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ABSTRACT. Following the work of Conrey, Rubinstein and Snaith [11] and Forrester and Witte [16] we ex-
amine a mixed moment of the characteristic polynomial and its derivative for matrices from the unitary group
U(N) (also known as the CUE) and relate the moment to the solution of a Painlevé differential equation.
We also calculate a simple form for the asymptotic behaviour of moments of logarithmic derivatives of these
characteristic polynomials evaluated near the unit circle.

1. INTRODUCTION

Moments of characteristic polynomials and their derivatives have been investigated in several recent pa-
pers on random matrix theory. Part of the interest in these calculations is the similarity of these moments
with the corresponding averages of number theoretical functions: the Riemann zeta function and other L-
functions [1, 4, 2, 11, 12, 14, 15, 19, 27, 28, 29]. It was shown by Forrester and Witte [16] that the leading
order coefficient for moments of derivatives of unitary characteristic polynomials, derived by Conrey, Ru-
binstein and Snaith [11] is related to the solution of a version of the Painlevé III′ differential equation. Using
the techniques of [11] we determined a similar relation, Theorem 1.1, for mixed moments featuring both the
characteristic polynomial and its derivative. This theorem is proved in Section 2. Subsequently this result
also featured in work by the group [2] (see their equation 5-79), although they use different methods, allow-
ing them to extend the result to finite N . In Section 3 we turn to the moments of the logarithmic derivative
of the characteristic polynomial. An exact formula for these moments averaged over U(N) is presented in
[12], but the asymptotics when N is large and the characteristic polynomials are evaluated close to the unit
circle are not easy to extract from that result, whereas adapting the method of Section 2 allows us to work
out the leading order term. In Section 6 we compare this with the exact result in a couple of simple cases.
In Section 7 we put the moment determinant appearing during the asymptotic analysis in the framework of
Riemann-Hilbert problems.

Our definition of the characteristic polynomial ΛX(s) of X ∈ U(N) is

(1) ΛX(s) = det(I − sX∗) =
N

∏
j=1

(1 − se−iθj),

with the eigenvalues of X denoted by eiθ1 , . . . , eiθN , and X∗ being the conjugate transpose.
A related quantity is

(2) ZX(s) = e−πiN/2ei∑
N
n=1 θn/2s−N/2ΛX(s).
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This definition makes ZX(s) real on the unit circle. Also, ZX(s) satisfies the following functional equation,

(3) ZX(s) = (−1)NZX∗(1/s).
We first summarise some related work on mixed moments involving both the characteristic polynomial

and its derivative. We start with a result from the thesis of Chris Hughes [18]. We note that he uses
slightly different notation to us: his ZX(θ) is the same as our ΛX(eiθ) and his VX(θ) is our ZX(eiθ). For
consistency, we will translate his results into our notation. Hughes considers the quantity

F̃N(h, k) ∶= ∫
U(N)

∣VX(0)∣2k−2h∣V ′
X(0)∣2hdXN

= ∫
U(N)

∣ZX(1)∣2k−2h∣Z ′
X(1)∣2hdXN ,(4)

where the average is over Haar measure on the unitary group and in the final line (and for the remainder of
the paper) we are using the definition of ZX given at (2).

Hughes shows that

(5) lim
N→∞

1

Nk2+2h
F̃N(h, k) = F̃ (h, k),

where F̃ (h, k) is given as an expression that is analytic in k for Rk > h − 1/2, but the method forces h to
be an integer. By computing some specific examples, Hughes suggests that for a given integer h, F̃ (h, k)
has the form of a rational function of k multiplied by a ratio of Barnes G-functions. Dehaye [14] proved
this form for F̃ (h, k), and gave further information about the structure of the rational function of k, but
still always for integer h. Winn [29] has given the only example we know of where the exponent on the
derivative is not an even integer, by writing down an explicit formula F̃N(h, k) when h = (2m − 1)/2 for
m ∈ N.

The asymptotics of a similar mixed moment, with just a first power on the derivative of the characteristic
polynomial, but for non-integer powers on the characteristic polynomial itself, has been studied in the thesis
of Ian Cooper [13] when the average is over the classical compact groups SO(2N) and USp(2N).

Note, there is interest in allowing the power on the derivatives of the characteristic polynomial to be
non-integer, but this appears to be a difficult problem.

In this paper we will prove the following theorems. The first theorem expresses the mixed moments of Z
and Z ′ in terms of derivatives of a determinant involving the I-Bessel function:

Theorem 1.1. For K,M integers with 2K ≥ 2M ≥ 0, we have

∫
U(N)

∣Z ′
X(1)∣2K−2M ∣ZX(1)∣2MdXN = (−1)K(K−1)/2+K−M

×NK2+2K−2M ( d

dx
)

2K−2M

(e−x/2x−K
2/2 det

K×K
(Ii+j−1(2

√
x))) (1 +O( 1

N
))

RRRRRRRRRRRx=0

.(6)

This can further be written in terms of a solution to a Painlevé equation, as expressed in (38).

Our second theorem gives the leading asymptotics of the moments of the logarithmic derivative of Λ at a
point approaching the unit circle:

Theorem 1.2. Let Rα > 0 and K ∈ N,

(7) ∫
U(N)

∣
Λ′
X

ΛX
(e−α)∣

2K

dXN = (2K − 2

K − 1
) N2K

(2a)2K−1
(1 +O(a)),
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where α = a/N and a = o(1) as N →∞ (so that α depends on N ).

These two theorems lead us immediately to conjectures about mixed moments for the Riemann zeta-
function. Recall that the Riemann zeta-function

(8) ζ(s) =
∞

∑
n=1

1

ns
(s = σ + it, σ > 1)

satisfies the functional equation

(9) ξ(s) = 1

2
s(s − 1)π−

s
2 Γ(s

2
) ζ(s) = ξ(1 − s)

where ξ(s) is entire. Therefore Hardy’s function

(10) Z(t) =
π−

it
2 Γ (1

4 +
it
2
)

∣Γ (1
4 +

it
2
) ∣

ζ(1/2 + it)

is real for real t and satisfies ∣Z(t)∣ = ∣ζ(1/2+it)∣. Our Theorem 1.1 involvesZX which is the random matrix
analogue of Hardy’s Z(t) function and Theorem 1.2 involves ΛX which is the random matrix analogue of
ζ. The conjecture of Keating and Snaith [24] about moments of the Riemann zeta-function may be written
as

(11)
1

T
∫

T

0
∣Z(t)∣2K dt ∼

K−1

∏
j=0

j!

(j +K)!
aK(logT )K

2

for a certain arithmetic constant aK . After the work of Hughes [18] and Conrey, Rubinstein and Snaith
[11] we expect that the 2Kth moment of ∣Z ′(t)∣ involves the same arithmetic constant aK multiplied by a
(rational number) geometric factor and (logT )K2+2K . These ideas translate to a conjecture for the mixed
moments we are considering here. We can express our conjecture as follows.

Conjecture 1. For non-negative integers K and M with M ≤K we conjecture that as T →∞,

∫
T

0 ∣Z′Z (t)∣
2K−2M

∣Z(t)∣2K dt

∫
T

0 ∣Z(t)∣2K dt
∼ (i logT

d

dx
)

2K−2M

exp(x
2
− ∫

4x

0

ds

s
(σIII′(s) +K2))

RRRRRRRRRRRx=0

where σIII′ is defined in (36).

In this formulation our conjecture appears as an average of ∣Z ′/Z ∣2K−2M measured against ∣Z ∣2K . Notice
that the arithmetic factors cancel out as well as the ratio of the product of factorials.

The analogue of Theorem 1.2 is best expressed in terms of moments of the logarithmic derivative of ζ.
In the work of Conrey and Snaith [12] on the n-correlation of the zeros of the Riemann zeta-function the
authors use the “recipe” to find a conjectural formula for the average over t of the product of any number of
factors of the form ζ′

ζ (1/2 ± it +α) with different values of α . In this work we are focused on the behavior
of the absolute value of such a product when all of the α are the same and α → 0+.

Conjecture 2. For any positive integer K and a > 0 we conjecture that

lim
T→∞

1

T (logT )2K ∫
T

0
∣ζ

′

ζ
(1

2
+ a

logT
+ it)∣

2K

dt = c(a)

where
lim
a→0+

c(a)(2a)2K−1 = (2K − 2

K − 1
).
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One starting point for averages of characteristic polynomials and derivatives are the ratios formulae of
Conrey, Farmer and Zirnbauer [8, 9]. There are two useful representations of the ratios theorems. The first
is as a multiple integral:

Theorem 1.3. (Conrey, Farmer, Zirnbauer [9]) Suppose N ≥ max{Q−K,R −L} and Rγq,Rδr > 0. Then

∫
U(N)

∏Kj=1 ΛX(e−αj)∏K+L
l=K+1 ΛX∗(eαl)

∏Qq=1 ΛX(e−γq)∏Rr=1 ΛX∗(e−δr)
dXN

= eN/2(−∑
K
k=1 αk+∑

L
l=1 αK+l) (−1)(K+L)(K+L−1)/2

K!L!(2πi)K+L

× ∮ ⋯∮ eN/2(∑
K
k=1wk−∑

L
l=1wK+l)

∏Kj=1∏Ll=1 z(wj −wK+l)∏Qq=1∏
R
r=1 z(γq + δr)

∏Kj=1∏Rr=1 z(wj + δr)∏Ll=1∏
Q
q=1 z(−wK+l + δq)

×
∆(w1, . . . ,wK+L)2∏K+L

j=1 dwj

∏K+L
j=1 ∏K+L

k=1 (wk − αj)
,

where the w contours enclose the αs.

Here and in the rest of the paper,

(12) ∆(w1, . . . ,wn) = ∏
1≤j<k≤n

(wk −wj) = det (wj−1
i )

i,j=1,...,n

is a Vandermonde determinant, and

(13) z(x) ∶= 1

1 − e−x
.

The quantity in Theorem 1.3 can also be written as a permutation sum:

Theorem 1.4. (Conrey, Farmer, Zirnbauer [9], see also [10]) Suppose N ≥ max{Q − K,R − L} and
Rγq,Rδr > 0. We have

∫
U(N)

∏Kk=1 ΛX(e−αk)∏K+L
l=K+1 ΛX∗(eαl)

∏Qq=1 ΛX(e−γq)∏Rr=1 ΛX∗(e−δr)
dXN

= ∑
σ∈ΞK,L

eN ∑
K
k=1(ασ(k)−αk)

∏Kk=1∏
K+L
l=K+1 z(ασ(k) − ασ(l))∏

Q
q=1∏

R
r=1 z(γq + δr)

∏Rr=1∏Kk=1 z(ασ(k) + δr)∏
Q
q=1∏

K+L
l=K+1 z(γq − ασ(l))

.(14)

Above, ΞK,L denotes the set of permutations σ of {1,2, . . . ,K +L} such that

(15) 1 ≤ σ(1) < ⋯ < σ(K) ≤K +L and 1 ≤ σ(K + 1) < ⋯ < σ(K +L) ≤K +L.

We are interested in the moments of logarithmic derivatives of the characteristic polynomial, which can
be derived by differentiation of the ratios theorem in the form of Theorem 1.4. In the current paper we
will focus on the leading order contribution to averages of the logarithmic derivatives when N , the matrix
size, is large and the characteristic polynomial is evaluated close to the unit circle. The exact formula
for these moments of the logarithmic derivative is stated below, but it is complicated to work with and
extracting the leading order behaviour is difficult (see Section 6). Note that the theorem below uses set
rather than permutation notation for the arguments of the characteristic polynomials. The result is merely a
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differentiation of Theorem 1.4 but given the difficulty of keeping track of all the terms, the discussion of the
proof in [12] may be useful.

Theorem 1.5. (Conrey and Snaith [12]) If Rαj > 0 and Rβj > 0 for αj ∈ A and βj ∈ B, then J(A;B) =
J∗(A;B) where

J(A;B) ∶= ∫
U(N)

∏
α∈A

(−e−α)
Λ′
X

ΛX
(e−α) ∏

β∈B

(−e−β)
Λ′
X∗

ΛX∗
(e−β) dXN ,(16)

J∗(A;B) ∶=

∑
S⊂A,T⊂B
∣S∣=∣T ∣

e−N(∑α̂∈S α̂+∑β̂∈T β̂)
Z(S,T )Z(S−, T −)
Z†(S,S−)Z†(T,T −) ∑

(A−S)+(B−T )
=U1+⋅⋅⋅+UR
∣Ur ∣≤2

R

∏
r=1

HS,T (Ur),(17)

and

(18) HS,T (W ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑α̂∈S z′
z (α − α̂) −∑β̂∈T

z′
z (α + β̂) if W = {α} ⊂ A − S

∑β̂∈T
z′
z (β − β̂) −∑α̂∈S

z′
z (β + α̂) if W = {β} ⊂ B − T

( z′z )
′

(α + β) if W = {α,β} with α∈A−S,
β∈B−T

0 otherwise.

Here z(x) = (1 − e−x)−1, S− = {−s ∶ s ∈ S} (similarly for T−) and Z(A,B) = ∏α∈A
β∈B

z(α + β), with the

dagger on Z†(S,S−) imposing the additional restriction that a factor z(x) is omitted if its argument is zero.

2. PROOF OF THEOREM 1.1

There are various ways to write moments of the function ZX(s), defined in (2). For example, there is an
expression as a permutation sum:

∫
U(N)

K

∏
j=1

ZX(e−αj)ZX∗(eαj+K)dXN(19)

= (−1)NKe−
N
2 ∑

2K
j=1 αj ∑

σ∈Ξ

eN ∑
K
j=1 ασ(j) ∏

1≤i≤K
1≤j≤K

z(ασ(j) − ασ(K+j)),

where

(20) z(x) = 1

1 − e−x
= 1

x
+O(1), for small x,

and Ξ denotes the subset of permutations σ ∈ S2K of {1,2, . . . ,2K} for which

(21) σ(1) < σ(2) < ⋯ < σ(K) and σ(K + 1) < σ(K + 2) < ⋯ < σ(2K).
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Equation (19) is just a simple case of Theorem 1.4, with a different prefactor because we are using ZX
instead of ΛX . This can equivalently be written as

∫
U(N)

K

∏
j=1

ZX(e−αj)ZX∗(eαj+K)dXN = (−1)NK+K(K−1)/2 e
−
N
2 ∑

2K
j=1 αj

K!(2πi)K
(22)

×∮ ⋯∮ eN ∑
K
i=1wi ∏

1≤i≤K
1≤j≤2K

z(wi − αj)∆(w1, . . . ,wK)2dw1⋯dwK ,

where the contours enclose the α’s, because an evaluation of residues in this integral yields the sum (19).
(For more explanation of these expressions, see Section 3 of [11], which draws on Section 2 of [5].) Equation
(22) is similar in spirit to Theorem 1.3 except that in this simpler case the average can be written as aK-fold
integral rather than a K +L dimensional integral as in the theorem.

We are interested in the average

(23) ∫
U(N)

∣Z ′
X(1)∣2K−2M ∣ZX(1)∣2MdXN .

We set M and K to be integers, with 2M ≥ 0 and 2K ≥ 2M , and follow closely the method of Conrey,
Rubinstein, and Snaith [11]. We take 2K − 2M derivatives of (22) by applying

(24)
K−M

∏
j=1

d

dαj

d

dαj+K
,

and note that

(25)
d

dα
ZX(e−α)∣

α=0
= −e−αZ ′

X(e−α)∣
α=0

= −Z ′
X(1)

and

(26)
d

dα
ZX∗(eα)∣

α=0
= (−1)NZ ′

X(1).

Combining these we have

∫
U(N)

∣Z ′
X(1)∣2K−2M ∣ZX(1)∣2MdXN = (−1)K(K+1)/2−M

K−M

∏
j=1

d

dαj

d

dαj+K

e−
N
2 ∑

2K
j=1 αj

K!(2πi)K

×∮ ⋯∮ eN ∑
k
i=1wi ∏

1≤i≤K
1≤j≤2K

z(wi − αj)∆2(w1, . . . ,wK)dw1 . . . dwK ∣
α1=⋯=α2K=0

.(27)

Let αi = ai/N and wi → wi/N , then with the use of (20) we find

∫
U(N)

∣Z ′
X(1)∣2K−2M ∣ZX(1)∣2MdXN = (−1)K(K+1)/2−MN2K−2MNK2

K−M

∏
j=1

d

daj

d

daj+K

e−
1
2 ∑

2K
j=1 aj

K!(2πi)K

×∮ ⋯∮ e∑
k
i=1wi ∆2(w1, . . . ,wK)

∏ 1<i<K
1≤j≤2K

(wi − aj)
(1 +O( 1

N
))dw1 . . . dwK ∣

a1=⋯=a2K=0
,(28)

where the contours enclose the a’s.
The aim now is to separate these integrals. We do this by using a series of results from [11]. To start,
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(29)
d

da

e−
a
2

∏1≤i≤k(wi − a)

RRRRRRRRRRRRa=0

= 1

∏ki=1wi

⎛
⎝

k

∑
j=1

1

wj
− 1

2

⎞
⎠
.

Next we allow ∆ ( d
dL

) to have the meaning

(30) ∆( d

dL
)
K

∏
i=1

f(Li) = ∏
1≤i<j≤K

( d

dLj
− d

dLi
)
K

∏
i=1

f(Li).

Below, we will use Lemma 5 of [11]:

(31) ∆2 ( d

dL
)(

K

∏
i=1

f(Li)) ∣
Li=1

=K! det
K×K

(f (i+j−2)(1)) ,

for any sufficiently differentiable function f .
Borrowing a technique from [11], we replace the factor exp(∑wi) appearing in (28) by exp(∑Liwi),

and then pull out the Vandermonde determinant squared from the integrand as a differential operator. Dif-
ferentiating under the integral sign and substituting Li = 1 then recovers the original integral. The advantage
in doing so is that it allows us to separate the resulting multidimensional integral.

Thus, we have

∫
U(N)

∣Z ′
X(1)∣2K−2M ∣ZX(1)∣2MdXN = (−1)K(K+1)/2−MNK2+2K−2M ∆2 ( d

dL
)

K!(2πi)K
(32)

×∮ ⋯∮
e∑

K
i=1 Liwi (∑Kj=1

1
wj

− 1
2)

2K−2M

∏Ki=1w
2K
i

(1 +O( 1
N
))dw1⋯dwK ∣

Li=1

= (−1)K(K+1)/2−MNK2+2K−2M ∆2 ( d
dL

)
K!

×( d

dx
)

2K−2M

e−
x
2

K

∏
j=1

( 1

2πi
∮

eLjw+x/w

w2K
dw)(1 +O( 1

N
))∣

Lj=1,x=0
.

In the last line we have again introduced an extra parameter x and introduced the differential operator in the
x variable so as to simplify the (∑1/wj − 1/2)2K−2M appearing in the integrand.

Still following [11] we have, from equation (2.11) of that paper,

(33)
1

2πi
∫
∣z∣=1

eLz+t/z

z2k
dz = L

2k−1I2k−1(2
√
Lt)

(Lt)k−1/2
=∶ ft(L),

where I is the I-Bessel function. We now use (31) and write

∫
U(N)

∣Z ′
X(1)∣2K−2M ∣ZX(1)∣2MdXN = (−1)K(K−1)/2+K−MNK2+2K−2M(34)

×( d

dx
)

2K−2M

e−
x
2 det
K×K

(f (i+j−2)
x (1)) (1 +O( 1

N
))∣

x=0
.

Using (4.15) of [11], and performing some manipulations on the determinant, we end up with equation (6)
of Theorem 1.1.
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Finally, from [16] we have that

exp(−∫
4x

0

ds

s
(σIII′(s) + k2)) = (−1)k(k−1)/2

×
k−1

∏
j=0

(j + k)!
j!

x−k
2/2e−x det

k×k
(Ii+j−1(2

√
x)) ,(35)

where σIII′(s) is the solution of the Painlevé equation

(36) (s σ′′III′)2 + σ′III′(4σ′III′ − 1)(σIII′ − s σ′III′) −
k2

16
= 0,

satisfying the boundary condition

(37) σIII′(s) ∼
s→0

−k2 + s
8
+O(s2),

for k ∈ N. This means that the average we are looking at is related to the solution of the Painlevé equation
in the following manner

∫
U(N)

∣Z ′
X(1)∣2K−2M ∣ZX(1)∣2MdXN = (−1)K−MNK2+2K−2M

×
K−1

∏
j=0

j!

(j +K)!
( d

dx
)

2K−2M

ex/2 exp(−∫
4x

0

ds

s
(σIII′(s) +K2)) (1 +O( 1

N
))

RRRRRRRRRRRx=0

.(38)

This reduces to

(39) NK2
K−1

∏
j=0

j!

(j +K)!

if M =K, which is the familiar result for the basic moment.

3. PROOF OF THEOREM 1.2

We first note that

(40)
d

dα
ΛX(e−α) = −Λ′

X(e−α)e−α,

and

(41)
d

dα
ΛX∗(eα) = Λ′

X∗(eα)eα.
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We thus find, on setting L = Q = R = K in Theorem 1.3, then differentiating with respect to all the α’s,
and subsequently setting α1 = ⋅ ⋅ ⋅ = αK = α, αK+1 = ⋅ ⋅ ⋅ = α2K = −α, and all γ, δ = α, with Rα > 0,

(−1)K ∫
U(N)

(
Λ′
X(e−α)

ΛX(e−α)
Λ′
X∗(e−α)

ΛX∗(e−α)
)
K

e−2αKdXN

=
2K

∏
j=1

d

dαj
(eN/2(−∑

K
j=1 αj+∑

2K
j=K+1 αj) (−1)K(2K−1)

K!2(2πi)2K

× ∮ ⋯∮ eN/2(∑
K
j=1wj−∑

K
l=1wK+l) ∏

K
j=1∏Kl=1 z(wj −wl+K)∏Kq=1∏Kr=1 z(γq + δr)

∏Kj=1∏Kr=1 z(wj + δr)∏Kl=1∏
K
q=1 z(−wK+l + δq)

× ∆(w1, . . . ,w2K)2

∏2K
j=1∏2K

k=1(wk − αj)
dw1 . . . dw2K

⎞
⎠ α1=⋅⋅⋅=αK=α
αK+1=⋅⋅⋅=α2K=−α

all γ,δ=α

.(42)

Note that

d

dα

e±Nα/2

∏j(wj − α)
= e±Nα/2

∏j(wj − α)
⎛
⎝∑j

1

(wj − α)
± N

2

⎞
⎠
,

so we perform the derivative and then the substitutions of the αj , γj and δj to obtain

(−1)K ∫
U(N)

(
Λ′
X(e−α)

ΛX(e−α)
Λ′
X∗(e−α)

ΛX∗(e−α)
)
K

e−2αKdXN

= (−1)K

K!2(2πi)2K
e−NKαz(2α)K

2

× ∮ ⋯∮ eN/2(∑
K
j=1wj−∑

K
l=1wK+l) ∏Kj=1∏Kl=1 z(wj −wK+l)

∏Kj=1 z(wj + α)K∏Kl=1 z(−wK+l + α)K

×
∆(w1, . . . ,w2K)2(∑2K

j=1
1

wj−α
− N

2
)K(∑2K

j=1
1

wj+α
+ N

2
)K

∏2K
j=1(wj − α)K(wj + α)K

dw1 . . . dw2K .(43)

To obtain the leading order asymptotics in N , let α = a/N , with a = o(1) as N → ∞, and substitute
wj = auj/N . For large N , we can now simplify the integrand by replacing each occurrence of the function
z(x) by 1/x. The double product involving z(wj −wl+K) thus cancels a portion of the ∆(w1, . . . ,w2K)2,
up to a factor of (−1)K2

, and so we let

(44) q(w1, . . . ,w2K) = ∆(w1, . . . ,w2K)∆(w1, . . . ,wK)∆(wK+1, . . . ,w2K).

As in the previous section, we can introduce extra variables Lj and pull out the polynomial q from the
integrand as a differential operator. Similarly, the factors containing z(x) in the denominator cancel some
of the (wj − α)(wj + α) factors in the denominator, again up to a (−1)K2

. Carrying out these steps, and
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cancelling out the powers of a that can be pulled outside the integral, (43) becomes

(−1)K ∫
U(N)

(
Λ′
X(e−a/N)

ΛX(e−a/N)
Λ′
X∗(e−a/N)

ΛX∗(e−a/N)
)
K

e−2aK/NdXN

= (−1)K

K!2(2πi)2K

e−aKN2K

2K2 q ( d

dL
)∮ ⋯∮ e∑

2K
j=1 ujLj

×
(∑2K

j=1
1

auj−a
− 1

2)
K

(∑2K
j=1

1
auj+a

+ 1
2)
K

∏Kj=1(uj − 1)K∏2K
j=K+1(uj + 1)K

du1 . . . du2K ∣ L1,...,LK=a/2
LK+1,...,L2K=−a/2

× (1 +O( aN )) ,(45)

where the contours of integration enclose ±1.
Introducing more variables t1, t2, the above can be written as

(46)
(−1)Ke−aK

K!2(2πi)2K2K2 (N
a
)

2K

( d

dt1
)
K

( d

dt2
)
K

ea(t2−t1)/2q ( d

dL
)

× ∮ ⋯∮
exp (∑2K

j=1 ujLj + t1
uj−1 +

t2
uj+1)

∏Kj=1(uj − 1)K∏2K
j=K+1(uj + 1)K

du1 . . . du2K ∣ L1,...,LK=a/2
LK+1,...,L2K=−a/2

t1,t2=0

× (1 +O( aN )) ,

where the contours encircle ±1. Now, the 2K dimensional residue above can be separated into a product:

(47)
1

(2πi)2K ∮ ⋯∮
exp (∑2K

j=1 ujLj + t1
uj−1 +

t2
uj+1)

∏Kj=1(uj − 1)K∏2K
j=K+1(uj + 1)K

du1 . . . du2K =
K

∏
j=1

f(Lj)
2K

∏
j=K+1

g(Lj),

where

(48) f(L) = 1

2πi
∮

exp (uL + t1
u−1 +

t2
u+1

)
(u − 1)K

du,

and

(49) g(L) = 1

2πi
∮

exp (uL + t1
u−1 +

t2
u+1

)
(u + 1)K

du.

The technique of Lemma 2.2 from [7] can be adapted, and (46) becomes

(−1)K ∫
U(N)

(
Λ′
X(e−a/N)

ΛX(e−a/N)
Λ′
X∗(e−a/N)

ΛX∗(e−a/N)
)
K

e−2aK/NdXN

= (−1)Ke−aK

2K2 (N
a
)

2K

( d

dt1
)
K

( d

dt2
)
K

ea(t2−t1)/2(50)

× det
2K×2K

( f
(i+j−2)(a/2)

g(i+j−2)(−a/2)) ∣
t1,t2=0

× (1 +O( aN ))

where the first K rows of the above matrix (1 ≤ i ≤ K) have entries f (i+j−2)(a/2), in column 1 ≤ j ≤ 2K,
and the last K rows (rows i +K, with 1 ≤ i ≤ K) have entries g(i+j−2)(−a/2), in column 1 ≤ j ≤ 2K. We
study the determinant obtained here from the point of view of Riemann-Hilbert problems in Section 7.

Next, we drop the factors ea(t2−t1)/2 and e−aK as they do not affect the asymptotic since a becomes small
as N → ∞. We also approximate, in the integrands, exp(±au/2) by 1 ± au/2. One might think that to
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obtain just the leading order asymptotic for small a, the ±au/2 would not be needed. However, this turns
out to be incorrect, since if we just approximate by 1, i.e. without the term ±au/2, the resulting determinant
is magically independent of t1 and t2, and does not survive the differentiation (Lemma 3.1) below.

Thus, the leading order term can be simplified to

(51)
(−1)K

2K2 (N
a
)

2K

( d

dt1
)
K

( d

dt2
)
K

det
2K×2K

M2∣
t1,t2=0

,

where the matrix M2 has entries in the top K rows of

(52)
1

2πi
∮

(1 + au/2)ui+j−2 exp ( t1
u−1 +

t2
u+1

)
(u − 1)K

du,

and entries in the final K rows of

(53)
1

2πi
∮

(1 − au/2)ui+j−2 exp ( t1
u−1 +

t2
u+1

)
(u + 1)K

du.

Returning to (51), dropping the exp(−2aK/N) as it does not impact the leading asymptotic when N is
large, we have determined,

(54) ∫
U(N)

∣
Λ′
X

ΛX
(e−a/N)∣

2K

dXN = 1

2K2 (N
a
)

2K

( d

dt1
)
K

( d

dt2
)
K

det
2K×2K

M2∣
t1,t2=0

× (1 +O(a))

as N →∞ with a = αN → 0.
Consider now the factor 1 ± au/2 that appears in the entries (52) and (53). The role of this factor can be

analyzed using the following property of determinants: let A be an n × n matrix, let a1, . . . , an denote the
rows (or columns) of A, and let v be an n-dimensional vector. Then for any scalar x,

(55) det(a1, . . . , aj + xv, . . . , an) = det(A) + xdet(a1, . . . , v, . . . , an).

Expanding in this fashion, the 1 ± au/2 results in two determinants for each row, so 22K determinants
altogether.

The lemma below describes what happens in the simplest of cases, where we select, for each row, just the
1 from 1 ± au/2. The proof, along with that of Lemma 3.2 will be given in the next section.

Lemma 3.1. We have

(56) det
2K×2K

⎛
⎜⎜
⎝

1
2πi ∮

ui+j−2 exp(
t1
u−1+

t2
u+1)

(u−1)K
du

1
2πi ∮

ui+j−2 exp(
t1
u−1+

t2
u+1)

(u+1)K
du

⎞
⎟⎟
⎠
= (−2)K

2

.

Thus the determinant in the above lemma, does not depend on t1 or t2, and, on applying ( d
dt1

)
K

( d
dt2

)
K

,
does not contribute to (54).

Now that we understand what happens when just the 1 is selected from 1 ± au/2, we next examine the
contribution from the ±au/2 terms. We will only consider those determinants that are obtained by a single
selection of these terms along exactly one of the rows (as in expansion (55)), as these are the determinants
that will result in the main asymptotics of size N2K/a2K−1 (each row for which we select ±au/2 increases
the power of a by 1, which will contribute to the asymptotic described in (54)).

Selecting this term for each entry in a specific row has the effect of incrementing the power of u in the
numerator of the corresponding integrands from i + j − 2 to i + j − 1. This then matches with the entries in
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the row below, giving a zero value for the determinant, unless the selected row is row K or 2K. The next
lemma summarizes what happens in either of these two cases.

Lemma 3.2. Let M3 be the matrix identical to the one displayed in (56), except that the power of u in the
numerator of each integrand is i+j−1 along itsKth row, rather than i+j−2. Then, detM3 is a polynomial
in t1 and t2 of degree 2K, and satisfies:

(57) detM3 =
K2K

2−2K

K!2(2K − 1)
(t1 + t2)2K +O((∣t1∣ + ∣t2∣)2K−1).

Furthermore, if instead of the Kth row, we modify the 2Kth row in the same fashion, the same result holds,
except there is an extra factor of −1 on the right hand side of the equality.

Therefore, the contribution to (54) from the two determinants in the above lemma (and the only con-
tribution impacting the N2K/a2K−1 term) equals, on taking a/2 of the first determinant and −a/2 of the
second,

∫
U(N)

∣
Λ′
X

ΛX
(e−a/N)∣

2K

dX = 1

2K2 (N
a
)

2K

(2K)! K 2K
2−2K

(K!)2(2K − 1)
(a

2
− (−a

2
)) × (1 +O(a))(58)

= (2K − 2

K − 1
) N2K

a2K−122K−1
× (1 +O(a)).

So we have (7).

4. PROOF OF LEMMA 3.1

We first establish that the determinant in the lemma is independent of t1 and t2 by showing that its
derivative with respect to either variable is 0.

When we differentiate with respect, say, to t1 we get a sum of 2K determinants of the 2K matrices
formed by differentiating the entries of a specific column of the original matrix. We will show that each of
these 2K determinants is 0.

The jth of these determinants has the entries of its jth column differentiated with respect to t1, and they
are equal, in the top half of the matrix (in the ith row, with 1 ≤ i ≤K), to

(59)
1

2πi
∮

ui+j−2 exp ( t1
u−1 +

t2
u+1

)
(u − 1)K+1

du

and, in the bottom half (in the (K + i)th row, with 1 ≤ i ≤K),

(60)
1

2πi
∮

ui+j−2 exp ( t1
u−1 +

t2
u+1

)
(u + 1)K(u − 1)

du.

If j = 1, the integrand of each entry in this column is of sizeO(∣u∣−2), as ∣u∣ → ∞. As ∣u∣ → ∞, the length
of the contour grows proportionally to ∣u∣, hence taking a large contour shows that each entry in this column
is 0, and hence the determinant is 0.

If the column being differentiated has j > 1, we can show that the resulting column is a linear combination
of columns 1, . . . , j − 1. For, if we add the first j − 1 entries in the ith row of the top half of the matrix, we
get

(61)
1

2πi
∮

j−1

∑
l=1

ui+l−2 exp ( t1
u−1 +

t2
u+1

)
(u − 1)K

du = 1

2πi
∮

ui−1(uj−1 − 1) exp ( t1
u−1 +

t2
u+1

)
(u − 1)K+1

du.
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This nearly matches (59), the difference being

(62)
1

2πi
∮

ui−1 exp ( t1
u−1 +

t2
u+1

)
(u − 1)K+1

du.

But the integrand is O(∣u∣−2), hence (62) equals 0.
Similarly, the sum of the first j − 1 entries in row i in the bottom half equals

(63)
1

2πi
∮

j−1

∑
l=1

ui+l−2 exp ( t1
u−1 +

t2
u+1

)
(u + 1)K

du = 1

2πi
∮

ui−1(uj−1 − 1) exp ( t1
u−1 +

t2
u+1

)
(u + 1)K(u − 1)

du.

Again, the difference between the right hand side above and (60),

(64)
1

2πi
∮

ui−1 exp ( t1
u−1 +

t2
u+1

)
(u + 1)K(u − 1)

du,

equals 0, because the integrand is O(∣u∣−2).
We have thus shown that the jth differentiated column is equal to the sum of the first j − 1 non-

differentiated columns, and hence the corresponding determinant is 0, as claimed.
A similar computation shows the derivative with respect to t2 of the determinant in the lemma equals 0.
Having established that the left hand side of (56) is independent of t1 and t2, we can determine its value

by specializing t1 = t2 = 0, in which case we can evaluate the residue at u = 1 and the top K rows have
entries

(65)
1

2πi
∮

ui+j−2

(u − 1)K
du = (i + j − 2

K − 1
), 1 ≤ i ≤K, 1 ≤ j ≤ 2K,

and the bottom K rows have entries

(66)
1

2πi
∮

ui+j−2

(u + 1)K
du. = (−1)i+j−K−1(i + j − 2

K − 1
), 1 ≤ i ≤K, 1 ≤ j ≤ 2K.

The first identity is easily obtained by writing ui+j−2 = ((u − 1) + 1)i+j−2 and extracting the coefficient of
(u − 1)K−1. The second identity follows similarly by writing ui+j−2 = ((u + 1) − 1)i+j−2.

Next, we can pull out (−1)−K−1 from each of the bottom K rows of the determinant, and as K(K + 1) is
even, these powers of −1 altogether give 1. We thus need to consider matrices of the following form:

(67)

⎛
⎜⎜⎜⎜⎜⎜
⎝

(i+j−2
K−1

)
1≤i≤K,1≤j≤2K

(−1)i+j(i+j−2
K−1

)
1≤i≤K,1≤j≤2K

⎞
⎟⎟⎟⎟⎟⎟
⎠

.

In the top half of the matrix, starting from row K and working up, we subtract row i − 1 from row i,
i =K, . . . ,2 and use Pascal’s identity:

(68) (n
r
) − (n − 1

r
) = (n − 1

r − 1
).

This decreases by 1 both indices of the binomial coefficients in all elements of rows 2 to K but does not
change the determinant. The first row remains unchanged. In the bottom half, instead of subtracting, we add
row i − 1 to row i for i =K,K − 1, . . . ,2.
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We then repeat the procedure, but this time on rows i =K,K − 1, . . . ,3, (this time reducing both indices
of the binomial coefficients in all except the first two rows) and so on, until we have row reduced the matrix
to the following form:

(69)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

( 0
K−1

) ⋯ (2K−1
K−1

)
⋮ ⋱ ⋮

(0
0
) ⋯ (2K−1

0
)

( 0
K−1

) ⋯ −(2K−1
K−1

)
⋮ ⋱ ⋮

(−1)K+1(0
0
) ⋯ (−1)3K(2K−1

0
)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

We now rearrange the rows. An interchange of any two rows changes the determinant by a factor of -1.
An even number of row swaps (the same for the top and bottom halves), and pulling out (−1)K−1 from each
of the K bottom rows therefore does not change the determinant, but transforms it to the following form
that has already been computed (see [6], equation (2.7.14)):

(70)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

(0
0
) (1

0
) ⋯ (2K−1

0
)

(0
1
) (1

1
) ⋯ (2K−1

1
)

⋮ ⋮ ⋱ ⋮
( 0
K−1

) ( 1
K−1

) ⋯ (2K−1
K−1

)
(0

0
) −(1

0
) ⋯ −(2K−1

0
)

−(0
1
) (1

1
) ⋯ (2K−1

1
)

⋮ ⋮ ⋱ ⋮
(−1)K−1( 0

K−1
) (−1)K( 1

K−1
) ⋯ (−1)K(2K−1

K−1
)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

= (−2)K
2

.

5. PROOF OF LEMMA 3.2

We will first prove that detM3 is a polynomial of degree 2K in t1 and t2. Our strategy is to show that
the (2K + 1)-st and higher partial derivatives are all 0. This is achieved below with the help of Lemma 5.1,
Proposition 5.2 and Proposition 5.3. Then in Proposition 5.4 we determine the value of the coefficients of
the terms of order 2K.

Differentiating our 2K × 2K determinant with respect to either variable produces, as in the proof of the
previous lemma, a sum of 2K determinants where the entries of the resulting matrix are identical to the
original, except that the jth determinant has the entries of its jth column differentiated. If we repeatedly
differentiate at least 2K + 1 times in total with respect to the two t variables, we get a sum of determinants,
each one specified by two lists of non-negative integers

(71) {m1, . . .m2K} and {n1, . . . n2K},
such that

(72) m1 + ⋅ ⋅ ⋅ +m2K + n1 + ⋅ ⋅ ⋅ + n2K > 2K.

Heremj is the number of times that column j has been differentiated with respect to t1 and nj is the number
of times column j has been differentiated with respect to t2.

Thus we are looking at the determinant of the matrix with upper entries

(73)
1

2πi
∫
∣u∣=2

ui+j−2 exp ( t1
u−1 +

t2
u+1

)
(u − 1)K+mj(u + 1)nj

du (1 ≤ i <K,1 ≤ j ≤ 2K);
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(74)
1

2πi
∫
∣u∣=2

ui+j−1 exp ( t1
u−1 +

t2
u+1

)
(u − 1)K+mj(u + 1)nj

du (i =K,1 ≤ j ≤ 2K);

and lower entries

(75)
1

2πi
∫
∣u∣=2

ui+j−2 exp ( t1
u−1 +

t2
u+1

)
(u − 1)mj(u + 1)K+nj

du (1 ≤ i ≤K,1 ≤ j ≤ 2K).

To facilitate this discussion it is helpful to let

(76) I(r,E,G) ∶= 1

2πi
∫
∣u∣=2

ur exp ( t1
u−1 +

t2
u+1

)
(u − 1)E(u + 1)G

du.

Note that if E +G ≥ r + 2 then, as in the proof of the previous lemma, I(r,E,G) = 0. Also, we have two
easily proved recursion formulas:

(77) I(r,E,G) = I(r − 1,E − 1,G) + I(r − 1,E,G)
and

(78) I(r,E,G) = I(r − 1,E,G − 1) − I(r − 1,E,G).
In general we are interested in the collectionM =M2K of 2K × 2K matrices M = (Mi,j) where each

entry Mi,j is one of these integrals

(79) Mi,j = I(ri,j ,Ej ,Gj) =
1

2πi
∫
∣u∣=2

uri,j exp ( t1
u−1 +

t2
u+1

)
(u − 1)Ej(u + 1)Gj

du.

Note that the exponents in the denominator of the integrand, Ej and Gj , depend only on the column index,
j. Moreover, for the definition of M we require that each column have a similar structure regarding the
exponents ri,j , namely that

(80) ri,j = cj + ri
where cj , ri ∈ Z. For the particular form of matrix we are interested in, given by (73) to (75), we could
define, for example, ri = i− 2 for 1 ≤ i <K, rK =K − 1 and ri = i−K − 2 for K + 1 ≤ i ≤ 2K. Then cj = j
for 1 ≤ j ≤ 2K.

Let us define the degree of Mi,j as
di,j = ri,j −Ej −Gj .

We will also sometimes refer equivalently to the “degree” of I(ri,j ,Ej ,Gj).
We call the degree of the J th column

DJ =DJ(M) = max
i
di,J ,

i.e. the maximal degree of any entry in the column. We define the total degree of M to be

D =D(M) =
2K

∑
J=1

DJ .

Note that any column with DJ ≤ −2 is a column of zeros.
If we apply one of our recursion formulae, (77) or (78), to each entry in a particular column then each

entry in that column is a sum and we can split our determinant into a sum of two determinants (see (55))
along that column, one determinant will be of a matrix with the same degree as the original matrix and one
will have a degree that is less by 1. This idea is utilised in the following lemma:
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Lemma 5.1. If the matrix M ∈ M has two equal column degrees, say DJ(M) =DJ ′(M) for some J ≠ J ′,
then there exists a matrix M1 ∈ M such that detM = detM1 and D(M1) <D(M), i.e. we can replace the
determinant in question by a determinant of a matrix of lower degree.

Proof. We have DJ(M) = DJ ′(M) for some columns J and J ′. Due to the structure of the exponent
ri,j = ri + cj in (79), this means that di,J = di,J ′ for all 1 ≤ i ≤ 2K. Using the definition of the degree di,j ,
this means that cJ + ri −EJ −GJ = cJ ′ + ri −EJ ′ −GJ ′ or

(81) cJ ′ = cJ − (EJ −EJ ′) − (GJ −GJ ′).
Assume for convenience that EJ > EJ ′ and GJ > GJ ′ , but all other orderings follow in exactly the same

way. Then using (77) and (78) we act on each element, indexed by 1 ≤ i ≤ 2K, in column J in the following
way

I(cJ + ri,EJ ,GJ) = I(cJ + ri − 1,EJ − 1,GJ) + lower = I(cJ + ri − 2,EJ − 2,GJ) + lower = ⋯
= I(cJ + ri − (EJ −EJ ′),EJ ′ ,GJ) + lower(82)
= I(cJ + ri − (EJ −EJ ′) − 1,EJ ′ ,GJ − 1) + lower
= I(cJ + ri − (EJ −EJ ′) − 2,EJ ′ ,GJ − 2) + lower = ⋯
= I(cJ + ri − (EJ −EJ ′) − (GJ −GJ ′),EJ ′ ,GJ ′) + lower
= I(cJ ′ + ri,EJ ′ ,GJ ′) + lower,

where lower denotes a matrix element of lower degree. This is true for any row i, so we separate the
determinant, as described at (55), so that we have the sum of two determinants, one with I(cJ + ri,EJ ,GJ)
replaced with I(cJ ′ + ri,EJ ′ ,GJ ′) in each element (i, J) and the other with the (i, J)th element replaced
by something of lower degree. The former determinant is zero because it has two equal columns (J and J ′)
and the latter is a determinant of a matrix of lower degree than M . �

We continue, in the following two propositions, to eliminate cases where the determinant is zero.

Proposition 5.2. For M ∈ M, suppose that D(M) < 2K2 − 3K. Then det(M) = 0. Furthermore, if
D(M) = 2K2 − 3K and det(M) ≠ 0 then it follows that the column degrees, in some order, take distinct
values from −1,0,1,2,⋯,2K − 2.

Proof. We may assume that no two columns have equal degrees or else we apply Lemma 5.1 and reduce out
of that situation. Next, if DJ ≤ −2 for any J then we have a column of zeros and the determinant is zero.
Then the minimal total degree for a matrix with non-zero determinant will occur when the column degrees
are (in some order) −1,0,1,2, . . . ,2K − 2. But

(83) −1 + 0 + 1 + ⋅ ⋅ ⋅ + (2K − 2) = 2K2 − 3K.

�

Now we specialise to the case described by (73)-(75) with the following proposition.

Proposition 5.3. Suppose that mj and nj are non-negative integers for j = 1, . . . ,2K such that

(84) m1 + ⋅ ⋅ ⋅ +m2K + n1 + ⋅ ⋅ ⋅ + n2K > 2K

and let M = (Mi,j)1≤i,j≤2K with

Mi,j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

I(i + j − 2,K +mj , nj) if 1 ≤ i ≤K − 1,1 ≤ j ≤ 2K
I(i + j − 1,K +mj , nj) if i =K,1 ≤ j ≤ 2K
I(i −K + j − 2,mj ,K + nj) if K + 1 ≤ i ≤ 2K,1 ≤ j ≤ 2K

(85)
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Then detM = 0.
The same is true if the matrix in question is

Mi,j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

I(i + j − 2,K +mj , nj) if 1 ≤ i ≤K,1 ≤ j ≤ 2K
I(i −K + j − 2,mj ,K + nj) if K + 1 ≤ i ≤ 2K − 1,1 ≤ j ≤ 2K
I(i −K + j − 1,mj ,K + nj) if i = 2K,1 ≤ j ≤ 2K

(86)

Proof. As the degree of I(ri,j ,Ej ,Gj) is ri,j −Ej −Gj , it is easy to check in (85) that the maximal degree
for each column comes from the entries in the Kth row, and in (86) the maximal degree comes from entries
in the 2Kth row. In either case, for the J th column, we have

(87) DJ(M) = J − 1 −mJ − nJ
and

(88) D(M) =
2K

∑
J=1

DJ(M) = 2K2 −K −
2K

∑
J=1

(mJ + nJ) < 2K2 − 3K.

By Proposition 5.2 we have det(M) = 0. �

Remembering that mj is the number of times that column j has been differentiated with respect to t1 and
nj is the number of times column j has been differentiated with respect to t2, we have thus shown that all
(2K + 1)-st and higher partial derivatives of detM3 in Lemma 3.2 are 0. Therefore detM3 is a polynomial
of degree at most 2K in t1 and t2.

Next we determine that detM3 is a polynomial of degree 2K in t1 and t2 by identifying the coefficients
of the terms ta1t

b
2 of degree a + b = 2K. Consider a mixed derivative da

dta1

db

dtb2
of detM3 and set t1 = t2 = 0.

As before, we get a sum of determinants, where each determinant is associated to one of the ways in which
we can differentiate the columns of detM3 with respect to t1 (a times) and with respect to t2 (b times). The
following proposition describes what happens to a single one of these determinants.

Proposition 5.4. Now suppose that we have the same matrix M defined at (85) except with

(89) m1 + ⋅ ⋅ ⋅ +m2K + n1 + ⋅ ⋅ ⋅ + n2K = 2K,

i.e. the total degree is 2K2 − 3K. If the determinant is not zero, then

(90) det(M) = ±(2K − 2

K − 1
)2(K−1)2 .

The same is true for a matrix of form (86).

Proof. Let mJ + nJ = pJ for each 1 ≤ J ≤ 2K. Consider the top half of the matrix, 1 ≤ i ≤K.

Mi,J = I(ri,J ,K +mJ , nJ) = I(ri,J − 1,K +mJ , nJ − 1) + lower
= ⋯ = I(ri,J − nJ ,K +mJ ,0) + lower = I(ri,J − nJ − 1,K +mJ − 1,0) + lower(91)
= ⋯ = I(ri,J − nJ −mJ ,K,0) + lower = I(ri,J − pJ ,K,0) + lower

= (ri,J − pJ
K − 1

) + lower,

where the final evaluation is done by a simple residue calculation of the integral I .
In the lower half of the matrix, for K + 1 ≤ i ≤ 2K, we have similarly
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Mi,J = I(ri,J ,mJ ,K + nJ) = I(ri,J − 1,mJ ,K + nJ − 1) + lower
= ⋯ = I(ri,J − nJ ,mJ ,K) + lower = I(ri,J − nJ − 1,mJ − 1,K) + lower(92)
= ⋯ = I(ri,J − nJ −mJ ,0,K) + lower = I(ri,J − pJ ,0,K) + lower

= (−1)ri,J−pJ−K−1(ri,J − pJ
K − 1

) + lower.

Now we separate the determinant, as described at (55), so that we have the sum of two determinants,
one with the binomial coefficients down column J and the other with a lower degree integral. However,
in the latter matrix, the degree of column J will be lower than the degree of the original matrix M . Since
the degree of M is 2K2 − 3K and we ascertained in Proposition 5.2 that any matrix with lower degree has
zero determinant, we are simply left with the determinant of the matrix with column J replaced with the
binomial coefficients given in (91) and (92). We repeat this process for each of the columns of M to end up
with a matrix of binomial coefficients.

We will now refer to the “degree” of a binomial coefficient as being the degree of the integral I that it
came from. So, the degree of (ri,J−pJ

K−1
) is ri,J − pJ −K. Our matrix M has the structure (85) (or (86)) and

no degrees have been changed by the processes of turning it into a matrix of binomial coefficients using
(91) and (92). Therefore the degree of a column is determined by the degree of the element in the Kth
row (respectively 2Kth). In the Kth (respectively 2Kth) row, rK,J = K + J − 1 (r2K,J = K + J − 1) so in
either (85) or (86) the degree of the J th column is DJ = J − 1 − pJ . We know from Proposition 5.2 that
since the degree of the matrix is still 2K2 − 3K, and the determinant is not zero, the column degrees for
J = 1,2, . . . ,2K must take distinct values in −1,0,1,2,⋯,2K − 2. For example, one way to arrange this
would be to have pJ = 1 for all J , but this is not the only solution. Thus the elements of the Kth (2Kth)
row must, in some order, take values (K−1

K−1
), ( K

K−1
),⋯, (3K−2

K−1
) (resp. (K−1

K−1
), −( K

K−1
), (K+1

K−1
),⋯,−(3K−2

K−1
) for

matrix (86)), so as to achieve the required set of column degrees. If all the pJ = 1 then the elements occur
in this order across row K (2K, respectively), but for other combinations of the pJs they will occur in a
different order. Once the set of pJ ’s are fixed, then all the matrix entries are determined and we end up with
a column-wise permutation (implying an over all factor of ±1 that we haven’t determined) of the matrix with
entries that for an initial matrix (85) look like

mi,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i+j−3
K−1

) if 1 ≤ i ≤K − 1,1 ≤ j ≤ 2K

(i+j−2
K−1

) if i =K,1 ≤ j ≤ 2K

(−1)i+j(i+j−3−K
K−1

) if K + 1 ≤ i ≤ 2K,1 ≤ j ≤ 2K

(93)

or for an initial matrix (86) look like

mi,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(i+j−3
K−1

) if 1 ≤ i ≤K,1 ≤ j ≤ 2K

(−1)i+j(i+j−3−K
K−1

) if K + 1 ≤ i ≤ 2K − 1,1 ≤ j ≤ 2K

(−1)j−1(i+j−2−K
K−1

) if i = 2K,1 ≤ j ≤ 2K

.(94)

Note that we take ( −1
K−1

) = 0, so that the (1,1) and (K + 1,1) entries of the matrix are 0.
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The (K,1) entry of the matrix (93) equals 1 while all the other entries in the first column are zero.
Expanding the determinant of the above matrix along the first column thus gives:

(95) (−1)K+1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

( 0
K−1

) ⋯ (2K−2
K−1

)
⋮ ⋱ ⋮

(K−2
K−1

) ⋯ (3K−4
K−1

)
(−1)K+1( 0

K−1
) ⋯ (−1)K+1(2K−2

K−1
)

⋮ ⋱ ⋮
−(K−2

K−1
) ⋯ −(3K−4

K−1
)

(K−1
K−1

) ⋯ (3K−3
K−1

)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

Next, we notice that the new first column is zero except the last entry. Expanding along that column we get
the following (2K − 2) × (2K − 2) determinant:

(96) (−1)K+1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

( 1
K−1

) ⋯ (2K−2
K−1

)
⋮ ⋱ ⋮

(K−1
K−1

) ⋯ (3K−4
K−1

)
(−1)K( 1

K−1
) ⋯ (−1)K+1(2K−2

K−1
)

⋮ ⋱ ⋮
(K−1
K−1

) ⋯ −(3K−4
K−1

)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.

We arrive at the above matrix also for an initial matrix of form (86), but in that case the non-zero element
of column 1 of (94) is a +1 in the 2Kth row, so expanding around that gives −1 times the resulting (2K −
1) × (2K − 1) minor. In the minor resulting from this first expansion, the non-zero element of the new first
column is a +1 in the Kth row, so expanding round this element give a sign of (−1)K+1. Thus in the (86)
case we end up with the above determinant, but with the overall factor of (−1)K+1 replaced by (−1)K .

Working now from (96) we apply row reductions using the identity (68) and exactly the same procedure
as in equations (67) to (70) so that we arrive at

(97) (−1)K+1

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

( 1
K−1

) ⋯ (2K−2
K−1

)
( 1
K−2

) ⋯ (2K−2
K−2

)
⋮ ⋱ ⋮

(1
1
) ⋯ (2K−2

1
)

(−1)K( 1
K−1

) ⋯ (−1)K+1(2K−2
K−1

)
(−1)K+1( 1

K−2
) ⋯ (−1)K(2K−2

K−2
)

⋮ ⋱ ⋮
(1

1
) ⋯ −(2K−2

1
)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

.
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Out of the jth column we factor out j, and we factor 1
(K−i) out of both the ith row and the (i+K −1)th row

for i = 1, . . .K − 1. This gives the following

(−1)K+1(2K − 2

K − 1
)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

( 0
K−2

) ⋯ (2K−3
K−2

)
( 0
K−3

) ⋯ (2K−3
K−3

)
⋮ ⋱ ⋮

(0
0
) ⋯ (2K−3

0
)

(−1)K( 0
K−2

) ⋯ (−1)K+1(2K−3
K−2

)
(−1)K+1( 0

K−3
) ⋯ (−1)K(2K−3

K−3
)

⋮ ⋱ ⋮
(0

0
) ⋯ −(2K−3

0
)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

(98)

= (2K − 2

K − 1
)2(K−1)2 ,

where the last step follows by pulling out (−1)K from each of the bottom K − 1 rows (hence an even power
of −1), and then applying (70) with K − 1 rather than K.

Hence the determinant of the matrix with entries given in (93) is equal to

(99) (2K − 2

K − 1
)2(K−1)2 .

The matrix with entries given in (94) is equal to

(100) −(2K − 2

K − 1
)2(K−1)2 .

�

For a given da/dta1db/dtb2 (so ∑2K
1 mj = a and ∑2K

1 nj = b, with a + b = 2K), we now wish to determine
what the multiplicity is of a given (p1, . . . , p2K) where pj =mj + nj .

For example, if K = 2, and a = b = 2, the vector (p1, p2, p3, p4) = (1,1,1,1) can arise in 24 ways. We
have these patterns for (m1,m2,m3,m4) (n1, n2, n3, n4): (1,1,0,0) (0,0,1,1); (1,0,1,0) (0,1,0,1);
(1,0,0,1) (0,1,1,0); (0,1,1,0) (1,0,0,1); (0,1,0,1) (1,0,1,0); (0,0,1,1) (1,1,0,0). However, each
vector appearing here occurs twice when we carry out the partial derivative da/dta1db/dtb2 on the matrix M3.
For example, (1,1,0,0) gets counted twice, as we can differentiate the first column and then the second, or
else the second column and then the first. All the following arguments hold equally well if instead of matrix
M3 we use the matrix with the modified 2Kth row mentioned in Lemma 3.2.

Generally, the number of occurrences of (p1, . . . , p2K) obtained by applying da/dta1db/dtb2 to detM3, is
equal to the coefficient of cp11 ⋯cp2K2K in

(101) (c1 +⋯ + c2K)a(c1 +⋯ + c2K)b = (c1 +⋯ + c2K)2K .

The resulting coefficient therefore equals the multinomial coefficient

(102)
(2K)!
∏2K
j=1 pj !

.

Next we show that all of the ±1 add up to 1. The list of the degrees of the columns is a permutation of

(103) (−1,0,1, . . . ,2K − 2).
If it is an even permutation then the sign will be plus; if it is an odd permutation the sign will be minus.
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As mentioned in the proof of Proposition 5.4, any given permutation σ of the sequence −1, . . . ,2K − 2
completely determines the sequence of pj . For example, when K = 2 there are 8 permutations which each
give a determinant value of ±4. The other 16 permutations give a determinant of 0. The lists of column
degrees, Dj , the associated permutations, the corresponding sequence of pj that produce that permutation,
along with their signs and multiplicities are listed below. The sum of the multiplicity times the sign gives
+1 as desired.

Dj σ pj sign mult
−1 0 1 2 1 2 3 4 1 1 1 1 + 24
−1 0 2 1 1 2 4 3 1 1 0 2 − 12
−1 1 0 2 1 3 2 4 1 0 2 1 − 12
−1 1 2 0 1 3 4 2 1 0 0 3 + 4

0 −1 1 2 2 1 3 4 0 2 1 1 − 12
0 −1 2 1 2 1 4 3 0 2 0 2 + 6
0 1 −1 2 2 3 1 4 0 0 3 1 + 4
0 1 2 −1 2 3 4 1 0 0 0 4 −1 1

Inspecting the column of permutations, σ, we see that the legal permutations of 1,2, . . . ,2K are σ1, σ2,
. . . , σ2K with σ1 ≤ 2;σ2 ≤ 3;σ3 ≤ 4; . . . . The reason for this is that pj ≥ 0 and pj = j − 1 −Dj = j + 1 − σj .
The sign is just the sign of the permutation. The multiplicity is (2K)!/∏2K

j=1 pj !. So what we still have to
prove is that

(2K)! ∑
σ∈S2K
σj≤j+1

sgn(σ)
∏2K
j=1(j + 1 − σj)!

= 1(104)

However, the sum in the above equation is the determinant of the 2K × 2K matrix, denoted by C2K ,
whose (i, j) entry is 1/(j + 1 − i)! if i ≤ j + 1, and 0 otherwise (because of the restriction σj ≤ j + 1). For
example, the matrix C6 equals:

(105)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1/2 1/6 1/24 1/120 1/720

1 1 1/2 1/6 1/24 1/120

0 1 1 1/2 1/6 1/24

0 0 1 1 1/2 1/6
0 0 0 1 1 1/2
0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We can put C2K into triangular form by subtracting i times row i from row i + 1, for i = 1, . . . ,2K − 1.
Letting l = j − i, One can prove inductively, one row at a time, that the resulting entries are equal to
1/(l!(l + i)) if j ≥ i and 0 otherwise. In particular the (i, i) diagonal entry equals 1/i, and hence detC2K =
1/(2K)!, thus establishing the identity (104).

We have thus proven that da/dta1db/dtb2 applied to the matrix M3, and setting t1 = t2 = 0, is equal to (99).
Hence, the coefficient of ta1t

b
2 in detM3 is equal to

(106)
1

a!b!
(2K − 2

K − 1
)2(K−1)2 .
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If instead of the matrix M3, the matrix mentioned in Lemma 3.2 with the modified 2Kth column is used,
then the coefficient of ta1t

b
2 in the determinant of that matrix is equal to, using (100),

(107) − 1

a!b!
(2K − 2

K − 1
)2(K−1)2 .

Comparing coefficients, Lemma 3.2 follows.

6. COMPARISON WITH EXACT FORMULA FOR K = 1 AND K = 2

In this section we work with Theorem 1.5, in the two cases ∣A∣ = ∣B∣ = 1 and ∣A∣ = ∣B∣ = 2, to show that
this agrees with the result (7) in the appropriate limiting regime.

First we consider ∣A∣ = ∣B∣ = 1. Writing out Theorem 1.5 in this case we have

J({α};{β}) = ∫
U(N)

(−e−α)
Λ′
X

ΛX
(e−α) (−e−β)

Λ′
X∗

ΛX∗
(e−β)dXN

= H{0},{0}({α})H{0},{0}({β}) +H{0},{0}({α},{β}) + e−N(α+β)z(α + β)z(−α − β)

= 0 + (z
′

z
)
′

(α + β) + e−N(α+β)z(α + β)z(−α − β).(108)

Now let α = a/N and β = b/N where a, b→ 0 as N →∞.
It is useful for this and the ∣A∣ = ∣B∣ = 2 calculation to write down the behaviour of z(x) and its derivatives

for small x:

z(x) = 1

1 − e−x
= 1

x
+ 1

2
+ x

12
− x3

720
+O(x4)

z′(x)
z(x)

= 1

1 − ex
= −1

x
+ 1

2
− x

12
+ x3

720
+O(x4)

(z
′(x)
z(x)

)
′

= ex

(1 − ex)2
= 1

x2
− 1

12
+ x2

240
+O(x4).(109)

Thus we have

J({ a
N };{ b

N }) =
⎛
⎝

1

( aN + b
N )2

+ e−a−b
⎛
⎝

−1

( aN + b
N )2

⎞
⎠
⎞
⎠
(1 +O(a+bN ))

= ( N2

(a + b)2
− (1 − a − b) N2

(a + b)2
)(1 +O(a + b))

= ( N2

a + b
)(1 +O(a + b)).(110)

So

(111) J∗({ a
N };{ a

N }) = N
2

2a
(1 +O(a)),

when a = b. From the definition of J∗, and remembering that exp(α) ∼ 1, we see that equation (111) is
identical to (7) when K = 1.



MIXED MOMENTS OF CHARACTERISTIC POLYNOMIALS OF RANDOM UNITARY MATRICES 23

Now we consider

J({α1, α2};{β1, β2})

= ∫
U(N)

e−α1−α2−β1−β2
Λ′
X

ΛX
(e−α1)

Λ′
X

ΛX
(e−α2)

Λ′
X∗

ΛX∗
(e−β1)

Λ′
X∗

ΛX∗
(e−β2)dXN .(112)

We have to take a little care in setting all the alphas and betas equal here because we will encounter factors
of z

′
z (α2 − α1) and z′

z (β2 − β1). These divergent terms will cancel as α2 → α1 and β2 → β1, but in order to
control this we will set α1 = β1 = α and α2 = β2 = α + h, with a view to letting h→ 0 later. This gives

J({α,α + h};{α,α + h}) = (z
′

z
)
′

(2α)(z
′

z
)
′

(2α + 2h) + (z
′

z
)
′

(2α + h)(z
′

z
)
′

(2α + h)

+e−N(2α)z(2α)z(−2α)((z
′

z
)
′

(2α + 2h) + (z
′

z
(h) − z

′

z
(2α + h))(z

′

z
(h) − z

′

z
(2α + h)))

+e−N(2α+h)z(2α + h)z(−2α − h)((z
′

z
)
′

(2α + h) + (z
′

z
(h) − z

′

z
(2α + 2h))(z

′

z
(−h) − z

′

z
(2α)))

+e−N(2α+h)z(2α + h)z(−2α − h)((z
′

z
)
′

(2α + h) + (z
′

z
(−h) − z

′

z
(2α))(z

′

z
(h) − z

′

z
(2α + 2h)))

+e−N(2α+2h)z(2α + 2h)z(−2α − 2h)((z
′

z
)
′

(2α) + (z
′

z
(−h) − z

′

z
(2α + h))(z

′

z
(−h) − z

′

z
(2α + h)))

+e−N(4α+2h) z(2α)z2(2α + h)z(2α + 2h)z(−2α)z2(−2α − h)z(−2α − 2h)
(z(−h)z(h))2

.(113)

The final term above is zero in the h → 0 limit, but there are also terms of order h−2 and order h−1.
Using Mathematica to expand to order h2 anything multiplying the divergent terms, we can confirm that all
divergent terms cancel. In the h→ 0 limit we are left with

J({α,α};{α,α}) = lim
h→0

J({α,α + h};{α,α + h})

= 2e4α + e−2αN(−e2αN2 + 2e4αN2 − e6αN2 − 2e4α)
(1 − e2α)4

.(114)

Now we scale α = a
N where a→ 0 as N →∞. Expanding the exponentials of the form eka/N , k = 2,4,6, in

powers of a/N , we find that terms in the numerator of order N2 and N cancel and we are left with:

J({ a
N ,

a
N };{ a

N ,
a
N }) =

(2 + e−2a(−4a2 + 32a2 − 36a2 − 2))N4

16a4
(1 +O( aN ))

= (2 + (1 − 2a)(−8a2 − 2))N4

16a4
(1 +O(a)) = N4

4a3
(1 +O(a)).(115)

Again, this is identical to (7) when K = 2. We see that with the help of Mathematica, the leading order term
of Theorem 1.5 can be extracted for a specific K. However, obtaining a formula for a general K seems very
tricky from the complicated Theorem 1.5, illustrating the value of the alternate method detailed in Section 3
of this paper.
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7. RIEMANN-HILBERT PROBLEM REPRESENTATION FOR BLOCK HANKEL DETERMINANT

In this section, we show that the determinant on the right-hand side of equation (50) gives the solution of
a certain Riemann-Hilbert problem. A block Hankel matrix has the form [aj+k] where all the submatrices
ak have equal size. The 2K × 2K moment determinant on the right-hand side of equation (50) can be
rearranged to become the determinant of a block Hankel matrix with 2 × 2 blocks by moving the (K + j)th

row to the (2j)th place and then the (K + j)th column to the (2j)th place. Its matrix symbol is given by

(116) w(u) =
⎛
⎜⎜
⎝

e
au
2 + t1

u−1+
t2
u+1

(u−1)K
uKe

au
2 + t1

u−1+
t2
u+1

(u−1)K

e−
au
2 + t1

u−1+
t2
u+1

(u+1)K
uKe−

au
2 + t1

u−1+
t2
u+1

(u+1)K

⎞
⎟⎟
⎠
.

The underlying objects here are multiple orthogonal polynomials, and we refer the reader to [26, 25] for
a review of them. For a review of integrable systems and Riemann-Hilbert problems, we refer the reader
to [20, 21]. The multiple orthogonal polynomials of type II are monic polynomials of degree ∣n⃗∣ = n1 + n2

satisfying the conditions

(117) ∫
∣u∣=2

Pn⃗(u)u`w(j)(u)du = 0, 0 ≤ ` ≤ nj − 1, 1 ≤ j ≤ 2, n⃗ = (n1, n2) ∈ Z2,

on the circle ∣u∣ = 2, where the complex weights are given by

(118) w(1)(u) = e
au
2
+
t1
u−1+

t2
u+1

(u − 1)K
, w(2)(u) = e

−au
2
+
t1
u−1+

t2
u+1

(u + 1)K
.

The polynomials Pn⃗(u) admit the determinant presentation

(119) Pn⃗(u) =
1

∆n⃗

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

µ
(1)
0 ⋯ µ

(1)
∣n⃗∣

⋮ ⋮

µ
(1)
n1−1 ⋯ µ

(1)
∣n⃗∣+n1−1

µ
(2)
0 ⋯ µ

(2)
∣n⃗∣

⋮ ⋮

µ
(2)
n2−1 ⋯ µ

(2)
∣n⃗∣+n2−1

1 ⋯ u∣n⃗∣

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

, ∆n⃗ =

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

µ
(1)
0 ⋯ µ

(1)
∣n⃗∣−1

⋮ ⋮

µ
(1)
n1−1 ⋯ µ

(1)
∣n⃗∣+n1−2

µ
(2)
0 ⋯ µ

(2)
∣n⃗∣−1

⋮ ⋮

µ
(2)
n2−1 ⋯ µ

(2)
∣n⃗∣+n2−2

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

,

where

(120) µ
(j)
` = 1

2πi
∫
∣u∣=2

u`w(j)(u)du.

The conditions (117) are easy to check using the linearity of the determinant with respect to the last row.
Division by ∆n⃗ makes the polynomials monic. For generic t1 and t2, the determinant ∆n⃗ is nonzero. We
define ∆(0,0) = 1 and P0⃗(u) = 1. The determinant ∆(K,K) is exactly the determinant appearing in (50).

The polynomials Pn⃗(u) have a Riemann-Hilbert representation (see [17]). Actually, assume that

(121) ∆n⃗ ≠ 0, ∆n⃗−e⃗1 ≠ 0, ∆n⃗−e⃗2 ≠ 0.
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Then we construct the matrix from the multiple orthogonal polynomials

(122) Γn⃗(u) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Pn⃗(u) R
(1)
n⃗ (u) R

(2)
n⃗ (u)

b
(1)
n⃗ Pn⃗−e⃗1(u) b

(1)
n⃗ R

(1)
n⃗−e⃗1

(u) b(1)n⃗ R
(2)
n⃗−e⃗1

(u)

b
(2)
n⃗ Pn⃗−e⃗2(u) b

(2)
n⃗ R

(1)
n⃗−e⃗2

(u) b(2)n⃗ R
(2)
n⃗−e⃗2

(u)

⎞
⎟⎟⎟⎟⎟⎟
⎠

where

(123) R
(j)
n⃗ (u) = 1

2πi
∫
∣v∣=2

Pn⃗(v)w(j)(v)
v − u

dv, − 1

b
(j)
n⃗

= 1

2πi
∫
∣u∣=2

unj−1Pn⃗−e⃗j(u)w
(j)(u)du

and e⃗1 and e⃗2 are the basis vectors in Z2. Conditions (121) imply that 1

b
(j)
n⃗

≠ 0 and b(j)n⃗ ≠ 0, because of the

relations (131).
Orient the circle ∣u∣ = 2 counter clockwise, to give the contour for the Riemann-Hilbert problem. As

one goes round the contour, denote by “+” the boundary value from the left of the contour, and by “−” the
boundary value from the right of the contour. By the Sokhotski-Plemelj formula, we have

(124) R
(j)
n⃗,+(u) −R

(j)
n⃗,−(u) = Pn⃗(u)w

(j)(u), ∣u∣ = 2.

This relation implies

(125) Γn⃗,+(u) = Γn⃗,−(u)
⎛
⎜
⎝

1 w(1)(u) w(2)(u)
0 1 0
0 0 1

⎞
⎟
⎠
, ∣u∣ = 2.

Because of the orthogonality conditions (117), we have the asymptotic behavior

(126) R
(j)
n⃗−e⃗j

(u) = − 1

unj2πi
∫
∣v∣=2

vnj−1Pn⃗(v)w(j)(v)dv +O ( 1

unj+1
) , u→∞.

Taking into account the normalizations by b(1)n⃗ and b(2)n⃗ , this implies

(127) Γn⃗(u) =
⎛
⎝
I +

γ
(1)
n⃗

u
+O ( 1

u2
)
⎞
⎠

⎛
⎜
⎝

u∣n⃗∣ 0 0
0 u−n1 0
0 0 u−n2

⎞
⎟
⎠
, u→∞,

where

(128) γ
(1)
n⃗ = lim

u→∞
u ⋅ (Γn⃗(u) ⋅ diag[u−∣n⃗∣, un1 , un2] − I) .

We say that the function Γn⃗(u), that is analytic inside and outside of the circle ∣u∣ = 2 and that satisfies the
conditions (125) and (127), solves the Riemann-Hilbert problem.

Proposition 7.1. The Riemann-Hilbert problem with boundary conditions (125) and (127) has a unique
solution, given by the above Γn⃗(u) from equation (122).
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Proof. We notice that det(Γn⃗(u)) is an entire function, since it has no jump on the circle ∣u∣ = 2. It converges
to one at infinity; therefore det(Γn⃗(u)) = 1 by Liouville’s theorem. This means that we can always invert
the matrix Γn⃗(u). Now we can show uniqueness of the solution of the Riemann-Hilbert problem. Assume
there is some other solution Γ̃n⃗(u). Then the function Γ̃n⃗(u)Γ−1

n⃗ (u) has no jump on the circle ∣u∣ = 2, is an
entire function on the complex plane, and approaches the identity at infinity. Therefore Γ̃n⃗(u) = Γn⃗(u) by
Liouville’s theorem. �

We proceed to state some recurrence relations (129), (130), and (131) in terms of the Riemann-Hilbert
problem. The recurrence relations for ∆n⃗ are based on Γn⃗(u), and have the form

(γ(1)n⃗ )
12
= − 1

2πi
∫
∣u∣=2

un1Pn⃗(u)w(1)(u)du = (−1)n2+1 ∆n⃗+e⃗1

∆n⃗
,(129)

(γ(1)n⃗ )
13
= − 1

2πi
∫
∣u∣=2

un2Pn⃗(u)w(2)(u)du = −
∆n⃗+e⃗2

∆n⃗
,(130)

(γ(1)n⃗ )
21
= b(1)n⃗ = (−1)n2+1 ∆n⃗−e⃗1

∆n⃗
, (γ(1)n⃗ )

31
= b(2)n⃗ = −∆n⃗−e⃗2

∆n⃗
.(131)

They can be checked using presentation (119). We can see that if (γ(1)n⃗ )
12

= 0, then ∆n⃗+e⃗1 = 0; and if

(γ(1)n⃗ )
13
= 0, then ∆n⃗+e⃗2 = 0.

We also provide a more standard product formula (132) for the determinant. In particular, since by
definition ∆(0,0) = 1, we have

(132) ∆(K,K) =
K

∏
j=1

(−1)j
(γ(1)
(j−1,j)

)
12

(γ(1)
(j−1,j)

)
31

.

We also identify the moment determinant (50) with the isomonodromic tau function for a linear ODE with
rational coefficients by using the formula (144) below; (see [3, 22, 23]). To obtain this linear ODE (136),
we need to reformulate the Riemann-Hilbert problem so that it has constant a jump on a suitable contour.
For this purpose, we introduce

(133) G(u) = diag [(w(1)(u)w(2)(u))
1
3
, (w(1)(u))

− 2
3 (w(2)(u))

1
3
, (w(2)(u))

− 2
3 (w(1)(u))

1
3 ] .

The function G(u) has jumps along the rays (−∞,−1] and [1,∞) oriented towards infinity

G+(u) = G−(u)e
2πiK

3 , u ∈ (−∞,−1] ∪ [1,∞);

also G(u) satisfies the relation

G(u)−1
⎛
⎜
⎝

1 w(1)(u) w(2)(u)
0 1 0
0 0 1

⎞
⎟
⎠
G(u) =

⎛
⎜
⎝

1 1 1
0 1 0
0 0 1

⎞
⎟
⎠
.
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Therefore the new function Ψn⃗(u) = Γn⃗(u)G(u) has a constant jump on the circle ∣u∣ = 2 oriented counter
clockwise, and on the rays (−∞,−1] ∪ [1,∞) oriented towards infinity:

Ψn⃗,+(u) = Ψn⃗,−(u)
⎛
⎜
⎝

1 1 1
0 1 0
0 0 1

⎞
⎟
⎠
, ∣u∣ = 2,(134)

Ψn⃗,+(u) = Ψn⃗,−(u)e
2πiK

3 , u ∈ (−∞,−1] ∪ [1,∞).(135)

The expression
dΨn⃗(u)
du

Ψ−1
n⃗ (u) has no jump on the circle ∣u∣ = 2 and on the rays (−∞,−1] ∪ [1,∞).

Therefore it is a rational function of u with only poles at u = 1, u = −1, and u = ∞. Using (127) and (133),
we describe the local behavior of function Ψn⃗(u): at infinity, we have

Ψn⃗(u) =
⎛
⎜
⎝
I +

Y
(∞)

n⃗,1

u
+O ( 1

u2
)
⎞
⎟
⎠
ed
(∞)
−1 uud

(∞)
n⃗,0 , u→∞,

d
(∞)

−1 = diag [0, a
2
,−a

2
] , d

(∞)

n⃗,0 = diag [∣n⃗∣ − 2K

3
,−n1 +

K

3
,−n2 +

K

3
] ;

near u = 1, we have

Ψn⃗(u) = P (1)n⃗ (I + Y (1)n⃗,1 (u − 1) +O ((u − 1)2)) e
d
(1)
−1
u−1 (u − 1)d

(1)
0 , u→ 1,

d
(1)
−1 = diag [2t1

3
,− t1

3
,− t1

3
] , d

(1)
0 = diag [−K

3
,−K

3
,
2K

3
] ;

and near n = −1, we have

Ψn⃗(u) = P (−1)
n⃗ (I + Y (−1)

n⃗,1 (u + 1) +O ((u + 1)2)) e
d
(−1)
−1
u+1 (u + 1)d

(−1)
0 , u→ −1,

d
(−1)
−1 = diag [2t2

3
,− t2

3
,− t2

3
] , d

(−1)
0 = diag [−K

3
,
2K

3
,−K

3
] .

Here P (±1)
n⃗ , Y (±1)

n⃗,1 , Y (∞)n⃗,1 can be described by limits similar to (128). We can notice that det(Ψn⃗(u)) = 1

implies det(P (−1)
n⃗ ) = det(P (1)n⃗ ) = 1, so we can compute inverses of these matrices. Using the local

behavior of Ψn⃗(u) we combine the principal parts of rational function
dΨn⃗(u)
du

Ψ−1
n⃗ (u) and we get the

differential equation

(136)
dΨn⃗(u)
du

= An⃗(u)Ψn⃗(u), An⃗(u) = A(1)n⃗ (u) +A(−1)
n⃗ (u) + d(∞)−1 ,

where the principal parts are

A
(1)
n⃗ (u) =

P
(1)
n⃗ Λ

(1)
2 (u) (P (1)n⃗ )

−1

(u − 1)2
+
P
(1)
n⃗ Λ

(1)
n⃗,1(u) (P

(1)
n⃗ )

−1

u − 1
,

Λ
(1)
2 (u) = −d(1)−1 , Λ

(1)
n⃗,1(u) = d

(1)
0 − [Y (1)n⃗,1 , d

(1)
−1 ],
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A
(−1)
n⃗ (u) =

P
(−1)
n⃗ Λ

(−1)
2 (u) (P (−1)

n⃗ )
−1

(u + 1)2
+
P
(−1)
n⃗ Λ

(−1)
n⃗,1 (u) (P (−1)

n⃗ )
−1

u + 1
,

Λ
(−1)
2 (u) = −d(−1)

−1 , Λ
(−1)
n⃗,1 (u) = d(−1)

0 − [Y (−1)
n⃗,1 , d

(−1)
−1 ].

This is a differential equation with three irregular singular points of Poincaré rank one at u = 1, u = −1 and
u = ∞. The associated isomonodromic or Jimbo-Miwa-Ueno tau function (see [22]) is given by

(137) τn⃗(a, t1, t2) = exp
⎛
⎜
⎝
−
(a,t1,t2)

∫
(0,0,0)

Tr(Y (∞)n⃗,1 d
(∞)

−1 ) da
a
+Tr(Y (1)n⃗,1 d

(1)
−1 ) dt1

t1
+Tr(Y (−1)

n⃗,1 d
(−1)
−1 ) dt2

t2

⎞
⎟
⎠
.

It was proven in [22] that the differential form that is integrated in (137) is closed. In the later work [23],
the following relations were obtained

δ (ln
τn⃗+e⃗1
τn⃗

) = δ (ln (Y (∞)n⃗,1 )
12
) , δ (ln

τn⃗+e⃗2
τn⃗

) = δ (ln (Y (∞)n⃗,1 )
13
) ,

where δ is the differential with respect to a, t1 and t2. Taking into account the identities

(Y (∞)n⃗,1 )
12
= (γ(1)n⃗ )

12
, (Y (∞)n⃗,1 )

13
= (γ(1)n⃗ )

13
,

and using formulae (129), (130) we obtain

δ (ln
τn⃗+e⃗1∆n⃗

τn⃗∆n⃗+e⃗1

) = 0, δ (ln
τn⃗+e⃗2∆n⃗

τn⃗∆n⃗+e⃗2

) = 0.

Therefore

(138) ln
∆n⃗(a, t1, t2)
τn⃗(a, t1, t2)

= lnh
(1)
n⃗ − lnh

(2)
(a,t1,t2)

,

where h(1)n⃗ is independent of a, t1, t2 and h(2)
(a,t1,t2)

is independent of n⃗.
If we put n⃗ = 0 in (138), then we have

(139)
h
(2)
(a,t1,t2)

h
(1)

0⃗

= τ0⃗(a, t1, t2)

It turns out that we can compute τ0⃗(a, t1, t2). Actually, we have P0⃗(u) = 1 and

(140) Γ0⃗(u) =
⎛
⎜⎜
⎝

1 R
(1)

0⃗
(u) R

(2)

0⃗
(u)

0 1 0
0 0 1

⎞
⎟⎟
⎠
.

The diagonal part of first terms in the expansion of Ψ0⃗(u) near singular points u = ∞, u = 1 and u = −1 are

(Y (∞)
0⃗,1

)
diag

= diag [2

3
(t1 + t2),−

1

3
(t1 + t2) −K,−

1

3
(t1 + t2) +K] ,

(Y (1)
0⃗,1

)
diag

= diag [−1

6
(t2 +K),−a

2
+ t2

12
− K

6
,
a

2
+ t2

12
+ K

3
] ,

(Y (−1)

0⃗,1
)

diag
= diag [−1

6
(t1 −K),−a

2
+ t1

12
− K

3
,
a

2
+ t2

12
+ K

6
] .
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Plugging this into (137), we get

(141) τ0⃗(a, t1, t2) = exp(−Ka + K
6
(t2 − t1) −

t1t2
6

) .

If we put a = t1 = t2 = 0 in (138), then we obtain

(142)
h
(1)
n⃗

h
(1)

0⃗

= ∆n⃗(0,0,0).

In the case n⃗ = (K,K), such a determinant was computed in Lemma 3.1

(143) ∆(K,K)(0,0,0) = (−2)K
2

.

Combining (139), (141), (142), and (143) together, we deduce the relation between the block Hankel deter-
minant and the isomonodromic tau function (see [3])

(144) ∆(K,K) = (−2)K
2

exp(Ka − K
6
(t2 − t1) +

t1t2
6

) τ(K,K).
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