5.3.20) in this case simplifies to

ηD =
{
η−1D\{1,d} + 2α

(
η−1D\{d} − η

−1
D\{1,d}

)}−1
, (5.3.21)

and we can use the iterative method to derive the exact value of ηD for any d-

dimensional D-vine copula. For a trivariate vine copula we have,

ηD = {1 + 2α (2α − 1)}−1 , (5.3.22)

and for a four-dimensional vine copula,

ηD = [2α + 2α {1 + 2α (2α − 1)− 2α}]−1 =
{

2α + 2α (2α − 1)2
}−1

. (5.3.23)

For this particular example, we can extend the results to higher d-dimensional vine

copulas, yielding, for d ≥ 3,

ηD =


{

1 + 2α
∑(d−1)/2

k=1 (2α − 1)2(k−1)+1
}−1

, for d odd,{
2α
∑d/2

k=1 (2α − 1)2(k−1)
}−1

, for d even.

(5.3.24)
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Figure 5.3.7: Values of ηD for d ∈ {2, . . . , d} for a d-dimensional D-vine or C-vine

with inverted logistic pair copulas with dependence parameters α ∈ {0.1, 0.2, . . . , 0.9}.

We prove result (5.3.24) by induction in Appendix C.2. We note that since the

pair copulas, and therefore the corresponding exponent measures, are all taken to

be identical, the value of ηD is the same for the D-vines and C-vines of the same

dimension. These values are demonstrated in Figure 5.3.7 for α ∈ {0.1, 0.2, . . . , 0.9}

and d ∈ {2, . . . , 10}, where we have ηD < 1 in all cases, corresponding to asymptotic

independence. Complete independence in the d-dimensional vine copula corresponds

to ηD = 1/d. We see from Figure 5.3.7 that for α = 0.9, we approach this case,

while for α = 0.1, the values of ηD are close to 1, corresponding to strong residual

dependence. These models are therefore able to capture a range of sub-asymptotic

dependence strengths in the asymptotic independence case.
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5.4 Trivariate vine copulas with extreme value and

inverted extreme value pair copula components

5.4.1 Overview

We have so far focussed on the tail dependence properties of vine copulas with inverted

extreme value pair copula components. In this section, we investigate these same

properties for trivariate vine copulas where the components are either extreme value

or inverted extreme value copulas. We consider five such cases, which along with

the results in Section 5.3.2 cover the range of possible scenarios: the two copulas in

tree T1 being inverted extreme value with an extreme value copula in tree T2; tree

T1 having one extreme value and one inverted extreme value copula with the copula

in tree T2 being either extreme value or inverted extreme value; and both copulas in

tree T1 being from the extreme value family with the copula in tree T2 being either

extreme value or inverted extreme value. In Section 5.4.2, we demonstrate how to

calculate the gauge function for each of these cases, for the extreme value components

satisfying certain conditions, and then investigate their corresponding values of η{1,2,3}

and η{1,3} for (inverted) logistic examples in Section 5.4.3.

5.4.2 Gauge functions for trivariate vines with extreme value

and inverted extreme value components

For any trivariate vine copula, − log f(tx) has the form (5.3.3). In our gauge function

calculations, we work with variables having exponential margins, so that the first

three terms of this expression always satisfy

− log f1 (tx1)− log f2 (tx2)− log f3 (tx3) = t (x1 + x2 + x3) , (5.4.1)
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and we have Fi(txi) = 1 − e−txi , for i = 1, 2, 3. For inverted extreme value copulas,

we have shown in equations (5.3.4) and (5.3.5) that

− log c12 {F1(tx1), F2(tx2)} = t
{
V {12}

(
x−11 , x−12

)
− x1 − x2

}
+O(log t) (5.4.2)

and

− log c23 {F2(tx2), F3(tx3)} = t
{
V {23}

(
x−12 , x−13

)
− x2 − x3

}
+O(log t). (5.4.3)

In order to investigate the behaviour of the extreme value pair copula components,

we impose the condition that the corresponding spectral densities place no mass on

{0} or {1} and have regularly varying tails. Let h{12}(w), h{23}(w), h{13|2}(w) denote

the spectral density for each pair copula component. We assume that each of these

densities has h{·}(w) ∼ c
{·}
1 (1− w)s

{·}
1 as w → 1 and h{·}(w) ∼ c

{·}
2 ws

{·}
2 as w → 0, for

some c
{·}
1 , c

{·}
2 ∈ R and s

{·}
1 , s

{·}
2 > −1. In Appendix C.3.2, we show that

− log c12{F1(tx1), F2(tx2)} ∼t
{(

1 + s
{12}
1 1{x1≥x2} + s

{12}
2 1{x1<x2}

)
max(x1, x2)

−
(

2 + s
{12}
1 1{x1≥x2} + s

{12}
2 1{x1<x2}

)
min(x1, x2)

}
, (5.4.4)

and

− log c23{F2(tx2), F3(tx3)} ∼t
{(

1 + s
{23}
1 1{x2≥x3} + s

{23}
2 1{x2<x3}

)
max(x2, x3)

−
(

2 + s
{23}
1 1{x2≥x3} + s

{23}
2 1{x2<x3}

)
min(x2, x3)

}
, (5.4.5)

so that the final term of (5.3.3), i.e., − log c13|2
{
F1|2(tx1|tx2), F3|2(tx3|tx2)

}
, is the

only one left for us to consider.

In Section 5.3.2, we showed that for the components in tree T1 being inverted

extreme value copulas, we have

F1|2(tx1 | tx2) = 1 + x−22 V
{12}
2

(
x−11 , x−12

)
exp

[
t
{
x2 − V {12}

(
x−11 , x−12

)}]
= 1− a1|2 exp

[
−t
{
V {12}

(
x−11 , x−12

)
− x2

}]
; (5.4.6)
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F3|2(tx3 | tx2) = 1 + x−22 V
{23}
1

(
x−12 , x−13

)
exp

[
t
{
x2 − V {23}

(
x−12 , x−13

)}]
= 1− a3|2 exp

[
−t
{
V {23}

(
x−12 , x−13

)
− x2

}]
, (5.4.7)

for a1|2 = −x−22 V
{12}
2

(
x−11 , x−12

)
and a3|2 = −x−22 V

{23}
1

(
x−12 , x−13

)
. We consider the

extreme value case in Appendix C.3.3. Placing the same conditions on the spectral

density as for the − log c12 and − log c23 calculations, we obtain

F1|2(tx1 | tx2) =



2c
{12}
2

(s
{12}
2 +1)

exp
{
t(x1 − x2)(s{12}2 + 1)

}
{1 + o(1)}, x1 < x2,

−V {12}2 (1, 1){1 + o(1)}, x1 = x2,

1− 2c
{12}
1

(s
{12}
1 +2)

exp
{
−t(x1 − x2)(s{12}1 + 2)

}
{1 + o(1)}, x1 > x2,

(5.4.8)

and

F3|2(tx3 | tx2) =



2c
{23}
1

(s
{23}
1 +1)

exp
{
t(x3 − x2)(s{23}1 + 1)

}
{1 + o(1)}, x3 < x2,

−V {23}1 (1, 1){1 + o(1)}, x3 = x2,

1− 2c
{23}
2

(s
{23}
2 +2)

exp
{
−t(x3 − x2)(s{23}2 + 2)

}
{1 + o(1)}, x3 > x2.

(5.4.9)

So, as t → ∞, the conditional distributions of the extreme value copula in equa-

tion (5.4.8) tends towards either 0, −V {12}2 (1, 1) or 1, and expression (5.4.9) tends

towards 0, −V {23}1 (1, 1) or 1. We must therefore consider three different cases in our

gauge function calculations for any extreme value copula in tree T1. Based on the

asymptotic forms of F1|2(tx1 | tx2) and F3|2(tx3 | tx2) for (inverted) extreme value

copulas, we focus on investigating − log c13|2(u, v) for u and v of the form

a{1 + o(1)} ; b1 exp(−b2t){1 + o(1)} ; 1− c1 exp(−c2t){1 + o(1)},

for b2, c2 > 0. We provide these results in Appendix C.4 for all nine combinations of

the asymptotic forms of u and v, and for c13|2(u, v) being either an extreme value or

inverted extreme value copula density.
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Together, these results provide all the necessary information to calculate the gauge

functions. We first demonstrate how to combine all these results to obtain the gauge

function of a vine copula with two inverted extreme value copulas in tree T1, and an

extreme value copula in tree T2, and subsequently find the gauge functions for the

remaining cases.

Inverted extreme value copulas in T1; extreme value copula in T2

For this case, we use results (5.4.1), (5.4.2) and (5.4.3) in equation (5.3.3), which gives

the form of − log f(tx) for a trivariate vine copula. We have

− log f(tx) = t(x1 + x2 + x3) + t
{
V {12}

(
x−11 , x−12

)
− x1 − x2

}
+ t
{
V {23}

(
x−12 , x−13

)
− x2 − x3

}
− log c13|2

{
F1|2(tx1|tx2), F3|2(tx3|tx2)

}
+O(log t)

=t
{
V {12}

(
x−11 , x−12

)
+ V {23}

(
x−12 , x−13

)
− x2

}
− log c13|2

{
F1|2(tx1|tx2), F3|2(tx3|tx2)

}
+O(log t). (5.4.10)

From equations (5.4.6) and (5.4.7), we see that F1|2(tx1 | tx2) = 1 − a1|2 exp{−b1|2t}

and F3|2(tx3 | tx2) = 1 − a3|2 exp{−b3|2t}, for b1|2 = V {12}(x−11 , x−12 ) − x2 and b3|2 =

V {23}(x−12 , x−13 )− x2. Using results from case 9 of Appendix C.4, we deduce that

− log c13|2
{
F1|2(tx1|tx2), F3|2(tx3|tx2)

}
∼

t
{(

1 + s
{13|2}
1 1{b1|2≥b3|2} + s

{13|2}
2 1{b1|2<b3|2}

)
max(b1|2, b3|2)

−
(

2 + s
{13|2}
1 1{b1|2≥b3|2} + s

{13|2}
2 1{b1|2<b3|2}

)
min(b1|2, b3|2)

}
.

Combining this with result (5.4.10), we find that the required gauge function has the

form

g(x) = x2 + b1|2 + b3|2 +
(
1 + s{13|2}m

)
max(b1|2, b3|2)−

(
2 + s{13|2}m

)
min(b1|2, b3|2)

= x2 +
(
2 + s{13|2}m

)
max(b1|2, b3|2)−

(
1 + s{13|2}m

)
min(b1|2, b3|2)

=
(
2 + s{13|2}m

)
max(b1|2 − x2, b3|2 − x2)−

(
1 + s{13|2}m

)
min(b1|2 − x2, b3|2 − x2),
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i.e.,

g(x) =
(
2 + s{13|2}m

)
max

{
V {12}

(
x−11 , x−12

)
, V {23}

(
x−12 , x−13

)}
−
(
1 + s{13|2}m

)
min

{
V {12}

(
x−11 , x−12

)
, V {23}

(
x−12 , x−13

)}
, (5.4.11)

with

s{13|2}m = s
{13|2}
1 1{V {12}(x−1

1 ,x−1
2 )≥V {23}(x−1

2 ,x−1
3 )} + s

{13|2}
2 1{V {12}(x−1

1 ,x−1
2 )<V {23}(x−1

2 ,x−1
3 )}.

In Section 5.4.3, we study this gauge function in more detail for the (inverted) logistic

case, and use it to find the corresponding values of η{1,2,3} and η{1,3}.

Extreme value and inverted extreme value copulas in T1; inverted extreme

value copula in T2

To calculate the gauge function for this model, we use results (5.4.1), (5.4.3) and (5.4.4)

to give the asymptotic form of the first five terms of equation (5.3.3). For the final

term, equations (5.4.7) and (5.4.8) give the required form of the conditional distri-

butions, and we apply the inverted extreme value results from cases 3, 6 and 9 of

Appendix C.4 to yield the gauge function

g(x) =


(

2 + s
{13|2}
1

)(
1 + s

{12}
2

)
(x2 − x1) + V {23}

(
x−12 , x−13

)
, x1 ≤ x2,

x2 + V {13|2}
[{

(x1 − x2)
(

2 + s
{12}
1

)}−1
,
{
V {23}

(
x−12 , x−13

)
− x2

}−1]
, x1 > x2.

(5.4.12)

Extreme value and inverted extreme value copulas in T1; extreme value

copula in T2

Since the pair copulas in tree T1 of this model are the same as in the previous example,

the first five terms of equation (5.3.3) will also be the same. To study the final term,

we apply the extreme value results from cases 3, 6 and 9 of Appendix C.4, and find
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that the gauge function is

g(x) =


x2 +

(
1 + s

{12}
2

)
(x2 − x1) +

(
2 + s

{13|2}
2

){
V {23}

(
x−12 , x−13

)
− x2

}
, x1 ≤ x2,

x2 +
(

2 + s
{13|2}
m

)
max

{(
2 + s

{12}
1

)
(x1 − x2) , V {23}

(
x−12 , x−13

)
− x2

}
−
(

1 + s
{13|2}
m

)
min

{(
2 + s

{12}
1

)
(x1 − x2) , V {23}

(
x−12 , x−13

)
− x2

}
, x1 > x2,

(5.4.13)

with

s{13|2}m = s
{13|2}
1 1{(

2+s
{12}
1

)
(x1−x2)≥V {23}(x−1

2 ,x−1
3 )−x2

}
+ s

{13|2}
2 1{(

2+s
{12}
1

)
(x1−x2)<V {23}(x−1

2 ,x−1
3 )−x2

}.

Extreme value copulas in T1; inverted extreme value copula in T2

For this model, the first five terms of equation (5.3.3) are given by results (5.4.1),

(5.4.4) and (5.4.5). Since both of the extreme value copulas in tree T1 can have three

different asymptotic behaviours, we require all nine inverted extreme value cases from

Appendix C.4, and the conditional distributions (5.4.8) and (5.4.9) to study the final

term of (5.3.3). The gauge function in this case is

g(x) =



x2 +
(

2 + s
{13|2}
m

)
max

{(
1 + s

{12}
2

)
(x2 − x1) ,

(
1 + s

{23}
1

)
(x2 − x3)

}
−
(

1 + s
{13|2}
m

)
min

{(
1 + s

{12}
2

)
(x2 − x1) ,

(
1 + s

{23}
1

)
(x2 − x3)

}
,

x1 < x2, x3 < x2,

x2 +
(

2 + s
{13|2}
1

)(
1 + s

{12}
2

)
(x2 − x1) +

(
2 + s

{23}
2

)
(x3 − x2) ,

x1 < x2, x3 ≥ x2,

x2 +
(

2 + s
{13|2}
2

)(
1 + s

{23}
1

)
(x2 − x3) +

(
2 + s

{12}
1

)
(x1 − x2) ,

x1 ≥ x2, x3 < x2,

x2 + V {13|2}
[{(

2 + s
{12}
1

)
(x1 − x2)

}−1
,
{(

2 + s
{23}
2

)
(x3 − x2)

}−1]
,

x1 ≥ x2, x3 ≥ x2,

(5.4.14)
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with

s{13|2}m = s
{13|2}
1 1{(

1+s
{12}
2

)
(x2−x1)≥

(
1+s

{23}
1

)
(x2−x3)

}
+ s

{13|2}
2 1{(

1+s
{12}
2

)
(x2−x1)<

(
1+s

{23}
1

)
(x2−x3)

}.

Extreme value copulas in T1; extreme value copula in T2

Finally, for a vine copula where all three components are extreme value copulas, the

first five terms of (5.3.3) are the same as in the previous section, and we require all

nine extreme value cases from Appendix C.4 to obtain the gauge function

g(x) =



x2 + V {13|2}
[{(

1 + s
{12}
2

)
(x2 − x1)

}−1
,
{(

1 + s
{23}
1

)
(x2 − x3)

}−1]
,

x1 ≤ x2, x3 ≤ x2,

x2 +
(

2 + s
{13|2}
2

)(
2 + s

{23}
2

)
(x3 − x2) +

(
1 + s

{12}
2

)
(x2 − x1) ,

x1 ≤ x2, x3 > x2,

x2 +
(

2 + s
{13|2}
1

)(
2 + s

{12}
1

)
(x1 − x2) +

(
1 + s

{23}
1

)
(x2 − x3) ,

x1 > x2, x3 ≤ x2,

x2 +
(

2 + s
{13|2}
m

)
max

{(
2 + s

{12}
1

)
(x1 − x2) ,

(
2 + s

{23}
2

)
(x3 − x2)

}
−
(

1 + s
{13|2}
m

)
min

{(
2 + s

{12}
1

)
(x1 − x2) ,

(
2 + s

{23}
2

)
(x3 − x2)

}
,

x1 > x2, x3 > x2,

(5.4.15)

with

s{13|2}m = s
{13|2}
1 1{(

2+s
{12}
1

)
(x1−x2)≥

(
2+s

{23}
2

)
(x3−x2)

}
+ s

{13|2}
2 1{(

2+s
{12}
1

)
(x1−x2)<

(
2+s

{23}
2

)
(x3−x2)

}.
We study (inverted) logistic examples of this gauge function and the others discussed

in this section in Section 5.4.3.
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5.4.3 η{1,2,3} and η{1,3} for vines with logistic and inverted lo-

gistic components

In Section 5.4.2, we obtained the gauge functions of trivariate vine copulas constructed

from extreme value and inverted extreme value pair copula components. We now

focus on the logistic case, and aim to calculate the values of η{1,2,3} and η{1,3} for each

possible construction. The logistic model has exponent measure of the form

V (x, y) =
(
x−1/α + y−1/α

)α
,

and we focus on the dependence parameter α taking values in (0, 1). For the logistic

model, the corresponding spectral density has h(w) ∼ c1(1 − w)s1 as w → 1, and

h(w) ∼ c2w
s2 as w → 0, with s1 = s2 = 1/α − 2. In the remainder of this section,

we denote the parameters associated with copulas c12, c23 and c13|2 by α, β, γ ∈ (0, 1),

respectively, whether the copula is logistic or inverted logistic, and note that in the

logistic case, we have s
{12}
1 = s

{12}
2 = 1/α − 2; s

{23}
1 = s

{23}
2 = 1/β − 2 and s

{13|2}
1 =

s
{13|2}
2 = 1/γ − 2. We now take each of the constructions discussed in Section 5.4.2

in turn, and consider the gauge function, as well as the values of η{1,2,3} and η{1,3} in

each case.

Inverted logistic copulas in T1; logistic copula in T2

For this vine copula, using the form of the gauge function obtained in Section 5.4.2,

we have

g(x) = (1/γ) max

{(
x
1/α
1 + x

1/α
2

)α
,
(
x
1/β
2 + x

1/β
3

)β}
+ (1− 1/γ) min

{(
x
1/α
1 + x

1/α
2

)α
,
(
x
1/β
2 + x

1/β
3

)β}
.

In Figure 5.4.1, we demonstrate the sets G = {x ∈ R3 : g(x) = 1} for this gauge

function, with α ∈ {0.25, 0.5, 0.75}, β = 0.25 and γ = 0.5. These plots, alongside

further numerical studies, suggest that the intersection of G and [η{1,2,3},∞)3 occurs

when x1 = x2 ≤ x3 if α ≥ β, and x1 > x2 = x3 if α < β. We first consider
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Figure 5.4.1: Points in the set G = {x ∈ R3 : g(x) = 1} for a trivariate vine with

inverted logistic copulas in T1 and a logistic copula in T2 (grey) and the set [η{1,2,3},∞)3

(blue): α = 0.25 (left), α = 0.5 (centre), α = 0.75 (right); β = 0.25 and γ = 0.5.

the former case, with x1 = x2 ≤ x3, where we have two possibilities to study. If(
x
1/α
1 + x

1/α
2

)α
≥
(
x
1/β
2 + x

1/β
3

)β
, i.e., 2αx1 ≥

(
x
1/β
1 + x

1/β
3

)β
, then the value of x3

must satisfy

x1 ≤ x3 ≤
(
2α/β − 1

)β
x1,

or, equivalently, we can set x3 = rx1, with 1 ≤ r ≤
(
2α/β − 1

)β
. Our aim is to find

the maximum value of x1 such that g(x1, x1, rx1) = 1 under this constraint. We have

g(x1, x1, rx1) = 1⇒ 2αx1
γ

+

(
1− 1

γ

){
x
1/β
1 + (rx1)

1/β
}β

= 1

⇒ x1 =
γ

2α + (γ − 1) (1 + r1/β)
β
.

We note that x1 is increasing with r, and therefore takes its maximum value when

r =
(
2α/β − 1

)β
, which corresponds to x1 = 1/2α. This is our first candidate for

η{1,2,3}. The other possibility is that
(
x
1/α
1 + x

1/α
2

)α
<
(
x
1/β
2 + x

1/β
3

)β
, i.e., 2αx1 <(

x
1/β
1 + x

1/β
3

)β
, so that the value of x3 must satisfy

(
2α/β − 1

)β
x1 < x3 ≤ 1.

If we set x3 = rx1, this is equivalent to having
(
2α/β − 1

)β
< r ≤ 1/x1. We have

g(x1, x1, rx1) = 1⇒ 1

γ

{
x
1/β
1 + (rx1)

1/β
}β

+ 2α
(

1− 1

γ

)
x1 = 1
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Figure 5.4.2: Left: g{1,3}(x1, x3) with (α, β, γ) = (0.5, 0.25, 0.5). Right: an approxi-

mation of the corresponding sets G{1,3} (grey) and [η{1,3},∞)2 (blue).

⇒ x1 =
γ

(1 + r1/β)
β

+ 2α(γ − 1)
.

The value of x1 is now decreasing with r, so again takes its maximum value with

r =
(
2α/β − 1

)β
, giving x1 = 1/2α. As such, we find that for this model, if α ≥ β

then η{1,2,3} = 1/2α. By a symmetric argument, if α < β, η{1,2,3} = 1/2β. So the value

of this coefficient of tail dependence can be summarized as η{1,2,3} = min
{

1/2α, 1/2β
}

.

To find the value of η{1,3}, as in Section 5.3.2, numerical results suggest that we

consider the x1 = x3 case, i.e., g{1,3}(x1, x1) = minv g(x1, vx1, x1). We find that

η{1,3} =

[
1

γ
max

{(
1 + v1/α

)α
,
(
1 + v1/β

)β}
+

(
1− 1

γ

)
min

{(
1 + v1/α

)α
,
(
1 + v1/β

)β}]−1
,

with v satisfying dg(1, v, 1)/dv = 0. We find that v = 0 solves this equation, so

that η{1,3} = 1, i.e., there X1 and X3 can take their largest values simultaneously

without X2. This is supported by Figure 5.4.2; in the left panel we show the value of

g{1,3}(x1, x3) for (x1, x3) ∈ [0, 1]2 and (α, β, γ) = (0.5, 0.25, 0.5), and in the right panel

we approximate the set G{1,3} by considering values of g{1,3}(x1, x3) ∈ (0.99, 1.01).
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Logistic and inverted logistic copulas in T1; inverted logistic copula in T2

Using the form of the gauge function in equation (5.4.12) we have

g(x) =


(1/γ) (1/α− 1) (x2 − x1) +

(
x
1/β
2 + x

1/β
3

)β
, x1 ≤ x2,

x2 +

[
{(x1 − x2) /α}1/γ +

{(
x
1/β
2 + x

1/β
3

)β
− x2

}1/γ
]γ
, x1 > x2.

For this gauge function, we find that the intersection of the set G = {x ∈ R3 : g(x) =

1} and [η{1,2,3},∞)3 occurs when x1 ≥ x2 = x3, which reduces the part of the gauge

function that we need to investigate. By following a similar approach to the one

used in the previous example, we find that η{1,2,3} = 1/2β in this case. Moreover,

following the approach of Section 5.3.2 for calculating the bivariate coefficient of tail

dependence between X1 and X3, we find that

η{1,3} =

(
v +

[
{(1− v)/α}1/γ +

{(
1 + v1/β

)β − v}1/γ
]γ)−1

with v such that

1 +

[
{(1− v)/α}1/γ +

{(
1 + v1/β

)β − v}1/γ
]γ−1

·
[
− 1

α
{(1− v)/α}−1+1/γ +

{(
1 + v1/β

)β − v}−1+1/γ {(
1 + v−1/β

)β−1 − 1
}]

= 0.

Logistic and inverted logistic copulas in T1; logistic copula in T2

From equation (5.4.13), we have

g(x) =



(1/α)x2 + (1− 1/α)x1 + (1/γ)

{(
x
1/β
2 + x

1/β
3

)β
− x2

}
, x1 ≤ x2,

x2 + (1/γ) max

{
(x1 − x2) /α,

(
x
1/β
2 + x

1/β
3

)β
− x2

}
+ (1− 1/γ) min

{
(x1 − x2) /α,

(
x
1/β
2 + x

1/β
3

)β
− x2

}
, x1 > x2.

As in the previous example, we find that the intersection of G and [η{1,2,3},∞)3 occurs

when x1 ≥ x2 = x3, and once again η{1,2,3} = 1/2β, suggesting that the inverted

logistic copula in tree T1 particularly controls the level of asymptotic independence

in the overall model. We also find that

η{1,3} =
(
1 + v1/β

)−β
, with v such that (1 + v1/β)β − (1− v)/α− v = 0.
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Logistic copulas in T1; inverted logistic copula in T2

Using the result from equation (5.4.14), we have

g(x) =



x2 + (1/γ) max {(1/α− 1) (x2 − x1) , (1/β − 1) (x2 − x3)}

+ (1− 1/γ) min {(1/α− 1) (x2 − x1) , (1/β − 1) (x2 − x3)} ,

x1 < x2, x3 < x2,

x2 + (1/γ) (1/α− 1) (x2 − x1) + (1/β) (x3 − x2) , x1 < x2, x3 ≥ x2,

x2 + (1/γ) (1/β − 1) (x2 − x3) + (1/α) (x1 − x2) , x1 ≥ x2, x3 < x2,

x2 +
[
{(x1 − x2) /α}1/γ + {(x3 − x2) /β}1/γ

]γ
, x1 ≥ x2, x3 ≥ x2.

For this gauge function, we observe that g(1, 1, 1) = 1. Since the set G = {x ∈ R3 :

g(x) = 1} is bounded by the set [0, 1]3, the smallest value of r such that G∩[r,∞)3 = ∅

must be 1. As such, we have η{1,2,3} = 1. Moreover, if ηD = 1, then ηC = 1 for any

set C ⊂ D with |C| ≥ 2. As such, we also find that η{1,3} = 1 in this case. This result

agrees with the findings of Joe et al. (2010), who show that a vine copula will have

overall upper tail dependence if each of the copulas in tree T1 also have this property

and the copula in tree T2 has support on (0, 1), as is the case here.

Logistic copulas in T1; logistic copula in T2

Finally, using the gauge function obtained in equation (5.4.15), we have

g(x) =



x2 +
[
{(1/α− 1) (x2 − x1)}1/γ + {(1/β − 1) (x2 − x3)}1/γ

]γ
,

x1 ≤ x2, x3 ≤ x2,

x2 + (1/γ) (1/β) (x3 − x2) + (1/α− 1) (x2 − x1) , x1 ≤ x2, x3 > x2,

x2 + (1/γ) (1/α) (x1 − x2) + (1/β − 1) (x2 − x3) , x1 > x2, x3 ≤ x2,

x2 + (1/γ) max {(x1 − x2) /α, (x3 − x2) /β}

+ (1− 1/γ) min {(x1 − x2) /α, (x3 − x2) /β} , x1 > x2, x3 > x2.
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As for the previous example, in this case, we note that g(1, 1, 1) = 1, which suggests

that η{1,2,3} = η{1,3} = 1.

5.5 Discussion

The aim of this chapter was to investigate some of the tail dependence properties of

vine copulas, via the coefficient of tail dependence ηC . We demonstrated how to apply

the geometric approach of Nolde (2014) to calculate these values from a density, and

extended the approach for cases where the joint density of {Xi : i ∈ C} cannot be

obtained analytically, but the joint density of {Xi : i ∈ C ′} with C ′ ⊃ C is known.

We focussed on trivariate vine copulas constructed from extreme value and in-

verted extreme value pair copulas, and higher dimensional D-vine and C-vine copulas

constructed only from inverted extreme value pair copulas. In the latter case, there is

overall asymptotic independence between the variables. In the former case, the copu-

las in tree T1 particularly influence the overall tail dependence properties of the vine.

If there are two asymptotically dependent extreme value copulas in tree T1, there is

overall asymptotic dependence in the vine, as found by Joe et al. (2010), otherwise,

all three variables cannot be large together, although other subsets of the variables

could take their largest values simultaneously while the others are of smaller order.

As discussed in Chapters 3 and 4, the values of ηC , for C ∈ {1, 2, 3} and |C| ≥ 2,

do not necessarily tell us the full story about the extremal dependence structure of the

variables. One possible avenue for future work is to calculate the coefficients τC for

C ∈ {1, 2, 3}, introduced in Chapter 3, which provide additional information about

the tail dependence properties of the variables. As an initial investigation into the

types of extremal dependence structure that might be possible using vine copulas, we

consider some trivariate vine copula examples in the radial-angular setting of Chap-
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ter 4. For each possible construction of a trivariate vine copula from logistic and

inverted logistic components, with dependence parameters α = 0.25 and α = 0.75,

respectively, we simulate a sample of size 1,000,000 and plot the angular components

whose corresponding radial values are above the observed 0.9999 quantile; the results

are shown in Figure 5.5.1.

Figure 5.5.1: Possible extremal dependence structures for trivariate vine copulas con-

structed from logistic and inverted logistic components.

From these plots, it appears that the possible extremal dependence structures

are {{X1}, {X2}, {X3}}, {{X1}, {X2, X3}}, {{X2}, {X1, X3}}, {{X3}, {X1, X2}} and

{{X1, X2, X3}}, so that each variable only has extreme values on one face of the

angular simplex. We also expect this to be the case for other vine copulas constructed

from bivariate copulas whose extremal dependence structures are {{X1}, {X2}}, as

for the asymptotically independent inverted logistic copula, or {{X1, X2}}, as for the

logistic copula. To achieve more complicated extremal dependence structures in the

vine copula, the pair copulas must exhibit other extremal dependence structures. In

the example from Figure 5.5.1, this could be achieved, for instance, by replacing the
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bivariate logistic copulas with the asymmetric logistic copula of Tawn (1990), which

can exhibit asymptotic dependence but with the spectral density placing mass on

{0}, {1}, or both of these endpoints; having asymptotically dependent extreme value

pair copulas with such mass on the boundaries is not currently covered by our work.

Although this may increase the number of possible extremal dependence structures,

the underlying vine structure may still mean that some cases are not possible, and

investigating this also presents a possible avenue for further work. The inverted

asymmetric logistic copula, as studied by Papastathopoulos and Tawn (2016), exhibits

asymptotic independence, so replacing the inverted logistic components of Figure 5.5.1

by this copula will result in the same extremal dependence structures.



Chapter 6

A Bayesian Spatio-Temporal

Model for Precipitation Extremes

6.1 Introduction

Recently, there have been numerous examples of devastating rainfall events - these

include Storm Desmond, which hit northern England and Scotland, and Hurricane

Harvey which affected the southern United States. In both cases, a large amount

of damage and disruption was caused by severe flooding. By better understanding

the probability of extreme rainfall events occurring, we can prepare more suitably for

these potential flood events by adapting infrastructure appropriately.

This chapter outlines the STOR-i team’s approach to the EVA2017 challenge. The

challenge data set is comprised of precipitation readings for multiple weather stations

in the Netherlands; the training set consists of data collected between 1972 and 1995

whilst the validation set was collected from 1996 to 2016, with different numbers of

observations for each site. A detailed description of the data is provided in Winten-

berger (2018). The aim of the competition was to predict extreme quantiles for the

years 1996 to 2016 and predictions were assessed via a predefined error metric; see

124
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Wintenberger (2018).

There exists a rich literature within the extreme value theory framework for mod-

elling precipitation extremes. A classical approach is to utilize block maxima. Sup-

pose that we have independent and identically distributed (i.i.d.) random variables

X1, . . . , Xn, with Mn = max{X1, . . . , Xn}. When normalized appropriately, and as

n→∞, Mn follows a generalized extreme value (GEV) distribution (von Mises, 1936;

Jenkinson, 1955), which has distribution function

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

}
, (6.1.1)

where {z}+ = max{0, z}, and has parameters (µ, σ, ξ) ∈ R× R+ × R, corresponding

to location, scale and shape parameters respectively.

An alternative technique is to follow Pickands (1975) and use exceedances of a

threshold u. For some suitably large u, the conditional distribution function of (Xi−

u) | Xi > u is approximately given by the generalized Pareto distribution (GPD),

which has the form

H(x) = 1−
(

1 +
ξx

ψ

)− 1
ξ

+

, x > 0, (6.1.2)

where (ψ, ξ) ∈ R+×R are the scale and shape parameters respectively. In the context

of the challenge at hand, both the GEV and GPD may be fitted separately at each

site to give a model fit whereby any dependence is ignored.

By considering the physical process of rainfall, one can expect that nearby lo-

cations will exhibit similar behaviour, which invites improved inference by sharing

information across sites. One popular method for the modelling of spatial extremes is

to use max-stable processes (Brown and Resnick, 1977; Smith, 1990; Schlather, 2002).

These arise as the limiting process from replications of spatial processes which have

been suitably normalized (de Haan, 1984) and have been used to analyse rainfall data
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previously; see, for example, Davison et al. (2012) and Reich and Shaby (2012). How-

ever, such processes assume dependence of the extremes across sites; an investigation

of pairwise dependence using scatter plots showed no clear evidence for this behaviour

across the spatial grid. Moreover, max-stable models are difficult to fit and this would

have been further impeded by the lack of data available at some sites.

Another approach is to impose spatial structure on the model parameters via a

Bayesian hierarchical model; this is closer in nature to the method we propose. Spa-

tial hierarchical models have been used previously to model spatial count data (Diggle

et al., 1998) and, more recently, have been utilized in extreme value analysis. Cooley

et al. (2007) describe a model, applied to rainfall data, whereby a GPD is fitted at

the sampling locations, and allow the model parameters to vary according to a spa-

tial process structure - in particular the authors use a Gaussian process for this. A

spatio-temporal hierarchical modelling method for extreme events is given by Sang

and Gelfand (2009), who apply their methods to precipitation data.

We define a Bayesian hierarchical model which accounts for the spatial and sea-

sonal variation in the data. Our approach captures the frequency of non-zero events

of precipitation and introduces an extremal mixture model, combining Gamma and

generalized Pareto distributions, for positive amounts of rainfall. Spatio-temporal

structure in the parameters for the extremal mixture model is imposed via a separate

autoregressive prior for each of them, which takes the form of a Gaussian Markov

random field. Model estimates are then obtained using spatial interpolation and

Markov chain Monte Carlo (MCMC) techniques. Cooley et al. (2007) defines a sim-

ilar approach for continuous space, whereas we consider a finite number of sites and

additionally incorporate seasonality.
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6.2 Methodology

6.2.1 Likelihood

Interest lies in modelling the daily rainfall amounts for each site and month. Due to

seasonality in the rainfall data, the weak extremal dependence of the daily amount

of rainfall across sites and the nature of the challenge, we model each month and site

individually. Specifically, daily rainfall events within a month at a site are assumed

to be i.i.d. Our model is motivated by an analysis of the sites for which data have

been recorded for at least five years.

Let Rj,m denote the random variable corresponding to the daily rainfall amount

at site j for a day in month m = 1, . . . , 12. We consider the transformed random

variable

R̃j,m = log (1 +Rj,m) . (6.2.1)

Wadsworth et al. (2010) show that such a transformation may increase the rate of

convergence of the distribution tails to an extreme value form, in particular for distri-

butions which appear as heavy-tailed as our rainfall data. Predictions on the extreme

quantiles of Rj,m are later obtained in Section 6.3 by reversing this transformation.

We note that the transformed observations are non-negative and an observation of

Rj,m = 0 remains unchanged.

We infer on the distribution of R̃j,m by defining a hierarchical model. The first

model component considers occurrences of non-zero amounts of rainfall on a day,

R̃j,m > 0, and we denote their probability by pj,m. A temporal trend in pj,m was

investigated, but we did not find evidence of this for any site. Next, we consider the

distribution R̃j,m | (R̃j,m > 0). There exists a rich literature on modelling positive

rainfall amounts, such as Wilks (2006), So et al. (2015) and Yunus et al. (2017). By in-

vestigating QQ plots, we find that an estimated Gamma distribution works quite well
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for non-extreme amounts of precipitation. However, most of the observed monthly

extremes are not captured well.

To improve the model fit, we define an extremal mixture model (Frigessi et al.,

2002; Behrens et al., 2004; MacDonald et al., 2011) which combines the Gamma distri-

bution with a GPD as defined in (6.1.2). Given a threshold uj,m, R̃j,m | (R̃j,m ≤ uj,m)

follows a truncated Gamma distribution, while R̃j,m | (R̃j,m > uj,m) is generalized

Pareto distributed. Formally, let Gj,m ∼ Gamma (αj,m, βj,m) with shape αj,m and

rate βj,m, and Hj,m ∼ GPD (ψj,m, ξj,m) with scale ψj,m = ψ̃j,m − ξuj,m and shape

ξj,m. The reparametrisation of the scale parameter in Hj,m removes the effect of the

threshold on inference and has been used in previous studies (Fawcett and Walshaw,

2006). Then, the cumulative distribution function of R̃j,m | (R̃j,m > 0) is given by

Pr
(
R̃j,m > r | R̃j,m > 0

)
=


Pr (Gj,m > r) r ≤ uj,m,

Pr (Gj,m > uj,m) Pr (Hj,m > r − uj,m) r > uj,m.

(6.2.2)

Combining the model components defined above, the event R̃j,m > r, for r > uj,m,

occurs with probability

Pr
(
R̃j,m > r

)
= pj,mPr (Gj,m > uj,m) Pr (Hj,m > r − uj,m) .

Due to the empirical mean of Rj,m | (Rj,m > 0) being similar for all j, we fix αj,m, m =

1, . . . 12, in the Gamma distribution to be constant across sites and, thus, refer to this

parameter as αm in the rest of this chapter.

6.2.2 Prior model

Prior selection is critical in this analysis due to the varying degrees of data availability

at each site; inference at sites where data are lacking or unavailable will be dominated

by the prior distribution. We considered uninformative, improper Uniform priors on

logαm, log βj,m, log ψ̃j,m and ξj,m. However, these produced unrealistic estimates of
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ξj,m, mostly due to the difficulty in estimating ξj,m given short data records. Studies

on extreme rainfall often feature the prior used in Martins and Stedinger (2000) which

constrains the shape parameter to be in a sensible interval.

For each of these parameters, we instead introduce a prior aimed at exploiting

spatial and seasonal structure, assuming that parameters for neighbouring sites and

adjacent months are likely to be similar. In particular, let φj,m denote an arbitrary

parameter at site j and month m. We propose that

φj,m ∼ N

(
φj,m−1 + φj,m+1 +

∑
j′ 6=j φj′,mdj,j′

2 +
∑

j′ 6=j dj,j′
,

1

(2 +
∑

j′ 6=j dj,j′)τφ

)
, (6.2.3)

where τφ > 0 denotes the precision that is common to all sites and months. The con-

stant dj,j′ ≥ 0 describes our prior belief concerning the degree of similarity of φj,m and

φj′,m. This prior is a variant of the intrinsic autoregressive (IAR) prior as described

in Banerjee et al. (2004) and allows us to pool information across neighbouring sites

and months, which helps to produce more stable parameter estimates and to reduce

uncertainty in these estimates. The cyclical nature of the sequence of months means

that values 0 and 13 for m− 1 and m+ 1 should be replaced by the values 12 and 1

respectively in order to ensure that December and January are correctly identified as

being adjacent months. We define a flat, conjugate Gamma(1, 0.001) prior for τφ.

6.2.3 Threshold selection and estimation

We detail our approach to estimate the model defined in Sections 6.2.1 and 6.2.2 in

the following. First, we consider pj,m, which can be estimated independently from the

remaining parameters due to the hierarchical model structure. Next, the selection of

the thresholds uj,m is described. Finally, we infer on the remaining model parameters

via an MCMC algorithm which is outlined at the end of this subsection.

For sites with more than five years of data, we estimate pj,m empirically due to
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the high number of observations available. We infer on the remaining sites via spatial

interpolation. Let J denote the indices of the sites with at least five years of data.

We further define a pairwise weighting between arbitrary sites j and j′ by introducing

the weight

dj,j′ = exp (−‖xj − xj′‖) , (6.2.4)

where xj denotes the longitude and latitude coordinates of site j and ‖·‖ corresponds

to the Euclidean distance. As the study region is small, the curvature of the earth

is negligible and the Euclidean distance in the two-dimensional space is close to the

true distance between the sites. Then for a site j /∈ J , the estimate p̂j,m for pj,m is

derived as

p̂j,m =
∑
j′∈J

dj,j′ p̂j′,m. (6.2.5)

The weights dj,j′ defined in (6.2.4) are identical to the ones which we set in the prior

density (6.2.3). As the weighting function (6.2.4) produces larger values for locations

close together, a higher weight is given to neighbouring sites.

We now consider how to select the thresholds, uj,m, of our model (6.2.2). These

thresholds must be large enough for the asymptotic argument of Pickands (1975) to

approximately hold whilst also low enough so that we have a sufficient number of

observations for reliable model fitting. We use the classical fixed threshold approach

as described in Coles (2001) for the sites in J . Specifically, by inspection of threshold

stability plots, we find the smallest threshold above which the GPD is an appropri-

ate model for the exceedances. For the other sites, we estimate these thresholds in

an equivalent manner to (6.2.5). Other threshold selection methods are outlined by

Scarrott and MacDonald (2012).

The parameters of our Gamma-GPD mixture model are estimated using MCMC

methods. We sample from the posterior distribution using a Metropolis-within-Gibbs

scheme. In particular, proposal values of each parameter are generated sequentially
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from a Gaussian distribution and accepted with a probability defined as the posterior

ratio of the proposed state relative to the current state of the Markov chain. The

hyperparameter τφ in (6.2.3) is updated by sampling from the full conditional Gamma

posterior as described by Knorr-Held (2003). We tune the parameters of the MCMC

algorithm to ensure an acceptance rate of 20-25% in accordance with the optimality

criterion of Roberts et al. (1997).

6.3 Results and discussion

We begin this section by considering the results of the MCMC implementation. We

run our MCMC chains for 20000 iterations, and discard the first 5000 iterations as

burn-in to aid convergence. Examples of the chains produced are provided in Fig-

ure 6.3.1 for scale and shape parameters ψ10,6 and ξ10,6. Estimates of these parameters

were obtained using the posterior means of their respective MCMC chains. These plots

demonstrate that good mixing has been achieved for this case; similar results were

obtained across other stations and months.
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Figure 6.3.1: MCMC chains for the scale and shape parameters for station 10 in June.
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We now explore the monthly variation in the estimated model parameters by fo-

cussing on results at four nearby stations. The locations of these stations are shown

in the top left panel of Figure 6.3.2. The data set contains over 8000 observations for

stations 2 and 5, and no observations for stations 7 and 10. The top right and bot-

tom left panels of Figure 6.3.2 show our estimates of the scale and shape parameters,

respectively, at these four locations. These plots demonstrate the seasonality in the

parameter estimates, with higher values of both the scale and shape generally corre-

sponding to summer and autumn months. This effect is maintained in the predicted

0.998 quantiles, shown in the bottom right panel of Figure 6.3.2, which are typically

highest between June and October. A similar trend was observed at other sites,

particularly those with limited data where estimates are more heavily influenced by

information from other locations, due to the spatial smoothing imposed by the model.
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Figure 6.3.2: Location of stations 2 (purple), 5 (pink), 7 (orange) and 10 (blue), as

well as estimates of the corresponding scale and shape parameters and predicted 0.998

quantiles.
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We now consider our estimates in the context of the competition, which used

the quantile loss function by Koenker (2005). In particular, as in the challenge, we

consider the percentage improvement provided by our method over benchmark pre-

dictions. The competition was split into two challenges: Challenge 1 involved only

sites where observations were available, with the benchmark quantile estimates being

given by the monthly maxima at each station; Challenge 2 included predictions for

all sites, with the benchmark for those sites with no data being taken as the aver-

age of the quantiles predicted in Challenge 1 for each month. Our method gave a

59.9% improvement over the benchmark for Challenge 1, and a 57.7% improvement

for Challenge 2. Table 6.3.1 shows the performance of our approach using this same

metric, but with the results separated by month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Challenge 1 57.7 71.1 60.0 65.0 43.7 62.8 65.9 77.0 38.7 38.4 52.2 33.4

Challenge 2 54.4 69.3 57.4 61.9 43.1 60.7 64.2 75.4 37.9 36.4 49.3 31.3

Table 6.3.1: Percentage improvement over the benchmark for Challenges 1 and 2

across each month.

As is to be expected, our method performed better in Challenge 1, where only

predictions for sites with observations were considered, across all months. Looking

at these results separately for each month allows us to identify possible areas for im-

provement. In particular, the scores for September, October and December are lower

than for other months, suggesting that the method could be improved by focussing

on the modelling of autumn and winter months.



Chapter 7

Discussion

7.1 Thesis summary

The aim of this thesis was to present novel theoretical and methodological results

for multivariate extremes, with particular emphasis on extremal dependence between

multivariate random variables. In this chapter, we first summarize the contributions

of this work, before presenting some ideas for further work in Section 7.2.

In Chapter 3, we proposed approaches for identifying subsets of variables that

can take their largest values simultaneously, while the others are of smaller order.

This involved the introduction of a novel set of indices, based on a regular variation

assumption, that describe the extremal dependence structure between variables. We

proposed two inferential methods to estimate these parameters, as well as the propor-

tion of extremal mass associated with our 2d−1 sub-cones, each chosen to represent a

different subset of variables taking its largest values simultaneously. This methodol-

ogy could be applied to aid model selection, or in the construction of mixture models

that exhibit the required extremal dependence structures. We demonstrated these

methods through a simulation study and an application to river flow data.

134
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In Chapter 4, we discussed extensions of the results of Chapter 3, by considering

variables in terms of their radial-angular components. The first of these radial-angular

methods approximates the various faces of the angular simplex using a partitioning

approach similar to the methods in Chapter 3. The remaining proposed methods

use a soft-thresholding technique that takes into account the distance of points from

different faces of the simplex; we presented a version of this for our hidden regular

variation assumption, as well as weighted variant of the method proposed by Goix

et al. (2016). All of these methods were compared in a simulation study, where dif-

ferent methods were shown to perform best in different cases.

In Chapter 5, we carried out a theoretical investigation into the extremal de-

pendence properties of vine copulas. In particular, we studied the coefficient of tail

dependence ηC (Ledford and Tawn, 1996) for certain vine copula examples. This

involved applying the geometric approach of Nolde (2014) for calculating ηC when

the joint density is known, and extending the approach for cases where only higher

order joint densities can be obtained analytically. We focussed on trivariate vine

copulas constructed from extreme value and inverted extreme value components, and

obtained results for higher dimensional D-vines and C-vines formed from inverted ex-

treme value pair copulas. We demonstrated our results through a series of (inverted)

logistic examples.

Finally, in Chapter 6 we presented the results of a team competition for the EVA

2017 conference. The challenge involved predicting extreme precipitation quantiles

for several stations in the Netherlands. Our team proposed a Bayesian approach with

a hierarchical structure that modelled spatio-temporal dependence through the model

parameters; our estimation procedure involved MCMC techniques and spatial inter-

polation. The approach performed well in terms of the quantile loss metric proposed

by the challenge organizer.
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7.2 Further work

7.2.1 Overview

In this section, we discuss some possible ways to improve the methods presented in the

previous chapters, as well as other potential avenues for future work. In Section 7.2.2,

we discuss additional constraints on the parameters of the models in Chapter 3 that

may improve model fitting, while in Section 7.2.3 we propose an alternative approach

for redistributing negligible mass in these methods that takes into account the proxim-

ity of sub-cones with mass. In Section 7.2.4, we present an extension of the conditional

approach of Heffernan and Tawn (2004) involving mixture distributions, which could

be used to capture combinations of different extremal dependence structures.

7.2.2 Parameter estimation in Chapter 3

Under Assumption 1, each sub-cone EC containing extremal mass should have τC(δ∗) =

1 for some δ∗ < 1, and a consequence of moment constraint (3.1.3) is that each vari-

able should be represented on at least one sub-cone with extremal mass. Combining

these two statements gives a constraint on the set of τC(δ) values. In particular, we

have that maxC:C⊃i τC(δ∗) = 1, for i = 1, . . . , d and some δ∗ < 1. This result is not

currently guaranteed by our methods, and presents a potential area for improvement.

For some models, such as those presented in Table 3.2.1, the constraint is satisfied

for δ∗ = 0. We impose this as an additional assumption in fitting Method 1; recalling

that we set τC = τC(0), our constraint becomes maxC:C⊃i τC = 1, for i = 1, . . . , d.

We now suggest estimating all the (τC , KC) parameters simultaneously, rather than

maximizing the likelihood separately on each sub-cone. This is achieved by including

a penalty term that encourages the condition on the τC values to be satisfied. We

propose maximizing a function of the form

∑
C∈2D\∅

log {LC(KC , τC)} − λ

∣∣∣∣∣
d∑
i=1

max
C:C⊃i

τC − d

∣∣∣∣∣ , (7.2.1)
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Figure 7.2.1: Average Hellinger distance, 0.05 and 0.95 quantiles over 25 simulations.

Method 1: purple; penalized censored log-likelihood: green.

for the censored likelihood LC associated with each sub-cone defined as in (3.3.3),

and some λ > 0, imposing that τC ∈ (0, 1] for all C ∈ 2D \ ∅. Parameter estimates

that maximize (7.2.1) do not have a closed form, so the function must be optimized

numerically.

We demonstrate the use of the penalized censored log-likelihood (7.2.1) in the

trivariate case, comparing to results obtained using our original Method 1. Fig-

ure 7.2.1 shows the average Hellinger distance achieved using both these approaches
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for data sampled from asymmetric logistic distributions with four different underlying

extremal dependence structures: case (a) corresponds to mass on E1, E2 and E3; case

(b) places extremal mass on E1 and E2,3; case (c) has mass on E1, E2, E3 and E1,2,3;

and in case (d), extremal mass is placed on the four sub-cones E1,2, E1,3, E2,3 and

E1,2,3. In this study, the dependence parameter α takes values in {0.1, 0.2, . . . , 0.9},

and the sample size in each case is n = 1000. The tuning parameters are chosen to

be the same as in the simulation study of Chapter 3 for Method 1. For the proposed

penalized approach, function (7.2.1) is optimized numerically using optim in R. We set

the additional tuning parameter to be λ = 5, which we found to work well in practice

across the simulations. In most situations, the two methods give similar results in

terms of the Hellinger distance, with the penalized approach giving most improvement

in case (a), where the extreme values occur separately in each of the three variables.

We may expect the penalized approach to be most successful in sparse cases, where

the extremal mass is placed on fewer sub-cones, as it is more likely that the correct

τC estimates will be increased to 1. This is demonstrated in Figure 7.2.2, where we

provide boxplots of the estimated τC values using Method 1 and the penalized ap-

proach. Cases (a) and (b) are the most sparse examples here, with each variable being

extreme on exactly one sub-cone, and the penalized approach is reasonably successful

at estimating the correct τC values as 1 for these examples. It is also interesting to

note that the estimates of the τC values which should be less than 1 are similar using

both methods. For cases (c) and (d), there is generally less improvement in the τC

estimates using the penalized approach. For case (d) with α = 0.8, the values of τ1,

τ2 and τ3 are sometimes incorrectly increased using the penalized approach, although

this may be expected with such weak asymptotic dependence and no true extremal

mass on E1, E2 and E3. As the results are usually no worse for the penalized approach

than Method 1, but there is sometimes evidence of improvement, it may be worth

considering this alternative estimation approach in future.
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Figure 7.2.2: Comparison of estimated τC values for cases (a)-(d) with α = 0.2 and

α = 0.8, over 25 simulations. The points show the average estimated τC value in each

case. Method 1: purple; penalized censored log-likelihood: green.

The moment constraint (3.1.3) can also be used to infer conditions on the propor-

tion of extremal mass assigned to each sub-cone. With (τ̂C , K̂C) denoting our esti-

mates of (τC , KC), let Cmax =
{
C ∈ 2D \ ∅ : τ̂C = max

C′
τ̂C′
}

. Recall that X∗ is defined
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by truncating X according to (3.2.4), and we set Q = min (X∗i : X∗i > 0, i = 1, . . . , d).

We consider Pr(X∗ ∈ EC | Q > q) to estimate the proportion of extremal mass as-

signed to each sub-cone, for EC defined in (3.3.1). As q →∞, non-zero mass ψC will

be estimated only on sub-cones corresponding to C ∈ Cmax, with

ψC =
K̂CP̂r (X∗ ∈ EC)∑

C′∈Cmax

K̂C′P̂r (X∗ ∈ EC′)
,

for P̂r (X∗ ∈ EC) denoting the empirical estimate of Pr (X∗ ∈ EC). The values of ψC

naturally satisfy
∑

C∈Cmax
ψC = 1, but there are additional consequences of (3.1.3)

that could be considered. In particular, for all i = 1, . . . , d, we should have∑
C:C⊃i

ψC ≥
1

d
, (7.2.2)

otherwise the integral in (3.1.3) would be less than 1/d. Note that the situation where

mass is only placed on sub-cones Ei, i ∈ {1, . . . , d}, corresponds to the boundary case

where Cmax = {C : C ∈ 2D \ ∅, |C| = 1}, and we must have ψC = 1/d for all C with

|C| = 1. Further, an upper bound on the proportion of mass on each sub-cone with

C ∈ Cmax is given by

ψC ≤
|C|
d
, (7.2.3)

otherwise the integral in the moment constraint would be greater than 1/d for some

i ∈ {1, . . . , d}. Full asymptotic dependence, where all extremal mass is assigned to

ED, is a boundary case here, with ψD = |D|/d = 1. Conditions (7.2.2) and (7.2.3)

on the location of extremal mass on the simplex could also be incorporated into the

estimation procedure to potentially improve results.

7.2.3 Redistribution of mass in Chapters 3 and 4

Another area of potential improvement in the methods to determine extremal de-

pendence structures is in the redistribution of negligible mass. We currently propose

setting to zero any estimated mass p̂C below some small value π, and to subsequently
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renormalize the vector of estimated proportions. This results in the redistribution of

mass across all sub-cones corresponding to sets C ′ with p̂C′ > π, proportionally to p̂C′ .

A better alternative may be to reassign mass to sub-cones that are close in some way to

where the mass was originally assigned. To do this, we need some measure of similar-

ity between the sets of variables that are considered extreme on the various sub-cones.

One possibility is to consider the disjunctive union of pairs of sets,

C4C ′ = (C ∪ C ′) \ (C ∩ C ′),

i.e., the union without the intersection, and to use the cardinality of this set as a

measure of the difference between C and C ′; small values of |C4C ′| correspond to

sets C and C ′ being similar, while larger values suggest greater differences between

the components of C and C ′. In particular, suppose we determine that the sub-cone

corresponding to set C contains negligible mass, i.e., p̂C < π. We could reassign the

mass equally to all sets in

arg min
C′:p̂C′>π

|C4C ′|,

to redistribute only to the closest sub-cones with extremal mass. This echoes our def-

inition of neighboured receiver operating characteristic curves, where we considered

adjacent sub-cones as those with |C4C ′| = 1.

In terms of classification, this new redistribution technique will make no difference

to the performance of our methods, since we will still end up estimating extremal mass

on the same sub-cones. However, it may improve results based on the average Hellinger

distance, which measures how close the estimated proportions are to the truth. This

may only result in small improvements since the value of the tuning parameter π is

usually taken to be close to zero. However, if a more sparse representation of the

extremal dependence structure is required, and π is taken to be slightly larger than in

our current examples, this may present a more successful procedure for redistributing

mass.
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7.2.4 Conditional mixture model

The conditional approach to modelling multivariate extremes, introduced by Heffer-

nan and Tawn (2004), and discussed in Section 2.3.11, is a flexible model that is able

to capture a range of tail dependence features, including asymptotic independence and

asymptotic dependence. In some cases, data may exhibit a mixture of two or more

such dependence behaviours, linked to the position of extremal mass in the angular

simplex discussed in Chapters 3 and 4. In order to capture these characteristics, one

possibility is to exploit the conditional model of Heffernan and Tawn by introducing

mixture components. We consider the bivariate case here, but later discuss possible

extensions to higher dimensions.

Assuming that the variables X1 and X2 have standard Gumbel margins, which

can be achieved via a transformation, and conditioning on X1 = x, for x above some

large threshold u, we propose the model

X2 | (X1 = x) =


α1x+ xβ1Z1, with probability p,

α2x+ xβ2Z2, with probability 1− p,

with p ∈ [0, 1]; α1, α2 ∈ [0, 1]; β1, β2 < 1; and residuals Z1 ∼ G1, Z2 ∼ G2 following

non-degenerate distributions. For inference, following Heffernan and Tawn (2004),

we suggest the working assumptions that Z1 ∼ N(µ1, σ
2
1) and Z2 ∼ N(µ2, σ

2
2), for

µ1, µ2 ∈ R and σ1, σ2 > 0.

If we assume a mixture of asymptotic independence and asymptotic dependence

in our data, we can impose that α2 = 1 and β2 = 0 to ensure the second mixture

component corresponds to asymptotic dependence, and allow the usual constraints on

(α1, β1) so that the first mixture component corresponds to asymptotic independence.

That is, for observations of X2 corresponding to extreme values of X1 = x, we would
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fit the mixture model

X2 | (X1 = x) ∼


N
(
α1x+ µ1x

β1 , x2β1σ2
1

)
, with probability p,

N (x+ µ2, σ
2
2) , with probability 1− p.

(7.2.4)

In our investigations, we found that maximum likelihood techniques were not success-

ful in providing reasonable estimates of the parameters in this model, which is most

likely due to the dependence between some of the parameters; we therefore turn to our

attention to Bayesian inference via Markov chain Monte Carlo (MCMC) techniques.

We found that applying the Gibbs sampler and Metropolis-Hastings algorithm gener-

ally resulted in unsatisfactory performance, with poor mixing in the MCMC chains.

An alternative to this is to use Hamiltonian Monte Carlo (Duane et al., 1987; Neal,

1994), which is designed to overcome some of the problems associated with other

MCMC methods. We use the software Stan (Stan Development Team, 2018), which

provides a relatively straightforward framework for implementing this method, with

parameter estimates obtained from the mean of the corresponding posterior densities.

In Figure 7.2.3 we demonstrate the performance of Hamiltonian Monte Carlo for

bivariate data exhibiting a mixture of asymptotic dependence and asymptotic inde-

pendence, simulated from model (7.2.4). The chains were run for 10000 iterations,

with the first half discarded as burn-in. The MCMC chains for all seven parameters

show reasonable mixing, and true parameter values all lie within the 90% credible in-

tervals obtained from the posterior distributions, demonstrating that this is a promis-

ing approach for fitting mixture models for conditional extremes.

Having obtained parameter estimates for the proposed mixture model, it is possible

to cluster the observed values of X2 | (X1 > u) into two groups by evaluating the

likelihood associated with each mixture component, and assigning each observation

to the cluster corresponding to the highest likelihood. Let C1 and C2 denote the
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Figure 7.2.3: A sample of bivariate data exhibiting a mixture of asymptotic depen-

dence and asymptotic independence, and results from applying Hamiltonian Monte

Carlo with 5000 iterations. True parameter values: orange; mean of the posterior:

solid pink; 90% credible interval; dashed pink.
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clusters associated with the first and second mixture components, respectively. As

in Section 2.3.11, we suppose we have n observations, (x1,1, x2,1), . . . , (x1,n, x2,n), and

let i1, . . . , inu be the indices i in the set {1, . . . , n} corresponding to x1,i > u. The

residual associated with the ilth observation is now given by zl = (x2,il − α̂1x1,il)/x
β̂1
1,il

for observations corresponding to cluster C1, and z = (x2,il−x1,il) for cluster C2. From

these residuals, simulation can be carried out using an analogous approach to the one

in Section 2.3.11, allowing for extrapolation beyond the observed conditional extreme

values, although we must also take into account the cluster label associated with each

sampled residual in step 3. That is, to simulate values (x∗1,1, x
∗
2,1), . . . , (x

∗
1,m, x

∗
2,m), for

j = 1, . . . ,m, we have the algorithm

1. set x∗1,j = u+ ej, where ej ∼ Exp(1),

2. sample z∗j with replacement from the set of observed residuals {z1, . . . , znu},

independently of x∗1,j,

3. set x∗2,j =


α̂1x

∗
1,j + z∗j (x

∗
1,j)

β̂1 , if z∗j ∈ C1,

x∗1,j + z∗j , if z∗j ∈ C2.

We compare simulated values from this algorithm to the standard (one component)

Heffernan and Tawn approach in Figure 7.2.4. It is clear from the second plot that

using two components in the mixture model allows for extrapolation in two distinct

directions capturing the behaviour of both the cluster corresponding to asymptotic

dependence and the one exhibiting asymptotic independence. In the one component

model the directions of extrapolation are averaged across the two clusters, which does

not properly capture either component. This may, for example, lead to the two com-

ponent model giving better estimation of return levels for data that exhibit mixtures

of extremal dependence types.
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Figure 7.2.4: Extrapolation using the original approach of Heffernan and Tawn (top)

and our proposed two component mixture model (bottom); the orange and blue re-

gions show the two clusters. The original data are shown in grey.

Moving into higher than two dimensions will present challenges due to the num-

ber of parameters involved in the model. We could first use dimension reduction

techniques, such as those introduced in Chapters 3 and 4, to identify the number

of mixture components necessary in the model. This may also inform us about the

tail dependence properties that each mixture component should capture, and provide

some constraints on the parameter values, which may aid model fitting.



Appendix A

Supplementary Material for

Chapter 3

A.1 Calculation of τC(δ) for a bivariate extreme

value distribution

We determine the value of τC(δ), defined in (3.2.7), by establishing the index of regular

variation of

Pr
(
Xi > t, i ∈ C;Xj < tδ, j ∈ D \ C

)
.

Here, we calculate τ1(δ), τ2(δ) and τ1,2 for a bivariate extreme value distribution, with

distribution function given in (3.2.8). The exponent measure V can be written as

V (x, y) =
2

y

∫ 1

0

(1− w)dH(w)− 2

y

∫ 1

x
x+y

(1− w)h(w)dw +
2

x

∫ 1

x
x+y

wh(w)dw +
2θ1
x
.

To study τ1(δ), suppose that h(w) ∼ c1(1− w)s1 as w → 1, for s1 > −1. For x→∞

and y = o(x), applying Karamata’s theorem (Resnick, 2007, Theorem 2.1), we have

V (x, y) =
1

y
− 2c1
y(s1 + 2)

(
y

x+ y

)s1+2

{1 + o(1)}

+
2c1

x(s1 + 1)

(
y

x+ y

)s1+1

{1 + o(1)}+
2θ1
x

147
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=
1

y
+ 2c1

(
y

x+ y

)s1+1{
1

x(s1 + 1)
− 1

(s1 + 2)(x+ y)

}
{1 + o(1)}+

2θ1
x

=
1

y
+

2c1y
s1+1x−(s1+2)

(s1 + 1)(s1 + 2)
{1 + o(1)}+

2θ1
x
.

By this result,

Pr
(
X1 > t,X2 < tδ

)
= Pr

(
X2 < tδ

)
− Pr

(
X1 < t,X2 < tδ

)
= exp

(
−t−δ

)
− exp

{
−V

(
t, tδ
)}

= exp
(
−t−δ

)
− exp

{
− 1

tδ
− 2c1t

δ(s1+1)t−(s1+2)

(s1 + 1)(s1 + 2)
{1 + o(1)} − 2θ1

t

}
=
{

1− t−δ + o
(
t−δ
)}

·
(

1−
[
1− 2c1t

δ(s1+1)t−(s1+2)

(s1 + 1)(s1 + 2)
+ o

{
tδ(s1+1)−(s1+2)

}]{
1− 2θ1t

−1 + o
(
t−1
)})

=

{
2θ1t

−1 +
2c1t

δ(s1+1)−(s1+2)

(s1 + 1)(s1 + 2)

}
{1 + o(1)} .

If θ1 > 0, i.e., the spectral measure places mass on {1}, we see that Pr
(
X1 > t,X2 < tδ

)
∼

2θ1t
−1 as t → ∞, hence τ1(δ) = 1 for all δ ∈ [0, 1]. If θ1 = 0, we have τ1(δ) =

{(s1 + 2) − δ(s1 + 1)}−1, which increases from (s1 + 2)−1 at δ = 0 to 1 at δ = 1.

By similar calculations, if h(w) ∼ c2w
s2 as w → 0 for s2 > −1, we have τ2(δ) = 1

if θ2 > 0, and τ2(δ) = {(s2 + 2) − δ(s2 + 1)}−1 otherwise. Since τ1,2 = η1,2, we have

τ1,2 = 1 if θ1 + θ2 < 1, and τ1,2 = 1/2 if θ1 + θ2 = 1.

A.2 Calculation of τC(δ)

A.2.1 Overview

In Appendix A.1, we derived τ1(δ), τ2(δ) and τ1,2 for a particular subclass of bivariate

extreme value distribution. Here, we present further calculations of τC(δ) for several

trivariate copula models.

In general, there are two cases to consider: δ = 0 and δ > 0. For many models,

the asymptotic relations we study will differ by a constant in these two cases, while
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the tail index remains the same. For this reason, we focus on δ > 0, and present δ = 0

calculations separately only when the slowly varying function is no longer a constant,

but instead varies with t.

A.2.2 Independence copula

We begin by considering the case where all three variables X1, X2, X3 are independent.

To calculate the value of τC(δ), we need to determine the index of regular variation

of

Pr
(
Xi > t, i ∈ C;Xj < tδ, j ∈ D \ C

)
.

In the independence case, this is equivalent to

Pr (Xi > t)|C| Pr
(
Xi < tδ

)|D\C|
=
(
1− e−1/t

)|C| (
e−1/t

δ
)|D\C|

∼ t−|C|,

so that τC(δ) = 1/|C|, which does not depend on the value of δ. That is, τ1(δ) =

τ2(δ) = τ3(δ) = 1, τ1,2(δ) = τ1,3(δ) = τ2,3(δ) = 1/2, and τ1,2,3 = 1/3.

A.2.3 Trivariate logistic distribution

The trivariate extreme value logistic distribution belongs to the class of trivariate

extreme value distributions. The exponent measure of the logistic distribution has

the form

V (x, y, z) =
(
x−1/α + y−1/α + z−1/α

)α
, (A.2.1)

for α ∈ (0, 1]. Since α = 1 corresponds to the independence case, we restrict our

calculations to α ∈ (0, 1). This distribution exhibits asymptotic dependence, with all

limiting mass on E1,2,3. Since τ1,2,3 = η1,2,3 = 1, our interest lies with the values of

τC(δ) for |C| = 1 and |C| = 2, and we consider each of these in turn.

|C| = 1: τ1(δ), τ2(δ), τ3(δ). In a similar approach to the bivariate case, we calculate

τ1(δ) by considering

Pr
(
X1 > t,X2 < tδ, X3 < tδ

)
= Pr

(
X2 < tδ, X3 < tδ

)
− Pr

(
X1 < t,X2 < tδ, X3 < tδ

)
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= exp
(
−2αt−δ

)
− exp

[
−2αt−δ

{
1 + 2−1t(δ−1)/α

}α]
= 1− 2αt−δ +O(t−2δ)− exp

(
−2αt−δ

[
1 + 2−1αt(δ−1)/α +O

{
t2(δ−1)/α

}])
= 2α−1αt(δ−1−αδ)/α +O(t−2δ) +O

{
t(2δ−2−αδ)/α

}
∼ 2α−1αt(δ−1−αδ)/α,

yielding τ1(δ) = α/(1 + αδ − δ). By similar calculations, we have τ2(δ) = τ3(δ) =

α/(1 + αδ − δ), which increase from α < 1 at δ = 0 to 1 at δ = 1.

|C| = 2: τ1,2(δ), τ1,3(δ), τ2,3(δ). We carry out a similar calculation to find the value

of τ1,2(δ). Here, we have

Pr
(
X1 > t,X2 > t,X3 < tδ

)
= Pr

(
X3 < tδ

)
− Pr

(
X1 < t,X3 < tδ

)
− Pr

(
X2 < t,X3 < tδ

)
+ Pr

(
X1 < t,X2 < t,X3 < tδ

)
= exp

(
−t−δ

)
− 2 exp

{
−
(
t−1/α + t−δ/α

)α}
+ exp

{
−
(
2t−1/α + t−δ/α

)α}
= exp

(
−t−δ

){
1− 2 exp

(
−t−δ

[
αt(δ−1)/α +

1

2
α(α− 1)t2(δ−1)/α +O

{
t3(δ−1)/α

}])
+ exp

(
−t−δ

[
2αt(δ−1)/α + 2α(α− 1)t2(δ−1)/α +O

{
t3(δ−1)/α

}])}
=
{

1− t−δ +O
(
t−2δ

)} [
α(1− α)t(2δ−2−αδ)α +O

{
t(3δ−3−αδ)/α

}]
∼ α (1− α) t(2δ−2−αδ)/α.

This implies that τ1,2(δ) = α/ (2 + αδ − 2δ), which varies from α/2 at δ = 0 to 1 at

δ = 1. Similarly, we have τ1,3(δ) = τ2,3(δ) = α/ (2 + αδ − 2δ).

These calculations reveal different indices of regular variation on cones with |C| =

1, 2 in the trivariate logistic case.
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A.2.4 Trivariate distribution with extremal mass on one ver-

tex and one edge

Now we consider a trivariate example where the extremal mass is placed on one

sub-cone EC with |C| = 1, and another with |C| = 2. This can be achieved by

taking (X1, X2) to have a bivariate extreme value logistic distribution, and X3 to be

a standard Fréchet random variable independent of (X1, X2). The exponent measure

in this case has the form

V (x, y, z) =
(
x−1/α + y−1/α

)α
+ z−1, α ∈ (0, 1).

|C| = 1: τ1(δ), τ2(δ), τ3(δ). We first consider the index of regular variation on

the cone corresponding to only X1 being large. Following a similar procedure to

previously, and exploiting the independence of (X1, X2) and X3, we have

Pr
(
X1 > t,X2 < tδ, X3 < tδ

)
= Pr

(
X3 < tδ

) {
Pr
(
X2 < tδ

)
− Pr

(
X1 < t,X2 < tδ

)}
= exp

(
−t−δ

) (
exp

(
−t−δ

)
− exp

[
−t−δ

{
1 + t(δ−1)/α

}α])
= exp

(
−2t−δ

) {
1− exp

(
−t−δ

[
αt(δ−1)/α +O

{
t2(δ−1)/α

}])}
=
{

1− 2t−δ +O
(
t−2δ

)} [
αt(δ−1−αδ)/α +O

{
t(2δ−2−αδ)/α

}]
∼ αt(δ−1−αδ)/α,

revealing that τ1(δ) = α/(1 +αδ− δ). By similar calculations, τ2(δ) = α/(1 +αδ− δ).

For the sub-cone corresponding to only variable X3 being large, we have τ3(δ) = 1,

since

Pr
(
X1 < tδ, X2 < tδ, X3 > t

)
= Pr (X3 > t) Pr

(
X1 < tδ, X2 < tδ

)
=
(
1− e−1/t

)
exp

{
−
(
t−δ/α + t−δ/α

)α}
=
(
1− e−1/t

)
exp

(
−2αt−δ

)
=
{
t−1 +O

(
t−2
)} {

1− 2αt−δ +O
(
t−2δ

)}
∼ t−1.
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|C| = 2: τ1,2(δ), τ1,3(δ), τ2,3(δ). We begin by showing that τ1,2(δ) = 1. We have

Pr
(
X1 > t,X2 > t,X3 < tδ

)
= Pr

(
X3 < tδ

) {
1− Pr (X1 < t)

− Pr (X2 < t) + Pr (X1 < t,X2 < t)
}

= exp
(
−t−δ

) {
1− 2 exp (−1/t) + exp

(
−2αt−1

)}
=
{

1− t−δ +O
(
t−2δ

)} {
(2− 2α) t−1 +O(t−2)

}
∼ (2− 2α) t−1.

Next, we consider the sub-cone E1,3. In this case, we have

Pr
(
X1 > t,X2 < tδ, X3 > t

)
= Pr (X3 > t)

{
Pr
(
X2 < tδ

)
− Pr

(
X1 < t,X2 < tδ

)}
= {1− exp (−1/t)}

[
exp

(
−t−δ

)
− exp

{
−
(
t−1/α + t−δ/α

)α}]
=
{
t−1 +O

(
t−2
)}

exp
(
−t−δ

) (
1− exp

[
−αt(δ−1−αδ)/α +O

{
t(2δ−2−αδ)/α

}])
=
{
t−1 +O

(
t−2
)} {

1− t−δ +O
(
t−2δ

)} [
αt(δ−1−αδ)/α +O

{
t(2δ−2−αδ)/α

}]
∼ αt(δ−1−αδ−α)/α,

so we have τ1,3(δ) = α/(αδ+1+α−δ). Again by symmetry, τ2,3(δ) = α/(αδ+1+α−δ).

These indices vary from α/(1 + α) at δ = 0 to 1/2 at δ = 1.

|C| = 3: τ1,2,3. Finally, we consider sub-cone E1,2,3, where

Pr (X1 > t,X2 > t,X3 > t)

= Pr (X3 > t) {1− Pr (X1 < t)− Pr (X2 < t) + Pr (X1 < t,X2 < t)}

= {1− exp (−1/t)}
{

1− 2 exp (−1/t) + exp
(
−2αt−1

)}
=
{
t−1 +O

(
t−2
)} {

(2− 2α) t−1 +O
(
t−2
)}
∼ (2− 2α) t−2,

i.e., τ1,2,3 = 1/2.
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A.2.5 Trivariate inverted logistic distribution

Next, we consider an inverted trivariate extreme value distribution, defined via its

distribution function

Pr(X1 < x,X2 < y,X3 < z) = 1−{FX1(x
′) + FX2(y

′) + FX3(z
′)}

+ {FX1,X2(x
′, y′) + FX1,X3(x

′, z′) + FX2,X3(y
′, z′)}

− FX1,X2,X3(x
′, y′, z′),

where FX1,X2,X3 denotes the corresponding trivariate extreme value distribution func-

tion; FX1,X2 , FX1,X3 and FX2,X3 are the corresponding bivariate distribution functions;

FX1 , FX2 and FX3 are the marginal distributions of X1, X2 and X3; and noting that

− log
(
1− e−1/x

)
= − log {x−1 +O(x−2)},

x′ = − 1

log (1− e−1/x)
∼ 1

log x
,

as x → ∞, with y′, z′ defined analogously. In the case of the trivariate inverted

logistic distribution, which we focus on here, FX1,X2,X3(x, y, z) = exp {−V (x, y, z)},

for V defined as in (A.2.1). The inverted logistic distribution exhibits asymptotic

independence, placing all extremal mass on the cones with |C| = 1. We will show

that τ1(δ) = τ2(δ) = τ3(δ) = 1 for this model, and then calculate τ1,2(δ), τ1,3(δ), τ2,3(δ)

and τ1,2,3.

|C| = 1: τ1(δ), τ2(δ), τ3(δ). To begin, we focus on calculating τ1(δ) for δ > 0, by

considering

Pr
(
X1 > t,X2 < tδ, X3 < tδ

)
= Pr (X1 > t)− Pr

(
X1 > t,X2 > tδ

)
− Pr

(
X1 > t,X3 > tδ

)
+ Pr

(
X1 > t,X2 > tδ, X3 > tδ

)
=
(
1− e−1/t

)
− 2 exp

(
−
[{

log t+O
(
t−1
)}1/α

+
{
δ log t+O

(
t−2δ

)}1/α]α)
+ exp

(
−
[{

log t+O
(
t−1
)}1/α

+ 2
{
δ log t+O

(
t−2δ

)}1/α]α)
=
{
t−1 +O

(
t−2
)}
− 2 exp

[
−
(
1 + δ1/α

)α
log t+O

{
(t log t)−1

}]
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+ exp
[
−
(
1 + 2δ1/α

)α
log t+O

{
(t log t)−1

}]
=
{
t−1 − 2t−(1+δ1/α)

α

+ t−(1+2δ1/α)
α}
{1 + o(1)} ∼ t−1,

so we have τ1(δ) = 1 for δ > 0.

For δ = 0, we consider variables X∗1 , X
∗
2 , X

∗
3 defined via truncation (3.2.4), and study

Pr (X∗1 > t,X∗2 = 0, X3 = 0) = Pr (X1 > t,X2 < −1/ log p,X3 < −1/ log p)

= Pr (X1 > t)− Pr (X1 > t,X2 > −1/ log p)− Pr (X1 > t,X3 > −1/ log p)

+ Pr (X1 > t,X2 > −1/ log p,X3 > −1/ log p)

=
{
t−1 +O

(
t−2
)}
− 2 exp

(
−
[{

log t+O
(
t−1
)}1/α

+ {− log(1− p)}1/α
]α)

+ exp
(
−
[{

log t+O
(
t−1
)}1/α

+ 2 {− log(1− p)}1/α
]α)

=
{
t−1 +O

(
t−2
)}
− 2 exp

{
−
{

log t+O
(
t−1
)}(

1 +

[
− log(1− p)
{log t+O (t−1)}

]1/α)α}

+ exp

{
−
{

log t+O
(
t−1
)}(

1 + 2

[
− log(1− p)
{log t+O (t−1)}

]1/α)α}
=
{
t−1 +O

(
t−2
)}

− 2 exp

[
−
{

log t+O
(
t−1
)}
− α {− log(1− p)}1/α

{log t+O (t−1)}1/α−1

− α(α− 1)

2

{− log(1− p)}2/α

{log t+O (t−1)}2/α−1
+ o

{
(log t)1−2/α

}]

+ exp

[
−
{

log t+O
(
t−1
)}
− 2α

{− log(1− p)}1/α

{log t+O (t−1)}1/α−1

− 2α(α− 1)
{− log(1− p)}2/α

{log t+O (t−1)}2/α−1
+ o

{
(log t)1−2/α

}]
=
{
t−1 +O

(
t−2
)}

+ t−1

(
− 2 exp

[
− α {− log(1− p)}1/α

{log t+O (t−1)}1/α−1
+
α(1− α)

2

{− log(1− p)}2/α

{log t+O (t−1)}2/α−1

+ o
{

(log t)1−2/α
}

+O
(
t−1
) ]
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+ exp

[
− 2α

{− log(1− p)}1/α

{log t+O (t−1)}1/α−1
+ 2α(1− α)

{− log(1− p)}2/α

{log t+O (t−1)}2/α−1

+ o
{

(log t)1−2/α
}

+O
(
t−1
) ])

∼ t−1

(log t)2/α−1

[
α(1− α) {− log(1− p)}2/α

]
,

as t → ∞, which is regularly varying of order −1. As such, the index of regular

variation is τ1(δ) = 1 for δ = 0. Combining these results, τ1(δ) = 1 for all δ ∈ [0, 1].

By symmetric arguments, τ2(δ) = τ3(δ) = 1 for all δ ∈ [0, 1].

|C| = 2: τ1,2(δ), τ1,3(δ), τ2,3(δ). We first consider the sub-cone E1,2. For δ > 0, we

have

Pr
(
X1 > t,X2 > t,X3 < tδ

)
= Pr (X1 > t,X2 > t)− Pr

(
X1 > t,X2 > t,X3 > tδ

)
= exp

[
−2α

{
− log

(
1− e−1/t

)}]
− exp

(
−
[
2
{
− log

(
1− e−1/t

)}1/α
+
{
− log

(
1− e−1/tδ

)}1/α
]α)

=
(
1− e−1/t

)2α − exp
(
−
[
2
{

log t+O
(
t−1
)}1/α

+
{
δ log t+O

(
t−2δ

)}1/α]α)
= t−2

α

+O
(
t−1−2

α)− exp
[
−
(
2 + δ1/α

)α
log t+O

{
(t log t)−1

}]
∼ t−2

α

,

i.e., τ1,2(δ) = 2−α, δ > 0. For δ = 0, using similar arguments as for the |C| = 1 case,

we have

Pr (X∗1 > t,X∗2 > t,X∗3 = 0) = Pr (X1 > t,X2 > t,X3 < −1/ log p)

= Pr (X1 > t,X2 > t)− Pr (X1 > t,X2 > t,X3 > −1/ log p)

= exp
[
−2α

{
log t+O

(
t−1
)}]

− exp
(
−
[
2
{

log t+O
(
t−1
)}1/α

+ {− log(1− p)}1/α
]α)

= exp
[
−2α

{
log t+O

(
t−1
)}]

·

(
1− exp

[
−α2α−1

{− log(1− p)}1/α

{log t+O (t−1)}−1+1/α
+ o

{
(log t)1−2/α

}])

∼ t−2
α

(log t)−1+1/α
α2α−1{− log(1− p)}1/α,
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as t → ∞. As such, the index of regular variation is τ1,2(δ) = 2−α for all δ ∈ [0, 1].

By analogous arguments, we also have τ1,3(δ) = τ2,3(δ) = 2−α, δ ∈ [0, 1].

|C| = 3: τ1,2,3. To calculate the index of regular variation for sub-cone E1,2,3, we

consider

Pr (X1 > t,X2 > t,X3 > t) = exp
{

log
(
1− e−1/t

)
V (1, 1, 1)

}
=
(
1− e−1/t

)V (1,1,1)
=
{

1− 1 + t−1 +O(t−2)
}3α ∼ t−3

α

,

so τ1,2,3 = 3−α. This corresponds to the known value of η1,2,3 for the trivariate inverted

logistic distribution, as η1,2,3 = V (1, 1, 1)−1 = 3−α.

A.2.6 Multivariate Gaussian distribution

The multivariate Gaussian provides a further example of a distribution which asymp-

totically places all mass on sub-cones EC with |C| = 1. In the case where d = 3,

for a multivariate Gaussian distribution with covariance matrix Σ, Nolde (2014), for

example, shows that

η1,2,3 =
(
1T3 Σ−113

)−1
; ηi,j =

(
1T2 Σ−1i,j 12

)−1
, i < j ∈ {1, 2, 3},

where Σi,j is the submatrix of Σ corresponding to variables i and j, and 1d ∈ Rd is a

vector of 1s.

The covariance matrix Σ may be written as

Σ =


1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 =

Σ12 B

BT 1

 , where Σ12 =

 1 ρ12

ρ12 1

 and B =

ρ13
ρ23

 .
We note that since Σ and Σ12 are covariance matrices, they must be positive

definite, with det (Σ) = 1−ρ212−ρ213−ρ223+2ρ12ρ13ρ23 > 0 and det (Σ12) = 1−ρ212 > 0.
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The inverse of Σ is given by the block matrix

Σ−1 =

Σ−112 + Σ−112 B(1−BTΣ−112 B)−1BTΣ−112 −Σ−112 B(1−BTΣ−112 B)−1

−(1−BTΣ−112 B)−1BTΣ−112 (1−BTΣ−112 B)−1

 ,
so that

1T3 Σ−113

= 1T2 Σ−112 12 + (1−BTΣ−112 B)−1
(
1− 1T2 Σ−112 B −BTΣ−112 12 + 1T2 Σ−112 BB

TΣ−112 12

)
= 1T2 Σ−112 12 +

1− ρ212
1− ρ212 − ρ213 − ρ223 + 2ρ12ρ13ρ23

(
1− 21T2 Σ−112 B + 1T2 Σ−112 BB

TΣ−112 12

)
= 1T2 Σ−112 12 +

det(Σ12)

det(Σ)

(
1− 1T2 Σ−112 B

)2
= 1T2 Σ−112 12 +

det(Σ12)

det(Σ)

(
1− ρ13 + ρ23

1 + ρ12

)2

≥ 1T2 Σ−112 12,

with equality if and only if 1 + ρ12 = ρ13 + ρ23. By similar calculations,

1T3 Σ−113 ≥ 1T2 Σ−1i,j 12, i < j ∈ {1, 2, 3},

with equality if and only if 1 + ρij = ρik + ρjk, in which case η1,2,3 = ηi,j. Applying

Theorem 2, for this trivariate case, if 1 + ρC 6=
∑

C′:|C′|=2,C′ 6=C
ρC′ for all C ⊂ {1, 2, 3}

with |C| = 2, then τC(1) = ηC for any set C ⊆ {1, 2, 3} with |C| ≥ 2. Since τC(δ) is

non-decreasing in δ, τC(δ) ≤ ηC for δ ∈ [0, 1). We also know τ1,2,3 = η1,2,3.

In this case, calculation of the explicit formulas for δ < 1, in a manner similar to

the inverted logistic case, is complicated by the need to consider asymptotic approx-

imations of Gaussian cumulative distribution functions beyond first order. As such,

we do not attempt this here, but note that since τC(1) ≤ ηC , |C| ≥ 2, we would be

likely to estimate τC(δ) < 1 in practice.

To gain some insight into the remaining cases of C = {i}, i = 1, 2, 3, we consider

the conditional extreme value model of Heffernan and Tawn (2004). Let Y = logX, so

that Y has standard Gumbel marginal distributions, and all correlations be positive.
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Then conditioning on Yi gives

Pr
(
Yj − ρ2ijt ≤ t1/2zj, Yk − ρ2ikt ≤ t1/2zk, Yi > t

)
∼ N(zj, zk)Pr(Yi > t), t→∞,

for N(zj, zk) denoting the distribution function of a particular Gaussian distribution

(Heffernan and Tawn, 2004, Section 8). For zj = zk = 0, this equates to

Pr
(
Yj ≤ ρ2ijt, Yk ≤ ρ2ikt, Yi > t

)
∼ N(0, 0)Pr(Yi > t), t→∞. (A.2.2)

In the trivariate case with Gumbel margins, equation (3.2.7) of Assumption 1 can be

written as

Pr (Yj ≤ δt, Yk ≤ δt, Yi > t) ∈ RV−1/τC(δ), t→∞.

Considering equation (A.2.2) again, we see that if δ ≥ max
(
ρ2ij, ρ

2
ik

)
, in place of the

limiting Gaussian distribution, mass will occur at (−∞,−∞) for variables (Yj, Yk),

which implies that τi(δ) = 1. Alternatively, if ρ2ij ≤ δ < ρ2ik or ρ2ik ≤ δ < ρ2ij, we have

mass at (−∞,∞) or (∞,−∞), respectively, and for δ < min
(
ρ2ij, ρ

2
ik

)
mass occurs at

(∞,∞). In these cases, the left-hand side of equation (A.2.2) is o {Pr (Yi > t)}, which

is consistent with τi(δ) < 1.

A.3 Simulation study

A.3.1 Estimation of τC(δ) in Method 2

In Method 2, introduced in Section 3.3.3, we consider regions of the form

ẼC =
{
x ∈ E : x

D\C
∨ ≤

(
xC∧
)δ}

, |C| < d; ẼD = E \
⋃

C∈2D\∅:|C|<d

ẼC ,

for C ∈ 2D \ ∅, and assume that Pr
(
XC
∧ > q,X ∈ ẼC

)
∈ RV−1/τ̃C(δ), for XC

∧ =

mini∈C Xi. This is used as an alternative to considering Pr
(
XC
∧ > t,X

D\C
∨ ≤ tδ

)
∈

RV−1/τC(δ), for which there is no clear structure variable. In Figure A.3.1, we demon-

strate how well the parameter τC(δ) is approximated using Method 2. We consider

the trivariate logistic distribution, with theoretical τC(δ) values given in case (iii)
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of Table 3.2.1. For α = 0.25 and α = 0.5, we take samples of size 100,000 from

this distribution, and use Method 2 to estimate τ̃1(δ), τ̃1,2(δ) and τ̃1,2,3 for values of

δ ∈ {0.1, . . . , 0.95}. The thresholds used correspond to the 0.985 quantile of observed

XC
∧ values in each region ẼC . Each simulation is repeated 100 times, and the true

τC(δ) parameter values are shown in red. The results indicate that the estimator de-

rived from considering Pr
{
XC
∧ > t,X

D\C
∨ ≤

(
XC
∧
)δ}

yields τC(δ) as defined through

Pr
(
XC
∧ > t,X

D\C
∨ ≤ tδ

)
. We observe increased variability in the estimates of τ̃1(δ)

and τ̃1,2(δ) for small values of δ, and τ̃1,2,3 for large values of δ, which is likely due to

the limited data in the corresponding regions ẼC for these cases. There is also some

bias present in these results, which is an issue associated with the Hill estimator.

While alternative estimators are available, each will have issues with bias or variance

(Beirlant et al., 2004), and we continue with the Hill estimator.
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Figure A.3.1: Estimates of τ1(δ), τ1,2(δ) and τ1,2,3 for data simulated from trivariate

logistic distributions with α = 0.25 (top) and α = 0.5 (bottom).
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A.3.2 Area under the receiver operating characteristic curve

results for the max-mixture distribution

In Tables 3.4.1 and 3.4.2 of Chapter 3, we present the average area under the (neigh-

boured) receiver operating characteristic curve for Method 1, Method 2 and the ap-

proach of Goix et al. applied to simulations from a particular max-mixture distribu-

tion. Figures A.3.2 and A.3.3 provide boxplots of all the values from these simulations.
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Figure A.3.2: Area under the receiver operating characteristic curve results for 100

simulations from a five-dimensional max-mixture distribution.
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Figure A.3.3: Area under the neighboured receiver operating characteristic curve

results for 100 simulations from a five-dimensional max-mixture distribution.
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A.3.3 Asymmetric logistic distribution

We now present simulation results for the asymmetric logistic distribution, using the

same metrics as for the max-mixture distribution in Section 3.4. This model belongs

to the class of multivariate extreme value distributions, and it is possible to calculate

the proportion of extremal mass associated with each sub-cone.

In standard Fréchet margins, the multivariate extreme value distribution function

is of the form exp {−V (x)}. Coles and Tawn (1991) show that the spectral density

corresponding to sub-cone EC is hC (wC) = −V {C}(wC)/d, where

V {C}(xC) = lim
xj→0:j∈D\C

(∏
i∈C

∂

∂xi

)
V (x), xC = {xi : i ∈ C},

for wC = xC/rC and rC =
∑

i∈C xi. Hence, for BC = {w ∈ Sd−1 : wi ∈ (0, 1], i ∈

C; wj = 0, j ∈ D \ C}, the proportion of mass on corresponding sub-cone EC is

pC = −1

d

∫
BC
V {C}(wC)

∏
i∈C

dwi. (A.3.1)

For the asymmetric logistic model (Tawn, 1990), the exponent measure V is defined

as

V (x) =
∑

C∈2D\∅

{∑
i∈C

(θi,C/xi)
1/αC

}αC

, θi,C ∈ [0, 1], (A.3.2)

with θi,C = 0 if i /∈ C,
∑

C∈2D\∅
θi,C = 1 for all i = 1, . . . , d and C ∈ 2D \ ∅, and

dependence parameters αC ∈ (0, 1]. In Proposition 1 of Section A.4, we show that for

the d-dimensional asymmetric logistic model with all αC ≡ α, the proportion of mass

on sub-cone EC is

p
(d)
C =

∑
i∈C

θi,C/d, C ∈ 2D \ ∅.

Using this new result, we can compare our estimated proportions to the truth using

the Hellinger distance defined in equation (3.4.1) of Chapter 3.
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Following Goix et al. (2017), we simulate data from an asymmetric logistic dis-

tribution with αC ≡ α, whose extremal mass is concentrated on f randomly chosen

sub-cones, ensuring that moment constraint (3.1.3) is satisfied. Suppose the sub-cones

chosen correspond to subsets F1, . . . , Ff ∈ 2D \ ∅. The conditions on the parameters

of the asymmetric logistic distribution are satisfied by setting

θi,C = |{j : i ∈ Fj, j ∈ {1, . . . , f}}|−1 , C ∈ {F1, . . . , Ff}, (A.3.3)

and θi,C = 0 otherwise. We present results for dimensions d = 5 and d = 10. For

d = 5, we simulate samples of size n = 10, 000, and test both our methods when

there are truly 5, 10 and 15 sub-cones with extremal mass. For d = 10, we have

n = 100, 000 samples, and consider 10, 50 and 100 sub-cones with extremal mass. We

set the tuning parameters as in Section A.3.3, and repeat each setting 100 times. In

Table A.3.1, we present the average area under the receiver operating characteristic

curve for α ∈ {0.25, 0.5, 0.75}. Boxplots of the full results obtained are provided in

Figures A.3.4 and A.3.5. In the asymmetric logistic model, the closer αC is to 1, the

larger the values of τC(δ) for any fixed δ and C ⊂ C, as demonstrated by cases (ii) and

(iii) in Table 3.2.1. Thus, the larger the value of α in our simulations, the more diffi-

cult it is to determine which sub-cones truly contain extremal mass. In Figure A.3.6,

we present average values for the area under the neighboured receiver operating char-

acteristic curve, as defined in Section 3.4.1, for the same five-dimensional cases as

above, but only consider α = 0.75, where classification is most difficult. If every

sub-cone without mass has at least one neighbouring sub-cone truly having mass, the

false positive rate, and hence the area under the curve, will always be zero; these cases

have been removed in Figure A.3.6.
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Figure A.3.4: Areas under the receiver operating characteristic curves for 100 simu-

lations from a five-dimensional asymmetric logistic distribution.
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Figure A.3.5: Areas under the receiver operating characteristic curves for 100 simu-

lations from a ten-dimensional asymmetric logistic distribution.
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Figure A.3.6: Boxplots of the areas under the neighboured receiver operating charac-

teristic curves for d = 5; f = 5, 10, 15; n = 10, 000 and α = 0.75. The average values

are shown by the circles in each plot.

(α, f) (0.25, 5) (0.25, 10) (0.25, 15) (0.5, 5) (0.5, 10) (0.5, 15) (0.75, 5) (0.75, 10) (0.75, 15)

Goix et al. 100 (0.1) 99.7 (0.5) 99.0 (1.3) 100 (0.2) 99.8 (0.5) 99.4 (0.9) 98.6 (1.7) 91.1 (4.9) 87.1 (7.1)

Method 1 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.1) 99.9 (0.3) 92.5 (4.1) 87.0 (5.5) 85.6 (7.3)

Method 2 100 (0.0) 100 (0.0) 100 (0.0) 99.7 (0.6) 98.5 (1.8) 96.8 (3.2) 85.4 (4.3) 84.4 (5.7) 84.7 (7.5)

(α, f) (0.25, 10) (0.25, 50) (0.25, 100) (0.5, 10) (0.5, 50) (0.5, 100) (0.75, 10) (0.75, 50) (0.75, 100)

Goix et al. 100 (0.0) 100 (0.0) 100 (0.1) 100 (0.0) 100 (0.0) 99.8 (0.1) 99.5 (0.2) 98.8 (0.1) 96.9 (0.5)

Method 1 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 99.9 (0.0) 99.6 (0.1) 98.5 (0.4) 96.0 (0.8)

Method 2 100 (0.0) 100 (0.0) 100 (0.0) 100 (0.0) 99.6 (0.1) 99.2 (0.1) 99.0 (0.1) 98.8 (0.2) 97.9 (0.4)

Table A.3.1: Average areas under the receiver operating characteristic curves, given

as percentages, for 100 samples from five-dimensional (top) and ten-dimensional (bot-

tom) asymmetric logistic distributions, with dependence parameter α and θi,C deter-

mined via (A.3.3). Standard deviations of these results are given in brackets.

The average areas under the receiver operating characteristic curves in Table A.3.1

show that all three methods perform well when α = 0.25 and α = 0.5, for both d = 5

and d = 10, with Method 1 slightly outperforming the other two approaches. The

results suggest that the method of Goix et al. (2017) is generally the most success-

ful classifier when α = 0.75, followed by Method 1, although the most substantial

difference in results occurs for (d, f, α) = (10, 100, 0.75), where Method 2 is most suc-
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Figure A.3.7: Mean Hellinger distance, 0.05 and 0.95 quantiles over 100 simulations.

Method 1: purple; Method 2: green; Goix et al.: grey.

cessful; this is supported by the boxplots of results in Figures A.3.4 and A.3.5. In

principle, Method 1 should be better than Method 2 here, so greater assessment of

tuning parameters may be required. It is possible that the method of Goix et al. is

most successful for larger values of α since it is more difficult for Methods 1 and 2

to distinguish between regions where τC(δ) does and does not equal 1 in these cases.

For the neighboured receiver operating characteristic curve results in Figure A.3.6,

Method 1 outperforms Method 2 in all cases, with the method of Goix et al. per-

forming the best under this criterion; this is similar to the results observed for the

max-mixture distribution.

Figure A.3.7 shows the average Hellinger distance for α ∈ [0.1, 0.9] for each of the

cases described above. For the most sparse cases, (d, f) = (5, 5) and (d, f) = (10, 10),

Method 1 performs significantly better than the other two approaches overall. For the

less sparse cases, (d, f) = (5, 15) and (d, f) = (10, 100), the three methods give similar
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results in terms of the Hellinger distance for α ≤ 0.5, but the method of Goix et al.

is most successful for larger α values. When the extreme values are concentrated on

fewer sub-cones, it may be easier to estimate true values of τC(δ) = 1 using Method 1

than in less sparse examples. For the asymmetric logistic distribution, Method 1

often performs better in terms of estimating the proportion of extremal mass on each

sub-cone, while the method of Goix et al. (2017) is better at classification, although

this method does tend to place mass on too many sub-cones, as shown in Figure 3.4.2

of Chapter 3.

A.4 Calculating the mass on each sub-cone for an

asymmetric logistic model

Proposition 1. For the d-dimensional asymmetric logistic model with exponent mea-

sure (A.3.2) and αC ≡ α ∈ (0, 1) for all C ∈ 2D \ ∅,

dp
(d)
C =

∑
i∈C

θi,C ,

where p
(d)
C denotes the proportion of mass on sub-cone EC.

Proof. Consider the exponent measure of the asymmetric logistic model V (x) as a

sum of functions VC(xC), for C ∈ 2D \ ∅, i.e.,

V (x) =
∑

C∈2D\∅

VC(xC), VC(xC) =

{∑
i∈C

(
θi,C
xi

)1/α
}α

.

Then for any dimension d ≥ |C|,

V {C}(xC) =

(∏
i∈C

∂

∂xi

)
VC(xC)

=


|C|−1∏
i=0

−
(
α− i
α

)
(∏
i∈C

θ
1/α
i,C

x
1+1/α
C,i

){∑
i∈C

(
θi,C
xC,i

)1/α
}α−|C|

,
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since for C ⊃ C, lim
xi→0:i∈C\C

( ∏
j∈C

∂
∂xj

)
VC(xC) = 0. Hence, by result (A.3.1),

dp
(d)
C = −

∫
BC
V {C}(wC)

∏
i∈C

dwi, (A.4.1)

which we note does not depend on d. We claim that

−
∫
BC
V {C}(wC)

∏
i∈C

dwi =
∑
i∈C

θi,C . (A.4.2)

First consider |C| = 1, i.e. BC = {w : wi = 1} for C = {i}. Here,

V {i}(xi) =
∂

∂xi
Vi(xi) = −θi,i

x2i
,

so

dp
(d)
i =

θi,i
w2
i

∣∣∣
wi=1

= θi,i, i = 1, . . . , d.

Now consider |C| = 2. We have

V {i,j}(xi, xj) =

(
α− 1

α

){
(1− θi,i)(1− θj,j)

}1/α
(xixj)1+1/α

{(
θi,ij
xi

)1/α

+

(
θj,ij
xj

)1/α}α−2
,

so

hi,j(wi) =

(
1− α
α

) (
θi,ijθj,ij

)1/α{
wi(1− wi)

}1+1/α

{(
θi,ij
wi

)1/α

+

(
θj,ij

1− wi

)1/α}α−2
,

and

dp
(d)
i,j =

∫ 1

0

hi,j(wi)dwi. (A.4.3)

However, taking d = 2, we know 2p
(2)
1,2+2p

(2)
1 +2p

(2)
2 = 2, so dp

(d)
1,2 = θ1,12+θ2,12, and sim-

ilarly, by (A.4.3),
∫ 1

0
hi,j(wi)dwi = dp

(d)
i,j = θi,ij+θj,ij. So, (A.4.1) holds for |C| = 1 and

|C| = 2, and we suppose it holds for |C| ≤ k, i.e. dp
(d)
C = −

∫
BC
V {C}(wC)

∏
i∈C

dwi =∑
i∈C

θi,C .

Since (A.4.1) does not depend on d, take d = k + 1. So for all C with |C| ≤ k,

(k + 1)p
(k+1)
C =

∑
i∈C

θi,C . Now take C = {1, . . . , k + 1}. Then,

(k + 1)p
(k+1)
C = (k + 1)−

∑
C⊂C

∑
i∈C

θi,C = (k + 1)−
∑
i∈C

∑
C⊂C

θi,C
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=
∑
i∈C

1−
∑
C⊂C

θi,C


=
∑
i∈C

θi,C .

As such, (A.4.2) holds by induction.



Appendix B

Supplementary Material for

Chapter 4

B.1 Properties of weights

In this section, we show that the desired properties of weights from Section 4.2.2 are

satisfied by the definition in Section 4.2.5. For property 1, first note that the angular

components satisfy
∑
i∈C

wj,i ∈ [0, 1], for all C ∈ 2D\∅, which implies that

(∑
i∈C

wj,i

)k
∈ [0, 1],

for all k > 0 and C ∈ 2D\∅. Moreover, for C ⊂ C, we have

∑
i∈C

wj,i ≤
∑
i∈C

wj,i ⇒
(∑

i∈C

wj,i

)k
≤
(∑

i∈C

wj,i

)k
,

for k > 0. Recall that the set S(s) with |S(s)| = s is the set such that w lies closer to

the region BS(s) than any other set BS(s)′ with |S(s)′| = s. By the above inequality, we

have

δS(s),j =

( ∑
i∈S(s)

wj,i

)k
−
( ∑
i∈S(s−1)

wj,i

)k
∈ [0, 1],
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for all s = 2, . . . , d. As such, δC,j ∈ [0, 1] for all C ∈ 2D\∅. To show that the proposed

weighting satisfies property 2, we have

∑
C∈2D\∅

δC,j =
d∑
s=1

δS(s),j

=

( ∑
i∈S(1)

wj,i

)k
+

d∑
s=2

{( ∑
i∈S(s)

wj,i

)k
−
( ∑
i∈S(s−1)

wj,i

)k}

=

( ∑
i∈S(d)

wj,i

)k
= 1,

noting that S(d) = D.

B.2 Max-mixture AUC and AUC* results

In Table 4.3.1, we presented average area under the (neighboured) receiver operating

characteristic curve values for simulations based on a five-dimensional max-mixture

distribution. We present boxplots of these results in Figures B.2.1 and B.2.2.

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0, α = 0.25

A
re

a 
un

de
r 

th
e 

cu
rv

e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0.25, α = 0.25

A
re

a 
un

de
r 

th
e 

cu
rv

e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0.5, α = 0.25

A
re

a 
un

de
r 

th
e 

cu
rv

e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0.75, α = 0.25
A

re
a 

un
de

r 
th

e 
cu

rv
e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0, α = 0.5

A
re

a 
un

de
r 

th
e 

cu
rv

e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0.25, α = 0.5

A
re

a 
un

de
r 

th
e 

cu
rv

e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0.5, α = 0.5

A
re

a 
un

de
r 

th
e 

cu
rv

e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0.75, α = 0.5

A
re

a 
un

de
r 

th
e 

cu
rv

e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0, α = 0.75

A
re

a 
un

de
r 

th
e 

cu
rv

e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0.25, α = 0.75

A
re

a 
un

de
r 

th
e 

cu
rv

e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0.5, α = 0.75

A
re

a 
un

de
r 

th
e 

cu
rv

e

Method 3 Method 4 Method 5

0.
5

0.
7

0.
9

ρ = 0.75, α = 0.75

A
re

a 
un

de
r 

th
e 

cu
rv

e

Figure B.2.1: AUC values for Methods 3, 4 and 5 over 100 simulations from a five-

dimensional max-mixture distribution.
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Figure B.2.2: AUC* values for Methods 3, 4 and 5 over 100 simulations from a five-

dimensional max-mixture distribution.

B.3 Asymmetric logistic AUC results

In Table 4.3.2, we presented average AUC values for simulations based on asymmetric

logistic models of five or ten dimensions. We present boxplots of these results in

Figures B.3.1 and B.3.2.
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Figure B.3.1: AUC results for Methods 3, 4 and 5 over 100 simulations from a five-

dimensional asymmetric logistic distribution.
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Figure B.3.2: AUC results for Methods 3, 4 and 5 over 100 simulations from a ten-

dimensional asymmetric logistic distribution.
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Chapter 5

C.1 Proof of Theorem 3

C.1.1 Identifying sub-vines of D-vines to construct the gauge

function

A D-vine is represented graphically by a series of d − 1 trees, labelled T1, . . . , Td−1.

Each of these trees is a path, and we suppose that the nodes are labelled in ascending

order, as in the left plot of Figure 5.3.4 for the case where d = 4. Moving from a

D-vine of dimension d ≥ 4 to one of dimension d + 1 involves first adding an extra

node and edge onto each tree in the graph. In tree T1, the extra node has label d+ 1,

and the extra edge label is {d, d+ 1}. In tree T2 the extra node is labelled {d, d+ 1}

and the edge is labelled {d− 1, d+ 1}|d, and this continues until we reach tree Td−1,

where the extra node is labelled {3, d + 1}|{4, . . . , d} and the corresponding edge is

labelled {2, d + 1}|{3, . . . , d}. We finally must also add the tree Td, with nodes la-

belled {1, d}|{2, . . . , d − 1} and {2, d + 1}|{3, . . . , d}, and corresponding edge label

{1, d+ 1}|{2, . . . , d}. This is demonstrated in Figure C.1.1, for an example where we

173
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move from a D-vine of dimension four to one of dimension five.

Figure C.1.1: Example of the extending a four-dimensional D-vine to a five-

dimensional D-vine.

Due to this iterative construction, we can consider a d-dimensional D-vine in terms

of three lower dimensional sub-vines in a similar way to in Figure 5.3.5 for the d = 4

case. In particular, in trees T1, . . . , Td−2, we have two sub-vines of dimension d−1; the

first corresponds to variables with labels in {1, . . . , d − 1} = D\{d}, and the second

to variables with labels in {2, . . . , d} = D\{1}. In the graph, these two sub-vines will

overlap in the region corresponding to a further sub-vine, this time of dimension d−2

and corresponding to variables with labels in {2, . . . , d− 1} = D\{1, d}.

In order to calculate the gauge function, we consider the behaviour of − log f(tx),

as t→∞. By considering these three sub-vines, we see that this can be written as

− log f(tx) =− log fD\{d}
(
tx−{d}

)
− log fD\{1}

(
tx−{1}

)
+ log fD\{1,d}

(
tx−{1,d}

)
− log c{1,d}|D\{1,d}

{
F1|D\{1,d}

(
tx1|tx−{1,d}

)
, Fd|D\{1,d}

(
txd|tx−{1,d}

)}
.

Note that this is the form given for the d = 4 case in equation (5.3.12). We can

therefore infer that the d-dimensional gauge function g(x), defined as − log f(tx) ∼

tg(x) as t→∞, satisfies

g(x) = gD\{d}
(
x−{d}

)
+ gD\{1}

(
x−{1}

)
− gD\{1,d}

(
x−{1,d}

)
+ g̃D(x), (C.1.1)
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where, as t→∞,

− log c{1,d}|D\{1,d}
{
F1|D\{1,d}

(
tx1|tx−{1,d}

)
, Fd|D\{1,d}

(
txd|tx−{1,d}

)}
∼ tg̃D(x).

(C.1.2)

In Section C.1.2, we present some properties of inverted extreme value copulas that

will be used in Section C.1.3 to find g̃D(x), and hence the form of the gauge function

for a d-dimensional D-vine with inverted extreme value components.

C.1.2 Properties of inverted extreme value copulas

Lemma C.1.1. For the density c(u, v) of an inverted extreme value copula, of the

form (5.3.2), if u = 1 − a1e
−b1t{1 + o(1)} and v = 1 − a2e

−b2t{1 + o(1)} for some

a1, a2, b1, b2 > 0, then as t→∞,

− log c(u, v) ∼ t {−b1 − b2 + V (1/b1, 1/b2)} .

Proof.

− log c(u, v) = log(1− u) + log(1− v) + 2 log{− log(1− u)}+ 2 log{− log(1− v)}

+ V

{
−1

log(1− u)
,

−1

log(1− v)

}
− log

[
V1

{
−1

log(1− u)
,

−1

log(1− v)

}
· V2

{
−1

log(1− u)
,

−1

log(1− v)

}
− V12

{
−1

log(1− u)
,

−1

log(1− v)

}]
= log a1 + log a2 − (b1 + b2)t+ 2 log{1 + o(1)}

+ 2 log[− log a1 + b1t− log{1 + o(1)}] + 2 log[− log a2 + b2t− log{1 + o(1)}]

+ tV

[
1

−t−1 log a1 + b1 − t−1 log{1 + o(1)}
,

1

−t−1 log a2 + b2 − t−1 log{1 + o(1)}

]
− log

(
t4V1

[
1

−t−1 log a1 + b1 − t−1 log{1 + o(1)}
,

1

−t−1 log a2 + b2 − t−1 log{1 + o(1)}

]
· V2

[
1

−t−1 log a1 + b1 − t−1 log{1 + o(1)}
,

1

−t−1 log a2 + b2 − t−1 log{1 + o(1)}

]
− t3V12

[
1

−t−1 log a1 + b1 − t−1 log{1 + o(1)}
,

1

−t−1 log a2 + b2 − t−1 log{1 + o(1)}

])
∼ t {−b1 − b2 + V (1/b1, 1/b2)} .
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Lemma C.1.2. For the conditional distribution function F (u | v) of an inverted

extreme value copula, of the form (5.3.1), if u = 1 − a1e
−b1t{1 + o(1)} and v =

1− a2e−b2t{1 + o(1)} for some a1, a2, b1, b2 > 0, then as t→∞,

F (u | v) = 1− a exp [−t {V (1/b1, 1/b2)− b2}] {1 + o(1)},

for some a > 0.

Proof.

F (u | v) = 1 +

(
1

1− v

)
{− log(1− v)}−2 V2

{
−1

log(1− u)
,

−1

log(1− v)

}
· exp

[
−V

{
−1

log(1− u)
,

−1

log(1− v)

}]
= 1 +

eb2t

a2{1 + o(1)}
[− log a2 + b2t− log{1 + o(1)}]−2

· V2
[

1

− log a1 + b1t− log{1 + o(1)}
,

1

− log a2 + b2t− log{1 + o(1)}

]
· exp

(
−V

[
1

− log a1 + b1t− log{1 + o(1)}
,

1

− log a2 + b2t− log{1 + o(1)}

])
= 1 +

eb2t

a2{1 + o(1)}
[
−t−1 log a2 + b2 − t−1 log{1 + o(1)}

]−2
· V2

[
1

−t−1 log a1 + b1 − t−1 log{1 + o(1)}
,

1

−t−1 log a2 + b2 − t−1 log{1 + o(1)}

]
· exp

(
−tV

[
1

−t−1 log a1 + b1 − t−1 log{1 + o(1)}
,

1

−t−1 log a2 + b2 − t−1 log{1 + o(1)}

])
= 1− a exp [−t {V (1/b1, 1/b2)− b2}] {1 + o(1)},

for a = −a−12 V2(b2/b1, 1) exp {− log a1V1 (1, b1/b2)− log a2V2 (b2/b1, 1)}.

C.1.3 Calculation of the gauge function

We claim that the d-dimensional D-vine has a gauge function of the form stated in

Theorem 3. We note that from equation (5.3.19), we have already shown this to be

the case for d = 4. To prove this more generally, we assume that the result holds for
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the two (d− 1)-dimensional sub-vines of the d-dimensional D-vine, i.e.,

gD\{d} = gD\{1,d−1,d} + V {1,d−1|D\{1,d−1,d}}
(

1

gD\{d−1,d} − gD\{1,d−1,d}
,

1

gD\{1,d} − gD\{1,d−1,d}

)
,

(C.1.3)

and

gD\{1} = gD\{1,2,d} + V {2,d|D\{1,2,d}}
(

1

gD\{1,d} − gD\{1,2,d}
,

1

gD\{1,2} − gD\{1,2,d}

)
,

where we have dropped the arguments from the gauge functions to simplify notation.

Further, we claim that the conditional distribution functions used in the calculation

of (C.1.2) have the form

F1|D\{1,d}
(
tx1|tx−{1,d}

)
= 1− k1|D\{1,d} exp

{
−t
(
gD\{d} − gD\{1,d}

)}
{1 + o(1)},

(C.1.4)

and

Fd|D\{1,d}
(
txd|tx−{1,d}

)
= 1− kd|D\{1,d} exp

{
−t
(
gD\{1} − gD\{1,d}

)}
{1 + o(1)},

(C.1.5)

as t→∞, for some k1|D\{1,d}, kd|D\{1,d} > 0 not depending on t. From results (5.3.16)

and (5.3.17), we see that this claim holds for d = 4. To prove this more generally, we

assume that (C.1.4) and (C.1.5) hold in the (d−1)-dimension case, so that as t→∞,

F1|D\{1,d−1,d}
(
tx1|tx−{1,d−1,d}

)
= 1− k1|D\{1,d−1,d} exp

{
−t
(
gD\{d−1,d} − gD\{1,d−1,d}

)}
{1 + o(1)},

and

Fd−1|D\{1,d−1,d}
(
txd−1|tx−{1,d−1,d}

)
= 1− kd−1|D\{1,d−1,d} exp

{
−t
(
gD\{1,d} − gD\{1,d−1,d}

)}
{1 + o(1)},

for some k1|D\{1,d−1,d}, kd−1|D\{1,d−1,d} > 0. Results from Joe (1996) show that

F 1|D\{1,d}
(
x1|x−{1,d}

)
=
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∂C1,d−1|D\{1,d−1,d}
{
F1|D\{1,d−1,d}(x1|x−{1,d−1,d}), Fd−1|D\{1,d−1,d}(xd−1|x−{1,d−1,d})

}
∂Fd−1|D\{1,d−1,d}(xd−1|x−{1,d−1,d})

,

with result (5.3.1) giving the form of the required derivative of an inverted extreme

value copula. Applying Lemma C.1.2, with b1 = gD\{d−1,d} − gD\{1,d−1,d} and b2 =

gD\{1,d} − gD\{1,d−1,d}, we see that for some k1|D\{1,d}, as t→∞,

F 1|D\{1,d}
(
tx1|tx−{1,d}

)
= 1− k1|D\{1,d}

· exp

(
− t
[
V {1,d−1|D\{1,d−1,d}}

{
1

gD\{d−1,d} − gD\{1,d−1,d}
,

1

gD\{1,d} − gD\{1,d−1,d}

}
− gD\{1,d} + gD\{1,d−1,d}

])
{1 + o(1)}

= 1− k1|D\{1,d} exp
{
−t
(
gD\{d} − gD\{1,d}

)}
{1 + o(1)} by assumption (C.1.3).

Result (C.1.5) can be proved by a similar argument. From results (C.1.4) and (C.1.5),

we see that F1|D\{1,d}
(
tx1|tx−{1,d}

)
and Fd|D\{1,d}

(
txd|tx−{1,d}

)
can be written in the

form required to apply Lemma C.1.1, with b1 = gD\{d} − gD\{1,d} and b2 = gD\{1} −

gD\{1,d}. Applying Lemma C.1.1, we have

− log c{1,d}|D\{1,d}
{
F1|D\{1,d}

(
tx1|tx−{1,d}

)
, Fd|D\{1,d}

(
txd|tx−{1,d}

)}
∼ t

{
2gD\{1,d} − gD\{d} − gD\{1} + V {1,d|D\{1,d}}

(
1

gD\{d} − gD\{1,d}
,

1

gD\{1} − gD\{1,d}

)}
= tg̃D(x),

and combining this with the gauge function result in (C.1.1), we have

g(x) = gD\{1,d}(x−{1,d})

+ V {1,d|D\{1,d}}
{

1

gD\{d}(x−{d})− gD\{1,d}(x−{1,d})
,

1

gD\{1}(x−{1})− gD\{1,d}(x−{1,d})

}
,

hence proving Theorem 3 by induction.

C.2 Proof of result (5.3.24)

Proposition 2. For any even value of n ≥ 4,2α
n/2∑
k=1

(2α − 1)2(k−1)

− 1−

2α
(n−2)/2∑
k=1

(2α − 1)2(k−1)+1

 = (2α − 1)n−1.
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Proof. We first show this is true for n = 4. We have{
2α

2∑
k=1

(2α − 1)2(k−1)

}
− 1−

{
2α

1∑
k=1

(2α − 1)2(k−1)+1

}

= 2α
{

(2α − 1)0 + (2α − 1)2 − (2α − 1)1
}
− 1

= 2α − 1 + 2α(2α − 1) {(2α − 1)− 1}

= (2α − 1) {−2α + 1 + 2α(2α − 1)}

= (2α − 1)3.

Now we assume the result holds for some n = 2m with m ∈ Z and m ≥ 2, and show

the result also holds for n = 2(m+ 1). We have{
2α

m+1∑
k=1

(2α − 1)2(k−1)

}
− 1−

{
2α

m∑
k=1

(2α − 1)2(k−1)+1

}

=

{
2α

m∑
k=1

(2α − 1)2(k−1)

}
− 1−

{
2α

m−1∑
k=1

(2α − 1)2(k−1)+1

}

+ 2α
{

(2α − 1)2m − (2α − 1)2m−1
}

= (2α − 1)2m−1 + 2α
{

(2α − 1)2m − (2α − 1)2m−1
}

= (2α − 1)2m−1 {1− 2α + 2α(2α − 1)}

= (2α − 1)2m+1.

Hence the result is proved by induction.

To prove result (5.3.24), we first show that it holds for d = 3 and d = 4. In the

former case, we have

ηD =

{
1 + 2α

1∑
k=1

(2α − 1)2(k−1)+1

}−1
= {1 + 2α(2α − 1)}−1 ,

as in equation (5.3.22), and in the latter case we have

ηD =

{
2α

2∑
k=1

(2α − 1)2(k−1)

}−1
=
{

2α + 2α(2α − 1)2
}−1

,

as in equation (5.3.23). We now assume the result holds for some d = n−1 and d = n

being odd and even, respectively, and show that it also holds for d = n + 1, n + 2.
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To make the notation clearer in the proof, we let ηD,(n) denote the value of ηD for

an n-dimensional D-vine copula with inverted logistic components with parameter α.

From equation (5.3.21), we have

ηD,(n+1) =
{
η−1D,(n−1) + 2α

(
η−1D,(n) − η

−1
D,(n−1)

)}−1
;

ηD,(n+2) =
{
η−1D,(n) + 2α

(
η−1D,(n+1) − η

−1
D,(n)

)}−1
.

Under the assumption that (5.3.24) holds for d = n− 1, n, we have

ηD,(n+1) =

[
1 + 2α

(n−2)/2∑
k=1

(2α − 1)2(k−1)+1

+ 2α

2α
n/2∑
k=1

(2α − 1)2(k−1) − 1− 2α
(n−2)/2∑
k=1

(2α − 1)2(k−1)+1


]−1

=

1 + 2α
(n−2)/2∑
k=1

(2α − 1)2(k−1)+1 + 2α(2α − 1)n−1


−1

by Proposition 2

=

1 + 2α
n/2∑
k=1

(2α − 1)2(k−1)+1


−1

.

Further, we see that

ηD,(n+2) =

[
2α

n/2∑
k=1

(2α − 1)2(k−1)

+ 2α

1 + 2α
n/2∑
k=1

(2α − 1)2(k−1)+1 − 2α
n/2∑
k=1

(2α − 1)2(k−1)


]−1

=

2α
n/2∑
k=1

(2α − 1)2(k−1) + 2α

1 + 2α(2α − 2)

n/2∑
k=1

(2α − 1)2(k−1)


−1

=

2α
n/2∑
k=1

(2α − 1)2(k−1) + 2α

1 + 2α(2α − 2)

n/2−1∑
k=0

{
(2α − 1)2

}k−1

=

2α
n/2∑
k=1

(2α − 1)2(k−1) + 2α
{

1 + 2α(2α − 2)
1− (2α − 1)n

1− (2α − 1)2

}−1

=

2α
n/2∑
k=1

(2α − 1)2(k−1) + 2α
{

1 + 2α(2α − 2)
1− (2α − 1)n

2α(2− 2α)

}−1
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=

2α
n/2∑
k=1

(2α − 1)2(k−1) + 2α (2α − 1)n


−1

=

2α
(n+2)/2∑
k=1

(2α − 1)2(k−1)


−1

.

Hence result (5.3.24) is proved by induction.

C.3 Properties of extreme value copulas

C.3.1 Some properties of the exponent measure

Proposition 3. If the exponent measure V has corresponding spectral density h(w)

placing no mass on {0}, and with h(w) ∼ c2w
s2 as w → 0, for some c2 ∈ R and

s2 > −1, then

V (r, 1) = r−1 +
2c2

(s2 + 1)(s2 + 2)
rs2+1{1 + o(1)};

−V2(r, 1) ∼ 2c2
(s2 + 1)

rs2+1, as r → 0.

Proof. By the definition of the exponent measure,

V (x1, x2) =
2

x1

∫ 1

0

wdH(w)− 2

x1

∫ x1
x1+x2

0

wh(w)dw +
2

x2

∫ x1
x1+x2

0

(1− w)h(w)dw.

For x1 → 0 and x2 = O(1), by Karamata’s theorem, we have

V (x1, x2) =
1

x1
− 2c2
x1(s2 + 2)

(
x1

x1 + x2

)s2+2

{1 + o(1)}

+
2c2

x2(s2 + 1)

(
x1

x1 + x2

)s2+1

{1 + o(1)}

=
1

x1
+ 2c2

(
x1

x1 + x2

)s2+1{
1

x2(s2 + 1)
− 1

(s2 + 2)(x1 + x2)

}
{1 + o(1)}

=
1

x1
+

2c2x
s2+1
1 x

−(s2+2)
2

(s2 + 1)(s2 + 2)
{1 + o(1)}. (C.3.1)

Hence, we have

V (r, 1) =
1

r
+

2c2
(s2 + 1)(s2 + 2)

rs2+1{1 + o(1)}, as r → 0.
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Moreover, differentiating expression (C.3.1) with respect to x2 gives

V2(x1, x2) = −2c2x
s2+1
1 x

−(s2+3)
2

(s2 + 1)
{1 + o(1)},

and we can therefore infer that

−V2(r, 1) =
2c2

(s2 + 1)
rs2+1{1 + o(1)}, as r → 0.

Proposition 4. If the exponent measure V has corresponding spectral density h(w)

placing no mass on {1}, and with h(w) ∼ c1(1−w)s1 as w → 1, for some c1 ∈ R and

s1 > −1, then

V (r, 1) = 1 +
2c1

(s1 + 1)(s1 + 2)
r−(s1+2){1 + o(1)};

−V2(r, 1) = 1− 2c1
(s1 + 2)

r−(s1+2){1 + o(1)}, as r →∞.

Proof. By the definition of the exponent measure,

V (x1, x2) =
2

x2

∫ 1

0

(1− w)dH(w)− 2

x2

∫ 1

x1
x1+x2

(1− w)h(w)dw +
2

x1

∫ 1

x1
x1+x2

wh(w)dw.

For x1 →∞ and x2 = o(x1), by Karamata’s theorem, we have

V (x1, x2) =
1

x2
− 2c1
x2(s1 + 2)

(
x2

x1 + x2

)s1+2

{1 + o(1)}

+
2c1

x1(s1 + 1)

(
x2

x1 + x2

)s1+1

{1 + o(1)}

=
1

x2
+ 2c1

(
x2

x1 + x2

)s1+1{
1

x1(s1 + 1)
− 1

(s1 + 2)(x1 + x2)

}
{1 + o(1)}

=
1

x2
+

2c1x
s1+1
2 x

−(s1+2)
1

(s1 + 1)(s1 + 2)
{1 + o(1)}. (C.3.2)

Hence, we have

V (r, 1) = 1 +
2c1

(s1 + 1)(s1 + 2)
r−(s1+2){1 + o(1)}, as r →∞.
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Moreover, differentiating expression (C.3.2) with respect to x2 gives

V2(x1, x2) = − 1

x22
+

2c1x
s1
2 x
−(s1+2)
1

(s1 + 2)
{1 + o(1)},

and we can therefore infer that

−V2(r, 1) = 1− 2c1
(s1 + 2)

r−(s1+2){1 + o(1)}, as r →∞.

C.3.2 Asymptotic behaviour of − log c{F1(tx1), F2(tx2)}

For V representing an exponent measure defined as in equation (2.3.2) of Chapter 2,

an extreme value copula has the form

C(u, v) = exp

{
−V

(
−1

log u
,
−1

log v

)}
.

Differentiating C(u, v) with respect to the second argument, we have

F (u | v) =
∂C(u, v)

∂u
= −1

v
(− log v)−2V2

(
−1

log u
,
−1

log v

)
exp

{
−V

(
−1

log u
,
−1

log v

)}
,

and differentiating C(u, v) with respect to both arguments yields the copula density

c(u, v) =
∂2C(u, v)

∂u∂v
=

1

uv
(− log u)−2(− log v)−2 exp

{
−V

(
−1

log u
,
−1

log v

)}
·
{
V1

(
−1

log u
,
−1

log v

)
V2

(
−1

log u
,
−1

log v

)
− V12

(
−1

log u
,
−1

log v

)}
,

with V1, V2 and V12 denoting the derivatives of the exponent measure with respect to

the first, second, and both components, respectively.

For this class of models, setting exponential margins with Fi(txi) = 1 − e−txi ,

i = 1, 2, we have

− log c{F1(tx1), F2(tx2)} = log
(
1− e−tx1

)
+ log

(
1− e−tx2

)
+ 2 log

{
− log

(
1− e−tx1

)}
+ 2 log

{
− log

(
1− e−tx2

)}
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+ V

{
−1

log (1− e−tx1)
,

−1

log (1− e−tx2)

}
− log

[
V1

{
−1

log (1− e−tx1)
,

−1

log (1− e−tx2)

}
V2

{
−1

log (1− e−tx1)
,

−1

log (1− e−tx2)

}

− V12
{

−1

log (1− e−tx1)
,

−1

log (1− e−tx2)

}]
We impose the assumption that the corresponding spectral density h(w) places

no mass on {0} or {1} and has regularly varying tails. In particular, that h(w) ∼

c1(1−w)s1 as w → 1 and h(w) ∼ c2w
s2 as w → 0, for some c1, c2 ∈ R and s1, s2 > −1.

By a result from Coles and Tawn (1991), we have

−V12(x1, x2) =
2

(x1 + x2)3
h

(
x1

x1 + x2

)
,

and can therefore deduce that

−V12(1, r) ∼ 2c1r
s1 , and − V12(r, 1) ∼ 2c2r

s2 , as r → 0. (C.3.3)

To investigate the behaviour of − log c{F1(tx1), F2(tx2)} as t→∞, we consider three

cases; x1 < x2, x1 = x2, and x1 > x2.

Case 1: x1 < x2

− log c{F1(tx1), F2(tx2)} = −e−tx1 − e−tx2

+ 2 log(e−tx1) + e−tx1 + 2 log(e−tx2) + e−tx2 +O(e−2tx1) +O(e−2tx2)

+ V

{
1

e−tx1 +O(e−2tx1)
,

1

e−tx2 +O(e−2tx2)

}
− log

[
V1

{
1

e−tx1 +O(e−2tx1)
,

1

e−tx2 +O(e−2tx2)

}
· V2

{
1

e−tx1 +O(e−2tx1)
,

1

e−tx2 +O(e−2tx2)

}
− V12

{
1

e−tx1 +O(e−2tx1)
,

1

e−tx2 +O(e−2tx2)

}]
=− 2t(x1 + x2) +O(e−2tx1) +O(e−2tx2) + V

{
etx1

1 +O(e−tx1)
,

etx2

1 +O(e−tx2)

}
− log

[
e−4tx2V1

{
et(x1−x2)

1 +O(e−tx1)
,

1

1 +O(e−tx2)

}
V2

{
et(x1−x2)

1 +O(e−tx1)
,

1

1 +O(e−tx2)

}
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− e−3tx2V12
{

et(x1−x2)

1 +O(e−tx1)
,

1

1 +O(e−tx2)

}]
∼− 2t(x1 + x2)− log

(
e−3tx2

)
− log

{
ets2(x1−x2)

}
by result (C.3.3)

=t {(1 + s2)x2 − (2 + s2)x1}

Case 2: x1 = x2

− log c{F1(tx1), F2(tx2)} = 2 log(1− e−tx1) + 4 log{− log(1− e−tx1)}

− log(1− e−tx1)V (1, 1)

− log
[ {
− log(1− e−tx1)

}4
V1(1, 1)V2(1, 1)

−
{
− log(1− e−tx1)

}3
V12(1, 1)

]
= −4tx1 − log

{
−V12(1, 1)e−3tx1

}
+O

(
e−tx1

)
= −tx1 +O

(
e−tx1

)
Case 3: x1 > x2

− log c{F1(tx1), F2(tx2)} = −e−tx1 − e−tx2

+ 2 log(e−tx1) + e−tx1 + 2 log(e−tx2) + e−tx2 +O(e−2tx1) +O(e−2tx2)

+ V

{
1

e−tx1 +O(e−2tx1)
,

1

e−tx2 +O(e−2tx2)

}
− log

[
V1

{
1

e−tx1 +O(e−2tx1)
,

1

e−tx2 +O(e−2tx2)

}
· V2

{
1

e−tx1 +O(e−2tx1)
,

1

e−tx2 +O(e−2tx2)

}
− V12

{
1

e−tx1 +O(e−2tx1)
,

1

e−tx2 +O(e−2tx2)

}]
=− 2t(x1 + x2) +O(e−2tx1) +O(e−2tx2) + V

{
etx1

1 +O(e−tx1)
,

etx2

1 +O(e−tx2)

}
− log

[
e−4tx1V1

{
1

1 +O(e−tx1)
,

et(x2−x1)

1 +O(e−tx2)

}
V2

{
1

1 +O(e−tx1)
,

et(x2−x1)

1 +O(e−tx2)

}
− e−3tx1V12

{
1

1 +O(e−tx1)
,

et(x2−x1)

1 +O(e−tx2)

}]
∼− 2t(x1 + x2)− log

(
e−3tx1

)
− log

{
ets1(x2−x1)

}
by result (C.3.3)
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=t {(1 + s1)x1 − (2 + s1)x2} .

These three cases can be combined into a single expression, so that as t → ∞, we

have

− log c{F1(tx1), F2(tx2)} ∼ t
{ (

1 + s11{x1≥x2} + s21{x1<x2}
)

max(x1, x2)

−
(
2 + s11{x1≥x2} + s21{x1<x2}

)
min(x1, x2)

}
.

C.3.3 Asymptotic behaviour of F1|2(tx1 | tx2)

For a bivariate extreme value copula, the conditional distribution function has the

form

F1|2(tx1 | tx2) =− 1

1− e−tx2
{− log(1− e−tx2)}−2V2

{
−1

log(1− e−tx1)
,

−1

log(1− e−tx2)

}
exp

[
−V

{
−1

log(1− e−tx1)
,

−1

log(1− e−tx2)

}]
.

To investigate the behaviour of F1|2(tx1 | tx2) as t → ∞, we again consider three

cases.

Case 1: x1 < x2

F1|2(tx1 | tx2) =− 1

1− e−tx2
V2

{
log(1− e−tx2)
log(1− e−tx1)

, 1

}
exp

[
log
(
1− e−tx2

)
V

{
log(1− e−tx2)
log(1− e−tx1)

, 1

}]
= −

[
1 + e−tx2{1 + o(1)}

]
V2 [exp{t(x1 − x2)} {1 + o(1)} , 1]

exp
[
log
(
1− e−tx2

)
V {exp{t(x1 − x2)}{1 + o(1)}, 1}

]
=
[
1 + e−tx2{1 + o(1)}

] [ 2c2
(s2 + 1)

exp {t(x1 − x2)(s2 + 1)} {1 + o(1)}
]

exp
[
log
(
1− e−tx2

)
{exp{−t(x1 − x2)}{1 + o(1)}

]
(by Proposition 3)

=
[
1 + e−tx2{1 + o(1)}

] [ 2c2
(s2 + 1)

exp {t(x1 − x2)(s2 + 1)} {1 + o(1)}
]
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[
1− e−tx1{1 + o(1)}

]
=

2c2
(s2 + 1)

exp {t(x1 − x2)(s2 + 1)} {1 + o(1)}.

Case 2: x1 = x2

F1|2(tx1 | tx2) =− 1

1− e−tx1
V2(1, 1) exp

{
log(1− e−tx1)V (1, 1)

}
=− V2(1, 1)(1− e−tx1)V (1,1)−1

=− V2(1, 1){1 + o(1)}.

Case 3: x1 > x2

F1|2(tx1 | tx2) =− 1

1− e−tx2
V2

{
log(1− e−tx2)
log(1− e−tx1)

, 1

}
exp

[
log
(
1− e−tx2

)
V

{
log(1− e−tx2)
log(1− e−tx1)

, 1

}]
= − 1

1− e−tx2
V2 [exp{t(x1 − x2)} {1 + o(1)} , 1]

exp
[
log
(
1− e−tx2

)
V {exp{t(x1 − x2)}{1 + o(1)}, 1}

]
=

1

1− e−tx2

[
1− 2c1

(s1 + 2)
exp {−t(x1 − x2)(s1 + 2)} {1 + o(1)}

]
exp

(
log
(
1− e−tx2

) [
1 +

2c1
(s1 + 1)(s1 + 2)

exp{−t(s1 + 2)(x1 − x2)}{1 + o(1)}
])

(by Proposition 4)

=
1− e−tx2
1− e−tx2

[
1− 2c1

(s1 + 2)
exp {−t(x1 − x2)(s1 + 2)} {1 + o(1)}

]
[
1 +

2c1
(s1 + 1)(s1 + 2)

exp{−t(s1 + 2)(x1 − x2)− tx2}{1 + o(1)}
]

= 1− 2c1
(s1 + 2)

exp {−t(x1 − x2)(s1 + 2)} {1 + o(1)}.
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C.4 − log c13|2(u, v) for (inverted) extreme value cop-

ulas

In Section 5.4, we investigate cases where the copula density in tree T2 belongs to

either the extreme value or inverted extreme value families of distributions. Here, we

denote these by cEV13|2(u, v) and cIEV13|2 (u, v), respectively. In Section 5.4.2, we find that

we should focus on the conditional distributions F1|2(tx1 | tx2) and F3|2(tx3 | tx2)

having three different asymptotic forms. In this section, we therefore consider the

behaviour of − log cEV13|2(u, v) and − log cIEV13|2 (u, v) for u and v of the form

a{1 + o(1)} ; b1 exp(−b2t){1 + o(1)} ; 1− c1 exp(−c2t){1 + o(1)},

for b2, c2 > 0, using the results that

− log cEV13|2(u, v) = log u+ log v + 2 log (− log u) + 2 log (− log v) + V {13|2}
(
−1

log u
,
−1

log v

)
− log

{
V
{13|2}
1

(
−1

log u
,
−1

log v

)
V
{13|2}
2

(
−1

log u
,
−1

log v

)
− V {13|2}12

(
−1

log u
,
−1

log v

)}
,

and

− log cIEV13|2 (u, v) = log(1− u) + log(1− v) + 2 log {− log(1− u)}+ 2 log {− log(1− v)}

+ V {13|2}
{

−1

log(1− u)
,

−1

log(1− v)

}
− log

[
V
{13|2}
1

{
−1

log(1− u)
,

−1

log(1− v)

}
V
{13|2}
2

{
−1

log(1− u)
,

−1

log(1− v)

}
− V {13|2}12

{
−1

log(1− u)
,

−1

log(1− v)

}]
.

We also have the assumption that the spectral density h{13|2}(w) corresponding to the

copula in tree T2 places no mass on {0} or {1}, and has h{13|2}(w) ∼ c
{13|2}
1 (1−w)s

{13|2}
1

as w → 1, and h{13|2}(w) ∼ c
{13|2}
2 ws

{13|2}
2 as w → 0, for some c

{13|2}
1 , c

{13|2}
2 ∈ R and

s
{13|2}
1 , s

{13|2}
2 > −1. In the following nine cases, we provide results for the asymptotic

behaviour of − log cEV13|2(u, v) and − log cIEV13|2 (u, v), as t → ∞, for u and v taking

different combinations of the forms stated above.
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Case 1: u = au{1 + o(1)}, v = av{1 + o(1)}

− log cEV13|2(u, v) = o(t)

− log cIEV13|2 (u, v) = o(t)

Case 2: u = au{1 + o(1)}, v = bv,1 exp(−bv,2t){1 + o(1)}

− log cEV13|2(u, v) = o(t)

− log cIEV13|2 (u, v) ∼ tbv,2

(
1 + s

{13|2}
2

)
Case 3: u = au{1 + o(1)}, v = 1− cv,1 exp(−cv,2t){1 + o(1)}

− log cEV13|2(u, v) ∼ tcv,2

(
1 + s

{13|2}
2

)

− log cIEV13|2 (u, v) = o(t)

Case 4: u = bu,1 exp(−bu,2t){1 + o(1)}, v = av{1 + o(1)}

− log cEV13|2(u, v) = o(t)

− log cIEV13|2 (u, v) ∼ tbu,2

(
1 + s

{13|2}
1

)
Case 5: u = bu,1 exp(−bu,2t){1 + o(1)}, v = bv,1 exp(−bv,2t){1 + o(1)}

− log cEV13|2(u, v) ∼ t
{
−bu,2 − bv,2 + V {13|2} (1/bu,2, 1/bv,2)

}

− log cIEV13|2 (u, v) ∼t
{(

1 + s
{13|2}
1 1{bu,2≥bv,2} + s

{13|2}
2 1{bu,2<bv,2}

)
max(bu,2, bv,2)

−
(

2 + s
{13|2}
1 1{bu,2≥bv,2} + s

{13|2}
2 1{bu,2<bv,2}

)
min(bu,2, bv,2)

}
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Case 6: u = bu,1 exp(−bu,2t){1 + o(1)}, v = 1− cv,1 exp(−cv,2t){1 + o(1)}

− log cEV13|2(u, v) ∼ tcv,2

(
1 + s

{13|2}
2

)

− log cIEV13|2 (u, v) ∼ tbu,2

(
1 + s

{13|2}
1

)
Case 7: u = 1− cu,1 exp(−cu,2t){1 + o(1)}, v = av{1 + o(1)}

− log cEV13|2(u, v) ∼ tcu,2

(
1 + s

{13|2}
1

)

− log cIEV13|2 (u, v) = o(t)

Case 8: u = 1− cu,1 exp(−cu,2t){1 + o(1)}, v = bv,1 exp(−bv,2t){1 + o(1)}

− log cEV13|2(u, v) ∼ tcu,2

(
1 + s

{13|2}
1

)

− log cIEV13|2 (u, v) ∼ tbv,2

(
1 + s

{13|2}
2

)
Case 9: u = 1− cu,1 exp(−cu,2t){1 + o(1)}, v = 1− cv,1 exp(−cv,2t){1 + o(1)}

− log cEV13|2(u, v) ∼t
{(

1 + s
{13|2}
1 1{cu,2≥cv,2} + s

{13|2}
2 1{cu,2<cv,2}

)
max(cu,2, cv,2)

−
(

2 + s
{13|2}
1 1{cu,2≥cv,2} + s

{13|2}
2 1{cu,2<cv,2}

)
min(cu,2, cv,2)

}

− log cIEV13|2 (u, v) ∼ t
{
−cu,2 − cv,2 + V {13|2} (1/cu,2, 1/cv,2)

}
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