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BIOMIMETIC PORE STRUCTURES AND METHODS OF MAKING BIOMIMETIC

PORE STRUCTURES

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Application

Serial No. 62/080,082, having the title "Urea-Templated Materials," filed on November 14,

2014, the disclosure of which is incorporated herein in by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR

DEVELOPMENT

This invention was made with Government support under contract DMR 0805298

awarded by the National Science Foundation. The Government has certain rights in the

invention.

BACKGROUND

Tissues in the body are hierarchically structured composite materials with

tissue-specific properties. Although it is possible to employ 3D printing technologies to

prepare porous materials, it is challenging to fabricate porous structures accurately mimicking

native tissues. Thus, there is a need to overcome difficulties in known methods or find

alternatives.

SUMMARY

Embodiments of the present disclosure provide for tissue scaffolds, biodegradable

porous tissue scaffolds, biodegradable electroactive tissue scaffolds, biodegradable

electroactive porous tissue scaffolds, methods of makes each type of tissue scaffold, methods

of using each type of tissue scaffold, and the like.

An embodiment of the present disclosure provides for a method of forming a tissue

scaffold, among others, that includes: mixing a solution including urea and a non-aqueous

solvent with a polymer that is soluble with the solvent to form a mixture; disposing the

mixture on a substrate; and removing the solvent from the mixture to form a tissue scaffold.

In an embodiment, the method can also include: removing the urea from the tissue scaffold to

form a biodegradable porous tissue scaffold, wherein removal of the urea forms pores within

the tissue scaffold to form the biodegradable porous tissue scaffold. In an embodiment, the



non-aqueous solvent can be: formic acid, trifluoroacetic acid, hexafluoroisopropanol,

hexafluoroacetone hydrate, methanol, ethanol, propanol, isopropanol, acetophenone,

methoxyethanol, ethanediol, 1,2-propanediol, 1,3-propanediol, glycerol, glycerol

monoacetate, glycerol diacetate, methylacetate, ethylacetate, allyl alcohol, furfuryl alcohol,

diacetone alcohol, benzyl alcohol, cyclohexanol or a combination thereof. In an embodiment,

the polymer is selected from the group consisting of: nylon, hydroxybutyric acids,

polyanhydrides, polphosphazenes, polyphosphoesters, polyethers, polysilanes, polysiloxanes,

polyurethanes,) polycaprolactone, polyesters, polyamides, PCL, PLLA, PLGA, lignins,

polyalanine, oligoalanine, collagen, silk, cellulose, chitin, chitosan, dextran, or a combination

thereof.

In an embodiment, the method can include an electroactive tissue scaffold by

polymerizing an electroactive polymer with the tissue scaffold. In an embodiment, the

method can include removing the urea from the electroactive tissue scaffold to form a

biodegradable electroactive porous tissue scaffold, wherein removal of the urea forms pores

within the tissue scaffold to form the biodegradable electroactive porous tissue scaffold. In

an embodiment, the electroactive polymer can be: polypyrrole, polyaniline, polythiophene,

poly(3,4-ethylenedioxythiophene), poly fluorenes, polyphenylenes, polypyrenes,

polyazulenes, polynapthalenes, polyindoles, polyazepines, poly(p-phenylene sulfide)s,

poly(p-phenylene vinylene)s, polyfurans, or a combination thereof.

In an embodiment, the substrate can includes a network of channels, wherein the

mixture is disposed in the network of channels, wherein the method further includes:

removing the substrate to form the tissue scaffold having a network of pores extending

through the tissue scaffold. The network of channels are aligned relative to one another and

each of the channels in the network of channels has a diameter of about 50 nm to 100 µιη and

the length of about 1 cm to 10 cm. In an embodiment, the method also includes removing the

urea from the tissue scaffold to form a biodegradable porous tissue scaffold, wherein removal

of the urea forms pores within the tissue scaffold to form the biodegradable porous tissue

scaffold.

In an embodiment, the pores formed from removal of the urea are of the type selected

from the group consisting of: dendritic, linear, and a combination thereof.

An embodiment of the present disclosure includes a structure, among others, that

includes: a tissue scaffold including a polymer and urea, wherein the polymer is soluble in a

non-aqueous solvent selected from the group consisting of: formic acid, trifluoroacetic acid,

hexafluoroisopropanol, hexafluoroacetone hydrate, methanol, ethanol, propanol, isopropanol,



acetophenone, methoxyethanol, ethanediol, 1,2-propanediol, 1,3 -propanediol, glycerol,

glycerol monoacetate, glycerol diacetate, methylacetate, ethylacetate, allyl alcohol, furfuryl

alcohol, diacetone alcohol, benzyl alcohol, cyclohexanol and a combination thereof. In

addition, the structure can include an electroactive polymer. The urea is in the form of urea

crystals, wherein the urea crystals have a crystal structure selected from the group consisting

of: dendritic, linear, or a combination thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the present disclosure can be better understood with reference to the

following drawings.

Figure 1.1 demonstrates hydrogen bond mediated self-assembly of supracolloidal

assemblies of urea that act as sacrificial templates to impart pores in biomaterials.

Figures 1.2A-D are brightfield microscope images of urea crystals. (1.2A) Formed by

uncontrolled crystallization from solutions of urea in formic acid (scale bar, 200 µιη); (1.2B)

Formed by uncontrolled crystallization from solutions of urea in hexafluoroacetone hydrate

(scale bar, 200 µιη); (1.2C) Formed by uncontrolled crystallization from solutions of urea in

hexafluoroisopropanol (scale bar, 200 µιη); and (1.2D) Formed by controlled crystallization

from solutions of urea in hexafluoroisopropanol in a Pasteur pipette (scale bar, 500 µιη) .

Figures 1.3A-F are images of urea crystal-templated silk films. (1.3A) Brightfield

microscope image of urea crystal-templated silk films from solution in formic acid (scale bar,

600 µιη); (1.3B) SEM image of urea crystal-templated silk films formed from solution in

formic acid (scale bar, 200 µιη); (1.3C) Brightfield microscope image of urea crystal-

templated silk films formed from solution in hexafluoroacetone hydrate (scale bar, 600 µιη);

(1.3D) SEM image of urea crystal-templated silk films formed from solution in

hexafluoroacetone hydrate (scale bar, 100 µιη); (1.3E) SEM image of urea crystal-templated

silk films formed from solution in hexafluoroisopropanol (scale bar, 100 µιη); and (1.3F)

SEM image of urea crystal-templated silk films formed from solution in water (scale bar, 100

µιη) . Images are representative of at least 3 locations on 3 samples.

Figure 1.4 is an image of fibroblasts on the surface of the porous silk substrates stained

with DAPI (nuclei) and Alexa Fluor 488® Phalloidin (actin filaments); scale bar, 100 µιη.

Images are representative of at least 3 locations on 3 samples.

Figure 2.1 is a hydrogen bond-mediated self-assembly of urea.

Figures 2.2A-D demonstrate the template manufacture process. (2.2A) Illustration of

the experimental setup used to produce the hard acrylic master template with grooves with



widths and heights of 2 mm. (2.2B) Examples of the hard acrylic master templates produced:

(left) grooves with widths and heights of 2 mm; (center) grooves with widths and heights of 1

mm; (right) grooves with widths and heights of 0.5 mm. (2.2C) Examples of the flexible

PDMS templates produced: (left) grooves with widths and heights of 2 mm; (right) grooves

with widths and heights of 1 mm. (2.2D) Illustration of the experimental setup using the

flexible, grooved PDMS template covered with a glass slide, which facilitates controlled

solvent evaporation and thereby preferential alignment of urea crystals within the grooves.

Figure 2.3 is an experimental setup for electrical stimulation of electroactive PCL-

based tissue scaffolds (not to scale). (CE) counter electrode. (CT) copper tape. (PCL)

electroactive PCL-based tissue scaffolds. (PCW) polycarbonate well. (RE) reference

electrode. (WE) working electrode.

Figures 2.4A-D are scanning electron microscope images of sections of PCL-based

tissue scaffolds with aligned pores. (2.4A) Millimeter and micrometer scale topography of

non-electroactive scaffolds, scale bar represents 500 µιη. (2.4B) Micrometer and nanometer

scale topography of non-electroactive scaffolds, scale bar represents 10 µιη. (2.4C)

Millimeter and micrometer scale topography of electroactive scaffolds, scale bar represents

500 µιη. (2.4D) Micrometer and nanometer scale topography of electroactive scaffolds

showing evidence of increased nanometer scale surface roughness due to the presence of an

interpenetrating network of PPy and PSS interwoven within the PCL matrix, scale bar

represents 10 µιη.

Figures 2.5A-D demonstrates spectroscopic analysis of PCL-based tissue scaffolds. (2.5A

and 2.5B) FTIR spectra of PCL-based tissue scaffolds with aligned pores: (2.5A) non-

electroactive scaffolds, (2.5B) electroactive scaffolds. Peaks observed at ca. 1543 and ca.

1480 c 1 are characteristic of the antisymmetric and symmetric ring stretching modes of

pyrrole [65,78]. (C and D) XPS spectra of PCL-based tissue scaffolds with aligned pores:

(2.5C) non-electroactive scaffolds, (2.5D) electroactive scaffolds. Peaks at ca. 400 eV (N Is)

and ca. 168 eV (S 2p) are characteristic of PPy and PSS, respectively [65,79].

Figure 2.6A-B are in vitro degradation profiles of the PCL-based tissue scaffolds in

PBS. (2.6A) Non-electroactive scaffolds: black circles in the absence of cholesterol esterase;

grey circles in the presence of cholesterol esterase. (2.6B) Electroactive scaffolds: black

circles in the absence of cholesterol esterase; grey circles in the presence of cholesterol

esterase. Error bars represent standard deviations.

Figures 2.7A-B show that cells respond to the topography of the PCL-based tissue

scaffolds substrates and align on the substrates. (2.7A) Schwann cells on non-electroactive



scaffolds (scale bar represents 50 µηι); (2.7B) Schwann cells on electroactive scaffolds

without electrical stimulation (scale bar represents 50 µιη) .

Figure 2.8 graphs the concentration of Schwann cell-produced NGF in the culture

medium. Black circles) commercially available tissue-culture treated Corning® Costar® tissue

culture plates. (Red circles) non-electroactive PCL-based tissue scaffolds. (Yellow circles)

electroactive PCL-based tissue scaffolds without electrical stimulation. (Blue circles)

electroactive PCL-based tissue scaffolds with electrical stimulation. Error bars represent

standard deviations.

DETAILED DESCRIPTION

This disclosure is not limited to particular embodiments described, and as such may,

of course, vary. The terminology used herein serves the purpose of describing particular

embodiments only, and is not intended to be limiting, since the scope of the present

disclosure will be limited only by the appended claims.

Where a range of values is provided, each intervening value, to the tenth of the unit of

the lower limit unless the context clearly dictates otherwise, between the upper and lower

limit of that range and any other stated or intervening value in that stated range, is

encompassed within the disclosure. The upper and lower limits of these smaller ranges may

independently be included in the smaller ranges and are also encompassed within the

disclosure, subject to any specifically excluded limit in the stated range. Where the stated

range includes one or both of the limits, ranges excluding either or both of those included

limits are also included in the disclosure.

As will be apparent to those of skill in the art upon reading this disclosure, each of the

individual embodiments described and illustrated herein has discrete components and features

which may be readily separated from or combined with the features of any of the other

several embodiments without departing from the scope or spirit of the present disclosure.

Any recited method may be carried out in the order of events recited or in any other order that

is logically possible.

Embodiments of the present disclosure will employ, unless otherwise indicated,

techniques of organic chemistry, biochemistry, microbiology, molecular biology,

pharmacology, medicine, and the like, which are within the skill of the art. Such techniques

are explained fully in the literature.

Prior to describing the various embodiments, the following definitions are provided

and should be used unless otherwise indicated.



Unless otherwise defined, all technical and scientific terms used herein have the same

meaning as commonly understood by one of ordinary skill in the art of microbiology,

molecular biology, medicinal chemistry, and/or organic chemistry. Although methods and

materials similar or equivalent to those described herein can be used in the practice or testing

of the present disclosure, suitable methods and materials are described herein.

As used in the specification and the appended claims, the singular forms "a," "an,"

and "the" may include plural referents unless the context clearly dictates otherwise. Thus, for

example, reference to "a support" includes a plurality of supports. In this specification and in

the claims that follow, reference will be made to a number of terms that shall be defined to

have the following meanings unless a contrary intention is apparent.

Discussion :

Embodiments of the present disclosure provide for tissue scaffolds, biodegradable

porous tissue scaffolds, biodegradable electroactive tissue scaffolds, biodegradable

electroactive porous tissue scaffolds, methods of makes each type of tissue scaffold, methods

of using each type of tissue scaffold, and the like.

In an embodiment of the present disclosure a sacrificial biodegradable material (e.g.,

urea crystals) can be removed from a tissue scaffold to form a porous tissue scaffold.

Removal of sacrificial material from a matrix is a comparatively low cost alternative that

allows the generation of hierarchically organized pores in the tissue scaffold. Selection of

non-aqueous solvents can be used to expand the scope of polymers that are compatible with,

while selection of non-aqueous solvents in conjunction with specific polymers allow control

of the topography (e.g., type (e.g., linear, dendritic, or a combination thereof) and dimensions

(e.g., on the nanoscale) of the pores) of the tissue scaffold. Embodiments of the present

disclosure discuss the role of solvent interactions on the morphology of the resulting

supracolloidal crystals. In particular, embodiments of the present disclosure can be used to

prepare silk (e.g., B. mori silk) protein-based biomaterials with pores that cells (e.g., human

dermal fibroblasts, Schwann cells, and the like) respond to by aligning with the long axis of a

network of macroscale pores. Embodiments of the present disclosure can be used in tissue

engineering in which cell alignment is observed, including skin, bone, muscle and nerve.

Additional details are provided herein and in the Examples.

In an embodiment, the tissue scaffolds can be made so that they also have

electroactive properties that can allow for electrical stimulation of, for example, cells cultured

on the tissue scaffolds. The electrical stimulation can be applied periodically. In a particular



embodiment, a cell and/or tissue can be incubated with the electroactive tissue scaffold and

cultured in an appropriate medium so that the cells are stimulated. In an embodiment, the

electrical stimulation increased the production of nerve growth factor (NGF) to more than

three times the amount produced by non-stimulated cells, which may improve clinical

outcomes during peripheral nerve regeneration. Additional details are provided herein and in

the Examples.

In an embodiment, tissue scaffolds of the present disclosure can be used to deliver

agents such as drugs, antibacterial agents, and antifungal agents.

An embodiment of the present disclosure includes forming a tissue scaffold. In an

embodiment, the method includes mixing a solution including urea (i.e., CO(NH2)2) and a

non-aqueous solvent with a polymer that is soluble with the solvent to form a mixture. The

ratio of the amount of polymer to urea can be about 99 to 1 or about 1 to 4. The mixture is

disposed on a substrate and then the solvent is removed from the mixture in a controlled or

uncontrolled manner. Uncontrolled evaporation of the solvent typically results in crystals not

being aligned, whereas, by controlling evaporation such that solvent preferentially evaporates

from one or more specific positions it is possible to initiate the crystallization of urea to yield

long, directionally aligned crystals. The urea crystals formed can be of the dendritic type,

linear type, or a combination thereof. The type and dimensions (e.g., nanoscale (e.g., about

50 nm to 500 µιη or about 1 to 500 µιη)) of the urea crystals formed can be controlled by

selection of the non-aqueous solvent and the polymer.

Subsequently, the urea crystals can be removed from the tissue scaffold to form a

biodegradable porous tissue scaffold. Removing the urea crystals forms pores within the

tissue scaffold, where the pores have nanoscale dimensions and are separate from the network

of pores described shortly which are of the microscale. The pores formed from removal of

the urea crystals are of the types: dendritic, linear, and a combination thereof. Additional

details are described in the Examples.

In an embodiment, the polymer is insoluble or sparingly soluble (<0. 1 mg ml 1) in

water. The polymer is soluble in a non-aqueous solvent such as formic acid, trifluoroacetic

acid, hexafluoroisopropanol, hexafluoroacetone hydrate, methanol, ethanol, propanol,

isopropanol, acetophenone, methoxyethanol, ethanediol, 1,2-propanediol, 1,3 -propanediol,

glycerol, glycerol monoacetate, glycerol diacetate, methylacetate, ethylacetate, allyl alcohol,

furfuryl alcohol, diacetone alcohol, benzyl alcohol, cyclohexanol and a combination thereof.

The polymer can include a synthetic polymer (e.g., polyesters, polyamides,

polyurethanes, PCL, PLLA, PLGA, nylon, hydroxybutyric acids, polyanhydrides,



polphosphazenes, polyphosphoesters, polyethers, polysilanes, polysiloxanes or pellethane), a

natural polymer (e.g. proteins, polysaccharides, lignins, polyalanine, oligoalanine, collagen,

silk, cellulose, chitin, chitosan, or dextran), or a combination thereof. In an embodiment, the

tissue scaffold can include a mixture of different types of polymers (e.g., a portion of

polycaprolactone polymer and another polyester).

In an embodiment, an electroactive polymer can be included in the tissue scaffold. In

an embodiment the electroactive polymer can be added to the tissue scaffold after the

polymer is mixed with the urea to form the tissue scaffold or the electroactive polymer,

polymer, and urea can be mixed together prior to forming the tissue scaffold. Introduction of

the electroactive polymer to the tissue scaffold can produce an electroactive tissue scaffold

and removal of the urea can result in the formation of an electroactive porous tissue scaffold.

In this regard, embodiments of the present disclosure include tissue scaffolds (e.g.,

biodegradable electroactive tissue scaffolds, biodegradable electroactive porous tissue

scaffolds) that include a polymerizable electrically responsive unit (e.g., pyrrole) that is

attached by polymerization (e.g., covalently, non-covalently, or as an interpenetrating

network) within the polymer matrix (e.g., polycaprolactone matrix) in order to form an

electroactive tissue scaffold upon which cells or tissues can be cultured. In an embodiment,

the micro- and nano-topological features (e.g., grooves, pores, bumps or other topological

features) of the matrix can be preserved during polymerization with the unit. In an

embodiment, electroactive tissue scaffolds can also be used as electroactive actuators capable

of mechanotransduction of cells such as stem cells.

In an embodiment, the electroactive polymer (conducting polymer) can include

polymers such as polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene),

poly fluorenes, polyphenylenes, polypyrenes, polyazulenes, polynapthalenes, polyindoles,

polyazepines, poly(p-phenylene sulfide)s, poly(p-phenylene vinylene)s, and polyfurans. In an

embodiment, there are biodegradable versions, in which there are block of conducting units

within a polymer chain containing biodegradable bonds (e.g. esters and amides), that can also

be used as the conducting polymer. In an embodiment, the electroactive polymer can be used

in conjunction with a dopant. The dopant can be a polymer that has the opposite charge to

the conducting polymer, and can be low molecular weight (e.g., chlorine ions, tosylate ions,

and the like) or high molecular weight (e.g., collagen, hyaluronic acid, and the like).

In an embodiment, the electroactive polymer can be about 1 to 99 or about 2 to 10

weight percent of the tissue scaffold.



As mentioned above, the mixture is disposed on a substrate. In an embodiment, the

substrate can be flat or can have contours (e.g., to form topographic features in or through the

tissue scaffold). In an embodiment, the substrate can be used to form a network of pores or

channels that extend through the width of the tissue scaffold. In addition the network of

channels can be aligned relative to one another, which can be achieved by controlled

evaporation of the solvent from the mixture (polymer/urea solution), thereby initiating

directional crystallization of the urea. In an embodiment, the substrate can include a network

of channels and areas outside of the network of channels. The mixture can be disposed in the

network of channels but not on the areas outside of the network of channels. The mixture can

be dried and the tissue scaffold formed according to the topography of the substrate so that a

network of pores extends through the tissue scaffold. In an embodiment, each of the pores in

the network of pores has a diameter, if spherical, or other dimension if not spherical, of about

10 nm to 500 µιη or about 50 nm to 100 µιη and has a length through the tissue scaffold (or

the width of the tissue scaffold) of about 1cm to 10 cm or about 0.5 cm to 3 cm. In an

embodiment, the tissue scaffold has pore as a result of the structure and as a result of the

removal of the urea crystals.

Having described embodiments of making tissue scaffolds, additional details

regarding tissue scaffolds are now described. As mentioned above, various types of tissue

scaffolds have been disclosed including: biodegradable porous tissue scaffolds, biodegradable

electroactive tissue scaffolds, biodegradable electroactive porous tissue scaffolds, and the

like. The term "biodegradable" refers to polymers that degrade through the action of a

physicochemical (e.g., hydrolysis, pH) or biological (e.g., enzyme) trigger that the polymer is

exposed to in use.

An embodiment of the tissue scaffold includes a tissue scaffold including the polymer

and urea, wherein the polymer is not soluble in water. In this embodiment the urea has not

yet been removed. Once the urea is removed, the tissue scaffold can be porous due to the

removal of the urea crystals. In this regard, the type and/or dimension of the urea crystals

that are formed can be controlled so that pores formed upon their removal have a certain

porous structure (e.g., dendritic, linear). In an embodiment, the tissue scaffold can include an

electroactive polymer to produce an electroactive tissue scaffold. In addition, the topography

of the tissue scaffold can be tailored to accomplish desired goals. For example, the

topography can be tailored using the substrate, where in an embodiment, the substrate is

designed so that a network of channels is formed through the tissue scaffold.



As mentioned above, embodiments of the disclosure provide for methods of

stimulating cells or tissue. An embodiment of the present disclosure includes introducing

cells to the tissue scaffold, where the tissue scaffold (and optionally a tissue or other cells)

and the cells are cultured in an appropriate medium. Subsequently, electrical stimulation can

be periodically applied to the cells to cause a desired outcome.

Electrical stimulation can include direct contact of the material with a power source

via a wire, wireless energy transfer, magnetic force, and the like. The term "periodically"

refers to applying the electrical stimulation at established time frames that may be at regular

or irregular time intervals on the time frames of seconds, hours, days, weeks, or months (e.g.,

about 1 s to 2 months, about 1 hour to 1 day, about 1 day to 1 month, or other the like)

depending upon the specific circumstances. In an embodiment, the impulses of the electrical

stimulation can last on the time frame of seconds, hours, or days (e.g., about 1 second to 1

day, about 10 seconds to 1 hour, about 1 minute to 12 hours, about 1 hour to 1 day, or the

like) depending upon the specific circumstances. In an embodiment, the electrical

stimulation can be in the range of millivolts to volts (e.g., about 10 mV to 10 volts, about 1

mV to 100 mV, or the like). The time frame, duration of electrical stimulation, and intensity

of the electrical stimulation can be designed based on particular circumstances and

requirements of a specific situation.

In an embodiment, the tissue scaffold can include one or more agents (e.g., a chemical

or biological agent), where the agent can be disposed indirectly or directly on the tissue

scaffold. In an embodiment, the agent can include, but is not limited to, a drug, a therapeutic

agent, a radiological agent, a small molecule drug, a biological agent (e.g., polypeptides (e.g.,

proteins such as, but not limited to, antibodies (monoclonal or polyclonal)), antigens, nucleic

acids (both monomeric and oligomeric), polysaccharides, haptens, sugars, fatty acids,

steroids, purines, pyrimidines, ligands, and aptamers) and combinations thereof, that can be

used to image, detect, study, monitor, evaluate, and the like. In an embodiment, the agent is

included in an effective amount to accomplish its purpose, where such factors to accomplish

the purpose are well known in the medical arts.

In general, the agent can be bound to the tissue scaffold by a physical, biological,

biochemical, and/or chemical association directly or indirectly by a suitable means. The term

"bound" can include, but is not limited to, chemically bonded (e.g., covalently or ionically),

biologically bonded, biochemically bonded, and/or otherwise associated with the material. In

an embodiment, being bound can include, but is not limited to, a covalent bond, a non-

covalent bond, an ionic bond, a chelated bond, as well as being bound through interactions



such as, but not limited to, hydrophobic interactions, hydrophilic interactions, charge-charge

interactions, π-π stacking interactions, combinations thereof, and like interactions."

While embodiments of the present disclosure are described in connection with the

Examples and the corresponding text and figures, there is no intent to limit the disclosure to

the embodiments in these descriptions. On the contrary, the intent is to cover all alternatives,

modifications, and equivalents included within the spirit and scope of embodiments of the

present disclosure.

EXAMPLE:

Example 1:

Bodily tissues are hierarchically structured composite materials with tissue-specific

properties that act as cues that dictate the behavior of cells that inhabit them, and such

properties can potentially be engineered into instructional tissue scaffolds to achieve similar

results [1-6]. Topographical control of cell alignment is clearly observable within

anisotropically aligned pores that are observed in bone, muscle, nerve and other tissues,

which motivates the development of novel methodologies of imparting biomimetic porous

structures within biomaterials [1-6].

Silk protein-based materials are produced by a number of different species (the most

widely studied being that of the domesticated B. mori silkworm) [5,7-10], many of which

display interesting mechanical properties and low immunogenicity, and have led to the

development of engineered silk-inspired proteins produced recombinantly [ 11-15], or silk-

inspired polymers produced by synthetic chemists [15]. Silk-based biomaterials are popular for

a variety of applications because of: (1) their ease of processing in a variety of different

solvents (including water, ionic liquids, formic acid, hexafluoroacetone hydrate and

hexafluoroisopropanol); (2) the morphologies that can be manufactured (fibers, films, foams,

hydrogels); and (3) their ease of chemical modification [7-15]. Silk-based biomaterials and

their composites are capable of controlled drug delivery, and of acting as cell adhesive tissue

scaffolds for a variety of different niches both in vitro and in vivo [7-15].

Although it is possible to employ 3D printing technologies to prepare porous

materials, it is challenging to fabricate porous structures accurately mimicking native tissues

[1-6]. The removal of sacrificial templates (e.g., colloidal crystals, ice crystals, electrospun

fibers) from a matrix is an alternative approach that allows the generation of hierarchically

organized pores in materials [1-6], potentially on the nanoscale [16]. Urea is an inexpensive,

non-toxic solid that self-assembles into supracolloidal crystals. The uncontrolled evaporation



of water from aqueous solutions of urea yields random networks of dendritic crystals, whereas

controlled use of urea seed crystals to initiate crystallization yields relatively well aligned

crystals over the length scale of a few hundred micrometers [17]. Zawko and coworkers

reported the use of urea to impart pores within photocrosslinkable biopolymer-based

hydrogels that typically have mechanical properties similar to soft, and fibroblasts cultured

within the gels were observed to align parallel to the fibrillar microstructure of the hydrogels

[17]. While entirely aqueous manufacturing processes are appealing, they restrict the

selection of materials used to those that are soluble in water (e.g., polysaccharides), and there

are many water insoluble polymers used in the clinic. Therefore we used a non-aqueous

solvent hexafluoroisopropanol (HFIP) to generate urea-templated polycaprolactone foams

[18]. We also reported a simple scalable methodology for aligning the supracolloidal crystals

that allows the generation of pores that were aligned over length scales of multiple

centimeters within which Schwann cells from the peripheral nervous system aligned [18].

In this Example, we explain the solvent interactions governing the solubility of urea

which enables us to expand the range of solvents compatible with our urea-based

supracolloidal crystal templating methodology, and thereby broadens the scope of polymers it

is compatible with. We also highlight the role of solvent interactions on the morphology of

the resulting supracolloidal crystals, and moreover, the role of polymer-porogen (silk-urea)

interactions on the morphology of the pores in the resulting biomaterials. Finally, we

demonstrate that it is possible to use our urea templating methodology to prepare silk protein-

based biomaterials with aligned pores that permit cell growth and alignment (Figure 1.1).

Results and Discussion

Urea Solubility in Non-Aqueous Solvents

A parameterized approach was used to investigate the ability of non-aqueous solvents

to dissolve urea. Solvent-solute interactions play an important role in supramolecular

chemistry which has led to quantitative studies of the role of solvents in self-assembly

processes [19-24]. The bulk properties (e.g., boiling point, density) or molecular level

properties (such as specific intermolecular forces) can be quantified and parameterized. Bulk

property parameters include the dielectric constant (ε) and Reichardt's parameter (Ε , a

measure of ionizing power). Molecular level parameters include the Hildebrand solubility

parameter, δ (expressed in terms of the total solubility parameter, δο, which is described by

the dispersion, polar, and hydrogen bonding parameters, , δρ, and δ¾ respectively. The

parameters δρ and δ are described in terms of a combined polar solubility parameter, a, and



the Kamlet-Taft parameters, π* (a generalized polarity parameter), a (the ability to donate

hydrogen bonds), and β (the ability to accept hydrogen bonds). The effects of solvents on the

hierarchical assembly of supramolecular polymers in non-aqueous solvents have been studied

for self-assembling peptides, and while there was a general correlation between the ability of

supramolecular polymers to form and the polar solubility parameter, a [19-24], the precise

hydrogen-bonding nature of the solvent in terms of Kamlet-Taft parameters (i.e.,

deconvolution of the hydrogen bond donors and acceptors) was important to fully understand

the solvent effects [19-24]. Hydrogen bond donor solvents but not acceptors, played a key

role in disrupting amide-mediated self-assembly in non-aqueous solvents.

To generate highly porous biomaterials w e require the sacrificial template to be highly

soluble in the solvent used during polymer processing. Thus w e investigated the ability of a

variety of non-aqueous solvents to dissolve urea at a concentration of 100 mg/mL (see Table

1.1), an arbitrary concentration equivalent to the concentration of polymer, thereby assuring

the presence of pores with micrometer scale diameters in the resulting materials.

Boiling Surface
Solubility

Solvent ε Ε π* a B point tension
of Urea

(°C) (niN/m)

Cyclohexane 2.10 0.006 0.00 0.00 0.00 80.7 25.0 I.S.

Toluene 2.38 0.099 0.49 0.00 0.11 110.6 28.5 I.S.

Chloroform 4.80 0.259 0.69 0.44 0.00 61.2 26.7 I.S.

Tetrahydrofuran 7.58 0.207 0.55 0.00 0.55 66.0 26.4 I.S.

Dichloromethane 8.93 0.309 0.73 0.30 0.00 39.6 26.5 I.S.

Ethyl acetate 36.6 0.18 0.55 0.00 0.45 77.1 23.8 I.S.

Acetonitrile 45.60 0.460 0.75 0.19 0.40 82.0 19.1 I.S.

Isopropanol 49.20 0.570 0.48 0.76 0.84 82.6 23.0 I.S.

Butanol 50.20 0.600 0.47 0.84 0.84 117.4 24.2 I.S.

Ethanol 51.90 0.650 0.54 0.86 0.75 78.4 22.3 I.S.

Methanol 55.40 0.760 0.60 0.98 0.66 64.7 22.5 s
Formic acid 57.70 0.830 0.65 1.23 0.38 100.8 37.7 s

Hexafluoroisopropanol 65.30 1.070 0.65 1.96 0.00 58.2 16.1 s
Hexafluoroacetone-3H 20 N.R. N.R. N.R. N.R. N.R. -26.0 N.R. s

Water 63.10 1.000 1.09 1.17 0.47 100.0 72.8 s



Table. 1.1. The properties of the non-aqueous solvents investigated for the

dissolution of urea at a concentration of 100 mg/mL. Solvent parameters:

dielectric constant (ε), Reichardt's parameter (ET), and Kamlet-Taft parameters,

π*, , and β. (N.R.) Not reported in the literature; Hexafluoroacetone is a gas

and it evaporates readily from aqueous solutions; (IS.) insufficiently soluble; and

(S) sufficiently soluble.

The solubility of urea in the various solvents was clearly correlated to the parameters

describing the bulk properties of the solvent (i.e., the dielectric constant (ε) and Reichardt's

parameter (Ε )). Indeed, solvents with dielectric constants and Reichardt's parameters similar

to water were the most potent solvents for urea, and there was a threshold of dielectric

constants and Reichardt's parameters below which the urea was insoluble (ca. 55 and 0.75,

respectively). Interestingly, the Kamlet-Taft polarity parameters provided useful insight into

the importance of individual molecular level interactions on the solubility of urea in the

respective solvents. There was no clear correlation between the ability of a solvent to dissolve

urea and the generalized polarity parameter, π*. While solvents capable of dissolving urea all

had π* values of 0.60 or above, this was not a general rule: acetonitrile, chloroform, and

dichloromethane (with π* values of 0.75, 0.69 or 0.73 respectively) were poor/non-solvents.

There was no correlation between the ability of a solvent to dissolve urea and its ability to

accept hydrogen bonds (β) . Hexafluoroisopropanol (β = 0) was an excellent solvent for urea

whereas cyclohexane (β = 0) was a non-solvent for urea. The Kamlet-Taft parameter that

gave the clearest insight into the ability of a solvent to dissolve urea was its ability to donate

hydrogen bonds (a), and all of the solvents capable of dissolving urea had a values of ca. 1 or

more. Although the solvent parameters for hexafluoroacetone hydrate are not reported in the

literature, the acidity of the hydrate (pKa = 6.58) make it a strong hydrogen bond donor

capable of dissolving urea [25]. The solvents presented are clearly not an exhaustive list of

those capable of dissolving urea at high concentrations, however our parameterized approach

to investigating the ability of solvents to dissolve urea should enable others to easily identify

other solvents for urea (or analogous sacrificial porogens).

Importantly, the solvents we found to be good solvents for urea (formic acid,

hexafluoroisopropanol, hexafluoroacetone hydrate) are suitable for the dissolution of a

variety of polymers (including clinically relevant polyesters, peptides, proteins,



polyurethanes, etc.) which significantly broadens the scope of biomaterials our methodology

would be applicable for.

The Role of Solvent Choice on the Morphology of the Sacrificial Supracolloidal Porogens

Of the non-aqueous solvents identified as being capable of dissolving urea (i.e.,

formic acid, hexafluoroacetone hydrate, hexafluoroisopropanol and methanol) we

investigated formic acid, hexafluoroacetone hydrate and hexafluoroisopropanol in more detail

(we omitted methanol because it is a non-solvent for silk and known to beta-sheet formation

in the silk) [8-15].

Solvent evaporation from aqueous solutions of urea yields dendritic crystals if

performed uncontrolled, or less dendritic and relatively well aligned crystals (over the length

scale of a few hundred micrometers) if crystallization is initiated in a controlled fashion prior

to evaporation using seeds of urea crystals [17]. Thus, we investigated urea crystallization

from non-aqueous solvents under both uncontrolled and controlled evaporation conditions.

Urea crystallization is controlled by the rate of evaporation of solvent from the solution of

urea (100 mg/mL). Uncontrolled urea crystallization experiments were carried out by simply

applying urea solutions to the surface of glass microscope slides and allowing the solvent to

evaporate. Preliminary experiments attempting to control the directionality of urea

crystallization were carried out by sealing the tip of a Pasteur pipette, adding a quantity of

urea solution into the Pasteur pipette and allowing the solvent to evaporate slowly from the

wide end.

Of the solvents investigated, formic acid was the solvent with the boiling point and

surface tension closest to those of water, and we observed that uncontrolled urea

crystallization yielded somewhat dendritic crystals, with sections that were relatively well

aligned over the length scale of a few hundred micrometers (Figure 1.2A). Urea crystals

formed from the uncontrolled evaporation of either hexafluoroacetone hydrate (Figure 1.2B)

or hexafluoroisopropanol (Figure 1.2C) were less dendritic and showed alignment over the

length scale of millimeters, although this was not free of defects. Interestingly, controlling the

evaporation of hexafluoroisopropanol yielded crystals that were aligned over the length scale

of centimeters (Figure 1.2D). Consequently, we conclude that the solvent-solute interactions

govern not only the solubility of the solute, but also the morphology of the supracolloidal

assemblies resulting from the evaporation of the solvent.

As the hierarchical supracolloidal assemblies act as sacrificial templates to generate

porous biomaterials, we believe that it should be possible to tune the properties of such

supracolloidal assemblies in a rational way that will enable the generation of biomaterials



instructing cells to assemble in complex biomimetic patterns (e.g., concentric lamellae

observed in cortical bone, or helicoidal multi-lamellar alignment of corneal stroma tissue).

Recent advances in supramolecular architectonics, particularly DNA-mediated interactions

that have programmable structures from the A to colloidal length scales suggest that we will

see the first examples of these in the near future [26-32]. Moreover, the rational design of the

constituent supramolecular building blocks [33-37] offers the prospect of precisely

positioning functional species (e.g., nanoparticles) that may deliver therapeutics with precise

spatial control, or sense and report changes in the properties of the surrounding tissues (e.g.,

clusters of nanoparticles whose optical properties change in response to chemical, electrical

or mechanical triggers), which may be of use both in vitro and perhaps also in vivo.

Supracolloidal Tempiation of Porous Silk Biomaterials

Urea is a well-known and widely utilized protein denaturant in aqueous solutions, and

denatures proteins by disrupting the intermolecular and intramolecular hydrogen bonding

interactions that cause proteins to fold or associate into hierarchical assemblies. While the

uncontrolled crystallization of urea alone from formic acid yielded somewhat dendritic

crystals with sections that were relatively well aligned over the length scale of a few hundred

micrometers, the co-crystallization of urea and silk from formic acid, followed by washing to

remove the urea, yielded silk-based films with dendritic crystal-templated pores with

dimensions of ca. 20 100 µιη (Figures 1.3A-B). Likewise, co-crystallization of urea and silk

from hexafluoroacetone hydrate followed by washing also yielded silk-based films with very

fine dendritic crystal-templated pores with dimensions of approximately 5-10 µιη in diameter

and up to 100 µιη in length (Figure 1.33C-D). Co-crystallization of urea and silk from either

hexafluoroisopropanol (Figure 1.3E) or water (Figure 1.3F) followed by washing yielded

foams with larger pore diameters (10-40 µιη) and lengths extending several hundred

micrometers. These results suggest that molecular level interactions between the polymer and

sacrificial template (in this case hydrogen bonding interactions between the silk and urea),

and bulk solvent parameters (e.g., boiling point) play a role in dictating the morphology of

the macroscopic pore structures within biomaterials generated in this fashion. Evidence for

which can be observed in the predominantly dendritic pore structures in foams derived from

formic acid and hexafluoroacetone hydrate instead of the more linear pore structures in foams

derived from hexafluorisopropanol or water. In the future we foresee prospects for tuning the

polymer-porogen interactions that will facilitate rational design of pore structure within

biomaterials (particularly if DNA-architectonics were employed) [26-32].



Finally, to demonstrate that the pores imparted to silk-based biomaterials by

supracolloidal assemblies of urea act as topographical guidance cues for cells cultured inside

them, we cultured human dermal fibroblasts in water-derived scaffolds for five days.

Obtaining images of the live cells inside the scaffolds using the common cell-permeant dye

Calcein AM was challenging because of the strong background fluorescence of the scaffolds,

however, it was possible to obtain markedly improved images of the cells inside the scaffolds

after fixing them and staining with 4',6-diamidino-2-phenylindole (DAPI) (nuclei) and Alexa

Fluor 488® Phalloidin (actin filaments), and we observed that the fibroblasts preferentially

aligned with the pores inside the scaffold (Figure 1.4).

Experimental Section

Materials

Unless otherwise stated, all chemicals for synthesis and physicochemical analysis

were of American Chemical Society (ACS) grade, purchased from Sigma-Aldrich (St Louis,

MO, USA) and used as received without further purification. Bombyx mori silkworm fibroin

was purchased from eBay. Reagents for cell culture were purchased from Invitrogen

(Carlsbad, CA, USA) unless otherwise noted.

Urea Crystallization from Non-Aqueous Solvents

Urea was added to a non-aqueous solvent at a concentration of 0.1 g/mL. Samples

were shaken in airtight containers (typically 15 or 50 mL centrifuge tubes) at 1000 rpm using

a Thermomixer C (Eppendorf International, Hauppauge, NY, USA) for 48 h after which they

were visually assessed to determine if the urea was soluble. Optically clear solutions were

pipetted onto glass microscope slides (width 2.5 cm, length 7.5 cm) using disposable transfer

pipettes. The solvent was allowed to evaporate in a fume hood at room temperature for 48 h

and then dried under vacuum in a desiccator for 24 to 48 h . Preliminary experiments

attempting to control the directionality of urea crystallization were carried out by sealing the

tip of a Pasteur pipette, pipetting 200 of solution into the vertical Pasteur pipette and

allowing the solvent to evaporate slowly from the wide end. Images are representative of at

least 3 locations on 3 samples.

Urea crystal Templating of Porous Silk-Based Films

Silk (2 g) and urea (2 g) were dissolved in either formic acid (20 mL) or

hexafluoroacetone trihydrate (20 mL). Samples were shaken in airtight centrifuge tubes (50

mL) at 1000 rpm using a Thermomixer C until the components had fully dissolved (typically

24 to 48 h). Optically clear solutions of urea were pipetted onto glass microscope slides

(width 2.5 cm, length 7.5 cm) using disposable transfer pipettes. The solvent was allowed to



evaporate in a fume hood at room temperature for 48 h and then dried under vacuum in a

desiccator for 24 to 48 h .

Silk-based samples were immersed in aqueous methanol (80% methanol) for 1 h to

assure that the silk was rendered water insoluble due to the formation of inter- and intra

molecular β-sheets, and then placed in a container of water to wash out urea and methanol.

The samples were washed with water for 3 days to remove any traces of urea, typically

exchanging the water every 3 h (i.e., ca. 24 times), after which they were dried under high

vacuum for 24 to 48 h .

Preparation of Silk-Based Tissue Scaffolds with Aligned Pores

Solutions of silk and urea in hexafluoroisopropanol were prepared as described in

Section 2.2. Polydimethylsiloxane (PDMS) templates [18] were placed on flat rigid surfaces,

and solutions of silk/urea were pipetted into the grooves using disposable transfer pipettes.

Glass microscope slides (width 2.5 cm, length 7.5 cm) were placed on top of the PDMS

templates and the solvent was allowed to evaporate (typically 144 h), after which the slides

were removed and the silk/urea composites were then dried under vacuum in a desiccator for

24 to 48 h. Samples were immersed in aqueous methanol (80% methanol) for 1 h to assure

that the silk was rendered water insoluble due to the formation of inter- and intra-molecular

β-sheets, and then placed in a container of water to wash out urea and methanol. The samples

were washed with water for 3 days to remove any traces of urea, typically exchanging the

water every 3 h (i.e., ca. 24 times), after which they were dried under high vacuum for 24 to

48 h. The resulting white silk-based tissue scaffolds had thicknesses of ca. 0.4 mm as

determined using high precision digital calipers (ThermoFisher Scientific, Waltham, MA,

USA), widths of ca. 2 mm, and pores aligned over lengths of up to 0.5 cm. Samples were cut

to lengths appropriate for the various subsequent experiments using a razor blade.

Optical Microscopy of Urea and Silk Materials

Brightfield images of crystals of urea cast from formic acid, hexafluoroacetone

hydrate and hexafluoroisopropanol, or porous silk-based materials were obtained using an

Olympus 1X70 inverted microscope (Olympus Corporation of the Americas Inc., Center

Valley, PA, USA) equipped with an Olympus DP80 dual color and monochrome digital

camera (a 1.4 megapixel Bayer mosaic color CCD camera) that was attached to the

microscope with a 0.63 B-mount. Image Analysis was performed using Olympus cellSens ®

imaging software, Version 1.11 (Olympus Corporation of the Americas Inc.). Images are

representative of at least 3 locations on 3 samples.



Scanning Electron Microscopy (SEM)

Images of porous silk-based materials obtained using a scanning electron microscope

(SEM). Samples were mounted on a SEM stub and sputter coated with Pt/Pd (15 nm) using a

Cressington 208 benchtop sputter coater (Cressington Scientific Instruments, Watford, UK).

All samples were imaged using a Zeiss Supra 40 VP field emission scanning electron

microscope. Images are representative of at least 3 locations on 3 samples.

In Vitro Cell Culture

Human dermal fibroblasts (HDF, Invitrogen) were cultured in high glucose

Dulbecco's Modified Eagle Medium (DMEM) supplemented with GlutaMAX™ Supplement

(Invitrogen), 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin antibiotic

(Invitrogen). Cells were maintained at 37 °C in humidified atmosphere of 5% CO2. HDF

were seeded on the silk scaffold after treatment in ethanol for 1 h. Samples were subsequently

rinsed three times in PBS and incubated in complete media before seeding. HDF were seeded

at a density of 50,000 cells/cm2 and cultured for 1 week. Calcein AM staining of live cells

was applied in accordance with the instructions supplied with the kit (Invitrogen).

To stain the actin filaments and nuclei within cells, HDF were fixed in 2.5%

paraformaldehyde in PBS at room temperature for 20 min, and then rinsed in PBS three times

for 5 min. Cells were permeabilized in ice cold acetone (Sigma) at -20 °C for 5-10 min, and

then rinsed in PBS three times. Samples were incubated in 4',6-diamidino-2-phenylindole

(DAPI) solution at 300 nM for 10 min and for 1 h in 1:1000 Alexa Fluor® 488 Phalloidin

(Invitrogen), followed by rinsing. Samples were imaged with a Keyence Fluorescence

Microscope BZ-X700 (Keyence Corporation of America, Itasca, IL, USA) with excitation

and emission filters at 495-518 nm for Alexa Fluor® 488 and 358-461 nm for DAPI. Images

are representative of at least 3 locations on 3 samples.

Conclusions

Porous biomaterials are widely used in drug delivery and tissue engineering. 3D

printing technologies are very promising for the preparation of porous biomaterials, however,

they tend to be expensive. The removal of sacrificial templates (e.g., colloidal crystals, ice

crystals, fibers) from a matrix is a comparatively low cost alternative that allows the

generation of hierarchically organized pores in biomaterials. Herein, we expand our studies

on the use of sacrificial supracolloidal templates for the generation of porous biomaterials.

We expand the scope of polymers that the methodology is compatible with by elucidating the

solvent interactions governing the solubility of urea. We highlight the role of solvent



interactions on the morphology of the resulting supracolloidal crystals. We also highlight the

role of polymer-urea interactions on the morpohology of the pores in the resulting

biomaterials. Finally, we demonstrate that it is possible to use our urea templating

methodology to prepare B. mori silk protein-based biomaterials with pores that human dermal

fibroblasts respond to by aligning with the long axis of the pores. We believe that our

methodology has potential for application in a variety of different tissue engineering niches in

which cell alignment is observed, including skin, bone, muscle and nerve; particularly when

combined with the potential to guide the directionality of the urea crystals over multiple

centimeters [18].
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Example 2 :

Bodily tissues are hierarchically structured composite materials with tissue-specific

chemical and topographical properties, and these tissue-specific properties are known to act

as cues (individually or in concert) that dictate the behavior of cells that inhabit them, and can

potentially be engineered into instructional tissue scaffolds to achieve similar results [1-15].

Further to these cues, endogenous electric fields have been shown to act as behavioral cues

during embryogenesis and wound healing, and devices that deliver exogenous electrical fields

to the brain, ear or eye are already used in the clinic [4,16-19].

The complex interplay of chemical, electrical and topographical cues dictate the

behavior of cells, and implantable biomaterials that act as instructional tissue scaffolds may

facilitate the regeneration of functional tissues [2,7,8,12]. Topographical control of cell

alignment is clearly observable within anisotropically aligned pores that are observed in bone

[20,21], cardiac [22-25], nerve [3] and other tissues [6,7,26,27], which motivates the

development of novel methodologies of imparting biomimetic porous structures within

biomaterials.

While 3D printing technologies have prospects for the generation of porous materials,

it is still challenging to fabricate porous structures that accurately mimic the chemical and

intricate microscale and nanoscale topographical properties of native tissues, although

solutions to these challenges are the subject of intense current research [28-31]. The removal

of sacrificial templates embedded within a matrix (e.g., colloidal crystals, ice crystals,

electrospun fibers) is another approach that allows the generation of hierarchically organized

pore structures within materials [6,22].

Urea is a cheap, non-toxic solid that self-assembles through hydrogen bonding

interactions (Figure 2.1). The evaporation of water from aqueous solutions of urea yields

dendritic crystals if performed uncontrolled, and seeds of urea crystals can initiate

crystallization in a controlled manner prior to solvent evaporation to obtain less dendritic and

relatively well aligned crystals over the length scale of a few hundred micrometers [32].



Zawko and coworkers reported the use of a sacrificial supramolecular polymer-based

crystal template (urea) to impart pores [32] within photocrosslinkable biopolymer-based

hydrogels that typically have mechanical properties similar to soft tissues such as those in the

central nervous system [33]. Uncontrolled urea crystallization in aqueous solutions of

photocrosslinkable biopolymers followed by crosslinking yielded hydrogels with dendritic

pores within them [32]. Carefully controlling the seeding of urea crystal formation followed

by crosslinking allowed the generation of pores that were less dendritic and relatively aligned

over the length scale of a few hundred micrometers. Interestingly, fibroblasts cultured within

the gels were observed to align parallel to the fibrillar microstructure of the hydrogels,

whereas keratinocytes did not display any preferential orientation in response to the

topographical cue [32].

Manufacturing materials using entirely aqueous processes, such as that described

above is an appealing prospect, but it limits the selection of the materials usable used to those

that are soluble in water (e.g., polysaccharides), and there are many devices used in the clinic

based on polymers that are insoluble in water (e.g., PCL). Here we report the use of urea-

based supramolecular polymer crystals as sacrificial templates in the preparation of porous

tissue scaffolds from non-aqueous solvents. Moreover, we report a simple scalable

methodology for aligning the supramolecular polymer crystals that allows the generation of

aligned pores within the matrix of biodegradable polymer; and demonstrate that the pores

serve as topographical cues to which cells respond by aligning. Generation of an

interpenetrating network of PPy within the scaffold renders the scaffolds electroactive and

facilitates the electrical stimulation of cells cultured on the scaffolds. These methodologies

are broadly applicable to a variety of materials, and represent broad platform technologies for

biomimetic tissue engineering.

Porous biomaterials are broadly applicable in tissue engineering [6,7,26,27,34], and

we sought to demonstrate that electroactive materials generated using our methodology can

electrically stimulate cells to yield a response [8,35-46]. Therefore, we used our

methodologies to manufacture electroactive PCL-based scaffolds with biomimetic

topographical properties, and showed that electrical stimulation of glial cells from the

peripheral nervous system (i.e., Schwann cells) cultured on the scaffolds upregulated the

production of nerve growth factor (NGF) which has been shown to promote peripheral nerve

regeneration in vivo [47-64].



Experimental Section

Materials

Unless otherwise stated, all chemicals for synthesis and physicochemical analysis

were of ACS grade, purchased from Sigma-Aldrich and used as received without further

purification. Reagents for cell culture were purchased from Invitrogen (Carlsbad, CA, USA)

unless otherwise noted. Neonatal rat Schwann cells isolated from sciatic nerves were

purchased from ScienCell (Carlsbad, CA, USA).

Preparation of polydimethylsiloxane (PDMS) Templates

A 50 W laser cutter (Universal Laser Systems model VLS6.60, Scottsdale, AZ) was

used to manufacture acrylic master templates with grooves 2 mm in depth, 2 mm in width

and 10 cm long (Figures 2.2A and 2.2B). Polydimethylsiloxane (PDMS) was prepared using

a Sylgard® 184 silicone elastomer kit in accordance with the manufacturer's protocol. The

PDMS precursors were mixed in a disposable plastic weigh boat using a disposable plastic 1

mL pipette tip prior to being slowly poured over the grooved acrylic templates housed in a

disposable container of aluminum foil. Thereafter this setup was stored under vacuum in a

desiccator for 4 days at room temperature to allow the PDMS to crosslink fully. The acrylic

templates were cut out of the resulting PDMS films using a razor blade and the PDMS was

peeled from the acrylic template allowing it to be reused (Figure 2.2C).

Preparation of PCL-Based Tissue Scaffolds with Aligned Pores

PCL (Mn 80 kDa, 1 g) and urea ( 1 g) were dissolved in hexafluoroisopropanol (10

mL). Samples were shaken in airtight centrifuge tubes (50 mL) at 1000 rpm using a

Thermomixer C (Eppendorf International, Hauppauge, NY) until the components had fully

dissolved (typically 24 to 48 h). PDMS templates were placed on flat rigid surfaces, and

optically clear hexafluoroisopropanol solutions of PCL/urea were pipetted into the grooves

using disposable transfer pipettes. Glass microscope slides (width 2.5 cm, length 7.5 cm)

were then placed on top of the PDMS templates (as depicted in Figure 2D) and the

hexafluoroisopropanol was allowed to evaporate (typically 72 h), after which the slides were

removed and the PCL/urea composites were placed in a container of water (100 mL). The

samples were washed with water to remove the urea, exchanging the water every 3 h for 3

days, after which they were dried under high vacuum. The dimensions of the resulting white

PCL-based tissue scaffolds had thicknesses of ca. 0.4 mm as were determined using high

precision digital calipers (ThermoFisher Scientific, Waltham, MA), widths of ca. 2 mm, and

pores aligned over lengths of up to 6.6 cm. Samples were cut to lengths, appropriate for the



various subsequent experiments, using a razor blade. The porosity of the samples can be

calculated from:

'

The samples had mass ratios 1:1 PCL:urea. The density of PCL is: 1.145 g/cm , and 1

g therefore occupies 0.8733 cm3. The density of urea is: 1.32 g/cm3; so 1 g occupies 0.7575

cm3. Assuming that all of the urea is leached during the washing process, the porosity is: 46.4

Preparation of Electroactive PCL-Based Tissue Scaffolds with Aligned Pores

Pyrrole was purified by passage over basic alumina. White PCL-based tissue scaffolds

with aligned pores were placed in disposable 50 mL centrifuge tubes containing a solution of

pyrrole (291 µ , [84 mM], 1 eq.) and PSS (Mn 70 kDa, 0.799 g, [84 mM], 1 eq.) in distilled

water (50 mL). Samples were sonicated for 5 minutes and cooled to 4 °C (for 1 hour).

Thereafter, ferric chloride (1.848 g, [228 mM], 2.7 eq.) was added. The samples were shaken

to assure dissolution of the ferric chloride and then incubated for a further 24 h at 4 °C. Black

electroactive tissue scaffolds with aligned pores were removed from the reaction mixture,

placed in fresh distilled water, sonicated for 5 min, and then exhaustively washed (to remove

monomers, oligomers and initiators) with deionized water until the water used to wash the

materials was clear, colorless and the pH was neutral (ca. 48 h). Electroactive tissue scaffolds

(PCL with an interpenetrating network of PPy and PSS) with aligned pores were dried under

high vacuum at 2 1 °C. Samples were cut to lengths appropriate for the various subsequent

experiments using a razor blade.

Scanning Electron Microscopy (SEM)

Images of porous PCL-based materials obtained using a scanning electron microscope

(SEM). Samples were mounted on a SEM stub and sputter coated with Pt/Pd (15 nm) using a

Cressington 208 benchtop sputter coater. All samples were imaged using a Zeiss Supra 40 VP

field emission SEM.

Electrical Sheet Resistance

The electrical sheet resistance of the electroactive tissue scaffolds with aligned pores

was measured in accordance with the method described by Schmidt [65] and Zhang [66]. In

short, resistance (R in Ω) was measured between the two silver electrodes using a digital

multimeter (DM-8A, Sperry Instrument, Milwaulkee, WI). Sheet resistance (Rs) in Ω/square

was calculated as follows:

-



where W is the sample width (in cm) and L is the distance between the two silver electrodes

(in cm). The electrodes were moved to different positions after each measurement, and the

resistance R was recorded in at least ten different positions on the materials.

Fourier Transform Infrared Spectroscopy (FTIR)

Infrared spectroscopy was carried out on the samples to confirm that the surface

chemistry of the scaffolds had changed after the growth of an interpenetrating network of PPy

and PSS within the PCL matrix. A Thermo Scientific Nicolet 380 FTIR Spectrometer

(Thermo Fisher Scientific Inc., USA) was used. Spectra were recorded in attenuated total

reflectance (ATR) mode at 2 1 °C with a 1 c 1 resolution and 128 scans (corrected for

background and atmosphere using OMNIC software provided with the spectrometer).

Samples were secured in position on the ATR crystal using the built-in clamp.

X-Ray Photoelectron Spectroscopy (XPS)

XPS was carried out on the samples to confirm that the surface chemistry of the

scaffolds had changed after the growth of an interpenetrating network of PPy and PSS within

the PCL matrix. XPS was performed on a Kratos Axis X-ray photoelectron spectrometer

(Kratos Analytical Ltd., Manchester, UK). The binding energy was calibrated using the C Is

photoelectron peak at 284.6 eV as a reference. The CasaXPS computer program was used for

peak fitting of the C Is and O l s peaks in the XPS spectra. The reported spectra are

representative of two measurements at different positions on a sample.

In VitroDegradation Study

Samples were incubated in PBS ( 1 mL) at 37 °C, in the absence or presence of

cholesterol esterase (4 units/mL, Sigma Aldrich, USA). At specific time points the buffer was

removed, the samples were carefully washed with deionized water. The samples were then

dried under high vacuum to obtain a dry weight. The buffer (with or without enzymes) was

replaced, and the mass of the film was recorded over a period of several days. Mass loss

profiles represent the average of at least five samples.

In Vitro Cell Culture

PCL-Based Tissue Scaffold Preparation and Sterilization

Commercially available tissue-culture treated Corning® Costar® tissue culture plates

were used for control experiments. Non-electroactive and electroactive PCL-based tissue

scaffolds with aligned pores were incubated in an aqueous solution of poly-D-lysine (PDL,

50 µg/mL) for 1hour and then washed thoroughly with sterile water to remove any weakly

adsorbed PDL (exchanging the water every 10 min for 1 h). Samples were inserted in



untreated polystyrene tissue culture plates and sterilized by incubation in 70% ethanol

followed by exposure to UV for 60 min.

In Vitro Culture of Schwann Cells

After sterilization, scaffolds were incubated for 30 min under 3 mm of medium.

Schwann cell growth medium was composed of: 25.5 mL of low glucose Dulbecco's

Modified Eagle Medium (DMEM);8.5 mL of GIBCO® Ham's F-12 Nutrient Mixture; 350

Penicillin Streptomycin (1% of the final volume); 350 µ N2 supplement (2% of the final

volume); Forskolin [5 µΜ ]; Neuregulin- ΐ (50 ng/niL). Medium was aspirated and replaced

prior to Schwann cell seeding at 5,000 cells/cm2 under 3 mm of medium, and incubated at 37

°C, 95% humidity, and 5% CO2. Cell viability before starting the experiment was determined

by the Trypan Blue (Sigma, USA) exclusion method, and the measured viability exceeded

95% in all cases. After 2 days the medium was aspirated, the scaffolds were washed gently

with PBS, and the cells were fixed with 4% paraformaldehyde in PBS for 15 min. The

scaffolds were washed again with PBS (3 1 mL) and stored at 4 °C until they were stained

and imaged.

Electrical Stimulation of Schwann Cells

Electrical stimulation of Schwann cells was achieved employing a custom built setup.

Non-conductive glass slides, polycarbonate wells (square polycarbonate blocks, thickness of

1 cm, sides of 2.5 cm, with square holes with sides of 0.9 cm cut out), [67,68] Dow Corning®

high vacuum grease, and medium binder clips (Staples®, Framingham, MA) were sterilized

by autoclaving. Holes were drilled into the sides of 10 cm polystyrene Petri dishes using a

Dremel saw (Lowes, Mooresfield, NC, USA), and the plates were sterilized by exposure to

UV for 60 min. Adhesive-backed copper tape (5 mm width, Ted Pella, Inc.), waterproof

Kapton® tape ( 1 cm width, Fisher Scientific, Waltham, MA, USA), wires and alligator clips

were sterilized by exposure to UV for 60 min.

Electroactive PCL-based tissue scaffolds with aligned pores (prepared as described in

2.1 1.1.) were placed on glass slides and secured in position with two thin strips of adhesive-

backed copper tape that were attached to the films, parallel to one another and separated by a

distance of ca. 4 cm. One face of the polycarbonate wells was coated with vacuum grease and

placed on the electroactive tissue scaffolds, greased side down, in contact with the glass slide.

A binder clip on either side of the well was used to secure this in position and render it water

tight. A strip of copper tape was run between the parallel copper strips attached to the

scaffolds and the ends of the slides as points of contact for the alligator clip-terminated wires

attached to the multipotentiostat (CH Instruments, Austin, TX, USA). The counter and



reference electrodes were connected together and clipped to copper tape on one side of the

slide, and the working electrode was clipped to copper tape on the other side of the slide.

Schwann cells were plated and cultured as described in section 2.13.3. A potential step of +50

mV/mm was placed across the substrate for the duration of 1 h [69-71], after which the wires

were disconnected and the substrates cultured as normal (see Figure 2.3).

Fluorescence Staining and Imaging of Cells

Cells fixed with paraformaldehyde were permeabilized with 0.1% Triton X-100

(Fluka) and 2% bovine serum albumin (BSA) in PBS buffer for 5 min, followed by blocking

with 2% BSA in PBS buffer for 30 min at room temperature. Actin filaments and cell nuclei

within cells were stained with Alexa Fluor 488 ® Phalloidin (Life Technologies, USA) for 30

min and 4',6-diamidino-2-phenylindole (DAPI, Invitrogen, USA) for 5 min, respectively.

The cells were thereafter washed three times with PBS and stored at 4 °C until images were

acquired. Fluorescence images of cells were obtained using an Olympus 1X70 inverted

microscope equipped with an Olympus DP80 dual color and monochrome digital camera (a

1.4 megapixel Bayer mosaic color CCD camera) that was attached to the microscope with a

0.63 B-mount. Image Analysis was done using Olympus cellSens® imaging software, Version

1.1 1.

NGF secretion studies

Schwann cells were cultured under the conditions described above for 1 day, after

which electrical stimulation for 1 h was optionally applied; non-stimulated controls included

commercially available tissue-culture treated Corning® Costar® tissue culture plates, and non-

electroactive/electroactive PCL-based tissue scaffolds with aligned pores. Medium was

collected from the Schwann cell cultures immediately after electrical stimulation (0 h) and

thereafter in intervals of 12 h for 3 days. The medium was stored at -20 °C for no more than

1 week prior to use in the Rat NGF ELISA Kit (Insight Genomics, Falls Church, VA, USA).

ELISA kits were utilized in accordance with the protocol supplied with the kit, employing a

Synergy HT Multi-Mode Microplate Reader (Biotek US, Winooski, VT, USA).

Concentrations of NGF/mL were calculated based on standards supplied in the NGF ELISA

Kit. Differences in cell numbers over the 3 day period of the assay were negligible as

determined with an AlamarBlue® cell viability assay, and concentrations of NGF in pg/mL are

therefore presented uncorrected.



Results and Discussion

Controlled Crystallization of Urea-Based Supramolecular Polymers as Sacrificial Templates

or the Generation of Porous Biomaterials: Preparation and Characterization of PCL-Based

Tissue Scaffolds with Highly Aligned Pores

We chose to produce tissue scaffolds incorporating aligned pores. With this goal in

mind, we produced hard acrylic master templates with grooves with depths of 2 mm, widths

of 2 mm and lengths of 10 cm using a laser cutter (Figure 2.2A). Flexible PDMS analogues

were prepared by embedding the master template (Figure 2.2B) in a container with the PDMS

precursors, allowing them to crosslink and then peeling the flexible PDMS template (Figure

2C) away from the surface of the acrylic master template. The resulting flexible PDMS

templates with possessing grooves with widths and heights of 2 mm and lengths of 10 cm for

the solutions of urea/polymer/hexafluoroisopropanol (Figure 2.2C, left) had an open top upon

which a glass slide (width of 2.5 cm, length of 7.5 cm) was placed. The glass slide prevented

hexafluoroisopropanol evaporation from the top of the template and allowed

hexafluoroisopropanol evaporation only at either end of the glass slide-covered grooves

(Figure 2.2D). Such The PDMS templates facilitated controlled solvent evaporation,

preferential alignment of urea crystals within the grooves, and the resulting scaffolds to be

easily removed from the templates to allow the sacrificial urea template to be removed by

washing, yielding scaffolds with porosities of ca. 46.4 %.

PCL-based tissue scaffolds produced using this methodology had thicknesses of ca.

0.4 mm, widths of ca. 2 mm, and pores (with widths of 10s of micrometers as observed by

SEM, Figure 2.4A and 2.4B) aligned over lengths of up to 6.6 cm (ca. 88% of the length of

the glass slide used to cover the grooves), which are clinically relevant length scales [8,72]. It

is noteworthy that this would be straightforward to adapt to manufacture longer scaffolds

using longer flexible templates and covers, and that this a very simple and inexpensive

methodology well suited to laboratories across the world.

Preparation and Characterization of Electroactive PCL-Based Tissue Scaffolds with Aligned

Pores

Methodology for the Preparation of Electroactive PCL-Based Tissue Scaffolds

A simple method to reproducibly prepare electroactive PCL-based scaffolds was the

generation of an interpenetrating network of electroactive PPy within the non-electroactive

PCL matrix. The interpenetrating networks of PPy in PCL scaffolds were generated simply

by incubating the scaffolds in aqueous solutions of pyrrole(monomer, concentration < 84

mM, PSS(dopant counter ion, 1 molar equivalent) and ferric chloride (initiator, 2.7 molar



equivalents) for 24 h followed by exhaustive washing. [65, 73] This simple process

reproducibly produced mechanically stable electroactive tissue scaffolds with well-preserved

micrometer and nanometer scale features; indeed, we found that use of higher concentrations

of pyrrole (which is a good solvent for PCL) partially dissolved the PCL-based scaffolds, and

extra crosslinking and washing steps are necessary to circumvent this problem (which also

permits them to be sterilized by autoclaving) as reported by Yaszemski and co-workers [74-

77]. Non-electroactive PCL-based scaffolds were white, whereas the electroactive scaffolds

were black, and electron microscopy showed evidence of a slightly increased surface

roughness on the nanometer scale due to the presence of polyelectrolyte complexes of

positively charged PPy and negatively charged PSS interwoven with the PCL matrix (Figure

3C and 3D) [65].

Spectroscopic Analysis of Non-Electroactive and Electroactive PCL-Based Tissue Scaffolds

Comparison of infrared spectra recorded in ATR mode of the non-electroactive

scaffolds (Figure 2.5A) and the electroactive scaffolds (Figure 2.5B) confirmed the

successful generation of an interpenetrating network of polyelectrolyte complexes of

positively charged PPy and negatively charged PSS interwoven within the PCL matrix.

Indeed, the peaks observed in the spectra of the electroactive scaffolds at ca. 1543 and ca.

1480 cn 1 are characteristic of the antisymmetric and symmetric ring stretching modes

respectively (Figure 2.5B) [78,79]. In addition, comparison of X-ray photoelectron spectra of

the non-electroactive scaffolds (Figure 2.5C) and the electroactive scaffolds (Figure 2.5D)

provided further evidence of alterations to the surface chemistry of the materials. The low

intensity peak in the spectra at ca. 31 eV is the Na 2s and 2p peak (from NaCl), and the peak

at ca. 500 eV is the corresponding Auger transition of sodium. The peak at ca. 99 eV is the Si

2p peak (a combination of the Si 2p 1 and Si 2p3 peaks) from the underlying substrate. The

peaks at ca. 285 eV correspond to C Is, and the broad peak at ca. 53 1 corresponds to O Is (a

combination of C-0 at ca. 531 and C=0 at ca. 533) which all arise from the PCL backbone.

The appearance of peaks in the spectra of the electroactive scaffolds at ca. 400 eV (N Is) and

ca. 168 eV (S 2p) are characteristic of PPy and PSS, respectively (Figure 2.5D) [65,66],

confirming the successful generation of an interpenetrating network.

Electrical Properties of Electroactive PCL-Based Tissue Scaffolds

Generation of an interpenetrating network of polyelectrolyte complexes of PPy and

PSS within the non electroactive PCL-based scaffolds rendered them electroactive with sheet

resistances of ca. 68 kH/square, on the order of analogous PPy-PSS polyelectrolyte complex-



coated poly(lactic-co-glycolic acid) nanofibers (ca. 17 kH/square) [65] or PPy-heparin

polyelectrolyte complex-coated Dacron® 56 polyester fibers (ca. 16 kH/square) [66]. The

relatively low resistance of the PPy-modified poly(lactic-co-glycolic acid) or Dacron® 56

fibers is likely to be because the PPy is localized on the surface of the fibers [65], whereas the

interpenetrating networks of PPy-PSS and PCL would have PPy-PSS in the bulk of the PCL

and display some non-conductive PCL chains on the surface of the scaffolds [73].

In Vitro Degradation of Non-Electroactive and Electroactive PCL-Based Tissue Scaffolds

While in vitro degradation experiments do not accurately reproduce conditions that

materials encounter when implanted in vivo (particularly patient-specific immune responses

or the tissue-specific distribution of enzymes), they are useful to confirm the potential of

materials to degrade upon exposure to enzymes found in vivo. To demonstrate that

enzymatic/hydrolytic degradation of the non-electroactive and electroactive PCL-based tissue

scaffolds is possible, we incubated them in PBS in the absence or presence of a high

concentration of an enzyme known to hydrolyze ester bonds in polyesters, cholesterol

esterase (4 units/mL) [80-84]. When incubated in PBS for 12 days the masses of non-

electroactive and electroactive scaffolds did not change significantly (Figure 2.6A, 2.6B,

respectively) because hydrolysis of PCL occurs very slowly [85]. The presence of the

esterase increases the rate of hydrolysis, resulting in a notable mass loss, ca. 40% over 12

days, from the non-electroactive PCL-based scaffolds (Figure 2.6A) and ca. 50% from the

electroactive versions (Figure 2.6B). The presence of the electroactive polyelectrolyte complex

of PPy and PSS appears to increase the hydrophilicity of the scaffolds allowing the enzyme to

more easily access the PCL chains. The scaffolds are likely to degrade slowly if administered

in vivo (over the period of several years) in line with other PCL-based materials [86] leaving

behind the residual water insoluble polyelectrolyte complex of PPy and PSS that preclinical

trials have shown to be relatively non-immunogenic. Indeed, histological analyses of tissue in

the vicinity of polypyrrole-based tissue scaffolds implanted subcutaneously or

intramuscularly in rats showed immune cell infiltration comparable to FDA-approved

poly(lactic acid-co-glycolic acid) [87] or poly(D,L-lactide-co-glycolide) [87]. Similarly, there

was no significant inflammation in the vicinity of polypyrrole-based materials implanted in

the coronary artery of rats after 5 weeks [88], sciatic nerve guidance channels implanted in

rats after 8 weeks [89], or electrodes in rat brains after 3 or 6 weeks [90].

In Vitro Cell Culture Studies on Instructional PCL-Based Tissue Scaffolds

Topographical Instruction: Aligned Pores are a Topographical Cue that Cells Respond to by

Aligning



The anisotropic features are commonly observed in functional tissues (including bone,

cardiac, musculoskeletal and nervous tissues), and scaffolds with biomimetic architectures

perform well in the clinic [2,7,8,12]. We investigated the adhesion of rat primary Schwann

cells on the non-electroactive and electroactive PCL-based tissue scaffolds with highly

aligned pores. After 48 h in culture we observed that Schwann cells responded to the

topographical cue by aligning preferentially with the long axis of the pores in the scaffolds

(Figures 2.7A-B), which is promising for future studies either with scaffolds derived from

other polymers and using other cell types.

Electrical Instruction: Electrical Stimulation is a Cue that Schwann Cells Respond to by

Increasing the Excretion of Nerve Growth Factor (NGF)

The role of endogenous electrical fields in the development of the nervous system

motivated research into the application of exogenous electrical fields for therapeutic

purposes, and preclinical studies show that electrical stimulation of damaged peripheral

nerves for short periods of time (e.g., 1 h) improves their regeneration [18,69-71]. Electrical

stimulation is known to affect cells differently depending upon a variety of factors including

the cell type and species from which they were isolated, as discussed in detail in recent

reviews [18,19]. Electrical stimulation of Schwann cells has been shown to increase the

production of nerve growth factor (NGF) from Schwann cells cultured on electroactive

indium tin oxide-based substrates [91], PPy-based substrates [92] or poly(3,4-

ethylenedioxythiophene)-based substrates [93] or non-electroactive poly-L-Lysine-coated

glass substrates [94]. NGF is a protein that plays a role in the growth, maintenance and

survival of neurons. In fact, preclinical studies in rats showed that NGF promoted peripheral

nerve regeneration [47-64], encouraging the development of NGF drug delivery systems [95],

some of which are electrochemically triggered [96] and have the potential for regeneration of

the nervous system.

Electroactive scaffolds such as those we report here clearly have the potential to act

both as electrochemically-triggered drug delivery devices as well as instructive scaffolds that

enable electrical stimulation of cells. We focused on the latter, investigating the amount of

NGF expressed by rat Schwann cells when electrically stimulated (50 mV/mm) on the

electroactive PCL-based tissue scaffolds with aligned pores, and non-stimulated controls

including commercially available tissue-culture treated Corning® Costar® tissue culture plates,

and non-electroactive/electroactive PCL-based tissue scaffolds with aligned pores. The

concentration of NGF in the medium (in pg/mL) was determined using a Rat NGF ELISA Kit

(Insight Genomics, Falls Church, VA) immediately after electrical stimulation and thereafter



in intervals of 1 h for 3 days. There were no significant differences in NGF production by

Schwann cells in any of the non-stimulated controls over the 3 day study. In contrast to this,

after 48 hours in culture we observed that Schwann cells responded to the electrical cue and

increased production of NGF to ca. three times the amount produced by an equivalent

number of cells without electrical stimulation, a trend that was markedly more apparent during

the following 24 h (Figure 2.8). Such increases in NGF production have been shown to

encourage neurite outgrowth from neurons in a number of studies [97,98].

Our finding that cells respond not only to the topographical cue imparted through use

of urea-based supramolecular polymer crystal sacrificial templates, but also to the electrical

cue facilitated by an interpenetrating network of PPy shows the potential of our innovative

biomaterials to function not only as scaffolds with potential for nerve regeneration, but also

as platforms for the development of porous scaffolds for other tissues.

Conclusions

There is a need for biomaterials with biomimetic chemical and topographical

properties for application as tissue scaffolds. Likewise, materials that facilitate the application

of exogenous electrical fields have a variety of potential therapeutic applications. Here we

present a novel process to manufacture instructional tissue scaffolds with biomimetic

topographical properties and a process to render these scaffolds electroactive that allows

electrical stimulation of cells cultured on them.

Sacrificial supramolecular polymer-based crystals composed of urea were used to

generate pores within a matrix of a biodegradable polymer. We show that it is possible to

generate both dendritic and linear urea crystals dependent on the solvent used, and, moreover,

that co-crystallization of urea with a polymer controls the propensity of the urea to form

dendritic or linear crystals, thereby controlling the topography generated within the polymer

matrix. Additionally, we have developed a simple, inexpensive, scalable method of aligning

the supramolecular polymer-based crystals within the biodegradable polymer matrix,

allowing the preparation of scaffolds with macroscopic pores that are aligned over long,

clinically relevant distances on the order of centimeters. The pores act as topographical cues

to which rat Schwann cells responded by aligning.

We can prepare electroactive tissue scaffolds with biomimetic topographical

properties using simple chemistry that allows the electrical stimulation of Schwann cells

cultured on the scaffolds. This electrical cue increased the production of nerve growth factor



(NGF) to more than three times the amount produced by non-stimulated cells, which may

improve clinical outcomes during peripheral nerve regeneration.

Together, these simple, inexpensive methods represent a platform technology that

facilitates the development of porous electroactive biomaterials.
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It should be noted that ratios, concentrations, amounts, and other numerical data may

be expressed herein in a range format. It is to be understood that such a range format is used



for convenience and brevity, and thus, should be interpreted in a flexible manner to include

not only the numerical values explicitly recited as the limits of the range, but also to include

all the individual numerical values or sub-ranges encompassed within that range as if each

numerical value and sub-range is explicitly recited. To illustrate, a concentration range of

"about 0.1% to about 5%" should be interpreted to include not only the explicitly recited

concentration of about 0.1 wt% to about 5 wt%, but also include individual concentrations

(e.g., 1%, 2%, 3%, and 4%) and the sub-ranges (e.g., 0.5%, 1.1%, 2.2%, 3.3%, and 4.4%)

within the indicated range. In an embodiment, the term "about" can include traditional

rounding according to significant figures of the numerical value. In addition, the phrase

"about 'x' to " includes "about 'x' to about 'y"\

Many variations and modifications may be made to the above-described

embodiments. All such modifications and variations are intended to be included herein

within the scope of this disclosure and protected by the following claims.



CLAIMS

We claim:

1. A method of forming a tissue scaffold, comprising:

mixing a solution including urea and a non-aqueous solvent with a polymer that is

soluble with the solvent to form a mixture;

disposing the mixture on a substrate; and

removing the solvent from the mixture to form a tissue scaffold.

2. The method of claim 1, further comprising: removing the urea from the tissue scaffold

to form a biodegradable porous tissue scaffold, wherein removal of the urea forms pores

within the tissue scaffold to form the biodegradable porous tissue scaffold.

3. The method of claim 1, wherein the non-aqueous solvent is selected from the group

consisting of: formic acid, trifluoroacetic acid, hexafluoroisopropanol, hexafluoroacetone

hydrate, methanol, ethanol, propanol, isopropanol, acetophenone, methoxyethanol,

ethanediol, 1,2-propanediol, 1,3 -propanediol, glycerol, glycerol monoacetate, glycerol

diacetate, methylacetate, ethylacetate, allyl alcohol, furfuryl alcohol, diacetone alcohol,

benzyl alcohol, cyclohexanol and a combination thereof.

4. The method of claim 1, wherein the polymer is insoluble in water.

5. The method of claim 4, wherein the polymer is selected from the group consisting of:

nylon, hydroxybutyric acids, polyanhydrides, polphosphazenes, polyphosphoesters,

polyethers, polysilanes, polysiloxanes, polyurethanes,) polycaprolactone, polyesters,

polyamides, PCL, PLLA, PLGA, lignins, polyalanine, oligoalanine, collagen, silk, cellulose,

chitin, chitosan, dextran, and a combination thereof.

6. The method of claim 1, further comprising an electroactive tissue scaffold by

polymerizing an electroactive polymer with the tissue scaffold.

7. The method of claim 6, further comprising: removing the urea from the electroactive

tissue scaffold to form a biodegradable electroactive porous tissue scaffold, wherein removal



of the urea forms pores within the tissue scaffold to form the biodegradable electroactive

porous tissue scaffold.

8. The method of claim 6, wherein the electroactive polymer is selected from the group

consisting of: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene),

poly fluorenes, polyphenylenes, polypyrenes, polyazulenes, polynapthalenes, polyindoles,

polyazepines, poly(p-phenylene sulfide)s, poly(p-phenylene vinylene)s, polyfurans, and a

combination thereof.

9. The method of claim 1, wherein the substrate includes a network of channels, wherein

the mixture is disposed in the network of channels, wherein further comprising: removing the

substrate to form the tissue scaffold having a network of pores extending through the tissue

scaffold.

10. The method of claim 9, wherein the network of channels are aligned relative to one

another and each of the channels in the network of channels has a diameter of about 50 nm to

100 µιη and the length of about 1 cm to 10 cm.

11. The method of claim 9, further comprising: removing the urea from the tissue scaffold

to form a biodegradable porous tissue scaffold, wherein removal of the urea forms pores

within the tissue scaffold to form the biodegradable porous tissue scaffold.

12. The method of claim 11, wherein the pores formed from removal of the urea are of

the type selected from the group consisting of: dendritic, linear, and a combination thereof.

13. A structure, comprising:

a tissue scaffold including a polymer and urea, wherein the polymer is soluble in a

non-aqueous solvent selected from the group consisting of: formic acid, trifluoroacetic acid,

hexafluoroisopropanol, hexafluoroacetone hydrate, methanol, ethanol, propanol, isopropanol,

acetophenone, methoxyethanol, ethanediol, 1,2-propanediol, 1,3 -propanediol, glycerol,

glycerol monoacetate, glycerol diacetate, methylacetate, ethylacetate, allyl alcohol, furfuryl

alcohol, diacetone alcohol, benzyl alcohol, cyclohexanol and a combination thereof.

14. The structure of claim 13, wherein the polymer is not soluble in water.



15. The structure of claim 14, wherein the polymer is selected from the group consisting

of: nylon, hydroxybutyric acids, polyanhydrides, polphosphazenes, polyphosphoesters,

polyethers, polysilanes, polysiloxanes, polyurethanes, polycaprolactone, polyesters,

polyamides, PCL, PLLA, PLGA, lignins, polyalanine, oligoalanine, collagen, silk, cellulose,

chitin, chitosan, dextran, and a combination thereof.

16. The structure of claim 13, further comprising an electroactive polymer.

17. The structure of claim 16, wherein the electroactive polymer is selected from the

group consisting of: polypyrrole, polyaniline, polythiophene, poly(3,4-

ethylenedioxythiophene), poly fluorenes, polyphenylenes, polypyrenes, polyazulenes,

polynapthalenes, polyindoles, polyazepines, poly(p-phenylene sulfide)s, poly(p-phenylene

vinylene)s, polyfurans, and a combination thereof.

18. The structure of claim 13, wherein the urea is in the form of urea crystals, wherein the

urea crystals have a crystal structure selected from the group consisting of: dendritic, linear,

or a combination thereof.

19. The structure of claim 13, wherein the tissue scaffold includes a network of channels

that are aligned relative to one another and each of the channels in the network of channels

has a diameter of 50 nm to 100 µιη and the length of about 1 cm to 10 cm.
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