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We show that weak measurements can induce a quantum phase transition of interacting many-
body systems from an ergodic thermal phase with a large entropy to a nonergodic localized phase
with a small entropy, but only if the measurement strength exceeds a critical value. We demonstrate
this effect for a one-dimensional quantum circuit evolving under random unitary transformations
and generic positive operator-valued measurements of variable strength. As opposed to projective
measurements describing a restricted class of open systems, the measuring device is modeled as a
continuous Gaussian probe, capturing a large class of environments. By employing data collapse
and studying the enhanced fluctuations at the transition, we obtain a consistent phase boundary in
the space of the measurement strength and the measurement probability, clearly demonstrating a
critical value of the measurement strength below which the system is always ergodic, irrespective of
the measurement probability. These findings provide guidance for quantum engineering of many-
body systems by controlling their environment.

Generic many-body quantum systems obey the eigen-
state thermalization hypothesis (ETH) [1–4], according
to which they establish the characteristics of thermal
equilibrium in a finite time. These systems are char-
acterized by highly entangled eigenstates, i.e., states fol-
lowing an extensive scaling of their entanglement entropy,
a behavior known as the volume law. However, systems
with local interactions can display a transition to a phase
in which the entanglement entropy obeys a subextensive
area-law scaling, where ETH is violated. A paradigmatic
case is that of many-body localization [5–8], in which the
entanglement transition [9–12] is driven by the strength
of a local disordered potential. The fate of this transition
in open quantum systems is the subject of intense cur-
rent investigations [13–17]. A promising path to address
the entanglement transition in this setting is to consider
a randomly driven system on which the external envi-
ronment acts as a quantum detector [18–21]. In this
scenario, the free unitary evolution of the unobserved
system leads to a ballistic temporal growth of entan-
glement [22–24], until it settles into a highly entangled
quasi-stationary state that follows the volume law. This
tendency is counteracted by local measurements, which
induce a stochastic nonunitary backaction. Very recently
it has been shown that when local projective measure-
ments are performed frequently enough one encounters
an entanglement transition to a quasi-stationary state
characterized by an area law [18–20].

Projective measurements capture an important but re-
stricted class of environments. A much larger class can be
accessed by adopting a more general perspective, accord-
ing to which quantum measurements are not necessarily
characterized by discrete projections in the time evolu-
tion, but are generically given by positive operator-valued
measurements (POVMs) with a continuous spectrum
of outcomes and a corresponding stochastic back-action
onto the system [25–27]. The measurement strength λ
can then be controlled to continuously interpolate be-

tween the unobserved case and projective measurements.
Such weak measurements are also routinely employed in
experiments for quantum states readout [27] and quan-
tum feedback protocols [28–30], and can be used as a
theoretical tool to reproduce Lindblad dynamics of open
systems via trajectory averaging [25, 26]. They, there-
fore, describe a much more versatile framework to model
the influence of the environment on an open quantum
system.

In this Letter, we study the effect of these weak mea-
surements on the ergodic properties of randomly driven
many-body systems, modeled as a quantum circuit with
local interactions. By analyzing the entanglement en-
tropy and its variance we show that weak measurements
can indeed drive a transition to a nonergodic phase obey-
ing the area law. Similarly to the case of projective mea-
surements [18], the result resembles that of the Zeno ef-
fect in which a transition to frozen dynamics is obtained
by sufficiently frequent projective measurements, while
the corresponding question for less disruptive environ-
ments was unclear [21]. Importantly, we identify a min-
imal measurement strength below which no localization
is possible regardless of the measurement probability p.
These results are obtained by mapping out the phase
boundary by two different methods, based on the data
collapse and scaling of the entropy for different system
sizes, as well as the statistical fluctuations of the en-
tropy, which turn out to be maximal at the phase transi-
tion. Beyond providing this specific phenomenology, our
results open up a broader avenue to study many-body
quantum dynamics in open systems, understand their
properties in more detail, and guide the implementation
of quantum feedback control for technological applica-
tions.

We analyze the entanglement transition in a model
consisting of a spatially periodic one-dimensional quan-
tum circuit consisting of a chain of L spins, where L is
assumed to be even to allow the partition of the chain
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FIG. 1. Diagrammatic representation of the evolution of a
weakly measured quantum circuit during one time step. The
dots represent the locations of L sites with spin 1/2. The
rectangular blocks correspond to unitary operators U on two
neighboring spins, while the diamonds correspond to nonuni-
tary evolution induced by the weak measurements M that
occur with probability p and have strength λ. The displayed
configuration of diamonds denotes one possible realization of
the measurement locations. We consider the dynamics of the
system commencing from an unentangled Néel state.

into two subsystems of equal length. The chain evolves
in time under a sequence of discrete time steps that are
inherently stochastic and consist of a sequence of four
operations, as schematically depicted in Fig. 1. First,
unitary two-spin operators U are applied between each
odd site and the next neighboring site. Each operator
is chosen randomly and independently according to the
Haar measure over the set of unitary operations for two
spins. Second, a measurement M is carried out on each
site with probability p. In this work, M is a properly
normalized Kraus operator (not necessarily a projector)
associated with a POVM [25, 31–34], as specified in de-
tail below. Third, analogous to the first step, random
unitary two-spin operators U are applied between each
even site and the subsequent odd site. Finally, another
set of single-site measurements M is carried out, with
the same probability p as in the second step. These uni-
tary operators and measurements vary throughout space
and from time-step to time-step, rendering the local in-
teractions and measurements disordered and aperiodic.
Therefore, both the unitary evolution and the measure-
ment operations are of a stochastic nature.

The weak measurement operations are implemented as
follows. Given the state |ψ〉 of the circuit, a measurement
on the j-th site of the chain has a stochastic outcome
x ∈ R drawn from the state-dependent probability dis-
tribution [35, 36]

P (x) = G2
∆(x−λ)〈ψ|Π(j)

+ |ψ〉+G2
∆(x+λ)〈ψ|Π(j)

− |ψ〉, (1)

where G∆(x) = exp(−x2/2∆2)/(π1/4∆1/2) is a Gaus-

sian probability amplitude of width ∆, while Π
(j)
± =

(1 ± σ(j)
z )

⊗
i 6=j 1

(i) projects the j-th site component of
the state onto the spin-up or spin-down subspace. Given
the outcome x from the distribution above, the state is

then updated as

|ψ′〉 =
1√
P (x)

[
G∆(x− λ)Π

(j)
+ |ψ〉+G∆(x+ λ)Π

(j)
− |ψ〉

]
.

(2)
This update is a stochastic process that depends on the
random measurement outcome x, which in turn depends
on the state |ψ〉 before the measurement. This choice
of the detector model allows us to bridge between the
free unitary dynamics of the unobserved system and pro-
jective measurements, as controlled by the measurement
strength λ/∆ [35, 37]. The case of no measurements cor-
responds to λ/∆ = 0, while strong projective measure-
ments are obtained in the limit λ/∆→∞.

To discriminate between ergodic and nonergodic many-
body phases we utilize the bipartite entanglement en-
tropy

S = −tr(ρA log ρA), (3)

where ρA is the reduced density matrix of a subchain
A. This entropy is extensively employed to quantify the
entanglement in quantum systems, and its scaling prop-
erties with length can be used to determine whether the
system is in an ergodic thermal-like phase or a noner-
godic localized phase [9–12, 19, 38, 39]. Alternative en-
tanglement measures used in the literature include Rényi
entropies [18, 20, 21] and mutual information [20, 21, 38].
We focus on the case where the subchain A is of length
L/2, which corresponds to cutting the circuit into two
halves of equal size. Note that a cut may be commensu-
rate or incommensurate with the unitary operations U in
each layer of the circuit, which can result in differences
between systems of length L = 4k or L = 4k + 2. We,
therefore, place these cuts randomly.

The stochastic evolution of the entropy over time
is illustrated in Fig. 2. The figure displays a color-
coded histogram obtained from 1000 realizations of the
stochastic evolution commencing from an unentangled
Néel state, and contrasts two cases of different mea-
surement strength while the measurement probability is
fixed to p = 0.9. For the weaker measurement strength
λ/∆ = 0.2 [panel (a)] the entropy increases ballistically
over ∼ L/2 time steps and then saturates at a large value,
which increases linearly with the system size (see the in-
set). This is the signature of an extensive entropy scaling
according to a volume law. The entropy in the quasista-
tionary regime at long times is close to the value in an
unobserved system (λ = 0 or p = 0), where the average
entropy is predicted to be given by [40]

〈S〉 =
L

2
log 2− 1

2
. (4)

A qualitatively different behavior is observed for the
stronger measurements with λ/∆ = 0.6 [panel (b)].
There the entropy saturates quickly, and at a value in-
dependent of the system size (see the inset). This cor-



3

0 10 20 30 40 50
0

1

2

3

4

5

time step

(a)

●
●

●
●

●
●

●

8 12 16 20
0
1
2
3
4
5

0 10 20 30 40 50
0

1

2

3

4

5

time step

(b)

● ● ● ● ● ● ●

8 12 16 20
0.0
0.1
0.2
0.3
0.4
0.5

max

0

FIG. 2. Color-coded histogram of the bipartite entangle-
ment entropy S for a quantum circuit of length L = 20 for
representative parameters in two regimes, with measurement
strength (a) λ/∆ = 0.2 and (b) λ/∆ = 0.6 while in both
cases the measurement probability is p = 0.9. The dashed
lines indicate the averaged quasistationary values of the en-
tropy after the initial transient growth. The insets show the
dependence of these quasistationary values with system size.
According to these results, in (a) the system is ergodic and
obeys a volume law, while in (b) it is nonergodic and follows
an area law. Each panel contains data from 1000 realizations.

responds to an area law, as encountered in a localized
phase.

The observation of two phases suggests that a phase
boundary exists in the parameter space spanned by p and
λ/∆. A clear indication of the support of the phases can
be obtained from the variance of the entropy, shown in
Fig. 3. We again account for 1000 realizations and collect
the data from the quasistationary regime (from ∼ L/2 to
a cutoff of 100 time steps, much larger than the range of
the transient entropy growth for all systems sizes studied
here). As before, the initial state is an unentangled Néel
state. We observe that there are two regions where the
entropy fluctuations are small, separated by a transition
region with a pronounced increase of the fluctuations.
The contour of maximal variance (thick lines) is stable
for different system sizes, while the critical fluctuations
along this contour increase with system size, as we further
analyze below. The contour indicates that there exists a
critical value pcrit for the measurement probability below
which there are too few measurements to localize the sys-
tem, as previously identified in analogous models based
on projective measurements (hence λ/∆ → ∞) [18–20].
Departing from the projective measurement scenario, the
measurement probability at the transition becomes de-
pendent on the measurement strength, so that measure-
ments have to occur more frequently when the measure-
ment strength decreases. However, even for permanent
measurements (p = 1), the transition occurs at a finite
measurement strength, which we denote as (λ/∆)crit. Be-
low this measurement strength, the system is always in
the ergodic phase. This is our main result. In the re-
mainder of this paper we characterize these transitions
in detail, and in particular, confirm that they become

0.03 0.09 0.15 0.21 0.27 0.33 0.39

□

□

12
16
20

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2
0.3
0.4
0.5
0.6
0.8
1.0
1.2
1.6
2.0

3.0

5.0

10.0

∞

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Color-coded variance var(S) of the entanglement
entropy for varying measurement probability p and the mea-
surement strength λ/∆ in a system of length L = 20. We
observe two regions of small entropy fluctuations, separated
by a ridge where the fluctuations are large. The superimposed
thick lines show the location of the maximal variance for sys-
tem sizes L = 12, 16, 20, which serves as an indication for
the phase boundary (see also the finite-size scaling in Fig. 5).
The two square markers show the two representative points
selected for Fig. 2.

sharp in the limit of a large system size.
In order to determine the two critical parameters, we

consider two distinct transition scenarios: (a) the case
where the measurement is always performed (p = 1)
while the measurement strength λ/∆ is varied, and (b)
the case of almost-projective measurements with λ/∆ =
10 and varying probability p. Figure 4 displays the av-
erage 〈S〉 of the entanglement entropy for both scenar-
ios. For small λ/∆ or p the entropy clearly follows a
volume law, as can be seen by comparison with the the-
oretical prediction (4) for an unobserved ergodic system.
At large values of these parameters, however, the en-
tropy becomes independent of the system size, so that
an area law is observed. That we indeed deal with a
well-defined transition follows from the finite-size scaling
analysis [41, 42] shown in the insets. For this, we assume
that in the critical region the correlation length scales as
ξ ∼ |x−xcrit|ν and the entropy scales as 〈S〉 ∼ |x−xcrit|γ ,
where x = p, (λ/∆) is the varied parameter. The scaling
ansatz then takes the form

〈S〉L−γ/ν = F
(
L1/ν(x− xcrit)

)
, (5)

where F is an unknown scaling function. The transi-
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FIG. 4. Comparison of the averaged entropy 〈S〉 for dif-
ferent system sizes L across the phase transitions with (a)
p = 1 (where measurement are always performed), and (b)
λ/∆ = 10 (where measurements are always strong). The
dashed lines show the analytical prediction (4) for an un-
observed system. The insets show the finite-size scaling for
circuits of length L ≥ 14. In (a), the data collapse gives
the critical measurement strength (λ/∆)crit = 0.30(1) with
critical exponents γ = 1.38(7), ν = 1.96(2), while in (b) we
obtain the critical measurement probability pcrit = 0.110(3)
with γ = 1.94(2), ν = 2.352(5). Statistical errors are smaller
than the marker size.

tion point xcrit and the critical exponents ν and γ can
be obtained by means of a data collapse [43, 44]. The
data collapse shown in the insets then gives the values
(λ/∆)crit = 0.30(1) and pcrit = 0.110(3).

Figure 5 displays analogous results for the entropy fluc-
tuations captured by the variance var(S). The main pan-
els present the numerical data, along with a fit utilized
to enable reliable extraction of the position and height
of the maximal variance. We observe that the positions
of the maxima display a remarkably small drift with the
system size, which reliefs us from the complications en-
countered in other cases [11, 45]. Therefore, we can ex-
tract the phase transition directly from finite-size scaling
of the locations of the maxima, which is again presented
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FIG. 5. Comparison of the variance var(S) for different sys-
tem sizes L across the same phase transitions as in Fig. 4.
The thin lines are fits that allow reliable extraction of the
maxima. The insets show the finite-size scaling of the posi-
tion of the maxima, where the dark blue line represents the
extrapolation for chains of length L = 4k, while the light or-
ange line represents the extrapolation for lengths L = 4k+ 2.
Statistical errors are smaller than the marker size.

in the insets. We observe two scaling curves, one origi-
nating from systems of length L = 4k and another one
from systems of length L = 4k + 2, which, as mentioned
before, differ by the commensurability of the bipartition
in each layer. Reassuringly, both curves extrapolate to
consistent transition points for L→∞, giving the values
listed in Table I. Combining both transition curves into
a simultaneous extrapolation we then obtain the values
(λ/∆)crit = 0.304(3) and pcrit = 0.1103(7), in excellent
agreement with the values found from the average en-
tropy data collapse.

In conclusion, weak local measurements can drive open
many-body systems into a nonergodic low-entropy phase,
but only if the measurement strength exceeds a critical
value. This means that a continuously observed many-
body system can remain ergodic even if the observation
strength is finite. We demonstrated our findings for a
quantum circuit, evolving under random local unitary op-
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Critical values

Method (λ/∆)crit pcrit

(p = 1) (λ/∆ = 10)

Data collapse 0.30(1) 0.110(3)

Extrap. (L = 4k) 0.305(5) 0.1097(6)

Extrap. (L = 4k + 2) 0.303(4) 0.1112(7)

Simultaneous extrap. 0.304(3) 0.1103(7)

TABLE I. Critical values of the measurement strength λ/∆
and the measurement probability p as obtained from the
finite-size scaling in Figs. 4 and 5.

erations and local positive operator-value measurements
modeled as a Gaussian probe, for which finite-size scal-
ing of the entropy and its fluctuations show that the en-
tanglement phase transition becomes sharp for large sys-
tems. Quantum circuits can describe a very large range
of dynamics, while weak measurements provide a rather
general description of environments, where the variable
measurement strength bridges between the fully projec-
tive measurements and the fully unitary dynamics of the
unobserved system. We, therefore, anticipate that our
findings generalize to a large range of settings that de-
serve further investigation. This includes systems with
nonstochastic unitary dynamics as well as different types
of interactions, observables, or dimensions, but also prac-
tical applications aiming at the control of quantum sys-
tems via engineering of their environment.
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