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Abstract: This paper presents both experimental study and multi-physics modelling of supercritical carbonation 
of concrete. A novel mathematical model is proposed to simulate random distribution of coarse aggregates in 
concrete. Supercritical carbonation tests of concrete are carried out and the measured carbonation depth is 
compared with the simulation results. On the basis of previous research on random field of porosity and 
supercritical carbonation of cement mortar, a new supercritical carbonation model is developed to study the 
effect of randomly distributed coarse aggregates and porosity on the irregularities of carbonation depth of 
concrete. The effect of the type, volume fraction and gradation of coarse aggregates and the porosity of ITZ on 
the distribution of irregular carbonation depth are also studied. The results demonstrate that the proposed two-
dimensional random coarse aggregates model can be used satisfactorily to generate different types, volume 
fraction and gradation of coarse aggregates with the designed mix proportion within a confined space. The 
method provides a better and more realistic predictive model for simulating carbonation depth of concrete due 
to random distribution of coarse aggregates and porosity. 
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1. Introduction 

It is well known that carbonation is one of the major processes that results in corrosion of steel reinforced 

concrete. In order to understand the carbonation mechanism of concrete, significant research has been carried 

out recently to study the complex carbonation process [1-4],  including the experimental investigations on 

general carbonation mechanism [5], carbonation of self-compacting concrete [6-9], the theoretical model proposed 

to predict carbonation depth of concrete based on experiment results [10] and the life prediction model [11]. 

Numerical investigations were carried out also to simulate carbonation tests [12]. A literature review has shown 

that there exist extensive experimental studies on natural and accelerated carbonation of concrete. There are also 

analytical and numerical studies aiming to characterise the transport and reaction of CO2 in cement and/or 

concrete materials. In general, natural and accelerated carbonations of concrete are a slow process of chemical 

reaction, which is prohibitively time consuming for laboratory tests.  

Supercritical carbonation technique provides a promising way for concrete carbonation research. Under 

supercritical conditions, i.e., when the pressure and temperature exceed 7.38 MPa and 304.12 K, respectively 
[13], cement-based materials can be carbonated far quickly, so that researchers can assess the impact of 

carbonation on the materials within a realistic time frame. Moreover, the technique has been widely used in, e.g., 

CO2 capture and storage to absorb the carbon dioxide from the atmosphere [14, 15], material surface curing, 



improving compactness of materials [16-18], enhancing mechanical property and durability of fibre reinforced 

cementitious composites [19, 20], recycling concrete [21, 22], and solidification and stabilization of heavy metals and 

hazardous materials [23-26] in concrete. 

Carbonation depth is a significant parameter relative to carbonation rate and durability of concrete. 

Naturally, the distribution of carbonation depth is irregular with distinctive minimum and maximum along the 

boundary of a carbonation zones under both natural [27] and supercritical [28-30] conditions. However, the 

irregularities cannot been predicted by most carbonation models that assumed all cement-based materials are 

homogenous [31], resulting in uniform carbonation depth [32]. In fact, the topography of carbonation depth is 

affected by the presence of coarse aggregate [12, 33, 34], cracks [35-37], porosity of cement [29, 30, 38], porosity of the 

Interfacial Transition Zone (ITZ) [39, 40] and compositions of concrete [41, 42]. To statistically study the distribution 

of irregular carbonation depth, Alahmad, et al. [43] showed that penetration and diffusion of CO2 were 

significantly affected by cracks in cement mortar. Bao, et al. [30] proposed a numerical model to simulate 

randomly distributed carbonation depth of cement mortar. Papadakis, et al. [41] found that composition of cement-

based materials has noticeable effect on the carbonation process. It was concluded that the heterogeneity of 

concrete contributed mostly to the observed randomness [44]. Moreover, Han, et al. [12] studied the effects of 

cracks, ITZ and aggregates on carbonation of concrete. However, simulating irregularities of supercritical 

carbonation depth of concrete by considering random distribution of both coarse aggregates and porosity has not 

been well studied so far. 

This paper is an extension of the authors’ previous work [29, 30] on supercritical carbonation depth of cement 

mortar, where random nature of porosity was included in a multi-physics model. To apply a similar approach to 

concrete, the effects of randomly distributed aggregates, including their locations, sizes and types, have to be 

properly considered. To this end, a new 2-D statistical model is proposed to generate random distribution of 

aggregates. A modified supercritical carbonation model considering both coarse aggregates and porosity in 

concrete is proposed and validated against the test results. The model is further used to study the effect of coarse 

aggregates and porosity distribution of cement paste and ITZ on the distribution of carbonation depth of super-

critically carbonated concrete.  

2. Experimental investigation 

2.1 Preparation of concrete specimens 

Concrete cubes of side 100 mm were cast with the composition shown in Table 1. The range of the crushed 

stone aggregates was from 5 to 20 mm. After casting, the surfaces of the specimens were carefully smoothed 

and covered with plastic films. The cubes were removed from the molds after 24 hrs. All the cubes were cured 

then for 28 days in a standard curing room. Amongst the cubes, eighteen were prepared for carbonation tests and 

one for mercury injection apparatus (MIP) test. The eighteen cubes were divided further into three groups for 

supercritical carbonation. Small samples with dimension of millimeters were taken from the concrete cubes. The 

samples were immersed into absolute ethyl alcohol to prevent further hydration. The samples were dried in a 

vacuum heating oven at 90℃ until weight stability was reached. The MIP test using AutoPore IV 9500 shown 

that the porosity of the concrete before carbonation was 12.8%.  

 

 



Table 1. Mixture proportions 
 Cement (kg/m3) Water (kg/m3) Sand (kg/m3) Crushed stone aggregate (kg/m3) Water-binder ratio 

Concrete 417.2 208.6 612.1 1162.1 0.5 

 

2.2 The closed-cycle carbonation system 

The improved closed-cycle carbonation system [30] was applied in the supercritical carbonation tests of 

concrete. A schematic diagram of the test is shown in Fig.1. The water circulating in the chiller and the heater 

are, respectively, for cooling and heating-up the reactor. The pressure and temperature in the reactor were 

monitored constantly by sensors that are mounted at various positions. The surrounding relative humidity were 

also constantly monitored and recorded.  

The specimens were divided into three groups for supercritical carbonation of 3, 4 and 5 hours, respectively.  

 

 

Fig. 1. Schematic diagram of closed-cycle carbonation system 

 

2.3 Carbonation results of concrete  

The concrete cubes were taken out of the reactor after the supercritical carbonation test was completed. The 

concrete specimens were cut into two halves. The freshly cut surface was cleaned and sprayed with 

phenolphthalein indicator that displayed pink color over any non-carbonated zone. Figs. 2 (a-c) show the scanned 

images from the three groups that were super-critically carbonated for 3, 4 and 5 hours, respectively.  

Fig. 2 clearly shows that the profile of the carbonation depth is irregular and of a random nature. 

      
C-CON-1 C-CON-2 C-CON-3 C-CON-4 C-CON-5 C-CON-6 

a) Group 1: 3 hours for concrete 



      
C-CON-7 C-CON-8 C-CON-9 C-CON-10 C-CON-11 C-CON-12 

b) Group 2: 4 hours for concrete 

      
C-CON-13 C-CON-14 C-CON-15 C-CON-16 C-CON-17 C-CON-18 

c) Group 3: 5 hours for concrete 

Fig. 2. Test results of supercritical carbonation of concrete 

 

2.4. Analysis of the test results 

The image processing technique proposed by the authors in [30] was used in this Section to measure the 

carbonation depth. As shown in Fig. 2, the distances from the carbonation boundary to the edge of the cube were 

measured from the scan image processed by Matlab as an assembly of pixels and are presented as the carbonation 

depth. Table 2 shows the average values of the average, maximum, minimum and variances of carbonation 

depths of the respective groups. Table 2 also shows that as expected when the carbonation time increases, the 

average, maximum, minimum carbonation depths and their variance also increase. 

Table 2. Statistical result of experimental carbonation depth 
Group Group 1 Group 2 Group 3 
Supercritical carbonation time, T (h) 3 4 5 
Average carbonation depth, μ1 (mm) 8.3 8.6 10.3 
Maximum carbonation depth, Dmax (mm) 18.3 18.4 22.8 
Minimum carbonation depth, Dmin (mm) 2.2 2.5 2.8 
Variance, v1 (mm2) 10.7 14.8 21 

 

3. Numerical investigation 

In order to study the effects of porosity and coarse aggregates, including their types, volume fractions and 

gradations on the irregular carbonation depth, the test results were used in this Section to verify the numerical 

multi-physics model that was developed to simulate supercritical carbonation process of concrete with coarse 

aggregates of different shapes and distributions. 

 

3.1 Random coarse aggregates model and random field of porosity model for concrete 

3.1.1 Two-dimensional random coarse aggregates model for concrete 

In this Section, a new and effective two-dimensional random coarse aggregate model is proposed to 

generate random distribution of aggregates in concrete. The generation process consists of the following main 

steps.  



Step 1: A random distribution of circular aggregates is generated firstly by means of Monte Carlo method 

to achieve the required mix proportion and aggregate gradation within a given space, from which the locations 

of the centers and the areas of all the circular aggregates are obtained, as shown in Fig. 3 (a).  

Step 2: Similar to the Fourier-Voronoi-based generation of realistic and discrete granular materials [45], the 

set of the location centers are used as the seeds to generate a set of polygonal Voronoi cells that are individually 

paired with the circles sharing the same seeds/centers, as shown in Fig. 3 (b). 

Step 3: The vertexes of all the Voronoi cells are treated as a series of boundary nodes that are connected by 

smooth B-spline curves, as shown in Fig. 3 (c). The reduced areas of the modified cells are calculated.  

Step 4: A proportional reduction of the areas of the cells enclosed by the closed B-spline curves in Fig. 3 

(c) is achieved to generate the pebble aggregates model in Fig. 3 (d). The area reduction is based on the individual 

ratios of the areas of the paired circular aggregates in Fig. 3 (a) to the cells in Fig. 3 (c).  
Step 5: If the aggregates are crushed stones, 4-10 randomly selected points are chosen along the boundary 

of all the modified Voronio cells. The randomly selected points of a cell in Fig. 3 (c) are connected by a chain of 

straight lines closing in a loop to transfer the modified cell to a polygon [46]. The area of a newly generated 

polygon is reduced by the ratio of the area of the paired circular aggregate to that of the polygon. This process 

is repeated for all the cells. 

Step 6: If both mixed pebbles and crushed stones are required, Steps 4 and 5 are respectively followed for 

m randomly selected pebbles and n randomly located crushed stones. An area reduction process is followed then 

to target the specified area ratio of the respective aggregates. Thus, there are the following three cases. 

Case 1: When n=0 and m≠0, it is a two-dimensional concrete model with randomly distributed pebbles only, 

as shown in Fig. 3 (d).  

Case 2: When m=0 and n≠0, it is a two-dimensional concrete model with randomly distributed crushed 

stones only, as shown in Fig. 3 (e). 

Case 3: When m≠0 and n≠0, it is a two-dimensional concrete model with randomly distributed pebbles and 

crushed tones, as shown in Fig. 3 (f).  

   
a) b) c) 

   
d) e) f) 
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Fig. 3. The generation of two-dimensional concrete model (m) 

The above process has the following features that compare favorably with the existing techniques available 

in the literature [47-50], which include 

1) The two-dimensional random aggregates model can be used to generate pebbles or crushed stones, or a 

mixture of both. 

2) The proposed process does not require dealing with aggregate overlapping that is a common issue when 

they are randomly distributed in a confined space [51, 52]. This is because the final distribution of aggregates is 

established by area reduction of already randomly distributed Voronoi cells.  

3) The method to generate two-dimensional random aggregates is simple to implement and extremely 

computational efficient.  

In summary, the process of generating random aggregates in concrete is shown in the flow chart in Fig.4. 



 
Fig. 4. Flow chart of generating random aggregates model for concrete 

 

Generation of random circular aggregates by means of Monte 
Carlo method 

Generation of Voronoi cells 

Generation of closed B-spline curves 

Generation of polygons by the randomly 
distributed points on the closed b-spline curves 

Calculation of the ratio of the area of circular 
aggregate to the corresponding modified cell 

  

A two-dimensional random aggregate model of random including both pebbles 
and crushed stones  

Reduction of the area of modified cell by the 
ratio calculated above 

Define the ratio of the number of pebbles to crushed stone 
aggregates 

Type of aggregate 
Crushed stones Pebbles 

Generation of random pebbles aggregates  

Reduction of the area of the convex polygons 
by the ratios calculated above 

Generation of random crushed stone aggregates 

Steps 4 and 5 are followed to create randomly selected pebbles and crushed 
stones 

Pebble mixed with crushed stone aggregate 

Reduction of the area of the modified cells by the specified area ratios of the 
respective aggregates 



3.1.2 Random field model of porosity for concrete 

Apart from considering random nature of aggregates, the porosity of cement mortar is also considered in 

the supercritical carbonation model of concrete using the following spatial correlation function: 

 

12 2
1

2 2( , ) exp ( ) rx yx y
a b

φ +
 

= − + 
 

  (1) 

where a and b are the autocorrelation lengths in the x and y directions, respectively; r is the roughness factor. 

Considering that the spatial distribution of porosity is not uniform, it is assumed that the porosity is log-normally 

distribution and equation (1) is applied to ensure the spatial correlation of porosity. Both Fourier transform and 

inverse Fourier transform of the above auto-correlation function are then performed in the process of generating 

random porosity, details of which can be found in Yu [29]. From the simulations and validations in Yu [29] and 

Bao[30], it is appropriate to assume that a and b in equation (1) were both 0.01 m, and CVp in the random fields 

of porosity model was 0.4. As an example, a typical random distribution of porosity is shown in Fig. 5 (a). Fig. 

5 (b) is a generated random aggregate model of a concrete specimen, where the contour plot shows the porosity 

distribution of Fig.5(a) with an average of 0.128 from the MIP tests. Considering that the aggregates are 

relatively impermeable [53], it is reasonable to assume that in the areas occupied by the aggregates the porosity 

is zero.  

 

  
a) b) 

Fig. 5. Random distribution of porosity of cement and randomly distributed aggregates (m) 

 

3.1.3 Supercritical carbonation model for concrete 

The proposed coarse aggregates model is implemented in the 2-D Multiphysics cement model for 

simulating cement supercritical carbonation [28], by which the rate of equation of chemical reactions, mass 

conservation equation, momentum conservation equation and energy conservation equation are solved solved 

simultaneously using the multi-physics modelling software COMSMOL. The two-dimensional random coarse 

aggregates and porosity models are introduced to study the effect of coarse aggregates and porosity distribution 

on the topography of supercritical carbonation depth of concrete. 

 

3.2 Test verification of supercritical carbonation model of concrete 



In this Section, the effects of aggregates and cement porosity on the supercritical carbonation depth of 

concrete are studied. The main parameters of concrete are as follows. The intrinsic permeability, k0, is 3.0×10-21 

m2 [28, 54]. The initial average porosity, n0, is 0.128. The relative permeability coefficient, m, is 0.4396 [28, 54]. The 

relative humidity, h0, is 0.7, which was measured before the test. 

The porosity field is modelled with a fixed autocorrelation lengths a=b=0.01 m. The coefficient of variation 

of porosity CVp takes 0.0 and 0.4 for both the uniform (CVp=0.0) and non-uniform (CVp≠0.0) porosity 

distributions, respectively, in the simulations below. The random distribution of coarse aggregates generated 

from the above mentioned two-dimensional random coarse aggregate model are shown in Figs. 6(a-f), where the 

coarse aggregates are all crushed stone (m=0). Figs. 6(g-l) are the carbonation results for uniform porosity 

distribution. Figs. 6(m-r) are the respective carbonation depth for random porosity distribution. The total 

supercritical carbonation time is 5 hours. 

Without loss of generality, only the concrete specimens supercritically carbonated for 5 hours were 

simulated and twelve samples were studied. For the given coefficients of variation (CVp=0.0 and 0.4) and 

autocorrelation length (a=b=0.01 m), six random models were generated and simulated.  

 

   
a)  b)  c)  

   
d)  e)  f)  

   
g) Carbonation of model (a), 

CVp=0 
h) Carbonation of model (b), 

CVp=0 
i) Carbonation of model (c), 

CVp=0 

   
j) Carbonation of model (d), k) Carbonation of model (e), l) Carbonation of model (f), 



CVp=0 CVp=0 CVp=0 

   
m) Carbonation of model (a), 

CVp=0.4 
n) Carbonation of model (b), 

CVp=0.4 
o) Carbonation of model (c), 

CVp=0.4 

   
p) Carbonation of model (d), 

CVp=0.4 
q) Carbonation of model (e), 

CVp=0.4 
r) Carbonation of model (f), 

CVp=0.4 
Fig. 6. Distribution of coarse aggregates and carbonation results of concrete 

The average value of the average, maximum, minimum and variance of carbonation depths are shown in 

Table 3, where the effect of coarse aggregates on the carbonation results with or without considering random 

distribution of porosity are compared. When random distribution of porosity is considered, the average 

carbonation depth is smaller than that when the porosity is considered uniform. It is noticed that in comparison 

with cement with uniform porosity, after considering random porosity distribution, the maximum carbonation 

depth is much greater, while the minimum carbonation depth is significantly reduced. It is worthy of mentioning 

that the variance of carbonation depth, caused by uniform distribution of porosity is 0.8, which is much smaller 

than that of considering also random distribution of porosity.  

 

Table 3. Average carbonation depth and variance. 

Distribution of porosity 
Uniform 
a=b=0.01 m, CVp=0 

Random 
a=b=0.01 m, CVp=0.4 

Average carbonation depth, D (mm) 11.4 9.9 
Maximum carbonation depth, Dmax (mm) 14.4 22.0 
Minimum carbonation depth, Dmin (mm) 8.0 3.3 
Variance of carbonation depth, v1 (mm2) 0.8 22.3 

 

The simulation results with different coefficients of variation (CVp=0.0 and 0.4), supercritical carbonation 

time (T=3, 4, 5 h) and test results are compared and shown in Fig. 7 where the colored bars show the average 

value of average carbonation depths of concrete and the error bars are the respective minimum and maximum 

carbonation depths. The results from considering random porosity agree better with the test results than those 

from without considering random distribution of porosity. 
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a) Supercritically carbonated for 

3 hours 
b) Supercritically carbonated for 

4 hours 
c) Supercritically carbonated for 

5 hours 
Fig. 7. Verification of the supercritical carbonation model of concrete 

In order to study further the effect of coarse aggregates and porosity on the distribution of carbonation depth 

of concrete, the experimental and simulated carbonation profiles are compared. Fig. 8(a) shows the profile of 

the carbonation depth of a concrete specimen supercritical carbonated for 5 hours. The distribution of the 

carbonation depth is irregular and the zoomed-in details show that significant variation of carbonation depth 

appears not only in the vicinity of the aggregates but also in the cement mortar, which is due to the random 

distribution of porosity of the mortar. Fig. 8(b) shows the profile of the specimens from the simulation without 

considering random distribution of porosity. It is clear from the zoomed-in details that the variation of 

carbonation depth is located mainly in the vicinity of aggregates. Fig. 8(c) presents the simulated carbonation 

profile of the concrete specimen when random distribution of porosity is also considered. It is evident that the 

zoomed-in part of Fig. 8(c) shows a more accurate representation of the carbonation profiles observed from the 

laboratory tests, as it can model the variation of carbonation depth caused by both the distribution of aggregates 

and the random porosity of cement.  
 

     
a) Test carbonation profile of concrete block 

         

b) Numerical carbonation profile of concrete block (CVp=0) 



     

c) Numerical carbonation profile of concrete block (CVp=0.4) 
Fig. 8. Test and simulated carbonation profiles of concrete specimens (T=5 h) 

 

From Fig. 7 and Fig. 8, it can be concluded that by considering random distributions of both aggregates and 

porosity of cement mortar, the proposed numerical model can be used to predict carbonation depth of the 

concrete cubes satisfactorily when they are subjected to supercritical carbonation conditions. 

3.3 Effects of type of coarse aggregates on the distribution of irregular carbonation depth 

In order to study the effects of the types of coarse aggregates on the distribution of irregular carbonation 

depth, random distribution of aggregates with different types of coarse aggregates are generated according to the 

given mix proportion and aggregate gradation in Section 2. The coarse aggregates are, respectively, circular 

aggregates only, pebbles only, crushed stone only and pebbles mixed with crushed stones. In the model for 

pebbles mixed with crushed stone aggregates, it is assumed that the ratio of pebbles to crushed stones is about 

1:1. For all the four types of coarse aggregates concrete, the average porosity of mortar, εm, is 0.128; the initial 

intrinsic permeability coefficient of concrete, k0, is 3×10-21 m2; a=b=0.01 m; CVp is 0.4 and the supercritical 

carbonation time is 5 hours.  

Six random models were generated for each of the type of aggregates. The simulated carbonation of one of 

each is shown in Fig. 9.  

 

    

a) Circular aggregates b) Pebble aggregates 
c) Crushed stone 

aggregates 
d) Pebble mixed with 

crushed stone aggregates 
Fig. 9. Carbonation of concrete with different coarse aggregates and random porosity distribution 

 

The effects of the type of coarse aggregates on the average carbonation depths and their variance are shown 

in Fig. 10 (a). It can be observed that in general the type of aggregates has limited impact on the average 

carbonation depth and the variances are not very significant, while it is obvious that the impact is higher for the 

concrete with crushed stone aggregates. The coefficient of variation of carbonation depth with different types of 

coarse aggregates under different carbonation time were statistically analyzed, and the comparisons are shown 

in Fig. 10 (b). It can be found that the coefficient of variation of carbonation depth with different types of coarse 



aggregates remains virtually unchanged with the increase of carbonation time.  
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a)  b)  
Fig. 10. Effects of coarse aggregates type on the carbonation depth of concrete 

3.4 Effects of volume fraction of coarse aggregates on the distribution of irregular carbonation depth 

In order to study the effects of volume fraction of coarse aggregates on the irregularity of carbonation depth, 

random distribution of aggregates with different volume fractions of coarse aggregates were generated according 

to the given aggregate gradation in Section 2. The volume fraction of the coarse aggregates are, respectively, 

10.8%, 22.8%, 31.5% and 38.2% according to the target mix proportion. The coarse aggregates are all crushed 

stones. For all the four cases, the average porosity of mortar, εm, is 0.128; the initial intrinsic permeability 

coefficient of concrete, k0, is 3×10-21 m2; a=b=0.01 m; CVp is 0.4 and the supercritical carbonation time is 5 

hours. 

Six random models were generated for each of the volume fractions. One set of the simulation results are 

shown in Fig. 11.  

 

    
a) 10.8% b) 22.8% c) 31.5% d) 38.2% 

Fig. 11. Carbonation profiles of concrete with different volume fractions of coarse aggregates and random 
porosity 

 

The effects of volume fraction of coarse aggregates on the average carbonation depths and their variance 

are shown in Fig. 12 (a). It can be observed that in general the effect of volume fraction of coarse aggregates on 

average carbonation depth and its variance is not very significant. However, the average carbonation depth and 

its variance of the concrete with 22.8% coarse aggregates are both greater than those of the concrete with other 

three volume fraction of coarse aggregates. In order to study the irregularity of carbonation depth of concrete 

with different volume fraction of coarse aggregates, the coefficient of variation of carbonation depth under 

different carbonation time were also calculated and compared in Fig. 12 (b). The coefficient of variation of the 



carbonation depth stay more or less the same for all the carbonation times and volume fractions of coarse 

aggregates. 
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Fig. 12. Effects of volume fraction of coarse aggregates on the carbonation depth of concrete 

3.5 Effects of coarse aggregates gradation on the distribution of irregular carbonation depth 

In order to study the effects of gradation of coarse aggregates on the irregularity of carbonation depth, 

different gradation of coarse aggregates are generated according to the given mix proportion in Section 2. The 

gradation of coarse aggregates are, respectively, 2.5 mm~5 mm and 5 mm~10 mm, 5 mm~10 mm and 10 mm~15 

mm, 5 mm~10 mm and 10 mm~20 mm. The volume fraction of coarse aggregates is 38.2% and the type of 

coarse aggregate is crushed stone. For all the three gradation of coarse aggregates, the average porosity of mortar, 

εm, is 0.128; the initial intrinsic permeability coefficient of concrete, k0, is 3×10-21 m2; a=b=0.01 m; CVp is 0.4 

and the supercritical carbonation time is 5 hours. 

Six random models were generated for each of the gradation of coarse aggregates. The distribution of 

cement porosity are from Fig. 5. The simulated carbonation process of one of them is shown in Fig. 13. Fig. 13 

(a-c) are the random model of aggregates and carbonation profiles. 

 

   
a) 2.5 mm~5 mm, 5 mm~10 mm b) 5 mm~10 mm, 10 mm~15 mm c) 5 mm~10 mm, 10 mm~20 mm 
Fig. 13. Carbonation profiles of concrete with different coarse aggregate gradations and random porosity 

The effects of gradation of coarse aggregates on the average carbonation depth and the variance are shown 

in Fig. 14 (a). It can be observed that in general the effect of gradation of coarse aggregates on average 

carbonation depth and its variance is also not very significant. However, the average carbonation depth and its 

variance of the concrete with gradations 5 mm~10 mm and 10 mm~15 mm are both greater than those of the 

concrete with other two gradations. To study the effect of gradation of coarse aggregates on the coefficient of 

variation of carbonation depth, the above two parameters are evaluated against different carbonation times and 

coarse aggregate gradations. As shown in Fig. 14 (b), the coefficient of variation of carbonation depth is hardly 



affected by the gradation of coarse aggregates and carbonation time. 
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Fig. 14. Effects of coarse aggregate gradation on the carbonation depth of concrete 

3.6 Effects of ITZ on the distribution of irregular carbonation depth 

The thickness and porosity are the two main parameters to characterize the property of ITZ [40]. The size of 

cement grains range from 1 μm to 100 μm [40] and the thickness of ITZ is normally comparable to the size of 

cement grains [39]. To serve as a pilot study and estimate its maximum impact, an ITZ of 100 μm thick was 

created outside the boundaries of all the randomly shaped and distributed aggregates generated by following the 

steps described in Section 3.1.1. Previous research has shown that the porosity of the ITZ is greater than that of 

bulk paste and was estimated up to 40% [39]. In order to study the effects of the porosity of ITZ on the distribution 

of the irregular carbonation depth, the porosity of the ITZ in this study was assumed to be 19.2%, 25.6% and 

32.0%, which are, respectively, 1.5, 2.0 and 2.5 times higher than the porosity of the cement paste (12.8%). Fig. 

15 (a-c) show the carbonation profile of the concrete with ITZ porosity of 12.8%, 19.2%, 25.6% and 32.0%, 

respectively, where Fig. 15 (a) is equivalent to the result without considering existence of ITZ. The porosity of 

the cement mortar are randomly distributed with a CVp of 0.4. The supercritical carbonation time is 5 hours. It 

is clear from Fig.15 that the carbonation profiles are different for different ITZ porosities.  

    
a) 12.8% b) 19.2% 3) 25.6% 4) 32.0% 

Fig. 15. The carbonation profiles of concrete of different ITZ porosities 

The effect of ITZ porosity on the maximum, average and minimum carbonation depths are shown in Fig. 

16 (a). It is evidence that the ITZ has noticeable effect on the average, maximum and minimum carbonation 

depth. It appears that predicted maximum and average carbonation depths without considering the effect of ITZ 

are underestimated, while the effect of ITZ on the minimum carbonation depth is less significant. To study the 

effect of ITZ porosity on the coefficient of variation of carbonation depth, the coefficient is evaluated against 

different carbonation times and ITZ porosity. Fig. 16 (b) shows that the coefficient of variation of carbonation 

depth is hardly affected by the porosity of ITZ and carbonation time.  
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Fig. 16. Effects of ITZ porosity on the carbonation depth of concrete 

 

4. Conclusions 

Experimental investigations and multi-physics modelling of concrete under supercritical carbonation have 

been reported. Supercritical carbonation tests on concrete were performed. A novel random coarse aggregates 

model was proposed and combined with the random porosity model proposed previously by the authors to study 

the effect of coarse aggregates and porosity on the irregularity of carbonation depth. The effect of types, volume 

fractions and gradations of coarse aggregates on the average carbonation depth were studied. Their variance and 

the coefficient of variation of carbonation depth were also studied. Based on the experimental and numerical 

studies, the main conclusions as follows: 

1) The proposed two-dimensional random coarse aggregates model can be used satisfactorily to generate 

different types of coarse aggregates for required mix proportion and coarse aggregate gradation. It can also 

generate mixed aggregates of pebbles and crushed stones. 

2) When considering only random distribution of coarse aggregates in the supercritical carbonation model, 

the variance of carbonation depth is smaller than that of the test results. The variance of the simulated carbonation 

depth is close to the test results by considering random distributions of both coarse aggregates and cement 

porosity. Thus, the proposed two-dimensional random coarse aggregates model together with the proposed 

random porosity field can satisfactorily predict the irregularity of carbonation depth statistically. 

3) The pilot study on ITZ showed that ITZ has negligible effect on the coefficient of variation of carbonation 

depth, while an underestimated maximum carbonation depth may be predicted by the model without 

consideration the effect of ITZ. In principle, however, an increase of porosity in the ITZ will result in an increase 

of the maximum, average and minimum carbonation depths. Further investigations are required to have better 

understanding of this relationship. 

4) Further researches are also required to include micro cracks in the supercritical carbonation model of 

concrete.  
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