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Abstract

We study kernel least-squares estimators for the regression problem subject to a norm

constraint. We bound the squared L2 error of our estimators with respect to the co-

variate distribution. We also bound the worst-case squared L2 error of our estimators

with respect to a Wasserstein ball of probability measures centred at the covariate

distribution. This leads us to investigate the extreme points of Wasserstein balls.

In Chapter 3, we provide bounds on our estimators both when the regression function

is unbounded and when the regression function is bounded. When the regression

function is bounded, we clip the estimators so that they are closer to the regression

function. In this setting, we also use training and validation to adaptively select a

size for our norm constraint based on the data.

In Chapter 4, we study a different adaptive estimation procedure called the Goldenshluger–

Lepski method. Unlike training and validation, this method uses all of the data to

create estimators for a range of sizes of norm constraint before using pairwise com-

parisons to select a final estimator. We are able to adaptively select both a size for

our norm constraint and a kernel.

In Chapter 5, we examine the extreme points of Wasserstein balls. We show that the

only extreme points which are not on the surface of the ball are the Dirac measures.

This is followed by finding conditions under which points on the surface of the ball
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are extreme points or not extreme points.

In Chapter 6, we provide bounds on the worst-case squared L2 error of our estimators

with respect to a Wasserstein ball of probability measures centred at the covariate

distribution. We prove bounds both when the regression function is unbounded and

when the regression function is bounded. We also investigate the analysis and com-

putation of alternative estimators.
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Chapter 1

Introduction

This thesis is primarily concerned with regression. The regression problem has a long

history in statistics. It is the primary tool for understanding the relationship between

different variables. We consider a random data set consisting of i.i.d. (independent

and identically distributed) data points which come in pairs. Each pair consists of

a covariate and a response variable. The response variables take real values, while

the covariates may take values in any set. This set is known as the covariate set.

In regression, we model response variables as noisy observations of a function of the

covariates. This function is known as the regression function. A formal definition of

our regression problem is given in Subsection 1.1.1.

Our aim is to estimate the regression function, and we are interested in showing that

the error of our estimators with respect to the regression function is small. In partic-

ular, in this thesis, we consider the analysis of kernel estimators. Kernel estimators

are defined as random elements of a reproducing-kernel Hilbert space (RKHS) with a

small empirical error. These are different to, for example, kernel estimators in density

estimation. An RKHS is a Hilbert space of functions with additional properties which
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are discussed in Subsection 1.1.2. The empirical error is a proxy for the actual error

of the estimator which is based on the data.

Since RKHSs are usually selected so that they are infinite-dimensional, it is necessary

to regularise the estimator in some way to prevent overfitting. Overfitting occurs when

the estimator is too close to the response variables at the covariates. This results in the

estimator being too dependent on the variability of the response variables compared

to the regression function, resulting in the estimator having a large error.

Overfitting is often prevented by adding a regularisation function to the empirical

error. We can then define an estimator as the minimiser of the resulting linear combi-

nation. This is known as Tikhonov regularisation, and is used in the definition of, for

example, support vector machines (SVMs). However, in this thesis, we minimise the

empirical error subject to a constraint on the regularisation function. This is known

as Ivanov regularisation. In particular, we consider the case in which the regularisa-

tion function is equal to the norm of the RKHS. We then obtain estimators with a

bounded RKHS norm. This is key to our analysis of these estimators.

We are mostly interested in bounding the squared L2(P ) error of our estimators, where

P is the distribution of the covariates. We consider this error because it is the expected

squared error of the estimator for an expectation over a new independent covariate,

with the same distribution P . The empirical version of the squared L2(P ) error is

the sum of squares between the response variables and the estimator evaluated at the

covariates. We refer to our estimators as Ivanov-regularised least-squares estimators

when applying this empirical error.

We also consider ways of bounding the worst-case squared L2(Q) error of an estimator

over all Q in a ball of probability measures centred at P . This error is the worst-case

expected squared error of the estimator for an expectation over a new independent
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covariate generated by a different distribution Q. The distribution Q can be any

perturbation of P of any size up to the radius of the ball. We refer to the situation

in which a new covariate is generated by a perturbation of P as a covariate shift.

We define the ball of probability measures above using the Wasserstein distance from

optimal transport. The optimal transport problem seeks to minimise the transport

cost between two probability measures over the set of possible transport plans. Since

the Wasserstein distance is determined by a cost function on the covariate set, in-

formation about the cost between two points is transferred to the distance between

two probability measures. An important example is given by setting the cost func-

tion equal to some metric on the covariate set. The Wasserstein distance also arises

naturally in the analysis of our Ivanov-regularised least-squares estimators.

When bounding the worst-case squared L2(Q) error, we also investigate the anal-

ysis and computation of estimators other than our Ivanov-regularised least-squares

estimators. We define these alternative estimators using an empirical version of the

worst-case squared L2(Q) error. In the empirical version, we centre the Wasserstein

ball at Pn, the empirical distribution of the covariates. We show that, under suitable

conditions, the empirical version of the worst-case squared L2(Q) error is attained

at some Q which is an extreme point of the Wasserstein ball centred at Pn. This

motivates us to examine the extreme points of Wasserstein balls.

1.1 Key Concepts

We now define the key concepts which arise in this thesis. These are regression,

RKHSs and their interpolation spaces, and optimal transport.
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1.1.1 Regression

We give a formal definition of our regression problem. For a topological space T ,

let B(T ) be the Borel σ-algebra of T . Let (S,S) be a measurable space. Assume

that (Xi, Yi) for 1 ≤ i ≤ n are (S × R,S ⊗ B(R))-valued random variables on the

probability space (Ω,F ,P), which are i.i.d. with Xi ∼ P and E(Y 2
i ) < ∞. Here, E

denotes integration with respect to P. In this scenario, the Xi are the covariates and

the Yi are the response variables. We often refer to S as the covariate set and to P ,

the law of the Xi, as the covariate distribution.

Recall the Kolmogorov definition of conditional expectation, defined using the Radon–

Nikodym derivative. Since any version of E(Yi|Xi) is σ(Xi)-measurable, where σ(Xi) is

the σ-algebra generated by Xi, we have that E(Yi|Xi) = g(Xi) almost surely for some

measurable function g : (S,S) → (R,B(R)). This result can be found, for example,

in Section A3.2 of Williams (1991). Since the (Xi, Yi) are identically distributed, we

have, for any A ∈ S, that E(Yi 1(Xi ∈ A)) is the same for all 1 ≤ i ≤ n. Hence,

from the definition of conditional expectation, we can choose g to be the same for

all 1 ≤ i ≤ n. Since E(Y 2
i ) < ∞, it follows that g ∈ L2(P ) by Jensen’s inequality.

The function g is the regression function. Sometimes we assume that the regression

function is bounded, so that ‖g‖∞ ≤ C for C > 0.

In order to analyse estimators of the regression function g, we need to ensure that

the response variables do not vary too much. With this in mind, we always assume

that var(Yi|Xi) ≤ σ2 almost surely for 1 ≤ i ≤ n and σ > 0. However, sometimes this

assumption does not give us enough control over the response variables. For example,

this is the case when we require high-probability bounds on the error of an estimator.

For an estimator ĝ of the regression function g, we are usually interested in its squared
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L2(P ) error

‖ĝ − g‖2
L2(P ) =

∫
(ĝ − g)2 dP.

We can assume reduced variability in the response variables using the concept of

subgaussianity. A random variable is subgaussian if it is at least as concentrated

around 0 as some normal distribution with mean 0. Let U be a random variable on

(Ω,F ,P) and let σ > 0. Then U is σ2-subgaussian if E(exp(tU)) ≤ exp(σ2t2/2) for all

t ∈ R. The concentration of U around 0 follows from Chernoff bounding. We can also

define a conditional version of subgaussianity. Let U and V be random variables on

(Ω,F ,P). Then U is σ2-subgaussian given V if E(exp(tU)|V ) ≤ exp(σ2t2/2) almost

surely for all t ∈ R. We can then obtain reduced variability in the response variables

by assuming Yi − g(Xi) is σ2-subgaussian given Xi for 1 ≤ i ≤ n. This assumption

implies our previous assumption that var(Yi|Xi) ≤ σ2 almost surely for 1 ≤ i ≤ n.

1.1.2 RKHSs and Their Interpolation Spaces

An RKHS is a space of function on a given set, with additional properties which we

describe below. We consider RKHSs on the covariate set S for our regression problem.

We could assume that the regression function lies in a given RKHS. However, it is more

realistic to assume that the regression function lies in some larger space between L2(P )

and the RKHS. We define spaces between L2(P ) and an RKHS using interpolation

spaces.

Recall that a Hilbert space is a complete inner-product space. A Hilbert space H of

real-valued functions on S is an RKHS if the evaluation functional Lx : H → R by

Lxh = h(x) is bounded for all x ∈ S. This is equivalent to Lx ∈ H∗ the dual of H.

By the Riesz representation theorem, H∗ is isomorphically isometric to H. Therefore,

there is some kx ∈ H such that h(x) = 〈h, kx〉H for all h ∈ H. Define k : S × S → R
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by k(x1, x2) = 〈kx1 , kx2〉H for x1, x2 ∈ S. The function k is the reproducing kernel of

H. The kernel is symmetric and positive-definite.

For our regression problem, we assume that the regression function g ∈ L2(P ). It is

much more restrictive to assume g ∈ H, however it is reasonable to assume something

between these two conditions. To do this, we use interpolation spaces. A detailed

account of interpolation spaces is given by Bergh and Löfström (1976), however our

definitions more closely follow Smale and Zhou (2003). Let (Z, ‖·‖Z) be a Banach

space and (V, ‖·‖V ) be a dense subspace of Z. The K-functional of (Z, V ) is

K(z, t) = inf
v∈V

(‖z − v‖Z + t‖v‖V )

for z ∈ Z and t > 0. It follows quickly from this definition that K(z, t) as a function of

t > 0 is bounded by ‖z‖Z , non-decreasing and continuous. Furthermore, K(z, t)→ 0

as t→ 0 since V is dense in Z. We can use the K-functional to define our interpolation

spaces.

Let β ∈ (0, 1) and 1 ≤ q < ∞. We first define the norms of the interpolation spaces

by

‖z‖β,q =

(∫ ∞
0

(t−βK(z, t))qt−1dt

)1/q

and ‖z‖β,∞ = sup
t>0

(t−βK(z, t))

for z ∈ Z. The interpolation space [Z, V ]β,q is then defined to be the set of z ∈ Z

such that ‖z‖β,q < ∞. From the definition of the norms, we find that smaller values

of β give larger spaces. The space [Z, V ]β,q is not much larger than V when β is close

to 1, but we obtain spaces which get closer to Z as β decreases. For a fixed β, the

largest interpolation space is given by q =∞.

If z ∈ [Z, V ]β,∞, then we know how well we can approximate z using elements of V .
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Theorem 3.1 of Smale and Zhou (2003) shows that

inf{‖v − z‖Z : v ∈ V, ‖v‖V ≤ r} ≤
‖z‖1/(1−β)

β,q

rβ/(1−β)
. (1.1.1)

The authors only consider the case in which ‖v‖Z ≤ ‖v‖V for all v ∈ V , however

the result holds by the same proof even without this condition. We can apply this

approximation result to the interpolation spaces between L2(P ) and H.

When the RKHSH is dense in L2(P ), we can define the interpolation spaces [L2(P ), H]β,q

for β ∈ (0, 1) and 1 ≤ q ≤ ∞. In particular, we consider [L2(P ), H]β,∞. In order to

understand how well the regression function g can be approximated by elements of

H, we define

I2(g, r) = inf
{
‖hr − g‖2

L2(P ) : hr ∈ rBH

}
for r > 0. If we assume g ∈ [L2(P ), H]β,∞ with norm at most B for β ∈ (0, 1) and

B > 0, then we find

I2(g, r) ≤ B2/(1−β)

r2β/(1−β)

from the approximation result (1.1.1) above.

Based on our approximation result for the regression function g with respect to the

RKHS H, we define estimators of g which lie in H. In order to analyse these estima-

tors, we make further assumptions on H. For an RKHS H with kernel k, we assume

that H is separable and that k is a bounded measurable function on (S × S,S ⊗ S).

The assumptions on k have implications for all functions in H. In particular, since

k is measurable on (S × S,S ⊗ S), we find that all functions in H are measurable

on (S,S) by Lemma 4.24 of Steinwart and Christmann (2008). We can ensure that

H is separable by, for example, assuming that k is continuous and S is a separable

topological space. This is shown by Lemma 4.33 of Steinwart and Christmann (2008).
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1.1.3 Optimal Transport

We now consider the separate topic of optimal transport. The optimal transport

problem aims to find the optimal transportation of one probability measure to another

with respect to a given cost function. This is done by finding a transport map between

the two probability measures which minimises the transport cost.

Let (X, dX) and (Y, dY ) be complete separable metric spaces. Furthermore, let B(X),

B(Y ) and B(X × Y ) be the set of Borel sets on X, Y and X × Y , and let P(X),

P(Y ) and P(X × Y ) be the set of Borel probability measures on X, Y and X × Y .

We consider the problem of optimally transporting a probability measure P ∈ P(X)

to Q ∈ P(Y ) with respect to some Borel cost function c : X × Y → [0,∞). We must

specify how the transportation from P to Q can occur.

We define the marginals of γ ∈ P(X×Y ). Let π1 : P(X×Y )→ P(X) by (π1γ)(A) =

γ(A× Y ) for all A ∈ B(X) and let π2 : P(X × Y )→ P(Y ) by (π2γ)(B) = γ(X ×B)

for all B ∈ B(Y ). The marginals of γ ∈ P(X × Y ) are π1γ ∈ P(X) and π2γ ∈ P(Y ).

We now define

Π(P,Q) = {γ ∈ P(X × Y ) : π1γ = P and π2γ = Q}.

The set Π(P,Q) is precisely the set of transportations from P to Q. This is because

γ ∈ Π(P,Q) determines how much probability should be transported from A ∈ B(X)

to B ∈ B(Y ) by γ(A×B). We refer to γ as a transport plan.

Now that we have defined the set of transport plans, we can define the optimal

transport problem itself. We seek

inf
γ∈Π(P,Q)

∫
c dγ.
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The integral determines the transport cost of the transport plan γ ∈ Π(P,Q). We

are interested in making this as small as possible. If the infimum is attained by

some γ ∈ Π(P,Q), then γ is referred to as an optimal transport plan. By Theorem

4.1 of Villani (2009), an optimal transport plan exists if we assume that c is lower

semicontinuous.

We can use the optimal transport problem to measure the difference between P ∈

P(X) and Q ∈ P(Y ). For each P and Q, the problem has a minimum transport cost

which we refer to as the Wasserstein distance

Wc(P,Q) = inf

{∫
c dγ : γ ∈ Π(P,Q)

}
.

This infimum is attained if we assume that c is lower semicontinuous. Note that our

definition differs slightly from, for example, Definition 6.1 of Villani (2009). We can

use Wc to define balls in P(Y ). The closed Wasserstein ball

Bc[P, r] = {Q ∈ P(Y ) : Wc(P,Q) ≤ r}

for P ∈ P(X) and r ≥ 0. It is straightforward to verify that B[P, r] is convex.

Some transport plans transport probability measures by mapping each point x ∈ X

to a point y ∈ Y . A transport map T : X → Y is a Borel function such that

P (T−1(B)) = Q(B) for all B ∈ B(Y ). There is a unique transport plan induced by

the transport map T . This transport plan is γ ∈ Π(P,Q) with γ(C) = P ({x ∈ X :

(x, T (x)) ∈ C}) for C ∈ B(X × Y ). Note that {x ∈ X : (x, T (x)) ∈ C} ∈ B(X)

because the function f : X → X × Y by f(x) = (x, T (x)) is Borel.

From the definition, there are some useful results about a transport plan γ induced by

a transport map T . Firstly, γ(A×B) = P (A∩T−1(B)) for A ∈ B(X) and B ∈ B(Y ).
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Furthermore, the graph G = {(x, y) ∈ X × Y : T (x) = y} of T has γ(G) = 1.

Note that G ∈ B(X × Y ) because G = {(x, y) ∈ X × Y : dY (T (x), y) = 0} and

f : X × Y → [0,∞) by f(x, y) = d(T (x), y) is Borel. In particular, if f : X × Y → R

is Borel and either γ-integrable or non-negative, then

∫
f dγ =

∫
f(x, T (x)) dP (x).

We consider a final important property of the optimal transport problem, which is

the dual problem. In this problem, we seek

sup
ψ∈L1(P ),φ∈L1(Q)

{∫
φ dQ−

∫
ψ dP : φ(y)− ψ(x) ≤ c(x, y) for all (x, y) ∈ X × Y

}
.

For ψ ∈ L1(P ) and φ ∈ L1(Q) such that φ(y)− ψ(x) ≤ c(x, y) for all (x, y) ∈ X × Y ,

we have

∫
φ dQ−

∫
ψ dP =

∫
(φ(y)− ψ(x)) dγ(x, y)

≤
∫
c(x, y) dγ(x, y)

for all γ ∈ Π(P,Q). By taking an infimum over γ ∈ Π(P,Q), we find that

∫
φ dQ−

∫
ψ dP ≤ Wc(P,Q).

Hence, the maximum value of the dual problem is always at most the minimum

transport cost. We refer to ψ and φ as dual functions. If we assume that c is lower

semicontinuous, then the two problems have the same optimum values by Theorem

5.10 of Villani (2009). If we also assume c(x, y) ≤ cX(x)+ cY (y) for all (x, y) ∈ X×Y

and some cX ∈ L1(P ) and cY ∈ L1(Q), then the supremum in the dual problem is

attained by some dual functions ψ and φ, again by Theorem 5.10 of Villani (2009).
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Such ψ and φ are referred to as optimal dual functions.

1.2 Overview

We now give an overview of the main content of the thesis. After the literature

review in Chapter 2, we start by considering our regression problem in Chapter 3. We

study least-squares estimators in an RKHS under a norm constraint. This form of

regularisation is known as Ivanov regularisation, and it provides better control of the

norm of the estimator than the well-established Tikhonov regularisation. Tikhonov

regularisation in this context is regularised least-squares estimation in the RKHS,

which is used to define SVMs, for example. We assume only that the RKHS is

separable with a bounded and measurable kernel.

We provide rates of convergence for the expected squared L2(P ) error of our estimator

under the weak assumption that the variance of the response variables is bounded and

the unknown regression function lies in an interpolation space between L2(P ) and the

RKHS. We then obtain faster rates of convergence when the regression function is

bounded by clipping the estimator. Clipping the estimator restricts the values that

the estimator can take so that they are not less than or greater than the possible values

of the regression function. In this setting, we attain the optimal rate of convergence.

Furthermore, we provide a high-probability bound under the stronger assumption that

the response variables have subgaussian errors and that the regression function lies in

an interpolation space between L∞ and the RKHS.

We then derive adaptive results for the settings in which the regression function is

bounded. We do this by splitting the data into a training set and a validation set. We

use the training set to produce our estimators for a range of sizes of norm constraint
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before using the validation set to select a final estimator. We obtain the same rates

of convergence as when we use all of the data to produce the estimator with the best

possible size of norm constraint. This training and validation procedure is adaptive

because the size of the norm constraint is determined by the data while the best rates

of convergence are still attained. The estimators produced from the training set are

non-adaptive as they have fixed sizes of norm constraint which do not depend on the

data.

In Chapter 4, we study a different adaptive estimation procedure for our clipped

Ivanov-regularised least-squares estimators called the Goldenshluger–Lepski method.

In contrast to procedures such as training and validation, the Goldenshluger–Lepski

method uses all of the data to produce non-adaptive estimators for a range of sizes

of norm constraint. We then select an adaptive estimator by performing pairwise

comparisons between these estimators. Applying the Goldenshluger–Lepski method

is non-trivial as it requires a simultaneous high-probability bound on all of the pairwise

comparisons. This bound is known as the majorant.

For our regression problem, use of the Goldenshluger–Lepski method is made more

complicated by the fact that we cannot use the L2(P ) norm to perform the pairwise

comparisons. This is because the covariate distribution P , and hence the L2(P ) norm,

are unknown. For this method, the L2(P ) norm would normally be used for making

the comparisons as it is the norm in which we seek guarantees on our estimator.

However, we are able to adapt the method so that we can perform the comparisons

using the L2(Pn) norm instead, while still obtaining guarantees on our estimator in

the L2(P ) norm. Here, Pn is the empirical distribution of the covariates.

We use the Goldenshluger–Lepski method to create two estimation procedures. In

the first procedure, the RKHS is fixed and we adapt over a range of sizes of norm

constraint. This is similar to the training and validation procedure discussed above,
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as we adapt over the same parameter. In the second procedure, we adapt over both a

collection of RKHSs with Gaussian kernels and a range of sizes of norm constraint in

the RKHSs. In this case, we must first produce the non-adaptive estimators for not

only the range of sizes of norm constraint but also for each RKHS in the collection.

In Chapter 5, we move away from regression. We study the extreme points of Wasser-

stein balls of probability measures. We first show that the only extreme points which

are not on the surface of the ball are the Dirac measures. By the surface of the ball,

we mean the points in the ball whose distance from the centre of the ball is equal to

the radius. We then consider points which are on the surface of the ball. We show

that if the Wasserstein distance is uniquely attained by a transport plan induced by a

transport map, then we have an extreme point. Conversely, under conditions on the

centre of the ball and the cost function, we show that if the Wasserstein distance is

attained by two distinct transport plans induced by continuous transport maps, then

we do not have an extreme point. We then consider the special case in which the

probability measures have finite support.

We return to our regression problem in Chapter 6. We seek to control the worst-case

squared L2(Q) error of an estimator over all Q in a Wasserstein ball of probability

measures centred at the covariate distribution P . We first analyse the worst-case

squared L2(Q) error of our Ivanov-regularised least-squares estimators. We produce

expectation bounds both when the regression function is unbounded and when the

regression is bounded. We clip our estimators when the regression function is bounded.

Furthermore, we produce a high-probability bound when the regression function is

bounded and the errors of the response variables are subgaussian.

We then consider alternative estimators defined using an empirical version of the

worst-case squared L2(Q) error. In the empirical version, we centre the Wasserstein

ball at Pn, the empirical distribution of the covariates. We discuss the problems
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with the analysis and computation of such estimators. We show that, under suitable

conditions, the empirical version of the worst-case squared L2(Q) error is attained at

some Q which is an extreme point of the Wasserstein ball centred at Pn. We then

briefly consider the approximation properties of the regression function with respect

to the supremum of the L2(Q) norms. Under similar conditions, this supremum is

attained at some Q which is an extreme point of the Wasserstein ball centred at P .

These results are the motivation for the study of the extreme points of Wasserstein

balls in Chapter 5. We conclude in Chapter 7 by reviewing the main content of the

thesis and discussing some directions for further research.



Chapter 2

Literature Review

We now review the literature of the areas most closely related to this thesis. These

are reproducing-kernel Hilbert space (RKHS) regression, the Goldenshluger–Lepski

method, optimal transport and covariate shift.

2.1 RKHS Regression

Estimators in RKHS regression are usually analysed using the spectral decomposition

of the kernel operator T : L2(P )→ L2(P ) by

(Tf)(x1) =

∫
k(x1, x2)f(x2) dP (x2).

If ∫
k(x, x)dP (x) <∞,

then

Tf =
∞∑
i=1

λi〈f, ei〉L2(P )ei

15
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for f ∈ L2(P ), where the ei for i ≥ 1 are orthonormal eigenfunctions of T and the λi

are the corresponding eigenvalues (Lemma 2.3 of Steinwart and Scovel, 2012). The λi

are strictly positive and may be selected so that they are non-increasing. Furthermore,

λ ∈ `1. We can define Tα : L2(P )→ L2(P ) by

Tαf =
∞∑
i=1

λαi 〈f, ei〉L2(P )ei

for α ≥ 0.

2.1.1 Early Research

Early research on RKHS regression does not make assumptions about the decay of

the λi for i ≥ 1. Smale and Zhou (2007) estimate the regression function g using

support vector machines (SVMs). These are defined by

f̂λ = arg min
f∈H

{
1

n

n∑
i=1

(f(Xi)− Yi)2 + λ‖f‖2
H

}

for λ > 0. It is assumed that the response variables are bounded, so that |Yi| ≤ M

for M > 0.

The first bound presented by Smale and Zhou (2007) is on the squared RKHS error

of an SVM when the regression function is at least as smooth as a general element of

H. Assume that g ∈ T β/2(L2(P )) for β ∈ (1, 2]. Furthermore, let t > 0 and

λ = (3‖k‖∞M)2/(1+β)‖T−β/2g‖−2/(1+β)

L2(P ) n−1/(1+β).

Theorem 2 of Smale and Zhou (2007) shows that

‖f̂λ − g‖2
H ≤ 16 log(2)2(3‖k‖∞M)2(β−1)/(1+β)‖T−β/2g‖4/(1+β)

L2(P ) t2n−(β−1)/(1+β)
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with probability at least 1 − e−t. The complexity of the regression function g is

measured by ‖T−β/2g‖L2(P ). The authors also provide a bound on the squared L2(P )

error of an SVM in the same setting. Let

λ = log(4)(12‖k‖∞M)2/(1+β)‖T−β/2g‖−2/(1+β)

L2(P ) tn−1/(1+β).

Corollary 5 of Smale and Zhou (2007) shows that

‖f̂λ − g‖2
L2(P ) ≤ 4 log(4)2(12‖k‖∞M)2β/(1+β)‖T−β/2g‖2/(1+β)

L2(P ) tn−β/(1+β)

with probability at least 1 − e−t for sufficiently large n. Note that this bound is of

order n−β/(1+β).

The final bound of Smale and Zhou (2007) is on the squared L2(P ) error of an SVM

when the regression function is less smooth than a general element of H. Assume

that g ∈ T β/2(L2(P )) for β ∈ (0, 1]. Let t > 0 and

λ = 8 log(4)‖k‖2
∞tn

−1/2.

Corollary 5 of Smale and Zhou (2007) also shows that

‖f̂λ − g‖2
L2(P ) ≤ log(4)2(8M + 8β/2‖k‖β∞‖T−β/2g‖L2(P ))

2n−β/2

with probability at least 1− e−t for n ≥ 1. This bound is only of order n−β/2, which

is larger than order n−β/(1+β).
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2.1.2 Eigenvalue Decay and Smooth Regression Functions

Initial research on RKHS regression which makes use of the decay of the λi for i ≥ 1

only applies when the regression function is at least as smooth as a general element

of H. This is done by Caponnetto and de Vito (2007). We do not consider response

variables which are not real-valued, RKHSs which are finite-dimensional or squared

L2(P ) errors of estimators with respect to functions other than the regression function,

all of which are also covered in the paper.

The estimators considered by Caponnetto and de Vito (2007) are again SVMs. The

authors assume that for M,σ > 0 we have

E
(

exp

(
|Yi − g(Xi)|

M

)
− 1− |Yi − g(Xi)|

M

∣∣∣∣ Xi

)
≤ σ2

2M2

for 1 ≤ i ≤ n. This condition ensures that the response variables do not vary too

much around the regression function evaluated at the covariates. It is often referred

to as subexponentiality. The decay of the λi for i ≥ 1 is captured by assuming that

λi ∈ [ui−1/p, vi−1/p] for v ≥ u > 0 and p ∈ (0, 1).

We first consider the case in which g ∈ T β/2(L2(P )) for β ∈ (1, 2], so that the

regression function is strictly smoother than a general element ofH. Let λ = n−1/(β+p).

Theorem 1 of Caponnetto and de Vito (2007) shows that any fixed quantile of the

squared L2(P ) error of f̂λ is of order at most n−β/(β+p). Note that this is always

smaller than the order n−β/(1+β) of Smale and Zhou (2007). Furthermore, Theorem 2

of Caponnetto and de Vito (2007) shows that no estimator can attain a smaller order

than n−β/(β+p), so the bound for f̂λ is optimal.

We now consider the case in which g ∈ T 1/2(L2(P )), so that the regression function

is as smooth as a general element of H. Let λ = log(n)1/(1+p)n−1/(1+p). Theorem 1
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of Caponnetto and de Vito (2007) also shows that any fixed quantile of the squared

L2(P ) error of f̂λ is of order at most log(n)1/(1+p)n−1/(1+p). This is always smaller than

the order n−1/2 of Smale and Zhou (2007). Theorem 2 of Caponnetto and de Vito

(2007) shows that no estimator can attain a smaller order than n−1/(1+p), so the bound

for f̂λ is close to optimal.

2.1.3 Eigenvalue Decay and Non-Smooth Regression Func-

tions

Later research focuses on the case in which the regression function is at most as smooth

as a general element of H. Mendelson and Neeman (2010) assume that the response

variables are bounded, so that |Yi| ≤M for 1 ≤ i ≤ n and some M > 0. The authors

also assume that λi ≤ vi−1/p for v > 0 and p ∈ (0, 1). Various Tikhonov-regularised

estimators are considered in the paper. The authors assume that ‖k‖∞ ≤ 1, although

this is only to simplify the notation.

The first bound of Mendelson and Neeman (2010) is given for an estimator of the

form

ĝλ = arg min
f∈H

{
1

n

n∑
i=1

(f(Xi)− Yi)2 + C1a(‖f‖H + 1, λ)

}
for some constant C1 > 0 and

a(r, λ) = b(2r, λ+ log(π2/6) + 2 log(1 + C2n+ log r))

for r ≥ 1 and λ > 0 for some constant C2 > 0. Here,

b(r, λ) = C3r
2v1/(1+p)n−1/(1+p) + C4(1 + r2)λn−1
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for some constants C3, C4 > 0. The regularisation function is still of order ‖f‖2
H

up to logarithmic terms, which is the same as for SVMs. The authors first consider

g ∈ T 1/2(L2(P )), so that the regression function is as smooth as a general element of

H. The discussion after Theorem 3.8 of Mendelson and Neeman (2010) shows that

a fixed quantile depending on λ of the squared L2(P ) error of ĝλ is of order at most

n−1/(1+p) for all λ > 0. Note that this is smaller than the order log(n)1/(1+p)n−1/(1+p)

of Caponnetto and de Vito (2007), who show that the rate n−1/(1+p) is in fact optimal.

The authors then consider g ∈ T β/2(L2(P )) for β ∈ (0, 1), so that the regression

function is less smooth than a general element of H. The discussion after Theorem

3.8 of Mendelson and Neeman (2010) also shows that a fixed quantile depending on

λ of the squared L2(P ) error of ĝλ is of order at most n−β/(1+p) for all λ > 0. This is

always smaller than the order n−β/2 of Smale and Zhou (2007).

In order to improve the order of the second bound, Mendelson and Neeman (2010)

continue by assuming that the eigenfunctions of T are uniformly bounded, so that

supi‖ei‖∞ < ∞. This is a very strong condition which need not hold even when the

kernel of the RKHS is very smooth, as discussed after Theorem A of Mendelson and

Neeman (2010). The authors then consider new estimators of the form

ĝλ = arg min
f∈H

{
1

n

n∑
i=1

(f(Xi)− Yi)2 + C1a(f, λ)

}

for some constant C1 > 0 and

a(f, λ) = C2(1 +λ+C3 log n+ log2(‖f‖H + e))(‖f‖H + 1)2p/(1+p) log(n)2/(1+p)n−p/(1+p)

for f ∈ H and λ > 0 and some constants C2, C3 > 0. Note that the regularisation

function is now of order ‖f‖2p/(1+p)
H up to logarithmic terms, which is always smaller

than ‖f‖2
H .
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The authors again consider g ∈ T β/2(L2(P )) for β ∈ (0, 1). The discussion after

Corollary 5.5 of Mendelson and Neeman (2010) shows that a fixed quantile depending

on λ of the squared L2(P ) error of ĝλ is of order at most n−β/(β+p) for some interval

of λ > 0. This is always smaller than the authors’ earlier order of n−β/(1+p).

2.1.4 Recent Research

The uniform boundedness condition on the eigenfunctions can be relaxed. Steinwart,

Hush, and Scovel (2009) instead assume that

‖h‖∞ ≤ C1‖h‖pH‖h‖
1−p
L2(P )

for all h ∈ H and some constant C1 ≥ 1. Here, p ∈ (0, 1) is such that λi ≤ vi−1/p

for v > 0. This assumption is shown to be weaker than uniform boundedness of the

eigenfunctions in Theorem 2 of Steinwart et al. (2009). Again, it is assumed that the

response variables are bounded, so that |Yi| ≤M for 1 ≤ i ≤ n and some M > 0, and

that ‖k‖∞ ≤ 1. Various Tikhonov-regularised estimators are considered, including

SVMs. The authors also assume that the regression function g ∈ [L2(P ), H]β,∞ for

β ∈ (0, 1). This assumption is shown to be weaker than g ∈ T β/2(L2(P )) by Corollary

4.7 of Steinwart and Scovel (2012).

The estimators considered by Steinwart et al. (2009) are of the form

ĝq,λ = arg min
f∈H

{
1

n

n∑
i=1

(f(Xi)− Yi)2 + λ‖f‖qH

}

for q ≥ 1 and λ > 0. The authors investigate regularisation functions of various

orders ‖f‖qH . Note that ĝ2,λ = f̂λ an SVM. Since |Yi| ≤ M for 1 ≤ i ≤ n, we have

‖g‖∞ ≤ M . Hence, the estimators ĝq,λ can be made closer to the regression function



CHAPTER 2. LITERATURE REVIEW 22

g by clipping them. The authors obtain V ĝq,λ, where V : R→ [−M,M ] by

V (t) =


−M if t < −M

t if |t| ≤M

M if t > M

for t ∈ R.

Corollary 6 of Steinwart et al. (2009) shows that there is some constant C2 ≥ 1 such

that, for

λ = n−
2β+q(1−β)

2β+2p

and all t ≥ 1, we have

‖V ĝq,λ − g‖2
L2(P ) ≤ C2tn

−β/(β+p)

with probability at least 1 − 3 exp(−tnβp/(β+p)). Note that this bound is of order

n−β/(β+p), which matches that of Mendelson and Neeman (2010). However, Steinwart

et al. (2009) make weaker assumptions. Furthermore, the bound is attained for any

q ≥ 1. Generally, q = 2 is preferred for computational reasons. Steinwart et al. (2009)

show in Theorem 9 that if we also assume λi ≥ ui−1/p for u ∈ (0, v], then the rate

n−β/(β+p) is the optimal power of n.

2.2 The Goldenshluger–Lepski Method

The Goldenshluger–Lepski method is based on Lepski’s method, which can perform

adaptation over a single parameter. Lepski’s method uses all of the data to produce

a collection of non-adaptive estimators. It then selects the smoothest non-adaptive

estimator, subject to a bound on a series of pairwise comparisons involving all esti-
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mators at most as smooth as the resulting estimator. Lepski’s method can only adapt

to one parameter because of the need for an ordering of the collection of non-adaptive

estimators. We discuss this method first.

2.2.1 Lepski’s Method

Lepski’s method is introduced by Lepski (1991b). The author considers the stochastic

process Xε on [0, 1] defined by

dXε(t) = S(t) dt+ ε dW (t),

where S : [0, 1]→ R, W is a standard Weiner process on [0, 1] and ε > 0 determines the

variability of Xε. It is assumed that S is contained by some set of smooth functions

S ∈ Σ(β, L) for β > 0 and L > 0. Let β = m + α for m a non-negative integer

and α ∈ (0, 1]. Then Σ(β, L) is defined to be the set of S : [0, 1] → R such that

S is m-times continuously differentiable and |S(m)(t1) − S(m)(t1)| ≤ L|t1 − t2|α for

all t1, t2 ∈ [0, 1]. The aim is to estimate S(t0) for some fixed t0 ∈ [0, 1] under the

assumption that β is unknown. The author obtains expectation bounds on the qth

power of the error of an adaptive estimator with respect to the Euclidean norm for

q > 0.

Lepski (1991b) considers a range of non-adaptive kernel estimators indexed by the

closed bounded set I ⊆ (0,∞). Let a = inf I and b = sup I. The kernel function is

defined as g : R→ R with support [0, 1] such that

∫ 1

0

g(t) dt = 1 and

∫ 1

0

tjg(t) dt = 0
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for 1 ≤ j ≤ bbc+ 1. For each β ∈ I, the author defines the estimator

Tε(β) = δ(β)−1

∫ 1

0

g(δ(β)−1(t− t0)) dXε(t)

for the function δ : I → (0,∞) by

δ(β) = (b− β)1/(2β+1) log(1/ε)1/(2β+1)ε2/(2β+1)

for β 6= b and δ(b) = ε2/(2b+1). The function δ determines the order of the bound

on the adaptive estimator. A finite collection of these estimators is considered. Let

hε = (log(1/ε))−1 and let βk = a + khε for 1 ≤ k ≤ h−1
ε (b − a), where h−1

ε (b − a) is

assumed to be a strictly positive integer. The estimators considered are Tε,k = Tε(βk).

Having defined the non-adaptive estimators, Lepski (1991b) defines the adaptive

estimator as follows. Let v0 = (2a + 1)−1/2((bac ∨ 0)!)−1L, σ = ‖g‖L2(0,1) and

d = 4σ(2q + 1)1/2 + 2v0σ. Then the adaptive estimator is Tε,k̂, where

k̂ = sup{1 ≤ k ≤ h−1
ε (b− a) : |Tε,k − Tε,l| ≤ dδ(βl) for all l < k}.

Note that the calculation of k̂ requires d to be known. Theorem 3 of Lepski (1991b)

shows that

sup
β∈I

lim
ε→0

sup
S∈Σ(β,L)

E(δ(β)−q|Tε,k̂ − S(t0)|q) <∞.

Therefore, Tε,k̂−S(t0) is of order log(1/ε)1/(2β+1)ε2/(2β+1) as ε→ 0 for all S ∈ Σ(β, L).

This holds for all β ∈ I, even though the adaptive estimator Tε,k̂ does not depend on

β.
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2.2.2 Lepski’s Method for RKHS Regression

Lepski’s method has been applied to RKHS regression under the name of the balancing

principle. However, as far as we are aware, Lepski’s method has not been used to

target the true regression function. Instead, it has only been used to target an RKHS

element which approximates the regression function.

De Vito, Pereverzyev, and Rosasco (2010) assume that there is some collection of

estimators fλ such that

‖fλ − fH‖L2(P )≤ α(η)λ1/2(ω(λ)−1n−1/2 + A(λ))

and

‖fλ − fH‖H≤ α(η)(ω(λ)−1n−1/2 + A(λ))

for some fH ∈ H simultaneously for all λ ∈ [n−1/2, 1] with probability at least 1 − η

for η ∈ (0, 1]. The functions A : [0, 1]→ [0,∞) and ω : (0, 1]→ (0,∞) are continuous,

A(0) = 0, α(η) ≥ log(2/η)1/4 ∨ 1 and ω(λ)A(λ) ≤ C1λ for some constant C1 > 0.

Furthermore, λ1/2A(λ) and λ1/2ω(λ) are increasing in λ. This assumption is very

strong. Assumptions of this form are discussed in Section 3.1 of De Vito et al. (2010).

We briefly discuss the implications of the above assumption. The function fH is the

function to be targetted in place of the regression function. The term ω(λ)−1n−1/2

corresponds to the sample error of fλ with respect to fH , while A(λ) corresponds

to the approximation error. A good choice of λ balances the sample error and the

approximation error. Let λ∗ > 0 satisfy

ω(λ∗)−1n−1/2 = A(λ∗).
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It is assumed λ∗ ≤ 1. Then

‖fλ∗ − fH‖L2(P )≤ 2α(η)(λ∗)1/2A(λ∗)

and

‖fλ∗ − fH‖H≤ 2α(η)A(λ∗).

There is a difficulty in using Lespki’s method to control the squared L2(P ) norm

of f λ̂ − fH for some estimator λ̂ of λ∗. Lepski’s method requires the norm we are

interested in controlling to be known in order to perform the pairwise comparisons.

However, the covariate distribution P is unknown in this situation.

De Vito et al. (2010) continue by performing Lepski’s method for two different norms

and combining the results. Let λi ∈ [n−1/2, 1] for 0 ≤ i ≤ I such that λi−1 < λi for

1 ≤ i ≤ I. Here, I is some some strictly positive integer. Let Pn be the empirical

distribution of the covariates. The authors define

λ̂1 = max{λi : ‖fλi − fλj‖L2(Pn)≤ 4C2α(η)λ
1/2
j ω(λj)

−1n−1/2 for all 0 ≤ j ≤ i− 1}

for some constant C2 > 0 and

λ̂2 = max{λi : ‖fλi − fλj‖H≤ 4α(η)ω(λj)
−1n−1/2 for all 0 ≤ j ≤ i− 1}.

These estimators of λ∗ are combined to form λ̂ = λ̂1∧ λ̂2. Assume that λ0 ≤ C−1
1 n−1/2

and ω(λi) ≤ qω(λi−1) for 1 ≤ i ≤ I and some q > 1. Theorem 3 of De Vito et al.

(2010) shows that

‖f λ̂ − fH‖L2(P )≤ C3qα(η)λ∗A(λ∗)

for some constant C3 > 0. Note that this bound for f λ̂ is of order (λ∗)1/2 bigger than

the bound for fλ
∗
.
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2.2.3 Multiple Parameters

We now discuss the Goldenshluger–Lepski method itself. The method is introduced

by Goldenshluger and Lepski (2008). Let D be an open interval of Rd containing

D0 = [−1/2, 1/2]d. The authors consider the stochastic process Y on D defined by

dY (t) = F (t) dt+ ε dW (t),

where F : D → R, W is a standard Weiner process on Rd and ε ∈ (0, 1) determines

the variability of Y . It is assumed that F is continuous and bounded. The aim is

to estimate F (x0) for some fixed x0 ∈ D0. The authors obtain expectation bounds

on the rth power of the error of an adaptive estimator with respect to the Euclidean

norm for r > 0.

Goldenshluger and Lepski (2008) consider a range of non-adaptive kernel estimators

indexed by the compact set Θ ⊆ Rm equipped with the Euclidean norm |·|2. Let

KΘ be the set of kernels Kµ : Rd × Rd → R for µ ∈ Θ. The authors assume that

there is some open interval D1 of Rd with D0 ⊆ D1 ⊆ D such that, for all µ ∈ Θ,

supp(Kµ(·, y)) ⊆ D1 for all y ∈ D0 and

∫
D

Kµ(t, y) dt = 1

for all y ∈ D1. This ensures that Kµ satisfies the usual definition of a kernel, along

with some regularity conditions.

The authors also assume some boundedness properties of the collection of kernels KΘ.

In order to express these properties, we define the norms ‖·‖p as the Lp(D0) norm for
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p ∈ [1,∞] and

‖f‖p,∞ = sup
x∈D0

(∫
Rd
|f(t, x)|p dt

)1/p

and ‖f‖∞,∞ = sup
x∈D0

sup
t∈Rd
|f(t, x)|

for f : Rd × D0 → R and p ∈ [1,∞). The assumption is that supµ∈Θ‖Kµ‖1,∞ < ∞

and supµ∈Θ‖Kµ‖2,∞ < ∞. Continuity of the kernels is also required. It is assumed

that there exist γ ∈ (0, 1] and L > 0 such that

sup
µ,µ′∈Θ

‖K̃µ − K̃µ′‖2,∞

|µ− µ|γ2
≤ L and sup

µ,µ′∈Θ
sup
x∈Rd

|1− ‖Kµ(·, x)‖2/‖Kµ′(·, x)‖2|
|µ− µ|γ2

≤ L,

where K̃µ(·, x) = Kµ(·, x)/‖Kµ(·, x)‖2 for µ ∈ Θ.

Goldenshluger and Lepski (2008) define the set KΘ×Θ of auxiliary kernels Kµ,ν :

Rd × Rd → R by

Kµ,ν(t, x) =

∫
D1

Kµ(t, y)Kν(y, x) dy

for t, x ∈ Rd. The kernel Kµ,ν is in some sense smoother than both Kµ and Kν . The

authors also demand that Kµ,ν(t, x) = Kν,µ(t, x) for all t, x ∈ Rd and all µ, ν ∈ Θ.

This occurs if, for example, Kµ(t, x) = Kµ(t− x, 0) for all t, x ∈ Rd and all µ ∈ Θ.

Having defined all of the kernels, the authors define the non-adaptive estimators. Let

F̂µ(x) =

∫
D

Kµ(t, x) dY (t) and F̂µ,ν(x) =

∫
D

Kµ,ν(t, x) dY (t)

for x ∈ D0 and µ, ν ∈ Θ. We first consider the bias of these estimators. Let

Bµ(x) =

∫
D

Kµ(t, x)F (t) dt− F (x) and Bµ,ν(x) =

∫
D

Kµ,ν(t, x)F (t) dt− F (x)



CHAPTER 2. LITERATURE REVIEW 29

for x ∈ D0 and µ, ν ∈ Θ. We also require

B̃µ(x) =

(
sup
ν∈Θ
|Bµ,ν(x)−Bν(x)|

)
∨ |Bµ(x)|

for x ∈ D0 and µ ∈ Θ. In order to define the adaptive estimator, the variability of

the non-adaptive estimators must be taken into account. Let

ξµ(x) =

∫
D

Kµ(t, x) dW (t) and ξµ,ν(x) =

∫
D

Kµ,ν(t, x) dW (t)

for x ∈ D0 and µ, ν ∈ Θ, and let σµ(x) = ‖Kµ(·, x)‖2 and σµ,ν(x) = ‖Kµ,ν(·, x) −

Kν(·, x)‖2. We also require

σ̃µ(x) =

(
sup
ν∈Θ

∫
Rd
|Kν(y, x)|σµ(y) dy

)
∨ σµ(x)

for x ∈ D0 and µ ∈ Θ.

Goldenshluger and Lepski (2008) continue by defining the majorant, which is neces-

sary for defining the adaptive estimator. Recall that x0 ∈ D is the point at which we

are interested in estimating F . Let ΣΘ = {σ̃µ(x0) : µ ∈ Θ} and σmin = inf ΣΘ. In

order to define the majorant, the authors must control g : ΣΘ → [0,∞) by

g(σ) = sup
µ∈Θ

E

(
sup

ν∈Θ:σ̃ν(x0)≤σ
|ξµ,ν − ξν |

)
.

The function g measures the variability of the pairwise comparisons involved in the

definition of the adaptive estimator.

The authors assume that there is a known function e : ΣΘ → [0,∞), which is contin-

uous and non-decreasing, such that e(σ) ≥ g(σ) for all σ ∈ ΣΘ. It is also assumed

that e(2σ)/e(σ) ∈ [ce, Ce] for all σ ∈ ΣΘ and some Ce ≥ ce > 1. This is similar to the

function e being slowly varying. In general, finding e is a very difficult problem. The
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majorant can then be defined as Q : ΣΘ → [0,∞) by

Q(σ) = κ0e(σ) + σ(1 + κ1 log(σ/σmin))1/2,

where κ0 = 2Ce and κ1 = 128r(1 ∨ (log(Ce)/ log(2))). This is an inflated version of

e(σ), with the increase based on the variability σ ∈ ΣΘ.

Goldenshluger and Lepski (2008) then define the adaptive estimator. Let

R̂µ = sup
ν∈Θ:σ̃ν(x0)≥σ̃µ(x0)

(
|F̂µ,ν − F̂ν | − εQ(σ̃ν(x0))/2

)
.

For δ = εQ(σmin)/4, let µ̂ be a random element of Θ such that

R̂µ̂ + εQ(σ̃µ̂(x0)) ≤ inf
µ∈Θ

(
R̂µ + εQ(σ̃µ(x0))

)
+ δ.

The adaptive estimator is given by F̂µ̂. The authors provide a bound on the error of

F̂µ̂(x0) under a final assumption.

Let ΘF be the set of µ ∈ Θ such that for all σ ∈ ΣΘ for which σ ≥ σ̃µ(x0), there

exists θ ∈ Θ such that σ̃θ(x0) = σ and B̃θ(x0) ≤ εQ(σ̃θ(x0))/4. It is assumed

that ΘF 6= ∅, which gives a condition on F with respect to the kernels. Define

µ∗ = arg minµ∈ΘF
σ̃µ(x0). Theorem 1 of Goldenshluger and Lepski (2008) shows that

(E(|F̂µ̂(x0)− F (x0)|r))1/r ≤ CεQ(σ̃µ∗(x0))

for ε ∈ (0, 1) sufficiently small and some C > 0. Therefore, the error of F̂µ̂(x0) is

bounded by an inflated version of the variability of the pairwise comparisons with

respect to µ∗, where µ∗ in some sense produces an estimator with small variability.



CHAPTER 2. LITERATURE REVIEW 31

2.3 Optimal Transport

We now discuss a sample of the relevant literature from optimal transport. We start

with the first modern treatment.

2.3.1 Early Research

The optimal transport problem in its modern form is introduced by Kantorovitch

(1958). The author allows transport between any finite measures with the same total

mass. However, here we assume that the measures are probability measures. The

author demands that X = Y is compact and the cost function c is continuous. The

quantity

Wc(P,Q) = inf
γ∈Π(P,Q)

∫
c dγ

for P,Q ∈ P(X) is defined, and considered as a distance on P(X). Kantorovitch

(1958) states that Wc(P,Q) is attained by some γ ∈ Π(P,Q) because Π(P,Q) is

compact.

The author then considers an early form of the dual problem. Define U : X → R to

be a potential for γ ∈ Π(P,Q) if for all x, y ∈ X we have |U(y) − U(x)| ≤ c(x, y),

and furthermore U(y) − U(x) = c(x, y) if γ(A × B) > 0 for all open sets A,B such

that x ∈ A and y ∈ B. The theorem of Kantorovitch (1958) shows that γ ∈ Π(P,Q)

attains Wc(P,Q) if and only if it has a potential.

2.3.2 Quadratic Cost Function

Study of the dual problem can lead to the discovery of properties of the solutions to

the optimal transport problem itself. Such results often depend on ideas from convex
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analysis. Rüschendorf and Rachev (1990) consider the case in which X = Y = Rk

equipped with the Euclidean norm |·|, and the cost function c(x, y) = |x − y|2 for

x, y ∈ Rk. It is assumed that P,Q ∈ P(Rk) with

∫
|x|2 dP <∞ and

∫
|y|2 dQ <∞,

which ensures that Wc(P,Q) <∞.

Let f : Rk → [−∞,∞] be a convex function. The subdifferential of a convex function

f : Rk → [−∞,∞] at x ∈ Rk is

∂f(x) = {y ∈ Rk : f(z) ≥ f(x) + 〈y, z − x〉 for all z ∈ Rk}.

This set consists of the gradients of all possible tangents of f at x. Theorem 1 of

Rüschendorf and Rachev (1990) shows that there exists γ ∈ Π(P,Q) which attains

Wc(P,Q). Furthermore, the theorem shows that γ ∈ Π(P,Q) attains Wc(P,Q) if and

only if γ({(x, y) : y ∈ ∂f(x)}) = 1 for some lower semicontinuous convex function f .

2.3.3 General Cost Functions

The previous result can be generalised to other cost functions c : X × Y → [0,∞).

Rüschendorf (1995) provides such a result. We call f : X → [−∞,∞] a c-convex

function if there exists a function ζ : Y → [−∞,∞] such that

f(x) = sup
y∈Y

(ζ(y)− c(x, y)).

The c-subdifferential of f at x ∈ X is

∂cf(x) = {y ∈ Y : f(z) ≥ f(x) + c(x, y)− c(z, y) for all z ∈ X}.
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For y ∈ ∂cf(x), the function f(x) + c(x, y) − c(z, y) of z ∈ X is the equivalent of a

tangent of f at x. These are slight generalisations of the definitions of Rüschendorf

(1995). Furthermore, we replace c with −c in the author’s definitions as we are

interested in minimising the transport cost as opposed to maximising it.

The author assumes that X = Y = Rk and P,Q ∈ P(Rk). Furthermore, it is assumed

that c(x, y) ≤ cX(x) + cY (y) for all x, y ∈ Rk and some cX ∈ L1(P ) and cY ∈ L1(Q).

Theorem 2 of Rüschendorf (1995) shows that γ ∈ Π(P,Q) attains Wc(P,Q) if and

only if γ({(x, y) : y ∈ ∂cf(x)}) = 1 for some c-convex function f . Furthermore, if c is

lower semicontinuous, then there exists γ ∈ Π(P,Q) which attains Wc(P,Q).

2.3.4 Recent Research

A recent book on the subject of optimal transport has been written by Villani (2009).

The book is expansive, so we only discuss continuations of the above literature. We

allow general complete metric spaces X and Y , but restrict the cost function c :

X × Y → [0,∞) to be lower semicontinuous. Let P ∈ P(X) and Q ∈ P(Y ). Section

4 of Villani (2009) covers some basic properties of the optimal transport problem. In

particular, Theorem 4.1 shows that there exists γ ∈ Π(P,Q) which attains Wc(P,Q).

This extends the second part of Theorem 2 of Rüschendorf (1995) to more general X

and Y .

Duality is covered in Section 5 of Villani (2009). Theorem 5.10 is a detailed version

of the duality theorem. In particular, it shows that Wc(P,Q) is equal to

sup
ψ∈L1(P ),φ∈L1(Q)

{∫
φ dQ−

∫
ψ dP : φ(y)− ψ(x) ≤ c(x, y) for all (x, y) ∈ X × Y

}
.

Furthermore, we may restrict ψ to be c-convex. The theorem also shows that the
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supremum is attained if c(x, y) ≤ cX(x) + cY (y) for all (x, y) ∈ X × Y and some

cX ∈ L1(P ) and cY ∈ L1(Q).

Theorem 5.30 of Villani (2009) gives conditions under which the optimal transport

problem is solved by a unique transport plan which is induced by a transport map.

Suppose that Wc(P,Q) <∞ and, for all c-convex functions f : X → [−∞,∞], the set

of x ∈ X such that ∂cf(x) contains more than one element is P -null. Then the theorem

shows that Wc(P,Q) is attained by a unique γ ∈ Π(P,Q) induced by a transport map

T : X → Y . Recall that this means γ(C) = P ({x ∈ X : (x, T (x)) ∈ C}) for

C ∈ B(X ×Y ) and that T is Borel. Furthermore, we can select T so that there exists

a c-convex function ψ such that T (x) ∈ ∂cψ(x) for all x ∈ X.

Consider the above condition that for all c-convex functions f : X → [−∞,∞], the set

of x ∈ X such that ∂cf(x) contains more than one element is P -null. It is essentially

this condition and an extension of Theorem 2 of Rüschendorf (1995) to more general

X and Y which prove Theorem 5.30 of Villani (2009). However, there are only very

special circumstances in which the condition is satisfied.

One circumstance in which the condition on c-convex functions is satisfied is as follows.

Let X = Y = Rk equipped with the Euclidean norm |·|, and let the cost function

c(x, y) = |x− y|2 for x, y ∈ Rk. Furthermore, let P,Q ∈ P(Rk) with

∫
|x|2 dP <∞ and

∫
|y|2 dQ <∞.

Suppose that P (A) = 0 for any A ∈ B(Rk) with dimension at most k − 1. In this

case, Theorem 9.4 of Villani (2009) shows that the condition is satisfied and that the

result of Theorem 5.30 of Villani (2009) applies. For this cost function, ψ is simply a

lower semicontinuous convex function and T (x) ∈ ∂cψ(x) = ∂ψ(x) for all x ∈ Rk.
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2.4 Covariate Shift

We present a brief overview of the literature on covariate shift in regression. We start

in the parametric setting.

2.4.1 Parametric Regression

Covariate shift is first considered for parametric problems. Shimodaira (2000) assumes

that the covariates and response variables (xt, yt) for 1 ≤ t ≤ n are i.i.d. with density

q(y|x)q0(x) with respect to the Lebesgue measure. However, after the data has been

collected, the covariate distribution shifts to q1(x). The response variables yt are not

required to be one-dimensional.

The author aims to estimate q(y|x) by using a density from the collection p(y|x, θ)

for θ ∈ Θ ⊆ Rm. This restricts the problem so that only some θ ∈ Θ needs to be

estimated. Due to the covariate shift, the author considers the loss function

loss1(θ) = −
∫
q1(x)

∫
q(y|x) log p(y|x, θ) dy dx.

This is the Kullback–Leibler divergence between q(y|x)q1(x) and p(y|x, θ)q1(x), up to

an additive constant.

In order to estimate the θ ∈ Θ of interest, Shimodaira (2000) considers a maximum

weighted log-likelihood estimation procedure. Let w be some non-negative weight

function on the covariate set and define lw(x, y|θ) = −w(x) log p(y|x, θ) for θ ∈ Θ.

The weighted log-likelihood function is then

Lw(θ) = −
n∑
t=1

lw(xt, yt|θ).
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The maximum weighted log-likelihood estimator θ̂w = arg maxθ∈Θ Lw(θ). However,

only certain weight functions are allowed by the author.

The proper weight functions w considered by Shimodaira (2000) must satisfy the fol-

lowing properties. Let E0 denote integration with respect to q(y|x)q0(x), the density

generating the data. It is required that E0(lw(x, y|θ)) exists for all θ ∈ Θ. Further-

more, E0(lw(x, y|θ)) must have a unique minimiser θ∗w which lies in Θ◦ the interior of

Θ. Finally, E0(lw(x, y|θ)) must have a non-singular Hessian at θ∗w.

Shimodaira (2000) uses these definitions to describe the θ ∈ Θ that we are interested

in estimating. Note that if w = q1/q0, then we have E0(lw(x, y|θ)) = loss1(θ). Hence,

in this case, θ∗w = arg minθ∈Θ loss1(θ). This θ∗w is referred to as θ∗1. It is this value of

θ ∈ Θ that we are interested in estimating. Furthermore, in this case, the estimator

θ̂w is referred to as θ̂1.

Lemma 1 of Shimodaira (2000) tells us how well θ̂w estimates θ∗w for any proper weight

function w. Suppose that the model is sufficiently smooth and that p(y|x, θ) has the

same support as q(y|x) for all θ ∈ Θ. Furthermore, assume that the m×m matrices

Gw and Hw defined by

Gw,i,j = E0

(
∂lw(x, y|θ∗w)

∂θi

∂lw(x, y|θ∗w)

∂θj

)
and Hw,i,j = E0

(
∂2lw(x, y|θ∗w)

∂θi ∂θj

)

are nonsingular. Then n1/2(θ̂w − θ∗w) converges in distribution to N(0, H−1
w GwH

−1
w ).

In general, a weight function w not proportional to q1/q0 has θ∗w 6= θ∗1 and loss1(θ∗w) >

loss1(θ∗1). In this case, Lemma 1 of Shimodaira (2000) shows that θ∗1 ∈ Θ should be

estimated by θ̂1. Note that this requires both covariate distributions q0 and q1 to be

known.
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2.4.2 Nonparametric Regression

Sugiyama, Suzuki, Nakajima, Kashima, von Bünau, and Kawanabe (2008) consider

the problem of estimating the weight function above when the two covariate distri-

butions are unknown. The authors allow more general nonparametric models. Let

Q be the distribution generating the original covariates and P be the distribution of

the covariates after a covariate shift, both defined on D ⊆ Rd. It is assumed that P

and Q are equivalent. The aim is to estimate g0 = dP/dQ. The authors assume that

infx∈D g0(x) > 0 and supx∈D g0(x) <∞.

In order to estimate the weight function g0, the authors assume that we have i.i.d.

samples from P and Q. It is assumed for convenience that there are the same number

n of samples from both distributions. The empirical distributions of these samples

are referred to as Pn and Qn. For any measure µ and any µ-integrable function f , the

authors use the notation µf to refer to the integral of f with respect to µ.

Given the samples above, Sugiyama et al. (2008) estimate g0 using a linear combina-

tion of basis functions. Let F be some set of non-negative basis functions on D. F

may be infinite, however it is assumed that infφ∈F Qφ > 0 and supφ∈F‖φ‖∞ < ∞.

Furthermore, the authors demand that the subset of basis functions Fn ⊆ F consid-

ered when estimating g0 from the pair of n samples is finite. However, Fn is allowed

to depend on the samples and therefore be random. For an example of this scenario,

consider a kernel k : D×D → R. We can let F = {k(x, ·) : x ∈ D} and Fn consist of

the k(x, ·) such that x is a sample generated by P .

Having defined the basis functions, the authors then define their linear combinations.

Let

G =

{
L∑
l=1

αlφl : αl ≥ 0 and φl ∈ F for 1 ≤ l ≤ L and all L ≥ 1

}
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be all finite positive linear combinations of elements of F and let GM = {g ∈ G :

‖g‖∞ ≤M} for all M ≥ 0. Furthermore, let

Gn =


|Fn|∑
l=1

αlφl : αl ≥ 0 and φl ∈ F for 1 ≤ l ≤ |Fn|


be all finite positive linear combinations of elements of Fn. The authors then define

their estimator

ĝn = arg max
g∈Gn

{Pn log(g) : Qng = 1}.

Here, Pn log(g) is an empirical version of the negative Kullback–Leibler divergence

between P and the measure P̃ such that dP̃ /dQ = g, up to an additive constant. We

must have Qg = 1 for P̃ to be a probability measure. The empirical version of this

constraint is Qng = 1. The authors assume that ĝn is unique.

In order to present bounds on ĝn, Sugiyama et al. (2008) bound the size of GM for all

M ≥ 0. Let N[ ](ε,G
M , L2(Q)) be the ε > 0 bracketing number of GM with respect to

the L2(Q) norm. This number is defined to be the smallest integer n ≥ 1 such that

there exist functions li : D → R and ui : D → R for 1 ≤ i ≤ n for which ‖li−ui‖L2(Q) <

ε and, for all f ∈ GM , there exists i such that li ≤ f ≤ ui. The authors assume that

there exist γ ∈ (0, 2) and K ≥ 0 such that logN[ ](ε,G
M , L2(Q)) ≤ K(M/ε)γ for all

M ≥ 0. The value of γ is larger when the GM are bigger. The bounds on ĝn are given

with respect to the generalised Hellinger distance hQ(g1, g2) = ‖√g1 −
√
g2‖L2(Q) for

non-negative functions g1 and g2.

Let an0 = (Qng0)−1 and δn = (Pn log(an0g0/ĝn)) ∨ 0. Remark 2 of Sugiyama et al.

(2008) shows that hQ(ĝn, g0) is of order n−1/(2+γ) +
√
δn in probability. Note that

this result depends on the size of the GM for M ≥ 0 through γ ∈ (0, 2). However,

the dependence on δn is not desirable. Assume that there exists g∗n ∈ Gn such that

Qng
∗
n = 1 and ‖g0/g

∗
n‖∞ <∞. Then Theorem 2 of Sugiyama et al. (2008) shows that
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hQ(ĝn, g0) is of order n−1/(2+γ) + hQ(g∗n, g0) in probability. This replaces
√
δn with

hQ(g∗n, g0), which is easier to interpret.



Chapter 3

Ivanov-Regularised Least-Squares

Estimators over Large RKHSs and

Their Interpolation Spaces

One of the key problems to overcome in nonparametric regression is overfitting, due

to estimators coming from large hypothesis classes. To avoid this phenomenon, it

is common to ensure that both the empirical risk and some regularisation function

are small when defining an estimator. There are three natural ways to achieve this

goal. We can minimise the empirical risk subject to a constraint on the regulari-

sation function, minimise the regularisation function subject to a constraint on the

empirical risk or minimise a linear combination of the two. These techniques are

known as Ivanov regularisation, Morozov regularisation and Tikhonov regularisation

respectively (Oneto, Ridella, and Anguita, 2016). Ivanov and Morozov regularisation

can be viewed as dual problems, while Tikhonov regularisation can be viewed as the

Lagrangian relaxation of either.

40
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Tikhonov regularisation has gained popularity as it provides a closed-form estimator

in many situations. In particular, Tikhonov regularisation in which the estimator is

selected from a reproducing-kernel Hilbert space (RKHS) has been extensively studied

(Smale and Zhou, 2007; Caponnetto and de Vito, 2007; Steinwart and Christmann,

2008; Mendelson and Neeman, 2010; Steinwart et al., 2009). Although Tikhonov

regularisation produces an estimator in closed form, it is Ivanov regularisation which

provides the greatest control over the hypothesis class, and hence over the estimator

it produces. For example, if the regularisation function is the norm of the RKHS,

then the bound on this function forces the estimator to lie in a ball of predefined

radius inside the RKHS. An RKHS norm measures the smoothness of a function, so

the norm constraint bounds the smoothness of the estimator. By contrast, Tikhonov

regularisation provides no direct control over the smoothness of the estimator.

The control we have over the Ivanov-regularised estimator is useful in many settings.

The most obvious use of Ivanov regularisation is when the regression function lies in

a ball of known radius inside the RKHS. In this case, Ivanov regularisation can be

used to constrain the estimator to lie in the same ball. Suppose, for example, that we

are interested in estimating the trajectory of a particle from noisy observations over

time. Assume that the velocity or acceleration of the particle is constrained by certain

physical conditions. Constraints of this nature can be imposed by bounding the norm

of the trajectory in a Sobolev space. Certain Sobolev spaces are RKHSs, so it is

possible to use Ivanov regularisation to enforce physical conditions on an estimator

of the trajectory which match those of the trajectory itself. Ivanov regularisation can

also be used within larger inference methods. It is compatible with validation, allowing

us to control an estimator selected from an uncountable collection. This is because

the Ivanov-regularised estimator is continuous in the size of the ball containing it (see

Lemma 3.15.2), so the estimators parametrised by an interval of ball sizes can be

controlled simultaneously using chaining.
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In addition to the other useful properties of the Ivanov-regularised estimator, Ivanov

regularisation can be performed almost as quickly as Tikhonov regularisation. The

Ivanov-regularised estimator is a support vector machine (SVM) with regularisation

parameter selected to match the norm constraint (see Lemma 3.6.1). This parameter

can be selected to within a tolerance ε using interval bisection with order log(1/ε)

iterations. In general, Ivanov regularisation requires the calculation of order log(1/ε)

SVMs.

In this chapter, we study the behaviour of the Ivanov-regularised least-squares estima-

tor with regularisation function equal to the norm of the RKHS. We derive a number

of novel results concerning the rate of convergence of the estimator in various settings

and under various assumptions. Our analysis is performed by controlling empirical

processes over balls in the RKHS. By contrast, the analysis of Tikhonov-regularised

estimators usually relies on the spectral decomposition of the kernel operator T on

L2(P ). Here, P is the covariate distribution.

We first prove an expectation bound on the squared L2(P ) error of our estimator of

order n−β/2, under the weak assumption that the response variables have bounded

variance. Here, n is the number of data points, and β parametrises the interpolation

space between L2(P ) and H containing the regression function. As far as we are

aware, the analysis of an estimator in this setting has not previously been considered.

The definition of an interpolation space is given in Section 3.1. The expected squared

L2(P ) error can be viewed as the expected squared error of our estimator at a new

independent covariate, with the same distribution P . If we also assume that the

regression function is bounded, then it makes sense to clip our estimator so that it

takes values in the same interval as the regression function. This further assumption

allows us to achieve an expectation bound on the squared L2(P ) error of the clipped

estimator of order n−β/(1+β).



CHAPTER 3. IVANOV REGULARISATION 43

We then move away from the average behaviour of the error towards its behaviour

in the worst case. We obtain high-probability bounds of the same order, under the

stronger assumption that the response variables have subgaussian errors and the in-

terpolation space is between L∞ and H. The second assumption is quite natural as

we already assume that the regression function is bounded, and H can be continu-

ously embedded in L∞ since it has a bounded kernel k. Note that this assumption

means that the set of possible regression functions is independent of the covariate

distribution.

When the regression function is bounded, we also analyse an adaptive version of our

estimator, which does not require us to know which interpolation space contains the

regression function. This adaptive estimator obtains bounds of the same order as the

non-adaptive one.

Our expectation bound of order n−β/(1+β), when the regression function is bounded,

improves on the high-probability bound of Smale and Zhou (2007) of order n−β/2.

Their bound is attained under the stronger assumption that the regression function

lies in the image of a power of the kernel operator, instead of an interpolation space

(see Steinwart and Scovel, 2012). The authors also assume that the response variables

are bounded. Furthermore, for a fixed β ∈ (0, 1), Steinwart et al. (2009) show that

there is an instance of our problem with a bounded regression function such that the

following holds. For all estimators f̂ of g, for some ε > 0, we have

‖f̂ − g‖2
L2(P ) ≥ Cα,εn

−α

with probability at least ε for all n ≥ 1, for some constant Cα,ε > 0, for all α >

β/(1 + β). Hence, for all estimators f̂ of g, we have

E
(
‖f̂ − g‖2

L2(P )

)
≥ Cα,εεn

−α



CHAPTER 3. IVANOV REGULARISATION 44

for all n ≥ 1, for all α > β/(1 + β). In this sense, our expectation bound in this

setting is optimal because it attains the order n−β/(1+β), the smallest possible power

of n. Our expectation bound on the adaptive version of our estimator is also optimal,

because the bound is of the same order as in the easier non-adaptive setting.

The high-probability bound of Steinwart et al. (2009) is optimal in a similar sense,

although the authors achieve faster rates by assuming a fixed rate of decay of the

eigenvalues of the kernel operator T , as discussed in Section 3.2. Since there is an

additional parameter for the decay of the eigenvalues, the collection of problem in-

stances for a fixed set of parameters is smaller in their paper. This means that our

optimal rates are the slowest of the optimal rates in Steinwart et al. (2009).

3.1 RKHSs and Their Interpolation Spaces

A Hilbert space H of real-valued functions on S is an RKHS if the evaluation func-

tional Lx : H → R, Lxh = h(x), is bounded for all x ∈ S. In this case, Lx ∈ H∗ the

dual of H and the Riesz representation theorem tells us that there is some kx ∈ H such

that h(x) = 〈h, kx〉H for all h ∈ H. The kernel is then given by k(x1, x2) = 〈kx1 , kx2〉H

for x1, x2 ∈ S, and is symmetric and positive-definite.

Now suppose that (S,S) is a measurable space on which P is a probability measure.

We can define a range of interpolation spaces between L2(P ) and H (Bergh and

Löfström, 1976). Let (Z, ‖·‖Z) be a Banach space and (V, ‖·‖V ) be a dense subspace

of Z. The K-functional of (Z, V ) is

K(z, t) = inf
v∈V

(‖z − v‖Z + t‖v‖V )
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for z ∈ Z and t > 0. For β ∈ (0, 1) and 1 ≤ q <∞, we define

‖z‖β,q =

(∫ ∞
0

(t−βK(z, t))qt−1dt

)1/q

and ‖z‖β,∞ = sup
t>0

(t−βK(z, t))

for z ∈ Z. The interpolation space [Z, V ]β,q is defined to be the set of z ∈ Z such that

‖z‖β,q < ∞. Smaller values of β give larger spaces. The space [Z, V ]β,q is not much

larger than V when β is close to 1, but we obtain spaces which get closer to Z as β

decreases. The following result is essentially Theorem 3.1 of Smale and Zhou (2003).

The authors only consider the case in which ‖v‖Z ≤ ‖v‖V for all v ∈ V , however the

result holds by the same proof even without this condition.

Lemma 3.1.1 Let (Z, ‖·‖Z) be a Banach space, (V, ‖·‖V ) be a dense subspace of Z

and z ∈ [Z, V ]β,∞. We have

inf{‖v − z‖Z : v ∈ V, ‖v‖V ≤ r} ≤
‖z‖1/(1−β)

β,∞

rβ/(1−β)
.

When H is dense in L2(P ), we can define the interpolation spaces [L2(P ), H]β,q, where

L2(P ) is the space of measurable functions f on (S,S) such that f 2 is integrable with

respect to P . We work with q = ∞, which gives the largest space of functions for a

fixed β ∈ (0, 1). We can then use the approximation result in Lemma 3.1.1. When

H is dense in L∞, we also require [L∞, H]β,q, where L∞ is the space of bounded

measurable functions on (S,S).

3.2 Literature Review

Early research on RKHS regression does not make assumptions on the rate of decay of

the eigenvalues of the kernel operator. For example, Smale and Zhou (2007) assume
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that the response variables are bounded and the regression function is of the form

g = T β/2f for β ∈ (0, 1] and f ∈ L2(P ). Here, T : L2(P ) → L2(P ) is the kernel

operator and P is the covariate distribution. The authors achieve a squared L2(P )

error of order n−β/2 with high probability by using SVMs.

Initial research which does make assumptions on the rate of decay of the eigenvalues

of the kernel operator, such as that of Caponnetto and de Vito (2007), assumes that

the regression function is at least as smooth as an element of H. However, their paper

still allows for regression functions of varying smoothness by letting g ∈ T (β−1)/2(H)

for β ∈ [1, 2]. By assuming that the ith eigenvalue of T is of order i−1/p for p ∈ (0, 1],

the authors achieve a squared L2(P ) error of order n−β/(β+p) with high probability by

using SVMs. This squared L2(P ) error is shown to be of optimal order for β ∈ (1, 2].

Later research focuses on the case in which the regression function is at most as smooth

as an element of H. Often, this research demands that the response variables are

bounded. For example, Mendelson and Neeman (2010) assume that g ∈ T β/2(L2(P ))

for β ∈ (0, 1) to obtain a squared L2(P ) error of order n−β/(1+p) with high probability

by using Tikhonov-regularised least-squares estimators. The authors also show that

if the eigenfunctions of the kernel operator T are uniformly bounded in L∞, then the

order can be improved to n−β/(β+p). Steinwart et al. (2009) relax the condition on the

eigenfunctions to the condition

‖h‖∞ ≤ Cp‖h‖pH‖h‖
1−p
L2(P )

for all h ∈ H and some constant Cp > 0. The same rate is attained by using clipped

Tikhonov-regularised least-squares estimators, including clipped SVMs, and is shown

to be optimal. The authors assume that g is in an interpolation space between L2(P )

and H, which is slightly more general than the assumption of Mendelson and Neeman

(2010). A detailed discussion about the image of L2(P ) under powers of T and
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interpolation spaces between L2(P ) and H is given by Steinwart and Scovel (2012).

Lately, the assumption that the response variables must be bounded has been relaxed

to allow for subexponential errors. However, the assumption that the regression func-

tion is bounded has been maintained. For example, Fischer and Steinwart (2017)

assume that g ∈ T β/2(L2(P )) for β ∈ (0, 2] and that g is bounded. The authors also

assume that Tα/2(L2(P )) is continuously embedded in L∞, with respect to an appro-

priate norm on Tα/2(L2(P )), for some α < β. This gives the same squared L2(P )

error of order n−β/(β+p) with high probability by using SVMs.

3.3 Contribution

In this chapter, we provide bounds on the squared L2(P ) error of our Ivanov-regularised

least-squares estimator when the regression function comes from an interpolation

space between L2(P ) and an RKHS H, which is separable with a bounded and mea-

surable kernel k. We use the norm of the RKHS as our regularisation function. Under

the weak assumption that the response variables have bounded variance, we prove a

bound on the expected squared L2(P ) error of order n−β/2 (Theorem 3.7.2 on page

57). As far as we are aware, the analysis of an estimator in this setting has not previ-

ously been considered. If we assume that the regression function is bounded, then we

can clip the estimator and achieve an expected squared L2(P ) error of order n−β/(1+β)

(Theorem 3.7.4 on page 59).

Under the stronger assumption that the response variables have subgaussian errors

and the regression function comes from an interpolation space between L∞ and H,

we show that the squared L2(P ) error is of order n−β/(1+β) with high probability

(Theorem 3.8.2 on page 65). For the settings in which the regression function is
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bounded, we use training and validation on the data in order to select the size of the

constraint on the norm of our estimator. This gives us an adaptive estimation result

which does not require us to know which interpolation space contains the regression

function. We obtain a squared L2(P ) error of order n−β/(1+β) in expectation and

with high probability, depending on the setting (Theorems 3.7.6 and 3.8.4 on pages

62 and 67). In order to perform training and validation, the response variables in

the validation set must have subgaussian errors. The expectation results for bounded

regression functions are of optimal order in the sense discussed at the end of the

introduction. The results not involving validation are summarised in Table 3.1. The

columns for which there is an L∞ bound on the regression function also make the

L2(P ) interpolation assumption. Orders of bounds marked with (∗) are known to be

optimal.

Regression Function L2(P ) Interpolation L∞ Bound L∞ Interpolation
Response Variables Bounded Variance Bounded Variance Subgaussian Errors
Bound Type Expectation Expectation High Probability

Bound Order n−β/2 n−β/(1+β) (∗) n−β/(1+β)

Table 3.1: Orders of bounds on squared L2(P ) error

The validation results are summarised in Table 3.2. Again, the columns for which

there is an L∞ bound on the regression function also make the L2(P ) interpolation

assumption. The assumptions on the response variables relate to those in the valida-

tion set, which has ñ data points. We assume that ñ is equal to some multiple of n.

Again, orders of bounds marked with (∗) are known to be optimal.

Regression Function L∞ Bound L∞ Interpolation
Response Variables Subgaussian Errors Subgaussian Errors
Bound Type Expectation High Probability

Bound Order n−β/(1+β) (∗) n−β/(1+β)

Table 3.2: Orders of validation bounds on squared L2(P ) error
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3.4 Problem Definition

We now formally define our regression problem. For a topological space T , let B(T )

be the Borel σ-algebra of T . Let (S,S) be a measurable space. Assume that (Xi, Yi)

for 1 ≤ i ≤ n are (S×R,S ⊗B(R))-valued random variables on the probability space

(Ω,F ,P), which are i.i.d. with Xi ∼ P and E(Y 2
i ) <∞, where E denotes integration

with respect to P. Since any version of E(Yi|Xi) is σ(Xi)-measurable, where σ(Xi)

is the σ-algebra generated by Xi, we have that E(Yi|Xi) = g(Xi) almost surely for

some function g which is measurable on (S,S) (Section A3.2 of Williams, 1991). From

the definition of conditional expectation and the identical distribution of the (Xi, Yi),

it is clear that we can choose g to be the same for all 1 ≤ i ≤ n. The conditional

expectation used is that of Kolmogorov, defined using the Radon–Nikodym derivative.

Its definition is unique almost surely. Since E(Y 2
i ) < ∞, it follows that g ∈ L2(P )

by Jensen’s inequality. To summarise, E(Yi|Xi) = g(Xi) almost surely for 1 ≤ i ≤ n

with g ∈ L2(P ). We assume throughout that

(Y 1) var(Yi|Xi) ≤ σ2 almost surely for 1 ≤ i ≤ n.

Our results depend on how well g can be approximated by elements of an RKHS H

with kernel k. We make the following assumptions.

(H) The RKHS H with kernel k has the following properties:

• The RKHS H is separable.

• The kernel k is bounded.

• The kernel k is a measurable function on (S × S,S ⊗ S).
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We define

‖k‖∞ = sup
x∈S

k(x, x)1/2 <∞.

We can guarantee that H is separable by, for example, assuming that k is continuous

and S is a separable topological space (Lemma 4.33 of Steinwart and Christmann,

2008). The fact that H has a kernel k which is measurable on (S×S,S ⊗S) guaran-

tees that all functions in H are measurable on (S,S) (Lemma 4.24 of Steinwart and

Christmann, 2008).

3.5 Ivanov Regularisation

We now consider Ivanov regularisation for least-squares estimators. Let Pn be the

empirical distribution of the Xi for 1 ≤ i ≤ n. The definition of Ivanov regularisation

provides us with the following result.

Lemma 3.5.1 Let A ⊆ L2(P ). It may be that A is a function of ω ∈ Ω and does not

contain g. Let

f̂ ∈ arg min
f∈A

1

n

n∑
i=1

(f(Xi)− Yi)2.

Then, for all f ∈ A and all ω ∈ Ω, we have

‖f̂ − f‖2
L2(Pn) ≤

4

n

n∑
i=1

(Yi − g(Xi))(f̂(Xi)− f(Xi)) + 4‖f − g‖2
L2(Pn).

In general, the first term of the right-hand side of the inequality must be controlled

by bounding it with

sup
f1,f2∈A

4

n

n∑
i=1

(Yi − g(Xi))(f1(Xi)− f2(Xi)). (3.5.1)
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This is usually not measurable. However, if A is a fixed subset of a separable RKHS,

then A is separable and the function which evaluates f ∈ A at Xi is continuous

for 1 ≤ i ≤ n. This means that the supremum can be replaced with a countable

supremum, so the quantity is a random variable on (Ω,F). Clearly, this term increases

as A gets larger. However, if A gets larger, then we may select f ∈ A closer to g.

Hence, we can make the second term of the right-hand side of the inequality in Lemma

3.5.1 smaller. This demonstrates the trade-off in selecting the size of A for the Ivanov-

regularised least-squares estimator constrained to lie in A.

The next step in analysing f̂ is to move to a bound on

‖f̂ − f‖2
L2(P ) ≤ ‖f̂ − f‖2

L2(Pn) + sup
f1,f2∈A

∣∣∣‖f1 − f2‖2
L2(Pn) − ‖f1 − f2‖2

L2(P )

∣∣∣ . (3.5.2)

The second term on the right-hand side of this inequality is measurable when A is

a fixed subset of a separable RKHS. It also increases with A. Finally, we obtain a

bound on

‖f̂ − g‖2
L2(P ) ≤ 2‖f̂ − f‖2

L2(P ) + 2‖f − g‖2
L2(P ).

This again demonstrates why f ∈ A should be close to g.

3.6 Estimator Definition

Let BH be the closed unit ball of H and r > 0. The Ivanov-regularised least-squares

estimator constrained to lie in rBH is

ĥr = arg min
f∈rBH

1

n

n∑
i=1

(f(Xi)− Yi)2.

We also define ĥ0 = 0.
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Lemma 3.6.1 Assume (H). Let K be the n × n symmetric matrix with Ki,j =

k(Xi, Xj). Then K is an (Rn×n,B(Rn×n))-valued measurable matrix on (Ω,F) and

there exist an orthogonal matrix A and a diagonal matrix D which are both (Rn×n,B(Rn×n))-

valued measurable matrices on (Ω,F) such that K = ADAT. Furthermore, the di-

agonal entries of D are non-negative and non-increasing. Let m = rkK, which is a

random variable on (Ω,F). For r > 0, if

r2 <
m∑
i=1

D−1
i,i (ATY )2

i ,

then define µ(r) > 0 by

m∑
i=1

Di,i

(Di,i + nµ(r))2
(ATY )2

i = r2. (3.6.1)

Otherwise, let µ(r) = 0. We have that µ(r) is strictly decreasing when µ(r) > 0,

and µ(r) is measurable on (Ω× (0,∞),F ⊗B((0,∞))), where r varies in (0,∞). Let

a ∈ Rn be defined by

(ATa)i = (Di,i + nµ(r))−1(ATY )i

for 1 ≤ i ≤ m and (ATa)i = 0 for m + 1 ≤ i ≤ n, noting that AT has the inverse A

since it is an orthogonal matrix. For r ≥ 0, we can uniquely define ĥr by demanding

that ĥr ∈ sp{kXi : 1 ≤ i ≤ n}. This gives

ĥr =
n∑
i=1

aikXi

for r > 0 and ĥ0 = 0. We have that ĥr is a (H,B(H))-valued measurable function on

(Ω× [0,∞),F ⊗ B([0,∞))), where r varies in [0,∞).

Let r > 0. There are multiple methods for calculating µ(r) to within a given tolerance

ε > 0. We call this value ν(r).
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3.6.1 Diagonalising K

Firstly, µ(r) = 0 if and only if

r ≥

(
m∑
i=1

D−1
i,i (ATY )2

i

)1/2

,

so in this case we set ν(r) = 0. Otherwise, µ(r) > 0 and

r2 =
m∑
i=1

Di,i

(Di,i + nµ(r))2
(ATY )2

i

≤ n−2

(
m∑
i=1

Di,i(A
TY )2

i

)
µ(r)−2.

Hence,

µ(r) ≤ n−1

(
m∑
i=1

Di,i(A
TY )2

i

)1/2

r−1. (3.6.2)

The function
m∑
i=1

Di,i

(Di,i + nµ)2
(ATY )2

i

of µ ≥ 0 is continuous. Hence, we can calculate ν(r) using interval bisection on the

interval with lower end point 0 and upper end point equal to the right-hand side of

(3.6.2). We can then approximate a by replacing µ(r) with ν(r) in the calculation of

a in Lemma 3.6.1.

3.6.2 Not Diagonalising K

We can calculate an alternative ν(r) without diagonalising K. Note that if µ(r) > 0,

then (3.6.1) can be written as

Y T(K + nµ(r)I)−1K(K + nµ(r)I)−1Y = r2.
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Since µ(r) is strictly decreasing for µ(r) > 0, we have

r ≥
(
Y T(K + nεI)−1K(K + nεI)−1Y

)1/2

if and only if µ(r) ∈ [0, ε], so in this case we set ν(r) = ε. Otherwise, µ(r) > ε and

(3.6.2) can be written as

µ(r) ≤ n−1(Y TKY )1/2r−1. (3.6.3)

The function

Y T(K + nµI)−1K(K + nµI)−1Y

of µ > 0 is continuous. Hence, we can calculate ν(r) using interval bisection on the

interval with lower end point ε and upper end point equal to the right-hand side of

(3.6.3). When µ(r) > 0 or K is invertible, we can also calculate a in Lemma 3.6.1 using

a = (K + nµ(r)I)−1Y . Since ν(r) > 0, we can approximate a by (K + nν(r)I)−1Y .

If we have that K is invertible, then we can calculate the ν(r) in Subsection 3.6.1

while still not diagonalising K. We have µ(r) = 0 if and only if r ≥ (Y TK−1Y )1/2, so

in this case we set ν(r) = 0. Otherwise, µ(r) > 0 and (3.6.2) can be written as

µ(r) ≤ n−1(Y TKY )1/2r−1,

so we can again use interval bisection to calculate ν(r). We can still approximate a

by (K + nν(r)I)−1Y .

3.6.3 Approximating ĥr

Having discussed how to approximate µ(r) by ν(r) to within a given tolerance ε > 0,

we now consider the estimator produced by this approximation. We find that this
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estimator is equal to ĥs for some s > 0. We only have ν(r) = 0 for the methods

considered above when µ(r) = 0, in which case we can let s = r to obtain the

approximate estimator ĥs = ĥr. Otherwise, ν(r) > 0. Let

s =

(
m∑
i=1

Di,i

(Di,i + nν(r))2
(ATY )2

i

)1/2

.

By (3.6.1), we have µ(s) = ν(r) and the approximate estimator is equal to ĥs. Assume

that r is bounded away from 0 as n → ∞ and let C > 0 be some constant not

depending on n. We can ensure that s is of the same order as r as n → ∞ by

demanding that s is within C of r. This is enough to ensure that the orders of

convergence for ĥr apply to ĥs. In order to attain this value of ν(r), interval bisection

should terminate at x ∈ R such that

(
m∑
i=1

Di,i

(Di,i + nx)2
(ATY )2

i

)1/2

is within C of r. Note that this guarantees ‖ĥs − ĥr‖H ≤ C1/2(r + s)1/2 by Lemma

3.15.2.

3.7 Expectation Bounds

To capture how well g can be approximated by elements of H, we define

I2(g, r) = inf
{
‖hr − g‖2

L2(P ) : hr ∈ rBH

}

for r > 0. We consider the distance of g from rBH because we constrain our estimator

ĥr to lie in this set. The supremum in (3.5.1) with A = rBH can be controlled using
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the reproducing kernel property and the Cauchy–Schwarz inequality to obtain

8r

(
1

n2

n∑
i,j=1

(Yi − g(Xi))(Yj − g(Xj))k(Xi, Xj)

)1/2

.

The expectation of this quantity can be bounded using Jensen’s inequality. Something

very similar to this argument gives the first term of the bound in Theorem 3.7.1 below.

The expectation of the supremum in (3.5.2) with A = rBH can be controlled using

symmetrisation (Lemma 2.3.1 of van der Vaart and Wellner, 1996) to obtain

2E

(
sup

f∈2rBH

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)
2

∣∣∣∣∣
)
,

where the εi for 1 ≤ i ≤ n are i.i.d. Rademacher random variables on (Ω,F ,P),

independent of the Xi. Since ‖f‖∞ ≤ 2‖k‖∞r for all f ∈ 2rBH , we can remove the

squares on the f(Xi) by using the contraction principle for Rademacher processes

(Theorem 3.2.1 of Giné and Nickl, 2016). This quantity can then be bounded in

a similar way to the supremum in (3.5.1), giving the second term of the bound in

Theorem 3.7.1 below.

Theorem 3.7.1 Assume (Y 1) and (H). Let r > 0. We have

E
(
‖ĥr − g‖2

L2(P )

)
≤ 8‖k‖∞σr

n1/2
+

64‖k‖2
∞r

2

n1/2
+ 10I2(g, r).

We can obtain rates of convergence for our estimator ĥr if we make an assumption

about how well g can be approximated by elements of H. Let us assume

(g1) g ∈ [L2(P ), H]β,∞ with norm at most B for β ∈ (0, 1) and B > 0.
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The assumption (g1), together with Lemma 3.1.1, give

I2(g, r) ≤ B2/(1−β)

r2β/(1−β)
(3.7.1)

for r > 0. We obtain an expectation bound on the squared L2(P ) error of our

estimator ĥr of order n−β/2.

Theorem 3.7.2 Assume (Y 1), (H) and (g1). Let r > 0. We have

E
(
‖ĥr − g‖2

L2(P )

)
≤ 8‖k‖∞σr

n1/2
+

64‖k‖2
∞r

2

n1/2
+

10B2/(1−β)

r2β/(1−β)
.

Let D1 > 0. Setting

r = D1‖k‖−(1−β)
∞ Bn(1−β)/4

gives

E
(
‖ĥr − g‖2

L2(P )

)
≤ D2‖k‖2β

∞B
2n−β/2 +D3‖k‖β∞Bσn−(1+β)/4

for constants D2, D3 > 0 depending only on D1 and β.

Since we must let r → ∞ for the initial bound in Theorem 3.7.2 to tend to 0, the

second term of the initial bound is asymptotically larger than the first. If we ignore

the first term and minimise the second and third terms over r > 0, we get

r =

(
5β

32(1− β)

)(1−β)/2

‖k‖−(1−β)
∞ Bn(1−β)/4.

In particular, r is of the form in Theorem 3.7.2. This choice of r gives

D2 = 64

(
5β

32(1− β)

)1−β

+ 10

(
32(1− β)

5β

)β
and D3 = 8

(
5β

32(1− β)

)(1−β)/2

.

The fact that the second term of the initial bound is larger than the first produces
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some interesting observations. Firstly, the choice of r above does not depend on σ2.

Secondly, we can decrease the bound if we can find a way to reduce the second term,

without having to alter the other terms. The increased size of the second term is due

to the fact that the bound on f ∈ 2rBH is given by ‖f‖∞ ≤ 2‖k‖∞r when applying

the contraction principle for Rademacher processes. If we can use a bound which does

not depend on r, then we can reduce the size of the second term.

We now also assume

(g2) ‖g‖∞ ≤ C for C > 0

and clip our estimator. Let r > 0. Since g is bounded in [−C,C], we can make ĥr

closer to g by constraining it to lie in the same interval. Similarly to Chapter 7 of

Steinwart and Christmann (2008) and Steinwart et al. (2009), we define the projection

V : R→ [−C,C] by

V (t) =


−C if t < −C

t if |t| ≤ C

C if t > C

for t ∈ R. We can apply the inequality

‖V ĥr − V hr‖2
L2(Pn) ≤ ‖ĥr − hr‖2

L2(Pn)

for all hr ∈ rBH . We continue analysing V ĥr by bounding

sup
f1,f2∈rBH

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f1 − V f2‖2

L2(P )

∣∣∣ .
The expectation of the supremum can be bounded in the same way as before, with

some adjustments. After symmetrisation, we can remove the squares on the V f1(Xi)−

V f2(Xi) for f1, f2 ∈ rBH and 1 ≤ i ≤ n by using the contraction principle for
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Rademacher processes with ‖V f1 − V f2‖∞ ≤ 2C. We can then use the triangle in-

equality to remove V f2(Xi), before applying the contraction principle again to remove

V . The expectation bound on the squared L2(P ) error of our estimator V ĥr follows

in the same way as before.

Theorem 3.7.3 Assume (Y 1), (H) and (g2). Let r > 0. We have

E
(
‖V ĥr − g‖2

L2(P )

)
≤ 8‖k‖∞(16C + σ)r

n1/2
+ 10I2(g, r).

We can obtain rates of convergence for our estimator V ĥr by again assuming (g1). We

obtain an expectation bound on the squared L2(P ) error of V ĥr of order n−β/(1+β).

Theorem 3.7.4 Assume (Y 1), (H), (g1) and (g2). Let r > 0. We have

E
(
‖V ĥr − g‖2

L2(P )

)
≤ 8‖k‖∞(16C + σ)r

n1/2
+

10B2/(1−β)

r2β/(1−β)
.

Let D1 > 0. Setting

r = D1‖k‖−(1−β)/(1+β)
∞ B2/(1+β)(16C + σ)−(1−β)/(1+β)n(1−β)/(2(1+β))

gives

E
(
‖V ĥr − g‖2

L2(P )

)
≤ D2‖k‖2β/(1+β)

∞ B2/(1+β)(16C + σ)2β/(1+β)n−β/(1+β)

for a constant D2 > 0 depending only on D1 and β.

If we minimise the initial bound in Theorem 3.7.4 over r > 0, we get

r =

(
5β

2(1− β)

)(1−β)/(1+β)

‖k‖−(1−β)/(1+β)
∞ B2/(1+β)(16C + σ)−(1−β)/(1+β)n(1−β)/(2(1+β)).
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In particular, r is of the form in Theorem 3.7.4. This choice of r gives

D2 = 2 · 5(1−β)/(1+β) · 42β/(1+β)

((
2β

1− β

)(1−β)/(1+β)

+

(
1− β

2β

)2β/(1+β)
)
.

Although the second bound in Theorem 3.7.4 is of theoretical interest, it is in practice

impossible to select r of the correct order in n for the bound to hold without knowing

β. Since assuming that we know β is not realistic, we must use some other method

for determining a good choice of r.

3.7.1 Validation

Suppose that we have an independent second data set (X̃i, Ỹi) for 1 ≤ i ≤ ñ which

are (S × R,S ⊗ B(R))-valued random variables on the probability space (Ω,F ,P).

Let the (X̃i, Ỹi) be i.i.d. with X̃i ∼ P and E(Ỹi|X̃i) = g(X̃i) almost surely. Let ρ ≥ 0

and R ⊆ [0, ρ] be non-empty and compact. Furthermore, let F = {V ĥr : r ∈ R}. We

estimate a value of r which makes the squared L2(P ) error of V ĥr small by

r̂ = arg min
r∈R

1

ñ

ñ∑
i=1

(V ĥr(X̃i)− Ỹi)2.

The minimum is attained because Lemma 3.15.2 shows that it is the minimum of a

continuous function over a compact set. In the event of ties, we may take r̂ to be the

infimum of all points attaining the minimum. Lemma 3.15.3 shows that the estimator

r̂ is a random variable on (Ω,F). Hence, by Lemma 3.6.1, ĥr̂ is a (H,B(H))-valued

random variable on (Ω,F).

The definition of r̂ means that we can analyse V ĥr̂ using Lemma 3.5.1. The expecta-

tion of the supremum in (3.5.1) with A = F can be bounded using chaining (Theorem

2.3.7 of Giné and Nickl, 2016). The diameter of (F, ‖·‖∞) is 2C, which is an important
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bound for the use of chaining. Hence, this form of analysis can only be performed

under the assumption (g2). After symmetrisation, the expectation of the supremum

in (3.5.2) with A = F can be bounded in the same way. In order to perform chain-

ing, we need to make an assumption on the behaviour of the errors of the response

variables Ỹi for 1 ≤ i ≤ ñ. Let U and V be random variables on (Ω,F ,P). We say U

is σ2-subgaussian if

E(exp(tU)) ≤ exp(σ2t2/2)

for all t ∈ R. We say U is σ2-subgaussian given V if

E(exp(tU)|V ) ≤ exp(σ2t2/2)

almost surely for all t ∈ R. We assume

(Ỹ ) Ỹi − g(X̃i) is σ̃2-subgaussian given X̃i for 1 ≤ i ≤ ñ.

This is stronger than the equivalent of the assumption (Y 1), that var(Ỹi|X̃i) ≤ σ̃2

almost surely.

Theorem 3.7.5 Assume (H) and (Ỹ ). Let r0 ∈ R. We have

E
(
‖V ĥr̂ − g‖2

L2(P )

)

is at most

32C(4C + σ̃)

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
+ 10E

(
‖V ĥr0 − g‖2

L2(P )

)
.

In order for us to apply the validation result in Theorem 3.7.5 to the initial bound in

Theorem 3.7.4, we need to make an assumption on R. We assume either
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(R1) R = [0, ρ] for ρ = an1/2 and a > 0

or

(R2) R = {bi : 0 ≤ i ≤ I − 1}∪{an1/2} and ρ = an1/2 for a, b > 0 and I = dan1/2/be.

The assumption (R1) is mainly of theoretical interest and would make it difficult to

calculate r̂ in practice. The estimator r̂ can be computed under the assumption (R2),

since in this case R is finite. We obtain an expectation bound on the squared L2(P )

error of V ĥr̂ of order n−β/(1+β). This is the same order in n as the second bound in

Theorem 3.7.4.

Theorem 3.7.6 Assume (Y 1), (H), (g1), (g2) and (Ỹ ). Also assume (R1) or (R2)

and that ñ increases at least linearly in n. We have

E
(
‖V ĥr̂ − g‖2

L2(P )

)
≤ D1n

−β/(1+β)

for a constant D1 > 0 not depending on n or ñ.

3.8 High-Probability Bounds

In this section, we look at how to extend our expectation bounds on our estimators

to high-probability bounds. In order to do this, we must control the second term of

the bound in Lemma 3.5.1 with A = rBH for r > 0, which is

‖hr − g‖2
L2(Pn) (3.8.1)
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for hr ∈ rBH . There is no way to bound (3.8.1) in high-probability without strict

assumptions on g. In fact, the most natural assumption is (g2) that ‖g‖∞ ≤ C for

C > 0, which we assume throughout this section. Bounding (3.8.1) also requires us

to introduce a new measure of how well g can be approximated by elements of H. We

define

I∞(g, r) = inf
{
‖hr − g‖2

∞ : hr ∈ rBH

}
for r > 0. Note that I∞(g, r) ≥ I2(g, r). Using I∞(g, r) instead of I2(g, r) means

that we do not have to control (3.8.1) by relying on ‖hr − g‖∞ ≤ ‖k‖∞r + C. Using

Hoeffding’s inequality, this would add a term of order r2t1/2/n1/2 for t ≥ 1 to the

bound in Theorem 3.8.1 below, which holds with probability 1 − 3e−t, substantially

increasing its size.

It may be possible to avoid this problem by instead considering the Ivanov-regularised

least-squares estimator

f̂r = arg min
f∈V (rBH)

1

n

n∑
i=1

(f(Xi)− Yi)2

for r > 0, where V (rBH) = {V hr : hr ∈ rBH}. The second term of the bound in

Lemma 3.5.1 with A = V (rBH) is

‖V hr − g‖2
L2(Pn) (3.8.2)

for hr ∈ rBH . Since ‖V hr − g‖∞ ≤ 2C, using Hoeffding’s inequality to bound (3.8.2)

would only add a term of order C2t1/2/n1/2 to the bound in Theorem 3.8.1 below,

which would not alter its size. However, the calculation and analysis of the estimator

f̂r is outside the scope of this chapter. This is because the calculation of f̂r involves

minimising a quadratic form subject to a series of linear constraints, and its analysis

requires a bound on the supremum in (3.5.1) with A = V (rBH).
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The rest of the analysis of V ĥr is similar to that of the expectation bound. The

supremum in (3.5.1) with A = rBH can again be bounded by

8r

(
1

n2

n∑
i,j=1

(Yi − g(Xi))(Yj − g(Xj))k(Xi, Xj)

)1/2

.

The quadratic form can be bounded using Lemma 3.16.2, under an assumption on

the behaviour of the errors of the response variables Yi for 1 ≤ i ≤ n. The proof

of Theorem 3.8.1 below uses a very similar argument to this one. The supremum in

(3.5.2) with A = rBH can be bounded using Talagrand’s inequality (Theorem A.9.1

of Steinwart and Christmann, 2008). In order to use Lemma 3.16.2, we must assume

(Y 2) Yi − g(Xi) is σ2-subgaussian given Xi for 1 ≤ i ≤ n.

This assumption is stronger than (Y 1). In particular, Theorem 3.7.3 still holds under

the assumptions (Y 2), (H) and (g2).

Theorem 3.8.1 Assume (Y 2), (H) and (g2). Let r > 0 and t ≥ 1. With probability

at least 1− 3e−t, we have

‖V ĥr − g‖2
L2(P )

is at most

8
(

2C2 + 8‖k‖1/2
∞ C3/2r1/2 + ‖k‖∞(16C + 5σ)r

)
t1/2

n1/2
+

16C2t

3n
+ 10I∞(g, r).

We can obtain rates of convergence for our estimator V ĥr, but we must make a new

assumption about how well g can be approximated by elements of H, instead of (g1).

We now assume

(g3) g ∈ [L∞, H]β,∞ with norm at most B for β ∈ (0, 1) and B > 0,
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instead of g ∈ [L2(P ), H]β,∞ with norm at most B. This assumption is stronger than

(g1), as it implies that the norm of g ∈ [L2(P ), H]β,∞ is

sup
t>0

(t−β inf
h∈H

(‖g − h‖L2(P ) + t‖h‖H)) ≤ sup
t>0

(t−β inf
h∈H

(‖g − h‖L∞ + t‖h‖H)) ≤ B.

In particular, Theorem 3.7.4 still holds under the assumptions (Y 1), (H), (g2) and

(g3) or (Y 2), (H), (g2) and (g3). The assumption (g3), together with Lemma 3.1.1,

give

I∞(g, r) ≤ B2/(1−β)

r2β/(1−β)
. (3.8.3)

We obtain a high-probability bound on the squared L2(P ) error of V ĥr of order

tβ/(1+β)n−β/(1+β) with probability at least 1− e−t.

Theorem 3.8.2 Assume (Y 2), (H), (g2) and (g3). Let r > 0 and t ≥ 1. With

probability at least 1− 3e−t, we have

‖V ĥr − g‖2
L2(P )

is at most

8
(

2C2 + 8‖k‖1/2
∞ C3/2r1/2 + ‖k‖∞(16C + 5σ)r

)
t1/2

n1/2
+

16C2t

3n
+

10B2/(1−β)

r2β/(1−β)
.

Let D1 > 0. Setting

r = D1‖k‖−(1−β)/(1+β)
∞ B2/(1+β)(16C + 5σ)−(1−β)/(1+β)t−(1−β)/(2(1+β))n(1−β)/(2(1+β))

gives

‖V ĥr − g‖2
L2(P )
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is at most

D2‖k‖2β/(1+β)
∞ B2/(1+β)(16C + 5σ)2β/(1+β)tβ/(1+β)n−β/(1+β)

+ D3‖k‖β/(1+β)
∞ B1/(1+β)C3/2(16C + 5σ)−(1−β)/(2(1+β))t(1+3β)/(4(1+β))n−(1+3β)/(4(1+β))

+ D4C
2t1/2n−1/2 +D5C

2tn−1

for constants D2, D3, D4, D5 > 0 depending only on D1 and β.

Since we must let r → ∞ for the initial bound in Theorem 3.8.2 to tend to 0, the

asymptotically largest terms in the bound are

8‖k‖∞(16C + 5σ)rt1/2

n1/2
+

10B2/(1−β)

r2β/(1−β)
.

If we minimise this over r > 0, we get r of the form in Theorem 3.8.2 with

D1 =

(
5β

2(1− β)

)(1−β)/(1+β)

.

3.8.1 Validation

We now extend our expectation bound on V ĥr̂ to a high-probability bound. The

supremum in (3.5.1) with A = F can be bounded using chaining (Exercise 1 of

Section 2.3 of Giné and Nickl, 2016), while the supremum in (3.5.2) with A = F can

be bounded using Talagrand’s inequality.

Theorem 3.8.3 Assume (H) and (Ỹ ). Let r0 ∈ R and t ≥ 1. With probability at

least 1− 3e−t, we have

‖V ĥr̂ − g‖2
L2(P )
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is at most

20C(C + σ̃)t1/2

ñ1/2

(
1 + 32

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

))

+
48C2t1/2

ñ1/2
+

16C2t

3ñ
+ 10‖V ĥr0 − g‖2

L2(P ).

We can apply the validation result in Theorem 3.8.3 to the initial bound in Theorem

3.8.2 by assuming either (R1) or (R2). We obtain a high-probability bound on the

squared L2(P ) error of V ĥr̂ of order t1/2n−β/(1+β) with probability at least 1 − e−t.

This is the same order in n as the second bound in Theorem 3.8.2.

Theorem 3.8.4 Assume (Y 2), (H), (g2), (g3) and (Ỹ ). Let t ≥ 1. Also assume

(R1) or (R2) and that ñ increases at least linearly in n. With probability at least

1− 6e−t, we have

‖V ĥr̂ − g‖2
L2(P ) ≤ D1t

1/2n−β/(1+β) +D2tn
−1

for constants D1, D2 > 0 not depending on n, ñ or t.

3.9 Discussion

In this chapter, we show how Ivanov regularisation can be used to produce smooth

estimators which have a small squared L2(P ) error. We first consider the case in

which the regression function lies in an interpolation space between L2(P ) and an

RKHS H. We achieve bounds on the squared L2(P ) under the assumption that H

is separable, with a bounded and measurable kernel. Under the weak assumption

that the response variables have bounded variance, we prove an expectation bound

on the squared L2(P ) error of our estimator of order n−β/2. Here, β parametrises the
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interpolation space between L2(P ) and H containing the regression function. As far

as we are aware, the analysis of an estimator in this setting has not previously been

considered.

If we assume that the regression function is bounded, then we can clip the estima-

tor and show that the clipped estimator has an expected squared L2(P ) error of

order n−β/(1+β). Under the stronger assumption that the response variables have sub-

gaussian errors and that the regression function comes from an interpolation space

between L∞ and H, we show that the squared L2(P ) error is of order n−β/(1+β) with

high probability. For the settings in which the regression function is bounded, we can

use training and validation on the data set to obtain bounds of the same order of

n−β/(1+β). This allows us to select the size of the norm constraint for our Ivanov regu-

larisation without knowing which interpolation space contains the regression function.

The response variables in the validation set must have subgaussian errors.

The expectation bounds of order n−β/(1+β) for bounded regression functions is optimal

in the sense discussed at the end of the introduction. We use Ivanov regularisation in-

stead of Tikhonov regularisation to control empirical processes over balls in the RKHS.

By contrast, the analysis of Tikhonov-regularised estimators usually uses the spec-

tral decomposition of the kernel operator (Mendelson and Neeman, 2010; Steinwart

et al., 2009). Analysing the Ivanov-regularised estimator using this decomposition

would give a more complete picture of the differences between Ivanov and Tikhonov

regularisation for RKHS regression.

It would be useful to extend the lower bound of order n−β/(1+β), discussed at the end

of the introduction, to the case in which the regression function lies in an interpolation

space between L∞ and the RKHS. This would show that our high-probability bounds

are also of optimal order. However, it is possible that estimation can be performed

with a high-probability bound on the squared L2(P ) error of smaller order.
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3.10 Proof of Expectation Bound for Unbounded

Regression Function

The proofs of all of the bounds in this chapter follow the outline in Section 3.5. We

first prove Lemma 3.5.1.

Proof of Lemma 3.5.1 Since f ∈ A, the definition of f̂ gives

1

n

n∑
i=1

(f̂(Xi)− Yi)2 ≤ 1

n

n∑
i=1

(f(Xi)− Yi)2.

Expanding

(f̂(Xi)− Yi)2 =
(

(f̂(Xi)− f(Xi)) + (f(Xi)− Yi)
)2

,

substituting into the above and rearranging gives

1

n

n∑
i=1

(f̂(Xi)− f(Xi))
2 ≤ 2

n

n∑
i=1

(Yi − f(Xi))(f̂(Xi)− f(Xi)).

Substituting

Yi − f(Xi) = (Yi − g(Xi)) + (g(Xi)− f(Xi))

into the above and applying the Cauchy–Schwarz inequality to the second term gives

‖f̂ − f‖2
L2(Pn) ≤

2

n

n∑
i=1

(Yi − g(Xi))(f̂(Xi)− f(Xi))

+ 2‖g − f‖L2(Pn)‖f̂ − f‖L2(Pn).

For constants a, b ∈ R and a variable x ∈ R, we have

x2 ≤ a+ 2bx =⇒ x2 ≤ 2a+ 4b2
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by completing the square and rearranging. Applying this result to the above inequality

proves the lemma.

The following lemma is useful for bounding the expectation of both of the suprema

in Section 3.5.

Lemma 3.10.1 Assume (H). Let the εi be random variables on (Ω,F ,P) such that

E(εi|X) = 0 almost surely and var(εi|X) ≤ σ2 almost surely for 1 ≤ i ≤ n and

cov(εi, εj|X) = 0 almost surely for 1 ≤ i, j ≤ n with i 6= j. Then

E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
)
≤ ‖k‖∞σr

n1/2
.

Proof This proof method is due to Remark 6.1 of Sriperumbudur (2016). By the

reproducing kernel property and the Cauchy–Schwarz inequality, we have

sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣ = sup
f∈rBH

∣∣∣∣∣
〈

1

n

n∑
i=1

εikXi , f

〉
H

∣∣∣∣∣
= r

∥∥∥∥∥ 1

n

n∑
i=1

εikXi

∥∥∥∥∥
H

= r

(
1

n2

n∑
i,j=1

εiεjk(Xi, Xj)

)1/2

.

By Jensen’s inequality, we have

E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
∣∣∣∣∣X
)
≤ r

(
1

n2

n∑
i,j=1

cov(εi, εj|X)k(Xi, Xj)

)1/2

≤ r

(
σ2

n2

n∑
i=1

k(Xi, Xi)

)1/2
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almost surely and again, by Jensen’s inequality, we have

E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
)
≤ r

(
σ2‖k‖2

∞
n

)1/2

.

The result follows.

We bound the distance between ĥr and hr in the L2(Pn) norm for r > 0 and hr ∈ rBH .

Lemma 3.10.2 Assume (Y 1) and (H). Let hr ∈ rBH . We have

E
(
‖ĥr − hr‖2

L2(Pn)

)
≤ 4‖k‖∞σr

n1/2
+ 4‖hr − g‖2

L2(P ).

Proof By Lemma 3.5.1 with A = rBH , we have

‖ĥr − hr‖2
L2(Pn) ≤

4

n

n∑
i=1

(Yi − g(Xi))(ĥr(Xi)− hr(Xi)) + 4‖hr − g‖2
L2(Pn).

We now bound the expectation of the right-hand side. We have

E
(
‖hr − g‖2

L2(Pn)

)
= ‖hr − g‖2

L2(P ).

Furthermore,

E

(
1

n

n∑
i=1

(Yi − g(Xi))hr(Xi)

)
= E

(
1

n

n∑
i=1

E(Yi − g(Xi)|Xi)hr(Xi)

)
= 0.

Finally, by Lemma 3.10.1 with εi = Yi − g(Xi), we have

E

(
1

n

n∑
i=1

(Yi − g(Xi))ĥr(Xi)

)
≤ E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

(Yi − g(Xi))f(Xi)

∣∣∣∣∣
)

≤ ‖k‖∞σr
n1/2

.
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The result follows.

The following lemma is useful for moving the bound on the distance between ĥr and

hr from the L2(Pn) norm to the L2(P ) norm for r > 0 and hr ∈ rBH .

Lemma 3.10.3 Assume (H). We have

E
(

sup
f∈rBH

∣∣∣‖f‖2
L2(Pn) − ‖f‖2

L2(P )

∣∣∣) ≤ 8‖k‖2
∞r

2

n1/2
.

Proof Let the εi for 1 ≤ i ≤ n be i.i.d. Rademacher random variables on (Ω,F ,P),

independent of the Xi. Lemma 2.3.1 of van der Vaart and Wellner (1996) shows

E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)
2 −

∫
f 2dP

∣∣∣∣∣
)
≤ 2E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)
2

∣∣∣∣∣
)

by symmetrisation. Since |f(Xi)| ≤ ‖k‖∞r for all f ∈ rBH , we find

f(Xi)
2

2‖k‖∞r

is a contraction vanishing at 0 as a function of f(Xi) for all 1 ≤ i ≤ n. By Theorem

3.2.1 of Giné and Nickl (2016), we have

E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εi
f(Xi)

2

2‖k‖∞r

∣∣∣∣∣
∣∣∣∣∣X
)
≤ 2E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
∣∣∣∣∣X
)

almost surely. By Lemma 3.10.1 with σ2 = 1, we have

E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
)
≤ ‖k‖∞r

n1/2
.

The result follows.

We move the bound on the distance between ĥr and hr from the L2(Pn) norm to the
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L2(P ) norm for r > 0 and hr ∈ rBH .

Corollary 3.10.4 Assume (Y 1) and (H). Let hr ∈ rBH . We have

E
(
‖ĥr − hr‖2

L2(P )

)
≤ 4‖k‖∞σr

n1/2
+

32‖k‖2
∞r

2

n1/2
+ 4‖hr − g‖2

L2(P ).

Proof By Lemma 3.10.2, we have

E
(
‖ĥr − hr‖2

L2(Pn)

)
≤ 4‖k‖∞σr

n1/2
+ 4‖hr − g‖2

L2(P ).

Since ĥr − hr ∈ 2rBH , by Lemma 3.10.3 we have

E
(
‖ĥr − hr‖2

L2(P ) − ‖ĥr − hr‖2
L2(Pn)

)
≤ E

(
sup

f∈2rBH

∣∣∣‖f‖2
L2(Pn) − ‖f‖2

L2(P )

∣∣∣)
≤ 32‖k‖2

∞r
2

n1/2
.

The result follows.

We bound the distance between ĥr and g in the L2(P ) norm for r > 0 to prove

Theorem 3.7.1.

Proof of Theorem 3.7.1 Fix hr ∈ rBH . We have

‖ĥr − g‖2
L2(P ) ≤

(
‖ĥr − hr‖2

L2(P ) + ‖hr − g‖2
L2(P )

)2

≤ 2‖ĥr − hr‖2
L2(P ) + 2‖hr − g‖2

L2(P ).

By Corollary 3.10.4, we have

E
(
‖ĥr − hr‖2

L2(P )

)
≤ 4‖k‖∞σr

n1/2
+

32‖k‖2
∞r

2

n1/2
+ 4‖hr − g‖2

L2(P ).
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Hence,

E
(
‖ĥr − g‖2

L2(P )

)
≤ 8‖k‖∞σr

n1/2
+

64‖k‖2
∞r

2

n1/2
+ 10‖hr − g‖2

L2(P ).

Taking an infimum over hr ∈ rBH proves the result.

We assume (g1) to prove Theorem 3.7.2.

Proof of Theorem 3.7.2 The initial bound follows from Theorem 3.7.1 and (3.7.1).

Based on this bound, setting

r = D1‖k‖−(1−β)
∞ Bn(1−β)/4

gives

E
(
‖ĥr − g‖2

L2(P )

)
≤
(

64D2
1 + 10D

−2β/(1−β)
1

)
‖k‖2β

∞B
2n−β/2 + 8D1‖k‖β∞Bσn−(1+β)/4.

Hence, the next bound follows with

D2 = 64D2
1 + 10D

−2β/(1−β)
1 and D3 = 8D1.

3.11 Proof of Expectation Bound for Bounded Re-

gression Function

We can obtain a bound on the distance between V ĥr and V hr in the L2(Pn) norm for

r > 0 and hr ∈ rBH from Lemma 3.10.2. The following lemma is useful for moving
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the bound on the distance between V ĥr and V hr from the L2(Pn) norm to the L2(P )

norm.

Lemma 3.11.1 Assume (H). We have

E
(

sup
f1,f2∈rBH

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f2 − V f2‖2

L2(P )

∣∣∣) ≤ 64‖k‖∞Cr
n1/2

.

Proof Let the εi for 1 ≤ i ≤ n be i.i.d. Rademacher random variables on (Ω,F ,P),

independent of the Xi. Lemma 2.3.1 of van der Vaart and Wellner (1996) shows

E

(
sup

f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

(V f1(Xi)− V f2(Xi))
2 −

∫
(V f1 − V f2)2dP

∣∣∣∣∣
)

is at most

2E

(
sup

f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εi(V f1(Xi)− V f2(Xi))
2

∣∣∣∣∣
)

by symmetrisation. Since |V f1(Xi)− V f2(Xi)| ≤ 2C for all f1, f2 ∈ rBH , we find

(V f1(Xi)− V f2(Xi))
2

4C

is a contraction vanishing at 0 as a function of V f1(Xi)− V f2(Xi) for all 1 ≤ i ≤ n.

By Theorem 3.2.1 of Giné and Nickl (2016), we have

E

(
sup

f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εi
(V f1(Xi)− V f2(Xi))

2

4C

∣∣∣∣∣
∣∣∣∣∣X
)

is at most

2E

(
sup

f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εi(V f1(Xi)− V f2(Xi))

∣∣∣∣∣
∣∣∣∣∣X
)
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almost surely. Therefore,

E

(
sup

f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

(V f1(Xi)− V f2(Xi))
2 −

∫
(V f1 − V f2)2dP

∣∣∣∣∣
)

is at most

16C E

(
sup

f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εi(V f1(Xi)− V f2(Xi))

∣∣∣∣∣
)
≤ 32C E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εiV f(Xi)

∣∣∣∣∣
)

by the triangle inequality. Again, by Theorem 3.2.1 of Giné and Nickl (2016), we have

E

(
sup

f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

(V f1(Xi)− V f2(Xi))
2 −

∫
(V f1 − V f2)2dP

∣∣∣∣∣
)

is at most

64C E

(
sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
)

since V is a contraction vanishing at 0. The result follows from Lemma 3.10.1 with

σ2 = 1.

We move the bound on the distance between V ĥr and V hr from the L2(Pn) norm to

the L2(P ) norm for r > 0 and hr ∈ rBH .

Corollary 3.11.2 Assume (Y 1) and (H). Let hr ∈ rBH . We have

E
(
‖V ĥr − V hr‖2

L2(P )

)
≤ 4‖k‖∞(16C + σ)r

n1/2
+ 4‖hr − g‖2

L2(P ).

Proof By Lemma 3.10.2, we have

E
(
‖ĥr − hr‖2

L2(Pn)

)
≤ 4‖k‖∞σr

n1/2
+ 4‖hr − g‖2

L2(P ),
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so

E
(
‖V ĥr − V hr‖2

L2(Pn)

)
≤ 4‖k‖∞σr

n1/2
+ 4‖hr − g‖2

L2(P ).

Since ĥr, hr ∈ rBH , by Lemma 3.11.1 we have

E
(
‖V ĥr − V hr‖2

L2(P ) − ‖V ĥr − V hr‖2
L2(Pn)

)
≤ E

(
sup

f1,f2∈rBH

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f2 − V f2‖2

L2(P )

∣∣∣)
≤ 64‖k‖∞Cr

n1/2
.

The result follows.

We assume (g2) to bound the distance between V ĥr and g in the L2(P ) norm for

r > 0 and prove Theorem 3.7.3.

Proof of Theorem 3.7.3 Fix hr ∈ rBH . We have

‖V ĥr − g‖2
L2(P ) ≤

(
‖V ĥr − V hr‖2

L2(P ) + ‖V hr − g‖2
L2(P )

)2

≤ 2‖V ĥr − V hr‖2
L2(P ) + 2‖V hr − g‖2

L2(P )

≤ 2‖V ĥr − V hr‖2
L2(P ) + 2‖hr − g‖2

L2(P ).

By Corollary 3.11.2, we have

E
(
‖V ĥr − V hr‖2

L2(P )

)
≤ 4‖k‖∞(16C + σ)r

n1/2
+ 4‖hr − g‖2

L2(P ).

Hence,

E
(
‖V ĥr − g‖2

L2(P )

)
≤ 8‖k‖∞(16C + σ)r

n1/2
+ 10‖hr − g‖2

L2(P ).

Taking an infimum over hr ∈ rBH proves the result.

We assume (g1) to prove Theorem 3.7.4.
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Proof of Theorem 3.7.4 The initial bound follows from Theorem 3.7.3 and (3.7.1).

Based on this bound, setting

r = D1‖k‖−(1−β)/(1+β)
∞ B2/(1+β)(16C + σ)−(1−β)/(1+β)n(1−β)/(2(1+β))

gives

E
(
‖V ĥr − g‖2

L2(P )

)
is at most

(
8D1 + 10D

−2β/(1−β)
1

)
‖k‖2β/(1+β)

∞ B2/(1+β)(16C + σ)2β/(1+β)n−β/(1+β).

Hence, the next bound follows with

D2 = 8D1 + 10D
−2β/(1−β)
1 .

3.12 Proof of Expectation Bound for Validation

We need to introduce some definitions for stochastic processes. A stochastic process

W on (Ω,F) indexed by a metric space (M,d) is d2-subgaussian if it is centred and

W (s)−W (t) is d(s, t)2-subgaussian for all s, t ∈ M . W is separable if there exists a

countable set M0 ⊆M such that the following holds for all ω ∈ Ω0, where P(Ω0) = 1.

For all s ∈M and ε > 0, W (s) is in the closure of {W (t) : t ∈M0, d(s, t) ≤ ε}.

We also need to introduce the concept of covering numbers for the next result. The

covering number N(M,d, ε) is the minimum number of d-balls of size ε > 0 needed

to cover M .
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The following lemma is useful for bounding the expectation of both of the suprema

in Section 3.5.

Lemma 3.12.1 Assume (H). Let the εi be random variables on (Ω,F ,P) such that

(X̃i, εi) is i.i.d. for 1 ≤ i ≤ ñ and let εi be σ̃2-subgaussian given X̃i. Let r0 ∈ R,

f0 = V ĥr0 and

W (f) =
1

ñ

ñ∑
i=1

εi(f(X̃i)− f0(X̃i))

for f ∈ F . Then W is σ̃2‖·‖2
∞/ñ-subgaussian given X̃ and separable on (F, σ̃‖·‖∞/ñ1/2).

Furthermore,

E
(

sup
f∈F
|W (f)|

)
≤ 4Cσ̃

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
.

Proof Let Wi(f) = εi(f(X̃i) − f0(X̃i)) for 1 ≤ i ≤ ñ and f ∈ F . Note that the Wi

are independent and centred. Since Wi(f1)−Wi(f2) is σ̃2‖f1−f2‖2
∞-subgaussian given

X̃i for 1 ≤ i ≤ ñ and f1, f2 ∈ F , the process W is σ̃2‖·‖2
∞/ñ-subgaussian given X̃. By

Lemma 3.15.2, we have that (F, σ̃‖·‖∞/ñ1/2) is separable. Hence, W is separable on

(F, σ̃‖·‖∞/ñ1/2) since it is continuous. The diameter of (F, σ̃‖·‖∞/ñ1/2) is

D = sup
f1,f2∈F

σ̃‖f1 − f2‖∞/ñ1/2 ≤ 2Cσ̃/ñ1/2.

We have

∫ ∞
0

(log(N(F, σ̃‖·‖∞/ñ1/2, ε)))1/2dε =

∫ ∞
0

(log(N(F, ‖·‖∞, ñ1/2ε/σ̃)))1/2dε

=
σ̃

ñ1/2

∫ ∞
0

(log(N(F, ‖·‖∞, u)))1/2du.

This is finite by Lemma 3.17.2. Hence, by Theorem 2.3.7 of Giné and Nickl (2016)
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and Lemma 3.17.2, we have

E
(

sup
f∈F
|W (f)|

∣∣∣∣X̃,X, Y)

is at most

E(|W (f0)| |X̃,X, Y ) + 25/2

∫ Cσ̃/ñ1/2

0

(log(2N(F, σ̃‖·‖∞/ñ1/2, ε)))1/2dε

= 25/2

∫ Cσ̃/ñ1/2

0

(log(2N(F, ‖·‖∞, ñ1/2ε/σ̃)))1/2dε

=
25/2σ̃

ñ1/2

∫ C

0

(log(2N(F, ‖·‖∞, u)))1/2du

≤ 25/2σ̃

ñ1/2

((
log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

C +
(π

2

)1/2

C

)

=
4Cσ̃

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)

almost surely, noting W (f0) = 0. The result follows.

We bound the distance between V ĥr̂ and V ĥr0 in the L2(P̃ñ) norm for r0 ∈ R.

Lemma 3.12.2 Assume (H) and (Ỹ ). Let r0 ∈ R. We have

E
(
‖V ĥr̂ − V ĥr0‖2

L2(P̃ñ)

)

is at most

16Cσ̃

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
+ 4E

(
‖V ĥr0 − g‖2

L2(P )

)
.

Proof By Lemma 3.5.1 with A = F and n, X, Y and Pn replaced by ñ, X̃, Ỹ and
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P̃ñ, we have

‖V ĥr̂ − V ĥr0‖2
L2(P̃ñ)

≤ 4

ñ

ñ∑
i=1

(Ỹi − g(X̃i))(V ĥr̂(X̃i)− V ĥr0(X̃i)) + 4‖V ĥr0 − g‖2
L2(P̃ñ)

.

We now bound the expectation of the right-hand side. We have

E
(
‖V ĥr0 − g‖2

L2(P̃ñ)

)
= E

(
‖V ĥr0 − g‖2

L2(P )

)
.

Let f0 = V ĥr0 . By Lemma 3.12.1 with εi = Yi − g(Xi), we have

E

(
1

ñ

ñ∑
i=1

(Ỹi − g(X̃i))(V ĥr̂(X̃i)− V ĥr0(X̃i))

)

≤ E

(
sup
f∈F

∣∣∣∣∣ 1ñ
ñ∑
i=1

(Ỹi − g(X̃i))(f(X̃i)− f0(X̃i))

∣∣∣∣∣
)

≤ 4Cσ̃

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
.

The result follows.

The following lemma is useful for moving the bound on the distance between V ĥr̂ and

V ĥr0 from the L2(P̃ñ) norm to the L2(P ) norm for r0 ∈ R.

Lemma 3.12.3 Assume (H). Let r0 ∈ R and f0 = V ĥr0. We have

E
(

sup
f∈F

∣∣∣‖f − f0‖2
L2(P̃ñ)

− ‖f − f0‖2
L2(P )

∣∣∣) ≤ 64C2

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
.

Proof Let the εi be i.i.d. Rademacher random variables on (Ω,F ,P) for 1 ≤ i ≤ ñ,

independent of X̃, X and Y . Lemma 2.3.1 of van der Vaart and Wellner (1996) shows

E

(
sup
f∈F

∣∣∣∣∣ 1ñ
ñ∑
i=1

(f(X̃i)− f0(X̃i))
2 −

∫
(f − f0)2dP

∣∣∣∣∣
∣∣∣∣∣X, Y

)
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is at most

2E

(
sup
f∈F

∣∣∣∣∣ 1ñ
ñ∑
i=1

εi(f(X̃i)− f0(X̃i))
2

∣∣∣∣∣
∣∣∣∣∣X, Y

)

almost surely by symmetrisation. Since |f(X̃i)− f0(X̃i)| ≤ 2C for all f ∈ F , we find

(f(X̃i)− f0(X̃i))
2

4C

is a contraction vanishing at 0 as a function of f(X̃i) − f0(X̃i) for all 1 ≤ i ≤ ñ. By

Theorem 3.2.1 of Giné and Nickl (2016), we have

E

(
sup
f∈F

∣∣∣∣∣ 1ñ
ñ∑
i=1

εi
(f(X̃i)− f0(X̃i))

2

4C

∣∣∣∣∣
∣∣∣∣∣X̃,X, Y

)

is at most

2E

(
sup
f∈F

∣∣∣∣∣ 1ñ
ñ∑
i=1

εi(f(X̃i)− f0(X̃i))

∣∣∣∣∣
∣∣∣∣∣X̃,X, Y

)
almost surely. Therefore,

E

(
sup
f∈F

∣∣∣∣∣ 1ñ
ñ∑
i=1

(f(X̃i)− f0(X̃i))
2 −

∫
(f − f0)2dP

∣∣∣∣∣
∣∣∣∣∣X, Y

)

is at most

16C E

(
sup
f∈F

∣∣∣∣∣ 1ñ
ñ∑
i=1

εi(f(X̃i)− f0(X̃i))

∣∣∣∣∣
∣∣∣∣∣X, Y

)

almost surely. The result follows from Lemma 3.12.1 with σ̃2 = 1.

We move the bound on the distance between V ĥr̂ and V ĥr0 from the L2(P̃ñ) norm to

the L2(P ) norm for r0 ∈ R.

Corollary 3.12.4 Assume (H) and (Ỹ ). Let r0 ∈ R. We have

E
(
‖V ĥr̂ − V ĥr0‖2

L2(P )

)
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is at most

16C(4C + σ̃)

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
+ 4E

(
‖V ĥr0 − g‖2

L2(P )

)
.

Proof By Lemma 3.12.2, we have

E
(
‖V ĥr̂ − V ĥr0‖2

L2(P̃ñ)

)

is at most

16Cσ̃

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
+ 4E

(
‖V ĥr0 − g‖2

L2(P )

)
.

Let f0 = V ĥr0 . Since ĥr̂ ∈ F , by Lemma 3.12.3 we have

E
(
‖V ĥr̂ − V ĥr0‖2

L2(P ) − ‖V ĥr̂ − V ĥr0‖2
L2(P̃ñ)

)
≤ E

(
sup
f∈F

∣∣∣‖f − f0‖2
L2(P̃ñ)

− ‖f − f0‖2
L2(P )

∣∣∣)
≤ 64C2

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
.

The result follows.

We bound the distance between V ĥr̂ and g in the L2(P ) norm to prove Theorem 3.7.5.

Proof of Theorem 3.7.5 We have

‖V ĥr̂ − g‖2
L2(P ) ≤

(
‖V ĥr̂ − V hr0‖2

L2(P ) + ‖V hr0 − g‖2
L2(P )

)2

≤ 2‖V ĥr̂ − V hr0‖2
L2(P ) + 2‖V hr0 − g‖2

L2(P ).
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By Corollary 3.12.4, we have

E
(
‖V ĥr̂ − V ĥr0‖2

L2(P )

)

is at most

16C(4C + σ̃)

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
+ 4E

(
‖V ĥr0 − g‖2

L2(P )

)
.

Hence,

E
(
‖V ĥr̂ − g‖2

L2(P )

)
is at most

32C(4C + σ̃)

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
+ 10E

(
‖V ĥr0 − g‖2

L2(P )

)
.

We assume the conditions of Theorem 3.7.4 to prove Theorem 3.7.6.

Proof of Theorem 3.7.6 If we assume (R1), then r0 = an(1−β)/(2(1+β)) ∈ R and

E
(
‖V ĥr0 − g‖2

L2(P )

)
≤ 8‖k‖∞(16C + σ)an(1−β)/(2(1+β))

n1/2
+

10B2/(1−β)

a2β/(1−β)nβ/(1+β)

by Theorem 3.7.4. If we assume (R2), then there is at least one r0 ∈ R such that

an(1−β)/(2(1+β)) ≤ r0 < an(1−β)/(2(1+β)) + b

and

E
(
‖V ĥr0 − g‖2

L2(P )

)
≤ 8‖k‖∞(16C + σ)r0

n1/2
+

10B2/(1−β)

r
2β/(1−β)
0
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≤
8‖k‖∞(16C + σ)

(
an(1−β)/(2(1+β)) + b

)
n1/2

+
10B2/(1−β)

a2β/(1−β)nβ/(1+β)

by Theorem 3.7.4. In either case,

E
(
‖V ĥr0 − g‖2

L2(P )

)
≤ D2n

−β/(1+β)

for some constant D2 > 0 not depending on n or ñ. By Theorem 3.7.5, we have

E
(
‖V ĥr̂ − g‖2

L2(P )

)
≤ D3 log(n)1/2ñ−1/2 + 10D2n

−β/(1+β)

for some constant D3 > 0 not depending on n or ñ. Since ñ increases at least linearly

in n, there exists some constant D4 > 0 such that ñ ≥ D4n. We then have

E
(
‖V ĥr̂ − g‖2

L2(P )

)
≤ D

−1/2
4 D3 log(n)1/2n−1/2 + 10D2n

−β/(1+β)

≤ D1n
−β/(1+β)

for some constant D1 > 0 not depending on n or ñ.

3.13 Proof of High-Probability Bound for Bounded

Regression Function

We bound the distance between ĥr and hr in the L2(Pn) norm for r > 0 and hr ∈ rBH .

Lemma 3.13.1 Assume (Y 2) and (H). Let r > 0, hr ∈ rBH and t ≥ 1. With

probability at least 1− 2e−t, we have

‖ĥr − hr‖2
L2(Pn) ≤

20‖k‖∞σrt1/2

n1/2
+ 4‖hr − g‖2

∞.
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Proof By Lemma 3.5.1 with A = rBH , we have

‖ĥr − hr‖2
L2(Pn) ≤

4

n

n∑
i=1

(Yi − g(Xi))(ĥr(Xi)− hr(Xi)) + 4‖hr − g‖2
L2(Pn).

We now bound the right-hand side. We have

‖hr − g‖2
L2(Pn) ≤ ‖hr − g‖2

∞.

Furthermore,

− 1

n

n∑
i=1

(Yi − g(Xi))hr(Xi)

is subgaussian given X with parameter

1

n2

n∑
i=1

σ2hr(Xi)
2 ≤ ‖k‖

2
∞σ

2r2

n
.

So we have

− 1

n

n∑
i=1

(Yi − g(Xi))hr(Xi) ≤
‖k‖∞σr(2t)1/2

n1/2
≤ 2‖k‖∞σrt1/2

n1/2

with probability at least 1− e−t by Chernoff bounding. Finally, we have

1

n

n∑
i=1

(Yi − g(Xi))ĥr(Xi) ≤ sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

(Yi − g(Xi))f(Xi)

∣∣∣∣∣
= sup

f∈rBH

∣∣∣∣∣
〈

1

n

n∑
i=1

(Yi − g(Xi))kXi , f

〉
H

∣∣∣∣∣
= r

∥∥∥∥∥ 1

n

n∑
i=1

(Yi − g(Xi))kXi

∥∥∥∥∥
H

= r

(
1

n2

n∑
i,j=1

(Yi − g(Xi))(Yj − g(Xj))k(Xi, Xj)

)1/2

by the reproducing kernel property and the Cauchy–Schwarz inequality. Let K be the
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n× n matrix with Ki,j = k(Xi, Xj) and let ε be the vector of the Yi − g(Xi). Then

1

n2

n∑
i,j=1

(Yi − g(Xi))(Yj − g(Xj))k(Xi, Xj) = εT(n−2K)ε.

Furthermore, since k is a measurable function on (S × S,S ⊗ S), we have that n−2K

is an (Rn×n,B(Rn×n))-valued measurable matrix on (Ω,F) and non-negative-definite.

Let ai for 1 ≤ i ≤ n be the eigenvalues of n−2K. Then

max
i
ai ≤ tr(n−2K) ≤ n−1‖k‖2

∞

and

tr((n−2K)2) = ‖a‖2
2 ≤ ‖a‖2

1 ≤ n−2‖k‖4
∞.

Therefore, by Lemma 3.16.2 with M = n−2K, we have

εT(n−2K)ε ≤ ‖k‖2
∞σ

2n−1(1 + 2t+ 2(t2 + t)1/2)

and

1

n

n∑
i=1

(Yi − g(Xi))ĥr(Xi) ≤
3‖k‖∞σrt1/2

n1/2

with probability at least 1− e−t. The result follows.

The following lemma is useful for bounding the supremum in (3.5.2).

Lemma 3.13.2 Let D > 0 and A ⊆ L∞ be separable with ‖f‖∞ ≤ D for all f ∈ A.

Let

Z = sup
f∈A

∣∣∣‖f‖2
L2(Pn) − ‖f‖2

L2(P )

∣∣∣ .
Then, for t > 0, we have

Z ≤ E(Z) +

(
2D4t

n
+

4D2 E(Z)t

n

)1/2

+
2D2t

3n
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with probability at least 1− e−t.

Proof We have

Z = sup
f∈A

∣∣∣∣∣
n∑
i=1

n−1
(
f(Xi)

2 − ‖f‖2
L2(P )

)∣∣∣∣∣
and

E
(
n−1

(
f(Xi)

2 − ‖f‖2
L2(P )

))
= 0,

n−1
∣∣∣f(Xi)

2 − ‖f‖2
L2(P )

∣∣∣ ≤ D2

n
,

E
(
n−2

(
f(Xi)

2 − ‖f‖2
L2(P )

)2
)
≤ D4

n2

for all 1 ≤ i ≤ n and f ∈ A. Furthermore, A is separable, so Z is a random variable

on (Ω,F) and we can use Talagrand’s inequality (Theorem A.9.1 of Steinwart and

Christmann, 2008) to show

Z > E(Z) +

(
2t

(
D4

n
+

2D2 E(Z)

n

))1/2

+
2tD2

3n

with probability at most e−t. The result follows.

The following lemma is useful for moving the bound on the distance between V ĥr and

V hr from the L2(Pn) norm to the L2(P ) norm for r > 0 and hr ∈ rBH .

Lemma 3.13.3 Assume (H). Let r > 0 and t ≥ 1. With probability at least 1− e−t,

we have

sup
f1,f2∈rBH

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f1 − V f2‖2

L2(P )

∣∣∣
is at most

8
(
C2 + 4‖k‖1/2

∞ C3/2r1/2 + 8‖k‖∞Cr
)
t1/2

n1/2
+

8C2t

3n
.
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Proof Let A = {V f1 − V f2 : f1, f2 ∈ rBH} and

Z = sup
f1,f2∈rBH

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f1 − V f2‖2

L2(P )

∣∣∣ .
Then A ⊆ L∞ is separable because H is separable and has a bounded kernel k.

Furthermore, ‖V f1 − V f2‖∞ ≤ 2C for all f1, f2 ∈ rBH . By Lemma 3.13.2, we have

Z ≤ E(Z) +

(
32C4t

n
+

16C2 E(Z)t

n

)1/2

+
8C2t

3n

with probability at least 1− e−t. By Lemma 3.11.1, we have

E(Z) ≤ 64‖k‖∞Cr
n1/2

.

The result follows.

We move the bound on the distance between V ĥr and V hr from the L2(Pn) norm to

the L2(P ) norm for r > 0 and hr ∈ rBH .

Corollary 3.13.4 Assume (Y 2) and (H). Let r > 0, hr ∈ rBH and t ≥ 1. With

probability at least 1− 3e−t, we have

‖V ĥr − V hr‖2
L2(P )

is at most

4
(

2C2 + 8‖k‖1/2
∞ C3/2r1/2 + ‖k‖∞(16C + 5σ)r

)
t1/2

n1/2
+

8C2t

3n
+ 4‖hr − g‖2

∞.

Proof By Lemma 3.13.1, we have

‖ĥr − hr‖2
L2(Pn) ≤

20‖k‖∞σrt1/2

n1/2
+ 4‖hr − g‖2

∞.
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with probability at least 1− 2e−t, so

‖V ĥr − V hr‖2
L2(Pn) ≤

20‖k‖∞σrt1/2

n1/2
+ 4‖hr − g‖2

∞.

Since ĥr, hr ∈ rBH , by Lemma 3.13.3 we have

‖V ĥr − V hr‖2
L2(P ) − ‖V ĥr − V hr‖2

L2(Pn)

≤ sup
f1,f2∈rBH

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f2 − V f2‖2

L2(P )

∣∣∣
≤

8
(
C2 + 4‖k‖1/2

∞ C3/2r1/2 + 8‖k‖∞Cr
)
t1/2

n1/2
+

8C2t

3n

with probability at least 1− e−t. The result follows.

We assume (g2) to bound the distance between V ĥr and g in the L2(P ) norm for

r > 0 and prove Theorem 3.8.1.

Proof of Theorem 3.8.1 Fix hr ∈ rBH . We have

‖V ĥr − g‖2
L2(P ) ≤

(
‖V ĥr − V hr‖2

L2(P ) + ‖V hr − g‖2
L2(P )

)2

≤ 2‖V ĥr − V hr‖2
L2(P ) + 2‖V hr − g‖2

L2(P )

≤ 2‖V ĥr − V hr‖2
L2(P ) + 2‖hr − g‖2

L2(P ).

By Corollary 3.13.4, we have

‖V ĥr − V hr‖2
L2(P )

is at most

4
(

2C2 + 8‖k‖1/2
∞ C3/2r1/2 + ‖k‖∞(16C + 5σ)r

)
t1/2

n1/2
+

8C2t

3n
+ 4‖hr − g‖2

∞.
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with probability at least 1− 3e−t. Hence,

‖V ĥr − g‖2
L2(P )

is at most

8
(

2C2 + 8‖k‖1/2
∞ C3/2r1/2 + ‖k‖∞(16C + 5σ)r

)
t1/2

n1/2
+

16C2t

3n
+ 10‖hr − g‖2

∞.

Taking a sequence of hr,n ∈ rBH for n ≥ 1 with

‖hr,n − g‖2
∞ ↓ I∞(g, r)

as n→∞ proves the result.

We assume (g3) to prove Theorem 3.8.2.

Proof of Theorem 3.8.2 The initial bound follows from Theorem 3.8.1 and (3.8.3).

Based on this bound, setting

r = D1‖k‖−(1−β)/(1+β)
∞ B2/(1+β)(16C + 5σ)−(1−β)/(1+β)t−(1−β)/(2(1+β))n(1−β)/(2(1+β))

gives

‖V ĥr − g‖2
L2(P )

is at most

(
8D1 + 10D

−2β/(1−β)
1

)
‖k‖2β/(1+β)

∞ B2/(1+β)(16C + 5σ)2β/(1+β)tβ/(1+β)n−β/(1+β)

+ 64D
1/2
1 ‖k‖β/(1+β)

∞ B1/(1+β)C3/2(16C + 5σ)−(1−β)/(2(1+β))t(1+3β)/(4(1+β))n−(1+3β)/(4(1+β))

+ 16C2t1/2n−1/2 + 16C2tn−1/3.
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Hence, the next bound follows with

D2 = 8D1 + 10D
−2β/(1−β)
1 , D3 = 64D

1/2
1 , D4 = 16 and D5 = 16/3.

3.14 Proof of High-Probability Bound for Valida-

tion

We need to introduce some new notation for the next result. Let U and V be random

variables on (Ω,F). Then

‖U‖ψ2 = inf{a ∈ (0,∞) : Eψ2(|U |/a) ≤ 1},

‖U |V ‖ψ2 = inf{a ∈ (0,∞) : E(ψ2(|U |/a)|V ) ≤ 1 almost surely},

where ψ2(x) = exp(x2) − 1 for x ∈ R. Note that these infima are attained by the

monotone convergence theorem. Exercise 5 of Section 2.3 of Giné and Nickl (2016)

shows that ‖U‖ψ2 is a norm on the space of U such that ‖U‖ψ2 <∞ and ‖U |V ‖ψ2 is

a norm on the space of U such that ‖U |V ‖ψ2 <∞.

We bound the distance between V ĥr̂ and V ĥr0 in the L2(P̃ñ) norm for r0 ∈ R.

Lemma 3.14.1 Assume (H) and (Ỹ ). Let r0 ∈ R and t ≥ 1. With probability at

least 1− 2e−t, we have

‖V ĥr̂ − V ĥr0‖2
L2(P̃ñ)



CHAPTER 3. IVANOV REGULARISATION 93

is at most

292Cσ̃t1/2

ñ1/2

((
2 log

(
1 +
‖k‖2

∞ρ
2

8C2

))1/2

+ π1/2

)
+

24C2t1/2

ñ1/2
+ 4‖V ĥr0 − g‖2

L2(P ).

Proof By Lemma 3.5.1 with A = F and n, X, Y and Pn replaced by ñ, X̃, Ỹ and

P̃ñ, we have

‖V ĥr̂ − V ĥr0‖2
L2(P̃ñ)

≤ 4

ñ

ñ∑
i=1

(Ỹi − g(X̃i))(V ĥr̂(X̃i)− V ĥr0(X̃i)) + 4‖V ĥr0 − g‖2
L2(P̃ñ)

.

We now bound the right-hand side. We have

‖V ĥr0−g‖2
L2(P̃ñ)

=
1

ñ

ñ∑
i=1

(
(V ĥr0(X̃i)− g(X̃i))

2 − ‖V ĥr0 − g‖2
L2(P )

)
+‖V ĥr0−g‖2

L2(P ).

Since ∣∣∣(V ĥr0(X̃i)− g(X̃i))
2 − ‖V ĥr0 − g‖2

L2(P )

∣∣∣ ≤ 4C2

for all 1 ≤ i ≤ ñ, we find

‖V ĥr0 − g‖2
L2(P̃ñ)

− ‖V ĥr0 − g‖2
L2(P ) > t

with probability at most

exp

(
− ñt2

32C4

)
.

by Hoeffding’s inequality. Therefore, we have

‖V ĥr0 − g‖2
L2(P̃ñ)

− ‖V ĥr0 − g‖2
L2(P ) ≤

321/2C2t1/2

ñ1/2
≤ 6C2t1/2

ñ1/2
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with probability at least 1− e−t. Now let f0 = V ĥr0 and

W (f) =
1

ñ

ñ∑
i=1

(Ỹi − g(X̃i))(f(X̃i)− f0(X̃i))

for f ∈ F . W is σ̃2‖·‖2
∞/ñ-subgaussian given X̃ and separable on (F, σ̃‖·‖∞/ñ1/2) by

Lemma 3.12.1. The diameter of (F, σ̃‖·‖∞/ñ1/2) is

D = sup
f1,f2∈F

σ̃‖f1 − f2‖∞/ñ1/2 ≤ 2Cσ̃/ñ1/2.

From Lemma 3.17.2, we have

∫ ∞
0

(log(N(F, σ̃‖·‖∞/ñ1/2, ε)))1/2dε =

∫ ∞
0

(log(N(F, ‖·‖∞, ñ1/2ε/σ̃)))1/2dε

=
σ̃

ñ1/2

∫ ∞
0

(log(N(F, ‖·‖∞, u)))1/2du

is finite. Hence, by Exercise 1 of Section 2.3 of Giné and Nickl (2016) and Lemma

3.17.2, we have ∥∥∥∥sup
f∈F
|W (f)|

∣∣∣∣X̃,X, Y ∥∥∥∥
ψ2

is at most

∥∥∥W (f0)
∣∣∣X̃,X, Y ∥∥∥

ψ2

+ 15361/2

∫ 2Cσ̃/ñ1/2

0

(logN(F, σ̃‖·‖∞/ñ1/2, ε))1/2dε

= 15361/2

∫ 2Cσ̃/ñ1/2

0

(logN(F, ‖·‖∞, ñ1/2ε/σ̃))1/2dε

=
15361/2σ̃

ñ1/2

∫ 2C

0

(logN(F, ‖·‖∞, u))1/2du

≤ 15361/2σ̃

ñ1/2

(
2

(
log

(
1 +
‖k‖2

∞ρ
2

8C2

))1/2

C + (2π)1/2C

)

=
30721/2Cσ̃

ñ1/2

((
2 log

(
1 +
‖k‖2

∞ρ
2

8C2

))1/2

+ π1/2

)
,
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noting W (f0) = 0. By Chernoff bounding, we have supf∈F |W (f)| is at most

30721/2Cσ̃(t+ log(2))1/2

ñ1/2

((
2 log

(
1 +
‖k‖2

∞ρ
2

8C2

))1/2

+ π1/2

)

≤ 73Cσ̃t1/2

ñ1/2

((
2 log

(
1 +
‖k‖2

∞ρ
2

8C2

))1/2

+ π1/2

)

with probability at least 1− e−t. In particular,

1

ñ

ñ∑
i=1

(Ỹi − g(X̃i))(V ĥr̂(X̃i)− V ĥr0(X̃i))

is at most

73Cσ̃t1/2

ñ1/2

((
2 log

(
1 +
‖k‖2

∞ρ
2

8C2

))1/2

+ π1/2

)

with probability at least 1− e−t. The result follows.

The following lemma is useful for moving the bound on the distance between V ĥr̂ and

V ĥr0 from the L2(P̃ñ) norm to the L2(P ) norm for r0 ∈ R.

Lemma 3.14.2 Assume (H). Let r0 ∈ R, f0 = V ĥr0 and t ≥ 1. With probability at

least 1− e−t, we have

sup
f∈F

∣∣∣‖f − f0‖2
L2(P̃ñ)

− ‖f − f0‖2
L2(P )

∣∣∣
is at most

10C2t1/2

ñ1/2

(
1 + 32

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

))
+

8C2t

3ñ
.

Proof Let A = {f − f0 : f ∈ F} and

Z = sup
f∈F

∣∣∣‖f − f0‖2
L2(P̃ñ)

− ‖f − f0‖2
L2(P )

∣∣∣ .
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Then A ⊆ L∞ is separable by Lemma 3.15.2. Furthermore, ‖f − f0‖∞ ≤ 2C for all

f ∈ F . By Lemma 3.13.2 with n and Pn replaced by ñ and P̃ñ, we have

Z ≤ E(Z) +

(
32C4t

ñ
+

16C2 E(Z)t

ñ

)1/2

+
8C2t

3ñ

with probability at least 1− e−t. By Lemma 3.12.3, we have

E(Z) ≤ 64C2

ñ1/2

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

)
.

The result follows.

We move the bound on the distance between V ĥr̂ and V ĥr0 from the L2(P̃ñ) norm to

the L2(P ) norm for r0 ∈ R.

Corollary 3.14.3 Assume (H) and (Ỹ ). Let r0 ∈ R and t ≥ 1. With probability at

least 1− 3e−t, we have

‖V ĥr̂ − V ĥr0‖2
L2(P )

is at most

10C(C + σ̃)t1/2

ñ1/2

(
1 + 32

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

))

+
24C2t1/2

ñ1/2
+

8C2t

3ñ
+ 4‖V ĥr0 − g‖2

L2(P ).

Proof By Lemma 3.14.1, we have

‖V ĥr̂ − V ĥr0‖2
L2(P̃ñ)
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is at most

292Cσ̃t1/2

ñ1/2

((
2 log

(
1 +
‖k‖2

∞ρ
2

8C2

))1/2

+ π1/2

)
+

24C2t1/2

ñ1/2
+ 4‖V ĥr0 − g‖2

L2(P )

with probability at least 1− 2e−t. Let f0 = V ĥr0 . Since ĥr̂ ∈ F , by Lemma 3.14.2 we

have

‖V ĥr̂ − V ĥr0‖2
L2(P ) − ‖V ĥr̂ − V ĥr0‖2

L2(P̃ñ)

≤ sup
f∈F

∣∣∣‖f − f0‖2
L2(P̃ñ)

− ‖f − f0‖2
L2(P )

∣∣∣
≤ 10C2t1/2

ñ1/2

(
1 + 32

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

))
+

8C2t

3ñ

with probability at least 1− e−t. The result follows.

We bound the distance between V ĥr̂ and g in the L2(P ) norm to prove Theorem 3.8.3.

Proof of Theorem 3.8.3 We have

‖V ĥr̂ − g‖2
L2(P ) ≤

(
‖V ĥr̂ − V hr0‖2

L2(P ) + ‖V hr0 − g‖2
L2(P )

)2

≤ 2‖V ĥr̂ − V hr0‖2
L2(P ) + 2‖V hr0 − g‖2

L2(P ).

By Corollary 3.14.3, we have

‖V ĥr̂ − V ĥr0‖2
L2(P )

is at most

10C(C + σ̃)t1/2

ñ1/2

(
1 + 32

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

))

+
24C2t1/2

ñ1/2
+

8C2t

3ñ
+ 4‖V ĥr0 − g‖2

L2(P ).



CHAPTER 3. IVANOV REGULARISATION 98

with probability at least 1− 3e−t. Hence,

‖V ĥr̂ − g‖2
L2(P )

is at most

20C(C + σ̃)t1/2

ñ1/2

(
1 + 32

((
2 log

(
2 +
‖k‖2

∞ρ
2

C2

))1/2

+ π1/2

))

+
48C2t1/2

ñ1/2
+

16C2t

3ñ
+ 10‖V ĥr0 − g‖2

L2(P ).

The result follows.

We assume the conditions of Theorem 3.8.2 to prove Theorem 3.8.4.

Proof of Theorem 3.8.4 If we assume (R1), then r0 = an(1−β)/(2(1+β)) ∈ R and

‖V ĥr0 − g‖2
L2(P )

is at most

8
(

2C2 + 8‖k‖1/2
∞ C3/2a1/2n(1−β)/(4(1+β)) + ‖k‖∞(16C + 5σ)an(1−β)/(2(1+β))

)
t1/2

n1/2

+
16C2t

3n
+

10B2/(1−β)

a2β/(1−β)nβ/(1+β)
.

with probability at least 1− 3e−t by Theorem 3.8.2. If we assume (R2), then there is

at least one r0 ∈ R such that

an(1−β)/(2(1+β)) ≤ r0 < an(1−β)/(2(1+β)) + b

and

‖V ĥr0 − g‖2
L2(P )
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is at most

8
(

2C2 + 8‖k‖1/2
∞ C3/2r

1/2
0 + ‖k‖∞(16C + 5σ)r0

)
t1/2

n1/2
+

16C2t

3n
+

10B2/(1−β)

r
2β/(1−β)
0

≤
8
(

2C2 + 8‖k‖1/2
∞ C3/2

(
a1/2n(1−β)/(4(1+β)) + b1/2

))
t1/2

n1/2

+
8‖k‖∞(16C + 5σ)

(
an(1−β)/(2(1+β)) + b

)
t1/2

n1/2
+

16C2t

3n
+

10B2/(1−β)

a2β/(1−β)nβ/(1+β)

with probability at least 1− 3e−t by Theorem 3.8.2. In either case,

‖V ĥr0 − g‖2
L2(P ) ≤ D3t

1/2n−β/(1+β) +D4tn
−1

for some constants D3, D4 > 0 not depending on n, ñ or t. By Theorem 3.8.3, we

have

‖V ĥr̂ − g‖2
L2(P ) ≤ D5t

1/2 log(n)1/2ñ−1/2 +D6tñ
−1 + 10D3t

1/2n−β/(1+β) + 10D4tn
−1

with probability at least 1− 6e−t for some constants D5, D6 > 0 not depending on n,

ñ or t. Since ñ increases at least linearly in n, there exists some constant D7 > 0 such

that ñ ≥ D7n. We then have

‖V ĥr̂ − g‖2
L2(P )

is at most

D
−1/2
7 D5t

1/2 log(n)1/2n−1/2 +D−1
7 D6tn

−1 + 10D3t
1/2n−β/(1+β) + 10D4tn

−1

≤ D1t
1/2n−β/(1+β) +D2tn

−1

for some constants D1, D2 > 0 not depending on n, ñ or t.
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3.15 Estimator Calculation and Measurability

The following result is essentially Theorem 2.1 from Quintana and Rodŕıguez (2014).

The authors show that that a strictly-positive-definite matrix which is a (Cn×n,B(Cn×n))-

valued measurable matrix on (Ω,F) can be diagonalised by an unitary matrix and

a diagonal matrix which are both (Cn×n,B(Cn×n))-valued measurable matrices on

(Ω,F). The result holds for non-negative-definite matrices by adding the identity

matrix before diagonalisation and subtracting it afterwards. Furthermore, the con-

struction of the unitary matrix produces a matrix with real entries, which is to say

an orthogonal matrix, when the strictly-positive-definite matrix has real entries.

Lemma 3.15.1 Let M be a non-negative-definite matrix which is an (Rn×n,B(Rn×n))-

valued measurable matrix on (Ω,F). There exist an orthogonal matrix A and a diag-

onal matrix D which are both (Rn×n,B(Rn×n))-valued measurable matrices on (Ω,F)

such that M = ADAT.

We prove Lemma 3.6.1.

Proof of Lemma 3.6.1 Let Hn = sp{kXi : 1 ≤ i ≤ n}. The subspace Hn is closed

in H, so there is an orthogonal projection Q : H → Hn. Since f − Qf ∈ H⊥n for all

f ∈ H, we have

f(Xi)− (Qf)(Xi) = 〈f −Qf, kXi〉 = 0

for all 1 ≤ i ≤ n. Hence,

inf
f∈rBH

1

n

n∑
i=1

(f(Xi)− Yi)2 = inf
f∈rBH

1

n

n∑
i=1

((Qf)(Xi)− Yi)2

= inf
f∈(rBH)∩Hn

1

n

n∑
i=1

(f(Xi)− Yi)2.
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Let f ∈ (rBH) ∩Hn and write

f =
n∑
i=1

aikXi

for some a ∈ Rn. Then

1

n

n∑
i=1

(f(Xi)− Yi)2 = n−1(Ka− Y )T(Ka− Y )

and ‖f‖2
H = aTKa, so we can write the norm constraint as aTKa + s = r2, where

s ≥ 0 is a slack variable. The Lagrangian can be written as

L(a, s;µ) = n−1(Ka− Y )T(Ka− Y ) + µ(aTKa+ s− r2)

= aT(n−1K2 + µK)a− 2n−1Y TKa+ µs+ n−1Y TY − µr2,

where µ is the Lagrangian multiplier for the norm constraint. We seek to minimise

the Lagrangian for a fixed value of µ. Note that we require µ ≥ 0 for the Lagrangian

to have a finite minimum, due to the term in s. We have

∂L

∂a
= 2(n−1K2 + µK)a− 2n−1KY.

This being 0 is equivalent to K((K + nµI)a− Y ) = 0.

Since the kernel k is a measurable function on (S × S,S ⊗ S) and the Xi are (S,S)-

valued random variables on (Ω,F), we find that K is an (Rn×n,B(Rn×n))-valued

measurable matrix on (Ω,F). Furthermore, since the kernel k takes real values and

is non-negative definite, K is non-negative definite with real entries. By Lemma

3.15.1, there exist an orthogonal matrix A and a diagonal matrix D which are both

(Rn×n,B(Rn×n))-valued measurable matrices on (Ω,F) such that K = ADAT. Note

that the diagonal entries of D must be non-negative and we may assume that they
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are non-increasing. Inserting this diagonalisation into K((K + nµI)a− Y ) = 0 gives

AD((D + nµI)ATa− ATY ) = 0.

Since A has the inverse AT, this is equivalent to

D((D + nµI)ATa− ATY ) = 0.

This in turn is equivalent to

(ATa)i = (Di,i + nµ)−1(ATY )i

for 1 ≤ i ≤ m. The same f is produced for all such a, because if w is the difference

between two such a, then (ATw)i = 0 for 1 ≤ i ≤ m and the squared H norm of

n∑
i=1

wikXi

is wTKw = wTADATw = 0. Hence, we are free to set (ATa)i = 0 for m+ 1 ≤ i ≤ n.

This uniquely defines ATa, which in turn uniquely defines a, since AT has the inverse

A. Note that this definition of a is measurable on (Ω× [0,∞),F ⊗B([0,∞))), where

µ varies in [0,∞).

We now search for a value of µ such that a and s satisfy the norm constraint. We call

this value µ(r). There are two cases. If

r2 <
m∑
i=1

D−1
i,i (ATY )2

i ,

then the a above and s = 0 minimise L for µ = µ(r) > 0 and satisfy the norm
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constraint, where µ(r) satisfies

m∑
i=1

Di,i

(Di,i + nµ(r))2
(ATY )2

i = r2.

Otherwise, the a above and

s = r2 −
m∑
i=1

D−1
i,i (ATY )2

i ≥ 0

minimise L for µ = µ(r) = 0 and satisfy the norm constraint. Hence, the Lagrangian

sufficiency theorem shows

ĥr =
n∑
i=1

aikXi

for the a above with µ = µ(r) for r > 0. We also have ĥ0 = 0.

Since µ(r) > 0 is strictly decreasing for

r2 <
m∑
i=1

D−1
i,i (ATY )2

i

and µ(r) = 0 otherwise, we find

{µ(r) ≤ µ} =

{
m∑
i=1

Di,i

(Di,i + nµ)2
(ATY )2

i ≤ r2

}

for µ ∈ [0,∞). Therefore, µ(r) is measurable on (Ω × [0,∞),F ⊗ B((0,∞))), where

r varies in (0,∞). Hence, the a above with µ = µ(r) for r > 0 is measurable on

(Ω × [0,∞),F ⊗ B((0,∞))), where r varies in (0,∞). By Lemma 4.25 of Steinwart

and Christmann (2008), the function Φ : S → H by Φ(x) = kx is a (H,B(H))-valued

measurable function on (S,S). Hence, kXi for 1 ≤ i ≤ n are (H,B(H))-valued random

variables on (Ω,F). Together, these show that ĥr is a (H,B(H))-valued measurable

function on (Ω× [0,∞),F ⊗ B([0,∞))), where r varies in [0,∞), recalling that ĥ0 =
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0.

We prove a continuity result about our estimator.

Lemma 3.15.2 Let r, s ∈ [0,∞). We have ‖ĥr − ĥs‖2
H ≤ |r2 − s2|.

Proof Recall the diagonalisation of K = ADAT from Lemma 3.6.1. If u, v ∈ Rn and

h1 =
n∑
i=1

uikXi and h2 =
n∑
i=1

vikXi ,

then 〈h1, h2〉H = uTKv = (ATu)TD(ATv). Let s > r. If r > 0 then, by Lemma 3.6.1,

we have

〈ĥr, ĥs〉H =
m∑
i=1

Di,i

(Di,i + nµ(r))(Di,i + nµ(s))
(ATY )2

i

≥
m∑
i=1

Di,i

(Di,i + nµ(r))2
(ATY )2

i

= ‖ĥr‖2
H .

Furthermore, again by Lemma 3.6.1, if µ(r) > 0 then ‖ĥr‖2
H= r2 and

‖ĥr − ĥs‖2
H = ‖ĥr‖2

H + ‖ĥs‖2
H − 2〈ĥr, ĥs〉H

≤ ‖ĥs‖2
H − ‖ĥr‖2

H

= ‖ĥs‖2
H − r2

≤ s2 − r2.

Otherwise, µ(r) = 0 and so µ(s) = 0 by Lemma 3.6.1, which means ĥr = ĥs. If

r = 0 then ĥr = 0 and ‖ĥr − ĥs‖2
H = ‖ĥs‖2

H ≤ s2. Hence, whenever r < s, we have

‖ĥr − ĥs‖2
H ≤ s2 − r2. The result follows.

We also have the estimator r̂ when performing validation.
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Lemma 3.15.3 We have that r̂ is a random variable on (Ω,F).

Proof Let

W (s) =
1

ñ

ñ∑
i=1

(V ĥs(X̃i)− Ỹi)2

for s ∈ R. Note that W (s) is a random variable on (Ω,F) and continuous in s by

Lemma 3.15.2. Since R ⊆ R, it is separable. Let R0 be a countable dense subset of R.

Then infs∈RW (s) = infs∈R0 W (s) is a random variable on (Ω,F) as the right-hand

side is the infimum of countably many random variables on (Ω,F). Let r ∈ [0, ρ]. By

the definition of r̂, we have

{r̂ ≤ r} =
⋃

s∈R∩[0,r]

{W (s) ≤ inf
t∈R

W (t)}.

Since R ∩ [0, r] ⊆ R, it is separable. Let Ar be a countable dense subset of R ∩ [0, r].

By the sequential compactness of R ∩ [0, r] and continuity of W (s), we have

{r̂ ≤ r} =
∞⋂
a=1

⋃
s∈Ar

{W (s) ≤ inf
t∈R

W (t) + a−1}.

This set is an element of F .

3.16 Subgaussian Random Variables

We need the definition of a sub-σ-algebra for the next result. The σ-algebra G is a

sub-σ-algebra of the σ-algebra F if G ⊆ F . The following lemma relates a quadratic

form of subgaussians to that of centred normal random variables.

Lemma 3.16.1 Let εi for 1 ≤ i ≤ n be random variables on (Ω,F ,P) which are
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independent conditional on some sub-σ-algebra G ⊆ F and let

E(exp(tεi)|G) ≤ exp(σ2t2/2)

almost surely for all t ∈ R. Also, let δi for 1 ≤ i ≤ n be random variables on (Ω,F ,P)

which are independent of each other and G with δi ∼ N(0, σ2). Let M be an n × n

non-negative-definite matrix which is an (Rn×n,B(Rn×n))-valued measurable matrix

on (Ω,G). We have

E(exp(zεTMε)|G) ≤ E(exp(zδTMδ)|G)

almost surely for all z ≥ 0.

Proof This proof method uses techniques from the proof of Lemma 9 of Abbasi-

Yadkori, Pál, and Szepesvári (2011). We have

E(exp(tiεi/σ)|G) ≤ exp(t2i /2)

almost surely for all 1 ≤ i ≤ n and ti ∈ R. Furthermore, the εi are independent

conditional on G, so

E(exp(tTε/σ)|G) ≤ exp(‖t‖2
2/2)

almost surely. By Lemma 3.15.1 with F replaced by G, there exist an orthogonal

matrix A and a diagonal matrix D which are both (Rn×n,B(Rn×n))-valued measurable

matrices on (Ω,G) such that M = ADAT. Hence, M has a square root M1/2 =

AD1/2AT which is an (Rn×n,B(Rn×n))-valued measurable matrix on (Ω,G), where

D1/2 is the diagonal matrix with entries equal to the square root of those of D. Note

that these entries are non-negative because M is non-negative definite. We can then
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replace t with sM1/2u for s ∈ R and u ∈ Rn to get

E(exp(suTM1/2ε/σ)|G) ≤ exp(s2‖M1/2u‖2
2/2)

almost surely. Integrating over u with respect to the distribution of δ gives

E(exp(s2εTMε/2)|G) ≤ E(exp(s2δTMδ/2)|G)

almost surely. The result follows.

Having established this relationship, we can now obtain a probability bound on a

quadratic form of subgaussians by using Chernoff bounding. The following result is

a conditional subgaussian version of the Hanson–Wright inequality.

Lemma 3.16.2 Let εi for 1 ≤ i ≤ n be random variables on (Ω,F ,P) which are

independent conditional on some sub-σ-algebra G ⊆ F and let

E(exp(tεi)|G) ≤ exp(σ2t2/2)

almost surely for all t ∈ R. Let M be an n× n non-negative-definite matrix which is

an (Rn×n,B(Rn×n))-valued measurable matrix on (Ω,G) and t ≥ 0. We have

εTMε ≤ σ2 tr(M) + 2σ2‖M‖t+ 2σ2(‖M‖2t2 + tr(M2)t)1/2

with probability at least 1 − e−t almost surely conditional on G. Here, ‖M‖ is the

operator norm of M , which is a random variable on (Ω,G).

Proof This proof method follows that of Theorem 3.1.9 of Giné and Nickl (2016).

By Lemma 3.15.1 with F replaced by G, there exist an orthogonal matrix A and a

diagonal matrix D which are both (Rn×n,B(Rn×n))-valued measurable matrices on
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(Ω,G) such that M = ADAT. Let δi for 1 ≤ i ≤ n be random variables on (Ω,F ,P)

which are independent of each other and G, with δi ∼ N(0, σ2). By Lemma 3.16.1 and

the fact that ATδ has the same distribution as δ, we have

E(exp(tεTMε)|G) ≤ E(exp(tδTMδ)|G) = E(exp(tδTDδ)|G)

almost surely for all t ≥ 0. Furthermore,

E(exp(tδ2
i /σ

2)) =

∫ ∞
−∞

1

(2π)1/2
exp(tx2 − x2/2)dx =

1

(1− 2t)1/2

for 0 ≤ t < 1/2 and 1 ≤ i ≤ n, so

E(exp(t(δ2
i /σ

2 − 1))) = exp(−(log(1− 2t) + 2t)/2).

We have

−2(log(1− 2t) + 2t) ≤
∞∑
i=2

(2t)i(2/i) ≤ 4t2/(1− 2t)

for 0 ≤ t ≤ 1/2. Therefore, since the δi are independent of G, we have

E(exp(tDi,i(δ
2
i − σ2))|G) ≤ exp

(
σ4D2

i,it
2

1− 2σ2Di,it

)

almost surely for 0 ≤ t < 1/(2σ2Di,i) and 1 ≤ i ≤ n. Since the Di,i are random

variables on (Ω,G) and the Di,iδi for 1 ≤ i ≤ n are independent conditional on G, we

have

E(exp(t(δTDδ − σ2 tr(D)))|G) ≤ exp

(
σ4 tr(D2)t2

1− 2σ2(maxiDi,i)t

)
almost surely for 0 ≤ t < 1/(2σ2(maxiDi,i)). Combining this with E(exp(tεTMε)|G) ≤

E(exp(tδTDδ)|G), we find

E(exp(t(εTMε− σ2 tr(M)))|G) ≤ exp

(
σ4 tr(M2)t2

1− 2σ2‖M‖t

)
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almost surely for 0 ≤ t < 1/(2σ2‖M‖). By Chernoff bounding, we have

εTMε− σ2 tr(M) > s

for s ≥ 0 with probability at most

exp

(
σ4 tr(M2)t2

1− 2σ2‖M‖t
− ts

)

almost surely conditional on G for 0 ≤ t < 1/(2σ2‖M‖). Letting

t =
s

2σ4 tr(M2) + 2σ2‖M‖s

gives the bound

exp

(
− s2

4σ4 tr(M2) + 4σ2‖M‖s

)
.

Rearranging gives the result.

3.17 Covering Numbers

The following lemma gives a bound on the covering numbers of F .

Lemma 3.17.1 Let ε > 0. We have

N(F, ‖·‖∞, ε) ≤ 1 +
‖k‖2

∞ρ
2

2ε2
.

Proof Let a ≥ 1 and ri ∈ R and fi = V ĥri ∈ F for 1 ≤ i ≤ a. Also, let f = V ĥr ∈ F

for r ∈ R. Since V is a contraction, we have ‖f−fi‖∞ ≤ ε whenever ‖ĥr− ĥri‖∞ ≤ ε.
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By Lemma 3.15.2, we have ‖ĥr − ĥri‖∞ ≤ ε whenever |r2 − r2
i | ≤ ε2/‖k‖2

∞. Hence, if

we let r2
i = ε2(2i− 1)/‖k‖2

∞ and let ρ be such that

ρ2 − ε2(2a− 1)/‖k‖2
∞ ≤ ε2/‖k‖2

∞,

then we find N(F, ‖·‖∞, ε) ≤ a. Rearranging the above shows that we can choose

a =

⌈
‖k‖2

∞ρ
2

2ε2

⌉

and the result follows.

We also calculate integrals of these covering numbers.

Lemma 3.17.2 Let a ≥ 1. We have

∫ L

0

(log(aN(F, ‖·‖∞, ε)))1/2dε ≤
(

log

((
1 +
‖k‖2

∞ρ
2

2L2

)
a

))1/2

L+
(π

2

)1/2

L

for L ∈ (0,∞). When a = 1, we have

∫ L

0

(log(N(F, ‖·‖∞, ε)))1/2dε ≤ 2

(
log

(
1 +
‖k‖2

∞ρ
2

8C2

))1/2

C + (2π)1/2C

for L ∈ (0,∞].

Proof Let L ∈ (0,∞). Then

∫ L

0

(log(aN(F, ‖·‖∞, ε)))1/2dε ≤
∫ L

0

(
log

(
a

(
1 +
‖k‖2

∞ρ
2

2ε2

)))1/2

dε

by Lemma 3.17.1. Changing variables to u = ε/L gives

L

∫ 1

0

(
log

(
a

(
1 +
‖k‖2

∞ρ
2

2L2u2

)))1/2

du
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≤ L

∫ 1

0

(
log

(
a

(
1 +
‖k‖2

∞ρ
2

2L2

)
1

u2

))1/2

du

= L

∫ 1

0

(
log

(
a

(
1 +
‖k‖2

∞ρ
2

2L2

))
+ log

(
1

u2

))1/2

du.

For b, c ≥ 0 we have (b+ c)1/2 ≤ b1/2 + c1/2, so the above is at most

L

∫ 1

0

(
log

(
a

(
1 +
‖k‖2

∞ρ
2

2L2

)))1/2

du+ L

∫ 1

0

(
log

(
1

u2

))1/2

du

= L

(
log

(
a

(
1 +
‖k‖2

∞ρ
2

2L2

)))1/2

+ L

∫ 1

0

(
log

(
1

u2

))1/2

du.

Changing variables to

s =

(
log

(
1

u2

))1/2

shows

∫ 1

0

(
log

(
1

u2

))1/2

du =

∫ ∞
0

s2 exp(−s2/2)ds

=
1

2

∫ ∞
−∞

s2 exp(−s2/2)ds

=
(π

2

)1/2

,

since the last integral is a multiple of the variance of an N(0, 1) random variable. The

first result follows. Note that N(F, ‖·‖∞, ε) = 1 whenever ε ≥ 2C, as the ball of

radius 2C about any point in F is the whole of F . Hence, when a = 1, we have

∫ L

0

(log(N(F, ‖·‖∞, ε)))1/2dε ≤
∫ ∞

0

(log(N(F, ‖·‖∞, ε)))1/2dε

=

∫ 2C

0

(log(N(F, ‖·‖∞, ε)))1/2dε

≤ 2

(
log

(
1 +
‖k‖2

∞ρ
2

8C2

))1/2

C + (2π)1/2C

for L ∈ (0,∞].
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Chapter 4

The Goldenshluger–Lepski Method

for Constrained Least-Squares

Estimators over RKHSs

In nonparametric statistics, it is assumed that the estimand belongs to a very large

parameter space in order to avoid model misspecification. Such misspecification can

lead to large approximation errors and poor estimator performance. However, it is

often challenging to produce estimators which are robust against such large parameter

spaces. An important tool which allows us to achieve this aim is adaptive estimation.

Adaptive estimators behave as if they know the true model from a collection of models,

despite being a function of the data. In particular, adaptive estimators can often

achieve the same optimal rates of convergence as the best estimators when the true

model is known.

There are many ways of creating adaptive estimators. One way is to pass information

on the true model from the data to a non-adaptive estimator through tuning param-

113
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eters. For example, a Gaussian kernel estimator depends on the width parameter of

the Gaussian kernel. The different width parameters define different sets of functions

and represent different assumptions about the estimand.

In this chapter, we study an adaptive estimation procedure called the Goldenshluger–

Lepski method in the context of reproducing-kernel Hilbert space (RKHS) regression.

The Goldenshluger–Lepski method works by performing pairwise comparisons be-

tween non-adaptive estimators with a range of values for the tuning parameters. As

far as we are aware, this is the first time that this method has been applied in the

context of RKHS regression. The Goldenshluger–Lepski method (Goldenshluger and

Lepski, 2008, 2009, 2011, 2013) is an extension of Lepski’s method. While Lepski’s

method focusses on adaptation over a single parameter, the Goldenshluger–Lepski

method can be used to perform adaptation over multiple parameters.

The Goldenshluger–Lepski method operates by selecting an estimator which minimises

the sum of a proxy for the unknown bias and an inflated variance term. The proxy for

the bias is calculated by performing pairwise comparisons between the estimator in

question and all estimators which are in some sense less smooth than this estimator.

A key challenge in applying the Goldenshluger–Lepski method is proving a high-

probability bound on all of these pairwise comparisons simultaneously. This bound is

known as a majorant.

A popular alternative to the Goldenshluger–Lepski method for constructing adaptive

estimators is training and validation. Here, the data is split into a training set and a

validation set. The training set is used to produce a collection of non-adaptive esti-

mators for a range of different values for the tuning parameters and the validation set

is used to select the best estimator from this collection. This selection is performed

by calculating a proxy for the cost function that we wish to minimise. The estimator

with the smallest value of the proxy is selected as our final estimator. One important
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advantage of the Goldenshluger–Lepski method in comparison to training and vali-

dation is that it uses all of the data to calculate the non-adaptive estimators. This is

because it does not require data for calculating a proxy cost function. However, the

Goldenshluger–Lepski method does require us to calculate a majorant, as discussed

above, which is often a challenging task.

We now describe the RKHS regression problem studied in this chapter in more detail.

We assume that the regression function lies in an interpolation space between L∞ and

an RKHS. Depending on the setting, this RKHS may be fixed or we may perform

adaptation over a collection of RKHSs. The non-adaptive estimators we use in this

context are clipped versions of least-squares estimators which are constrained to lie

in a ball of predefined radius in an RKHS. These estimators are discussed in detail in

Chapter 3. Constraining an estimator to lie in a ball of predefined radius is a form of

Ivanov regularisation (see Oneto et al., 2016).

One advantage of the estimators that we consider is that there is a clear way of

producing a majorant for them, especially when the RKHS is fixed. This is because

we can control the estimator constrained to lie in a ball of radius r by bounding

quantities of the form rZ for some random variable Z which does not depend on r,

such as in the proof of Lemma 4.5.2. It may be possible to use different non-adaptive

estimators to address our RKHS regression problem, however this would require the

calculation of a majorant for such estimators, which would generally be more difficult

than the calculation of the majorant for the Ivanonv-regularised estimators considered

in this chapter.

When the RKHS is fixed, the only tuning parameter to be selected is the radius of the

ball in which the least-squares estimator is constrained to lie. Estimators for which the

radius is larger are considered to be less smooth. In order to provide a majorant for the

Goldenshluger–Lepski method, we must prove regression results which control these
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estimators for all radii simultaneously. When we perform adaptation over a collection

of RKHSs, we must prove regression results which control the same estimators for

all RKHSs and all ball radii in these RKHSs simultaneously. We demonstrate this

approach for a collection of RKHSs with Gaussian kernels. Estimators for which both

the width parameter of the Gaussian kernel is smaller and the radius of the ball in

the RKHS is larger are considered to be less smooth. These results extend those of

Chapter 3.

One of the main difficulties in applying the Goldenshluger–Lepski method to our

RKHS regression problem is that the covariate distribution P , and hence the L2(P )

norm, is unknown. This is a problem when trying to control the squared L2(P ) error of

our adaptive estimator, because the Goldenshluger–Lepski method generally requires

the corresponding norm to be known. This is so that the pairwise comparisons can

be performed when calculating the proxy for the unknown bias of the non-adaptive

estimators. In order to get around this problem, we replace the L2(P ) norm in the

pairwise comparisons with its empirical counterpart, the L2(Pn) norm. Here, Pn is the

empirical distribution of the covariates. The terms added to our bound when moving

our control on the squared L2(Pn) error of our adaptive estimator to the squared

L2(P ) error do not significantly increase its size.

Our main results are Theorems 4.6.5 (page 129) and 4.8.7 (page 138). These show

that a fixed quantile of the squared L2(P ) error of a clipped version of the estimator

produced by the Goldenshluger–Lepski method is of order n−β/(1+β). Here, n is the

number of data points and β parametrises the interpolation space between L∞ and

the RKHS containing the regression function. We use L∞ when interpolating so that

we have direct control over approximation errors in the L2(Pn) norm. Theorem 4.6.5

addresses the case in which the RKHS is fixed and Theorem 4.8.7 addresses the case in

which we perform adaptation over a collection of RKHSs with Gaussian kernels. The
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order n−β/(1+β) for the squared L2(P ) error of the adaptive estimators matches the

order of the smallest bounds obtained in Chapter 3 for the squared L2(P ) error of the

non-adaptive estimators. In the sense discussed in Chapter 3, this order is the optimal

power of n if we make the slightly weaker assumption that the regression function is

an element of the interpolation space between L2(P ) and the RKHS parametrised by

β.

4.1 Literature Review

Lepski’s method (Lepski, 1991a,b, 1993) is a method for adaptation over a single

parameter. Since its introduction it has been studied by, for example, Birgé (2001)

and Giné and Nickl (2016). Lepski’s method selects the smoothest non-adaptive

estimator from a collection, subject to a bound on a series of pairwise comparisons

involving all estimators at most as smooth as the resulting estimator. The method

can only adapt to one parameter because of the need for an ordering of the collection

of non-adaptive estimators.

Lepski’s method has been applied to RKHS regression under the name of the balanc-

ing principle. However, as far as we are aware, Lepski’s method has not been used

to target the true regression function, but instead an RKHS element which approxi-

mates the true regression function. De Vito et al. (2010) note the difficulty in using

Lespki’s method to control the squared L2(P ) error of an adaptive estimator. This

difficulty arises because Lepski’s method generally requires the norm we are interested

in controlling to be known in order to perform the pairwise comparisons. However, P

is unknown in this situation.

De Vito et al. (2010) get around the problem that P is unknown as follows. Lepski’s
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method is used to control the known squared L2(Pn) error and squared RKHS error

of two different adaptive estimators. The results of these procedures are combined

to produce an adaptive estimator whose squared L2(P ) error is bounded. The above

alteration is also noted by Lu, Mathé, and Pereverzev (2018). Furthermore, the

authors show that it is possible to greatly reduce the number of pairwise comparisons

which must be performed to produce an adaptive estimator. This is done by only

comparing each estimator to the estimator which is next less smooth.

The Goldenshluger–Lepski method extends Lepski’s method in order to perform adap-

tation over multiple parameters. Goldenshluger and Lepski (2008, 2009) concentrate

on function estimation in the presence of white noise. The first paper considers the

problem of pointwise estimation, while the second paper examines estimation in the

Lp norm for p ∈ [1,∞]. Goldenshluger and Lepski (2011) produce adaptive band-

width estimators for kernel density estimation and Goldenshluger and Lepski (2013)

consider general methodology for selecting a linear estimator from a collection.

An example of using training and validation to perform adaptation over a Gaussian

kernel parameter for a support vector machine is examined by Eberts and Steinwart

(2013). The procedure produces an adaptive estimator of a bounded regression func-

tion from a range of Sobolev spaces. This estimator is analysed using union bound-

ing, as opposed to the chaining techniques used to analyse the Goldenshluger–Lepski

method in this chapter.

4.2 Contribution

In this chapter, we use the Goldenshluger–Lepski method to produce an adaptive

estimator from a collection of clipped versions of least-squares estimators which are
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constrained to lie in a ball of predefined radius in a fixed RKHS H, which is separable

with a bounded and measurable kernel k. The estimator, defined by (4.6.1) on page

126, adapts over the radius of the ball. As far as we are aware, the Goldenshluger–

Lepski method has not previously been applied in the context of RKHS regression.

Under the assumption that the regression function comes from an interpolation space

between L∞ and H, we prove a bound on a fixed quantile of the squared L2(P ) error

of this adaptive estimator of order n−β/(1+β) (Theorem 4.6.5 on page 129). Here, P

is the covariate distribution, n is the number of data points and β parametrises the

interpolation space between L∞ and H. The order n−β/(1+β) matches the order of

the smallest bounds obtained in Chapter 3 for the squared L2(P ) error of the non-

adaptive estimators. It is the optimal power of n, in the sense discussed in Chapter

3, if we make the closely-related weaker assumption that the regression function is an

element of the interpolation space between L2(P ) and the RKHS parametrised by β.

We then extend this result to the case in which we perform adaptation over a collection

of RKHSs. In particular, we provide guarantees when the RKHSs in the collection

have Gaussian kernels. We again use the Goldenshluger–Lepski method to produce

an adaptive estimator, defined by (4.8.1), however this estimator adapts over both the

RKHS and the radius of the ball. Under the assumption that the regression function

comes from an interpolation space between L∞ and and some RKHS H from the

collection, we obtain a bound on a fixed quantile of the squared L2(P ) error of the

same order n−β/(1+β) (Theorem 4.8.7 on page 138).

4.3 RKHSs and Their Interpolation Spaces

An RKHS H on S is a Hilbert space of real-valued functions on S such that, for all

x ∈ S, there is some kx ∈ H such that h(x) = 〈h, kx〉H for all h ∈ H. The function
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k(x1, x2) = 〈kx1 , kx2〉H for x1, x2 ∈ S is known as the kernel and is symmetric and

positive-definite.

We now define interpolation spaces between a Banach space (Z, ‖·‖Z) and a dense

subspace (V, ‖·‖V ) (see Bergh and Löfström, 1976). The K-functional of (Z, V ) is

K(z, t) = inf
v∈V

(‖z − v‖Z + t‖v‖V )

for z ∈ Z and t > 0. We define

‖z‖β,q =

(∫ ∞
0

(t−βK(z, t))qt−1dt

)1/q

and ‖z‖β,∞ = sup
t>0

(t−βK(z, t))

for z ∈ Z, β ∈ (0, 1) and 1 ≤ q <∞. We then define the interpolation space [Z, V ]β,q

to be the set of z ∈ Z such that ‖z‖β,q < ∞. The size of [Z, V ]β,q decreases as β

increases. Recall Lemma 3.1.1, which is essentially Theorem 3.1 of Smale and Zhou

(2003).

Lemma 4.3.1 Let (Z, ‖·‖Z) be a Banach space, (V, ‖·‖V ) be a dense subspace of Z

and z ∈ [Z, V ]β,∞. We have

inf{‖v − z‖Z : v ∈ V, ‖v‖V ≤ r} ≤
‖z‖1/(1−β)

β,∞

rβ/(1−β)
.

From the above, when H is dense in L∞, we can define the interpolation spaces

[L∞, H]β,q, where L∞ is the space of bounded measurable functions on (S,S). We set

q = ∞ and work with the largest space of functions for a fixed β ∈ (0, 1). We are

then able to apply the approximation result in Lemma 4.3.1.
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4.4 Problem Definition

We give a formal definition of the RKHS regression problem. For a topological space

T , let B(T ) be its Borel σ-algebra. Let (S,S) be a measurable space and (Xi, Yi) for

1 ≤ i ≤ n be i.i.d. (S×R,S⊗B(R))-valued random variables on the probability space

(Ω,F ,P). We assume Xi ∼ P and E(Y 2
i ) < ∞, where E denotes integration with

respect to P. We have E(Yi|Xi) = g(Xi) almost surely for some function g which is

measurable on (S,S) (Section A3.2 of Williams, 1991). Since E(Y 2
i ) < ∞, it follows

that g ∈ L2(P ) by Jensen’s inequality. We assume throughout that

(g1) ‖g‖∞ ≤ C for C > 0.

We also need to make an assumption on the behaviour of the errors of the response

variables Yi for 1 ≤ i ≤ n. Let U and V be random variables on (Ω,F ,P). We say U

is σ2-subgaussian if

E(exp(tU)) ≤ exp(σ2t2/2)

for all t ∈ R. We say U is σ2-subgaussian given V if

E(exp(tU)|V ) ≤ exp(σ2t2/2)

almost surely for all t ∈ R. We assume

(Y ) Yi − g(Xi) is σ2-subgaussian given Xi for 1 ≤ i ≤ n.
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4.5 Regression for a Fixed RKHS

We continue by providing simultaneous bounds on our collection of non-adaptive

estimators for a fixed RKHS. Our results in this section depend on how well the

regression function g can be approximated by elements of an RKHS H with kernel k.

We make the following assumptions.

(H) The RKHS H with kernel k has the following properties:

• The RKHS H is separable.

• The kernel k is bounded.

• The kernel k is a measurable function on (S × S,S ⊗ S).

We define

‖k‖diag = sup
x∈S

k(x, x) <∞.

We use the notation ‖k‖diag in this chapter in place of ‖k‖2
∞ from Chapter 3. We can

guarantee that H is separable by, for example, assuming that k is continuous and S is

a separable topological space (Lemma 4.33 of Steinwart and Christmann, 2008). The

fact that H has a kernel k which is measurable on (S × S,S ⊗ S) guarantees that all

functions in H are measurable on (S,S) (Lemma 4.24 of Steinwart and Christmann,

2008).

Let BH be the closed unit ball of H and r > 0. We define the estimator

ĥr = arg min
f∈rBH

1

n

n∑
i=1

(f(Xi)− Yi)2

of the regression function g. We make this definition unique by demanding that

ĥr ∈ sp{kXi : 1 ≤ i ≤ n} (see Lemma 3.6.1). We also define ĥ0 = 0. The following
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combines parts of Lemmas 3.6.1 and 3.15.2.

Lemma 4.5.1 Assume (H). We have that ĥr is a (H,B(H))-valued measurable

function on (Ω × [0,∞),F ⊗ B([0,∞))), where r varies in [0,∞). Furthermore,

‖ĥr − ĥs‖2
H ≤ |r2 − s2| for r, s ∈ [0,∞).

Since we assume (g1), that g is bounded in [−C,C], we can make ĥr closer to g by

constraining it to lie in the same interval. As in Chapter 3, we define the projection

V : R→ [−C,C] by

V (t) =


−C if t < −C

t if |t| ≤ C

C if t > C

for t ∈ R.

We now prove a series of result which allow us to control ĥr for r ≥ 0 simultaneously,

extending the results of Chapter 3 while using similar proof techniques. This is crucial

in order to apply the Goldenshluger–Lepski method to these estimators. The results

assign probabilities to events which occur for all r ≥ 0 and all hr ∈ rBH . These events

are measurable due to the separability of [0,∞) and rBH , as well as the continuity

in r of the quantities in question, including ĥr by Lemma 4.5.1. By Lemma 3.5.1, we

have

‖ĥr − hr‖2
L2(Pn) ≤

4

n

n∑
i=1

(Yi − g(Xi))(ĥr(Xi)− hr(Xi)) + 4‖hr − g‖2
L2(Pn)

for all r > 0 and all hr ∈ rBH . We can get rid of ĥr in the first term on the right-hand

side by taking a supremum over rBH . After applying the reproducing kernel property

and the Cauchy–Schwarz inequality, we obtain a quadratic form of subgaussians which

can be controlled using Lemma 3.16.2.
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Lemma 4.5.2 Assume (Y ) and (H). Let t ≥ 1 and A1,t ∈ F be the set on which

‖ĥr − hr‖2
L2(Pn) ≤

20‖k‖1/2
diagσrt

1/2

n1/2
+ 4‖hr − g‖2

∞

simultaneously for all r ≥ 0 and all hr ∈ rBH . We have P(A1,t) ≥ 1− e−t.

It is useful to be able to transfer a bound on the squared L2(Pn) error of an estimator,

including the result above, to a bound on the squared L2(P ) error of the estimator.

By using Talagrand’s inequality, we can obtain a high-probability bound on

sup
r>0

sup
f1,f2∈rBH

1

r

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f1 − V f2‖2

L2(P )

∣∣∣
by proving an expectation bound on the same quantity. By using symmetrisation

(Lemma 2.3.1 of van der Vaart and Wellner, 1996) and the contraction principle for

Rademacher processes (Theorem 3.2.1 of Giné and Nickl, 2016), we again obtain a

quadratic form of subgaussians, which in this case are Rademacher random variables.

Lemma 4.5.3 Assume (H). Let t ≥ 1 and A2,t ∈ F be the set on which

sup
f1,f2∈rBH

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f1 − V f2‖2

L2(P )

∣∣∣ ≤ 97‖k‖1/2
diagCrt

1/2

n1/2
+

8‖k‖1/2
diagCrt

3n

simultaneously for all r ≥ 0. We have P(A2,t) ≥ 1− e−t.

To capture how well g can be approximated by elements of H, we define

I∞(g, r) = inf
{
‖hr − g‖2

∞ : hr ∈ rBH

}
for r ≥ 0. We use this measure of approximation as it is compatible with the use of

the bound

‖hr − g‖2
L2(Pn) ≤ ‖hr − g‖2

∞



CHAPTER 4. THE GOLDENSHLUGER–LEPSKI METHOD 125

in the proof of Lemma 4.5.2. We show that I∞(g, r) is continuous.

Lemma 4.5.4 Assume (H). Let s ≥ r ≥ 0. We have

I∞(g, s) ≤ I∞(g, r) ≤
(
I∞(g, s)1/2 + ‖k‖1/2

diag(s− r)
)2

.

We obtain a bound on the squared L2(P ) error of V ĥr by combining Lemmas 4.5.2

and 4.5.3.

Theorem 4.5.5 Assume (g1), (Y ) and (H). Let t ≥ 1 and recall the definitions of

A1,t and A2,t from Lemmas 4.5.2 and 4.5.3. On the set A1,t ∩ A2,t ∈ F , for which

P(A1,t ∩ A2,t) ≥ 1− 2e−t, we have

‖V ĥr − g‖2
L2(P ) ≤

2‖k‖1/2
diag(97C + 20σ)rt1/2

n1/2
+

16‖k‖1/2
diagCrt

3n
+ 10I∞(g, r)

simultaneously for all r ≥ 0.

4.6 The Goldenshluger–Lepski Method for a Fixed

RKHS

We now produce bounds on our adaptive estimator for a fixed RKHS. The following

result, which is a simple consequence of Lemma 4.5.2, can be used to define the

majorant of the non-adaptive estimators. This motivates the definition of the adaptive

estimator used in the Goldenshluger–Lepski method.

Lemma 4.6.1 Assume (Y ) and (H). Let t ≥ 1 and recall the definition of A1,t from
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Lemma 4.5.2. On the set A1,t ∈ F , for which P(A1,t) ≥ 1− e−t, we have

‖ĥr − ĥs‖2
L2(Pn) ≤

80‖k‖1/2
diagσ(r + s)t1/2

n1/2
+ 40I∞(g, r)

simultaneously for all s ≥ r ≥ 0.

Let R ⊆ [0,∞) be closed and non-empty. The Goldenshluger–Lepski method defines

an adaptive estimator using

r̂ = arg min
r∈R

(
sup

s∈R,s≥r

(
‖ĥr − ĥs‖2

L2(Pn) −
τ(r + s)

n1/2

)
+

2(1 + ν)τr

n1/2

)
(4.6.1)

for tuning parameters τ, ν > 0. The supremum of pairwise comparisons can be viewed

as a proxy for the unknown bias, while the other term is an inflated variance term.

Note that the supremum is at least the value at r, so

sup
s∈R,s≥r

(
‖ĥr − ĥs‖2

L2(Pn) −
τ(r + s)

n1/2

)
+

2(1 + ν)τr

n1/2
≥ 2ντr

n1/2
. (4.6.2)

The role of the tuning parameter ν is simply to control this bound. The parameter

τ controls the probability with which our bound on the squared L2(P ) error of V ĥr̂

holds. We give a unique definition of r̂.

Lemma 4.6.2 Let r̂ be the infimum of all points attaining the minimum in (4.6.1).

Then r̂ is well-defined.

It may be that r̂ is not a random variable on (Ω,F) in some cases, but we assume

(r̂) r̂ is a well-defined random variable on (Ω,F)

throughout. Later, we assume that R is finite, in which case r̂ is certainly a random

variable on (Ω,F). If r̂ is a random variable on (Ω,F), then ĥr̂ is a (H,B(H))-valued

measurable function on (Ω,F) by Lemma 4.5.1.
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By Lemma 4.6.1, the supremum in the definition of r̂ is at most 40I∞(g, r) for an

appropriate value of τ . The definition of r̂ then gives us control over the squared

L2(Pn) norm of ĥr̂ − ĥr when r̂ ≤ r. When r̂ ≥ r, we can control the squared L2(Pn)

norm of ĥr̂− ĥr using Lemma 4.6.1. However, we must control a term of order r̂/n1/2

using (4.6.2) and the definition of r̂. In both cases, this gives a bound on the squared

L2(Pn) norm of V ĥr̂ − V ĥr. Extra terms appear when moving to a bound on the

squared L2(P ) norm of V ĥr̂−V ĥr using Lemma 4.5.3. However, these terms are very

similar to the inflated variance term, and can be controlled in the same way. Applying

‖V ĥr̂ − g‖2
L2(P ) ≤ 2‖V ĥr̂ − V ĥr‖2

L2(P ) + 2‖V ĥr − g‖2
L2(P )

gives the following result.

Theorem 4.6.3 Assume (Y ), (H) and (r̂). Let τ ≥ 80‖k‖1/2
diagσ, ν > 0 and

t =

(
τ

80‖k‖1/2
diagσ

)2

≥ 1.

Recall the definitions of A1,t and A2,t from Lemmas 4.5.2 and 4.5.3. On the set

A1,t ∩ A2,t ∈ F , for which P(A1,t ∩ A2,t) ≥ 1− 2e−t, we have

‖V ĥr̂ − g‖2
L2(P )

is at most

inf
r∈R

(
max

{
2τr

n1/2
+

(
1

ν
+

97C

80σν
+

Cτ

2400‖k‖1/2
diagσ

2νn1/2

)(
40I∞(g, r) +

2(1 + ν)τr

n1/2

)
,

4(2 + ν)τr

n1/2
+

97Cτr

40σn1/2
+

Cτ 2r

1200‖k‖1/2
diagσ

2n

}
+ 80I∞(g, r) + 2‖V ĥr − g‖2

L2(P )

)
.

We now combine Theorems 4.5.5 and 4.6.3.
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Theorem 4.6.4 Assume (g1), (Y ), (H) and (r̂). Let τ ≥ 80‖k‖1/2
diagσ, ν > 0 and

t =

(
τ

80‖k‖1/2
diagσ

)2

≥ 1.

Recall the definitions of A1,t and A2,t from Lemmas 4.5.2 and 4.5.3. On the set

A1,t ∩ A2,t ∈ F , for which P(A1,t ∩ A2,t) ≥ 1− 2e−t, we have

‖V ĥr̂ − g‖2
L2(P ) ≤ inf

r∈R

(
(1 +D1τn

−1/2)(D2τrn
−1/2 +D3I∞(g, r))

)
for constants D1, D2, D3 > 0 not depending on τ , r or n.

We can obtain rates of convergence for our estimator V ĥr̂ if we make an assumption

about how well g can be approximated by elements of H. Let us assume

(g2) g ∈ [L∞, H]β,∞ with norm at most B for β ∈ (0, 1) and B > 0.

The assumption (g2), together with Lemma 4.3.1, give

I∞(g, r) ≤ B2/(1−β)

r2β/(1−β)
(4.6.3)

for r > 0. In order for us to apply Theorem 4.6.4 to this setting, we need to make an

assumption on R. We assume either

(R1) R = [0,∞)

or

(R2) R = {bi : 0 ≤ i ≤ I − 1}∪{an1/2} and ρ = an1/2 for a, b > 0 and I = dan1/2/be.

The assumption (R1) is mainly of theoretical interest and would make it difficult to
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calculate r̂ in practice. The estimator r̂ can be computed under the assumption (R2),

since in this case R is finite. We obtain a high-probability bound on a fixed quantile of

the squared L2(P ) error of V ĥr̂ of order t1/2n−β/(1+β) with probability at least 1− e−t

when τ is an appropriate multiple of t1/2.

Theorem 4.6.5 Assume (g1), (g2), (Y ) and (H). Let τ ≥ 80‖k‖1/2
diagσ, ν > 0 and

t =

(
τ

80‖k‖1/2
diagσ

)2

≥ 1.

Also assume (R1) and (r̂), or (R2). Recall the definitions of A1,t and A2,t from

Lemmas 4.5.2 and 4.5.3. On the set A1,t∩A2,t ∈ F , for which P(A1,t∩A2,t) ≥ 1−2e−t,

we have

‖V ĥr̂ − g‖2
L2(P ) ≤ D1τn

−β/(1+β) +D2τ
2n−(1+3β)/(2(1+β))

for constants D1, D2 > 0 not depending on n or τ .

4.7 Regression for a Collection of RKHSs

In this section, we again provide simultaneous bounds on our collection of non-

adaptive estimators. Our results still depend on how well the regression function

g can be approximated by elements of an RKHS. However, this RKHS now comes

from a collection instead of being fixed. Let K be a set of kernels on S×S. We make

the following assumptions.

(K1) The covariate set S and the set of kernels K have the following properties:

• The covariate set S is a separable topological space.

• The set of kernels (K, ‖·‖∞) is separable.
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• The kernel k is bounded for all k ∈ K.

• The kernel k is continuous for all k ∈ K.

Since (K, ‖·‖∞) is a separable set of kernels, we have that K has a countable dense

subset K0. For all ε > 0 and all k ∈ K, there exists k0 ∈ K0 such that

‖k0 − k‖∞ = sup
x1,x2∈S

|k0(x1, x2)− k(x1, x2)| < ε.

Let Hk be the RKHS with kernel k for k ∈ K. Since k is continuous and S is a

separable topological space, we have that Hk is separable by Lemma 4.33 of Steinwart

and Christmann (2008). Hence, the assumption (H) holds forHk. We use the notation

‖·‖k and 〈·, ·〉k for the norm and inner product of Hk.

Let Bk be the closed unit ball of Hk for k ∈ K and r > 0. We define the estimator

ĥk,r = arg min
f∈rBk

1

n

n∑
i=1

(f(Xi)− Yi)2

of the regression function g. We make this definition unique by demanding that

ĥk,r ∈ sp{kXi : 1 ≤ i ≤ n} (see Lemma 3.6.1). We also define ĥk,0 = 0. Since we

assume (g1), that g is bounded in [−C,C], we can make ĥk,r closer to g by clipping

it to obtain V ĥk,r.

Lemma 4.7.1 Assume (K1). We have that ĥk,r is an (L∞,B(L∞))-valued measurable

function on (Ω×K× [0,∞),F ⊗B(K)⊗B([0,∞))), where k varies in K and r varies

in [0,∞).

Let

L = {k/‖k‖diag : k ∈ K} ∪ {0}



CHAPTER 4. THE GOLDENSHLUGER–LEPSKI METHOD 131

and

D = sup
f1,f2∈L

‖f1 − f2‖∞ ≤ 2.

We include 0 in the definition of L so that, when analysing stochastic processes over

L using chaining, we can start all chains at 0. Note that (L, ‖·‖∞) is separable since

L \ {0} is the image of a continuous function on (K, ‖·‖∞), which is itself separable.

Let N(a,M, d) be the minimum size of an a > 0 cover of a metric space (M,d), and

let

J =

(
162

∫ D/2

0

log(2N(a,L, ‖·‖∞))da+ 1

)1/2

.

The next result is proved using the same method as Lemma 4.5.2. However, instead

of one quadratic form of subgaussians, we obtain a supremum over K of quadratic

forms of subgaussians. This can be controlled by chaining using Lemma 4.12.2.

Lemma 4.7.2 Assume (Y ) and (K1). Let t ≥ 1. There exists a set A3,t ∈ F with

P(A3,t) ≥ 1− e−t on which

‖ĥk,r − hk,r‖2
L2(Pn) ≤

21J‖k‖1/2
diagσrt

1/2

n1/2
+ 4‖hk,r − g‖2

∞

simultaneously for all k ∈ K, all r ≥ 0 and all hk,r ∈ rBk.

It is again useful to be able to transfer a bound on the squared L2(Pn) error of an

estimator to a bound on the squared L2(P ) error of the estimator. The result below is

proved using the same method as Lemma 4.5.3, although we again obtain a supremum

of quadratic forms of subgaussians which are controlled using chaining. The event in

the result is measurable by Lemma 4.12.3.

Lemma 4.7.3 Assume (K1). Let t ≥ 1 and A4,t ∈ F be the set on which

sup
f1,f2∈rBk

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f1 − V f2‖2

L2(P )

∣∣∣ ≤ 151J‖k‖1/2
diagCrt

1/2

n1/2
+

8‖k‖1/2
diagCrt

3n
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simultaneously for all k ∈ K and all r ≥ 0. We have P(A4,t) ≥ 1− e−t.

To capture how well g can be approximated by elements of Hk, we define

I∞(g, k, r) = inf
{
‖hk,r − g‖2

∞ : hk,r ∈ rBk

}
for k ∈ K and r ≥ 0. We obtain a bound on the squared L2(P ) error of V ĥk,r by

combining Lemmas 4.7.2 and 4.7.3.

Theorem 4.7.4 Assume (g1), (Y ) and (K1). Let t ≥ 1 and recall the definitions of

A3,t and A4,t from Lemmas 4.7.2 and 4.7.3. On the set A3,t ∩ A4,t ∈ F , for which

P(A3,t ∩ A4,t) ≥ 1− 2e−t, we have

‖V ĥk,r − g‖2
L2(P ) ≤

2J‖k‖1/2
diag(151C + 21σ)rt1/2

n1/2
+

16‖k‖1/2
diagCrt

3n
+ 10I∞(g, k, r)

simultaneously for all k ∈ K and all r ≥ 0.

4.8 The Goldenshluger–Lepski Method for a Col-

lection of RKHSs with Gaussian Kernels

We now apply the Goldenshluger–Lepski method again in the context of RKHS re-

gression. However, we now produce an estimator which adapts over a collection of

RKHSs with Gaussian kernels. We make the following assumptions on S and K.

(K2) The covariate set S and the set of kernels K have the following properties:

• The covariate set S ⊆ Rd for d ≥ 1.
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• The set of kernels

K =
{
kγ(x1, x2) = γ−d exp

(
−‖x1 − x2‖2

2/γ
2
)

: γ ∈ Γ and x1, x2 ∈ S
}

for Γ ⊆ [u, v] non-empty for v ≥ u > 0.

Recalling the definitions from the previous section, we have

L =
{
fγ(x1, x2) = exp

(
−‖x1 − x2‖2

2/γ
2
)

: γ ∈ Γ and x1, x2 ∈ S
}
∪ {0}.

The assumption (K2) implies the assumption (K1). This is because Lemma 4.14.1

shows that (L, ‖·‖∞), and hence (K, ‖·‖∞), is separable. We change notation slightly.

Let Hγ be the RKHS with kernel kγ for γ ∈ Γ, let ‖·‖γ and 〈·, ·〉γ be the norm and

inner product of Hγ, and let Bγ be the closed unit ball of Hγ. Furthermore, we write

ĥγ,r in place of ĥkγ ,r and I∞(g, γ, r) in place of I∞(g, kγ, r).

The scaling of the kernels is selected so that the following lemma holds. The result

is immediate from Proposition 4.46 of Steinwart and Christmann (2008) and the way

that the norm of an RKHS scales with its kernel (Theorem 4.21 of Steinwart and

Christmann, 2008).

Lemma 4.8.1 Assume (K2). Let γ, η ∈ Γ with γ ≥ η. We have Bγ ⊆ Bη.

By Lemma 4.14.1, the function F : Γ→ L \ {0} by F (γ) = fγ is continuous. Hence,

the function G : Γ → K by G(γ) = kγ is continuous. The next result then follows

from Lemma 4.7.1.

Lemma 4.8.2 Assume (K2). We have that ĥγ,r is an (L∞,B(L∞))-valued measurable

function on (Ω× Γ× [0,∞),F ⊗B(Γ)⊗B([0,∞))), where γ varies in Γ and r varies

in [0,∞).
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Recall the definition of J from the previous section. Lemma 4.14.2 provides us with

a bound on J .

Lemma 4.8.3 Assume (K2). We have

J ≤ (81(log(8 log(v/u) + 4) + 2) + 1)1/2 .

The following result can be used to define the majorant of the non-adaptive estimators

and is a simple consequence of Lemma 4.7.2. This motivates the definition of the

adaptive estimator used in the Goldenshluger–Lepski method.

Lemma 4.8.4 Assume (Y ) and (K2). Let t ≥ 1 and recall the definition of A3,t from

Lemma 4.7.2. On the set A3,t ∈ F , for which P(A3,t) ≥ 1− e−t, we have

‖ĥγ,r − ĥη,s‖2
L2(Pn) ≤

84Jσ(γ−d/2r + η−d/2s)t1/2

n1/2
+ 40I∞(g, γ, r)

simultaneously for all γ, η ∈ Γ such that η ≤ γ and all s ≥ r ≥ 0.

Let R ⊆ [0,∞) be non-empty. The Goldenshluger–Lepski method creates an adaptive

estimator by defining (γ̂, r̂) to be the minimiser of

sup
η∈Γ,η≤γ

sup
s∈R,s≥r

(
‖ĥγ,r − ĥη,s‖2

L2(Pn) −
τ(γ−d/2r + η−d/2s)

n1/2

)
+

2(1 + ν)τγ−d/2r

n1/2
(4.8.1)

over (γ, r) ∈ Γ×R for tuning parameters τ, ν > 0. Again, the supremum of pairwise

comparisons can be viewed as a proxy for the unknown bias, while the other term

is an inflated variance term. Note that the supremum is at least the value at (γ, r),

which means that (4.8.1) is at least

2ντγ−d/2r

n1/2
. (4.8.2)
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Again, the role of the tuning parameter ν is simply to control this bound. The

parameter τ controls the probability with which our bound on the squared L2(P )

error of V ĥγ̂,r̂ holds. It may be that γ̂ is not a well-defined random variable on (Ω,F)

in some cases, but we assume

(γ̂) γ̂ is a well-defined random variable on (Ω,F)

throughout. Later, we assume that R and Γ are finite, in which case γ̂ and r̂ are

certainly well-defined random variables on (Ω,F). If γ̂ and r̂ are well-defined random

variables on (Ω,F), then ĥγ̂,r̂ is an (L∞,B(L∞))-valued measurable function on (Ω,F)

by Lemma 4.8.2.

By Lemma 4.8.4, the supremum in the definition of (γ̂, r̂) is at most 40I∞(g, γ, r)

for an appropriate value of τ . The definition of (γ̂, r̂) then gives us control over the

squared L2(Pn) norm of ĥγ̂,r̂ − ĥγ̂∧γ,r̂∨r. We can control the squared L2(Pn) norm of

ĥγ̂∧γ,r̂∨r − hγ,r using Lemma 4.8.4. In both cases, we use the boundedness of Γ when

controlling the squared L2(Pn) norm before clipping the estimators using V . Extra

terms appear when moving from bounds on the squared L2(Pn) norm to bounds on

the squared L2(P ) norm using Lemma 4.7.3. We must then control terms of order

γ̂−d/2r̂/n1/2 using (4.8.2) and the definition of (γ̂, r̂). Combining the bounds gives a

bound on the squared L2(P ) norm of V hγ̂,r̂ − V hγ,r. Applying

‖V ĥr̂ − g‖2
L2(P ) ≤ 2‖V hγ̂,r̂ − V hγ,r‖2

L2(P ) + 2‖V hγ,r − g‖2
L2(P )

gives the following result. Comparisons between (r̂, γ̂), (r, γ) and (r̂ ∨ r, γ̂ ∧ γ) are

demonstrated in Figure 4.1 for two different values of (r, γ).

Theorem 4.8.5 Assume (Y ) and (K2). Let τ ≥ 84Jσ, ν > 0 and

t =
( τ

84Jσ

)2

≥ 1.
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u

v

r

(r̂, γ̂)

(r1, γ1)

(r2, γ2)

(r̂ ∨ r1, γ̂ ∧ γ1)

(r̂ ∨ r2, γ̂ ∧ γ2)

r

γ

Figure 4.1: A demonstration of the parameter comparisons made in the proof of
Theorem 4.8.5

Recall the definitions of A3,t and A4,t from Lemmas 4.7.2 and 4.7.3. On the set

A3,t ∩ A4,t ∈ F , for which P(A3,t ∩ A4,t) ≥ 1− 2e−t, we have

‖V ĥγ̂,r̂ − g‖2
L2(P )

is at most

inf
γ∈Γ

inf
r∈R

(
320I∞(g, γ, r) +

4vd/2(5 + 2ν)τγ−d/2r

ud/2n1/2
+

302Cvd/2τγ−d/2r

21ud/2σn1/2
+

4Cvd/2τ 2γ−d/2r

1323J2ud/2σ2n

+

(
12vd/2

ud/2ν
+

302Cvd/2

21ud/2σν
+

4Cvd/2τ

1323J2ud/2σ2νn1/2

)(
20I∞(g, γ, r) +

(1 + ν)τγ−d/2r

n1/2

)
+ 2‖V ĥγ,r − g‖2

L2(P )

)
.

We now combine Theorems 4.7.4 and 4.8.5.

Theorem 4.8.6 Assume (g1), (Y ) and (K2). Let τ ≥ 84Jσ, ν > 0 and

t =
( τ

84Jσ

)2

≥ 1.

Recall the definitions of A3,t and A4,t from Lemmas 4.7.2 and 4.7.3. On the set
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A3,t ∩ A4,t ∈ F , for which P(A3,t ∩ A4,t) ≥ 1− 2e−t, we have

‖V ĥγ,r̂ − g‖2
L2(P ) ≤ inf

γ∈Γ
inf
r∈R

(
(1 +D1τn

−1/2)(D2τγ
−d/2rn−1/2 +D3I∞(g, γ, r))

)
for constants D1, D2, D3 > 0 not depending on τ , γ, r or n.

We can obtain rates of convergence for our estimator V ĥγ̂,r̂ if we make an assumption

about how well g can be approximated by elements of Hα for α ∈ [u, v]. Let us assume

(g3) g ∈ [L∞, Hα]β,∞ with norm at most B for α ∈ [u, v], β ∈ (0, 1) and B > 0.

The assumption (g3), together with Lemma 4.3.1, give

I∞(g, α, r) ≤ B2/(1−β)

r2β/(1−β)
(4.8.3)

for r > 0. In order for us to apply Theorem 4.8.6 to this setting, we need to make

assumptions on Γ and R. We assume either (R1) and

(Γ1) Γ = [u, v],

or (R2) and

(Γ2) Γ = {uci : 0 ≤ i ≤ L− 1} ∪ {v} for c > 1 and L = dlog(v/u)/ log(c)e.

The assumptions (R1) and (Γ1) are mainly of theoretical interest and would make it

difficult to calculate (γ̂, r̂) in practice. The estimator (γ̂, r̂) can be computed under

the assumptions (R2) and (Γ2), since in this case R and Γ are finite. We obtain

a high-probability bound on a fixed quantile of the squared L2(P ) error of V ĥr̂,γ̂ of

order t1/2n−β/(1+β) with probability at least 1− e−t when τ is an appropriate multiple

of t1/2.
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Theorem 4.8.7 Assume (g1), (g3), (Y ) and (K2). Let τ ≥ 84Jσ, ν > 0 and

t =
( τ

84Jσ

)2

≥ 1.

Also assume (R1), (Γ1), (r̂) and (γ̂), or (R2) and (Γ2). Recall the definitions of

A3,t and A4,t from Lemmas 4.7.2 and 4.7.3. On the set A3,t ∩ A4,t ∈ F , for which

P(A3,t ∩ A4,t) ≥ 1− 2e−t, we have

‖V ĥγ̂,r̂ − g‖2
L2(P ) ≤ D1τn

−β/(1+β) +D2τ
2n−(1+3β)/(2(1+β))

for constants D1, D2 > 0 not depending on n or τ .

4.9 Discussion

In this chapter, we show how the Goldenshluger–Lepski method can be applied when

performing regression over an RKHS H, which is separable with a bounded and

measurable kernel k, or a collection of such RKHSs. We produce an adaptive estimator

from a collection of clipped versions of least-squares estimators which are constrained

to lie in a ball of predefined radius in H. Since the L2(P ) norm is unknown, we

use the L2(Pn) norm when calculating the pairwise comparisons for the proxy for the

unknown bias of this collection of non-adaptive estimators. When H is fixed, our

estimator need only adapt to the radius of the ball in H. However, when H comes

from a collection of RKHSs with Gaussian kernels, the estimator must also adapt to

the width parameter of the kernel. As far as we are aware, this is the first time that the

Goldenshluger–Lepski method has been applied in the context of RKHS regression. In

order to apply the Goldenshluger–Lepski method in this context, we must provide a

majorant by controlling all of the non-adaptive estimators simultaneously, extending
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the results of Chapter 3.

By assuming that the regression function lies in an interpolation space between L∞

and H parametrised by β, we obtain a bound on a fixed quantile of the squared L2(P )

error of our adaptive estimator of order n−β/(1+β). This is true for both the case in

which H is fixed and the case in which H comes from a collection of RKHSs with

Gaussian kernels. The order n−β/(1+β) for the squared L2(P ) error of the adaptive

estimators matches the order of the smallest bounds obtained in Chapter 3 for the

squared L2(P ) error of the non-adaptive estimators. In the sense discussed in Chapter

3, this order is the optimal power of n if we make the slightly weaker assumption that

the regression function is an element of the interpolation space between L2(P ) and H

parametrised by β.

For the case in which H comes from a collection of RKHSs with Gaussian kernels,

our current results rely on the boundedness of the set Γ of width parameters of the

kernels. This is somewhat limiting as allowing the width parameter to tend to 0 as

n tends to infinity would allow us to estimate a greater collection of functions. We

hope that in the future the analysis in the proof of Theorem 4.8.5 can be extended to

allow for such flexibility.

The results in this chapter warrant the investigation of whether it is possible to extend

the use of the Goldenshluger–Lepski method from the case in which H comes from a

collection of RKHSs with Gaussian kernels to other cases. The analysis in this chapter

relies on the fact that the closed unit ball of the RKHS generated by a Gaussian kernel

increases as the width of the kernel decreases. It may be possible to apply a similar

analysis to other situations in which H belongs to a collection of RKHSs which also

exhibit this nestedness property. If the RKHSs did not exhibit this property, then a

new form of analysis would be necessary to apply the Goldenshluger–Lepski method.

In particular, we would need a new criterion for deciding on the smoothness of the
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non-adaptive estimators when performing the pairwise comparisons.

4.10 Proof of the Regression Results for a Fixed

RKHS

We bound the distance between ĥr and hr in the L2(Pn) norm for r ≥ 0 and hr ∈ rBH

to prove Lemma 4.5.2.

Proof of Lemma 4.5.2 The result is trivial for r = 0. By Lemma 3.5.1, we have

‖ĥr − hr‖2
L2(Pn) ≤

4

n

n∑
i=1

(Yi − g(Xi))(ĥr(Xi)− hr(Xi)) + 4‖hr − g‖2
L2(Pn)

for all r > 0 and all hr ∈ rBH . We now bound the right-hand side. We have

‖hr − g‖2
L2(Pn) ≤ ‖hr − g‖2

∞.

Furthermore,

1

n

n∑
i=1

(Yi − g(Xi))(ĥr(Xi)− hr(Xi))

≤ sup
f∈2rBH

∣∣∣∣∣ 1n
n∑
i=1

(Yi − g(Xi))f(Xi)

∣∣∣∣∣
= sup

f∈2rBH

∣∣∣∣∣
〈

1

n

n∑
i=1

(Yi − g(Xi))kXi , f

〉
H

∣∣∣∣∣
= 2r

∥∥∥∥∥ 1

n

n∑
i=1

(Yi − g(Xi))kXi

∥∥∥∥∥
H

= 2r

(
1

n2

n∑
i,j=1

(Yi − g(Xi))(Yj − g(Xj))k(Xi, Xj)

)1/2
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by the reproducing kernel property and the Cauchy–Schwarz inequality. Let K be the

n× n matrix with Ki,j = k(Xi, Xj) and let ε be the vector of the Yi − g(Xi). Then

1

n2

n∑
i,j=1

(Yi − g(Xi))(Yj − g(Xj))k(Xi, Xj) = εT(n−2K)ε.

Furthermore, since k is a measurable function on (S × S,S ⊗ S), we have that n−2K

is an (Rn×n,B(Rn×n))-valued measurable matrix on (Ω,F) and non-negative-definite.

Let ai for 1 ≤ i ≤ n be the eigenvalues of n−2K. Then

max
1≤i≤n

ai ≤ tr(n−2K) ≤ n−1‖k‖diag

and

tr((n−2K)2) = ‖a‖2
2 ≤ ‖a‖2

1 ≤ n−2‖k‖2
diag.

Therefore, by Lemma 3.16.2, we have

εT(n−2K)ε ≤ ‖k‖diagσ2n−1(1 + 2t+ 2(t2 + t)1/2)

and

1

n

n∑
i=1

(Yi − g(Xi))(ĥr(Xi)− hr(Xi)) ≤
5‖k‖1/2

diagσrt
1/2

n1/2

with probability at least 1− e−t. The result follows.

Recall Lemma 3.13.2, which is useful for proving Lemma 4.5.3.

Lemma 4.10.1 Let D > 0 and A ⊆ L∞ be separable with ‖f‖∞ ≤ D for all f ∈ A.

Let

Z = sup
f∈A

∣∣∣‖f‖2
L2(Pn) − ‖f‖2

L2(P )

∣∣∣ .
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Then, for t > 0, we have

Z ≤ E(Z) +

(
2D4t

n
+

4D2 E(Z)t

n

)1/2

+
2D2t

3n

with probability at least 1− e−t.

We bound the supremum of the difference in the L2(Pn) norm and the L2(P ) norm

over rBH for r ≥ 0 to prove Lemma 4.5.3.

Proof of Lemma 4.5.3 The result is trivial for r = 0. Let

Z = sup
r>0

sup
f1,f2∈rBH

1

r

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f1 − V f2‖2

L2(P )

∣∣∣ .
Furthermore, let the εi for 1 ≤ i ≤ n be i.i.d. Rademacher random variables on

(Ω,F ,P), independent of the Xi. Lemma 2.3.1 of van der Vaart and Wellner (1996)

shows

E(Z) ≤ 2E

(
sup
r>0

sup
f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εi(r
−1/2V f1(Xi)− r−1/2V f2(Xi))

2

∣∣∣∣∣
)

by symmetrisation. Since

|V f1(Xi)− V f2(Xi)| ≤ 2C

for all r > 0 and all f1, f2 ∈ rBH , we find

(r−1/2V f1(Xi)− r−1/2V f2(Xi))
2

4C

is a contraction vanishing at 0 as a function of r−1V f1(Xi) − r−1V f2(Xi) for all
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1 ≤ i ≤ n. By Theorem 3.2.1 of Giné and Nickl (2016), we have

E

(
sup
r>0

sup
f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εi
(r−1/2V f1(Xi)− r−1/2V f2(Xi))

2

4C

∣∣∣∣∣
∣∣∣∣∣X
)

is at most

2E

(
sup
r>0

sup
f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εi(r
−1V f1(Xi)− r−1V f2(Xi))

∣∣∣∣∣
∣∣∣∣∣X
)

almost surely. Therefore,

E(Z) ≤ 16C E

(
sup
r>0

sup
f1,f2∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εi(r
−1V f1(Xi)− r−1V f2(Xi))

∣∣∣∣∣
)

≤ 32C E

(
sup
r>0

sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εir
−1V f(Xi)

∣∣∣∣∣
)

by the triangle inequality. Again, by Theorem 3.2.1 of Giné and Nickl (2016), we have

E(Z) ≤ 64C E

(
sup
r>0

sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εir
−1f(Xi)

∣∣∣∣∣
)

since V is a contraction vanishing at 0. We have

sup
r>0

sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εir
−1f(Xi)

∣∣∣∣∣ = sup
r>0

sup
f∈rBH

∣∣∣∣∣
〈

1

n

n∑
i=1

εikXi , r
−1f

〉
H

∣∣∣∣∣
=

∥∥∥∥∥ 1

n

n∑
i=1

εikXi

∥∥∥∥∥
H

=

(
1

n2

n∑
i,j=1

εiεjk(Xi, Xj)

)1/2

by the reproducing kernel property and the Cauchy–Schwarz inequality. By Jensen’s
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inequality, we have

E

(
sup
r>0

sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εir
−1f(Xi)

∣∣∣∣∣
∣∣∣∣∣X
)
≤

(
1

n2

n∑
i,j=1

cov(εi, εj|X)k(Xi, Xj)

)1/2

=

(
1

n2

n∑
i=1

k(Xi, Xi)

)1/2

almost surely and again, by Jensen’s inequality, we have

E

(
sup
r>0

sup
f∈rBH

∣∣∣∣∣ 1n
n∑
i=1

εir
−1f(Xi)

∣∣∣∣∣
)
≤
(
‖k‖diag
n

)1/2

.

Hence, E(Z) ≤ 64‖k‖1/2
diagCn

−1/2.

Let

A =
{
r−1/2V f1 − r−1/2V f2 : r > 0 and f1, f2 ∈ rBH

}
.

We have that (0,∞), the set indexing r, is separable. Furthermore, H is separable and

so is separable in L∞ as it can be continuously embedded in L∞ due to its bounded

kernel. Therefore, rBH ⊆ H is separable in L∞ for r > 0. Hence, we have that

A ⊆ L∞ is separable. Furthermore,

∥∥r−1/2V f1 − r−1/2V f2

∥∥
∞ ≤ min

(
2Cr−1/2, 2‖k‖1/2

diagr
1/2
)

≤ 2‖k‖1/4
diagC

1/2

for all r > 0 and all f1, f2 ∈ rBH . The first term in the minimum comes from clipping

using V , while the second term comes from the continuous embedding of H in L∞

due to its bounded kernel. By Lemma 4.10.1, we have

Z ≤ E(Z) +

(
32‖k‖diagC2t

n
+

16‖k‖1/2
diagC E(Z)t

n

)1/2

+
8‖k‖1/2

diagCt

3n



CHAPTER 4. THE GOLDENSHLUGER–LEPSKI METHOD 145

with probability at least 1− e−t. We have E(Z) ≤ 64‖k‖1/2
diagCn

−1/2 from above. The

result follows.

We move the bound on the distance between V ĥr and V hr from the L2(Pn) norm to

the L2(P ) norm for r ≥ 0 and hr ∈ rBH .

Corollary 4.10.2 Assume (Y ) and (H). Let t ≥ 1 and recall the definitions of

A1,t and A2,t from Lemmas 4.5.2 and 4.5.3. On the set A1,t ∩ A2,t ∈ F , for which

P(A1,t ∩ A2,t) ≥ 1− 2e−t, we have

‖V ĥr − V hr‖2
L2(P ) ≤

‖k‖1/2
diag(97C + 20σ)rt1/2

n1/2
+

8‖k‖1/2
diagCrt

3n
+ 4‖hr − g‖2

∞

simultaneously for all r ≥ 0 and all hr ∈ rBH .

Proof By Lemma 4.5.2, we have

‖ĥr − hr‖2
L2(Pn) ≤

20‖k‖1/2
diagσrt

1/2

n1/2
+ 4‖hr − g‖2

∞

for all r ≥ 0 and all hr ∈ rBH , so

‖V ĥr − V hr‖2
L2(Pn) ≤

20‖k‖1/2
diagσrt

1/2

n1/2
+ 4‖hr − g‖2

∞.

Since ĥr, hr ∈ rBH , by Lemma 4.5.3 we have

‖V ĥr − V hr‖2
L2(P ) − ‖V ĥr − V hr‖2

L2(Pn)

≤ sup
f1,f2∈rBH

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f1 − V f2‖2

L2(P )

∣∣∣
≤

97‖k‖1/2
diagCrt

1/2

n1/2
+

8‖k‖1/2
diagCrt

3n
.

The result follows.
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We bound the changes in I∞(g, r) with r ≥ 0 to prove Lemma 4.5.4.

Proof of Lemma 4.5.4 We have I∞(g, s) ≤ I∞(g, r) since rBH ⊆ sBH . Let hs ∈

sBH . We have ∥∥∥r
s
hs − g

∥∥∥
∞
≤
∥∥∥r
s
hs − hs

∥∥∥
∞

+ ‖hs − g‖∞.

We have

∥∥∥r
s
hs − hs

∥∥∥
∞

=
(

1− r

s

)
‖hs‖∞

≤ (s− r)‖k‖1/2
diag.

The result follows.

We assume (g1) to bound the distance between V ĥr and g in the L2(P ) norm for

r ≥ 0 and prove Theorem 4.5.5.

Proof of Theorem 4.5.5 Note that V g = g. We have

‖V ĥr − g‖2
L2(P ) ≤

(
‖V ĥr − V hr‖L2(P ) + ‖V hr − g‖L2(P )

)2

≤ 2‖V ĥr − V hr‖2
L2(P ) + 2‖V hr − g‖2

L2(P )

≤ 2‖V ĥr − V hr‖2
L2(P ) + 2‖hr − g‖2

L2(P )

for all r ≥ 0 and all hr ∈ rBH . By Corollary 4.10.2, we have

‖V ĥr − V hr‖2
L2(P ) ≤

‖k‖1/2
diag(97C + 20σ)rt1/2

n1/2
+

8‖k‖1/2
diagCrt

3n
+ 4‖hr − g‖2

∞.

Hence,

‖V ĥr − g‖2
L2(P ) ≤

2‖k‖1/2
diag(97C + 20σ)rt1/2

n1/2
+

16‖k‖1/2
diagCrt

3n
+ 10‖hr − g‖2

∞.
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Taking an infimum over hr ∈ rBH proves the result.

4.11 Proof of the Goldenshluger–Lepski Method

for a Fixed RKHS

We bound the distance between ĥr and ĥs in the L2(Pn) norm for s ≥ r ≥ 0 to prove

Lemma 4.6.1.

Proof of Lemma 4.6.1 By Lemma 4.5.2, we have

‖ĥr − ĥs‖2
L2(Pn) ≤ 4‖ĥr − hr‖2

L2(Pn) + 4‖hr − g‖2
L2(Pn)

+ 4‖g − hs‖2
L2(Pn) + 4‖hs − ĥs‖2

L2(Pn)

≤
80‖k‖1/2

diagσ(r + s)t1/2

n1/2
+ 20‖hr − g‖2

∞ + 20‖hs − g‖2
∞

for all r, s ≥ 0 and all hr ∈ rBH , hs ∈ sBH . Taking an infimum over hr ∈ rBH and

hs ∈ sBH gives

‖ĥr − ĥs‖2
L2(Pn) ≤

80‖k‖1/2
diagσ(r + s)t1/2

n1/2
+ 20I∞(g, r) + 20I∞(g, s).

The result follows.

We prove Lemma 4.6.2.

Proof of Lemma 4.6.2 Let K be the n×n symmetric matrix with Ki,j = k(Xi, Xj).

By Lemma 3.6.1, we have that K is an (Rn×n,B(Rn×n))-valued measurable matrix on

(Ω,F) and that there exist an orthogonal matrix A and a diagonal matrix D which are

both (Rn×n,B(Rn×n))-valued measurable matrices on (Ω,F) such that K = ADAT.

Furthermore, we can demand that the diagonal entries of D are non-negative and
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non-increasing. Let m = rkK and

ρ =

(
m∑
i=1

D−1
i,i (ATY )2

i

)1/2

,

which are random variables on (Ω,F). By Lemma 3.6.1, we have that ĥr is constant

in r for r ≥ ρ. Hence,

inf
r∈R

(
sup

s∈R,s≥r

(
‖ĥr − ĥs‖2

L2(Pn) −
τ(r + s)

n1/2

)
+

2(1 + ν)τr

n1/2

)
= inf

r∈R∩[0,ρ]

(
sup

s∈R,s≥r

(
‖ĥr − ĥs‖2

L2(Pn) −
τ(r + s)

n1/2

)
+

2(1 + ν)τr

n1/2

)
. (4.11.1)

By Lemma 4.5.1, we have

‖ĥr − ĥs‖2
L2(Pn) −

τ(r + s)

n1/2

is continuous in r for all s ∈ R such that s ≥ r. The supremum of a collection of

lower semicontinuous functions is lower semicontinuous. Therefore,

sup
s∈R,s≥r

(
‖ĥr − ĥs‖2

L2(Pn) −
τ(r + s)

n1/2

)
+

2(1 + ν)τr

n1/2

is lower semicontinuous in r. Hence, the infimum (4.11.1) is attained as it is the

infimum of a lower semicontinuous function on a compact set. By lower semicontinuity,

r̂ also attains the infimum and is well-defined.

We use the Goldenshluger–Lepski method to prove Theorem 4.6.3.

Proof of Theorem 4.6.3 Since we assume (Y ) and (H), we find that Lemma 4.5.2

holds, which implies that Lemma 4.6.1 holds. By our choice of t, we have

‖ĥr − ĥs‖2
L2(Pn) ≤

τ(r + s)

n1/2
+ 40I∞(g, r) (4.11.2)
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simultaneously for all s, r ∈ R such that s ≥ r ≥ 0. Fix r ∈ R and suppose that

r̂ ≤ r. By the definition of r̂ in (4.6.1) and (4.11.2), we have

‖ĥr̂ − ĥr‖2
L2(Pn) = ‖ĥr̂ − ĥr‖2

L2(Pn) −
τ(r̂ + r)

n1/2
+
τ(r̂ + r)

n1/2

≤ sup
s∈R,s≥r̂

(
‖ĥr̂ − ĥs‖2

L2(Pn) −
τ(r̂ + s)

n1/2

)
+

2τr

n1/2

≤ sup
s∈R,s≥r

(
‖ĥr − ĥs‖2

L2(Pn) −
τ(r + s)

n1/2

)
+

2(2 + ν)τr

n1/2
− 2(1 + ν)τ r̂

n1/2

≤ 40I∞(g, r) +
2(2 + ν)τr

n1/2
.

This shows

‖V ĥr̂ − V ĥr‖2
L2(Pn) ≤ 40I∞(g, r) +

2(2 + ν)τr

n1/2
,

and it follows from Lemma 4.5.3 and our choice of t that

‖V ĥr̂ − V ĥr‖2
L2(P ) ≤ 40I∞(g, r) +

2(2 + ν)τr

n1/2
+

97Cτr

80σn1/2
+

Cτ 2r

2400‖k‖1/2
diagσ

2n
.

Hence,

‖V ĥr̂ − g‖2
L2(P )

≤ 2‖V ĥr̂ − V ĥr‖2
L2(P ) + 2‖V ĥr − g‖2

L2(P )

≤ 80I∞(g, r) +
4(2 + ν)τr

n1/2
+

97Cτr

40σn1/2
+

Cτ 2r

1200‖k‖1/2
diagσ

2n
+ 2‖V ĥr − g‖2

L2(P ).

Now suppose instead that r̂ ≥ r. Since (4.11.2) holds simultaneously for all s, r ∈ R

such that s ≥ r ≥ 0, we have

‖ĥr̂ − ĥr‖2
L2(Pn) ≤

τ(r + r̂)

n1/2
+ 40I∞(g, r).
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This shows

‖V ĥr̂ − V ĥr‖2
L2(Pn) ≤

τr

n1/2
+ 40I∞(g, r) +

τ r̂

n1/2
,

and it follows from Lemma 4.5.3 that

‖V ĥr̂ − V ĥr‖2
L2(P )

≤ τr

n1/2
+ 40I∞(g, r) +

τ r̂

n1/2
+

97Cτr̂

80σn1/2
+

Cτ 2r̂

2400‖k‖1/2
diagσ

2n

=
τr

n1/2
+ 40I∞(g, r) +

(
1

2ν
+

97C

160σν
+

Cτ

4800‖k‖1/2
diagσ

2νn1/2

)
2ντ r̂

n1/2
.

By (4.6.2), the definition of r̂ in (4.6.1) and (4.11.2), we have

2ντ r̂

n1/2
≤ sup

s∈R,s≥r̂

(
‖ĥr̂ − ĥs‖2

L2(Pn) −
τ(r̂ + s)

n1/2

)
+

2(1 + ν)τ r̂

n1/2

≤ sup
s∈R,s≥r

(
‖ĥr − ĥs‖2

L2(Pn) −
τ(r + s)

n1/2

)
+

2(1 + ν)τr

n1/2

≤ 40I∞(g, r) +
2(1 + ν)τr

n1/2
.

Hence,

‖V ĥr̂ − g‖2
L2(P )

≤ 2‖V ĥr̂ − V ĥr‖2
L2(P ) + 2‖V ĥr − g‖2

L2(P )

≤ 2τr

n1/2
+ 80I∞(g, r) +

(
1

ν
+

97C

80σν
+

Cτ

2400‖k‖1/2
diagσ

2νn1/2

)(
40I∞(g, r) +

2(1 + ν)τr

n1/2

)
+ 2‖V ĥr − g‖2

L2(P ).

The result follows.

We assume (g1) to bound the distance between V ĥr̂ and g in the L2(P ) norm and

prove Theorem 4.6.4.
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Proof of Theorem 4.6.4 By Theorem 4.6.3, we have

‖V ĥr̂ − g‖2
L2(P ) ≤ inf

r∈R

(
(1 +D4τn

−1/2)(D5τrn
−1/2 +D6I∞(g, r)) + 2‖V ĥr − g‖2

L2(P )

)

for some constants D4, D5, D6 > 0 not depending on τ , r or n. By Theorem 4.5.5, we

have

‖V ĥr − g‖2
L2(P ) ≤

(97C + 20σ)τr

40σn1/2
+

Cτ 2r

1200‖k‖1/2
diagσ

2n
+ 10I∞(g, r)

≤ D7τrn
−1/2 +D8τ

2rn−1 + 10I∞(g, r).

for all r ∈ R, for some constants D7, D8 > 0 not depending on τ , r or n. This gives

‖V ĥr̂ − g‖2
L2(P ) ≤ inf

r∈R

(
(1 +D4τn

−1/2)(D5τrn
−1/2 +D6I∞(g, r))

+ 2D7τrn
−1/2 + 2D8τ

2rn−1 + 20I∞(g, r)
)
.

Hence, the result follows with

D1 =
D4D5 + 2D8

D5 + 2D7

, D2 = D5 + 2D7, D3 = D6 + 20.

We assume (g2) to prove Theorem 4.6.5.

Proof of Theorem 4.6.5 If we assume (R1), then r = an(1−β)/(2(1+β)) ∈ R and

‖V ĥr̂ − g‖2
L2(P ) ≤ (1 +D3τn

−1/2)(D4τrn
−1/2 +D5I∞(g, r))

≤ (1 +D3τn
−1/2)

(
D4τan

−β/(1+β) +
D5B

2/(1−β)

a2β/(1−β)nβ/(1+β)

)

for some constants D3, D4, D5 > 0 not depending on n or τ by Theorem 4.6.4 and
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(4.6.3). If we assume (R2), then there is at least one r ∈ R such that

an(1−β)/(2(1+β)) ≤ r < an(1−β)/(2(1+β)) + b

and

‖V ĥr̂ − g‖2
L2(P )

≤ (1 +D3τn
−1/2)(D4τrn

−1/2 +D5I∞(g, r))

≤ (1 +D3τn
−1/2)

(
D4τ(an(1−β)/(2(1+β)) + b)n−1/2 +

D5B
2/(1−β)

a2β/(1−β)nβ/(1+β)

)

by Theorem 4.6.4 and (4.6.3). In either case,

‖V ĥr̂ − g‖2
L2(P ) ≤ D1τn

−β/(1+β) +D2τ
2n−(1+3β)/(2(1+β))

for some constants D1, D2 > 0 not depending on n or τ .

4.12 Proof of the Regression Results for a Collec-

tion of RKHSs

We prove Lemma 4.7.2.

Proof of Lemma 4.7.2 Let K be the n×n symmetric matrix with Ki,j = k(Xi, Xj)

for k ∈ K. ThenK is a continuous function of k andX, hence it is an (Rn×n,B(Rn×n))-

valued measurable matrix on (Ω × K,F ⊗ B(K)), where k varies in K. By Lemma

4.16.1, there exist an orthogonal matrix A and a diagonal matrix D which are both

(Rn×n,B(Rn×n))-valued measurable matrices on (Ω × K,F ⊗ B(K)) such that K =

ADAT. Since K is non-negative definite, the diagonal entries of D are non-negative,
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and we may assume that they are non-increasing. Let m = rkK, which is measurable

on (Ω×K,F ⊗ B(K)). For r > 0, if

r2 <
m∑
i=1

D−1
i,i (ATY )2

i ,

then define µ(r) > 0 by

m∑
i=1

Di,i

(Di,i + nµ(r))2
(ATY )2

i = r2.

Otherwise, let µ(r) = 0. Let a ∈ Rn be defined by

(ATa)i = (Di,i + nµ(r))−1(ATY )i

for 1 ≤ i ≤ m and (ATa)i = 0 for m + 1 ≤ i ≤ n, noting that AT has the inverse A

since it is an orthogonal matrix. By Lemma 3.6.1,

ĥk,r =
n∑
i=1

aikXi

for r > 0 and ĥk,0 = 0 for k ∈ K.

Since µ(r) > 0 is strictly decreasing for

r2 <

m∑
i=1

D−1
i,i (ATY )2

i

and µ(r) = 0 otherwise, we find

{µ(r) ≤ µ} =

{
m∑
i=1

Di,i

(Di,i + nµ)2
(ATY )2

i ≤ r2

}

for µ ∈ [0,∞). Therefore, µ(r) is measurable on (Ω×K×[0,∞),F⊗B(K)⊗B([0,∞))),
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where k varies inK and r varies in [0,∞). Hence, the a above with µ = µ(r) for r > 0 is

measurable on (Ω×K×[0,∞),F⊗B(K)⊗B([0,∞))). By Lemma 4.29 of Steinwart and

Christmann (2008), Φk : S → Hk by Φk(x) = kx is continuous for all k ∈ K. Hence,

Φ : K×S → L∞ by Φ(k, x) = kx is continuous and kXi for 1 ≤ i ≤ n are (L∞,B(L∞))-

valued measurable functions on (Ω×K,F ⊗B(K)). Together, these show that ĥk,r is

an (L∞,B(L∞))-valued measurable function on (Ω×K×[0,∞),F⊗B(K)⊗B([0,∞))),

where k varies in K and r varies in [0,∞), recalling that ĥk,0 = 0.

Let ψ1(x) = exp(|x|)− 1 for x ∈ R and

‖Z‖ψ1 = inf{a ∈ (0,∞) : E(ψ1(Z/a)) ≤ 1}

for any random variable Z on (Ω,F). Note that this infimum is attained by the

monotone convergence theorem, and ‖Z‖ψ1 increases as |Z| increases pointwise. Let

Lψ1 be the set of random variables Z on (Ω,F ,P) such that ‖Z‖ψ1 < ∞. We have

that (Lψ1 , ‖·‖ψ1) is a Banach space known as an Orlicz space (see Rao and Ren, 1991).

Lemma 4.12.1 Let Z ∈ Lψ1. We have

E(|Z|) ≤ (log 2)‖Z‖ψ1 .

Let t ≥ 0. We have

|Z| ≤ ‖Z‖ψ1(log 2 + t)

with probability at least 1− e−t.

Proof We have E(exp(|Z|/‖Z‖ψ1)) ≤ 2. The first result follows from Jensen’s

inequality. The second result follows from Chernoff bounding.
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For m× n matrices U and V , define U ◦ V to be the m× n matrix with

(U ◦ V )i,j = Ui,jVi,j.

Recall that

L = {k/‖k‖diag : k ∈ K} ∪ {0},

D = sup
f1,f2∈L

‖f1 − f2‖∞ ≤ 2,

J =

(
162

∫ D/2

0

log(2N(a,L, ‖·‖∞))da+ 1

)1/2

.

The following lemma is useful for proving Lemma 4.7.2.

Lemma 4.12.2 Assume (K1). Let the εi for 1 ≤ i ≤ n be random variables on

(Ω,F ,P) such that (Xi, εi) are i.i.d. and εi is σ2-subgaussian given Xi. Let

W (f) =
1

n2

n∑
i,j=1

εiεjf(Xi, Xj)

for f ∈ L. We have ∥∥∥∥sup
f∈L

W (f)

∥∥∥∥
ψ1

≤ 4J2σ2

n
.

Proof Let F be the n × n matrix with Fi,j = f(Xi, Xj), where F varies with

f ∈ L. Note that F is an (Rn×n,B(Rn×n))-valued measurable matrix on (Ω,F).

Then W (f) = n−2εTFε. Let Z(f) = n−2εT(F − I ◦ F )ε for f ∈ L. Note that Z is

continuous in f . We have

‖Z(f1)− Z(f2)‖ψ1
≤ 36σ2n−1‖f1 − f2‖∞
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for f1, f2 ∈ L by Lemma 4.16.3. Let d(f1, f2) = 36σ2n−1‖f1− f2‖∞ for f1, f2 ∈ L and

Dd = sup
f1,f2∈L

d(f1, f2).

By Lemma 4.15.2 with M = L and s0 = 0, we find

∥∥∥∥sup
f∈L
|Z(f)|

∥∥∥∥
ψ1

≤ 18

∫ Dd/2

0

log(2N(a,L, d))da

=
648σ2

n

∫ D/2

0

log(2N(a,L, ‖·‖∞))da.

Hence,

∥∥∥∥sup
f∈L

W (f)

∥∥∥∥
ψ1

≤
∥∥∥∥n−2 sup

f∈L
εT(I ◦ F )ε

∥∥∥∥
ψ1

+
648σ2

n

∫ D/2

0

log(2N(a,L, ‖·‖∞))da.

We have

n−2 sup
f∈L

εT(I ◦ F )ε ≤ n−2εTε,

noting that Fi,i ∈ [0, 1] for 1 ≤ i ≤ n and f ∈ L. Let δi for 1 ≤ i ≤ n be random

variables on (Ω,F ,P) which are independent of each other and the εi, with δi ∼

N(0, σ2). Lemma 3.16.1 shows

E
(

exp

(
n−2t sup

f∈L
εT(I ◦ F )ε

))
≤ E

(
exp

(
n−2tεTε

))
≤ E

(
exp

(
n−2tδTδ

))
=

n∏
i=1

(
1− 2σ2n−2t

)−1/2

for 0 ≤ 2σ2n−2t < 1 by computing the moment generating function of the δ2
i . We
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have that (1− x)−1/2 ≤ exp(x) for x ∈ [0, 1/2], so

E
(

exp

(
n−2t sup

f∈L
εT(I ◦ F )ε

))
≤

n∏
i=1

exp
(
2σ2n−2t

)
= exp

(
2σ2n−1t

)
for 0 ≤ 4σ2n−2t ≤ 1. This bound is at most 2 and valid for

t ≤ min

(
n2

4σ2
,
(log 2)n

2σ2

)
.

Hence, ∥∥∥∥n−2 sup
f∈L

εT(I ◦ F )ε

∥∥∥∥
ψ1

≤ max

(
4σ2

n2
,

2σ2

(log 2)n

)
≤ 4σ2

n

and ∥∥∥∥sup
f∈L

W (f)

∥∥∥∥
ψ1

≤ 648σ2

n

∫ D/2

0

log(2N(a,L, ‖·‖∞))da+
4σ2

n
.

The result follows.

We bound the distance between ĥk,r and hk,r in the L2(Pn) norm for k ∈ K, r ≥ 0

and hk,r ∈ rBk to prove Lemma 4.7.2.

Proof of Lemma 4.7.2 The result is trivial for r = 0. By Lemma 3.5.1, we have

‖ĥk,r − hk,r‖2
L2(Pn) ≤

4

n

n∑
i=1

(Yi − g(Xi))(ĥk,r(Xi)− hk,r(Xi)) + 4‖hk,r − g‖2
L2(Pn)

for all k ∈ K, all r > 0 and all hk,r ∈ rBk. We now bound the right-hand side. We

have

‖hk,r − g‖2
L2(Pn) ≤ ‖hk,r − g‖2

∞.

Furthermore,

1

n

n∑
i=1

(Yi − g(Xi))(ĥk,r(Xi)− hk,r(Xi))
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≤ sup
f∈2rBk

∣∣∣∣∣ 1n
n∑
i=1

(Yi − g(Xi))f(Xi)

∣∣∣∣∣
= sup

f∈2rBk

∣∣∣∣∣
〈

1

n

n∑
i=1

(Yi − g(Xi))kXi , f

〉
k

∣∣∣∣∣
= 2r

∥∥∥∥∥ 1

n

n∑
i=1

(Yi − g(Xi))kXi

∥∥∥∥∥
k

= 2r

(
1

n2

n∑
i,j=1

(Yi − g(Xi))(Yj − g(Xj))k(Xi, Xj)

)1/2

by the reproducing kernel property and the Cauchy–Schwarz inequality. Let

Z = sup
k∈K

(
1

‖k‖diagn2

n∑
i,j=1

(Yi − g(Xi))(Yj − g(Xj))k(Xi, Xj)

)
.

By Lemma 4.12.2 with εi = Yi − g(Xi), we have ‖Z‖ψ1 ≤ 4J2σ2n−1. By Lemma

4.12.1, we have Z ≤ 4J2σ2(log 2 + t)n−1 with probability at least 1− e−t. The result

follows.

The following lemma is useful for proving Lemma 4.7.3.

Lemma 4.12.3 Let

A =
{
‖k‖−1/4

diag r
−1/2V f1 − ‖k‖−1/4

diag r
−1/2V f2 : k ∈ K, r > 0 and f1, f2 ∈ rBk

}
.

Then A is separable as a subset of L∞.

Proof By Theorem 4.21 of Steinwart and Christmann (2008), we have that

{
m∑
i=1

aiksi : m ≥ 1 and ai ∈ R, si ∈ S for 1 ≤ i ≤ m

}
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is dense in Hk for k ∈ K. Hence,

{
m∑
i=1

aiksi : m ≥ 1 and ai ∈ R, si ∈ S for 1 ≤ i ≤ m with
m∑

i,j=1

aiajk(si, sj) ≤ r2

}

is dense in rBk ⊆ Hk for k ∈ K and r > 0. Since S is separable, it has a countable

dense subset S0. Let Dk,r be

{
m∑
i=1

aiksi : m ≥ 1 and ai ∈ Q, si ∈ S0 for 1 ≤ i ≤ m with
m∑

i,j=1

aiajk(si, sj) ≤ r2

}

for k ∈ K and r > 0. Since the function Φk : S → Hk by Φk(x) = kx is continuous

by Lemma 4.29 of Steinwart and Christmann (2008), we have that Dk,r is dense in

rBk ⊆ Hk by suitable choices for ai ∈ Q for 1 ≤ i ≤ m. Since k is bounded for all

k ∈ K, as subsets of L∞ we have that Dk,r is dense in rBk and

A = cl
({
‖k‖−1/4

diag r
−1/2(V f1 − V f2) : k ∈ K, r > 0 and f1, f2 ∈ Dk,r

})
.

Since (K, ‖·‖∞) is separable, it has a countable dense subset K0. Hence,

A = cl
({
‖k‖−1/4

diag r
−1/2(V f1 − V f2) : k ∈ K0, r ∈ (0,∞) ∩Q and f1, f2 ∈ Dk,r

})

by suitable choices for r ∈ (0,∞) ∩Q. The result follows.

We bound the supremum of the difference in the L2(Pn) norm and the L2(P ) norm

over rBk for k ∈ K and r ≥ 0 to prove Lemma 4.7.3.

Proof of Lemma 4.7.3 The result is trivial for r = 0. Let

Z = sup
k∈K

sup
r>0

sup
f1,f2∈rBk

‖k‖−1/2
diag r

−1
∣∣∣‖V f1 − V f2‖2

L2(Pn) − ‖V f1 − V f2‖2
L2(P )

∣∣∣ .
We have that Z is a random variable by Lemma 4.12.3. Furthermore, let the εi for
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1 ≤ i ≤ n be i.i.d. Rademacher random variables on (Ω,F ,P), independent of the Xi.

Lemma 2.3.1 of van der Vaart and Wellner (1996) shows

E(Z) ≤ 2E

(
sup
k∈K

sup
r>0

sup
f1,f2∈rBk

‖k‖−1/2
diag

∣∣∣∣∣ 1n
n∑
i=1

εi(r
−1/2V f1(Xi)− r−1/2V f2(Xi))

2

∣∣∣∣∣
)

by symmetrisation. Since

|V f1(Xi)− V f2(Xi)| ≤ 2C

for all k ∈ K, all r > 0 and all f1, f2 ∈ rBk, we find

(r−1/2V f1(Xi)− r−1/2V f2(Xi))
2

4C

is a contraction vanishing at 0 as a function of r−1V f1(Xi) − r−1V f2(Xi) for all

1 ≤ i ≤ n. By Theorem 3.2.1 of Giné and Nickl (2016), we have

E

(
sup
k∈K

sup
r>0

sup
f1,f2∈rBk

‖k‖−1/2
diag

∣∣∣∣∣ 1n
n∑
i=1

εi
(r−1/2V f1(Xi)− r−1/2V f2(Xi))

2

4C

∣∣∣∣∣
∣∣∣∣∣X
)

is at most

2E

(
sup
k∈K

sup
r>0

sup
f1,f2∈rBk

‖k‖−1/2
diag

∣∣∣∣∣ 1n
n∑
i=1

εi(r
−1V f1(Xi)− r−1V f2(Xi))

∣∣∣∣∣
∣∣∣∣∣X
)

almost surely. Therefore,

E(Z) ≤ 16C E

(
sup
k∈K

sup
r>0

sup
f1,f2∈rBk

‖k‖−1/2
diag

∣∣∣∣∣ 1n
n∑
i=1

εi(r
−1V f1(Xi)− r−1V f2(Xi))

∣∣∣∣∣
)

≤ 32C E

(
sup
k∈K

sup
r>0

sup
f∈rBk

‖k‖−1/2
diag

∣∣∣∣∣ 1n
n∑
i=1

εir
−1V f(Xi)

∣∣∣∣∣
)
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by the triangle inequality. Again, by Theorem 3.2.1 of Giné and Nickl (2016), we have

E(Z) ≤ 64C E

(
sup
k∈K

sup
r>0

sup
f∈rBk

‖k‖−1/2
diag

∣∣∣∣∣ 1n
n∑
i=1

εir
−1f(Xi)

∣∣∣∣∣
)

since V is a contraction vanishing at 0. We have

sup
k∈K

sup
r>0

sup
f∈rBk

‖k‖−1/2
diag

∣∣∣∣∣ 1n
n∑
i=1

εir
−1f(Xi)

∣∣∣∣∣
= sup

k∈K
sup
r>0

sup
f∈rBk

‖k‖−1/2
diag

∣∣∣∣∣
〈

1

n

n∑
i=1

εikXi , r
−1f

〉
k

∣∣∣∣∣
= sup

k∈K
‖k‖−1/2

diag

∥∥∥∥∥ 1

n

n∑
i=1

εikXi

∥∥∥∥∥
k

= sup
k∈K
‖k‖−1/2

diag

(
1

n2

n∑
i,j=1

εiεjk(Xi, Xj)

)1/2

by the reproducing kernel property and the Cauchy–Schwarz inequality. By Lemma

4.12.2 with σ2 = 1, Lemma 4.12.1 and Jensen’s inequality, we have E(Z) ≤ 107JCn−1/2.

Let

A =
{
‖k‖−1/4

diag r
−1/2V f1 − ‖k‖−1/4

diag r
−1/2V f2 : k ∈ K, r > 0 and f1, f2 ∈ rBk

}
.

We have that A ⊆ L∞ is separable by Lemma 4.12.3. Furthermore,

∥∥∥‖k‖−1/4
diag r

−1/2V f1 − ‖k‖−1/4
diag r

−1/2V f2

∥∥∥
∞
≤ min

(
2C‖k‖−1/4

diag r
−1/2, 2‖k‖1/4

diagr
1/2
)

≤ 2C1/2

for all k ∈ K, all r > 0 and all f1, f2 ∈ rBk. By Lemma 4.10.1, we have

Z ≤ E(Z) +

(
32C2t

n
+

16C E(Z)t

n

)1/2

+
8Ct

3n
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with probability at least 1 − e−t. We have E(Z) ≤ 107JCn−1/2 from above. The

result follows.

We move the bound on the distance between V ĥk,r and V hk,r from the L2(Pn) norm

to the L2(P ) norm for k ∈ K, r ≥ 0 and hk,r ∈ rBk.

Corollary 4.12.4 Assume (Y ) and (K1). Let t ≥ 1 and recall the definitions of

A3,t and A4,t from Lemmas 4.7.2 and 4.7.3. On the set A3,t ∩ A4,t ∈ F , for which

P(A3,t ∩ A4,t) ≥ 1− 2e−t, we have

‖V ĥk,r − V hk,r‖2
L2(P ) ≤

J‖k‖1/2
diag(151C + 21σ)rt1/2

n1/2
+

8‖k‖1/2
diagCrt

3n
+ 4‖hk,r − g‖2

∞

simultaneously for all k ∈ K, all r ≥ 0 and all hk,r ∈ rBk.

Proof By Lemma 4.7.2, we have

‖ĥk,r − hk,r‖2
L2(Pn) ≤

21J‖k‖1/2
diagσrt

1/2

n1/2
+ 4‖hk,r − g‖2

∞

for all k ∈ K, all r ≥ 0 and all hk,r ∈ rBk, so

‖V ĥk,r − V hk,r‖2
L2(Pn) ≤

21J‖k‖1/2
diagσrt

1/2

n1/2
+ 4‖hk,r − g‖2

∞.

Since ĥk,r, hk,r ∈ rBk, by Lemma 4.7.3 we have

‖V ĥk,r − V hk,r‖2
L2(P ) − ‖V ĥk,r − V hk,r‖2

L2(Pn)

≤ sup
f1,f2∈rBk

∣∣∣‖V f1 − V f2‖2
L2(Pn) − ‖V f1 − V f2‖2

L2(P )

∣∣∣
≤

151J‖k‖1/2
diagCrt

1/2

n1/2
+

8‖k‖1/2
diagCrt

3n
.

The result follows.
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We assume (g1) to bound the distance between V ĥk,r and g in the L2(P ) norm for

k ∈ K and r ≥ 0 and prove Theorem 4.7.4.

Proof of Theorem 4.7.4 Note that V g = g. We have

‖V ĥk,r − g‖2
L2(P ) ≤

(
‖V ĥk,r − V hk,r‖L2(P ) + ‖V hk,r − g‖L2(P )

)2

≤ 2‖V ĥk,r − V hk,r‖2
L2(P ) + 2‖V hk,r − g‖2

L2(P )

≤ 2‖V ĥk,r − V hk,r‖2
L2(P ) + 2‖hk,r − g‖2

L2(P )

for all k ∈ K, all r ≥ 0 and all hk,r ∈ rBk. By Corollary 4.12.4, we have

‖V ĥk,r − V hk,r‖2
L2(P ) ≤

J‖k‖1/2
diag(151C + 21σ)rt1/2

n1/2
+

8‖k‖1/2
diagCrt

3n
+ 4‖hk,r − g‖2

∞.

Hence,

‖V ĥk,r − g‖2
L2(P ) ≤

2J‖k‖1/2
diag(151C + 21σ)rt1/2

n1/2
+

16‖k‖1/2
diagCrt

3n
+ 10‖hk,r − g‖2

∞.

Taking an infimum over hk,r ∈ rBk proves the result.

4.13 Proof of the Goldenshluger–Lepski Method

for a Collection of RKHSs with Gaussian Ker-

nels

We bound the distance between ĥγ,r and ĥη,s in the L2(Pn) norm for γ, η ∈ Γ with

η ≤ γ and s ≥ r ≥ 0 to prove Lemma 4.8.4.
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Proof of Lemma 4.8.4 By Lemma 4.7.2, we have

‖ĥγ,r − ĥη,s‖2
L2(Pn) ≤ 4‖ĥγ,r − hγ,r‖2

L2(Pn) + 4‖hγ,r − g‖2
L2(Pn)

+ 4‖g − hη,s‖2
L2(Pn) + 4‖hη,s − ĥη,s‖2

L2(Pn)

≤ 84Jσ(γ−d/2r + η−d/2s)t1/2

n1/2
+ 20‖hγ,r − g‖2

∞ + 20‖hη,s − g‖2
∞

for all γ, η ∈ Γ, all r, s ≥ 0 and all hγ,r ∈ rBγ, hη,s ∈ sBη. Taking an infimum over

hγ,r ∈ rBγ and hη,s ∈ sBη gives

‖ĥγ,r − ĥη,s‖2
L2(Pn) ≤

84Jσ(γ−d/2r + η−d/2s)t1/2

n1/2
+ 20I∞(g, γ, r) + 20I∞(g, η, s).

The result follows from Lemma 4.8.1.

We use the Goldenshluger–Lepski method to prove Theorem 4.8.5.

Proof of Theorem 4.8.5 Since we assume (Y ) and (K2), which implies (K1), we

find that Lemma 4.7.2 holds, which implies that Lemma 4.8.4 holds. By our choice

of t, we have

‖ĥγ,r − ĥη,s‖2
L2(Pn) ≤

τ(γ−d/2r + η−d/2s)

n1/2
+ 40I∞(g, γ, r) (4.13.1)

simultaneously for all γ, η ∈ Γ and all r, s ∈ R such that η ≤ γ and s ≥ r. Fix γ ∈ Γ

and r ∈ R. Then

‖V ĥγ̂,r̂ − V ĥγ,r‖2
L2(P ) ≤ 2‖V ĥγ̂,r̂ − V ĥγ̂∧γ,r̂∨r‖2

L2(P ) + 2‖V hγ̂∧γ,r̂∨r − V ĥγ,r‖2
L2(P ).

We now bound the right-hand side. By Γ ⊆ [u, v], the definition of (γ̂, r̂) in (4.8.1)
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and (4.13.1), we have

‖ĥγ̂,r̂ − ĥγ̂∧γ,r̂∨r‖2
L2(Pn)

= ‖ĥγ̂,r̂ − ĥγ̂∧γ,r̂∨r‖2
L2(Pn) −

τ(γ̂−d/2r̂ + (γ̂ ∧ γ)−d/2(r̂ ∨ r))
n1/2

+
τ(γ̂−d/2r̂ + (γ̂ ∧ γ)−d/2(r̂ + r))

n1/2

≤ sup
η∈Γ,η≤γ̂

sup
s∈R,s≥r̂

(
‖ĥγ̂,r̂ − ĥη,s‖2

L2(Pn) −
τ
(
γ̂−d/2r̂ + η−d/2s

)
n1/2

)

+
τ(γ̂−d/2r̂ + (v/u)d/2(γ̂−d/2r̂ + γ−d/2r))

n1/2

≤ sup
η∈Γ,η≤γ

sup
s∈R,s≥r

(
‖ĥγ,r − ĥη,s‖2

L2(Pn) −
τ(γ−d/2r + η−d/2s)

n1/2

)
+

2(1 + ν)τγ−d/2r

n1/2
− 2(1 + ν)τ γ̂−d/2r̂

n1/2
+
vd/2τ(2γ̂−d/2r̂ + γ−d/2r)

ud/2n1/2

≤ 40I∞(g, γ, r) +
vd/2(3 + 2ν)τγ−d/2r

ud/2n1/2
+

2vd/2τ γ̂−d/2r̂

ud/2n1/2
.

This shows

‖V ĥγ̂,r̂ − V ĥγ̂∧γ,r̂∨r‖2
L2(Pn) ≤ 40I∞(g, γ, r) +

vd/2(3 + 2ν)τγ−d/2r

ud/2n1/2
+

2vd/2τ γ̂−d/2r̂

ud/2n1/2
,

and it follows from Lemma 4.7.3, our choice of t and Γ ⊆ [u, v] that

‖V ĥγ̂,r̂ − V ĥγ̂∧γ,r̂∨r‖2
L2(P )

≤ 40I∞(g, γ, r) +
vd/2(3 + 2ν)τγ−d/2r

ud/2n1/2
+

2vd/2τ γ̂−d/2r̂

ud/2n1/2

+

(
151Cτ

84σn1/2
+

Cτ 2

2646J2σ2n

)
(γ̂ ∧ γ)−d/2(r̂ ∨ r)

≤ 40I∞(g, γ, r) +
vd/2(3 + 2ν)τγ−d/2r

ud/2n1/2
+

2vd/2τ γ̂−d/2r̂

ud/2n1/2

+

(
151Cτ

84σn1/2
+

Cτ 2

2646J2σ2n

)
(v/u)d/2(γ̂−d/2r̂ + γ−d/2r)

= 40I∞(g, γ, r) +
vd/2(3 + 2ν)τγ−d/2r

ud/2n1/2
+

151Cvd/2τγ−d/2r

84ud/2σn1/2
+
Cvd/2τ 2γ−d/2r

2646J2ud/2σ2n

+

(
vd/2

ud/2ν
+

151Cvd/2

168ud/2σν
+

Cvd/2τ

5292J2ud/2σ2νn1/2

)
2ντ γ̂−d/2r̂

n1/2
.
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By (4.8.2), the definition of (γ̂, r̂) in (4.8.1) and (4.13.1), we have

2ντ γ̂−d/2r̂

n1/2

≤ sup
η∈Γ,η≤γ̂

sup
s∈R,s≥r̂

(
‖ĥγ̂,r̂ − ĥη,s‖2

L2(Pn) −
τ(γ̂−d/2r̂ + η−d/2s)

n1/2

)
+

2(1 + ν)τ γ̂−d/2r̂

n1/2

≤ sup
η∈Γ,η≤γ

sup
s∈R,s≥r

(
‖ĥγ,r − ĥη,s‖2

L2(Pn) −
τ(γ−d/2r + η−d/2s)

n1/2

)
+

2(1 + ν)τγ−d/2r

n1/2

≤ 40I∞(g, γ, r) +
2(1 + ν)τγ−d/2r

n1/2
. (4.13.2)

Hence,

‖V ĥγ̂,r̂ − V ĥγ̂∧γ,r̂∨r‖2
L2(P )

≤ 40I∞(g, γ, r) +
vd/2(3 + 2ν)τγ−d/2r

ud/2n1/2
+

151Cvd/2τγ−d/2r

84ud/2σn1/2
+
Cvd/2τ 2γ−d/2r

2646J2ud/2σ2n

+

(
2vd/2

ud/2ν
+

151Cvd/2

84ud/2σν
+

Cvd/2τ

2646J2ud/2σ2νn1/2

)(
20I∞(g, γ, r) +

(1 + ν)τγ−d/2r

n1/2

)
.

Since (4.13.1) holds simultaneously for all γ, η ∈ Γ and all r, s ∈ R such that η ≤ γ

and s ≥ r, we have

‖ĥγ̂∧γ,r̂∨r − ĥγ,r‖2
L2(Pn) ≤ 40I∞(g, γ, r) +

τ(γ−d/2r + (γ̂ ∧ γ)−d/2(r̂ ∨ r))
n1/2

.

This shows

‖V ĥγ̂∧γ,r̂∨r − V ĥγ,r‖2
L2(Pn) ≤ 40I∞(g, γ, r) +

τ(γ−d/2r + (γ̂ ∧ γ)−d/2(r̂ ∨ r))
n1/2

,

and it follows from Lemma 4.7.3, our choice of t and (4.13.2) that

‖V ĥγ̂∧γ,r̂∨r − V ĥγ,r‖2
L2(P )

≤ 40I∞(g, γ, r) +
τ(γ−d/2r + (γ̂ ∧ γ)−d/2(r̂ ∨ r))

n1/2
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+

(
151Cτ

84σn1/2
+

Cτ 2

2646J2σ2n

)
(γ̂ ∧ γ)−d/2(r̂ ∨ r)

= 40I∞(g, γ, r) +
τγ−d/2r

n1/2
+

(
τ

n1/2
+

151Cτ

84σn1/2
+

Cτ 2

2646J2σ2n

)
(γ̂ ∧ γ)−d/2(r̂ ∨ r)

≤ 40I∞(g, γ, r) +
τγ−d/2r

n1/2

+

(
τ

n1/2
+

151Cτ

84σn1/2
+

Cτ 2

2646J2σ2n

)
(v/u)d/2(γ̂−d/2r̂ + γ−d/2r)

≤ 40I∞(g, γ, r) +
2vd/2τγ−d/2r

ud/2n1/2
+

151Cvd/2τγ−d/2r

84ud/2σn1/2
+
Cvd/2τ 2γ−d/2r

2646J2ud/2σ2n

+

(
vd/2

2ud/2ν
+

151Cvd/2

168ud/2σν
+

Cvd/2τ

5292J2ud/2σ2νn1/2

)
2ντ γ̂−d/2r̂

n1/2

≤ 40I∞(g, γ, r) +
2vd/2τγ−d/2r

ud/2n1/2
+

151Cvd/2τγ−d/2r

84ud/2σn1/2
+
Cvd/2τ 2γ−d/2r

2646J2ud/2σ2n

+

(
vd/2

ud/2ν
+

151Cvd/2

84ud/2σν
+

Cvd/2τ

2646J2ud/2σ2νn1/2

)(
20I∞(g, γ, r) +

(1 + ν)τγ−d/2r

n1/2

)
.

Hence,

‖V ĥγ̂,r̂ − V ĥγ,r‖2
L2(P )

≤ 2‖V ĥγ̂,r̂ − V ĥγ̂∧γ,r̂∨r‖2
L2(P ) + 2‖V hγ̂∧γ,r̂∨r − V ĥγ,r‖2

L2(P )

≤ 160I∞(g, γ, r) +
2vd/2(5 + 2ν)τγ−d/2r

ud/2n1/2
+

151Cvd/2τγ−d/2r

21ud/2σn1/2
+

2Cvd/2τ 2γ−d/2r

1323J2ud/2σ2n

+

(
6vd/2

ud/2ν
+

151Cvd/2

21ud/2σν
+

2Cvd/2τ

1323J2ud/2σ2νn1/2

)(
20I∞(g, γ, r) +

(1 + ν)τγ−d/2r

n1/2

)
.

We have

‖V ĥγ̂,r̂ − g‖2
L2(P ) ≤ 2‖V ĥγ̂,r̂ − V ĥγ,r‖2

L2(P ) + 2‖V ĥγ,r − g‖2
L2(P )

and the result follows.

We assume (g1) to bound the distance between V ĥγ̂,r̂ and g in the L2(P ) norm and

prove Theorem 4.8.6.
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Proof of Theorem 4.8.6 By Theorem 4.8.5, we have

‖V ĥγ̂,r̂ − g‖2
L2(P )

≤ inf
γ∈Γ

inf
r∈R

(
(1 +D4τn

−1/2)(D5τγ
−d/2rn−1/2 +D6I∞(g, γ, r)) + 2‖V ĥγ,r − g‖2

L2(P )

)

for some constants D4, D5, D6 > 0 not depending on τ , γ, r or n. By Theorem 4.7.4,

we have

‖V ĥγ,r − g‖2
L2(P ) ≤

(151C + 21σ)τγ−d/2r

42σn1/2
+
Cτ 2γ−d/2r

1323J2σ2n
+ 10I∞(g, γ, r)

≤ D7τγ
−d/2rn−1/2 +D8τ

2γ−d/2rn−1 + 10I∞(g, γ, r)

for all γ ∈ Γ and all r ∈ R, for some constants D7, D8 > 0 not depending on τ , γ, r

or n. This gives

‖V ĥγ̂,r̂ − g‖2
L2(P ) ≤ inf

γ∈Γ
inf
r∈R

(
(1 +D4τn

−1/2)(D5τγ
−d/2rn−1/2 +D6I∞(g, γ, r))

+ 2D7τγ
−d/2rn−1/2 + 2D8τ

2γ−d/2rn−1 + 20I∞(g, γ, r)
)
.

Hence, the result follows with

D1 =
D4D5 + 2D8

D5 + 2D7

, D2 = D5 + 2D7, D3 = D6 + 20.

We assume (g3) to prove Theorem 4.8.7.

Proof of Theorem 4.8.7 If we assume (R1) and (Γ1), then α ∈ Γ and r =

an(1−β)/(2(1+β)) ∈ R, so

‖V ĥγ̂,r̂ − g‖2
L2(P ) ≤ (1 +D3τn

−1/2)(D4τα
−d/2rn−1/2 +D5I∞(g, α, r))
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≤ (1 +D3τn
−1/2)

(
D4τα

−d/2an−β/(1+β) +
D5B

2/(1−β)

a2β/(1−β)nβ/(1+β)

)

for some constants D3, D4, D5 > 0 not depending on n or τ by Theorem 4.8.6 and

(4.8.3). If we assume (R2) and (Γ2), then there is at least one γ ∈ Γ such that

α/c < γ ≤ α and at least one r ∈ R such that

an(1−β)/(2(1+β)) ≤ r < an(1−β)/(2(1+β)) + b.

By Theorem 4.8.6, Lemma 4.8.1 and (4.8.3), we have

‖V ĥγ̂,r̂ − g‖2
L2(P )

≤ (1 +D3τn
−1/2)(D4τγ

−d/2rn−1/2 +D5I∞(g, γ, r))

≤ (1 +D3τn
−1/2)

(
D4τc

d/2α−d/2(an(1−β)/(2(1+β)) + b)n−1/2 +
D5B

2/(1−β)

a2β/(1−β)nβ/(1+β)

)
.

In either case,

‖V ĥγ̂,r̂ − g‖2
L2(P ) ≤ D1τn

−β/(1+β) +D2τ
2n−(1+3β)/(2(1+β))

for some constants D1, D2 > 0 not depending on n or τ .

4.14 Covering Numbers for Gaussian Kernels

Recall that

L =
{
fγ(x1, x2) = exp

(
−‖x1 − x2‖2

2/γ
2
)

: γ ∈ Γ and x1, x2 ∈ S
}
∪ {0}.



CHAPTER 4. THE GOLDENSHLUGER–LEPSKI METHOD 170

for Γ ⊆ [u, v] non-empty for v ≥ u > 0. We prove a continuity result about the

function F : Γ→ L \ {0} by F (γ) = fγ. We also bound the covering numbers of L.

Lemma 4.14.1 Assume (K2). Let γ, η ∈ Γ. We have

‖fγ − fη‖∞ ≤
(γ2 − η2)1/2

γ ∨ η
.

For a ∈ (0, 1), we have N(a,L, ‖·‖∞) ≤ log(v/u)a−2 + 2. For a ≥ 1, we have

N(a,L, ‖·‖∞) = 1.

Proof Let γ ≥ η and x1, x2 ∈ S. We have

|fγ(x1, x2)− fη(x1, x2)| = fγ(x1, x2)− fη(x1, x2)

≤ exp
(
−‖x1 − x2‖2

2/γ
2
)
.

This is at most a ∈ (0, 1) whenever ‖x1−x2‖2 > γ log(1/a)1/2. Suppose ‖x1−x2‖2 ≤

γ log(1/a)1/2. We have

|fγ(x1, x2)− fη(x1, x2)| = fγ(x1, x2)− fη(x1, x2)

≤ exp
(
‖x1 − x2‖2

2/η
2
)

(fγ(x1, x2)− fη(x1, x2))

= exp
(
‖x1 − x2‖2

2

(
η−2 − γ−2

))
− 1

≤ exp
(
log(1/a)

(
(γ/η)2 − 1

))
− 1.

This is at most a whenever

γ ≤
(

1 +
log(1 + a)

log(1/a)

)1/2

η. (4.14.1)
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Since x/(1 + x) ≤ log(1 + x) ≤ x for x ≥ 0, we have

(
1 +

log(1 + a)

log(1/a)

)1/2

=

(
1 +

log(1 + a)

log(1 + (1− a)/a)

)1/2

≥
(

1 +
a/(1 + a)

(1− a)/a

)1/2

=

(
1 +

a2

1− a2

)1/2

.

Hence, (4.14.1) holds whenever

γ ≤
(

1 +
a2

1− a2

)1/2

η,

or

log(γ) ≤ 1

2
log

(
1 +

a2

1− a2

)
+ log(η).

The first result follows by rearranging for a.

Since

log

(
1 +

a2

1− a2

)
≥ a2/(1− a2)

1 + a2/(1− a2)
= a2,

(4.14.1) holds whenever log(γ) ≤ a2/2 + log(η). Hence, for any γ, η ∈ Γ, we find

‖fγ−fη‖∞ ≤ a whenever |log(γ)− log(η)| ≤ a2/2. Let b ≥ 1 and γi ∈ Γ for 1 ≤ i ≤ b.

Recall that Γ ⊆ [u, v]. If we let

log(γi) = log(u) + a2(2i− 1)/2

and let b be such that

log(v)−
(
log(u) + a2(2b− 1)/2

)
≤ a2/2,

then we find the fγi for 1 ≤ i ≤ b form an a cover of (L\ {0}, ‖·‖∞). Rearranging the
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above shows that we can choose

b =

⌈
log(v/u)

a2

⌉

and the second result follows by adding {0} to the cover. The third result follows

from the fact that fγ(x1, x2) ∈ (0, 1] for all γ ∈ Γ and all x1, x2 ∈ S.

We calculate an integral of these covering numbers.

Lemma 4.14.2 Assume (K2). We have

∫ 1/2

0

logN(a,L, ‖·‖∞)da ≤ log(2 + 4 log(v/u))

2
+ 1.

Proof We have

∫ 1/2

0

logN(a,L, ‖·‖∞)da ≤
∫ 1/2

0

log
(
2 + log(v/u)a−2

)
da

by Lemma 4.14.1. Changing variables to b = 2a gives

1

2

∫ 1

0

log
(
2 + 4 log(v/u)b−2

)
db ≤ 1

2

∫ 1

0

log
(
(2 + 4 log(v/u))b−2

)
db

=
log(2 + 4 log(v/u))

2
+

∫ 1

0

log(b−1)db.

Changing variables to s = log(b−1) shows

∫ 1

0

log
(
b−1
)
db =

∫ ∞
0

s exp(−s)ds = 1

since the last integral is the mean of an Exponential(1) random variable.
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4.15 The Orlicz Space Lψ1

Recall that ψ1(x) = exp(|x|)− 1 for x ∈ R,

‖Z‖ψ1 = inf{a ∈ (0,∞) : E(ψ1(Z/a)) ≤ 1}

for any random variable Z on (Ω,F) and Lψ1 is the set of random variables Z on

(Ω,F ,P) such that ‖Z‖ψ1 < ∞. We have that (Lψ1 , ‖·‖ψ1) is a Banach space known

as an Orlicz space (see Rao and Ren, 1991). For t ≥ 0, also recall that

E(|Z|) ≤ (log 2)‖Z‖ψ1 and |Z| ≤ ‖Z‖ψ1(log 2 + t)

with probability at least 1− e−t by Lemma 4.12.1. We prove a maximal inequality in

Lψ1 using the same method as Lemma 2.3.3 of Giné and Nickl (2016).

Lemma 4.15.1 Let Zi ∈ Lψ1 for 1 ≤ i ≤ I. Then

∥∥∥∥max
1≤i≤I

|Zi|
∥∥∥∥
ψ1

≤ log(2I)

log(5/4)
max
1≤i≤I

‖Zi‖ψ1 .

Proof Let M = max1≤i≤I‖Zi‖ψ1 . Also, let C ≥ 1 and a ∈ (0,∞). By Lemma 4.12.1,

we have

E
(

exp

(
max
1≤i≤I

|Zi|/a
))

=

∫ ∞
0

P
(

max
1≤i≤I

|Zi| > a log t

)
dt

≤ C +

∫ ∞
C

P
(

max
1≤i≤I

|Zi| > a log t

)
dt

≤ C +
I∑
i=1

∫ ∞
C

P (|Zi| > a log t) dt

≤ C + I

∫ ∞
C

2t−a/Mdt.
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Differentiating this bound with respect to C gives 1 − 2IC−a/M , so the bound is

minimised by C = (2I)M/a. For a > M , the bound becomes

C + 2I
M

a−M
C−(a−M)/M = (2I)M/a +

M

a−M
(2I)1−(a−M)/a

=
a

a−M
(2I)M/a.

Let

a =
M log(2I)

log b

for b > 1. We have

E
(

exp

(
max
1≤i≤I

|Zi|/a
))
≤ 2

if b22b ≤ 4, the hardest case being I = 1. This holds for b = 5/4 and the result

follows.

We perform chaining in Lψ1 using the same method as Theorem 2.3.6 of Giné and

Nickl (2016). Recall that N(a,M, d) is the minimum size of an a > 0 cover of a metric

space (M,d).

Lemma 4.15.2 Let Z be a stochastic process on (Ω,F) indexed by a separable metric

space (M,d) on which Z is almost-surely continuous with ‖Z(s) − Z(t)‖ψ1 ≤ d(s, t)

for all s, t ∈M . Let D = sups,t∈M d(s, t). Fix s0 ∈M . Then

∥∥∥∥sup
s∈M
|Z(s)− Z(s0)|

∥∥∥∥
ψ1

≤ 4

log(5/4)

∫ D/2

0

log(2N(a,M, d))da.

Proof Since (M,d) is separable, it has a countable dense subset M0. We have

∥∥∥∥sup
s∈M
|Z(s)− Z(s0)|

∥∥∥∥
ψ1

=

∥∥∥∥ sup
s∈M0

|Z(s)− Z(s0)|
∥∥∥∥
ψ1

because Z is almost-surely continuous on M . Since M0 is countable, there exists a
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sequence of increasing finite subsets Fn ⊆M for n ≥ 1 whose union is M0. We have

∥∥∥∥sup
s∈M
|Z(s)− Z(s0)|

∥∥∥∥
ψ1

= lim
n→∞

∥∥∥∥max
s∈Fn
|Z(s)− Z(s0)|

∥∥∥∥
ψ1

by the monotone convergence theorem. Fix n ≥ 1 and let F = Fn. Let δj = 2−jD for

j ≥ 0. Since F is finite, there exists a minimum J ≥ 0 such that

{t ∈ F : d(s, t) ≤ δJ} = {s}

for all s ∈ F . Let Aj for 0 ≤ j ≤ J − 1 be a δj cover of (M,d) of size N(δj,M, d),

where we let A0 = {s0}. We define the chain C : F ×{0, . . . , J} →M as follows. Let

C(s, J) = s for all s ∈ F . For 1 ≤ j ≤ J , given C(s, j), let C(s, j− 1) be some closest

point in Aj−1 to C(s, j), depending on s only through C(s, j). We have

Z(s)− Z(s0) =
J∑
j=1

Z(C(s, j))− Z(C(s, j − 1))

for s ∈ F . Hence,

max
s∈F
|Z(s)− Z(s0)| ≤

J∑
j=1

max
s∈F
|Z(C(s, j))− Z(C(s, j − 1))|.

By Lemma 4.15.1, we have

∥∥∥∥max
s∈F
|Z(s)− Z(s0)|

∥∥∥∥
ψ1

≤
J∑
j=1

∥∥∥∥max
s∈F
|Z(C(s, j))− Z(C(s, j − 1))|

∥∥∥∥
ψ1

≤
J∑
j=1

log(2N(δj,M, d))δj−1

log(5/4)

=
4

log(5/4)

J∑
j=1

(δj − δj+1) log(2N(δj,M, d))

≤ 4

log(5/4)

∫ δ1

δJ+1

log(2N(a,M, d))da
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≤ 4

log(5/4)

∫ D/2

0

log(2N(a,M, d))da.

The result follows.

4.16 Subgaussian Random Variables and Symmet-

ric Matrices

Recall Lemma 3.15.1, which is essentially Theorem 2.1 of Quintana and Rodŕıguez

(2014).

Lemma 4.16.1 Let M be a non-negative-definite matrix which is an (Rn×n,B(Rn×n))-

valued measurable matrix on (Ω,F). There exist an orthogonal matrix A and a diag-

onal matrix D which are both (Rn×n,B(Rn×n))-valued measurable matrices on (Ω,F)

such that M = ADAT.

Recall that for m×n matrices U and V , we define U ◦V to be the m×n matrix with

(U ◦ V )i,j = Ui,jVi,j.

The following lemma is a conditional version of Theorem 1.1 of Rudelson and Ver-

shynin (2013), but with explicit values for the constants derived here.

Lemma 4.16.2 Let εi for 1 ≤ i ≤ n be random variables on (Ω,F ,P) which are

independent conditional on some sub-σ-algebra G ⊆ F and let

E(exp(tεi)|G) ≤ exp(σ2t2/2)
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almost surely for t a random variable on (Ω,G). Let M be an n×n symmetric matrix

which is an (Rn×n,B(Rn×n))-valued measurable matrix on (Ω,G). We have

E
(
exp

(
tεT(M − I ◦M)ε

)∣∣G) ≤ exp
(
16σ4 tr(M2)t2

)
almost surely for t a random variable on (Ω,G) such that 32σ4 tr(M2)t2 ≤ 1.

Proof We follow the proof of Theorem 1.1 of Rudelson and Vershynin (2013). Let

Z = εT(M − I ◦M)ε =
∑
i 6=j

Mi,jεiεj.

Also, let φi for 1 ≤ i ≤ n be random variables on (Ω,F ,P) which are independent of

each other, the εi and G, with φi ∼ Bernoulli(1/2). Furthermore, let

W =
∑
i 6=j

φi(1− φj)Mi,jεiεj.

We have Z = 4E(W |G, ε) almost surely, which gives

exp(tZ) ≤ E(exp(4tW )|G, ε)

almost surely for t a random variable on (Ω,G) by Jensen’s inequality. Let

S = {1 ≤ i ≤ n : φi = 1}.

We can write

W =
∑

i∈S,j∈SC

Mi,jεiεj.

Since the εj are independent, we have

E(exp(tZ)|G) ≤ E(exp(4tW )|G)
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= E

∏
j∈SC

E

(
exp

(
4t
∑
i∈S

Mi,jεiεj

)∣∣∣∣∣G, φ
)∣∣∣∣∣∣G


≤ E

∏
j∈SC

exp

8t2σ2

(∑
i∈S

Mi,jεi

)2
∣∣∣∣∣∣G


= E

exp

8t2σ2
∑
j∈SC

(∑
i∈S

Mi,jεi

)2
∣∣∣∣∣∣G


almost surely. Let δi for 1 ≤ i ≤ n be random variables on (Ω,F ,P) which are

independent of each other, the εi, the φi and G, with δi ∼ N(0, σ2). Since the εi are

independent, we have

E(exp(tZ)|G) ≤ E

exp

4t
∑
j∈SC

∑
i∈S

Mi,jεiδj

∣∣∣∣∣∣G


= E

∏
i∈S

E

exp

4t
∑
j∈SC

Mi,jδjεi

∣∣∣∣∣∣G, φ
∣∣∣∣∣∣G


≤ E

∏
i∈S

exp

8t2σ2

∑
j∈SC

Mi,jδj

2∣∣∣∣∣∣G


= E

exp

8t2σ2
∑
i∈S

∑
j∈SC

Mi,jδj

2∣∣∣∣∣∣G


almost surely. Let F be the n× n matrix with Fi,j = 1 if i = j ∈ S and 0 otherwise.

Note that F is an (Rn×n,B(Rn×n))-valued measurable matrix on (Ω, σ(φ)). Then

E(exp(tZ)|G) ≤ E
(
exp

(
8t2σ2δT(I − F )MFM(I − F )δ

)∣∣G)
almost surely. By Lemma 4.16.1, there exist an orthogonal matrix A and a diagonal

matrix D which are both (Rn×n,B(Rn×n))-valued measurable matrices on (Ω, σ(G, φ))

such that

(I − F )MFM(I − F ) = ADAT,
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which is non-negative definite. Since ATδ and δ have the same distribution given G,

we have

E(exp(tZ)|G) ≤ E
(
exp

(
8t2σ2δTDδ

)∣∣G)
= E

(
n∏
i=1

E
(
exp

(
8t2σ2Di,iδ

2
i

)∣∣G, φ)∣∣∣∣∣G
)

= E

(
n∏
i=1

(
1− 16σ4Di,it

2
)−1/2

∣∣∣∣∣G
)

almost surely for 16σ4(max1≤i≤nDi,i)t
2 < 1 by computing the moment generating

function of the δ2
i . We have that (1− x)−1/2 ≤ exp(x) for x ∈ [0, 1/2], so

E(exp(tZ)|G) ≤ E

(
n∏
i=1

exp
(
16σ4Di,it

2
)∣∣∣∣∣G
)

= E
(
exp

(
16σ4 tr(D)t2

)∣∣G)
almost surely for 32σ4(max1≤i≤nDi,i)t

2 ≤ 1. We have

tr(D) = tr((I − F )MFM(I − F )) =
∑
i∈S

∑
j∈SC

M2
i,j ≤

n∑
i=1

n∑
j=1

M2
i,j = tr(M2)

and

max
1≤i≤n

Di,i ≤ tr(D) ≤ tr(M2).

The result follows.

We move the bound on the conditional moment generating function of εT(M−I ◦M)ε

to that of |εT(M − I ◦M)ε|.

Lemma 4.16.3 Let εi for 1 ≤ i ≤ n be random variables on (Ω,F ,P) which are

independent conditional on some sub-σ-algebra G ⊆ F and let

E(exp(tεi)|G) ≤ exp(σ2t2/2)
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almost surely for t a random variable on (Ω,G). Let M be an n×n symmetric matrix

which is an (Rn×n,B(Rn×n))-valued measurable matrix on (Ω,G). We have

E
(
exp

(
t|εT(M − I ◦M)ε|

)∣∣G) ≤ 1

1− 27/2σ2 tr(M2)1/2t
227/2σ2 tr(M2)1/2t

almost surely for t ≥ 0, a random variable on (Ω,G), such that 27/2σ2 tr(M2)1/2t < 1.

Hence,

E

( ∣∣εT(M − I ◦M)ε
∣∣

27/2(log 2)σ2 tr(M2)1/2/ log(5/4)

∣∣∣∣∣G
)
≤ 2.

Proof Let

Z = εT(M − I ◦M)ε.

By Lemma 4.16.2, we have

E(exp(tZ)|G) ≤ exp
(
16σ4 tr(M2)t2

)
almost surely for t a random variable on (Ω,G) such that 32σ4 tr(M2)t2 ≤ 1. By

Chernoff bounding, we have

P(Z ≥ z|G) ≤ exp
(
−tz + 16σ4 tr(M2)t2

)
almost surely for z ≥ 0, a random variable on (Ω,G), t ≥ 0 and 32σ4 tr(M2)t2 ≤ 1.

Minimising over t gives

P(Z ≥ z|G) ≤ exp

(
−min

(
z2

26σ4 tr(M2)
,

z

27/2σ2 tr(M2)1/2

))

almost surely. The first term in the minimum is attained by t = 2−5σ−4 tr(M2)−1z

when z < 25/2σ2 tr(M2)1/2, and the second term is attained by t = 2−5/2σ−2 tr(M2)−1/2
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when z ≥ 25/2σ2 tr(M2)1/2. In the second case, note that

16σ4 tr(M2)t2 =
1

2
≤ z

27/2σ2 tr(M2)1/2
.

The same result holds if we replace Z with −Z by replacing M with −M . For C ≥ 1

and t ≥ 0, random variables on (Ω,G), we have

E(exp(t|Z|)|G) =

∫ ∞
0

P(|Z| ≥ (log s)/t|G)ds

≤ C +

∫ ∞
C

P(|Z| ≥ (log s)/t|G)ds

≤ C +

∫ ∞
C

P(Z ≥ (log s)/t|G)ds+

∫ ∞
C

P(−Z ≥ (log s)/t|G)ds

≤ C + 2

∫ ∞
C

exp

(
−min

(
(log s)2

26σ4 tr(M2)t2
,

log s

27/2σ2 tr(M2)1/2t

))
ds

almost surely. By letting C ≥ exp(25/2σ2 tr(M2)1/2t), the bound becomes

C + 2

∫ ∞
C

s−(27/2σ2 tr(M2)1/2t)−1

ds.

Let u = 27/2σ2 tr(M2)1/2t, a random variable on (Ω,G). Differentiating this bound

with respect to C gives 1 − 2C−u
−1

, so the bound is minimised by C = 2u. This

satisfies the condition on C above as

e25/2 ≤ 36 ≤ 210 ≤ 227/2 .

For u < 1, the bound becomes

C + 2
u

1− u
C−(1−u)/u = 2u +

u

1− u
21−(1−u)

=
1

1− u
2u.
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The first result follows. Let

u =
log b

log 2

for b > 1. We have

E(exp(t|Z|)|G) ≤ 2

almost surely if b22b ≤ 4. This holds for b = 5/4 and the second result follows.



Chapter 5

Extreme Points of Wasserstein

Balls

There are many scenarios in which it is useful to be able to define a concept of dis-

tance between probability measures. For example, in statistics, we may be interested

in investigating the effects of a perturbation of the distribution of our data. In this

case, we need a concept of distance in order to understand the size of the perturbation.

We could then analyse how robust an estimator is to such changes. The Wasserstein

distance is a natural choice for comparing probability measures, as it is determined

by a cost function on the underlying space. Hence, if two probability measures are

concentrated around two points between which there is a small cost, the Wasser-

stein distance between the measures is small. This is in contrast to, for example, the

Kullback–Leibler divergence, which is very large if the probability measures are suffi-

ciently concentrated. An example in which this property is particularly important is

when the cost function is equal to some metric on the space. The Wasserstein distance

has been used extensively in statistical applications. For example, it has been used for

goodness-of-fit tests (del Barrio, Cuesta-Albertos, Matrán, and Rodŕıguez-Rodŕıguez,

183
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1999) and clustering (Irpino and Verde, 2008).

Having defined a concept of distance, we can examine the properties of a collection of

nearby probability measures. The easiest way to do this is by defining a ball around

a fixed measure. In our statistics example, this corresponds to all sufficiently small

perturbations of the distribution of the data. We expect some of the largest variation

in behaviour to occur at extreme points. For example, under certain conditions, a

continuous linear functional on a convex set of probability measures attains its bounds

at the extreme points of the set by the Choquet–Bishop–de Leeuw theorem (Theorem

5.6 of Bishop and de Leeuw, 1959). In our statistics example, this could be the worst-

case error of an estimator. This is our motivation for finding the extreme points of

Wasserstein balls.

We now discuss the Wasserstein distance in more detail. The Wasserstein distance

is defined using the optimal transport problem. In this problem, the aim is to find

the optimal transportation of one probability measure to another with respect to a

given cost function. This is done by finding a coupling between the two probability

measures which minimises the transport cost. Couplings in this context are usually

referred to as transport plans. The modern analysis of optimal transport began with

Kantorovitch (1958), and a recent expansive book on the subject has been written by

Villani (2009). For p ∈ [1,∞), the Wasserstein distance is usually defined as the p−1th

power of the minimum transport cost when the cost function is equal to the pth power

of the metric on the underlying space (see Definition 6.1 of Villani, 2009). However, in

this chapter we allow weaker assumptions on the cost function. We also do not raise

the minimum transport cost to a power in our definition of the Wasserstein distance,

as this would simply change the radius of the Wasserstein ball. This is the same as

the earliest definitions of distance between probability measures using the optimal

transport problem, as in Kantorovitch (1958).
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An important concept in optimal transport is the dual problem. Under mild conditions

on the cost function, the dual of the optimal transport problem gives an alternative

representation of the minimum transport cost as the maximum over two functions of

the difference between integrals of the functions. One integral is taken with respect

to the first probability measure and the other integral is taken with respect to the

second probability measure. The functions are restricted by the cost function of the

optimal transport problem. The dual problem was first introduced by Kantorovitch

(1958), and later studied by Rüschendorf and Rachev (1990) and Rüschendorf (1995).

A thorough overview is given in Chapter 5 of Villani (2009).

The study of the dual problem has greatly increased the understanding of the optimal

transport problem itself. For example, such study has determined properties of the

solutions to the original problem (Rüschendorf and Rachev, 1990; Rüschendorf, 1995).

General properties can be found in Theorem 5.10 of Villani (2009), particularly part

(ii), while Theorem 5.30 of the same book gives conditions under which the optimal

transport problem is solved by a unique transport plan which is induced by a transport

map. A transport plan induced by a transport map is a coupling which assigns full

probability to the graph of a function. The function is referred to as the transport

map. If the first probability measure obeys some regularity conditions, the conditions

of Theorem 5.30 of Villani (2009) are shown to be satisfied when the cost function is

equal to the squared Euclidean distance on Rn in Theorem 9.4 of the same book.

As far as we are aware, the only investigation into the extreme points of Wasserstein

balls has been in the case in which the probability measure at the centre of the ball has

finite support. For example, see Theorem 2.3 of Owhadi and Scovel (2017). However,

in this chapter we allow the centre of the ball to be any probability measure. We first

investigate the implications for the functions solving the dual of the optimal transport

problem for points on the surface of the Wasserstein ball which are not extreme. By
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the surface of the ball, we mean the points in the ball whose distance from the centre of

the ball is equal to the radius. We then show, under very general conditions, that the

only extreme points which are not on the surface of the ball are the Dirac measures.

This is followed by finding conditions under which points on the surface of the ball

are extreme points or not extreme points. Finally, we consider the case in which the

underlying space is finite. We use the dual problem to find further conditions under

which points on the surface of the ball are not extreme points.

5.1 Literature Review

The first modern treatment of the optimal transport problem is given by Kantorovitch

(1958). In the paper, the author introduces the problem of seeking the transport plan

between two measures which minimises the transport cost. The measures are not

required to be probability measures, but they must have the same total mass. The

minimum transport cost is represented as a function of the two measures, introducing

the earliest version of the Wasserstein distance. The main result of the paper is an

early form of the duality theorem, which states that the dual problem has the same

solution as the original optimal transport problem under very general conditions on

the cost function. The dual problem is further studied by Rüschendorf and Rachev

(1990) and Rüschendorf (1995). Both papers use ideas from convex analysis and

examine the implications for the solutions to the original optimal transport problem.

A recent book on the subject of optimal transport has been written by Villani (2009).

The book covers all major developments in the field. This chapter is particularly

concerned with the following aspects. Chapter 5 covers duality, with a detailed version

of the duality theorem given by Theorem 5.10. Chapter 6 examines the Wasserstein

distance for general p ∈ [1,∞). Theorem 5.30 gives conditions under which the
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optimal transport problem is solved by a unique transport plan which is induced by

a transport map. Theorem 9.4 then proves that these conditions are satisfied when

the cost function is equal to the squared Euclidean distance on Rn, subject to some

regularity conditions on the first probability measure.

The most recent result on the extreme points of Wasserstein balls when the probability

measure at the centre of the ball has finite support is Theorem 2.4 of Owhadi and

Scovel (2017). The theorem states that if the probability measure at the centre of

the ball has finite support of size n, then the extreme points of the ball have finite

support of size at most n + 2. The paper also provides the same result for balls of

probability measures defined by distances other than the Wasserstein distance.

5.2 Contribution

In this chapter, we give various conditions under which probability measures in a

Wasserstein ball are extreme points or not extreme points. As far as we are aware,

the classification of the extreme points of Wasserstein balls has previously only been

studied in the case in which the probability measure at the centre of the ball has

finite support (Theorem 2.3 of Owhadi and Scovel, 2017). Our results do not make

this restriction. In Section 5.4, we examine the functions solving the dual problem for

points on the surface of the Wasserstein ball which are not extreme points. In Section

5.5, we show that, under very general conditions, the only extreme points which are

not on the surface of the ball are the Dirac measures (Lemma 5.5.3 on page 196).

We then move on to the surface of the ball in Section 5.6. We show that if the Wasser-

stein distance is uniquely attained by a transport plan induced by a transport map,

then we have an extreme point (Lemma 5.6.1 on page 198). Conversely, under condi-
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tions on the centre of the ball and the cost function, we show that if the Wasserstein

distance is attained by two distinct transport plans induced by continuous transport

maps, then we do not have an extreme point (Lemma 5.6.3 on page 201).

Finally, in Section 5.7, we consider the case in which our probability measures are

defined on finite sets. We examine how the results of Section 5.6 can be applied in

this setting. We also make use of the variables which solve the dual problem to prove

the following results. We show that if an optimal transport plan transports mass from

one atom to two atoms at the same unit cost, then we do not have an extreme point

(Lemma 5.7.2 on page 215). We then show a similar result in which the mass may be

transported from two different atoms under conditions on the optimal dual variables

(Lemma 5.7.3 on page 216).

5.3 Optimal Transport

Let (X, dX) and (Y, dY ) be complete separable metric spaces. Furthermore, let B(X),

B(Y ) and B(X × Y ) be the set of Borel sets on X, Y and X × Y , and let P(X),

P(Y ) and P(X × Y ) be the set of Borel probability measures on X, Y and X × Y .

We consider the problem of optimally transporting a probability measure P ∈ P(X)

to Q ∈ P(Y ) with respect to some Borel cost function c : X × Y → [0,∞).

In order to study this problem, we define the marginals of γ ∈ P(X × Y ). Let

π1 : P(X × Y ) → P(X) by (π1γ)(A) = γ(A × Y ) for all A ∈ B(X) and let π2 :

P(X × Y ) → P(Y ) by (π2γ)(B) = γ(X × B) for all B ∈ B(Y ). The marginals of

γ ∈ P(X × Y ) are π1γ ∈ P(X) and π2γ ∈ P(Y ). We define

Π(P,Q) = {γ ∈ P(X × Y ) : π1γ = P and π2γ = Q}
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for P ∈ P(X) and Q ∈ P(Y ). We refer to γ ∈ Π(P,Q) as a transport plan for our

optimal transport problem. The problem itself is then to find

inf
γ∈Π(P,Q)

∫
c dγ.

In particular, we hope that this infimum is attained by some γ ∈ Π(P,Q). Such a γ

is referred to as an optimal transport plan. If we assume

(c1) c is lower semicontinuous,

then an optimal transport plan exists by Theorem 4.1 of Villani (2009).

The optimal transport problem above is parametrised by P ∈ P(X) and Q ∈ P(Y ).

For each parametrisation, the problem has a minimum transport cost which we refer

to as the Wasserstein distance

Wc(P,Q) = inf

{∫
c dγ : γ ∈ Π(P,Q)

}
.

This infimum is attained if we assume (c1). In general, Wc has very few of the

properties that we associate with a distance. However, Wc(P,Q) does in some sense

measure how far apart P and Q are. We have the following convexity result.

Lemma 5.3.1 Let P1, P2 ∈ P(X), Q1, Q2 ∈ P(Y ) and t ∈ (0, 1). Then

Wc(tP1 + (1− t)P2, tQ1 + (1− t)Q2) ≤ tWc(P1, Q1) + (1− t)Wc(P2, Q2).

Proof If γ1 ∈ Π(P1, Q1) and γ2 ∈ Π(P2, Q2), then

tγ1 + (1− t)γ2 ∈ Π(tP1 + (1− t)P2, tQ1 + (1− t)Q2).
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Hence,

Wc(tP1 + (1− t)P2, tQ1 + (1− t)Q2)

= inf

{∫
c dγ : γ ∈ Π(tP1 + (1− t)P2, tQ1 + (1− t)Q2)

}
≤ inf

{∫
c d(tγ1 + (1− t)γ2) : γ1 ∈ Π(P1, Q1), γ2 ∈ Π(P2, Q2)

}
= inf

{
t

∫
c dγ1 + (1− t)

∫
c dγ2 : γ1 ∈ Π(P1, Q1), γ2 ∈ Π(P2, Q2)

}
= inf

{
t

∫
c dγ1 : γ1 ∈ Π(P1, Q1)

}
+ inf

{
(1− t)

∫
c dγ2 : γ2 ∈ Π(P2, Q2)

}
= tWc(P1, Q1) + (1− t)Wc(P2, Q2).

We now define the closed Wasserstein ball

Bc[P, r] = {Q ∈ P(Y ) : Wc(P,Q) ≤ r}

for P ∈ P(X) and r ≥ 0. By Lemma 5.3.1 with P1 = P2 = P , we know that B[P, r]

is convex. We call Q ∈ Bc[P, r] an extreme point of Bc[P, r] if Q = tQ1 + (1 − t)Q2

for Q1, Q2 ∈ Bc[P, r] and t ∈ (0, 1) implies Q1 = Q2, in which case Q1 = Q2 = Q. We

denote the set of extreme points of Bc[P, r] by ext(Bc[P, r]).

Some transport plans transport probability measures by mapping each point x ∈ X

to a point y ∈ Y . A transport map T : X → Y is a Borel function such that

P (T−1(B)) = Q(B) for all B ∈ B(Y ). The transport plan γ ∈ Π(P,Q) induced by

T is γ(C) = P ({x ∈ X : (x, T (x)) ∈ C}) for C ∈ B(X × Y ). We have {x ∈ X :

(x, T (x)) ∈ C} ∈ B(X) because the function f : X → X × Y by f(x) = (x, T (x))

is Borel. Note that γ(A × B) = P (A ∩ T−1(B)) for A ∈ B(X) and B ∈ B(Y ). The

graph G = {(x, y) ∈ X × Y : T (x) = y} of T has γ(G) = 1, where G ∈ B(X × Y )

because G = {(x, y) ∈ X × Y : dY (T (x), y) = 0} and f : X × Y → [0,∞) by
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f(x, y) = d(T (x), y) is Borel. Therefore, if f : X × Y → R is Borel and either

γ-integrable or non-negative, then

∫
f dγ =

∫
f(x, T (x)) dP (x).

Before going further, we define the balls

BX(x, ε) = {z ∈ X : dX(z, x) < ε},

BX [x, ε] = {z ∈ X : dX(z, x) ≤ ε},

BY (y, ε) = {w ∈ Y : dY (w, y) < ε},

BY [y, ε] = {w ∈ Y : dY (w, y) ≤ ε}

for x ∈ X, y ∈ Y and ε ≥ 0. Note that for ε = 0, we have BX(x, 0) = ∅, BY (y, 0) = ∅

and BX [x, 0] = {x}, BY [y, 0] = {y}.

5.4 Dual Functions

The optimal transport problem has the dual problem

sup
ψ∈L1(P ),φ∈L1(Q)

{∫
φ dQ−

∫
ψ dP : φ(y)− ψ(x) ≤ c(x, y) for all (x, y) ∈ X × Y

}
.

For ψ ∈ L1(P ) and φ ∈ L1(Q) such that φ(y)− ψ(x) ≤ c(x, y) for all (x, y) ∈ X × Y ,

we have

∫
φ dQ−

∫
ψ dP =

∫
(φ(y)− ψ(x)) dγ(x, y)

≤
∫
c(x, y) dγ(x, y)
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for all γ ∈ Π(P,Q). By taking an infimum over γ ∈ Π(P,Q), we find that

∫
φ dQ−

∫
ψ dP ≤ Wc(P,Q).

Hence, the maximum value of the dual problem is always at most the minimum

transport cost. We refer to ψ and φ as dual functions. If we assume (c1) that c

is lower semicontinuous, then the two problems have the same optimum values by

Theorem 5.10 of Villani (2009). If we assume both (c1) and

(c2) c(x, y) ≤ cX(x) + cY (y) for all (x, y) ∈ X × Y for some cX ∈ L1(P ) and

cY ∈ L1(Q),

then the supremum in the dual problem is attained by some ψ ∈ L1(P ) and φ ∈ L1(Q),

again by Theorem 5.10 of Villani (2009). Such functions ψ and φ are referred to as

optimal dual functions.

We now investigate properties of the optimal dual functions for Q ∈ Bc[P, r] on the

surface of the ball which are not extreme points. We first show that if Q ∈ Bc[P, r]

with Wc(P,Q) = r is a convex combination of Q1, Q2 ∈ Bc[P, r], then Wc(P,Q1) = r

and Wc(P,Q2) = r are attained by the same dual functions as Wc(P,Q).

Lemma 5.4.1 Assume (c1). Let Q ∈ Bc[P, r] with Wc(P,Q) = r and suppose that

Q = tQ1+(1−t)Q2 for Q1, Q2 ∈ Bc[P, r] and t ∈ (0, 1). Let ψ ∈ L1(P ) and φ ∈ L1(Q)

satisfy φ(y)− ψ(x) ≤ c(x, y) for all (x, y) ∈ X × Y and

Wc(P,Q) =

∫
φ dQ−

∫
ψ dP.

Then Wc(P,Q1) = r and Wc(P,Q2) = r. Furthermore,

Wc(P,Q1) =

∫
φ dQ1 −

∫
ψ dP and Wc(P,Q2) =

∫
φ dQ2 −

∫
ψ dP.
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Proof By Lemma 5.3.1 with P1 = P2 = P , we have

tWc(P,Q1) + (1− t)Wc(P,Q2) ≥ r.

Since Q1, Q2 ∈ Bc[P, r], we have Wc(P,Q1) = r and Wc(P,Q2) = r. Therefore, we

have ∫
φ dQ1 −

∫
ψ dP ≤ r and

∫
φ dQ2 −

∫
ψ dP ≤ r

from the dual problems. Furthermore, we have

t

(∫
φ dQ1 −

∫
ψ dP

)
+ (1− t)

(∫
φ dQ2 −

∫
ψ dP

)
=

∫
φ dQ−

∫
ψ dP = r.

Hence, ∫
φ dQ1 −

∫
ψ dP = r and

∫
φ dQ2 −

∫
ψ dP = r.

The result follows.

We also show that if Q1, Q2 ∈ Bc[P, r] with Wc(P,Q1) = r and Wc(P,Q2) = r,

and Wc(P,Q1) and Wc(P,Q2) are attained by the same dual functions, then Q =

tQ1 + (1− t)Q2 ∈ Bc[P, r] has Wc(P,Q) = r for all t ∈ (0, 1), and is attained by the

same dual functions as Wc(P,Q1) and Wc(P,Q2).

Lemma 5.4.2 Assume (c1). Let Q1, Q2 ∈ Bc[P, r] with Wc(P,Q1) = r and Wc(P,Q2) =

r. Let ψ ∈ L1(P ) and φ ∈ L1(Q) satisfy φ(y)− ψ(x) ≤ c(x, y) for all (x, y) ∈ X × Y

and

Wc(P,Q1) =

∫
φ dQ1 −

∫
ψ dP and Wc(P,Q2) =

∫
φ dQ2 −

∫
ψ dP.

Then Q = tQ1 + (1− t)Q2 ∈ Bc[P, r] has Wc(P,Q) = r and

Wc(P,Q) =

∫
φ dQ−

∫
ψ dP



CHAPTER 5. EXTREME POINTS OF WASSERSTEIN BALLS 194

for all t ∈ (0, 1).

Proof By Lemma 5.3.1 with P1 = P2 = P , we have Q ∈ Bc[P, r]. Furthermore, from

the dual problem we have

Wc(P,Q) ≥
∫
φ dQ−

∫
ψ dP

=

∫
φ d(tQ1 + (1− t)Q2)−

∫
ψ dP

= t

(∫
φ dQ1 −

∫
ψ dP

)
+ (1− t)

(∫
φ dQ2 −

∫
ψ dP

)
= tr + (1− t)r

= r.

The inequality must hold with equality and the result follows.

5.5 Inside the Ball

In this section, we consider probability measures which lie inside the Wasserstein ball

as opposed to being on the surface of the ball. Let δy be the Dirac measure at y ∈ Y .

Dirac measures which lie within Bc[P, r] are extreme points of Bc[P, r].

Lemma 5.5.1 Suppose that Q = δy ∈ Bc[P, r] for some y ∈ Y . Then Q ∈ ext(Bc[P, r]).

Proof Let Q = tQ1 + (1 − t)Q2 for Q1, Q2 ∈ Bc[P, r] and t ∈ (0, 1). Suppose

Q1({y}) < 1. Then

Q({y}) = tQ1({y}) + (1− t)Q2({y}) < 1.
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This is a contradiction, so Q1({y}) = 1. Similarly, Q2({y}) = 1. Therefore, Q1 = Q2.

The result follows.

In fact, the only extreme points Q of Bc[P, r] with Wc(P,Q) < r are the Dirac

measures. Before showing this, we need the following result.

Lemma 5.5.2 Let Q ∈ P(Y ) and suppose that there is no y ∈ Y such that Q = δy.

Then there exists A ∈ B(Y ) such that Q(A) ∈ (0, 1).

Proof Since Y is separable, it has a countable dense subset Y0. For all n ≥ 1, we

have

Y =
⋃
y∈Y0

BY (y, 1/n).

Hence, ∑
y∈Y0

Q(BY (y, 1/n)) ≥ 1.

Suppose that Q(A) ∈ {0, 1} for all A ∈ B(Y ). Then there exists yn ∈ Y0 such that

Q(BY (yn, 1/n)) = 1. Let

A =
⋂
n≥1

BY (yn, 1/n).

Then Q(A) = 1, so A 6= ∅. Let y ∈ A. Then, by the definition of A, yn → y as

n → ∞. Since Y is a metric space, limits of sequences in Y are unique when they

exist. Hence, A is a singleton and Q is a Dirac measure. This is a contradiction and

the result follows.

Before continuing, we define the measures

P |A1(A2) = P (A1 ∩ A2),

Q|B1(B2) = Q(B1 ∩B2),

γ|C1(C2) = γ(C1 ∩ C2)
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for P ∈ P(X), Q ∈ P(Y ), γ ∈ P(X × Y ) and A1, A2 ∈ B(X), B1, B2 ∈ B(Y ),

C1, C2 ∈ B(X × Y ). Note that P |A1 , Q|B1 and γC1 are not in general probability

measures. For P ∈ P(X) and Q ∈ P(Y ), we also define the product measure P ⊗Q ∈

P(X × Y ) by (P ⊗Q)(A×B) = P (A)Q(B) for A ∈ B(X) and B ∈ B(Y ). We know

that P ⊗ Q extends to a unique probability measure on (X × Y,B(X × Y )) by the

Hahn-Kolmogorov theorem.

Now that we have these definitions, we can prove the following result. Under mild

conditions, any Q ∈ Bc[P, r] such that Wc(P,Q) < r which is not a Dirac measure is

not an extreme point of Bc[P, r].

Lemma 5.5.3 Assume (c1). Let Q ∈ Bc[P, r] with Wc(P,Q) < r and suppose that

there is no y ∈ Y such that Q = δy. Assume

∫
c d(P ⊗Q) <∞.

Then Q /∈ ext(Bc[P, r]).

Proof Let A ∈ B(Y ) such that Q(A) ∈ (0, 1). Such an A exists by Lemma 5.5.2.

Define

Q1 = (1− εQ(A))Q+ εQ|A

and

Q2 = (1− εQ(AC))Q+ εQ|AC .

for ε ∈ (0, 1). Note that Q1, Q2 ∈ P(Y ) and Q = Q1/2 +Q2/2. We have

Q1(A) = Q(A) + εQ(A)(1−Q(A)) > Q(A)− εQ(A)(1−Q(A)) = Q2(A),
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so Q1 6= Q2. Let γ ∈ Π(P,Q) attain Wc(P,Q) and

γ1 = (1− εQ(A))γ + ε(P ⊗Q|A)

and

γ2 = (1− εQ(AC))γ + ε(P ⊗Q|CA).

Then γ1 ∈ Π(P,Q1) and γ2 ∈ Π(P,Q2). Futhermore,

∫
c dγ1 = (1− εQ(A))

∫
c dγ + ε

∫
c d(P ⊗Q|A)

≤ Wc(P,Q) + ε

∫
c d(P ⊗Q)

and

∫
c dγ2 = (1− εQ(AC))

∫
c dγ + ε

∫
c d(P ⊗Q|CA)

≤ Wc(P,Q) + ε

∫
c d(P ⊗Q).

For ε sufficiently small, we have

Wc(P,Q) + ε

∫
c d(P ⊗Q) ≤ r.

Hence, Q1, Q2 ∈ Bc[P, r]. The result follows.

5.6 Surface of the Ball

We now consider probability measures on the surface of the Wasserstein ball. Any

Q ∈ Bc[P, r] with Wc(P,Q) = r such that Wc(P,Q) is uniquely attained by a transport
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plan induced by a transport map is an extreme point of Bc[P, r].

Lemma 5.6.1 Assume (c1). Let Q ∈ Bc[P, r] with Wc(P,Q) = r. Suppose that

Wc(P,Q) is uniquely attained by the transport plan γ ∈ Π(P,Q) induced by the trans-

port map T . Then Q ∈ ext(Bc[P, r]).

Proof Let Q = tQ1+(1−t)Q2 for Q1, Q2 ∈ Bc[P, r] and t ∈ (0, 1). Let Wc(P,Q1) and

Wc(P,Q2) be attained by γ1 ∈ Π(P,Q1) and γ2 ∈ Π(P,Q2). We have tγ1 +(1− t)γ2 ∈

Π(P,Q), so ∫
c d(tγ1 + (1− t)γ2) ≥ r

by the definition of Wc(P,Q). On the other hand,

∫
c d(tγ1 + (1− t)γ2) = t

∫
c dγ1 + (1− t)

∫
c dγ2 ≤ r

because Wc(P,Q1) ≤ r and Wc(P,Q2) ≤ r. Hence,

∫
c d(tγ1 + (1− t)γ2) = r.

Since Wc(P,Q) is uniquely attained by γ, we find γ = tγ1 + (1 − t)γ2. Let G =

{(x, y) ∈ X × Y : T (x) = y} the graph of T . Note that G ∈ B(X × Y ) because G =

{(x, y) ∈ X × Y : dY (T (x), y) = 0} and f : X × Y → [0,∞) by f(x, y) = d(T (x), y)

is Borel. Since γ(G) = 1, we have γ1(G) = 1 and γ2(G) = 1. Hence,

Q1(B) = γ1(X ×B)

= γ1((X ×B) ∩G)

= γ1((T−1(B)× Y ) ∩G)

= γ1(T−1(B)× Y )

= P (T−1(B))
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= Q(B)

for B ∈ B(Y ), so Q1 = Q. Similarly, Q2 = Q. The result follows.

Theorem 9.4 of Villani (2009) shows that the conditions of Lemma 5.6.1 are satisfied

when X = Y = Rn for some n ≥ 1, c(x, y) = ‖x− y‖2
2, Borel sets of dimension n− 1

are P -null and ∫
‖x‖2

2 dP (x) <∞ and

∫
‖y‖2

2 dQ(y) <∞.

In particular, under the conditions on X, Y , c and P , all Q ∈ Bc[P, r] with Wc(P,Q) =

r are extreme points of Bc[P, r]. Hence, in this setting, we have exactly characterised

the extreme points of Bc[P, r]. We have

ext(Bc[P, r]) = {δy ∈ P(Y ) : Wc(P, δy) < r} ∪ {Q ∈ P(Y ) : Wc(P,Q) = r}.

Note that Theorem 9.4 of Villani (2009) is very specific to the cost function c(x, y) =

‖x−y‖2
2. We continue by exploring situations in which Q ∈ Bc[P, r] with Wc(P,Q) = r

is not an extreme point of Bc[P, r].

Lemma 5.6.2 Let Q ∈ Bc[P, r] with Wc(P,Q) = r. Suppose that Wc(P,Q) is at-

tained by both γ1, γ2 ∈ Π(P,Q) with γ1 6= γ2. If there exist A ∈ B(X) and B ∈ B(Y )

such that γ1(A×B) 6= γ2(A×B) and

∫
c1(A× Y ) dγ1 =

∫
c1(A× Y ) dγ2,

then Q /∈ ext(Bc[P, r]).

Proof Let

Q1(C) = γ1(A× C) + γ2(AC × C)
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and

Q2(C) = γ1(AC × C) + γ2(A× C)

for C ∈ B(Y ). Note that Q1, Q2 ∈ P(Y ) and Q = Q1/2 +Q2/2. We have

Q1(B) = Q(B) + γ1(A×B)− γ2(A×B) 6= Q(B) + γ2(A×B)− γ1(A×B) = Q2(B),

so Q1 6= Q2. Let

γA,1 = γ1|A×Y + γ2|AC×Y

and

γA,2 = γ1|AC×Y + γ2|A×Y .

Then γA,1 ∈ Π(P,Q1) and γA,2 ∈ Π(P,Q2). Furthermore,

∫
c dγA,1 =

∫
c1(A× Y ) dγ1 +

∫
c1(AC × Y ) dγ2

=

∫
c1(A× Y ) dγ2 +

∫
c1(AC × Y ) dγ2

=

∫
c dγ2,

so Q1 ∈ Bc[P, r]. Similarly, Q2 ∈ Bc[P, r]. The result follows.

Note that there are always A ∈ B(X) and B ∈ B(Y ) such that γ1(A×B) 6= γ2(A×B),

as otherwise γ1 = γ2 by Dynkin’s lemma. However, A and B might not satisfy the

condition with respect to the cost function. The result in its general form above is

difficult to apply directly, however we continue by considering a specific context in

which the transport plans are attained by continuous transport maps and the cost

function is continuous, along with some conditions on P .

Before considering this context, we need to define a new concept. We call P ∈ P(X)

ball-respecting if P (BX(x, ε)) = P (BX [x, ε]) for all x ∈ X and ε ≥ 0. In particular,
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this implies P ({x}) = 0 for ε = 0. This is similar to the notion of P being inner-

regular, as we can find P (BX [x, ε]) from P (BX(x, ε)), where BX(x, ε) ⊆ BX [x, ε]. We

have the following result.

Lemma 5.6.3 Let X be connected, suppP = X and P respect balls. Let Q ∈ Bc[P, r]

with Wc(P,Q) = r. Suppose that Wc(P,Q) is attained by both γ1, γ2 ∈ Π(P,Q).

Suppose further that the transport plans γ1, γ2 are induced by the transport maps T1,

T2 and that T1 and T2 are continuous. Finally, suppose that c is continuous and that

there exists x ∈ X such that c(x, T1(x)) 6= c(x, T2(x)). Then T1 6= T2 and γ1 6= γ2,

and Q /∈ ext(Bc[P, r]).

Proof We have T1 6= T2 because c(x, T1(x)) 6= c(x, T2(x)). Let

ν1(A) =
1

r

∫
1(x ∈ A)c(x, T1(x)) dP (x)

and

ν2(A) =
1

r

∫
1(x ∈ A)c(x, T2(x)) dP (x)

for all A ∈ B(X). Note that ν1, ν2 ∈ P(X) and there is a version of the Radon–

Nikodym derivative

dν1

dP
(x) =

c(x, T1(x))

r
and

dν2

dP
(x) =

c(x, T2(x))

r
.

Let

S1 = {x ∈ X : c(x, T1(x)) > c(x, T2(x))},

S2 = {x ∈ X : c(x, T1(x)) < c(x, T2(x))},

S3 = {x ∈ X : c(x, T1(x)) = c(x, T2(x))}.

Note that {S1, S2, S3} is a partition of X. We have S1, S2 open and S3 closed by the
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continuity of T1, T2 and c. Since we have x ∈ X such that c(x, T1(x)) 6= c(x, T2(x)),

we have that S1 ∪ S2 6= ∅. If S1 6= ∅ then, since S1 is open, there exists x ∈ S1 and

ε > 0 such that BX(x, ε) ⊆ S1. Suppose S2 = ∅. Since suppP = X, we have

1 =

∫
1(S1)

dν1

dP
dP +

∫
1(S3)

dν1

dP
dP >

∫
1(S1)

dν2

dP
dP +

∫
1(S3)

dν2

dP
dP = 1.

This is a contradiction, so S2 6= ∅. Similarly, if S2 6= ∅ then S1 6= ∅. Since

S1∪S2 6= ∅, we have S1 6= ∅ and S2 6= ∅. Hence, S3 6= ∅ by the connectedness of X.

Suppose that both T1 and T2 are constant on S1. Then S1 is closed by the continuity

of T1, T2 and c, so S1 is a non-trivial clopen set. This contradicts X being connected,

so either T1 or T2 is non-constant on S1. Similarly, either T1 or T2 is non-constant on

S2.

Without loss of generality, let T1 be non-constant on Si for some i ∈ {1, 2} and let

j = 3 − i ∈ {1, 2} with j 6= i. Then there exist xi ∈ Si and xj ∈ Sj such that

T1(xi) 6= T2(xj). Furthermore, T1(xi) 6= T2(xi) because xi ∈ Si. Let

ε = min(dY (T1(xi), T2(xi)), dY (T1(xi), T2(xj))).

Note that ε > 0. By the openness of Si and Sj and the continuity of T1 and T2, there

exists δ > 0 such that

BX(xi, δ) ⊆ Si,

BX(xj, δ) ⊆ Sj,

T1(BX(xi, δ)) ⊆ BY (T1(xi), ε/2),

T2(BX(xi, δ)) ⊆ BY (T2(xi), ε/2),

T2(BX(xj, δ)) ⊆ BY (T2(xj), ε/2).
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By the definition of ε,

BY (T1(xi), ε/2) ∩BY (T2(xi), ε/2) = ∅,

BY (T1(xi), ε/2) ∩BY (T2(xj), ε/2) = ∅.

Let

αi = νi(BX(xi, δ))− νj(BX(xi, δ)),

αj = νj(BX(xj, δ))− νi(BX(xj, δ)).

Since BX(xi, δ) ⊆ Si, BX(xj, δ) ⊆ Sj and suppP = X, we find

αi =

∫
1(BX(xi, δ))

(
dνi
dP
− dνj
dP

)
dP > 0,

αj =

∫
1(BX(xj, δ))

(
dνj
dP
− dνi
dP

)
dP > 0.

If αi = αj, then let δi = δj = δ. Otherwise, we have k ∈ {1, 2} and l = 3− k ∈ {1, 2}

with l 6= k such that αk > αl. Let f : [0, δ]→ R by

f(η) = νk(BX(xk, η))− νl(BX(xk, η)).

We have f(0) = 0 and f(δ) = αk. Furthermore, we have BX(xk, η) ⊆ BX(xk, δ) ⊆ Sk

and

f(η) =

∫
1(BX(xk, η))

(
dνk
dP
− dνl
dP

)
dP.

Since P respects balls, we have that f is continuous. By the intermediate value

theorem, there exists δk ∈ [0, δ] such that f(δk) = αl. Let δl = δ. Then

νk(BX(xk, δk))− νl(BX(xk, δk)) = αl,

νl(BX(xl, δl))− νk(BX(xl, δl)) = αl.
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So

ν1(BX(x1, δ1))− ν2(BX(x1, δ1)) = ν2(BX(x2, δ2))− ν1(BX(x2, δ2)).

Furthermore, since BX(xi, δi) ⊆ BX(xi, δ) and BX(xj, δj) ⊆ BX(xj, δ), we have

BX(xi, δi) ⊆ Si,

BX(xj, δj) ⊆ Sj,

T1(BX(xi, δi)) ⊆ BY (T1(xi), ε/2),

T2(BX(xi, δi)) ⊆ BY (T2(xi), ε/2),

T2(BX(xj, δj)) ⊆ BY (T2(xj), ε/2).

Recall that, by the definition of ε,

BY (T1(xi), ε/2) ∩BY (T2(xi), ε/2) = ∅,

BY (T1(xi), ε/2) ∩BY (T2(xj), ε/2) = ∅.

Let A = BX(x1, δ1) ∪BX(x2, δ2) ∈ B(X) and B = BY (T1(xi), ε/2) ∈ B(Y ). Then

ν1(A) = ν1(BX(x1, δ1)) + ν1(BX(x2, δ2)) = ν2(BX(x1, δ1)) + ν2(BX(x1, δ1)) = ν2(A),

so ∫
c1(A× Y ) dγ1 =

∫
c1(A× Y ) dγ2.

Furthermore,

γ1(A×B) = P (A ∩ T−1
1 (B)) ≥ P (BX(xi, δi)) > 0
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because suppP = X. On the other hand,

A ∩ T−1
2 (B)

⊆ T−1
2 (T2(A) ∩B)

= T−1
2 ((T2(BX(x1, δ1)) ∩BY (T1(xi), ε/2)) ∪ (T2(BX(x2, δ2)) ∩BY (T1(xi), ε/2)))

⊆ T−1
2 ((BY (T2(x1), ε/2) ∩BY (T1(xi), ε/2)) ∪ (BY (T2(x2), ε/2) ∩BY (T1(xi), ε/2)))

= T−1
2 (∅ ∪∅)

= ∅.

Therefore,

γ2(A×B) = P (A ∩ T−1
2 (B)) = 0.

Hence, γ1(A×B) 6= γ2(A×B). It follows that Q /∈ ext(Bc[P, r]) by Lemma 5.6.2.

Note that in the proof above there is a choice of xi ∈ Si and xj ∈ Sj for i, j ∈ {1, 2}

with i 6= j, subject to T1(xi) 6= T2(xj). Under certain conditions, each distinct pair

(x1, x2) ∈ S1×S2 produces a distinct pair (Q1, Q2) ∈ Bc[P, r]
2 with Q1 6= Q2 such that

Q = Q1/2 + Q2/2. In such circumstances, if there is an uncountable set of possible

(x1, x2) ∈ S1×S2, then Q can be represented as the average of an uncountable number

of pairs of elements of Bc[P, r]. We now investigate such a setting.

Let X = (0, 1) with the Euclidean distance, which is connected, and let P = Unif(0, 1)

with suppP = X. Since P is non-atomic, it respects balls. Let Y = (1, 2) with the

Euclidean distance and let Q = Unif(1, 2). Let c(x, y) = |x− y|, which is continuous.

For any γ ∈ Π(P,Q), we have

∫
c dγ =

∫
(y − x) dγ(x, y)

=

∫
y dQ(y)−

∫
x dP (x)
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= 3/2− 1/2

= 1.

Hence, Wc(P,Q) = 1. Let γ1, γ2 ∈ Π(P,Q) be induced by

T1(x) = 1 + x,

T2(x) = 2− x

for x ∈ X. Then T1 and T2 are continuous, and

c(1/3, T1(1/3)) = 1 6= 4/3 = c(1/3, T2(1/3)).

Hence, Q is not an extreme point of Bc[P, r] by Lemma 5.6.3.

Following the proof of Lemma 5.6.3, we find

dν1

dP
(x) = 1 and

dν2

dP
(x) = 2− 2x

for x ∈ X. It follows that S1 = (1/2, 1), S2 = (0, 1/2) and S3 = {1/2}. We can select

any x1 ∈ S1 and x2 ∈ S2, as long as x2 6= 1−x1. In particular, there is an uncountable

set of possible (x1, x2) ∈ S1×S2. Each distinct possible pair (x1, x2) ∈ S1×S2 produces

a distinct pair (Q1, Q2) ∈ Bc[P, 1]2 such that Q = Q1/2 + Q2/2. This is because a

distinct A = BX(x1, δ1)∪BX(x2, δ2) ∈ B(X) is produced for some δ1, δ2 > 0 such that

BX(x1, δ1) ⊆ S1 and BX(x2, δ2) ⊆ S2. The proof of Lemma 5.6.2 then defines

Q1(C) = γ1(A× C) + γ2(AC × C)

= P (A ∩ T−1
1 (C)) + P (AC ∩ T−1

2 (C))
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and

Q2(C) = γ1(AC × C) + γ2(A× C)

= P (AC ∩ T−1
1 (C)) + P (A ∩ T−1

2 (C))

for C ∈ B(Y ).

For a given choice of x1 and x2, we can find A exactly in this setting. Let x1 = 3/4 and

x2 = 1/3. We follow the proof of Lemma 5.6.3. We have T1(x1) = 7/4, T2(x2) = 5/3

and T2(x1) = 5/4. We then find ε = 1/12 and can let δ = 1/24 to obtain

BX(x1, δ) = (17/24, 19/24),

BX(x2, δ) = (7/24, 9/24)

and

T1(BX(x1, δ)) = (41/24, 43/24) = BY (T1(x1), ε/2),

T2(BX(x1, δ)) = (29/24, 31/24) = BY (T2(x1), ε/2),

T2(BX(x2, δ)) = (39/24, 41/24) = BY (T2(x2), ε/2).

Therefore,

ν1(BX(x1, δ)) =

∫ 19/24

17/24

1 dx = 1/12

and

ν2(BX(x1, δ)) =

∫ 19/24

17/24

(2− 2x) dx = 1/24,

so α1 = 1/24. Furthermore,

ν2(BX(x2, δ)) =

∫ 9/24

7/24

(2− 2x) dx = 1/9
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and

ν1(BX(x2, δ)) =

∫ 9/24

7/24

1 dx = 1/12,

so α2 = 1/36. Since α1 > α2, we define f : [0, δ]→ R by

f(η) = ν1(BX(x1, η))− ν2(BX(x1, η)).

We have

ν1(BX(x1, η)) =

∫ 3/4+η

3/4−η
1 dx = 2η

and

ν2(BX(x1, η)) =

∫ 3/4+η

3/4−η
(2− 2x) dx = η,

so f(η) = η. We then define δ1 = 1/36 so that f(δ1) = α2, and δ2 = δ = 1/24.

Therefore,

BX(x1, δ1) = (26/36, 28/36),

BX(x2, δ2) = (7/24, 9/24)

andA = (7/24, 9/24)∪(26/36, 28/36). For Lemma 5.6.2, we also needB = (41/24, 43/24).

We have

γ1(A×B) = P (A ∩ T−1
1 (B)) = P ((26/36, 28/36)) = 1/18

and

γ2(A×B) = P (A ∩ T−1
2 (B)) = P (∅) = 0,

so γ1(A×B) 6= γ2(A×B). Furthermore,

∫
c1(A× Y ) dγ1 =

∫
c(x, T1(x))1(x ∈ A) dP (x) =

∫
1(x ∈ A) dx = 5/36
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and

∫
c1(A× Y ) dγ2 =

∫
c(x, T2(x))1(x ∈ A) dP (x) =

∫
(2− 2x)1(x ∈ A) dx = 5/36.

Hence, the conditions of Lemma 5.6.2 are satisfied. The proof of the lemma shows

that Q = Q1/2 +Q2/2 for Q1, Q2 ∈ Bc[P, 1], where

Q1(C) = P (A ∩ T−1
1 (C)) + P (AC ∩ T−1

2 (C))

and

Q2(C) = P (AC ∩ T−1
1 (C)) + P (A ∩ T−1

2 (C))

for C ∈ B(Y ).

There are more general results for X, Y ⊆ Rn and c(x, y) = ‖x − y‖1. In particular,

we are interested in P ∈ P(X) and Q ∈ P(Y ) such that c is linear on supp(P ) ×

supp(Q). This happens if, for each 1 ≤ i ≤ n, we have that xi − yi has the same

sign for all (x, y) ∈ supp(P ) × supp(Q). In this case, r = Wc(P,Q) is attained by

all γ ∈ Π(P,Q). Let X be connected, suppP = X and P respect balls. If there

are two continuous transport maps T1, T2 which induce γ1, γ2 ∈ Π(P,Q) such that

c(x, T1(x)) 6= c(x, T2(x)) for some x ∈ X, then Q /∈ ext(Bc[P, r]) by Lemma 5.6.3.

This is in contrast to the situation in which X, Y ⊆ Rn and c(x, y) = ‖x− y‖2
2. The

discussion after Lemma 5.6.1 showed that, under a square-integrability condition on

P , all Q ∈ Bc[P, r] with Wc(P,Q) = r are extreme points of Bc[P, r].
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5.7 Discrete Optimal Transport

We now consider the setting in which X and Y are finite sets. Without loss of

generality, we let X = {1, . . . ,m} and Y = {1, . . . , n} for m,n ≥ 1. Note that all

subsets of X are Borel for any metric on X, and similarly for Y and X × Y . We

define some new notation for this section. The results relating to this new notation

are restatements of those in Sections 5.3 and 5.4. Let 1 be the vector of ones, with

the dimension determined by the context, and let

∆(X) =
{
p ∈ [0, 1]m : 1Tp = 1

}
,

∆(Y ) =
{
q ∈ [0, 1]n : 1Tq = 1

}
,

∆(X × Y ) =
{

Γ ∈ [0, 1]m×n : 1TΓ1 = 1
}
.

Note that there is a bijection f : P(X) → ∆(X) by (fP )i = P ({i}) for 1 ≤ i ≤ m.

Similarly, there is a bijection between P(Y ) and ∆(Y ), and P(X×Y ) and ∆(X×Y ).

We can define the equivalent of the marginals of Γ ∈ ∆(X×Y ). Let v1 : ∆(X×Y )→

∆(X) by v1Γ = Γ1 and v2 : ∆(X × Y )→ ∆(Y ) by v2Γ = ΓT1. We also define

V (p, q) = {Γ ∈ ∆(X × Y ) : v1Γ = p and v2Γ = q}

for p ∈ ∆(X) and q ∈ ∆(Y ).

Note that any cost function c on X × Y is bounded and continuous, so assumptions

(c1) and (c2) are satisfied. Let Ci,j = c(i, j) for 1 ≤ i ≤ m and 1 ≤ j ≤ n and let the

equivalent of the Wasserstein distance

wc(p, q) = inf
{

tr(CTΓ) : Γ ∈ V (p, q)
}
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for p ∈ ∆(X) and q ∈ ∆(Y ). We know that wc(p, q) is attained by some Γ ∈ V (p, q)

since assumption (c1) is satisfied. Let the equivalent of the Wasserstein ball

bc[p, r] = {q ∈ ∆(Y ) : wc(p, q) ≤ r}

for p ∈ ∆(X) and r ≥ 0. We have that bc[p, r] is convex. We can also define the

equivalent of dual functions, which we refer to as dual variables. Note that there is

a bijection f : L1(X) → Rm by (fψ)i = ψ(i) for 1 ≤ i ≤ m. Similarly, there is a

bijection between L1(Y ) and Rn. We know that

wc(p, q) = sup
λ∈Rm,µ∈Rn

{
qTµ− pTλ : µj − λi ≤ Ci,j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n

}
since assumption (c1) is satisfied. In fact, we know that the supremum is attained by

some λ ∈ Rm and µ ∈ Rn since assumption (c2) is satisfied.

We have already classified the extreme points q of bc[p, r] such that wc(p, q) < r in

Section 5.5. They are the q such that qj0 = 1 for some 1 ≤ j0 ≤ n and qj = 0 for

all 1 ≤ j ≤ n with j 6= j0. We now consider q ∈ bc[p, r] such that wc(p, q) = r. In

the discrete setting for a fixed value of r, it is rare that any transport plan is induced

by a transport map, as this would require that the elements of q can be created from

sums of the elements of p. In order to apply Lemma 5.6.1, which gives conditions

under which q ∈ bc[p, r] with wc(p, q) = r is an extreme point of bc[p, r], we require

a unique optimal transport plan which is induced by a transport map. This would

be very unusual, so we do not seek to apply Lemma 5.6.1 in the discrete setting.

We do not seek to apply Lemma 5.6.3 for similar reasons. However, we do consider

scenarios in which Lemma 5.6.2 can be applied. Under conditions on two transport

maps attaining wc(p, q), Lemma 5.6.2 states that q ∈ bc[p, r] with wc(p, q) = r is not

an extreme point of bc[p, r].
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We now give an example illustrating when Lemma 5.6.2 can and cannot be applied.

Suppose that m = 2, n = 4 and p ∈ ∆(X) with p = (1/2, 1/2). We consider bc[p, 1/3],

where

C =

0 1 1 1

1 1 1 0

 .

Let q1 ∈ ∆(Y ) with q1 = (1/3, 1/4, 1/12, 1/3). If Γ ∈ V (p, q1), then tr(CTΓ) ≥

q1,2 + q1,3 = 1/3. Let Γ1,Γ2 ∈ V (p, q1) with

Γ1 =

1/3 1/6 0 0

0 1/12 1/12 1/3

 and Γ2 =

1/3 1/12 1/12 0

0 1/6 0 1/3

 .

Then tr(CTΓ1) = tr(CTΓ2) = 1/3, so Γ1 and Γ2 attain wc(p, q1) = 1/3. Let A = {1}

and B = {2}. Furthermore, let a ∈ Rm with ai = 1 if i ∈ A and ai = 0 if i /∈ A.

Also, let b ∈ Rn with bj = 1 if j ∈ B and bj = 0 if j /∈ B. Then aTΓ1b = 1/6 and

aTΓ2b = 1/12, so aTΓ1b 6= aTΓ2b. Furthermore, tr(CTaaTΓ1) = tr(CTaaTΓ2) = 1/6.

Hence, the conditions of Lemma 5.6.2 are satisfied, so q1 is not an extreme point

of bc[p, 1/3]. In fact, the proof of Lemma 5.6.2 shows that q1 = q2/2 + q3/2 for

q2, q3 ∈ bc[p, 1/3] with q2 = (1/3, 1/3, 0, 1/3) and q3 = (1/3, 1/6, 1/6, 1/3).

Now consider q2 ∈ bc[p, 1/3] with q2 = (1/3, 1/3, 0, 1/3). We know that wc(p, q2) = 1/3

by Lemma 5.3.1, since q1 = q2/2 + q3/2. Let Γ ∈ V (p, q2). Then Γ1,3 = Γ2,3 =

0 since v2Γ = q1 and q1,3 = 0. Suppose further that Γ attains wc(p, q2). Since

C1,2Γ1,2 + C2,2Γ2,2 = q2,2 = 1/3, we must have Γ1,4 = 0 and Γ2,1 = 0. Therefore,

Γ1,1 = 1/3 and Γ2,4 = 1/3 because v2Γ = q2. Furthermore, Γ1,2 = 1/6 and Γ2,2 = 1/6

because v1Γ = p. It follows that wc(p, q2) is uniquely attained by

Γ =

1/3 1/6 0 0

0 1/6 0 1/3

 ,
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so Lemma 5.6.2 does not apply. However, q2 = q4/2 + q5/2 for q4 = (1/6, 1/3, 0, 1/2)

and q5 = (1/2, 1/3, 0, 1/6). By letting

Γ4 =

1/6 1/3 0 0

0 0 0 1/2

 and Γ5 =

1/2 0 0 0

0 1/3 0 1/6

 ,

we find q4, q5 ∈ bc[p, 1/3] because Γ4 ∈ V (p, q4) and Γ5 ∈ V (p, q5) with tr(CTΓ4) =

tr(CTΓ5) = 1/3. Hence, q2 is not an extreme point of bc[p, 1/3], even though wc(p, q2)

is uniquely attained.

Finally, consider q4 ∈ bc[p, 1/3] with q4 = (1/6, 1/3, 0, 1/2). We know that wc(p, q4) =

1/3 by Lemma 5.3.1, since q2 = q4/2 + q5/2. Suppose that q4 = tq6 + (1 − t)q7

for q6, q7 ∈ bc[p, 1/3] and t ∈ (0, 1). We have that wc(p, q6) = wc(p, q7) = 1/3 by

Lemma 5.3.1. Suppose that Γ6 attains wc(p, q6) and Γ7 attains wc(p, q7). We have

that q6,3 = q7,3 = 0, so Γ6,1,3 = Γ6,2,3 = 0 and Γ7,1,3 = Γ7,2,3 = 0. Furthermore,

tq6,2 + (1− t)q7,2 = 1/3. However, q6,2 ≤ wc(p, q6) = 1/3 and q7,2 ≤ wc(p, q7) = 1/3, so

q6,2 = q7,2 = 1/3. Since C1,2Γ6,1,2 +C2,2Γ6,2,2 = q6,2 = 1/3, we must have Γ6,1,4 = 0 and

Γ6,2,1 = 0. Similarly, Γ7,1,4 = 0 and Γ7,2,1 = 0. It follows that tΓ6,2,4+(1−t)Γ7,2,4 = 1/2.

However, Γ6,2,4 ≤ 1/2 and Γ7,2,4 ≤ 1/2 because v1Γ6 = v1Γ7 = p, so Γ6,2,4 = Γ7,2,4 =

1/2. It follows that Γ6,2,2 = Γ7,2,2 = 0 because v1Γ6 = v1Γ7 = p. Furthermore,

Γ6,1,2 = Γ7,1,2 = 1/3 because q6,2 = q7,2 = 1/3. Finally, Γ6,1,1 = Γ7,1,1 = 1/6 because

v1Γ6 = v1Γ7 = p. Hence, Γ6 = Γ7 = Γ4 and q6 = q7 = q4. Therefore, q4 is an extreme

point of bc[p, 1/3].

For discrete optimal transport problems, we can greatly exploit the dual variables

λ ∈ Rm and µ ∈ Rn when finding conditions under which q ∈ bc[p, r] with wc(p, q) = r

is not an extreme point of bc[p, r]. Our aim is to use Lemma 5.4.1 as follows. Suppose

that q ∈ bc[p, r] is not an extreme point of bc[p, r]. Then there exist q1, q2 ∈ bc[p, r]

and t ∈ (0, 1) such that q = tq1 +(1−t)q2. We then know from Lemma 5.4.1 that dual
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variables attaining wc(p, q1) = r and wc(p, q2) = r are the same as those attaining

wc(p, q) = r. This allows us to restrict our search for q1 and q2. We first show the

following auxiliary result. It is well-known, even when generalised to non-discrete

settings (see Theorem 5.10 of Villani, 2009). We include the result with its proof for

completeness.

Lemma 5.7.1 Let Γ ∈ V (p, q) and let λ ∈ Rm and µ ∈ Rn satisfy µj − λi ≤ Ci,j for

all 1 ≤ i ≤ m and 1 ≤ j ≤ n. The following are equivalent.

(i) tr(CTΓ) = qTµ− pTλ.

(ii) Either Γi,j = 0 or µj − λi = Ci,j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

When (i) and (ii) hold, Γ attains wc(p, q) and wc(p, q) = qTµ − pTλ. Such Γ, µ and

λ exist.

Proof Suppose (i). Since p = Γ1 and q = ΓT1, we have

tr(CTΓ) = qTµ− pTλ

= 1TΓµ− 1TΓTλ

= 1TΓµ− λTΓ1

= tr(µ1TΓ− 1λTΓ)

= tr((1µT − λ1T)TΓ).

Hence, tr((C − 1µT + λ1T)TΓ) = 0. Furthermore, µj − λi ≤ Ci,j and Γi,j ≥ 0 for all

1 ≤ i ≤ m and 1 ≤ j ≤ n. Therefore, we have that (ii) holds.

Now suppose (ii) instead. We have that Γi,jµj − Γi,jλi = Γi,jCi,j for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n. Summing over i and j shows that (i) holds.

If (i) holds, we know that Γ is optimal from Section 5.4. Hence, Γ attains wc(p, q)
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and wc(p, q) = qTµ − pTλ. We know that Γ, λ and µ exist from Section 5.3, since

assumptions (c1) and (c2) are satisfied.

We now give conditions under which q ∈ bc[p, r] is not an extreme point of bc[p, r].

The next result shows that if an optimal transport plan transports mass from one

atom to two atoms at the same unit cost, then we do not have an extreme point.

Lemma 5.7.2 Let q ∈ bc[p, r] and let Γ ∈ V (p, q) attain wc(p, q). Suppose that there

exist 1 ≤ i1 ≤ m and 1 ≤ j1, j2 ≤ n with j1 6= j2 such that Γi1,j1 ,Γi1,j2 > 0 and

Ci1,j1 = Ci1,j2. Then q /∈ ext(bc[p, r]).

Proof Let ε = min(Γi1,j1 ,Γi1,j2) and q1, q2 ∈ ∆(Y ) with

q1,j =


qj1 + ε if j = j1

qj2 − ε if j = j2

qj if j /∈ {j1, j2}

and

q2,j =


qj1 − ε if j = j1

qj2 + ε if j = j2

qj if j /∈ {j1, j2}.

Note that q = q1/2+q2/2, and q1 6= q2 since ε > 0. Let Γ1 ∈ V (p, q1) and Γ2 ∈ V (p, q2)

with

Γ1,i,j =


Γi1,j1 + ε if i = i1 and j = j1

Γi1,j2 − ε if i = i1 and j = j2

Γi,j if i 6= i1 or j /∈ {j1, j2}

and

Γ2,i,j =


Γi1,j1 − ε if i = i1 and j = j1

Γi1,j2 + ε if i = i1 and j = j2

Γi,j if i 6= i1 or j /∈ {j1, j2}.
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Let λ ∈ Rm and µ ∈ Rn satisfy µj − λi ≤ Ci,j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and

wc(p, q) = qTµ− pTλ. From Lemma 5.7.1, we have that Γi,j = 0 or µj − λi = Ci,j for

all 1 ≤ i ≤ m and 1 ≤ j ≤ n. If Γ1,i,j > 0, then Γi,j > 0 and µj − λi = Ci,j. Hence,

Γ1 attains wc(p, q1) by Lemma 5.7.1. Similarly, Γ2 attains wc(p, q2). Furthermore, we

have Ci1,j1 = Ci1,j2 , so tr(CTΓ1) = tr(CTΓ2) = tr(CTΓ). Therefore, q1, q2 ∈ bc[p, r].

The result follows.

Note that this result provides us with another way of showing that q1 is not an extreme

point of bc[p, 1/3] in the example above. We apply the result with Γ = Γ1, i1 = 2,

j1 = 2 and j2 = 3. However, it cannot be used to show that q2 is not an extreme point

of bc[p, 1/3]. We also have the following result. It is similar to the previous lemma,

except that we may consider two different atoms from which mass is transported,

under conditions on the optimal dual variables.

Lemma 5.7.3 Let q ∈ bc[p, r] and let Γ ∈ V (p, q) attain wc(p, q). Also let λ ∈ Rm

and µ ∈ Rn satisfy µj − λi ≤ Ci,j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and wc(p, q) =

qTµ − pTλ. Suppose that there exist 1 ≤ i1, i2 ≤ m with i1 6= i2 and 1 ≤ j1, j2 ≤ n

with j1 6= j2 such that Γi1,j1 ,Γi2,j2 > 0, µj1 = µj2, Ci1,j1 = Ci1,j2 and Ci2,j1 = Ci2,j2.

Then q /∈ ext(bc[p, r]).

Proof Let ε = min(Γi1,j1 ,Γi2,j2) and q1, q2 ∈ ∆(Y ) with

q1,j =


qj1 − ε if j = j1

qj2 + ε if j = j2

qj if j /∈ {j1, j2}

and

q2,j =


qj1 + ε if j = j1

qj2 − ε if j = j2

qj if j /∈ {j1, j2}.
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Note that q = q1/2+q2/2, and q1 6= q2 since ε > 0. Let Γ1 ∈ V (p, q1) and Γ2 ∈ V (p, q2)

with

Γ1,i,j =


Γi1,j1 − ε if i = i1 and j = j1

Γi1,j2 + ε if i = i1 and j = j2

Γi,j if i 6= i1 or j /∈ {j1, j2}

and

Γ2,i,j =


Γi2,j1 + ε if i = i2 and j = j1

Γi2,j2 − ε if i = i2 and j = j2

Γi,j if i 6= i2 or j /∈ {j1, j2}.

From Lemma 5.7.1, we have that Γi,j = 0 or µj − λi = Ci,j for all 1 ≤ i ≤ m and

1 ≤ j ≤ n. If Γ1,i,j > 0 for i 6= i1 or j 6= j2, then Γi,j > 0 and µj − λi = Ci,j. For

i = i1 and j = j2, since Γi1,j1 > 0, µj1 = µj2 and Ci1,j1 = Ci1,j2 , we have

µj2 − λi1 = µj1 − λi1

= Ci1,j1

= Ci1,j2 .

Similarly, if Γ2,i,j > 0 for i 6= i2 or j 6= j1, then Γi,j > 0 and µj − λi = Ci,j. For i = i2

and j = j1, since Γi2,j2 > 0, µj1 = µj2 and Ci2,j1 = Ci2,j2 , we have

µj1 − λi2 = µj2 − λi2

= Ci2,j2

= Ci2,j1 .

Hence, Γ1 attains wc(p, q1) and Γ2 attains wc(p, q2) by Lemma 5.7.1. Furthermore, we

have Ci1,j1 = Ci1,j2 and Ci2,j1 = Ci2,j2 , so tr(CTΓ1) = tr(CTΓ2) = tr(CTΓ). Therefore,

q1, q2 ∈ bc[p, r]. The result follows.
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Again, this result can be used to show that q1 is not an extreme point of bc[p, 1/3],

but cannot be used to show that q3 is not an extreme point of bc[p, 1/3]. We may

let λ = (0, 0) and µ = (0, 1, 1, 0). Selecting Γ = Γ1, we set i1 = 1, i2 = 2, j1 = 2

and j2 = 3. In general, we can use Lemma 5.7.1 to calculate the dual variables from

Γ ∈ V (p, q) attaining wc(p, q) by setting µj−λi = Ci,j for all 1 ≤ i ≤ m and 1 ≤ j ≤ n

such that Γi,j > 0. We may also set λ1 = 0, since adding the same constant to all

elements of λ and µ has no effect on qTµ− pTλ.

5.8 Discussion

In this chapter, we study conditions under which probability measures in a Wasserstein

ball are extreme points or not extreme points. We show that, under very general

conditions, the only extreme points of Wasserstein balls which do not lie on the surface

of the ball are Dirac measures. We then investigate which points on the surface of the

ball are extreme points. We find that if the Wasserstein distance is uniquely attained

by a transport plan induced by a transport map, then the point is an extreme point.

On the other hand, under conditions on the centre of the ball and the cost function,

if the Wasserstein distance is attained by two distinct transport plans induced by

continuous transport maps, then the point is not an extreme point. Furthermore,

when our probability measures are defined on finite sets, we use the solutions to the

dual problem to prove conditions under which we do not have an extreme point.

Although we make use of the solutions to the dual problem in the discrete setting, it

would be interesting to investigate how these solutions can be used more generally.

We have some idea of their behaviour from the results in Section 5.4. However, ideally
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we would use properties of the solutions in order to characterise the extreme points

on the surface of the ball.



Chapter 6

Optimal Transport for Covariate

Shift in RKHS Regression

In some statistical settings, an estimator is used for prediction in a slightly different

situation to that in which the original data set is collected. For example, the estimator

could be applied a little later in time or in a neighbouring location. If this is the

case, a new independent data point which we want to predict could have a different

distribution to that of the data set used to construct the estimator. This makes

it difficult to bound the error of the estimator at the new data point. Clearly it

is not possible to provide guarantees for all potential distributions of the new data

point. However, if we assume that the distribution of the new data point is only

a slight perturbation of the distribution which generates the original data set, some

assurances can be given.

In order to quantify the size of the perturbation of the distribution of the original

data set, we need a concept of distance between probability measures. In this chap-

ter, we use the Wasserstein distance. The Wasserstein distance is determined by a

220
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cost function on the underlying space, which means that information about the cost

between two points is transferred to the distance between two probability measures.

An important example is given by setting the cost function equal to some metric on

the space. The Wasserstein distance also arises naturally in the analysis of the Ivanov-

regularised least-squares estimators we consider for the regression problem below. We

consider all perturbations of the distribution of the original data set up to a fixed size,

which defines a ball around this distribution with respect to the Wasserstein distance.

Before discussing the regression problem considered in this chapter, we first describe

the Wasserstein distance in more detail. The Wasserstein distance is defined using

the optimal transport problem, which aims to find the optimal transportation of one

probability measure to another with respect to a given cost function. This is done by

finding a transportation plan between the two probability measures which minimises

the transport cost. The modern treatment of this problem began with Kantorovitch

(1958), and a more recent examination is given by Villani (2009). For p ∈ [1,∞), the

Wasserstein distance is usually defined as the p−1th power of the minimum transport

cost when the cost function is equal to the pth power of the metric on the underlying

space (see Definition 6.1 of Villani, 2009). However, in this chapter we allow weaker

assumptions on the cost function but demand that p = 1. This is the same as

the earliest definitions of distance between probability measures using the optimal

transport problem (Kantorovitch, 1958).

In this chapter, we consider a regression problem in which we seek guarantees on our

estimator with respect to distributions other than that which generates the original

covariates. This allows us to bound the expected squared error of the estimator for an

expectation over a new independent covariate generated by a different distribution.

We refer to this situation as a covariate shift. Covariate shift problems have previously

been considered for a single known perturbation of the original covariate distribution
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by Shimodaira (2000). They have also been studied for a single unknown perturbation

by Sugiyama et al. (2008). However, we seek to control the worst-case squared L2

error with respect to all perturbations of the original covariate distribution up to a

fixed size. Specifically, we consider a Wasserstein ball of probability measures centred

at the original covariate distribution.

We first give bounds on the worst-case squared L2 error for Ivanov-regularised least-

squares estimators. These estimators are defined to be the minimisers of the empir-

ical squared error over balls of different radii in a reproducing-kernel Hilbert space

(RKHS). Ivanov-regularised least-squares estimators are discussed further in Chapter

3. The Wasserstein distance arises naturally in the analysis of the estimators. We

consider both unbounded and bounded regression functions. When the regression

function is unbounded, we produce expectation bounds on the worst-case squared

error under very general conditions. We are also able to produce expectation bounds

when the regression function is bounded. If we further assume that the errors of the

response variables are subgaussian, we can provide high-probability bounds on the

worst-case squared L2 error. The bounds we produce do not tend to 0 as the number

of data points tends to infinity. This is to be expected, as in general the original

covariate distribution and its perturbation can have different supports.

We then discuss the challenges which arise when attempting to define alternative

estimators. The estimators we consider are based on an empirical version of the

worst-case squared L2 error. The original covariate distribution is replaced by the

empirical distribution of the covariates. However, finding an empirical version of the

regression function in this setting is more difficult. There are also problems when

trying to compute such estimators. However, we do provide one result based on the

Choquet–Bishop–de Leeuw theorem (Theorem 5.6 of Bishop and de Leeuw, 1959)

which aides the computation. Under suitable conditions, the worst-case squared L2
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error of the estimator is attained at an extreme point of the Wasserstein ball of

perturbations. We conclude by briefly considering the approximation properties of

the regression function.

6.1 Literature Review

Covariate shift for parametric statistical models is discussed by Shimodaira (2000) for

a single perturbation of the original covariate distribution. The author assumes that

both the original covariate distribution and its perturbation are known. The ratio

of the densities of the distributions at the original covariates is used to weight the

log-likelihood contributions of the data points. Estimation is then performed using a

maximum weighted log-likelihood estimation procedure.

For more general statistical models, covariate shift is considered by Sugiyama et al.

(2008). Again, the authors investigate the case in which there is a single perturbation

of the original covariate distribution. However, both the original covariate distri-

bution and its perturbation are unknown and only samples from each are available.

Similarly to Shimodaira (2000), the log-likelihood contributions of each data point

are weighted so that the resulting weighted log-likelihood is more closely related to

the perturbation of the original covariate distribution than the original covariate dis-

tribution itself. However, instead of a ratio of densities, the weights are modelled as

a linear combination of a finite set of basis functions.

The first modern treatment of the optimal transport problem is given by Kantorovitch

(1958). The author represents the minimum transport cost as a function of the two

measures defining the problem, introducing the earliest version of the Wasserstein

distance. The measures are not required to be probability measures, but they must
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have the same total mass. More recently, a book on optimal transport has been

written by Villani (2009). The book covers a wide range of topics, but in particular

Chapter 6 examines the Wasserstein distance for general p ∈ [1,∞).

6.2 Contribution

In this chapter, we provide bounds on the worst-case squared L2 error of Ivanov-

regularised least-squares estimators with respect to a Wasserstein ball of probability

measures centred at the original covariate distribution. We first consider the case in

which the regression function is unbounded. We provide an expectation bound when

using the most natural cost function for the optimal transport problem which defines

the Wasserstein ball (Theorem 6.6.2 on page 230). We also provide an expectation

bound when the cost function is equal to the square of the kernel metric (Theorem

6.6.5 on page 234).

When the regression function is bounded, we provide an expectation bound for the

case in which the cost function of the optimal transport problem is again equal to

the square of the kernel metric (Theorem 6.6.8 on page 237). Furthermore, we pro-

vide a high-probability bound under the additional assumption that the errors of the

response variables are subgaussian (Theorem 6.6.10 on page 240).

We then consider the problem of defining alternative estimators based on an empirical

version of the worst-case squared L2 error in Section 6.7. We discuss the problems

with both the analysis and computation of such estimators. We show that under

suitable conditions, the worst-case squared L2 error of the estimator is attained at

an extreme point of the Wasserstein ball of perturbations (a consequence of Lemma

6.7.1 on page 245). Finally, we briefly consider the approximation properties of the
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regression function.

6.3 Optimal Transport

Let (S, d) be a complete separable metric space, let B(S) and B(S × S) be the Borel

sets on S and S × S and let P(S) and P(S × S) be the set of Borel probability

measures on S and S × S. We consider the problem of optimally transporting a

probability measure P ∈ P(S) to Q ∈ P(S) with respect to some Borel cost function

c : S × S → [0,∞). Denote the marginals of γ ∈ P(S × S) by π1γ, π2γ ∈ P(S). We

define

Π(P,Q) = {γ ∈ P(S × S) : π1γ = P and π2γ = Q}

for P,Q ∈ P(S) and refer to γ ∈ Π(P,Q) as a transport plan. The optimal transport

problem seeks to find

inf
γ∈Π(P,Q)

∫
c dγ.

The value of the infimum is known as the Wasserstein distance Wc(P,Q). We define

the closed Wasserstein ball

Bc[P,W ] = {Q ∈ P(S) : Wc(P,Q) ≤ W}

for P ∈ P(S) and W ≥ 0. We have that Bc[P,W ] is convex by Lemma 5.3.1 with

P1 = P2 = P . We define Q ∈ Bc[P,W ] to be an extreme point of Bc[P,W ] if

Q = tQ1 + (1− t)Q2 for Q1, Q2 ∈ Bc[P,W ] and t ∈ (0, 1) implies Q1 = Q2, in which

case Q1 = Q2 = Q. We denote the set of extreme points of any convex set A by

ext(A).
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6.4 RKHSs and Their Interpolation Spaces

An RKHS H on S is a Hilbert space of real-valued functions on S such that, for all

x ∈ S, there is some kx ∈ H such that h(x) = 〈h, kx〉H for all h ∈ H. The function

k(x1, x2) = 〈kx1 , kx2〉H for x1, x2 ∈ S is known as the kernel and is symmetric and

positive-definite.

We now define interpolation spaces between a Banach space (Z, ‖·‖Z) and a dense

subspace (V, ‖·‖V ) (see Bergh and Löfström, 1976). The K-functional of (Z, V ) is

K(z, t) = inf
v∈V

(‖z − v‖Z + t‖v‖V )

for z ∈ Z and t > 0. We define

‖z‖β,q =

(∫ ∞
0

(t−βK(z, t))qt−1dt

)1/q

and ‖z‖β,∞ = sup
t>0

(t−βK(z, t))

for z ∈ Z, β ∈ (0, 1) and 1 ≤ q <∞. We then define the interpolation space [Z, V ]β,q

to be the set of z ∈ Z such that ‖z‖β,q < ∞. The size of [Z, V ]β,q decreases as β

increases. Recall Lemma 3.1.1, which is essentially Theorem 3.1 of Smale and Zhou

(2003).

Lemma 6.4.1 Let (Z, ‖·‖Z) be a Banach space, (V, ‖·‖V ) be a dense subspace of Z

and z ∈ [Z, V ]β,∞. We have

inf{‖v − z‖Z : v ∈ V, ‖v‖V ≤ r} ≤
‖z‖1/(1−β)

β,∞

rβ/(1−β)
.

From the above, when H is dense in L∞, we can define the interpolation spaces

[L∞, H]β,q, where L∞ is the space of bounded measurable functions on (S,B(S)). We

assume that S is a topological space. We set q =∞ and work with the largest space
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of functions for a fixed β ∈ (0, 1). We are then able to apply the approximation result

in Lemma 6.4.1.

6.5 Problem Definition

We now define the regression problem. Let (S, d) be a complete separable metric space

and (Xi, Yi) for 1 ≤ i ≤ n be i.i.d. (S × R,B(S) ⊗ B(R))-valued random variables

on the probability space (Ω,F ,P). We assume Xi ∼ P and E(Y 2
i ) < ∞, where E

denotes integration with respect to P. We have E(Yi|Xi) = g(Xi) almost surely for

some function g which is measurable on (S,B(S)) (Section A3.2 of Williams, 1991).

Since E(Y 2
i ) <∞, we have that g ∈ L2(P ) by Jensen’s inequality. We assume that

(Y 1) var(Yi|Xi) ≤ σ2 almost surely for 1 ≤ i ≤ n.

Our results depend on how well g can be approximated by elements of an RKHS H

with kernel k. We make the following assumptions.

(H) The RKHS H with kernel k has the following properties:

• The RKHS H is separable.

• The kernel k is bounded.

• The kernel k is a measurable function on (S × S,B(S)⊗ B(S)).

We define

‖k‖∞ = sup
x∈S

k(x, x)1/2 <∞.

We can guarantee that H is separable by, for example, assuming that k is continuous

(Lemma 4.33 of Steinwart and Christmann, 2008). Since H has a kernel k which is
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measurable on (S × S,B(S)⊗B(S)), we have that all functions in H are measurable

on (S,B(S)) (Lemma 4.24 of Steinwart and Christmann, 2008).

6.6 Ivanov-Regularised Least-Squares Estimators

We are interested in estimating the regression function g using elements of the RKHS

H. Let BH be the closed unit ball of H and let r > 0. We define the Ivanov-regularised

least-squares estimator constrained to lie in rBH as

ĥr = arg min
f∈rBH

1

n

n∑
i=1

(f(Xi)− Yi)2.

This estimator is discussed in Chapter 3. Its definition is unique if we demand that

ĥr ∈ sp{kXi : 1 ≤ i ≤ n}. We also define ĥ0 = 0. The estimator ĥr becomes smoother

as r decreases, as it is constrained to lie closer to 0.

6.6.1 Unbounded Regression Function

We start by considering the setting in which the regression function is unbounded.

For r ≥ 0 and hr ∈ rBH , Corollary 3.10.4 provides expectation bounds on the squared

L2(P ) norm of ĥr − hr. These can be transferred to bounds on the squared L2(Q)

norm of ĥr − hr using optimal transport. We have the following result.

Lemma 6.6.1 Assume (H). Let the cost function c : S × S → [0,∞) by

c(x1, x2) = ‖kx2 + kx1‖H ‖kx2 − kx1‖H .
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For Q ∈ P(S), we have

‖ĥr − hr‖2
L2(Q) ≤ ‖ĥr − hr‖2

L2(P ) + 4r2Wc(P,Q)

for all r > 0.

Proof Let x1, x2 ∈ S. By the reproducing kernel property and the Cauchy–Schwarz

inequality, we have

|(ĥr − hr)(x2)2 − (ĥr − hr)(x1)2|

= |(ĥr − hr)(x2) + (ĥr − hr)(x1)| |(ĥr − hr)(x2)− (ĥr − hr)(x1)|

= |〈ĥr − hr, kx2 + kx1〉H | |〈ĥr − hr, kx2 − kx1〉H |

≤ ‖ĥr − hr‖2
H ‖kx2 + kx1‖H ‖kx2 − kx1‖H

≤ 4r2‖kx2 + kx1‖H ‖kx2 − kx1‖H .

Hence,

(ĥr − hr)(x2)2 ≤ (ĥr − hr)(x1)2 + 4r2‖kx2 + kx1‖H ‖kx2 − kx1‖H .

Integrating over (x1, x2) with respect to γ ∈ Π(P,Q) gives

‖ĥr − hr‖2
L2(Q) ≤ ‖ĥr − hr‖2

L2(P ) + 4r2

∫
‖kx2 + kx1‖H ‖kx2 − kx1‖H dγ(x1, x2).

The result follows by taking an infimum over γ ∈ Π(P,Q).

We can use this result to provide an expectation bound on the squared L2(Q) error

of ĥr in the same way as the proof of Theorem 3.7.1. In order to understand how well
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g can be approximated by elements of H in this context, we define

Ic(g, r,W ) = inf

{
sup

Q∈Bc[P,W ]

‖hr − g‖2
L2(Q) : hr ∈ rBH

}

for r > 0 and W > 0.

Theorem 6.6.2 Assume (Y 1) and (H). Let the cost function c : S × S → [0,∞) by

c(x1, x2) = ‖kx2 + kx1‖H ‖kx2 − kx1‖H .

Supposing that the expectation below exists, we have

E

(
sup

Q∈Bc[P,W ]

‖ĥr − g‖2
L2(Q)

)
≤ 8‖k‖∞σr

n1/2
+

64‖k‖2
∞r

2

n1/2
+ 10Ic(g, r,W ) + 8Wr2

for all r > 0 and all W > 0.

Proof By Lemma 6.6.1, we have

‖ĥr − g‖2
L2(Q) ≤ 2‖ĥr − hr‖2

L2(Q) + 2‖hr − g‖2
L2(Q)

≤ 2‖ĥr − hr‖2
L2(P ) + 8r2Wc(P,Q) + 2‖hr − g‖2

L2(Q).

Hence,

sup
Q∈Bc[P,W ]

‖ĥr − g‖2
L2(Q) ≤ 2‖ĥr − hr‖2

L2(P ) + 8Wr2 + sup
Q∈Bc[P,W ]

2‖hr − g‖2
L2(Q).

Therefore,

E

(
sup

Q∈Bc[P,W ]

‖ĥr − g‖2
L2(Q)

)
≤ 8‖k‖∞σr

n1/2
+

64‖k‖2
∞r

2

n1/2
+8Wr2+ sup

Q∈Bc[P,W ]

10‖hr−g‖2
L2(P )

by Corollary 3.10.4. The result follows by taking an infimum over hr ∈ rBH .
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The first two terms on the right-hand side of the inequality in Theorem 6.6.2 make up

the variance of the estimator and tend to 0 as n tends to infinity. However, the last

two terms do not tend to 0 as n tends to infinity. The third term is the bias of the

estimator, which decreases with r, while the fourth term is the cost of being robust

against changes in the covariate distribution, which increases with r. Asymptotically,

our bound comprises only these final two terms. If we seek to minimise these two

terms over r, we obtain a value of r which does not depend on n, but instead simply

balances the bias and the cost of distributional robustness.

If we assume

(g1) g ∈ [L∞, H]β,∞ with norm at most B for β ∈ (0, 1) and B > 0,

we find, from Lemma 6.4.1, that

Ic(g, r,W ) ≤ B2/(1−β)

r2β/(1−β)
(6.6.1)

for r > 0. If we also assume (H), then we find that the regression function g is

bounded. Therefore, we simply assume (6.6.1) instead of (g1), in which case g need

not be bounded. This gives us the following result.

Theorem 6.6.3 Assume (Y 1), (H) and (6.6.1). Let the cost function c : S × S →

[0,∞) by

c(x1, x2) = ‖kx2 + kx1‖H ‖kx2 − kx1‖H .

Let r > 0 and W > 0. Supposing that the expectation below exists, we have

E

(
sup

Q∈Bc[P,W ]

‖ĥr − g‖2
L2(Q)

)
≤ 8‖k‖∞σr

n1/2
+

64‖k‖2
∞r

2

n1/2
+

10B2/(1−β)

r2β/(1−β)
+ 8Wr2.
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Let D1 > 0. Setting

r = D1BW
−(1−β)/2

makes the right-hand side of the inequality equal to

D2‖k‖∞σBW−(1−β)/2n−1/2 +D3‖k‖2
∞B

2W−(1−β)n−1/2 +D4B
2W β

for constants D2, D3, D4 > 0 depending only on D1 and β.

Proof The initial bound follows from Theorem 6.6.2 and (6.6.1). The next bound

follows with

D2 = 8D1, D3 = 64D2
1 and D4 = 10D

−2β/(1−β)
1 + 8D2

1.

Minimising the last two terms of the initial bound in Theorem 6.6.3 with respect to

r gives

r =

(
5β

4(1− β)

)(1−β)/2

BW−(1−β)/2.

In particular, r is of the form in Theorem 6.6.3. Larger values of W give a smaller

value of r, especially for small β. This means that if we demand robustness against

larger sets of covariate distributions, we must select a smoother estimator. Note that

the last term of the later bound in Theorem 6.6.3, which does not tend to 0 as n→∞,

increases as W increases. The expected worst-case squared L2 error increases as we

demand more distributional robustness.

Although the optimal transport problem defined above is the most natural for the

analysis of the covariate shift problem, we can also perform the analysis by using an

optimal transport problem involving a more recognisable cost function. We have the

following result.



CHAPTER 6. OPTIMAL TRANSPORT FOR COVARIATE SHIFT 233

Lemma 6.6.4 Assume (H). Let the cost function c : S × S → [0,∞) by

c(x1, x2) = ‖kx2 − kx1‖2
H .

For Q ∈ P(S), we have

‖ĥr − hr‖2
L2(Q) ≤ 2‖ĥr − hr‖2

L2(P ) + 8r2Wc(P,Q)

for all r > 0.

Proof Let x1, x2 ∈ S. By the reproducing kernel property and the Cauchy–Schwarz

inequality, we have

|(ĥr − hr)(x2)− (ĥr − hr)(x1)| = |〈ĥr − hr, kx2 − kx1〉H |

≤ ‖ĥr − hr‖H ‖kx2 − kx1‖H

≤ 2r‖kx2 − kx1‖H .

Hence,

(ĥr − hr)(x2) ≤ (ĥr − hr)(x1) + 2r‖kx2 − kx1‖H

and

(ĥr − hr)(x2)2 ≤ 2(ĥr − hr)(x1)2 + 8r2‖kx2 − kx1‖2
H .

Integrating over (x1, x2) with respect to γ ∈ Π(P,Q) gives

‖ĥr − hr‖2
L2(Q) ≤ 2‖ĥr − hr‖2

L2(P ) + 8r2

∫
‖kx2 − kx1‖2

H dγ(x1, x2).

The result follows by taking an infimum over γ ∈ Π(P,Q).

The cost function in Lemma 6.6.4 is the square of the kernel metric on S for the kernel

k (see (4.20) of Steinwart and Christmann, 2008). Let dk(x1, x2) = ‖kx1 − kx2‖H be
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the kernel metric on S for the kernel k. Then for Φ : S → H by Φ(x) = kx, we have

‖Φ(x2) − Φ(x1)‖H = dk(x1, x2). In particular, Φ is continuous on S if we take the

metric d on S to be d = dk. In this case, it follows from Lemma 4.33 of Steinwart and

Christmann (2008) that H is separable, since S is. Furthermore, the functions in H

are measurable on B(S) by Lemma 4.24 of Steinwart and Christmann (2008).

We can use Lemma 6.6.4 to provide an expectation bound on the squared L2(Q) error

of ĥr.

Theorem 6.6.5 Assume (Y 1) and (H). Let the cost function c : S × S → [0,∞) by

c(x1, x2) = ‖kx2 − kx1‖2
H .

Supposing that the expectation below exists, we have

E

(
sup

Q∈Bc[P,W ]

‖ĥr − g‖2
L2(Q)

)
≤ 16‖k‖∞σr

n1/2
+

128‖k‖2
∞r

2

n1/2
+ 18Ic(g, r,W ) + 16Wr2

for all r > 0 and all W > 0.

Proof By Lemma 6.6.4, we have

‖ĥr − g‖2
L2(Q) ≤ 2‖ĥr − hr‖2

L2(Q) + 2‖hr − g‖2
L2(Q)

≤ 4‖ĥr − hr‖2
L2(P ) + 16r2Wc(P,Q) + 2‖hr − g‖2

L2(Q).

Hence,

sup
Q∈Bc[P,W ]

‖ĥr − g‖2
L2(Q) ≤ 4‖ĥr − hr‖2

L2(P ) + 16Wr2 + sup
Q∈Bc[P,W ]

2‖hr − g‖2
L2(Q).
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Therefore,

E

(
sup

Q∈Bc[P,W ]

‖ĥr − g‖2
L2(Q)

)
≤ 16‖k‖∞σr

n1/2
+

128‖k‖2
∞r

2

n1/2
+16Wr2+ sup

Q∈Bc[P,W ]

10‖hr−g‖2
L2(Q)

by Corollary 3.10.4. The result follows by taking an infimum over hr ∈ rBH .

We again assume (6.6.1) to obtain the following result.

Theorem 6.6.6 Assume (Y 1), (H) and (6.6.1). Let the cost function c : S × S →

[0,∞) by

c(x1, x2) = ‖kx2 − kx1‖2
H .

Let r > 0 and W > 0. Supposing that the expectation below exists, we have

E

(
sup

Q∈Bc[P,W ]

‖ĥr − g‖2
L2(Q)

)
≤ 16‖k‖∞σr

n1/2
+

128‖k‖2
∞r

2

n1/2
+

18B2/(1−β)

r2β/(1−β)
+ 16Wr2.

Let D1 > 0. Setting

r = D1BW
−(1−β)/2

makes the right-hand side of the inequality equal to

D2‖k‖∞σBW−(1−β)/2n−1/2 +D3‖k‖2
∞B

2W−(1−β)n−1/2 +D4B
2W β

for constants D2, D3, D4 > 0 depending only on D1 and β.

Proof The initial bound follows from Theorem 6.6.5 and (6.6.1). The next bound

follows with

D2 = 16D1, D3 = 128D2
1 and D4 = 18D

−2β/(1−β)
1 + 16D2

1.
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Minimising the last two terms of the initial bound in Theorem 6.6.6 with respect to

r gives

r =

(
9β

8(1− β)

)(1−β)/2

BW−(1−β)/2.

In particular, r is of the form in Theorem 6.6.6.

6.6.2 Bounded Regression Function

We now consider the case in which the regression function is bounded. We assume

(g2) ‖g‖∞ ≤ C for C > 0.

We can make ĥr closer to g by constraining it to lie in the same interval [−C,C]. We

define the projection V : R→ [−C,C] by

V (t) =


−C if t < −C

t if |t| ≤ C

C if t > C

for t ∈ R. The analysis in this setting requires more care due to the clipping of the

estimator. In fact, we are forced to use the analysis in which the cost function of the

optimal transport problem is equal to the squared kernel metric.

Lemma 6.6.7 Assume (H). Let the cost function c : S × S → [0,∞) by

c(x1, x2) = ‖kx2 − kx1‖2
H .

For Q ∈ P(S), we have

‖V ĥr − V hr‖2
L2(Q) ≤ 2‖V ĥr − V hr‖2

L2(P ) + 8r2Wc(P,Q)
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for all r > 0.

Proof Let x1, x2 ∈ S. By the reproducing kernel property and the Cauchy–Schwarz

inequality, we have

|(V ĥr − V hr)(x2)− (V ĥr − V hr)(x1)| ≤ |V ĥr(x2)− V ĥr(x1)|+ |V hr(x2)− V hr(x1)|

≤ |ĥr(x2)− ĥr(x1)|+ |hr(x2)− hr(x1)|

= |〈ĥr, kx2 − kx1〉H |+ |〈hr, kx2 − kx1〉H |

≤ ‖ĥr‖H ‖kx2 − kx1‖H + ‖hr‖H ‖kx2 − kx1‖H

≤ 2r‖kx2 − kx1‖H .

Hence,

(V ĥr − V hr)(x2) ≤ (V ĥr − V hr)(x1) + 2r‖kx2 − kx1‖H

and

(V ĥr − V hr)(x2)2 ≤ 2(V ĥr − V hr)(x1)2 + 8r2‖kx2 − kx1‖2
H .

Integrating over (x1, x2) with respect to γ ∈ Π(P,Q) gives

‖V ĥr − V hr‖2
L2(Q) ≤ 2‖V ĥr − V hr‖2

L2(P ) + 8r2

∫
‖kx2 − kx1‖2

H dγ(x1, x2).

The result follows by taking an infimum over γ ∈ Π(P,Q).

We can use Lemma 6.6.7 to provide an expectation bound on the squared L2(Q) error

of V ĥr. In order to understand how well g can be approximated by elements of H for

bounded regression functions, we define

I∞(g, r) = inf {‖hr − g‖∞ : hr ∈ rBH}

for r > 0.
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Theorem 6.6.8 Assume (Y 1), (H) and (g2). Let the cost function c : S × S →

[0,∞) by

c(x1, x2) = ‖kx2 − kx1‖2
H .

Supposing that the expectation below exists, we have

E

(
sup

Q∈Bc[P,W ]

‖V ĥr − g‖2
L2(Q)

)
≤ 16‖k‖∞(16C + σ)r

n1/2
+ 18I∞(g, r) + 16Wr2

for all r > 0 and all W > 0.

Proof By Lemma 6.6.7, we have

‖V ĥr − g‖2
L2(Q) ≤ 2‖V ĥr − V hr‖2

L2(Q) + 2‖V hr − g‖2
L2(Q)

≤ 4‖V ĥr − V hr‖2
L2(P ) + 16r2Wc(P,Q) + 2‖V hr − g‖2

∞.

Hence,

sup
Q∈Bc[P,W ]

‖V ĥr − g‖2
L2(Q) ≤ 4‖V ĥr − V hr‖2

L2(P ) + 16Wr2 + 2‖V hr − g‖2
∞.

Therefore,

E

(
sup

Q∈Bc[P,W ]

‖V ĥr − g‖2
L2(Q)

)
≤ 16‖k‖∞(16C + σ)r

n1/2
+ 16Wr2 + 18‖hr − g‖2

∞

by Corollary 3.11.2. The result follows by taking an infimum over hr ∈ rBH .

We now assume (g1) in full. By Lemma 6.4.1, we have that

I∞(g, r) ≤ B2/(1−β)

r2β/(1−β)
(6.6.2)

for r > 0. We have the following result.
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Theorem 6.6.9 Assume (Y 1), (H), (g1) and (g2). Let the cost function c : S×S →

[0,∞) by

c(x1, x2) = ‖kx2 − kx1‖2
H .

Let r > 0 and W > 0. Supposing that the expectation below exists, we have

E

(
sup

Q∈Bc[P,W ]

‖V ĥr − g‖2
L2(Q)

)
≤ 16‖k‖∞(16C + σ)r

n1/2
+

18B2/(1−β)

r2β/(1−β)
+ 16Wr2.

Let D1 > 0. Setting

r = D1BW
−(1−β)/2

makes the right-hand side of the inequality equal to

D2‖k‖∞(16C + σ)BW−(1−β)/2n−1/2 +D3B
2W β

for constants D2, D3 > 0 depending only on D1 and β.

Proof The initial bound follows from Theorem 6.6.8 and (6.6.2). The next bound

follows with

D2 = 16D1 and D3 = 18D
−2β/(1−β)
1 + 16D2

1.

Minimising the last two terms of the initial bound in Theorem 6.6.9 with respect to

r again gives

r =

(
9β

8(1− β)

)(1−β)/2

BW−(1−β)/2.

When the regression function is bounded, we can also obtain high-probability bounds

on the squared L2(Q) error of V ĥr. However, in order for the high-probability bounds

to hold, we must make an additional assumption on the errors of the response vari-

ables. Let U and V be random variables on (Ω,F ,P). We say U is σ2-subgaussian



CHAPTER 6. OPTIMAL TRANSPORT FOR COVARIATE SHIFT 240

if

E(exp(tU)) ≤ exp(σ2t2/2)

for all t ∈ R. We say U is σ2-subgaussian given V if

E(exp(tU)|V ) ≤ exp(σ2t2/2)

almost surely for all t ∈ R. We assume

(Y 2) Yi − g(Xi) is σ2-subgaussian given Xi for 1 ≤ i ≤ n.

This assumption is stronger than (Y 1).

Theorem 6.6.10 Assume (Y 2), (H) and (g2). Let the cost function c : S × S →

[0,∞) by

c(x1, x2) = ‖kx2 − kx1‖2
H .

Let t > 0. There exists a measurable set with probability at least 1− 3e−t on which

sup
Q∈Bc[P,W ]

‖V ĥr − g‖2
L2(Q)

is at most

16
(

2C2 + 8‖k‖1/2
∞ C3/2r1/2 + ‖k‖∞(16C + 5σ)r

)
t1/2

n1/2
+

32C2t

3n
+ 18I∞(g, r) + 16Wr2

for all r > 0 and all W > 0.

Proof By Lemma 6.6.7, we have

‖V ĥr − g‖2
L2(Q) ≤ 2‖V ĥr − V hr‖2

L2(Q) + 2‖V hr − g‖2
L2(Q)

≤ 4‖V ĥr − V hr‖2
L2(P ) + 16r2Wc(P,Q) + 2‖V hr − g‖2

∞.
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Hence,

sup
Q∈Bc[P,W ]

‖V ĥr − g‖2
L2(Q) ≤ 4‖V ĥr − V hr‖2

L2(P ) + 16Wr2 + 2‖V hr − g‖2
∞.

Therefore, there exists a measurable set with probability at least 1− 3e−t on which

sup
Q∈Bc[P,W ]

‖V ĥr − g‖2
L2(Q)

is at most

16
(

2C2 + 8‖k‖1/2
∞ C3/2r1/2 + ‖k‖∞(16C + 5σ)r

)
t1/2

n1/2
+

32C2t

3n
+16Wr2 +18‖hr−g‖2

∞

by Corollary 3.13.4. Taking a sequence of hr,n ∈ rBH for n ≥ 1 with

‖hr,n − g‖2
∞ ↓ I∞(g, r)

as n→∞ proves the result.

We again assume (g1) to obtain the following result.

Theorem 6.6.11 Assume (Y 2), (H), (g1) and (g2). Let the cost function c : S ×

S → [0,∞) by

c(x1, x2) = ‖kx2 − kx1‖2
H .

Let r > 0, W > 0 and t > 0. There exists a measurable set with probability at least

1− 3e−t on which

sup
Q∈Bc[P,W ]

‖V ĥr − g‖2
L2(Q)

is at most

16
(

2C2 + 8‖k‖1/2
∞ C3/2r1/2 + ‖k‖∞(16C + 5σ)r

)
t1/2

n1/2
+

32C2t

3n
+

18B2/(1−β)

r2β/(1−β)
+ 16Wr2.
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Let D1 > 0. Setting

r = D1BW
−(1−β)/2

makes the right-hand side of the inequality equal to

D2C
2t1/2n−1/2 +D3‖k‖1/2

∞ C3/2B1/2W−(1−β)/4t1/2n−1/2

+ D4‖k‖∞(16C + 5σ)BW−(1−β)/2t1/2n−1/2 +D5C
2tn−1 +D6B

2W β

for constants D2, D3, D4, D5, D6 > 0 depending only on D1 and β.

Proof The initial bound follows from Theorem 6.6.10 and (6.6.2). The next bound

follows with

D2 = 32, D3 = 128D
1/2
1 , D4 = 16D1 D5 = 32/3 and D6 = 18D

−2β/(1−β)
1 + 16D2

1.

Minimising the last two terms of the initial bound in Theorem 6.6.11 with respect to

r again gives

r =

(
9β

8(1− β)

)(1−β)/2

BW−(1−β)/2.

6.7 Alternative Estimators

In this section, we consider estimators of the regression function g other than ĥr for

r > 0. Consider an estimator ĝ of g. For W > 0, we are interested in ĝ such that

sup
Q∈Bc[P,W ]

‖ĝ − g‖2
L2(Q) (6.7.1)
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is small. Hence, we consider an estimator which minimises an empirical version of

this quantity. However, there are many difficulties with this approach. Firstly, our

responses Yi for 1 ≤ i ≤ n are only given at a finite number of covariates Xi for

1 ≤ i ≤ n. However, to define an empirical version of (6.7.1) we need an empirical

version of the regression function g at each point x ∈ S. Suppose that we have access

to a stochastic process Ỹ on S such that Yi = Ỹ (Xi) for 1 ≤ i ≤ n and that Ỹ has

mean function g, by which we mean E(Ỹ (x)) = g(x) for all x ∈ S. We can then define

an empirical version of (6.7.1) by

sup
Q∈Bc[Pn,Wn]

‖ĝ − Ỹ ‖2
L2(Q) (6.7.2)

for Wn > 0. Here, Pn is the empirical distribution of the Xi for 1 ≤ i ≤ n.

As with most nonparametric estimation procedures, we need to take steps to ensure

that overfitting of our estimator to our data does not occur. This can achieved, for

example, by using Ivanov regularisation. In this case, we minimise (6.7.2) subject to

the constraint that the estimator ĝ lies in rBH for r > 0. We refer to this estimator

as ĝr. We obtain

sup
Q∈Bc[Pn,Wn]

‖ĝr − Ỹ ‖2
L2(Q) ≤ sup

Q∈Bc[Pn,Wn]

‖hr − Ỹ ‖2
L2(Q)

for all hr ∈ rBH . If we define

Z = sup
f∈rBH

∣∣∣∣∣ sup
Q∈Bc[Pn,Wn]

‖f − Ỹ ‖2
L2(Q) − sup

Q∈Bc[Pn,Wn]

‖f − g‖2
L2(Q)

∣∣∣∣∣ , (6.7.3)

then we find

sup
Q∈Bc[Pn,Wn]

‖ĝr − g‖2
L2(Q) ≤ sup

Q∈Bc[Pn,Wn]

‖hr − g‖2
L2(Q) + 2Z.



CHAPTER 6. OPTIMAL TRANSPORT FOR COVARIATE SHIFT 244

However, bounding Z is incredibly difficult in general.

Even in situations in which bounding Z is possible, we still need to change the balls of

probability measures with centre Pn in the above expression so that they have centre

P . An important step in achieving this aim is to produce a boundWc(Pn, P ) ≤ εn with

high probability. For example, when S ⊆ Rd and c(x1, x2) = ‖x2−x1‖p2 for x1, x2 ∈ S

and p ∈ [1,∞), Theorem 2 of Fournier and Guillin (2015) shows that Wc(Pn, P ) is of

order n−1/2 if p > d/2 for sufficiently concentrated probability measures P .

In general, we still need Wc to satisfy additional properties in order to centre the balls

at P . A sufficient condition is that c = dp the metric on S to the power p for p ∈ [1,∞).

Note that Wc is symmetric in this case, and W
1/p
c satisfies the triangle inequality by

Definition 6.1 of Villani (2009). The definition of the Wasserstein distance in Villani

(2009) is our definition to the power 1/p. Combining this with Wc(Pn, P ) ≤ εn gives

Bc[P,W ] ⊆ Bc[Pn, (W
1/p + ε1/p

n )p] ⊆ Bc[P, (W
1/p + 2ε1/p

n )p].

Letting Wn = (W 1/p + ε
1/p
n )p shows that

sup
Q∈Bc[P,W ]

‖ĝr − g‖2
L2(Q) ≤ sup

Q∈Bc[P,(W 1/p+2ε
1/p
n )p]

‖hr − g‖2
L2(Q) + 2Z.

This bounds (6.7.1) for the estimator ĝr. We could continue, for example, by replacing

the L2(Q) norm on the right-hand side with the L∞ norm and taking an infimum over

hr ∈ rBH to obtain

sup
Q∈Bc[P,W ]

‖ĝr − g‖2
L2(Q) ≤ I∞(g, r) + 2Z.

We could even assume (g1) in order to bound I∞(g, r). However, the real challenge

is to bound Z in (6.7.3), which there is no clear way of doing. Additionally, recall
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that we are assuming that we have access to the stochastic process Ỹ used to define

(6.7.1).

6.7.1 Estimator Computation

As well as the difficulties in the analysis of ĝr, there are also challenges in its com-

putation. In order to consider this problem, we need to define some new concepts.

Let T be a compact Hausdorff space. We let (M(T ), ‖·‖TV) be the Banach space of

finite signed Borel measures on T equipped with the total variation norm. We also

let MR(T ) be the subspace of M(T ) consisting of the regular finite signed Borel mea-

sures on T and PR(T ) consist of the regular Borel probability measures on T . Let

(C(T ), ‖·‖∞) be the Banach space of continuous real-valued functions on T equipped

with the supremum norm and let C(T )∗ be the dual of C(T ). By the Riesz represen-

tation theorem, we have that C(T )∗ is isometrically isomorphic to MR(T ). This can

be seen by considering Theorem 6.19 of Rudin (1987) for functionals which take real

values on real-valued functions. Hence, for a sequence µn ∈ MR(T ) for n ≥ 1 and a

point µ ∈MR(T ), we have that µn → µ weak-* as n→∞ if

∫
fdµn →

∫
fdµ

as n → ∞ for all f ∈ C(T ). This form of convergence is often referred to as weak

convergence in probability theory. However, this is the name of a different form of

convergence in functional analysis, so we refer to it using the name weak-* convergence

from functional analysis to avoid confusion.

Lemma 6.7.1 Let T be a compact Haussdorf space and f ∈ C(T ). Suppose that
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A ⊆ PR(T ) is weak-* closed and convex. Then L : A→ R by

L(Q) =

∫
f dQ

attains its maximum value on ext(A).

Proof By the Riesz representation theorem, we have that C(T )∗ is isometrically

isomorphic to MR(T ). Furthermore, by the Banach–Alaoglu theorem (Theorem 3.15

of Rudin, 1991), we have that the closed unit ball BMR(T ) = {µ ∈MR(T ) : ‖µ‖TV ≤ 1}

of MR(T ) is weak-* compact. Let C+(T ) be the subset of C(T ) consisting of the

positive continuous functions on T . The subset MR,+(T ) of MR(T ) consisting of

regular finite positive Borel measures on T can be written as

MR,+(T ) =

{
µ ∈MR(T ) :

∫
f dµ ≥ 0 for all f ∈ C+(T )

}
,

so it is weak-* closed. Furthermore,

U =

{
µ ∈MR(T ) :

∫
1 dµ = 1

}

is weak* closed, so PR(T ) = BMR(T ) ∩MR,+(T ) ∩ U is weak-* compact.

By assumption, A ⊆ PR(T ) is weak-* closed, so weak-* compact. It is also convex.

Since the weak-* topology on MR(T ) is induced by the collection of seminorms

‖µ‖f =

∣∣∣∣∫ f dµ

∣∣∣∣
for f ∈ C(T ), we have that MR(T ) is weak-* locally convex. By the Choquet–Bishop–

de Leeuw theorem (Theorem 5.6 of Bishop and de Leeuw, 1959), for all Q ∈ A there

exists a probability measure wQ on the sigma-algebra generated by the weak-* Borel



CHAPTER 6. OPTIMAL TRANSPORT FOR COVARIATE SHIFT 247

sets of A and ext(A) such that

G(Q) =

∫
G dwQ

for all G in the weak-* dual of MR(S) and wQ(ext(A)) = 1. In particular,

L(Q) =

∫
L dwQ.

Since L is weak-* continuous on A, which is weak-* compact, there is some Q ∈ A at

which L attains its maximum. For this Q, we have L(Q) − L(Q̃) ≥ 0 for all Q̃ ∈ A

and ∫
(L(Q)− L(Q̃)) dwQ(Q̃) = 0.

Hence, L(Q) − L = 0 wQ-almost surely. Since wQ(ext(A)) = 1, there is some Q̃ ∈

ext(A) for which L(Q̃) = L(Q), the maximum value of L.

Recall that we assume that the covariate set (S, d) is a complete separable metric

space. In order to apply the above lemma, we also need to assume that S is compact.

In this case, all Borel probability measures are regular (Theorem 2.18 of Rudin, 1987),

so PR(S) = P(S). We can then apply the above result with A = Bc[Pn,Wn], under

conditions on Bc[Pn,Wn], in order to help to compute ĝr in (6.7.2). Initially, we

do not restrict the centre of the ball to be the empirical distribution of the Xi for

1 ≤ i ≤ n, so we consider Bc[P,W ] in place of Bc[Pn,Wn]. In this case, the conditions

on Bc[P,W ] are that it must be weak-* closed and convex. We know that Bc[P,W ]

is convex by Lemma 5.3.1, so we are only concerned about whether or not Bc[P,W ]

is weak-* closed.

One situation in which Bc[P,W ] is weak-* closed is when the cost function c is con-

tinuous. Suppose that Qn ∈ Bc[P,W ] for n ≥ 1, Q ∈ P(S) and Qn → Q weak-* as
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n → ∞. Theorem 4.1 of Villani (2009) shows that there exists γn ∈ Π(P,Qn) which

attains Wc(P,Qn) ≤ W for n ≥ 1. Furthermore, Theorem 5.20 of Villani (2009) shows

that, for some subsequence γn(k) for k ≥ 1 of γn, we have that γn(k) → γ ∈ Π(P,Q)

weak-* as k → ∞ and that γ attains Wc(P,Q). Since γn(k) → γ weak-* as k → ∞

and c is continuous, we have that

Wc(P,Q) =

∫
c dγ

= lim
k→∞

∫
c dγn(k)

= lim
k→∞

Wc(P,Qn(k))

≤ W.

It follows that Q ∈ Bc[P,W ]. Hence, Bc[P,W ] is weak-* closed.

Another case in which Bc[P,W ] is weak-* closed is when the cost function c = dp the

metric on S to the power p for p ∈ [1,∞). Note that Wc is symmetric in this case.

Theorem 6.9 of Villani (2009) shows that for Qn ∈ P(S) for n ≥ 1 and Q ∈ P(S),

we have that Qn → Q weak-* as n → ∞ if and only if Wc(Qn, Q) → 0 as n → ∞.

We do not need any further conditions because S is compact and hence bounded, so

Definition 6.4 of Villani (2009) simply defines P(S) and condition (iii) in Definition 6.8

of Villani (2009) is automatically satisfied. This is not quite sufficient for Bc[P,W ]

to be weak-* closed. However, recall that W
1/p
c satisfies the triangle inequality by

Definition 6.1 of Villani (2009). Together, these two properties show that Bc[P,W ]

is weak-* closed. Suppose that Qn ∈ Bc[P,W ] for n ≥ 1, Q ∈ P(S) and Qn → Q

weak-* as n→∞. Then Wc(Qn, Q)→ 0 as n→∞. Furthermore,

Wc(Q,P )1/p ≤ Wc(Q,Qn)1/p +Wc(Qn, P )1/p

≤ Wc(Q,Qn)1/p +W 1/p
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→ W 1/p

as n → ∞. It follows that Wc(P,Q) ≤ W and Q ∈ Bc[P,W ]. Hence, Bc[P,W ] is

weak-* closed.

Now that we have seen examples in which Bc[P,W ] is weak-* closed, we investigate the

consequences of Lemma 6.7.1 with A = Bc[Pn,Wn]. If we assume that our estimator

ĝ and our response process Ỹ are continuous for each point ω ∈ Ω our sample space,

then

sup
Q∈Bc[Pn,Wn]

‖ĝ − Ỹ ‖2
L2(Q) = max

Q∈ext(Bc[Pn,Wn])
‖ĝ − Ỹ ‖2

L2(Q).

Let ∆n(S) = {Q ∈ P(S) : |supp(Q)| ≤ n}. If c is lower semicontinuous, then by

Theorem 2.3 of Owhadi and Scovel (2017) we have that ext(Bc[Pn,Wn]) ⊆ ∆n+2(S).

This gives us more information about the set of probability measures over which we

have to maximise, but it is still a very difficult problem. Further conditions under

which Q ∈ Bc[Pn,Wn] is an extreme point of Bc[Pn,Wn] are given in Chapter 5. In

particular, Section 5.7 discusses the case in which Q has finite support. As mentioned

earlier, we need to restrict our choice of estimator ĝ to prevent overfitting. One option

is to demand that ĝ lies in rBH , for example.

6.7.2 Regression Function Approximation

Given the problems with trying to define and calculate an estimator using (6.7.2),

another approach is to investigate the approximation properties of the regression

function instead. Such properties may be useful for defining other estimators. We

consider functions f : S → R such that

sup
Q∈Bc[P,W ]

‖f − g‖2
L2(Q)
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is small. Suppose that g is continuous and Bc[P,W ] is weak-* closed. If we demand

that f is continuous, then

sup
Q∈Bc[P,W ]

‖f − g‖2
L2(Q) = sup

Q∈ext(Bc[P,W ])

‖f − g‖2
L2(Q)

by Lemma 6.7.1. We must place restrictions on f so that we do not select f = g. For

example, we could search for hr ∈ rBH which minimises

sup
Q∈ext(Bc[P,W ])

‖hr − g‖2
L2(Q).

Unfortunately, in general there are no useful characterisations of ext(Bc[P,W ]), unlike

ext(Bc[Pn,Wn]) ⊆ ∆n+2(S). However, some conditions under which Q ∈ Bc[P,W ] is

an extreme point of Bc[P,W ] are given in Chapter 5.

6.8 Discussion

In this chapter, we consider ways of bounding the worst-case squared L2 error of

different estimators with respect to a Wasserstein ball of probability measures centred

at the original covariate distribution. We begin by providing expectation bounds on

this error for Ivanov-regularised least-squares estimators when the regression function

is unbounded. We also provide an expectation bound when the regression function is

bounded, as well as a high-probability bound in the case in which the errors of the

response variables are subgaussian. We then consider alternative estimators based on

an empirical version of the worst-case squared L2 error. We examine the problems

with both the analysis and computation of these estimators.

Clearly more research into estimators other than the Ivanov-regularised least-squares

estimators is needed. However, there are obvious issues with both the analysis and
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computation of the alternative estimators considered in this chapter. Once some of

these obstacles have been overcome, it would be interesting to consider situations in

which both the original covariate distribution and the distribution of the response

variables are subject to perturbation.



Chapter 7

Conclusion

In this thesis, we study kernel least-squares estimators for the regression problem

subject to a norm constraint. We bound the squared L2(P ) error of our estimators,

where P is the covariate distribution. Furthermore, we provide bounds on the worst-

case squared L2(Q) error over all probability measures Q in a Wasserstein ball centred

at P . This motivates us to examine the extreme points of Wasserstein balls. We now

review the main content of the thesis. We also discuss some directions for further

research.

7.1 Ivanov-Regularised Least-Squares Estimators

over Large RKHSs and Their Interpolation Spaces

In Chapter 3, we show how Ivanov regularisation can be used to produce estimators

which have a small squared L2(P ) error. In this setting, we use Ivanov regularisation

to bound the reproducing-kernel Hilbert space (RKHS) norm of the estimators. We

begin by considering the case in which the regression function lies in an interpolation

252
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space between L2(P ) and the RKHS H. We assume only that H is separable with a

bounded and measurable kernel.

Under the mild assumption that the response variables have bounded variance, we

provide an expectation bound on the squared L2(P ) error of our estimator of order

n−β/2. Here, n is the number of data points and β parametrises the interpolation

space between L2(P ) and H containing the regression function. As far as we are

aware, this is the first time an estimator has been analysed in this setting.

If we assume that the regression function is bounded, then we can clip the estimator so

that it is closer to the regression function. Specifically, we change the values that the

estimator can take so that they are not outside the range of values of the regression

function. In this setting, we show that the clipped estimator has an expected squared

L2(P ) error of order n−β/(1+β). This order is the optimal power of n. Under the

stronger assumption that the response variables have subgaussian errors and that the

regression function comes from an interpolation space between L∞ and H, we show

that the squared L2(P ) error is of order n−β/(1+β) with high probability.

When the regression function is bounded, we use training and validation to obtain

both expectation bounds and high-probability bounds of the same order of n−β/(1+β).

Training and validation is an adaptive estimation procedure which splits the data set

into a training set and a validation set. The training set is used to define a collection

of estimators for a range of sizes of norm constraint, while the validation set is used

to select a final estimator from this collection. This allows us to select the size of the

norm constraint for our Ivanov regularisation without knowing which interpolation

space contains the regression function.

Our analysis of the Ivanov-regularised estimators is performed by controlling empir-

ical processes over balls in the RKHS. On the other hand, the analysis of Tikhonov-
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regularised estimators usually uses the spectral decomposition of the kernel opera-

tor. It would be illuminating to analyse our Ivanov-regularised estimators using this

method.

7.2 The Goldenshluger–Lepski Method for Con-

strained Least-Squares Estimators over RKHSs

In Chapter 4, we apply a different adaptive estimation procedure called the Goldenshluger–

Lepski method to our Ivanov-regularised least-squares estimators. We only consider

the case in which the regression function is bounded, so we clip our estimators to

make them closer to the regression function. We use all of the data to produce a col-

lection of non-adaptive estimators for different fixed sizes of norm constraint, before

performing pairwise comparisons to select a final estimator.

Since the covariate distribution P and the L2(P ) norm are unknown, we use the

L2(Pn) norm when calculating the pairwise comparisons between the non-adaptive

estimators. Here, Pn is the empirical distribution of the covariates. The L2(P ) norm

is the natural norm in which to perform the pairwise comparisons, as this is the

norm in which we seek guarantees on our estimator. However, we still attain these

guarantees when using the L2(Pn) norm for the comparisons.

We create two adaptive procedures. In the first procedure, we fix an RKHS and adapt

to the size of the norm constraint. This is similar to our training and validation

procedure, as we adapt to the same parameter. As far as we are aware, this is the

first time that the Goldenshluger–Lepski method has been applied in the context of

RKHS regression. In the second procedure, we consider a collection of RKHSs with

Gaussian kernels and adapt to both the size of the norm constraint in the RKHSs and
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the RKHS itself.

By assuming that the regression function lies in an interpolation space between L∞

and an RKHS H parametrised by β, we obtain a bound on a fixed quantile of the

squared L2(P ) error of our adaptive estimator of order n−β/(1+β). This is true for

both the procedure in which the RKHS is fixed to be H and the procedure in which

H comes from a collection of RKHSs with Gaussian kernels. The order n−β/(1+β) for

the squared L2(P ) error of the adaptive estimators matches the order of the smallest

bounds obtained for the non-adaptive estimators in Chapter 3.

We currently demand that the set of width parameters of the Gaussian kernels is

bounded for the procedure in which we consider a collection of RKHSs. This is quite

limiting. For example, we would be able to estimate a greater collection of functions is

we were able to allow the width parameter to tend to 0 as n tends to infinity. Further

analysis of this procedure for the case in which the width parameter tends to 0 may

produce estimators which can be applied in more general situations.

It would be interesting to investigate whether it is possible to extend the use of

the Goldenshluger–Lepski method from the case in which we consider a collection

of RKHSs with Gaussian kernels to cases in which we consider other collections of

RKHSs. Our analysis of the RKHSs with Gaussian kernels relies on the fact that the

closed unit ball of the RKHS generated by a Gaussian kernel increases as the width

of the kernel decreases. If another collection of RKHSs also exhibited this nestedness

property, then a similar analysis should be possible. If the RKHSs did not exhibit

this property, then a new form of analysis would be needed.
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7.3 Extreme Points of Wasserstein Balls

In Chapter 5, we change direction to study conditions under which probability mea-

sures in a Wasserstein ball are extreme points or not extreme points. We show that,

under very mild conditions, the only extreme points of Wasserstein balls which do not

lie on the surface of the ball are Dirac measures. By the surface of the ball, we mean

the points in the ball whose distance from the centre of the ball is equal to the radius.

We then consider points on the surface of the ball. We find that if the Wasserstein

distance is uniquely attained by a transport plan induced by a transport map, then

the point is an extreme point. On the other hand, under conditions on the centre of

the ball and the cost function, if the Wasserstein distance is attained by two distinct

transport plans induced by continuous transport maps, then the point is not an ex-

treme point. We then consider the case in which our probability measures are defined

on finite sets. We use the solutions to the dual problem to provide conditions under

which we do not have an extreme point.

Our results only make full use of the dual problem in the discrete setting. However, it

would be useful to apply the dual problem in other settings as well. This would give

us other ways of determining conditions under which a point in the ball is an extreme

point or not an extreme point. In particular, conditions in terms of the solutions to

the dual problem would be of interest.
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7.4 Optimal Transport for Covariate Shift in RKHS

Regression

In Chapter 6, we analyse the worst-case squared L2(Q) error of different estimators

over a Wasserstein ball of probability measures Q centred at the covariate distribution

P . This ball comprises all perturbations of P of any size up to the radius of the

ball. We first provide expectation bounds on the worst-case squared L2(Q) error

for our Ivanov-regularised least-squares estimators when the regression function is

unbounded.

We then provide bounds on the worst-case squared L2(Q) error when the regression

function is bounded. We clip the Ivanov-regularised least-squares estimators so that

they are closer to the regression function. We also provide high-probability bounds

in this setting under the assumption that the errors of the response variables are

subgaussian. We conclude by considering problems with the analysis and computation

of alternative estimators based on an empirical version of the worst-case squared L2(Q)

error.

It would be interesting to obtain bounds on the worst-case squared L2(Q) error for

estimators other than the Ivanov-regularised least-squares estimators. We also need to

be able to compute such estimators. Neither of these two aims seem to be achievable

for the alternative estimators considered in Chapter 6. We could also investigate

situations in which both the covariate distribution P and the distribution of the

response variables are subject to perturbation.
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