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We investigate the damping experienced by quartz tuning fork resonators in normal and superfluid
3He as a function of their resonance frequency from 22kHz to 250kHz and contrast it with the
behavior of the forks in “He. For our set of tuning forks the low frequency damping in both fluids
is well described by the existing hydrodynamic models. We find that the acoustic emission becomes
the dominating dissipation mechanism at resonator frequencies exceeding approximately 100 kHz.
Our results show that the acoustic emission model used in *He fluid also describes acoustic damping
in superfluid *He and normal 3He at low temperatures using same geometrical prefactor. The high
temperature acoustic damping in normal ®*He does not exceed prediction of this model and thus the
acoustic damping of moderate frequency devices measured in *He should be similar or smaller in

3He liquid.

I. INTRODUCTION

The interaction of helium fluids with small mechani-
cal resonators has traditionally being studied using vi-
brating wires, and has led to observations of the quanti-
zation of vortices in superfluid *He [I}, 2], nucleation of
quantum turbulence [3, 4] and Landau critical velocity in
superfluid *He [5]. Developments in the manufacturing
of electronic components and easy access to nanofabri-
cation facilities have brought a plethora of other mecha-
nical devices to helium research, for example quartz tu-
ning forks [6H23], micro and nano-electromechanical devi-
ces (MEMS and NEMS) [24H28], opto-mechanical resona-
tors [29H31] and carbon nanotubes [32]. Since the 2000s
quartz tuning forks have become an established tool to
investigate quantum solids [6] and liquids [7HI0], where
they have been used in studies of the viscosity [7], solu-
bility of *He—?He mixtures [10], Andreev retro-reflection
of quasiparticle excitations in superfluid *He [16] and in
turbulence studies in both helium isotopes [I7H2I]. The
main reasons for the forks’ popularity are their high in-
trinsic quality factor, commercial availability, compact
size and the ease of use. Their working procedures are
well documented [8, [IT), B3] and after calibration they
can be used as temperature probes [8, [[2] or pressure
gauges [14] [15].

In this paper we present the damping behavior of tu-
ning forks in normal and superfluid 3He. Our studies
show that the acoustic emission of tuning forks in super-
fluid 3He is virtually identical to that in “He, where it
is one of the dominating dissipation mechanisms at low
temperatures and high frequencies [I8, 22 27]. While
high frequency MEMS and NEMS devices are becoming
available for probing superfluid “He [24H27], so far only
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low frequency MEMS devices have been successfully ope-
rated in liquid *He [28, [34] due to the challenges associa-
ted with high normal fluid viscosity and superfluid transi-
tion temperature being three orders of magnitude lower,
in the low millikelvin regime [35] [36]. The NEMS devices
are expected to open up a novel regime in studies of su-
perfluid 3He since their dimensions are comparable to the
pressure dependent coherence length, which has a range
from 20nm to 80nm [35] [36]. Based on our results, a
study of NEMS resonators in “He liquid should be suffi-
cient to predict their acoustic damping in superfluid >He
and choose the most sensitive devices. Reducing the di-
mensions of the cavity surrounding submerged NEMS in
superfluid *He should suppress arising acoustic emission
and result in an excellent local detector of thermal ex-
citations [37], which could be used for two-dimensional
visualisation of topological defects [38]. The fermionic
nature of superfluid 3He allows non-invasive detection of
existing topological defects via the Andreev reflection of
excitations, which sense the changes of the order parame-
ter in the vicinity of the defects [19, [37]. Furthermore, li-
quid ®He is a promising environment for cooling electrons
in nanosized structures down to a few millikelvin [39].
Hence, understanding damping of submerged NEMS de-
vices may help reach the mechanical-ground-state using
“brute force” cooling, which so far has only been accom-
plished using much higher frequency systems [40].

II. EXPERIMENTAL SETUP

The tuning forks used for our measurements were cus-
tom designed and manufactured on quartz wafers of vari-
ous thicknesses [41]. A wafer contains six individual fork
sizes and nine five-fork arrays with distinct resonance fre-
quencies. Figure a) shows an example of a tuning fork
array. Since all the tuning forks have identical prong
thickness T' = 90 pm and prong separation D = 90 pm,
the resonance frequency of the forks is determined by the
prong length L. The width of the prong W has no in-
fluence on the fork frequency [33] and is determined by
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FIG. 1. (Color online) (a) A schematic of the electronic me-
asurement setup incorporating a photograph of a fork array
comprising five tuning forks. (b) A picture of the quasiparticle
camera with five tuning fork arrays used in the *He experi-
ments. Each fork is placed in an individual cylindrical cavity.

the thickness of the wafer. We used two types of forks in
our studies W = 50pm and W = 75um. All the forks
in an array are connected in parallel, and share drive
and signal leads, which significantly reduces the neces-
sary wiring. The tuning fork resonance peak signals do
not overlap due to the carefully engineered separation of
resonance frequencies and high quality factors that reach
Q ~ 10° in vacuum at 4.2 K. Due to a controlled surface
finish, our tuning forks offer high reproducibility between
different forks and wafers [20H22] compared to commerci-
ally available samples, which often show notably different
behavior despite a nominally identical geometry.

Figure a) illustrates the principal measurement
scheme that we employ to measure tuning forks. Due to
the piezoelectric nature of quartz, the forks are voltage
driven and produce current as a result of their mo-
tion [33]. The generator voltage is attenuated by 80 dB,
60 dB, 40dB or 20dB before entering the cryostat. The
signal detected from the fork is amplified by a custom
current to voltage converter [42] (transimpedance ampli-
fier) with a gain of 10V A~! and measured by a lock-in
amplifier. For an array of forks adding a summing voltage

amplifier, and four pairs of signal generators and lock-in
amplifiers, allows us to measure all five forks simultane-
ously [37].

The 3He measurements were carried out using a nu-
clear demagnetization stage mounted on an advanced di-
lution refrigerator [43] and capable of reaching tempera-
tures down to 100 uK. In our studies we utilised twenty
five tuning forks, in five arrays, that formed the pixels of
a quasiparticle camera [37]. Figure [I[b) shows a photo-
graph of the camera, which is comprised of a copper block
of dimensions 5.7 X 5.7 x 4.0 mm and five tuning fork ar-
rays with each fork embedded in an individual cylindri-
cal cavity with a diameter of 1.0 mm. The lengths of the
forks in the arrays varied from 1875pm to 1400 pm and
correspond to the frequency range from 22 kHz to 40 kHz
for the fundamental resonances. We also utilised the first
overtone resonances for each fork, covering a range from
140kHz to 250kHz [22]. The sensitivity of mechanical
resonators in the ballistic regime of superfluid *He is in-
versely proportional to the size of the oscillator, governed
by thermal excitations momentum transfer, and hence we
chose the thinnest available wafers, W = 50 pm, to build
the camera. Several more traditional vibrating wire vis-
cometers and detectors are placed in the vicinity of the
camera and are used for *He thermometry [44] as well
as other experiments. All the resonators described are
surrounded by eighty copper sheets necessary for cooling
liquid 3He and are a part of the inner cell of a nested
Lancaster style experimental cell [45].

The *He measurements were performed with tuning
forks made using 75pm wafers. The low temperature
(450mK) studies were carried out in an experimental
cell mounted on a dilution refrigerator [20]. For higher
temperature studies [22] arrays and single tuning forks
were placed directly in the main bath of a *He immer-
sion cryostat. The responses of tuning forks embedded in
a copper block quasiparticle camera were also carried out
in the *He immersion cryostat. Cooling of the cryostat
was achieved by pumping on the helium bath and the
4He temperature was inferred from the saturated vapour
pressure [46] measured by a room temperature pressure
gauge.

III. DAMPING OF QUARTZ TUNING FORKS
IN HELIUM LIQUIDS

The damping of tuning forks in helium is a function
of temperature T, resonance frequency f, velocity v and
other factors including the detailed confinement of the
forks. The total damping (resonance width) of a mecha-
nical resonator A f3 in helium is comprised of the intrinsic
(or vacuum) contribution A fi"* and the sum of all dam-
ping mechanisms supported by the liquid:

Afe = AR + AR(T) + Afa(v) + Afa(f). (1)

The intrinsic dissipation of a tuning fork is typically
negligible in comparison to the other damping sources



(Afint < 1Hz), and may become important only in
the absence of all other damping sources. For our tu-
ning forks submerged in helium the temperature and fre-
quency dependent damping are the largest contributors.
They will be introduced first using a framework that per-
mits straightforward comparison with previous measure-
ments of tuning forks in helium [8] @, 22].

A. Temperature Dependent Damping

The viscosity of a fluid impedes the motion of a mecha-
nical oscillator, and viscous damping is typically descri-
bed in terms of the Stokes drag. The Stokes contribution
in helium superfluids is well understood via the pheno-
menological two-fluid model [36] and is expected to des-
cribe experimental observations at temperatures down to
about 250 pK in *He [12] and 0.9K in *He [47]. Below
these temperatures the mean free path of thermal exci-
tations exceeds the dimensions of the oscillator and the
hydrodynamic approach has to be replaced with the bal-
listic description.

1. Hydrodynamic Damping

The immersion of a vibrating object into a viscous fluid
results in larger damping, detected as an increase in the
width of the mechanical resonance and decrease of re-
sonance frequency [48]. Blaauwgeers et al. [§] showed
that by using the two-fluid model, the decrease of the
resonance frequency in the fluid can be interpreted as an
apparent increase of the mass of the forks’ prongs due
to the fluid backflow around the fork and extra (normal)
fluid viscously clamped to the oscillator. The fractio-
nal change of the resonance frequency fy of an object
in helium with respect to the vacuum value fy can be
expressed as:
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Here 8 and B are two geometry-dependent parameters
of the order of unity, me is the effective mass of a tu-
ning fork prong, V and S are the volume and the sur-
face area of a prong, py is the total density of helium, n
is helium viscosity and pp¢ is the density of the normal
fluid component. The coefficient 8 corresponds to the
fluid backflow around the fork, while B characterises the
thickness of the normal fluid component clamped to the
fork and is governed by the viscous penetration depth,
Vnput/ (7 fo) B
In the limit where the viscous penetration depth is
much smaller than the characteristic size of the oscillator,
the width of resonance arising from the viscous damping
experienced by the mechanical resonator can be repre-

sented via a solution to the Stokes theorem [12]:
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where C' is the geometrical factor of the order of unity.
After calibration of an oscillator at one known tempera-
ture, the coefficient C' provides an easy way to determine
the temperature of the liquid via the measured resonance
frequency and width of the resonance [§]. At high viscosi-
ties, such as normal 3He fluid at millikelvin temperatures,
a more rigorous approach taking into account slip effects
and a large penetration depth is required [12} [49] [50].

2.  Ballistic Damping

The transition from the hydrodynamic to the ballistic
regime can be identified by the disappearance of the re-
sonance frequency change at low temperatures [28, 51].
The ballistic damping mechanisms in both “He and 3He
are well understood [I7, 50] and we will only briefly out-
line them.

In superfluid “He, the thermal excitations (phonons
and rotons) exchanging momentum with the resonator
govern its damping, which can be calculated using geo-
metric arguments. The phonon contribution to the reso-
nance width of an oscillating cylinder is given by [50]:
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(4)

where p is the density of the resonator material, pgr is
the superfluid density, d is the cylinder diameter and A
is a geometrical constant. We can use the fork prong
width W as an effective cylinder diameter. We ignore the
roton damping contribution as it is negligible compared
to the phonons at 450 mK [50, 52] where our ballistic *He
measurements were conducted.

In superfluid 2He, the oscillator damping arises from its
interaction with broken Cooper pairs, the so-called quasi-
particles [35] [36]. The situation is highly non-trivial due
to the presence of Andreev scattering (retro-reflection)
of the quasiparticles in the superfluid velocity field sur-
rounding a moving object [53]. The net effect of Andreev
reflection is an enhancement of the ballistic damping by
nearly three orders of magnitude compared to a classical
gas with the same excitation density. In the low velocity
limit it is possible to approximate the damping width of
a vibrating cylinder by:

d"}/ p2
qp _ F
Afg = my kgT <7wg>» (5)

where ' is a geometrical constant, m, is the mass per
unit length of the cylinder, pr the Fermi momentum and
(nvg) is the thermal quasiparticle flux [17].



B. Frequency Dependent Damping

We have already mentioned above that in the ballistic
regime the fork damping does not depend on the reso-
nance frequency of the oscillator. According to Eq.
the hydrodynamic damping experienced by mechanical
oscillators at high temperatures shows a weak, square-
root frequency dependence. The square-root frequency
dependence is also observed for the nucleation of quan-
tum turbulence in superfluid *He, when the motion of
a mechanical oscillator exceeds a certain critical velo-
city [I7, [54]. The frequency dependence attributed to
the emission of sound waves by a tuning fork in *He-*He
mixtures [7, 23, 55] and *He liquid [22}, 56, 57] is nearly an
order of magnitude stronger than the square-root depen-
dence. For frequencies above approximately 100 kHz and
low tuning fork velocities we expect the acoustic damping
to become the main source of dissipation.

1. Acoustic Damping

Two models for the acoustic emission of a tuning fork
have been introduced by the Prague group [I8], where the
authors have considered spherical and cylindrical emis-
sion of sound waves by the prongs of a tuning fork. The
spherical (‘3D’) model seems to describe experimental ob-
servations more accurately [22] and predicts the acoustic
contribution to the width of the resonance to be:
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Here j,, are spherical Bessel functions, c is the first sound
velocity in the liquid, L, = 0.3915L is the effective length
of sound wave emittance in the fundamental resonance
mode and Csp is a geometrical pre-factor of order unity.
In the limit where the wavelength of emitted sound is
much longer than the relevant fork dimensions, a Tay-
lor expansion of the Bessel functions shows that acoustic
damping varies with frequency as f°-5 [I8, 22].

C. Velocity Dependent Damping

The dissipationless motion of superfluids exists only
below Landau critical velocity [36], after exceeding which
excitations can easily be created. In “He Landau velo-
city approaches ~58 ms~! [58] and is unattainable by a
macroscopic-size mechanical resonator, due to the crea-
tion of turbulence in a liquid impeding the resonator’s
motion. The production of turbulence by resonators is

supported in both normal and superfluid helium and cau-
ses significant damping as they lose energy to create vor-
tices in the fluid [I7H20]. The critical velocity for the on-
set of turbulence is typically on the order of 10 mms™!
and is easily achievable by our resonators since their max-
imum velocity is ~2ms™!.

In superfluid ®He exceeding Landau velocity, which has
a value of ~27mms~!, breaks Cooper-pairs and produ-
ces quasiparticle excitations [I7]. Quantum turbulence
also exists in superfluid *He and has an onset velocity of
the order of several millimeters per second. We avoid tur-
bulence and pair breaking by using velocities far below
Landau velocity in 3He. All our measurements, in *He
and 3He, are carried out at tuning fork velocities below
1mms~!, which is significantly lower than the expected
critical velocities.

IV. RESULTS

To determine the damping experienced by a tuning
fork we sweep the excitation frequency in the vicinity of
its resonance and measure the fork’s response. We fit
the obtained resonance curve with a Lorentzian function
to find the resonance frequency fg and damping width
Afy of the fork [22]. First, we will contrast our bulk
low temperature measurements in *He with the results
of previous measurements [22] and then introduce mea-
surements carried out in *He.

A. Helium-4 Results

Figure |2| presents the dependence of tuning fork dam-
ping as a function of the resonance frequency measured
in bulk *He. Below approximately 100 kHz the damping
experienced by the forks in helium only weakly changes
with their operating frequency, but exhibits a significant
dependence at higher frequencies. Open and filled sym-
bols correspond to the fundamental mode and the first
harmonic of the tuning fork respectively and indicate that
the frequency dependence observed is not sensitive to the
operating mode of the tuning fork. Measurements at
temperatures of 4.2 K and 1.5 K at the saturated vapour
pressure have been previously reported [22] and show a
similar tendency to the low temperature data measured
with a different set of tuning forks. The low temperature
data was measured at a temperature of 450 mK and a
pressure of 22 bar in another experimental cell [20].

The high temperature data at low frequencies is well
described within the hydrodynamic framework introdu-
ced via Egs. (2) and (3). The dashed line in Fig. [2] cor-
responds to fitting parameters § = 0.26, B = 0.28, C =
0.54 [22]. The dotted line is a combination of the hydro-
dynamic damping at low frequencies in Eq. and acou-
stic dominated damping in Eq. @ at high frequencies
with the acoustic emission coefficient Csp = 2.17 [22].
We have used the values of the speed of sound at satura-
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FIG. 2. (Color online) Log-log plot of frequency dependence
of the tuning fork damping in *He liquid for the fundamental
(open symbols) and overtone (filled symbols) modes of the
forks. The 4.2K and 1.5K data [22] was taken at saturated
vapour pressure, while the 450 mK measurements were carried
out at a pressure of 22 bar. The dashed line corresponds to
the hydrodynamic contribution described by Eq. (3). The
dotted lines correspond to the 3D model of acoustic damping
with ballistic or hydrodynamic contributions.

ted vapour pressure equal to 190ms~! and 235ms—! at
42K and 1.5K, respectively [46].

At 450 mK the normal fluid component density of 4He-
IT is negligible and we expect the data measured at these
temperatures to be consistent with the ballistic frame-
work. Hence the low frequency damping should be des-
cribed by phonon interaction and was compared with the
predictions of Eq. . We obtain a phonon damping con-
stant A = 18 that significantly exceeds the values repor-
ted for vibrating wires [50, [62]. The difference could be
attributed to the vastly different geometry of the forks
compared to vibrating wires and perhaps the non-zero
pressure in the experimental cell.

The green dotted line going through the low tempe-
rature data in Fig. [2| is a sum of the frequency inde-
pendent phonon contribution and acoustic damping with
coefficient C'sp = 2.17 used to fit the high temperature
data at saturated vapour pressure [22]. We estimated the
sound velocity in “He at 22 bar pressure and 450 mK to be
355ms~! [59]. It is remarkable that all the acoustic data
is described by a single coefficient, despite the data being
measured by different forks over a large range of tempe-

ratures and pressures. This shows that our custom de-
signed forks manufactured on different wafers are highly
reproducible. Turbulent drag measurements carried out
in two different laboratories Lancaster and Prague using
a set of such forks were also practically identical [21].

B. Helium-3 Results

Prior to introducing *He into the cell we characterised
the intrinsic damping of the tuning forks for the funda-
mental and first harmonic mode resonances in vacuum
at a temperature of 4.2 K. After condensing *He into the
cell, we took measurements during the cryostat cooldown
at temperatures of 1.5 K, 115mK and 10 mK. Due to the
fermionic nature of 3He, its viscosity increases quadra-
tically with decreasing temperature [12] [60] and below
10mK the viscosity of normal 3He becomes comparable
to that of olive oil. For our set of tuning forks, which are
optimised for superfluid *He-B studies, this high viscous
damping makes the measurements below 10mK virtu-
ally impossible until the ballistic regime in the superfluid
phase is reached. To reach the ballistic regime in super-
fluid 3He we have pre-cooled the cell in a magnetic field of
6.3 T to 5mK using the dilution refrigerator and demag-
netized the cell to 50 mT, reaching the final temperature
of 150 nK.

The top panel of Fig. [3]shows the dependence of tuning
fork damping as a function of the resonance frequency
measured in vacuum and in superfluid *He-B at 4.2K
and 150 pK respectively. We present both sets of data
together since their damping at low frequencies, below
40kHz, is comparable. The tuning fork damping me-
asured in the superfluid contains the intrinsic damping
of the fork and hence the liquid contribution is almost
identical to the one in vacuum. The vacuum data me-
asured for the first overtone mode lying at frequencies
above 100 kHz shows a large degree of scatter (difference
in the damping of individual forks). We note, that the
uncertainty of each data point is negligible, as resonance
measured for each fork are stable and reproducible, with
the smallest Q-factor is of the order of 10*. We attribute
increased damping at certain frequencies to flexing of the
base of the tuning fork array and believe that clamping
the array base should improve the Q-factor further. At
moderate frequencies the difference in the damping of in-
dividual forks remains large even in the superfluid phase.
In some cases the superfluid damping of the forks was
smaller than that measured in vacuum, which indicates
that the origin of the scatter is likely to be mechanical.
The top panel of Fig. [3also demonstrates that at the hig-
hest operating frequencies the tuning fork damping in the
superfluid 3He significantly exceeds the values obtained
in vacuum measurements. This indicates the presence
of a different damping mechanism compared to the low
frequencies.

The measurements taken in normal 3He are presented
in the bottom panel of Fig.[3] The fork damping at low
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FIG. 3. (Color online) Log-log plot of the measured dam-
ping versus resonance frequency of the forks at the funda-
mental (open symbols) and overtone modes (filled symbols)
in superfluid *He-B and vacuum (top); and normal fluid *He
(bottom). The dashed line corresponds to the hydrodynamic
damping experienced by the forks. The dotted line shows the
acoustic damping model described by Eq. @ with hydrody-
namic or ballistic contributions.

frequencies significantly exceeds the intrinsic and the su-
perfluid values. The data shows that the damping is lar-
ger at the lowest temperatures as expected for a viscous
Fermi fluid. The dashed lines in Fig. [3] corresponding
to the hydrodynamic damping model, describe the low
frequency data well. Due to the high viscosity of *He,
instead of the simple framework described by Eq. 8]
we used a more rigorous calculation in the hydrodyna-
mic regime to account for the large viscous penetration
depth. A comparison of the measurements and the hyd-

rodynamic model clearly shows that in the normal fluid
the tuning fork resonance widths start to increase above
100kHz and therefore requires acoustic damping to be
taken into account.

The dotted lines in Fig. |3| combine the acoustic contri-
bution described by Eq. with the ballistic damping
in the superfluid phase (7" = 1.6 to 1.8) and the hydro-
dynamic damping in the normal fluid (Stokes parameter
equal to 1.5) respectively. The combined model seems
to reasonably follow the data points in both the super-
fluid and the normal phases. We chose a value of the
acoustic coefficient Csp = 2.17 identical to that in *He
since the forks used differ only in the wafer thickness and
Csp was constant in the “*He measurements, indepen-
dent of temperature and pressure changes. The sound
velocity in normal *He liquid at 1.5K is 169ms~! and
184ms~! at 115mK and 10mK, respectively [61]. In
the superfluid phase, at our range of temperatures and
frequencies zero sound should be emitted instead of first
sound [35] B6]. Zero sound corresponds to oscillations in
the Fermi sphere or the quasiparticle density and has the
sound velocity here equal to 190ms~! [36]. We expect
the change from first to zero sound to have little effect on
the fork damping as the value of sound velocity hardly
changes and the dispersion relations in both modes are
identical [30].

The normal 1.5 K data and the superfluid data plot-
ted in Fig. |3| show that the experimental points seem
to deviate significantly from the combined model, and
give the impression that the onset of damping happens
at high frequencies and exhibits a steep power law de-
pendence. The observed discrepancy can be explained
by considering the shape and the size of the cylindrical
cavities surrounding the tuning forks.

V. DISCUSSION AND CONCLUSIONS

It is known that cavities suppress acoustic emis-
sion [I8] 56] and while the camera has an open cylinder
geometry its effect on the fork’s acoustic emission is de-
termined by their relative positions and orientation. To
investigate the effect of the cylindrical cavity on emis-
sion we placed a fork array in the replica of the camera
and measured the damping dependence of the array in
a “He immersion fridge. For the comparison of the data
measured at different temperatures in both He and *He
it is appropriate to work with the wavelengths of emit-
ted sound rather than the resonance frequencies since the
sound velocity varies considerably.

Figure[d|displays the dependence of the tuning fork me-
chanical resonance width as a function of the sound wa-
velength for *He and ®He measurements. The “He data
in the top panel contrasts the bulk measurements [22]
shown in Fig. [2] using faded colors against the measure-
ments in the cylindrical cavity for superfluid and normal
“He in bold colors. The dotted curves, corresponding to
the combined hydrodynamic and acoustic model, agree
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FIG. 4. (Color online) Log-log plot of the fork damping in
“He (top), normal *He (centre) and superfluid *He (bottom)
versus the sound wavelength corresponding to the fork’s fun-
damental resonance (open symbols) and overtone resonance
(filled symbols). The top panel shows bulk measurements
in “He using faded colors along with the measurements per-
formed in a cylindrical cavity in bold colors. The shaded
area to the left highlights the wavelengths corresponding to
unsuppressed sound emission. The dotted and dashed lines
correspond to the total and hydrodynamic damping models
respectively.

well with the bulk data, but fail to describe the cavity
data with wavelengths in the range from 1 mm to 2 mm.
These data points are almost entirely described by the
hydrodynamic model alone, but still exhibit some degree
of the acoustic emission. This suggests that sound emis-
sion for wavelengths above about 1mm is significantly
suppressed, while wavelengths below this threshold show

the damping almost in line with what is expected from
the bulk “He measurements. The threshold wavelength
of 1 mm agrees well with the cavity diameter of the ca-
mera and the directionality of sound emitted by a tuning
fork in the cavity.

The 3He data for normal and superfluid phases shown
on the centre and bottom panels of Fig. [d] display a trend
similar to the “He measurements. The data points in su-
perfluid 3He corresponding to wavelengths in the range
from 1mm to 2mm are neither fully described by the
acoustic model nor by the ballistic damping supporting
the idea of suppression of sound emission in the surroun-
ding cavity. While the normal 3He results measured at
10mK and 115mK in are also consistent with the pro-
posed scenario, the He data taken at 1.5 K show redu-
ced acoustic emission for wavelengths shorter than 1 mm,
where sound is expected to be freely emitted. It is not
clear what causes this behavior, but it is possible that
a combination of imperfect alignment of the arrays in
the camera and lower attenuation of the first sound at
high temperature [36] affects the acoustic emission of the
forks [18| 56] and is responsible for the observed diffe-
rences between the high and low temperature data in
3He. High temperature data in normal 3He suggests that
the observed acoustic damping does not exceed what is
expected from the acoustic emission model. The dilu-
tion refrigerator has a poor degree of temperature control
in this temperature region and systematic measurements
are impractical.

Due to the more complex nature of the fermionic li-
quid, 3He supports excitations that have no analogue in
4He. An example of unique 3He excitations are spin wa-
ves for which we would expect to have a strong magnetic
field dependence [35]. Our measurements in superfluid
3He show that the tuning fork damping is not affected
by changing the magnetic field by a factor of two. It has
recently been found that the magnetisation of the solid
layer of *He atoms can exert a force on a tuning fork if
that fork moves the magnetisation vector with respect
to the external field in 3He-B [62]. In our geometry we
would expect no force from this effect since the magnetic
field and the fork motion are orthogonal to each other.
We have also found no sizeable changes in normal >He
when magnetic field was changed in the range from 0.1 T
to 6.3 T.

We conclude that, at low oscillating velocities, the
damping experienced by tuning forks in *He and super-
fluid 3He liquids can be described by combining the acou-
stic emission model with the hydrodynamic or ballistic
frameworks. The acoustic damping dominates the be-
haviour of tuning forks with resonance frequencies above
approximately 100 kHz. It is remarkable that sound emis-
sion in both isotopes can be described by an acoustic
model with a single geometrical coefficient in the normal
and superfluid phases for the majority of our tuning forks
despite the change of emitted sound mode in *He. Due
to the scatter of our high temperature data in normal
3He we can only state that the observed acoustic dam-



ping does not exceed what is expected from the acou-
stic emission model. The latter is useful for predicting
properties and behaviour of oscillators in superfluid 3He,
after tests in the much more accessible “He have been
carried out. Our measurements also show that the sound
emission can be suppressed by selecting the appropriate
cavity size. This should be taken into account for desig-
ning experimental apparatus for studies of the onset of
quantum turbulence or probing helium excitations using
high frequency MEMS and NEMS.
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